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Abstract 

 

The internet has grown to a point where people all over the world have become 

dependent on this convenient communication medium. However, with this 

dependency, malicious traffic has become a major concern. Consequently, firewalls 

have become a mandatory part of any network, due to their ability to filter the traffic 

based on rules that state which packets should be accepted or denied. However, filter 

rules must be manually configured by a network administrator, and packets that do not 

fit any rule may be subject to wrong judgement by the firewall. Neural networks can 

learn the filter rules in order to decide if packets that do not fit any specific rules should 

be accepted or denied. The neural network will be trained with existing packet data 

and their firewall actions, and then tested to determine the amount of correctly 

classified packets compared to the firewall.  

 

Keywords: Network Security, Firewall, Packet filtering, Neural Networks 
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Title and Abstract (in Arabic)  

 

 أداء جدار الحماية باستخدام الشبكات العصبية تعزيز

 

 صالملخ

 

 ىالإنترنت إلى حد أصبح فيه الناس في جميع أنحاء العالم يعتمدون عل ى استخداملقد نم

الضارة  الاتصالاتمع هذه التبعية ، أصبحت حركة  ره. ويوفت تم الذي هذا الاتصال المريح وسيط

، نظرًا رقميةجزءًا إلزامياً من أي شبكة  الحمايةتكون جدران  السبب،مصدر قلق كبير. ولهذا 

استناداً إلى القواعد التي تنص على قبول الرزم أو رفضها.  الاتصالاتلقدرتها على تصفية 

زم التي لا روقد تخضع الكما  تهيئة قواعد التصفية يدوياً بواسطة مسؤول الشبكة ، يتطلب هذا و

واسطة جدار الحماية. يمكن للشبكات العصبية معرفة قواعد التصفية تلائم أي قاعدة لحكم خاطئ ب

التي تم تعيينها من قبل المسؤولين من أجل تحديد ما إذا كانت الرزم التي لا تناسب أي قواعد 

 قواعد زمة الحالية ورمحددة يجب قبولها أو رفضها. سيتم تدريب الشبكة العصبية مع بيانات ال

 .اختبارها لتحديد دقة التصفية مقارنة بجدار الحمايةجدار الحماية ، ثم يتم 

 

امن الشبكة، جدار الحماية، تصفية الرزم، الشبكات العصبيةالبحث الرئيسية:  مفاهيم  
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Chapter 1: Introduction 

 

 

In the current era, the primary medium of communication has become the 

internet. It allows people to communicate with each other all over the world in a matter 

of seconds. Network connectivity is required to achieve this, making it a necessity in 

everyone’s lives. Due to its convenient and accessible nature, the internet is open not 

only to professionals, but also to children and computer neophytes in general. 

However, the internet is also open to those with malicious intentions, providing an 

entirely new and convenient medium for attacks.  

Just as network connectivity has become a necessity in the lives of the human 

population, so has network security. Without network security, those with ill intentions 

would be free to commit cybercrimes, whether they are against other people or 

organizations. Attacks can range from minor incidents, such as spam mail, to extreme 

attacks that may results in physical harm to others. An example of the latter is the 

attack on the German steel mill that occurred in 2014. The attackers were able to gain 

access to the plant’s network by gaining information through a spear-phishing email 

[1]. This information caused critical process components from functioning properly, 

resulting in physical damage to the mills.  

 One major tool used to secure a network is the firewall. A network firewall is 

a system that enforces access control policies, usually in the form of rules, to control 

the traffic that enters a network or machine [2]. The packets being transported are 

filtered based on certain characteristics, usually their source IP addresses, source and 

destination ports, and the protocol being used. The rules set in a firewall are configured 

manually by the network’s administrator and are set based on known information about 

the incoming and outgoing traffic. Packets that are entering a network from known 

malicious sources are blocked and prevented from entering the network. Alternatively, 
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connections that are mandatory for daily functions in an organization, such as those 

related to checking emails, can have rules allowing them. 

While network security is advancing and becoming a necessity all over the 

world, Artificial Intelligence (AI) and Machine Learning (ML) have also become 

major fields of research.  The applications of these topics extend to any professional 

field, from art and media to medicine. Machine Learning is a field of study within 

Artificial Intelligence that allows computers to learn from existing examples without 

being manually programmed [3], [4]. The examples used for training includes the 

desired outputs, as well as the inputs that led to them.  

One common technique of Machine Learning is the Neural Network. These are 

networks that draw inspiration from the human brain’s synapses, linking inputs 

together to produce an output based on known and learned information. Artificial 

neural networks (ANNs) have been used in multiple applications, such as ailment 

diagnosis and speech recognition. With the rising popularity of this field of study and 

the amount of research going into it, people are beginning to find more uses for ANNs, 

even if it is just for entertainment. According to [2], the application of artificial 

intelligence in the area of intrusion detection already exists. For example, exploring 

techniques that can be used to design, implement, and enhance existing intrusion 

detection systems.  
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Chapter 2: Research Problem 

 

 

Firewalls have become an important, mandatory part of any network, whether 

they are set up in a home or organization network. However, the presence of the default 

rule might cause some packets to be filtered incorrectly. Harmless packets blocked by 

the default DENY rule may cause some inconvenience for users when trying to access 

popular services. Malicious packets that are passed into a network by a default 

ACCEPT rule will put the network and its users at risk of attack.  

ANNs may find a home in these networks, providing a more trustworthy 

filtering mechanism than the firewall’s default rule. Given the possible uses of ANNs, 

their use in network security may improve the firewall’s filtering capabilities. The 

ANN’s purpose, in this case, is to learn the firewall’s filter rules, as well as the nature 

of the incoming traffic. Based on this input, the ANN will re-filter traffic that would 

normally be subjected to the default rule in a firewall.   

2.1 Objectives 

Before the ANN can be designed to address the research problem, clear goals 

need to be considered in order to understand how a contribution to any existing work 

can be made. The main objective of this thesis is to design and develop an ANN that 

can work alongside a firewall in order to improve its packet filtering capabilities. This 

can be done by doing the following:  

I. Understanding the functionality of an ANN and how it may improve 

firewall packet filtering performance 

II. Design and implement an ANN that works alongside a firewall, 

learning about the firewall’s behavior and the nature of its usual 

network traffic, and efficiently reacting to that traffic 
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Once these goals have been met, experiments with specific conditions will be 

run to observe the behavior of the ANN. The results of the experiments to be performed 

will determine how well an ANN can work with packet data. Any modifications the 

system may require after observing these results will also be determined in order to 

improve the system. 
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Chapter 3: Background 

 

3.1 Literature Review 

Valentin and Maly [2] investigated the use of ANNs with firewalls with two 

scenarios. The first involved building a firewall by using a sample of the normal traffic 

that would pass through a network, and the second scenario focused on investigating 

the possibility of copying the rules and behaviors of a currently existing firewall [2]. 

The rules were encoded into the neural network so that it could follow the same 

functionality of the standard firewall used; packets would be allowed or denied 

depending on the given filter rules. The data sets generated included packets that had 

a corresponding rule in the given filter and followed an 80:20 ratio for denied and 

accepted packets. However, the packets that were generated were done such that they 

were controlled, rather than random.  

ANNs have been found to be useful in the implementation of Intrusion 

Detection Systems (IDSs). IDS designers tend to use ANNs as a pattern recognition 

technique, matching outputs to certain inputs. If the input data presented a system does 

not match the learned model, the ANN will provide an output based on what the 

network was taught. The author, Reddy, of [5] described techniques, one based on 

supervised learning and the other on unsupervised learning, for the neural network: 

Multilayered Feed-Forward Neural Networks and Kohonen’s Self-Organizing Maps, 

respectively. The author also discusses an ANN’s ability to learn a system over time, 

rather than basing activity on a signature of normal behavior. This is useful for 

anomaly recognition in misuse detection systems. ANNs are versatile, inherently fast, 

can predict when an attack may happen, and can learn to identify new misuse patterns. 

Although the benefits of using ANNs in misuse detection have been mentioned, no 

actual implementation was provided by the author.  
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Ussath, et al. [6] employed ANNs to detect suspicious behavior over a network. 

In this case, the neural network must be able to differentiate between normal and 

abnormal user behavior. To do this, the authors determined key behavioral features 

that need to be logged. These features are the date, time, session duration, and the 

system used for the user login. The neural network, however, was designed to analyze 

behavior with simulated data because existing data is difficult to use. The difficulty 

arises from companies maintaining confidentiality for both log events and user actions 

due to privacy concerns. Yet, even with these limitations, the authors concluded that 

ANNs could, indeed, be used for behavior analysis, and the approach used can be 

applied to real-world use cases. 

Wang [7] proposed a scheme to enhance packet classification using multiple 

decision trees. The author explored multiple decision tree algorithms to contrast their 

own algorithm. The algorithms explored were Hierarchical Intelligent Cuttings 

(HiCuts), its extension HyperCuts, a third algorithm that used partial filter bits rather 

than the specifications of fields like the preceding two algorithms, and EffiCuts. The 

authors aimed to create an algorithm that would not rely on hardware support like 

previous algorithms. Real and synthetic filter databases were used to test the algorithm. 

The author was able to conclude that the multiple decision tree algorithm scaled well 

in terms of speed and storage performance.    

The authors of [8] explored of Support Vector Machines (SVMs) to create User 

Profile Filters in order to examine traffic signatures. Four predefined traffic metrics 

were monitored: Total bytes, total packets, destination socket, and destination port. 

The authors found that using these four metrics for the user profile filter not only 

allowed them to monitor user activity to detect attacks, but to also detect anomalies in 

the network. Network traffic was sniffed and decoded to analyze the header and 

payload. Data packets were then isolated based on their source to examine the 
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signature. The SVM was used to create a normal profile for users in order to determine 

if data is normal or an anomaly. The authors were able to deduce that using an SVM 

with a network traffic prediction technique and a flexible packet filter resulted in only 

0.5% of the traffic being misclassified with a false alarm rate that did not exceed 3%.  

3.2 Neural Networks 

Before using an ANN into any project, it is important to understand its concepts 

and the calculations that occur in the background. There are two types of learning 

processes that an ANN can undergo in the application it is used for: Supervised and 

Unsupervised Learning. In supervised learning, the data sets to be used by the neural 

network are provided, and an idea of the desired output is available [9]. Unsupervised 

learning is the opposite; the desired output is unknown with no or little data given.  

While designing an ANN, features need to be taken into consideration. These 

are the different types of input in a system that the neural network should expect. Each 

feature will be given a weight, and then used in a function known as the hypothesis 

function, shown below [9]:  

ℎ𝜃  =  𝜃0  +  𝜃1𝑥1 + 𝜃2𝑥2 +  … 𝜃𝑛𝑥𝑛                                 (1) 

In this formula, x is the value given to a specific feature n, and 𝜃 is the weight 

that is given to that feature. The weights are selected such that the result is close enough 

to the desired output with the data that has already been given. The purpose of the 

hypothesis function is to map input values to certain outputs [9]. This hypothesis will 

be used during the calculation of the cost function, which is a measure of the error in 

the neural network’s ability to estimate a relationship between the input values and the 

known output values [9], [10], [11]. The error cost function is given in Formula 2.  

𝐽(𝜃0, 𝜃1)  =  
1

2𝑚
 ∑ ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖) )2                                     (2)

𝑚

𝑖=1
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In this equation, m is the number of training examples in the data set that is 

being used, x, as before, is the input feature, y is the known output, and i represents 

the number of the training example in the current iteration. In order for the neural 

network to be accurate in its future calculations, the result of the error cost function 

will need to be as small as possible. If the result of this function is considered to be too 

large, the weights 𝜃 should be adjusted in the hypothesis such that the resulting value 

of the hypothesis ℎ should be as close as possible to the output value 𝑦 [9], [10].  

 

Figure 1: A graph of the input and the output [9] 

 

The values of 𝜃 will need to be modified so that the graph of the outputs 

produces a line that fits as closely to the training examples as possible, as seen in Figure 

1. This is typically known as Linear Regression, where independent inputs are given a 

linear relationship to the dependent outputs [9], [10]. In order to achieve this, the cost 

function will need to be minimized through a process known as Gradient Descent. This 

process can be generally defined as “an iterative optimization procedure” where each 

step improves the result “by taking a step along the negative of the gradient of the 

function to be minimized at the current point” [11]. The values of 𝜃 can be fixed to 

achieve this by using Formula 3.  

𝜃𝑗 ∶=  𝜃𝑗  −  α 
1

𝑚
 ∑ ℎθ(𝑥(𝑖)) − 𝑦(𝑖))𝑥𝑗

(𝑖)

𝑚

𝑖=1

                                   (3) 
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In this formula, α is known as the learning rate, which is the rate at which the 

error is reduced [9], [10]. The subscript j represents the identification number of the 

variable, or feature, for which this calculation is occurring. When a large number of 

features are used in a model, the values of x and 𝜃 are vectorized so that:  

ℎ𝜃(𝑥) = [𝜃0 𝜃1  ⋯ 𝜃𝑛 ] [ 

𝑥0

𝑥1

⋮
𝑥𝑛

] =  𝜃𝑇𝑥                                       (4)  

Figure 2 shows how gradient descent appears with regards to a single weight 

𝜃 and the cost function J(𝜃).   

 

Figure 2: Gradient descent to find the value of θ the converges [10] 

 

The end goal of Gradient Descent is to find a local minima, or a point of 

convergence. It is important to note that if the learning rate used in gradient descent is 

too large, the steps taken in each iteration may be too large and may miss the local 

minima [9], [10]. Alternatively, if the learning rate is too small, gradient descent may 

be very slow, which will affect the neural network later on by slowing down its training 

phase. 
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(a)     (b) 

Figure 3: The effects on the gradient descent when the learning rate is (a) too small 

and (b) too large [9] 

 

Linear Regression works when the output value is expected to be continuous. 

However, ANNs have the ability to classify data, grouping the data based on the output 

that was calculated. When the classification problem is introduced, the Logistic 

Regression model is used when the possible output values are discrete values [9], [11]. 

For this model, the hypothesis is modified as follows:  

ℎ𝜃(𝑥) = 𝑔(𝜃𝑇𝑥), where 𝑔(𝜃𝑇𝑥) =  
1

1+𝑒− (𝜃𝑇𝑥)
                        (5) 

In this formula,  𝑔(𝜃𝑇𝑥) is known as the Sigmoid Function, or the Logistic 

Function. Using the Sigmoid Function, the hypothesis ℎ𝜃(𝑥) will instead calculate the 

probability of the “class” of the output [9], [11]. In order to decide which “class” the 

output belongs to, a decision boundary is introduced by the hypothesis function, where 

certain hypothesis values will determine whether the output will belong to one class or 

another [9].  

Modifying the hypothesis to be suitable for logistic regression will require a 

modification to the cost function used as well. The new cost function is given as [9], 

[12]:  

𝐽(𝜃) =  
1

𝑚
∑ 𝑓(ℎ𝜃(𝑥(𝑖)), 𝑦(𝑖))                                               (6)

𝑚

𝑖=1

 

where 𝑓(ℎ𝜃(𝑥(𝑖)), 𝑦(𝑖)) =  − log (ℎ𝜃
(𝑖)(𝑥)) 
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However, this function works when there are a very small number of possible 

classifications for the output of the model. In order to work in larger multi-class 

models, the cost function will need to be further modified. The modified cost function 

can be written as the following [9], [12]:  

𝐽(𝜃) =  −
1

𝑚
∑[𝑦(𝑖) log (ℎ𝜃(𝑥(𝑖))) + (1 − 𝑦(𝑖)) log(1 − ℎ𝜃(𝑥(𝑖)))]        (7) 

𝑚

𝑖=1

 

In order to be compatible with the larger, vectorized data sets found with most 

ANNs this modified equation can be translated to [9]:  

𝐽(𝜃) =  
1

𝑚
∙ (−𝑦𝑇 log ℎ) − (1 − 𝑦) log(1 − ℎ))                        (8) 

The 𝑦𝑇 in this case is the transpose of the vector containing the output values 

of the training examples.  

Despite all of the effort that goes into optimizing the cost function to increase 

the efficiency of the neural network and its calculations, two other issues need to be 

addressed: underfitting and overfitting. Underfitting occurs when the hypothesis 

algorithm fails to map the trend of the training data accurately, likely due to using 

insufficient features in the model [9], or when “the model is not able to obtain a 

sufficiently low error value on the training set” [13]. The opposite, overfitting, occurs 

when the algorithm fits the trend of the data too well, causing many curves [9], [11], 

[14]. This may cause the neural network to “learn noise and spurious relations” [15] 

and result in a failure to generalize [9], [12], [15]. Failing to generalize means that the 

training examples have been “memorized” and the network will fail to accept new 

data. The issue of overfitting typically occurs when there are too many input features 

or complex functions that are causing curves that may not relate to the data being fed 

[9], [13], [15]. An example of how underfitting and overfitting appear with a training 

set can be seen in Figure 4.  
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Figure 4: Three models that have been fitted to a training set [13] 

 

Overfitting can be resolved either by reducing the number of features used for 

a model, or by using regularization functions. Regularization functions can act as 

stabilizers for learning algorithms [11]. The main purpose of a regularization function 

is to reduce the generalization error while leaving the training error unaffected [13]. 

To regularize the model, an extra term is added to the general cost function, modifying 

it as follows [9], [11], [13]:  

𝐽(𝜃) =  
1

2𝑚
[∑(ℎ𝜃(𝑥(𝑖)) −  𝑦(𝑖))

2
+ 𝜆 ∑ 𝜃𝑗

2

𝑛

𝑗=1

𝑚

𝑖=1

]                            (9) 

 In the formula above, 𝜆 is known as the regularization parameter. Its purpose 

is to determine the inflation of the weights 𝜃 and smooth out the model [9], [11]. The 

purpose of adding the second summation, ∑ 𝜃𝑗
2𝑛

𝑗=1 , is to make the parameters of the 

equation smaller, since the value of the regularization parameter is expected to be 

higher. Setting the value of the regularization parameter too high, however, may end 

up causing the model to underfit [9], [13]. Should the cost function need to be adjusted, 

the gradient descent formula can also be modified for regularization as follows:  

𝜃𝑗 ∶=  𝜃𝑗  −  α 
1

𝑚
 ∑ ℎθ(𝑥(𝑖)) − 𝑦(𝑖))𝑥𝑗

(𝑖)
+

𝜆

𝑚
𝜃𝑗                           (10) 

𝑚

𝑖=1
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 All of these calculations occur in machine learning. For ANNs, as previously 

mentioned, the values for the parameters and the weights are typically fitted into 

vectors. All of the calculations that are performed are used in the design and 

implementation of an ANN.  

The design of an ANN takes inspiration from the human nervous system’s 

nodes and synapses. The basic structure of an ANN can be seen in Figure 5 below.  

 

Figure 5: The basic structure of an ANN 

 

Certain inputs will lead to different paths depending on values given, which 

will then be used to determine the output. They can be defined as mathematical 

methods for mapping inputs to certain outputs [16].     

An ANN consists of at least three layers: the input layer, the middle, or hidden, 

layer(s), and the output layer. Each layer consists of neurons, which represent values 

with “activations” [17]. For the input layer, the activation of each neuron is simply the 

value of the input itself. However, the activation of the neurons in the middle layer(s) 

require the values of the previous layer, either the input layer or another middle layer, 

to pass through an activation function, which uses the Sigmoid function. The activation 

values can be calculated using the following formula [9]:  

𝑎𝑖
(𝑗)

= 𝑔 (Θ𝑖 0
(𝑗)

𝑥0  +  Θ𝑖 1
(𝑗)

𝑥1 + … +  Θ𝑖 𝑛
(𝑗)

𝑥𝑛)                               (11) 
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In this formula, i represents the number of the unit, j represents the number of 

the layer, and Θ represents the “matrix of weights controlling function mapping from 

layer j to layer j+1” [9]. During the activation function calculations, each value must 

be seen as a vector or a matrix [16]. The ANN can then be imagined as a connection 

of vectors. Figure 5 can be reimagined as the following:  

[ 

𝑥0
𝑥1

𝑥2
𝑥3

]  → [

𝑎1
2

𝑎2
2

𝑎3
2

] →  ℎ𝜃(𝑥) 

It is important to note that the input and middle layers may contain bias nodes 

and values, which are denoted by 𝑥0 and Θ0
(𝑗)

 . The purpose of the bias node is to allow 

the shift of the activation function as needed by allowing the ANN to decide what gets 

multiplied with the constant terms [9]. The bias values typically take a value of 1 but 

can be assigned a different value depending on the design of the ANN.  

In order to train an ANN, the formulas that have been discussed so far are used 

in a method known as BackPropagation, or BackProp for short. This method is used 

to train multi-layer ANNs [13], [18], [19] by calculating the cost function and allowing 

it to flow backwards through the ANN in order to then compute the gradient [9], [11], 

[13]. The computed gradient is then used to perform gradient descent for the actual 

learning process of the ANN [13]. The following steps occur in the BackProp process 

[9], [19], [20]:  

1) Feed-Forward Computation  

2) BackProp the output layer 

3) BackProp the middle layer 

4) Update the weights 

In the first step, the ANN moves forward from the input layer to the output 

layer and calculates the values of all of the nodes on the way. When BackPropagating 
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the output layer, the errors from the output nodes to the middle layer nodes are 

calculated. The error is calculated with the following [19], [20]:  

𝐸𝑟𝑟𝑜𝑟 = (𝑛𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒) ∗ (1 − (𝑛𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒)) ∗ ((𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)

− (𝑛𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒)                                                                                        (12) 

It should be noted that the node value in this case is the value of the output 

layer node. The rate of change is then computed with the following formula:  

𝑅𝑎𝑡𝑒 𝑜𝑓 𝐶ℎ𝑎𝑛𝑔𝑒 =  (𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒)  ∗  (𝑒𝑟𝑟𝑜𝑟 𝑣𝑎𝑙𝑢𝑒) 

                                           ∗  (𝑚𝑖𝑑𝑑𝑙𝑒 𝑙𝑎𝑦𝑒𝑟 𝑛𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒)                                 (13) 

The next step is to BackProp to the middle layer, where the error from the 

middle layer to the input layer, or any other preceding middle layer, is calculated. The 

formula used is as follows:  

𝑀𝑖𝑑𝑑𝑙𝑒 𝐿𝑎𝑦𝑒𝑟 𝐸𝑟𝑟𝑜𝑟 = (𝑅𝑎𝑡𝑒 𝑜𝑓 𝐶ℎ𝑎𝑛𝑔𝑒) ∗ (𝑂𝑢𝑡𝑝𝑢𝑡 𝑁𝑜𝑑𝑒 𝐸𝑟𝑟𝑜𝑟)                (14) 

Once the middle layer error has been computed, the rate of change is also 

computed using the same formula as the previous step. If there are multiple middle 

layers, this process repeats until the error and rate of change of the first middle layer 

nodes are calculated. Once all of the error values have been evaluated, the weights 

throughout the ANN are calculated and updated in order to reduce the error. The new 

weights can be computed using the following formula:  

𝑁𝑒𝑤 𝑊𝑒𝑖𝑔ℎ𝑡 = (𝑜𝑙𝑑 𝑤𝑒𝑖𝑔ℎ𝑡) + (𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒)

+ ((𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚) ∗ (𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 𝑐ℎ𝑎𝑛𝑔𝑒))                          (15) 

The momentum is the value in an ANN that allows it to stabilize. The value of 

the previous weight change is always going to be 0 for the first time the ANN goes 

through BackProp. Once all of the errors and new weight values have been calculated, 

the weights throughout the ANN can be updated. Once the weights have been updated, 

the error rates can be recomputed to ensure that the new weight values have indeed 

reduced the error throughout the ANN. This will allow the ANN to learn more 
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efficiently and provide more accurate results, increasing the likelihood that the correct 

output value will be predicted during the testing phase.  

All of the calculations that occur for ANNs are not done by hand, as they can 

become quite complex and difficult to solve. The calculations are done through 

programming in the user’s language of choice. Alternatively, they can also be done in 

Octave and then integrated in the ANN’s code.  
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Chapter 4: Methodology 

 

4.1 Materials 

Before the proposed system can be designed, the materials and resources 

available and required need to be taken into consideration. Having an idea of what is 

available for use can result in having a smoother design phase once decisions about 

which resources to use have been made.  

4.1.1 Types of Neural Networks 

There are different types of ANNs that exist, each with their own purposes. 

The three types that were taken into consideration were Convolutional, Feed-Forward, 

and Recurrent ANNs. In order to decide which type should be used for this thesis, the 

uses and benefits of each type were considered.  

Convolutional ANNs (CNN) are mostly used for processing images, videos, 

and audio [21], [22], [23]. The purpose of this network is to take the media as its input 

and returns output that has been classified [21]. These networks are mostly used in 

applications involving computer vision [23].  

Feed-Forward ANNs (FFNN) are a basic kind of ANN that involve layers 

(input, middle, and output) that are directly connected to each other in an acrylic 

manner [13], [18], [21]. They are straightforward ANNs that move in a single 

direction, from the input layer to the output layer. There is no recurrence or feedback, 

which may occur in other types of ANNs [13], [21].  

Recurrent ANNs (RNN) are a type of FFNN that processes sequential data [13] 

and includes a time factor [21]. The difference between FFNNs and RNNs is that the 

latter is able to share parameters across the model, while an FFNN is a straightforward 

model [13]. Parameter sharing allows the model to extend itself and consider pieces of 
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information that can occur in multiple possible places [13]. This can be useful for 

applications that try to complete or predict information, such as autocompletion [21].  

For this thesis, an ANN is needed to process data that relates directly to a single 

output. CNNs having fewer parameters, making them easier to train [22]. For this 

project, however, since none of the input is categorized as any of the media that a CNN 

typically takes, using a CNN is not an option. An RNN processes sequential data that 

are not only from one single run but may also include data from the previous run as 

well [21]. Doing this means that one order of data may yield different results than if 

the same data was fed in a different order. Given the nature of the data being fed to the 

ANN in this thesis, RNNs may not be the suitable choice. Although FFNNs are basic 

and simple, the data being fed to the network will be handled in a straightforward 

manner. The application to be discussed in this thesis does not require any feedback or 

recurrent behavior. Therefore, the ANN type of choice for this thesis is the Feed-

Forward ANN.  

4.1.2 Programming Language Selection 

For the ANN, the main programming languages used for development are 

C/C++, Java, and Python. For the purpose of this thesis, the language used to program 

the ANN is C.  

The reason this language was selected was to use the Fast Artificial Neural 

Network (FANN) library, which is a free open-source ANN library that allows users 

to create multi-layer ANNs [24]. This library allows users to create ANNs quickly by 

including all of the calculations and processing in C files created by the authors. The 

user only needs to call the required functions to set the number of middle layers, the 

number of neurons in each middle layer, the desired error, and the separate files that 

contain the training and testing data sets.  
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4.2 Design 

The overall functionality of the project can be broken down into several parts. 

The first part is to determine information about the network, namely the IP address 

and port ranges and the number of firewall rules. The second part will be the 

development of the firewall. Because this is only a simulation, a simulated firewall 

was developed with the same basic packet filtering functionalities as an actual firewall. 

The final part to be considered in the design is the ANN itself.  

Due to the nature of the values that are used in the calculations that occur in an 

ANN, standard IP addresses cannot be used in the training and testing data sets. For 

the purpose of the simulation, the network in question will be a Local Area Network 

(LAN), which will allow the IP addresses used in the generation of the training and 

testing data sets to take the form of standard positive integers. As with a standard LAN, 

however, the values of these integers are limited to those between 1 and 254. Because 

port numbers already take the form of positive integers, no assumptions have been 

made regarding them.  

The user will be allowed to select the number of firewall rules to be generated. 

However, to observe the behavior of both the simulated firewall and the ANN, the 

actual rules themselves will be randomly generated. As with actual firewalls, the 

possibility of have the any, or *, option in the rules has been implemented, represented 

by 0.  

Once information about the network has been determined, the training and 

testing data sets will be generated. The number of “packets” in each set of data is 

manually determined. However, the ratio of training:testing packets is 80:20 for testing 

and analysis, which is the same ratio used by [2] and [6]. Typically, training sets are 

significantly larger than testing sets in order to allow the ANN to learn about a system’s 

behavior as much as possible before being introduced to new data in the testing set. 
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The data sets consist of five input parameters and one output value. The five input 

parameters considered are the source IP address, the destination IP address, the source 

port number, the destination port number, and the protocol used. For simplicity, only 

two protocols are taken into consideration: TCP and UDP. The output parameter is the 

action that the firewall has taken given the input parameters. Typically, this has two 

possible values: DENY or ACCEPT. Along with the training and testing data sets, the 

firewall rules that are generated will also be saved to a text file to be used by the 

simulated firewall. A flowchart of the packet generation phase can be seen in Figure 

6.  

 

Figure 6: Flowchart of the packet generation phase 
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The data sets are generated in two ways, both using the network parameters 

selected by the user. For the training examples, the data is generated purely based on 

the firewall rules. This is because the training data set must include results and 

behavior that are already known. The testing set, however, includes data that may be 

similar to the firewall rules or new data that may not match any rule but still fits within 

the network parameters. The purpose of the testing set is to observe either system’s 

behavior when introduced to new data.  

For testing the firewall, a second testing data set has been generated that 

excludes the output value found in the other data sets. This is because the simulated 

firewall will check the rules that were generated to see if there are any matches with 

the current “packet” being checked and will select the appropriate action. The presence 

of a default rule will be taken into consideration while doing this check. However, if 

no default rule is found, and a packet was not found to match any of the existing rules, 

then the packet will be accepted by default. A flowchart depicting the simulated 

firewall that was designed and developed can be seen in Figure 7.  

 

Figure 7: Flowchart of the simulated firewall 
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The ANN will use both the training set and the testing set containing the actions 

taken. It will first train itself using the training set before testing itself with the testing 

set. This is done to determine how well the ANN can classify packets, based on how 

many actions it was able to successfully assign given certain input data patterns. For 

packets that are considered “new” data, such as those that did not appear to follow any 

pattern found in the training examples, the ANN will make an “educated guess” based 

on the calculations that occur. The flow of the ANN’s actions can be seen in Figure 8.  

 

(a)       (b) 

Figure 8: Flowcharts of the ANN for the (a) training and (b) testing phases 

 

 In order for the ANN to function, certain parameters will need to be set. As 

previously mentioned in Section 4.1.2, the FANN library for C was used to build and 

run the ANN. The library allows users to select the number of inputs, outputs, and 

hidden layers, as well as the number of neurons in each hidden layer. The library also 

allows users to set a desired error and learning rate, and the algorithm used to set the 

weights during the training phase. Figure 9 depicts the way this is done in the code.  
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Figure 9: The initialization of the ANN parameters 

 

 For the ANN used in this thesis, five inputs and one output were set, and a 

single hidden layer with four neurons was used. Pre-tests were conducted to determine 

the learning rate to be used by the ANN. After several tests were done with values 

ranging from 0.35 to 0.8, the ideal learning rate value was found to be 0.5. This was 

determined by how quickly the training error was calculated, how often the training 

phase was cut short due to reaching the desired error value, and the final training error 

value.  

 The algorithm used to calculate and adjust the weights for the ANN is called 

the Nguyen-Widrow algorithm. This algorithm generates weights and bias values such 

that “he active regions of the layers neurons will be distributed approximately evenly 

over the input space” [25]. Small values are initially selected, but then are adjusted as 

the ANN is being trained.  
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Chapter 5: Testing and Results  

 

 

When testing the simulation, several things need to be noted down in order to 

determine the performance of the ANN. Firstly, the percentage of correctly classified 

packets for both the ANN and the simulated firewall need to be noted down for 

comparison. Because the ANN’s performance improves or degrades depending on 

how well it was trained, this percentage may fluctuate with certain amounts of data. 

The error of the ANN as it is training with certain amounts of training examples also 

need to be observed.  

Another factor in the results of testing this system will be the number of rules 

that were generated. For this reason, the tests will occur with varying numbers of rules 

as well. For each set of rules, there will be a default rule that will determine the fate of 

packets that do not match any rule.  

Table 1 contains the amounts of training and testing packets:  

 

Table 1: The amount of training and testing examples 

Training Testing 

100 25 

1000 250 

5000 1250 

10000 2500 

25000 6250 

50000 12500 

100000 25000 

150000 37500 

200000 50000 
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Table 1: The amount of training and testing examples (continued) 

Training Testing 

300000 75000 

400000 100000 

500000 125000 

600000 150000 

700000 175000 

800000 200000 

900000 225000 

1000000 250000 

 

The network information used for testing will consist of an IP address range 

from 1 to 7 and a port number range from 2 to 263. This means that there is a total of 

5,788,104 possible combinations for the samples used in this experiment. The testing 

phase of this thesis will iterate thrice, each iteration with an increasing number of 

generated rules: 4, 9, and 15.  

Along with testing the ANN’s behavior, the percentage of packets that were 

matched with a rule in the filter was also computed. This percentage was calculated 

with the following formula:  

% 𝑜𝑓 𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝑃𝑎𝑐𝑘𝑒𝑡𝑠

=  
(# 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝐴𝑙𝑙𝑜𝑤𝑒𝑑 𝑏𝑦 𝑅𝑢𝑙𝑒) + (# 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝐷𝑒𝑛𝑖𝑒𝑑 𝑏𝑦 𝑅𝑢𝑙𝑒)

(𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠)
     

                                ∗ 100                                                      (16) 

In this case, packets that did not match any rule, and were thus subjected to the 

default rule, are considered to be incorrectly filtered. This is because in an actual 

network, some benign traffic that users may attempt to access can be blocked by the 
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default DENY rule, and some malicious traffic may be accepted by a default ACCEPT 

rule. 

5.1 With Default DENY Rule 

5.1.1 Four (4) Rules 

 The generated network information can be seen in Figure 10.  

 

Figure 10: The randomly generated firewall rules 

 

Once the data files to be used for training and testing were generated using this 

rule set, the ANN was trained and then tested with the generated data files, and then a 

testing file was used with the simulated firewall to compare the number of packets that 

were correctly classified. The number of samples that matched a rule in the firewall 

was also recorded.  

The time spent training the ANN can be seen in Figure 11. As the number of 

training examples increased, so did the time it took to train the ANN.  
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Figure 11: The training time of the ANN (4 rules) 

 

The time spent training the network was also spent calculating the error. This 

is the error of the ANN’s learning during the training process. A large error typically 

means that the ANN did not correctly learn the patterns seen in the data file, while, 

conversely, a smaller error denotes successful training. The training errors of the ANN 

with different amounts of training examples can be seen in Figure 12.  

 

Figure 12: The ANN's error throughout the training phase 
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The curves in this graph depict how smoothly the ANN was able to train with 

the given amount of training examples. It can be noted that for smaller amounts of 

training examples, the curve approaches zero much later than with larger training sets. 

As the number of training examples increases, the curve becomes smoother, meaning 

that the ANN was able to learn the data patterns well. A spiky or rough curve indicates 

that the ANN may be having a difficult time learning the patterns found in the training 

set. This could be a result of weights needing to be adjusted.  

Once the training of the ANN was completed, it was tested using the testing 

examples generated. The simulated firewall was also tested. Their accuracies during 

filtering can be observed in Figure 13.  

 

Figure 13: Comparison of the percentage of correctly classified samples 

 

As can be seen from the figure, the percentage of packets that were correctly 

classified by the simulated firewall’s remained constant at 100%. This is because the 

firewall has set policies with which packets are filtered. Therefore, the firewall’s 

judgement is always correct. The ANN, on the other hand, had a low percentage of 

correctly classified packets. This percentage, however, was close to the percentage of 

0

20

40

60

80

100

%
 C

o
rr

ec
tl

y
 C

la
ss

if
ie

d

Testing Amount

Amount of Data Correctly Classified (4 Rules - DENY)

FW % Correctly Classified ANN % Correctly Classified

FW % Matched Rule



29 

 

packets that matched a firewall rule while testing the firewall. Due to the relatively 

small number of rules experimented with given the size of the network, however, these 

results are statistically insignificant.  

5.1.2 Nine (9) Rules 

 Figure 14 displays the rules that were generated when the system was testing 

with 9 rules.  

 

 

Figure 14: Network information with 9 rules 

 

The time spent training the ANN with the packets generated from the 9 rules 

seen in Figure 13 can be seen in Figure 15.  
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Figure 15: The amount of time spent training the ANN 

 

During these training phases, the training errors generated were calculated and 

can be observed in Figure 16.  

 

Figure 16: The ANN's error throughout the training phase  
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The graphed lines in this figure are notably rougher than the training errors in 

Figure 11. This is due to the increased number of rules. The ANN is learning more 

patterns in this iteration of the experiment, which may cause some miscalculation 

during the training phase.  

With the packets that were generated with these rules, as well as some 

unknown, random packets that have been generated for testing purposes, the 

accuracies at different amounts of testing packets were observed and organized in 

Figure 17.  

 

Figure 17: Comparison of the percentage of correctly classified samples. 
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5.1.3 Fifteen (15) Rules 

The 15 rules generated for the final testing phase of the system can be seen in 

Figure 18.  

 

Figure 18: Network information with 15 rules 

 

The time it took to train the ANN with the training examples generated from 

this set of rules can be seen in Figure 19.  

 

Figure 19: The training time of the ANN with different amounts of examples 
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The errors with different amounts of data during the training phase can be seen 

in Figure 20.  

 

Figure 20: The training errors generated  

 

Once training was completed, both the ANN and the simulated firewall were 

fed the testing samples to determine the amount of correctly classified packets. The 

results of the testing phase can be seen in Figure 21.  
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Figure 21: Comparison of the percentage of correctly classified samples 

 

 From the figure, it can be observed that the firewall was able to match all test 

samples to a rule. This is due to the fact that there are enough rules relative to the 

network size to be able to match one.  

5.2 With Default ACCEPT  

The same tests were completed with the same sets of rules. However, in this 

case, the behavior of the ANN will be observed when new packets are subjected to a 

default rule allowing any packets that don’t match any rules into the network. 

Examples of such networks can be found in public places, such as malls or café`s.  

5.2.1 Four (4) Rules 

The time it took to train the ANN with the training examples generated with 

the 4 rules in Figure 9 can be seen in Figure 22. 
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Figure 22: The training times of the ANN  

 

The training errors generated by the ANN during this phase can be seen in 

Figure 23.   

 

Figure 23: The errors calculated during the training phase 
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Once the training phase has been completed, the ANN and the simulated 

firewall were given the test samples. The results of the testing phase can be seen in 

Figure 24. 

 

Figure 24: Comparison of the percentage of correctly classified samples 
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Figure 25: The training times with varying amounts of training examples 

 

The training errors calculated during this phase can be seen in Figure 26.  

 

Figure 26: The calculated training errors during the ANN's training phase 
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In this figure, the same spikes in the training curves as in Figure 15 can be 

noted. This is due to the same reason that was previously mentioned; the ANN is given 

more patterns to learn and will need to adjust and learn each one.  

Once the training phase was completed, the ANN and the simulated firewall 

were tested using testing examples generated from the 9 rules. The results can be 

observed in Figure 27.  

 

Figure 27: Comparison of the percentage of correctly classified samples 
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firewall. The time it took to train the ANN with different amounts of training examples 

generated from these rules can be seen in Figure 28.  

 

Figure 28: The training time of the ANN 

 

The training errors that were calculated with varying amounts of training 

examples during this phase can be seen in Figure 29. 

 

Figure 29: The training errors generated during the ANN's training phase 

0
50

100
150
200
250
300
350
400
450
500

1
0
0

1
0
0
0

5
0
0
0

1
0
0
0
0

2
5
0
0
0

5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

2
0
0
0
0
0

3
0
0
0
0
0

4
0
0
0
0
0

5
0
0
0
0
0

6
0
0
0
0
0

7
0
0
0
0
0

8
0
0
0
0
0

9
0
0
0
0
0

1
0
0
0
0
0
0

T
im

e 
(s

ec
o
n
d
s)

Training Amount

ANN Training Time (15 Rules - ACCEPT)



40 

 

Once the training phase has been completed, the ANN and the simulated 

firewall were tested while taking into considering the default accept rule. The results 

of the testing phase can be seen in Figure 30.   

 

Figure 30: Comparison of the percentage of correctly classified samples 
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5.3.1 Four (4) Rules 

While the tests were run with 4 rules, the difference in successfully classified 

examples between the amount firewall and the ANN. A graph of these values can be 

seen in Figure 31.  

 

Figure 31: The differences in successful classifications (4 rules) 
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many of the packets to the default rule.  
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5.3.2 Nine (9) Rules 

The amounts of Uncertainties with 9 rules can be seen in Figure 32.  

 

Figure 32: The differences in successful classifications (9 rules) 
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Figure 33: The differences in successful classifications (15 rules) 
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The second thing to note is that the training error decreased over the course of 

the training period, regardless of the number of training examples that the ANN was 

encountering. As was mentioned before, the training error that is being calculated here 

gives an idea of how well the ANN is discovering and learning patterns that are found 

within the training examples. The higher the error is, the worse the ANN is learning. 

It can also be noted that in all cases, the training error that is calculated is significantly 

higher in the first epoch before taking a dive after 100 epochs. This is because the 

ANN does not know what the patterns in the training examples are once training 

begins. After 100 epochs, the ANN would have begun to learn the patterns found 

within the training examples, hence the sharp dive shown in the graphs.  

The number of correctly classified packets between the ANN and the simulated 

firewall is another aspect to note. When fewer rules are involved, the difference in the 

number of correctly classified packets between the ANN and the firewall are great. As 

seen in Figure 13, the ANN was not able to correctly classify many data samples. This 

is because of the lack of patterns that it needs to learn. With more than 5 million data 

combinations as a result of the size of the network used in the experiments, using 4 

rules results in statistically insignificant data. The results of the tests with 9 and 15 

rules represent what the results would be in an actual network more accurately.  

One factor of the results is the firewall’s ability to accept ANY as an option 

during filtering. In this system, the ANY option was replaced by the value 0 for testing 

purposes. The firewall has a system for understand that if ANY appears in a firewall 

rule, then any value that appears in that position is acceptable and subjected to the 

action of choice for that rule. The ANN, on the other hand, takes data from the firewall 

and has no understanding of what ANY means. If packets are received that look 

identical except for one or two values that are to be seen as ANY by the firewall, the 

ANN may become confused and may not come to the same conclusion as the firewall.  
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Chapter 6: Discussion 

 

6.1 Advantages 

There are several advantages of using ANNs over firewalls in order to process 

packets for filtering. The first advantage is that the ANN’s ability to extract and 

analyze large amounts of data, and then store them for forecasting later on. Aside from 

logging filtering information, firewalls do not do this when a packet has been filtered. 

This leads to the second advantage of using ANNs: the ability to have nonlinear 

relationships with the input data. This means that ANNs are able to map values and 

predict output information more accurately than a linear system. The difference in 

mapping between a linear and nonlinear systems can be seen in Figures 1 and 4.  

The lack of the need for extensive knowledge in statistics is a third advantage 

of using ANNs. When programming ANNs, there are many open source guides and 

libraries that allow anyone with an objective to create ANNs. The C library mentioned 

in subsection 4.2.2, FANN, is one example of such a library. Another example is 

Google’s TensorFlow, a Python-based library for dataflow and symbolic math. 

The final, major advantage of using ANNs is the flexibility of design and 

development. There are several different types of ANNs that can be designed around 

a number of applications, depending on user needs. There are also a selection of 

different training models that users can implement based on the context of the data 

being fed to the ANN. The data itself is also flexible, in the sense that it can come from 

any source, whether it is a text, image, or audio file.   

6.2 Disadvantages 

Although ANNs have several strong advantages compared to firewalls, there 

are also some disadvantages that need to be taken into consideration when designing 
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a system. The first important disadvantage to consider is the possibility of having long, 

variable training times. The time it takes to train an ANN varies depending on the size 

and amount of data that is being input into the system. For small datafiles, the training 

time may not be an issue. However, in systems that may deal with large amounts of 

data, such as large, active networks, the training time may take much longer.  

This relates to the second disadvantage of using ANNs. If an ANN is to be 

employed in a critical, active environment, such as an organization’s network, it will 

need to be retrained every once in a while. If the datasets used for training are large, 

retraining could take time, potentially putting the network at risk. In order to be 

employed in the first place, the ANN’s accuracy after training and testing will need to 

reach a certain threshold. This means that there is also the possibility of having to train, 

and then later retrain, the ANN multiple times before the threshold has been achieved. 

Employing the ANN otherwise may be a risk on the network, since the ANN may not 

be completely trained and ready to face the data being communicated.  

The third disadvantage of using ANNs is that there is no understanding of the 

data that is being processed. An ANN’s purpose is to detect patterns and return an 

output based on what it has learned from its training phase. There is no meaning to the 

data that is being fed and processed. In the case of the intended application discussed 

in this thesis, the ANN alone will not be enough to filter packets and assign actions 

appropriately. Modifications and additions to the code will need to be made in order 

for the network to handle the packets being filtered appropriately.  

Lastly, the ANN may face difficulty filtering packets correctly in an unstable 

network. In this case, the nature of the traffic may not be well-defined, and the ANN 

may not make the appropriate decisions.  
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6.3 Recommendations 

Because the system designed and developed in this thesis is a simulation to 

determine if ANNs can work alongside firewalls to improve packet filtering 

capabilities, the work done paves the way for future development in this topic. There 

are improvements and modifications that can allow the ANN to work as a packet 

filtering tool in a network. The first is to implement this system with an actual LAN 

with a few test computers and have them communicate with each other normally. In 

this case, the code of the ANN will need to be modified to not only determine the fate 

of a packet passing through a network, but to also act upon the decision made. 

Implementing this system with an actual LAN will also allow more accurate 

measurements with regards to the training time of the ANN, the number of 

Uncertainties passed through the network, and the processing time of packets while 

filtering.  

Once the LAN has been set up, and the ANN and firewall have been tested, 

another possible experiment could be run: To have the ANN eventually independently 

function in place of the firewall. The independent ANN’s behavior to network traffic 

can be observed and will determine how a more efficient filtering mechanism can be 

implemented.  

Another modification to the ANN that should be implemented is the ability to 

learn the ANY option while filtering packets. Implementing the ANY option will allow 

the ANN to be more accurate during filtering. This will enable the ANN to take into 

consideration that a single rule may apply to multiple input values. The ANY option 

is an important part of the firewall, allowing network administrators to create rules 

more easily for a single type of expected traffic. Implementing the ANY option with 

the ANN will prevent the misclassification of traffic entering the network.  
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With these modifications to the ANN, more security mechanisms can be 

implemented. One such mechanism is attack detection. The ANN may be modified to 

be able to detect attacks over a LAN, such as flooding attempts. Essentially, in this 

case, the ANN can be modified further to integrate functionalities similar to intrusion 

detection, alerting network administrators of possible attack attempts. In this case, 

much like what was discussed in [5], may act as an anomaly-based detection tool to 

report suspicious behavior. Detecting attacks may also be beneficial for public 

networks, since the results of the experiments show that the ANN can be used to filter 

packets in public networks with positive results. Cybercriminals sometimes use public 

networks to conceal themselves in the high levels of traffic. Attack detection along 

with the ANN may aid authorities in detecting these criminals.  

Another security mechanism that can be implemented is a way to send any 

packets labeled as Uncertain back to the firewall for re-filtering. Allowing these 

Uncertainties into the network may pose a risk to the integrity of the network, opening 

opportunities for attacks to occur. Alternatively, benign traffic may also be blocked 

due to being labeled Uncertain. Implementing methods to handle Uncertainties will 

solve the issues that arise because of them, preserving the integrity of the network.  

ANNs may also be compared to other ML frameworks. As seen in Section 3.1, 

decision trees and SVMs have also been experimented with for enhancing traffic 

filtering capabilities. In the future, these two methods could be designed and developed 

for the same purpose as mentioned in this thesis: To improve the firewall’s default rule 

policy for data packets that do not match any filter rules. Certain aspects of each 

method can then be analyzed and compared to determine the ideal framework for this 

application, such as processing time, memory usage, and classification accuracy.  
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Chapter 7: Conclusion 

 

 

The work done in this thesis explores the idea of implementing feed-forward 

ANNs to work alongside firewalls in order to improve their filtering capabilities. With 

the available time and resources, a simulation was designed to determine if this is 

possible. To do so, tests were done with three options for the number of rules: 4, 9, 

and 15 rules. All sets of rules also included a default rule. The tests were completed 

with both default rule cases: ACCEPT or DENY.  

In order to complete the experiments, the rules alone were used to generate 

training files for the ANN. This is the information that is known by the system with 

the exact actions that need to be taken against those packets. The testing examples 

were generated randomly, using the given network parameters as limits. The examples 

found in the testing file may be known from the firewall rules, or they may be unknown 

by the network. The results of the testing phase of the ANN were noted down to be 

compared with how a firewall might react to the testing file.  

Given the results of the tests done with different cases, it was found that ANNs 

may indeed be helpful in improving filtering capabilities. The results show that ANNs 

are capable of classifying network packets almost as well as firewalls with a higher 

number of rules. This can be used to enhance the firewall’s filtering capabilities, 

especially by improving the default rule’s issue with wrongly filtering packets that do 

not match any firewall rule. With further modifications, ANNs can be used to refilter 

the packets that are subject to the default rule.  

The results of this thesis pave the way for further improvements of this system 

and open the doors to the possibility of using AI in information and network security. 

These improvements will not only eventually perfect the packet filtering capabilities 

of firewalls but may also include security mechanisms that can prevent attacks from 
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happening before they even enter the network. This can essentially combine firewalls 

and intrusion detection/prevention systems into a single system.  
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