
United Arab Emirates University
Scholarworks@UAEU

Information Security Theses Information Security

4-2018

Enhancing Firewall Filtering Performance Using
Neural Networks
Heba Saleous

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/info_sec_theses

Part of the Information Security Commons

This Thesis is brought to you for free and open access by the Information Security at Scholarworks@UAEU. It has been accepted for inclusion in
Information Security Theses by an authorized administrator of Scholarworks@UAEU. For more information, please contact fadl.musa@uaeu.ac.ae.

Recommended Citation
Saleous, Heba, "Enhancing Firewall Filtering Performance Using Neural Networks" (2018). Information Security Theses. 1.
https://scholarworks.uaeu.ac.ae/info_sec_theses/1

https://scholarworks.uaeu.ac.ae?utm_source=scholarworks.uaeu.ac.ae%2Finfo_sec_theses%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/info_sec_theses?utm_source=scholarworks.uaeu.ac.ae%2Finfo_sec_theses%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/information_security?utm_source=scholarworks.uaeu.ac.ae%2Finfo_sec_theses%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/info_sec_theses?utm_source=scholarworks.uaeu.ac.ae%2Finfo_sec_theses%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uaeu.ac.ae%2Finfo_sec_theses%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/info_sec_theses/1?utm_source=scholarworks.uaeu.ac.ae%2Finfo_sec_theses%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fadl.musa@uaeu.ac.ae

vii

Abstract

The internet has grown to a point where people all over the world have become

dependent on this convenient communication medium. However, with this

dependency, malicious traffic has become a major concern. Consequently, firewalls

have become a mandatory part of any network, due to their ability to filter the traffic

based on rules that state which packets should be accepted or denied. However, filter

rules must be manually configured by a network administrator, and packets that do not

fit any rule may be subject to wrong judgement by the firewall. Neural networks can

learn the filter rules in order to decide if packets that do not fit any specific rules should

be accepted or denied. The neural network will be trained with existing packet data

and their firewall actions, and then tested to determine the amount of correctly

classified packets compared to the firewall.

Keywords: Network Security, Firewall, Packet filtering, Neural Networks

viii

Title and Abstract (in Arabic)

 أداء جدار الحماية باستخدام الشبكات العصبية تعزيز

 صالملخ

 ىالإنترنت إلى حد أصبح فيه الناس في جميع أنحاء العالم يعتمدون عل ى استخداملقد نم

الضارة الاتصالاتمع هذه التبعية ، أصبحت حركة ره. ويوفت تم الذي هذا الاتصال المريح وسيط

، نظرًا رقميةجزءًا إلزامياً من أي شبكة الحمايةتكون جدران السبب،مصدر قلق كبير. ولهذا

استناداً إلى القواعد التي تنص على قبول الرزم أو رفضها. الاتصالاتلقدرتها على تصفية

زم التي لا روقد تخضع الكما تهيئة قواعد التصفية يدوياً بواسطة مسؤول الشبكة ، يتطلب هذا و

واسطة جدار الحماية. يمكن للشبكات العصبية معرفة قواعد التصفية تلائم أي قاعدة لحكم خاطئ ب

التي تم تعيينها من قبل المسؤولين من أجل تحديد ما إذا كانت الرزم التي لا تناسب أي قواعد

 قواعد زمة الحالية ورمحددة يجب قبولها أو رفضها. سيتم تدريب الشبكة العصبية مع بيانات ال

 .اختبارها لتحديد دقة التصفية مقارنة بجدار الحمايةجدار الحماية ، ثم يتم

امن الشبكة، جدار الحماية، تصفية الرزم، الشبكات العصبيةالبحث الرئيسية: مفاهيم

ix

Acknowledgements

I would like to thank my advisor, Dr. Zouheir Trabelsi, for his constant support

and motivating attitude during my time as his student. I am grateful for his patience

and expert knowledge. Dr. Zouheir always encouraged me to work hard and at my

best, helping me find solutions and accomplish tasks.

I would also like to thank Dr. Mohammed Masud, whose knowledge of

Machine Learning helped me with any misunderstandings I had with the subject. His

advice helped me clearly understand the real issue being tackled by this thesis.

x

Dedication

To my father, Dr. Nazmi Saleous, whose love and support has fueled my quest for

knowledge, and whose character has inspired me to become the best I can be.

A true role model.

xi

Table of Contents

Title ... i

Declaration of Original Work .. ii

Copyright .. iii

Advisory Committee ... iv

Approval of the Master Thesis ... v

Abstract .. vii

Title and Abstract (in Arabic) ... viii

Acknowledgements ... ix

Dedication .. x

Table of Contents .. xi

List of Tables .. xiii

List of Figures ... xiv

List of Abbreviations ... xv

Chapter 1: Introduction .. 1

Chapter 2: Research Problem ... 3

2.1 Objectives ... 3

Chapter 3: Background .. 5

3.1 Literature Review ... 5

3.2 Neural Networks .. 7

Chapter 4: Methodology .. 17

4.1 Materials ... 17

4.1.1 Types of Neural Networks ... 17

4.1.2 Programming Language Selection ... 18

4.2 Design .. 19

Chapter 5: Testing and Results .. 24

5.1 With Default DENY Rule .. 26

5.1.1 Four (4) Rules ... 26

5.1.2 Nine (9) Rules .. 29

5.1.3 Fifteen (15) Rules ... 32

5.2 With Default ACCEPT .. 34

5.2.1 Four (4) Rules ... 34

5.2.2 Nine (9) Rules .. 36

5.2.3 Fifteen (15) Rules ... 38

5.3 Uncertainties .. 40

xii

5.3.1 Four (4) Rules ... 41

5.3.2 Nine (9) Rules .. 42

5.3.3 Fifteen (15) Rules ... 42

5.4 Observation .. 43

Chapter 6: Discussion .. 45

6.1 Advantages ... 45

6.2 Disadvantages .. 45

6.3 Recommendations .. 47

Chapter 7: Conclusion .. 49

References .. 51

xiii

List of Tables

Table 1: The amount of training and testing examples .. 24

xiv

List of Figures

Figure 1: A graph of the input and the output .. 8

Figure 2: Gradient descent to find the value of θ the converges 9

Figure 3: The effects on the gradient descent .. 10

Figure 4: Three models that have been fitted to a training set 12

Figure 5: The basic structure of an ANN ... 13

Figure 6: Flowchart of the packet generation phase .. 20

Figure 7: Flowchart of the simulated firewall .. 21

Figure 8: Flowcharts of the ANN for the (a) training and (b) testing phases 22

Figure 9: The initialization of the ANN parameters .. 23

Figure 10: The randomly generated firewall rules ... 26

Figure 11: The training time of the ANN (4 rules) .. 27

Figure 12: The ANN's error throughout the training phase 27

Figure 13: Comparison of the percentage of correctly classified samples. 28

Figure 14: Network information with 9 rules .. 29

Figure 15: The amount of time spent training the ANN .. 30

Figure 16: The ANN's error throughout the training phase 30

Figure 17: Comparison of the percentage of correctly classified samples 31

Figure 18: Network information with 15 rules .. 32

Figure 19: The training time of the ANN with different amounts of examples 32

Figure 20: The training errors generated .. 33

Figure 21: Comparison of the percentage of correctly classified samples 34

Figure 22: The training times of the ANN ... 35

Figure 23: The errors calculated during the training phase .. 35

Figure 24: Comparison of the percentage of correctly classified samples 36

Figure 25: The training times with varying amounts of training examples 37

Figure 26: The calculated training errors during the ANN's training phase 37

Figure 27: Comparison of the percentage of correctly classified samples 38

Figure 28: The training time of the ANN .. 39

Figure 29: The training errors generated during the ANN's training phase 39

Figure 30: Comparison of the percentage of correctly classified samples 40

Figure 31: The differences in successful classifications (4 rules) 41

Figure 32: The differences in successful classifications (9 rules) 42

Figure 33: The differences in successful classifications (15 rules) 43

xv

List of Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

CNN Convolutional Neural Network

FANN Fast Artificial Neural Network

FFNN Feed Forward Neural Network

FW Firewall

IDS Intrusion Detection System

LAN Local Area Network

ML Machine Learning

RNN Recurrent Neural Network

SVM Support Vector Machine

1

Chapter 1: Introduction

In the current era, the primary medium of communication has become the

internet. It allows people to communicate with each other all over the world in a matter

of seconds. Network connectivity is required to achieve this, making it a necessity in

everyone’s lives. Due to its convenient and accessible nature, the internet is open not

only to professionals, but also to children and computer neophytes in general.

However, the internet is also open to those with malicious intentions, providing an

entirely new and convenient medium for attacks.

Just as network connectivity has become a necessity in the lives of the human

population, so has network security. Without network security, those with ill intentions

would be free to commit cybercrimes, whether they are against other people or

organizations. Attacks can range from minor incidents, such as spam mail, to extreme

attacks that may results in physical harm to others. An example of the latter is the

attack on the German steel mill that occurred in 2014. The attackers were able to gain

access to the plant’s network by gaining information through a spear-phishing email

[1]. This information caused critical process components from functioning properly,

resulting in physical damage to the mills.

 One major tool used to secure a network is the firewall. A network firewall is

a system that enforces access control policies, usually in the form of rules, to control

the traffic that enters a network or machine [2]. The packets being transported are

filtered based on certain characteristics, usually their source IP addresses, source and

destination ports, and the protocol being used. The rules set in a firewall are configured

manually by the network’s administrator and are set based on known information about

the incoming and outgoing traffic. Packets that are entering a network from known

malicious sources are blocked and prevented from entering the network. Alternatively,

2

connections that are mandatory for daily functions in an organization, such as those

related to checking emails, can have rules allowing them.

While network security is advancing and becoming a necessity all over the

world, Artificial Intelligence (AI) and Machine Learning (ML) have also become

major fields of research. The applications of these topics extend to any professional

field, from art and media to medicine. Machine Learning is a field of study within

Artificial Intelligence that allows computers to learn from existing examples without

being manually programmed [3], [4]. The examples used for training includes the

desired outputs, as well as the inputs that led to them.

One common technique of Machine Learning is the Neural Network. These are

networks that draw inspiration from the human brain’s synapses, linking inputs

together to produce an output based on known and learned information. Artificial

neural networks (ANNs) have been used in multiple applications, such as ailment

diagnosis and speech recognition. With the rising popularity of this field of study and

the amount of research going into it, people are beginning to find more uses for ANNs,

even if it is just for entertainment. According to [2], the application of artificial

intelligence in the area of intrusion detection already exists. For example, exploring

techniques that can be used to design, implement, and enhance existing intrusion

detection systems.

3

Chapter 2: Research Problem

Firewalls have become an important, mandatory part of any network, whether

they are set up in a home or organization network. However, the presence of the default

rule might cause some packets to be filtered incorrectly. Harmless packets blocked by

the default DENY rule may cause some inconvenience for users when trying to access

popular services. Malicious packets that are passed into a network by a default

ACCEPT rule will put the network and its users at risk of attack.

ANNs may find a home in these networks, providing a more trustworthy

filtering mechanism than the firewall’s default rule. Given the possible uses of ANNs,

their use in network security may improve the firewall’s filtering capabilities. The

ANN’s purpose, in this case, is to learn the firewall’s filter rules, as well as the nature

of the incoming traffic. Based on this input, the ANN will re-filter traffic that would

normally be subjected to the default rule in a firewall.

2.1 Objectives

Before the ANN can be designed to address the research problem, clear goals

need to be considered in order to understand how a contribution to any existing work

can be made. The main objective of this thesis is to design and develop an ANN that

can work alongside a firewall in order to improve its packet filtering capabilities. This

can be done by doing the following:

I. Understanding the functionality of an ANN and how it may improve

firewall packet filtering performance

II. Design and implement an ANN that works alongside a firewall,

learning about the firewall’s behavior and the nature of its usual

network traffic, and efficiently reacting to that traffic

4

Once these goals have been met, experiments with specific conditions will be

run to observe the behavior of the ANN. The results of the experiments to be performed

will determine how well an ANN can work with packet data. Any modifications the

system may require after observing these results will also be determined in order to

improve the system.

5

Chapter 3: Background

3.1 Literature Review

Valentin and Maly [2] investigated the use of ANNs with firewalls with two

scenarios. The first involved building a firewall by using a sample of the normal traffic

that would pass through a network, and the second scenario focused on investigating

the possibility of copying the rules and behaviors of a currently existing firewall [2].

The rules were encoded into the neural network so that it could follow the same

functionality of the standard firewall used; packets would be allowed or denied

depending on the given filter rules. The data sets generated included packets that had

a corresponding rule in the given filter and followed an 80:20 ratio for denied and

accepted packets. However, the packets that were generated were done such that they

were controlled, rather than random.

ANNs have been found to be useful in the implementation of Intrusion

Detection Systems (IDSs). IDS designers tend to use ANNs as a pattern recognition

technique, matching outputs to certain inputs. If the input data presented a system does

not match the learned model, the ANN will provide an output based on what the

network was taught. The author, Reddy, of [5] described techniques, one based on

supervised learning and the other on unsupervised learning, for the neural network:

Multilayered Feed-Forward Neural Networks and Kohonen’s Self-Organizing Maps,

respectively. The author also discusses an ANN’s ability to learn a system over time,

rather than basing activity on a signature of normal behavior. This is useful for

anomaly recognition in misuse detection systems. ANNs are versatile, inherently fast,

can predict when an attack may happen, and can learn to identify new misuse patterns.

Although the benefits of using ANNs in misuse detection have been mentioned, no

actual implementation was provided by the author.

6

Ussath, et al. [6] employed ANNs to detect suspicious behavior over a network.

In this case, the neural network must be able to differentiate between normal and

abnormal user behavior. To do this, the authors determined key behavioral features

that need to be logged. These features are the date, time, session duration, and the

system used for the user login. The neural network, however, was designed to analyze

behavior with simulated data because existing data is difficult to use. The difficulty

arises from companies maintaining confidentiality for both log events and user actions

due to privacy concerns. Yet, even with these limitations, the authors concluded that

ANNs could, indeed, be used for behavior analysis, and the approach used can be

applied to real-world use cases.

Wang [7] proposed a scheme to enhance packet classification using multiple

decision trees. The author explored multiple decision tree algorithms to contrast their

own algorithm. The algorithms explored were Hierarchical Intelligent Cuttings

(HiCuts), its extension HyperCuts, a third algorithm that used partial filter bits rather

than the specifications of fields like the preceding two algorithms, and EffiCuts. The

authors aimed to create an algorithm that would not rely on hardware support like

previous algorithms. Real and synthetic filter databases were used to test the algorithm.

The author was able to conclude that the multiple decision tree algorithm scaled well

in terms of speed and storage performance.

The authors of [8] explored of Support Vector Machines (SVMs) to create User

Profile Filters in order to examine traffic signatures. Four predefined traffic metrics

were monitored: Total bytes, total packets, destination socket, and destination port.

The authors found that using these four metrics for the user profile filter not only

allowed them to monitor user activity to detect attacks, but to also detect anomalies in

the network. Network traffic was sniffed and decoded to analyze the header and

payload. Data packets were then isolated based on their source to examine the

7

signature. The SVM was used to create a normal profile for users in order to determine

if data is normal or an anomaly. The authors were able to deduce that using an SVM

with a network traffic prediction technique and a flexible packet filter resulted in only

0.5% of the traffic being misclassified with a false alarm rate that did not exceed 3%.

3.2 Neural Networks

Before using an ANN into any project, it is important to understand its concepts

and the calculations that occur in the background. There are two types of learning

processes that an ANN can undergo in the application it is used for: Supervised and

Unsupervised Learning. In supervised learning, the data sets to be used by the neural

network are provided, and an idea of the desired output is available [9]. Unsupervised

learning is the opposite; the desired output is unknown with no or little data given.

While designing an ANN, features need to be taken into consideration. These

are the different types of input in a system that the neural network should expect. Each

feature will be given a weight, and then used in a function known as the hypothesis

function, shown below [9]:

ℎ𝜃 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + … 𝜃𝑛𝑥𝑛 (1)

In this formula, x is the value given to a specific feature n, and 𝜃 is the weight

that is given to that feature. The weights are selected such that the result is close enough

to the desired output with the data that has already been given. The purpose of the

hypothesis function is to map input values to certain outputs [9]. This hypothesis will

be used during the calculation of the cost function, which is a measure of the error in

the neural network’s ability to estimate a relationship between the input values and the

known output values [9], [10], [11]. The error cost function is given in Formula 2.

𝐽(𝜃0, 𝜃1) =
1

2𝑚
 ∑ ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))2 (2)

𝑚

𝑖=1

8

In this equation, m is the number of training examples in the data set that is

being used, x, as before, is the input feature, y is the known output, and i represents

the number of the training example in the current iteration. In order for the neural

network to be accurate in its future calculations, the result of the error cost function

will need to be as small as possible. If the result of this function is considered to be too

large, the weights 𝜃 should be adjusted in the hypothesis such that the resulting value

of the hypothesis ℎ should be as close as possible to the output value 𝑦 [9], [10].

Figure 1: A graph of the input and the output [9]

The values of 𝜃 will need to be modified so that the graph of the outputs

produces a line that fits as closely to the training examples as possible, as seen in Figure

1. This is typically known as Linear Regression, where independent inputs are given a

linear relationship to the dependent outputs [9], [10]. In order to achieve this, the cost

function will need to be minimized through a process known as Gradient Descent. This

process can be generally defined as “an iterative optimization procedure” where each

step improves the result “by taking a step along the negative of the gradient of the

function to be minimized at the current point” [11]. The values of 𝜃 can be fixed to

achieve this by using Formula 3.

𝜃𝑗 ∶= 𝜃𝑗 − α
1

𝑚
 ∑ ℎθ(𝑥(𝑖)) − 𝑦(𝑖))𝑥𝑗

(𝑖)

𝑚

𝑖=1

 (3)

9

In this formula, α is known as the learning rate, which is the rate at which the

error is reduced [9], [10]. The subscript j represents the identification number of the

variable, or feature, for which this calculation is occurring. When a large number of

features are used in a model, the values of x and 𝜃 are vectorized so that:

ℎ𝜃(𝑥) = [𝜃0 𝜃1 ⋯ 𝜃𝑛] [

𝑥0

𝑥1

⋮
𝑥𝑛

] = 𝜃𝑇𝑥 (4)

Figure 2 shows how gradient descent appears with regards to a single weight

𝜃 and the cost function J(𝜃).

Figure 2: Gradient descent to find the value of θ the converges [10]

The end goal of Gradient Descent is to find a local minima, or a point of

convergence. It is important to note that if the learning rate used in gradient descent is

too large, the steps taken in each iteration may be too large and may miss the local

minima [9], [10]. Alternatively, if the learning rate is too small, gradient descent may

be very slow, which will affect the neural network later on by slowing down its training

phase.

10

(a) (b)

Figure 3: The effects on the gradient descent when the learning rate is (a) too small

and (b) too large [9]

Linear Regression works when the output value is expected to be continuous.

However, ANNs have the ability to classify data, grouping the data based on the output

that was calculated. When the classification problem is introduced, the Logistic

Regression model is used when the possible output values are discrete values [9], [11].

For this model, the hypothesis is modified as follows:

ℎ𝜃(𝑥) = 𝑔(𝜃𝑇𝑥), where 𝑔(𝜃𝑇𝑥) =
1

1+𝑒− (𝜃𝑇𝑥)
 (5)

In this formula, 𝑔(𝜃𝑇𝑥) is known as the Sigmoid Function, or the Logistic

Function. Using the Sigmoid Function, the hypothesis ℎ𝜃(𝑥) will instead calculate the

probability of the “class” of the output [9], [11]. In order to decide which “class” the

output belongs to, a decision boundary is introduced by the hypothesis function, where

certain hypothesis values will determine whether the output will belong to one class or

another [9].

Modifying the hypothesis to be suitable for logistic regression will require a

modification to the cost function used as well. The new cost function is given as [9],

[12]:

𝐽(𝜃) =
1

𝑚
∑ 𝑓(ℎ𝜃(𝑥(𝑖)), 𝑦(𝑖)) (6)

𝑚

𝑖=1

where 𝑓(ℎ𝜃(𝑥(𝑖)), 𝑦(𝑖)) = − log (ℎ𝜃
(𝑖)(𝑥))

11

However, this function works when there are a very small number of possible

classifications for the output of the model. In order to work in larger multi-class

models, the cost function will need to be further modified. The modified cost function

can be written as the following [9], [12]:

𝐽(𝜃) = −
1

𝑚
∑[𝑦(𝑖) log (ℎ𝜃(𝑥(𝑖))) + (1 − 𝑦(𝑖)) log(1 − ℎ𝜃(𝑥(𝑖)))] (7)

𝑚

𝑖=1

In order to be compatible with the larger, vectorized data sets found with most

ANNs this modified equation can be translated to [9]:

𝐽(𝜃) =
1

𝑚
∙ (−𝑦𝑇 log ℎ) − (1 − 𝑦) log(1 − ℎ)) (8)

The 𝑦𝑇 in this case is the transpose of the vector containing the output values

of the training examples.

Despite all of the effort that goes into optimizing the cost function to increase

the efficiency of the neural network and its calculations, two other issues need to be

addressed: underfitting and overfitting. Underfitting occurs when the hypothesis

algorithm fails to map the trend of the training data accurately, likely due to using

insufficient features in the model [9], or when “the model is not able to obtain a

sufficiently low error value on the training set” [13]. The opposite, overfitting, occurs

when the algorithm fits the trend of the data too well, causing many curves [9], [11],

[14]. This may cause the neural network to “learn noise and spurious relations” [15]

and result in a failure to generalize [9], [12], [15]. Failing to generalize means that the

training examples have been “memorized” and the network will fail to accept new

data. The issue of overfitting typically occurs when there are too many input features

or complex functions that are causing curves that may not relate to the data being fed

[9], [13], [15]. An example of how underfitting and overfitting appear with a training

set can be seen in Figure 4.

12

Figure 4: Three models that have been fitted to a training set [13]

Overfitting can be resolved either by reducing the number of features used for

a model, or by using regularization functions. Regularization functions can act as

stabilizers for learning algorithms [11]. The main purpose of a regularization function

is to reduce the generalization error while leaving the training error unaffected [13].

To regularize the model, an extra term is added to the general cost function, modifying

it as follows [9], [11], [13]:

𝐽(𝜃) =
1

2𝑚
[∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))

2
+ 𝜆 ∑ 𝜃𝑗

2

𝑛

𝑗=1

𝑚

𝑖=1

] (9)

 In the formula above, 𝜆 is known as the regularization parameter. Its purpose

is to determine the inflation of the weights 𝜃 and smooth out the model [9], [11]. The

purpose of adding the second summation, ∑ 𝜃𝑗
2𝑛

𝑗=1 , is to make the parameters of the

equation smaller, since the value of the regularization parameter is expected to be

higher. Setting the value of the regularization parameter too high, however, may end

up causing the model to underfit [9], [13]. Should the cost function need to be adjusted,

the gradient descent formula can also be modified for regularization as follows:

𝜃𝑗 ∶= 𝜃𝑗 − α
1

𝑚
 ∑ ℎθ(𝑥(𝑖)) − 𝑦(𝑖))𝑥𝑗

(𝑖)
+

𝜆

𝑚
𝜃𝑗 (10)

𝑚

𝑖=1

13

 All of these calculations occur in machine learning. For ANNs, as previously

mentioned, the values for the parameters and the weights are typically fitted into

vectors. All of the calculations that are performed are used in the design and

implementation of an ANN.

The design of an ANN takes inspiration from the human nervous system’s

nodes and synapses. The basic structure of an ANN can be seen in Figure 5 below.

Figure 5: The basic structure of an ANN

Certain inputs will lead to different paths depending on values given, which

will then be used to determine the output. They can be defined as mathematical

methods for mapping inputs to certain outputs [16].

An ANN consists of at least three layers: the input layer, the middle, or hidden,

layer(s), and the output layer. Each layer consists of neurons, which represent values

with “activations” [17]. For the input layer, the activation of each neuron is simply the

value of the input itself. However, the activation of the neurons in the middle layer(s)

require the values of the previous layer, either the input layer or another middle layer,

to pass through an activation function, which uses the Sigmoid function. The activation

values can be calculated using the following formula [9]:

𝑎𝑖
(𝑗)

= 𝑔 (Θ𝑖 0
(𝑗)

𝑥0 + Θ𝑖 1
(𝑗)

𝑥1 + … + Θ𝑖 𝑛
(𝑗)

𝑥𝑛) (11)

14

In this formula, i represents the number of the unit, j represents the number of

the layer, and Θ represents the “matrix of weights controlling function mapping from

layer j to layer j+1” [9]. During the activation function calculations, each value must

be seen as a vector or a matrix [16]. The ANN can then be imagined as a connection

of vectors. Figure 5 can be reimagined as the following:

[

𝑥0
𝑥1

𝑥2
𝑥3

] → [

𝑎1
2

𝑎2
2

𝑎3
2

] → ℎ𝜃(𝑥)

It is important to note that the input and middle layers may contain bias nodes

and values, which are denoted by 𝑥0 and Θ0
(𝑗)

 . The purpose of the bias node is to allow

the shift of the activation function as needed by allowing the ANN to decide what gets

multiplied with the constant terms [9]. The bias values typically take a value of 1 but

can be assigned a different value depending on the design of the ANN.

In order to train an ANN, the formulas that have been discussed so far are used

in a method known as BackPropagation, or BackProp for short. This method is used

to train multi-layer ANNs [13], [18], [19] by calculating the cost function and allowing

it to flow backwards through the ANN in order to then compute the gradient [9], [11],

[13]. The computed gradient is then used to perform gradient descent for the actual

learning process of the ANN [13]. The following steps occur in the BackProp process

[9], [19], [20]:

1) Feed-Forward Computation

2) BackProp the output layer

3) BackProp the middle layer

4) Update the weights

In the first step, the ANN moves forward from the input layer to the output

layer and calculates the values of all of the nodes on the way. When BackPropagating

15

the output layer, the errors from the output nodes to the middle layer nodes are

calculated. The error is calculated with the following [19], [20]:

𝐸𝑟𝑟𝑜𝑟 = (𝑛𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒) ∗ (1 − (𝑛𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒)) ∗ ((𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)

− (𝑛𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒) (12)

It should be noted that the node value in this case is the value of the output

layer node. The rate of change is then computed with the following formula:

𝑅𝑎𝑡𝑒 𝑜𝑓 𝐶ℎ𝑎𝑛𝑔𝑒 = (𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒) ∗ (𝑒𝑟𝑟𝑜𝑟 𝑣𝑎𝑙𝑢𝑒)

 ∗ (𝑚𝑖𝑑𝑑𝑙𝑒 𝑙𝑎𝑦𝑒𝑟 𝑛𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒) (13)

The next step is to BackProp to the middle layer, where the error from the

middle layer to the input layer, or any other preceding middle layer, is calculated. The

formula used is as follows:

𝑀𝑖𝑑𝑑𝑙𝑒 𝐿𝑎𝑦𝑒𝑟 𝐸𝑟𝑟𝑜𝑟 = (𝑅𝑎𝑡𝑒 𝑜𝑓 𝐶ℎ𝑎𝑛𝑔𝑒) ∗ (𝑂𝑢𝑡𝑝𝑢𝑡 𝑁𝑜𝑑𝑒 𝐸𝑟𝑟𝑜𝑟) (14)

Once the middle layer error has been computed, the rate of change is also

computed using the same formula as the previous step. If there are multiple middle

layers, this process repeats until the error and rate of change of the first middle layer

nodes are calculated. Once all of the error values have been evaluated, the weights

throughout the ANN are calculated and updated in order to reduce the error. The new

weights can be computed using the following formula:

𝑁𝑒𝑤 𝑊𝑒𝑖𝑔ℎ𝑡 = (𝑜𝑙𝑑 𝑤𝑒𝑖𝑔ℎ𝑡) + (𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒)

+ ((𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚) ∗ (𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 𝑐ℎ𝑎𝑛𝑔𝑒)) (15)

The momentum is the value in an ANN that allows it to stabilize. The value of

the previous weight change is always going to be 0 for the first time the ANN goes

through BackProp. Once all of the errors and new weight values have been calculated,

the weights throughout the ANN can be updated. Once the weights have been updated,

the error rates can be recomputed to ensure that the new weight values have indeed

reduced the error throughout the ANN. This will allow the ANN to learn more

16

efficiently and provide more accurate results, increasing the likelihood that the correct

output value will be predicted during the testing phase.

All of the calculations that occur for ANNs are not done by hand, as they can

become quite complex and difficult to solve. The calculations are done through

programming in the user’s language of choice. Alternatively, they can also be done in

Octave and then integrated in the ANN’s code.

17

Chapter 4: Methodology

4.1 Materials

Before the proposed system can be designed, the materials and resources

available and required need to be taken into consideration. Having an idea of what is

available for use can result in having a smoother design phase once decisions about

which resources to use have been made.

4.1.1 Types of Neural Networks

There are different types of ANNs that exist, each with their own purposes.

The three types that were taken into consideration were Convolutional, Feed-Forward,

and Recurrent ANNs. In order to decide which type should be used for this thesis, the

uses and benefits of each type were considered.

Convolutional ANNs (CNN) are mostly used for processing images, videos,

and audio [21], [22], [23]. The purpose of this network is to take the media as its input

and returns output that has been classified [21]. These networks are mostly used in

applications involving computer vision [23].

Feed-Forward ANNs (FFNN) are a basic kind of ANN that involve layers

(input, middle, and output) that are directly connected to each other in an acrylic

manner [13], [18], [21]. They are straightforward ANNs that move in a single

direction, from the input layer to the output layer. There is no recurrence or feedback,

which may occur in other types of ANNs [13], [21].

Recurrent ANNs (RNN) are a type of FFNN that processes sequential data [13]

and includes a time factor [21]. The difference between FFNNs and RNNs is that the

latter is able to share parameters across the model, while an FFNN is a straightforward

model [13]. Parameter sharing allows the model to extend itself and consider pieces of

18

information that can occur in multiple possible places [13]. This can be useful for

applications that try to complete or predict information, such as autocompletion [21].

For this thesis, an ANN is needed to process data that relates directly to a single

output. CNNs having fewer parameters, making them easier to train [22]. For this

project, however, since none of the input is categorized as any of the media that a CNN

typically takes, using a CNN is not an option. An RNN processes sequential data that

are not only from one single run but may also include data from the previous run as

well [21]. Doing this means that one order of data may yield different results than if

the same data was fed in a different order. Given the nature of the data being fed to the

ANN in this thesis, RNNs may not be the suitable choice. Although FFNNs are basic

and simple, the data being fed to the network will be handled in a straightforward

manner. The application to be discussed in this thesis does not require any feedback or

recurrent behavior. Therefore, the ANN type of choice for this thesis is the Feed-

Forward ANN.

4.1.2 Programming Language Selection

For the ANN, the main programming languages used for development are

C/C++, Java, and Python. For the purpose of this thesis, the language used to program

the ANN is C.

The reason this language was selected was to use the Fast Artificial Neural

Network (FANN) library, which is a free open-source ANN library that allows users

to create multi-layer ANNs [24]. This library allows users to create ANNs quickly by

including all of the calculations and processing in C files created by the authors. The

user only needs to call the required functions to set the number of middle layers, the

number of neurons in each middle layer, the desired error, and the separate files that

contain the training and testing data sets.

19

4.2 Design

The overall functionality of the project can be broken down into several parts.

The first part is to determine information about the network, namely the IP address

and port ranges and the number of firewall rules. The second part will be the

development of the firewall. Because this is only a simulation, a simulated firewall

was developed with the same basic packet filtering functionalities as an actual firewall.

The final part to be considered in the design is the ANN itself.

Due to the nature of the values that are used in the calculations that occur in an

ANN, standard IP addresses cannot be used in the training and testing data sets. For

the purpose of the simulation, the network in question will be a Local Area Network

(LAN), which will allow the IP addresses used in the generation of the training and

testing data sets to take the form of standard positive integers. As with a standard LAN,

however, the values of these integers are limited to those between 1 and 254. Because

port numbers already take the form of positive integers, no assumptions have been

made regarding them.

The user will be allowed to select the number of firewall rules to be generated.

However, to observe the behavior of both the simulated firewall and the ANN, the

actual rules themselves will be randomly generated. As with actual firewalls, the

possibility of have the any, or *, option in the rules has been implemented, represented

by 0.

Once information about the network has been determined, the training and

testing data sets will be generated. The number of “packets” in each set of data is

manually determined. However, the ratio of training:testing packets is 80:20 for testing

and analysis, which is the same ratio used by [2] and [6]. Typically, training sets are

significantly larger than testing sets in order to allow the ANN to learn about a system’s

behavior as much as possible before being introduced to new data in the testing set.

20

The data sets consist of five input parameters and one output value. The five input

parameters considered are the source IP address, the destination IP address, the source

port number, the destination port number, and the protocol used. For simplicity, only

two protocols are taken into consideration: TCP and UDP. The output parameter is the

action that the firewall has taken given the input parameters. Typically, this has two

possible values: DENY or ACCEPT. Along with the training and testing data sets, the

firewall rules that are generated will also be saved to a text file to be used by the

simulated firewall. A flowchart of the packet generation phase can be seen in Figure

6.

Figure 6: Flowchart of the packet generation phase

21

The data sets are generated in two ways, both using the network parameters

selected by the user. For the training examples, the data is generated purely based on

the firewall rules. This is because the training data set must include results and

behavior that are already known. The testing set, however, includes data that may be

similar to the firewall rules or new data that may not match any rule but still fits within

the network parameters. The purpose of the testing set is to observe either system’s

behavior when introduced to new data.

For testing the firewall, a second testing data set has been generated that

excludes the output value found in the other data sets. This is because the simulated

firewall will check the rules that were generated to see if there are any matches with

the current “packet” being checked and will select the appropriate action. The presence

of a default rule will be taken into consideration while doing this check. However, if

no default rule is found, and a packet was not found to match any of the existing rules,

then the packet will be accepted by default. A flowchart depicting the simulated

firewall that was designed and developed can be seen in Figure 7.

Figure 7: Flowchart of the simulated firewall

22

The ANN will use both the training set and the testing set containing the actions

taken. It will first train itself using the training set before testing itself with the testing

set. This is done to determine how well the ANN can classify packets, based on how

many actions it was able to successfully assign given certain input data patterns. For

packets that are considered “new” data, such as those that did not appear to follow any

pattern found in the training examples, the ANN will make an “educated guess” based

on the calculations that occur. The flow of the ANN’s actions can be seen in Figure 8.

(a) (b)

Figure 8: Flowcharts of the ANN for the (a) training and (b) testing phases

 In order for the ANN to function, certain parameters will need to be set. As

previously mentioned in Section 4.1.2, the FANN library for C was used to build and

run the ANN. The library allows users to select the number of inputs, outputs, and

hidden layers, as well as the number of neurons in each hidden layer. The library also

allows users to set a desired error and learning rate, and the algorithm used to set the

weights during the training phase. Figure 9 depicts the way this is done in the code.

23

Figure 9: The initialization of the ANN parameters

 For the ANN used in this thesis, five inputs and one output were set, and a

single hidden layer with four neurons was used. Pre-tests were conducted to determine

the learning rate to be used by the ANN. After several tests were done with values

ranging from 0.35 to 0.8, the ideal learning rate value was found to be 0.5. This was

determined by how quickly the training error was calculated, how often the training

phase was cut short due to reaching the desired error value, and the final training error

value.

 The algorithm used to calculate and adjust the weights for the ANN is called

the Nguyen-Widrow algorithm. This algorithm generates weights and bias values such

that “he active regions of the layers neurons will be distributed approximately evenly

over the input space” [25]. Small values are initially selected, but then are adjusted as

the ANN is being trained.

24

Chapter 5: Testing and Results

When testing the simulation, several things need to be noted down in order to

determine the performance of the ANN. Firstly, the percentage of correctly classified

packets for both the ANN and the simulated firewall need to be noted down for

comparison. Because the ANN’s performance improves or degrades depending on

how well it was trained, this percentage may fluctuate with certain amounts of data.

The error of the ANN as it is training with certain amounts of training examples also

need to be observed.

Another factor in the results of testing this system will be the number of rules

that were generated. For this reason, the tests will occur with varying numbers of rules

as well. For each set of rules, there will be a default rule that will determine the fate of

packets that do not match any rule.

Table 1 contains the amounts of training and testing packets:

Table 1: The amount of training and testing examples

Training Testing

100 25

1000 250

5000 1250

10000 2500

25000 6250

50000 12500

100000 25000

150000 37500

200000 50000

25

Table 1: The amount of training and testing examples (continued)

Training Testing

300000 75000

400000 100000

500000 125000

600000 150000

700000 175000

800000 200000

900000 225000

1000000 250000

The network information used for testing will consist of an IP address range

from 1 to 7 and a port number range from 2 to 263. This means that there is a total of

5,788,104 possible combinations for the samples used in this experiment. The testing

phase of this thesis will iterate thrice, each iteration with an increasing number of

generated rules: 4, 9, and 15.

Along with testing the ANN’s behavior, the percentage of packets that were

matched with a rule in the filter was also computed. This percentage was calculated

with the following formula:

% 𝑜𝑓 𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝑃𝑎𝑐𝑘𝑒𝑡𝑠

=
(# 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝐴𝑙𝑙𝑜𝑤𝑒𝑑 𝑏𝑦 𝑅𝑢𝑙𝑒) + (# 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝐷𝑒𝑛𝑖𝑒𝑑 𝑏𝑦 𝑅𝑢𝑙𝑒)

(𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠)

 ∗ 100 (16)

In this case, packets that did not match any rule, and were thus subjected to the

default rule, are considered to be incorrectly filtered. This is because in an actual

network, some benign traffic that users may attempt to access can be blocked by the

26

default DENY rule, and some malicious traffic may be accepted by a default ACCEPT

rule.

5.1 With Default DENY Rule

5.1.1 Four (4) Rules

 The generated network information can be seen in Figure 10.

Figure 10: The randomly generated firewall rules

Once the data files to be used for training and testing were generated using this

rule set, the ANN was trained and then tested with the generated data files, and then a

testing file was used with the simulated firewall to compare the number of packets that

were correctly classified. The number of samples that matched a rule in the firewall

was also recorded.

The time spent training the ANN can be seen in Figure 11. As the number of

training examples increased, so did the time it took to train the ANN.

27

Figure 11: The training time of the ANN (4 rules)

The time spent training the network was also spent calculating the error. This

is the error of the ANN’s learning during the training process. A large error typically

means that the ANN did not correctly learn the patterns seen in the data file, while,

conversely, a smaller error denotes successful training. The training errors of the ANN

with different amounts of training examples can be seen in Figure 12.

Figure 12: The ANN's error throughout the training phase

0

20

40

60

80

100

1
0
0

1
0
0
0

5
0
0
0

1
0
0
0
0

2
5
0
0
0

5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

2
0
0
0
0
0

3
0
0
0
0
0

4
0
0
0
0
0

5
0
0
0
0
0

6
0
0
0
0
0

7
0
0
0
0
0

8
0
0
0
0
0

9
0
0
0
0
0

1
0
0
0
0
0
0

T
im

e
(s

ec
o
n
d
s)

Training Amount

ANN Training Time (4 Rules - DENY)

28

The curves in this graph depict how smoothly the ANN was able to train with

the given amount of training examples. It can be noted that for smaller amounts of

training examples, the curve approaches zero much later than with larger training sets.

As the number of training examples increases, the curve becomes smoother, meaning

that the ANN was able to learn the data patterns well. A spiky or rough curve indicates

that the ANN may be having a difficult time learning the patterns found in the training

set. This could be a result of weights needing to be adjusted.

Once the training of the ANN was completed, it was tested using the testing

examples generated. The simulated firewall was also tested. Their accuracies during

filtering can be observed in Figure 13.

Figure 13: Comparison of the percentage of correctly classified samples

As can be seen from the figure, the percentage of packets that were correctly

classified by the simulated firewall’s remained constant at 100%. This is because the

firewall has set policies with which packets are filtered. Therefore, the firewall’s

judgement is always correct. The ANN, on the other hand, had a low percentage of

correctly classified packets. This percentage, however, was close to the percentage of

0

20

40

60

80

100

%
 C

o
rr

ec
tl

y
 C

la
ss

if
ie

d

Testing Amount

Amount of Data Correctly Classified (4 Rules - DENY)

FW % Correctly Classified ANN % Correctly Classified

FW % Matched Rule

29

packets that matched a firewall rule while testing the firewall. Due to the relatively

small number of rules experimented with given the size of the network, however, these

results are statistically insignificant.

5.1.2 Nine (9) Rules

 Figure 14 displays the rules that were generated when the system was testing

with 9 rules.

Figure 14: Network information with 9 rules

The time spent training the ANN with the packets generated from the 9 rules

seen in Figure 13 can be seen in Figure 15.

30

Figure 15: The amount of time spent training the ANN

During these training phases, the training errors generated were calculated and

can be observed in Figure 16.

Figure 16: The ANN's error throughout the training phase

0
50

100
150
200
250
300
350
400
450

1
0
0

1
0
0
0

5
0
0
0

1
0
0
0
0

2
5
0
0
0

5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

2
0
0
0
0
0

3
0
0
0
0
0

4
0
0
0
0
0

5
0
0
0
0
0

6
0
0
0
0
0

7
0
0
0
0
0

8
0
0
0
0
0

9
0
0
0
0
0

1
0
0
0
0
0
0

T
im

e
(s

ec
o
n
d
s)

Training Amount

ANN Training Time (9 Rules - DENY)

31

The graphed lines in this figure are notably rougher than the training errors in

Figure 11. This is due to the increased number of rules. The ANN is learning more

patterns in this iteration of the experiment, which may cause some miscalculation

during the training phase.

With the packets that were generated with these rules, as well as some

unknown, random packets that have been generated for testing purposes, the

accuracies at different amounts of testing packets were observed and organized in

Figure 17.

Figure 17: Comparison of the percentage of correctly classified samples.

0

10

20

30

40

50

60

70

80

90

100

%
 C

o
rr

ec
tl

y
 C

la
ss

if
ie

d

Testing Amount

Amount of Packets Matching a Rule (9 Rules - DENY)

FW % Correctly Classified

ANN % Packets Correctly Classified

FW % Packets Matched Rule

32

5.1.3 Fifteen (15) Rules

The 15 rules generated for the final testing phase of the system can be seen in

Figure 18.

Figure 18: Network information with 15 rules

The time it took to train the ANN with the training examples generated from

this set of rules can be seen in Figure 19.

Figure 19: The training time of the ANN with different amounts of examples

0

50

100

150

200

250

300

350

400

450

1
0
0

1
0
0
0

5
0
0
0

1
0
0
0
0

2
5
0
0
0

5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

2
0
0
0
0
0

3
0
0
0
0
0

4
0
0
0
0
0

5
0
0
0
0
0

6
0
0
0
0
0

7
0
0
0
0
0

8
0
0
0
0
0

9
0
0
0
0
0

1
0
0
0
0
0
0

T
im

e
(s

ec
o
n
d
s)

Training Amount

Training Time (15 Rules - DENY)

33

The errors with different amounts of data during the training phase can be seen

in Figure 20.

Figure 20: The training errors generated

Once training was completed, both the ANN and the simulated firewall were

fed the testing samples to determine the amount of correctly classified packets. The

results of the testing phase can be seen in Figure 21.

34

Figure 21: Comparison of the percentage of correctly classified samples

 From the figure, it can be observed that the firewall was able to match all test

samples to a rule. This is due to the fact that there are enough rules relative to the

network size to be able to match one.

5.2 With Default ACCEPT

The same tests were completed with the same sets of rules. However, in this

case, the behavior of the ANN will be observed when new packets are subjected to a

default rule allowing any packets that don’t match any rules into the network.

Examples of such networks can be found in public places, such as malls or café`s.

5.2.1 Four (4) Rules

The time it took to train the ANN with the training examples generated with

the 4 rules in Figure 9 can be seen in Figure 22.

82

84

86

88

90

92

94

96

98

100

%
 C

o
rr

ec
tl

y
 C

la
ss

if
ie

d

Testing Amount

Amount of Packets Matching a Rule (15 Rules - DENY)

FW % Correctly Classified

ANN % Packets Correctly Classified

Firewall % Packets Matched

35

Figure 22: The training times of the ANN

The training errors generated by the ANN during this phase can be seen in

Figure 23.

Figure 23: The errors calculated during the training phase

0

20

40

60

80

100

1
0
0

1
0
0
0

5
0
0
0

1
0
0
0
0

2
5
0
0
0

5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

2
0
0
0
0
0

3
0
0
0
0
0

4
0
0
0
0
0

5
0
0
0
0
0

6
0
0
0
0
0

7
0
0
0
0
0

8
0
0
0
0
0

9
0
0
0
0
0

1
0
0
0
0
0
0

T
im

e
(s

ec
o
n
d
s)

Training Amount

ANN Training Time (4 Rules - ACCEPT)

36

Once the training phase has been completed, the ANN and the simulated

firewall were given the test samples. The results of the testing phase can be seen in

Figure 24.

Figure 24: Comparison of the percentage of correctly classified samples

5.2.2 Nine (9) Rules

The training times at varying amounts of training examples generated by the 9

rules in Figure 13 can be seen in Figure 25.

0

10

20

30

40

50

60

70

80

90

100

%
 C

o
rr

ec
tl

y
 C

la
ss

if
ie

d

Testing Amount

Amount of Data Correctly Classified (4 Rules - ACCEPT)

FW % Correctly Classified ANN % Correctly Classified

FW % Matched Rule

37

Figure 25: The training times with varying amounts of training examples

The training errors calculated during this phase can be seen in Figure 26.

Figure 26: The calculated training errors during the ANN's training phase

0
50

100
150
200
250
300
350
400

1
0
0

1
0
0
0

5
0
0
0

1
0
0
0
0

2
5
0
0
0

5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

2
0
0
0
0
0

3
0
0
0
0
0

4
0
0
0
0
0

5
0
0
0
0
0

6
0
0
0
0
0

7
0
0
0
0
0

8
0
0
0
0
0

9
0
0
0
0
0

1
0
0
0
0
0
0

T
im

e
(s

ec
o
n
d
s)

Training Amount

ANN Training Time - (9 Rules - ACCEPT)

38

In this figure, the same spikes in the training curves as in Figure 15 can be

noted. This is due to the same reason that was previously mentioned; the ANN is given

more patterns to learn and will need to adjust and learn each one.

Once the training phase was completed, the ANN and the simulated firewall

were tested using testing examples generated from the 9 rules. The results can be

observed in Figure 27.

Figure 27: Comparison of the percentage of correctly classified samples

The percentage of packets correctly classified by the ANN is closer in value

than what was observed in Figure 23.

5.2.3 Fifteen (15) Rules

 During the final phase of the system’s experiments using a default accept rule,

the same 15 rules as shown in Figure 17 were used to test the ANN and simulated

0

10

20

30

40

50

60

70

80

90

100

%
 C

o
rr

ec
tl

y
 C

la
ss

if
ie

d

Testing Amount

Amount of Packets Matching a Rule (9 Rules - ACCEPT)

FW % Correctly Classified % ANN Correctly Classified

FW % Matched Rule

39

firewall. The time it took to train the ANN with different amounts of training examples

generated from these rules can be seen in Figure 28.

Figure 28: The training time of the ANN

The training errors that were calculated with varying amounts of training

examples during this phase can be seen in Figure 29.

Figure 29: The training errors generated during the ANN's training phase

0
50

100
150
200
250
300
350
400
450
500

1
0
0

1
0
0
0

5
0
0
0

1
0
0
0
0

2
5
0
0
0

5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

2
0
0
0
0
0

3
0
0
0
0
0

4
0
0
0
0
0

5
0
0
0
0
0

6
0
0
0
0
0

7
0
0
0
0
0

8
0
0
0
0
0

9
0
0
0
0
0

1
0
0
0
0
0
0

T
im

e
(s

ec
o
n
d
s)

Training Amount

ANN Training Time (15 Rules - ACCEPT)

40

Once the training phase has been completed, the ANN and the simulated

firewall were tested while taking into considering the default accept rule. The results

of the testing phase can be seen in Figure 30.

Figure 30: Comparison of the percentage of correctly classified samples

5.3 Uncertainties

While running the tests with the ANN, a difference in the number of examples

that were successfully filtered was noticed between the simulated firewall and the

ANN. These amounts were recorded and observed. The example packets involved in

these differences were named Uncertainties. These examples represented the packets

that may not have been correctly classified by the ANN. Such a packet may be a benign

one that was wrongfully denied entrance to the network, or a malicious packet that was

wrongfully accepted.

0
10
20
30
40
50
60
70
80
90

100

%
 C

o
rr

ec
tl

y
 C

la
ss

if
ie

d

Testing Amount

Amount of Packets Matching a Rule (15 Rules - ACCEPT)

FW % Correctly Classified ANN % Correctly Classified

FW % Matched Rules

41

5.3.1 Four (4) Rules

While the tests were run with 4 rules, the difference in successfully classified

examples between the amount firewall and the ANN. A graph of these values can be

seen in Figure 31.

Figure 31: The differences in successful classifications (4 rules)

From this graph, there is no real trend that can be noticed with increasing

training sample amounts. This is in tandem with what was previously said: that the

results observed while using 4 rules are statistically insignificant. For the amount of

possible packet combinations in the experiments due to the size of the network chosen,

4 rules is too few and will not allow packets to be filtered correctly by both the ANN

and the firewall. The ANN will face difficulties because there aren’t enough patterns

learned for the wide variety of input sequences in the data, and the firewall will subject

many of the packets to the default rule.

400k 500k 600k 700k 800k 900k 1M 1.5M 2M

100k Tests 0 0 0 0 0 0 0 0 0

150k Tests 1 1 1 1 1 1 1 1 1

200k Tests 2 2 2 2 2 2 2 2 2

0

0.5

1

1.5

2

2.5

D
if

fe
re

n
ce

Training Amount

Difference in Correctly Classified Packets

42

5.3.2 Nine (9) Rules

The amounts of Uncertainties with 9 rules can be seen in Figure 32.

Figure 32: The differences in successful classifications (9 rules)

Although the differences in the amount of correctly classified packets between

the ANN and the firewall are greater in this case, the actual values of the differences

do not differ very much between the varying number of tests. Using 9 rules shows an

improvement while classifying the data, with an overall trend of decreasing over time.

This shows that training the ANN more will provide better results, at the cost of taking

longer. Given the amounts of test examples used during the Testing Phase and the total

number of data combinations, the difference is relatively small.

5.3.3 Fifteen (15) Rules

The number of Uncertainties calculated while using 15 rules can be seen in

Figure 33.

400k 500k 600k 700k 800k 900k 1M 1.5M 2M

100k Tests 9018 5240 9432 12618 12619 7291 10512 10922 7931

150k Tests 10451 4809 7614 15948 10374 9497 12913 18317 10294

200k Tests 15097 22674 17952 6100 17517 13566 13362 22267 13201

0

5000

10000

15000

20000

25000

D
if

fe
re

n
ce

Training Amount

Difference in Correctly Classified Packets

43

Figure 33: The differences in successful classifications (15 rules)

In this case, the decrease in the differences is clearer. As seen in Sections 5.1.3

and 5.2.3, the firewall perfectly filtered all packets without the use of the default rule.

The ANN is also able to closely match the firewall in the number of correctly classified

samples. Given the number of testing samples used in the Testing Phase and the size

of the network, the difference between the ANN and FW’s amounts correctly classified

packets is very small. This shows that an increase in the number of rules allows the

ANN to learn more about a network and reduce the likelihood of false classification.

5.4 Observation

Several things can be noted while reviewing the results of the tests done with

the ANN and the simulated firewall. The first thing to note is that, in all cases, the time

it took the train the ANN increased as the number of training examples increased, as

expected. This is because the ANN will have more data to work with, and thus, more

calculations will need to be done to make connections between neurons.

400k 500k 600k 700k 800k 900k 1M 1.5M 2M

100k Tests 0 0 259 0 0 90 259 0 0

150k Tests 0 0 118 407 407 0 0 0 0

200k Tests 1475 0 0 506 0 524 0 0 0

0

200

400

600

800

1000

1200

1400

1600

D
if

fe
re

n
ce

Training Amount

Difference in Correctly Classified Packets

44

The second thing to note is that the training error decreased over the course of

the training period, regardless of the number of training examples that the ANN was

encountering. As was mentioned before, the training error that is being calculated here

gives an idea of how well the ANN is discovering and learning patterns that are found

within the training examples. The higher the error is, the worse the ANN is learning.

It can also be noted that in all cases, the training error that is calculated is significantly

higher in the first epoch before taking a dive after 100 epochs. This is because the

ANN does not know what the patterns in the training examples are once training

begins. After 100 epochs, the ANN would have begun to learn the patterns found

within the training examples, hence the sharp dive shown in the graphs.

The number of correctly classified packets between the ANN and the simulated

firewall is another aspect to note. When fewer rules are involved, the difference in the

number of correctly classified packets between the ANN and the firewall are great. As

seen in Figure 13, the ANN was not able to correctly classify many data samples. This

is because of the lack of patterns that it needs to learn. With more than 5 million data

combinations as a result of the size of the network used in the experiments, using 4

rules results in statistically insignificant data. The results of the tests with 9 and 15

rules represent what the results would be in an actual network more accurately.

One factor of the results is the firewall’s ability to accept ANY as an option

during filtering. In this system, the ANY option was replaced by the value 0 for testing

purposes. The firewall has a system for understand that if ANY appears in a firewall

rule, then any value that appears in that position is acceptable and subjected to the

action of choice for that rule. The ANN, on the other hand, takes data from the firewall

and has no understanding of what ANY means. If packets are received that look

identical except for one or two values that are to be seen as ANY by the firewall, the

ANN may become confused and may not come to the same conclusion as the firewall.

45

Chapter 6: Discussion

6.1 Advantages

There are several advantages of using ANNs over firewalls in order to process

packets for filtering. The first advantage is that the ANN’s ability to extract and

analyze large amounts of data, and then store them for forecasting later on. Aside from

logging filtering information, firewalls do not do this when a packet has been filtered.

This leads to the second advantage of using ANNs: the ability to have nonlinear

relationships with the input data. This means that ANNs are able to map values and

predict output information more accurately than a linear system. The difference in

mapping between a linear and nonlinear systems can be seen in Figures 1 and 4.

The lack of the need for extensive knowledge in statistics is a third advantage

of using ANNs. When programming ANNs, there are many open source guides and

libraries that allow anyone with an objective to create ANNs. The C library mentioned

in subsection 4.2.2, FANN, is one example of such a library. Another example is

Google’s TensorFlow, a Python-based library for dataflow and symbolic math.

The final, major advantage of using ANNs is the flexibility of design and

development. There are several different types of ANNs that can be designed around

a number of applications, depending on user needs. There are also a selection of

different training models that users can implement based on the context of the data

being fed to the ANN. The data itself is also flexible, in the sense that it can come from

any source, whether it is a text, image, or audio file.

6.2 Disadvantages

Although ANNs have several strong advantages compared to firewalls, there

are also some disadvantages that need to be taken into consideration when designing

46

a system. The first important disadvantage to consider is the possibility of having long,

variable training times. The time it takes to train an ANN varies depending on the size

and amount of data that is being input into the system. For small datafiles, the training

time may not be an issue. However, in systems that may deal with large amounts of

data, such as large, active networks, the training time may take much longer.

This relates to the second disadvantage of using ANNs. If an ANN is to be

employed in a critical, active environment, such as an organization’s network, it will

need to be retrained every once in a while. If the datasets used for training are large,

retraining could take time, potentially putting the network at risk. In order to be

employed in the first place, the ANN’s accuracy after training and testing will need to

reach a certain threshold. This means that there is also the possibility of having to train,

and then later retrain, the ANN multiple times before the threshold has been achieved.

Employing the ANN otherwise may be a risk on the network, since the ANN may not

be completely trained and ready to face the data being communicated.

The third disadvantage of using ANNs is that there is no understanding of the

data that is being processed. An ANN’s purpose is to detect patterns and return an

output based on what it has learned from its training phase. There is no meaning to the

data that is being fed and processed. In the case of the intended application discussed

in this thesis, the ANN alone will not be enough to filter packets and assign actions

appropriately. Modifications and additions to the code will need to be made in order

for the network to handle the packets being filtered appropriately.

Lastly, the ANN may face difficulty filtering packets correctly in an unstable

network. In this case, the nature of the traffic may not be well-defined, and the ANN

may not make the appropriate decisions.

47

6.3 Recommendations

Because the system designed and developed in this thesis is a simulation to

determine if ANNs can work alongside firewalls to improve packet filtering

capabilities, the work done paves the way for future development in this topic. There

are improvements and modifications that can allow the ANN to work as a packet

filtering tool in a network. The first is to implement this system with an actual LAN

with a few test computers and have them communicate with each other normally. In

this case, the code of the ANN will need to be modified to not only determine the fate

of a packet passing through a network, but to also act upon the decision made.

Implementing this system with an actual LAN will also allow more accurate

measurements with regards to the training time of the ANN, the number of

Uncertainties passed through the network, and the processing time of packets while

filtering.

Once the LAN has been set up, and the ANN and firewall have been tested,

another possible experiment could be run: To have the ANN eventually independently

function in place of the firewall. The independent ANN’s behavior to network traffic

can be observed and will determine how a more efficient filtering mechanism can be

implemented.

Another modification to the ANN that should be implemented is the ability to

learn the ANY option while filtering packets. Implementing the ANY option will allow

the ANN to be more accurate during filtering. This will enable the ANN to take into

consideration that a single rule may apply to multiple input values. The ANY option

is an important part of the firewall, allowing network administrators to create rules

more easily for a single type of expected traffic. Implementing the ANY option with

the ANN will prevent the misclassification of traffic entering the network.

48

With these modifications to the ANN, more security mechanisms can be

implemented. One such mechanism is attack detection. The ANN may be modified to

be able to detect attacks over a LAN, such as flooding attempts. Essentially, in this

case, the ANN can be modified further to integrate functionalities similar to intrusion

detection, alerting network administrators of possible attack attempts. In this case,

much like what was discussed in [5], may act as an anomaly-based detection tool to

report suspicious behavior. Detecting attacks may also be beneficial for public

networks, since the results of the experiments show that the ANN can be used to filter

packets in public networks with positive results. Cybercriminals sometimes use public

networks to conceal themselves in the high levels of traffic. Attack detection along

with the ANN may aid authorities in detecting these criminals.

Another security mechanism that can be implemented is a way to send any

packets labeled as Uncertain back to the firewall for re-filtering. Allowing these

Uncertainties into the network may pose a risk to the integrity of the network, opening

opportunities for attacks to occur. Alternatively, benign traffic may also be blocked

due to being labeled Uncertain. Implementing methods to handle Uncertainties will

solve the issues that arise because of them, preserving the integrity of the network.

ANNs may also be compared to other ML frameworks. As seen in Section 3.1,

decision trees and SVMs have also been experimented with for enhancing traffic

filtering capabilities. In the future, these two methods could be designed and developed

for the same purpose as mentioned in this thesis: To improve the firewall’s default rule

policy for data packets that do not match any filter rules. Certain aspects of each

method can then be analyzed and compared to determine the ideal framework for this

application, such as processing time, memory usage, and classification accuracy.

49

Chapter 7: Conclusion

The work done in this thesis explores the idea of implementing feed-forward

ANNs to work alongside firewalls in order to improve their filtering capabilities. With

the available time and resources, a simulation was designed to determine if this is

possible. To do so, tests were done with three options for the number of rules: 4, 9,

and 15 rules. All sets of rules also included a default rule. The tests were completed

with both default rule cases: ACCEPT or DENY.

In order to complete the experiments, the rules alone were used to generate

training files for the ANN. This is the information that is known by the system with

the exact actions that need to be taken against those packets. The testing examples

were generated randomly, using the given network parameters as limits. The examples

found in the testing file may be known from the firewall rules, or they may be unknown

by the network. The results of the testing phase of the ANN were noted down to be

compared with how a firewall might react to the testing file.

Given the results of the tests done with different cases, it was found that ANNs

may indeed be helpful in improving filtering capabilities. The results show that ANNs

are capable of classifying network packets almost as well as firewalls with a higher

number of rules. This can be used to enhance the firewall’s filtering capabilities,

especially by improving the default rule’s issue with wrongly filtering packets that do

not match any firewall rule. With further modifications, ANNs can be used to refilter

the packets that are subject to the default rule.

The results of this thesis pave the way for further improvements of this system

and open the doors to the possibility of using AI in information and network security.

These improvements will not only eventually perfect the packet filtering capabilities

of firewalls but may also include security mechanisms that can prevent attacks from

50

happening before they even enter the network. This can essentially combine firewalls

and intrusion detection/prevention systems into a single system.

51

References

[1] SANS, "German Steel Mill Cyber Attack", 2014. [Online] Available:

https://ics.sans.org/media/ICS-CPPE-case-Study-2-German-

Steelworks_Facility.pdf

[2] K. Valentin and M. Maly, “NETWORK FIREWALL USING ARTIFICIAL

NEURAL NETWORKS,” Computing and Informatics, vol. 32, pp. 1312–

1327, 2013.

[3] A. Ng, "Machine Learning". [PowerPoint Presentation], Stanford University,

2017

[4] M. Jordan and T. Mitchell, "Machine learning: Trends, perspectives, and

prospects", Science, vol. 349, no. 6245, pp. 255-260, 2015.

[5] E. Reddy, "Neural Networks for Intrusion Detection and Its Applications",

Proceedings of the World Congress on Engineering, vol. 2, no. 5, 2013.

[6] M. Ussath, D. Jaeger, F. Cheng and C. Meinel, "Identifying Suspicious User

Behavior with Neural Networks", 2017 IEEE 4th International Conference on

Cyber Security and Cloud Computing (CSCloud), 2017.

[7] P. Wang, "Packet classification with multiple decision trees", 2015 21st Asia-

Pacific Conference on Communications (APCC), 2015.

[8] M. Wahid and A. Abdullah, "Detecting an Anomaly Behavior through Enhancing

the Mechanism of Packet Filtering", Journal of Computer Science, vol. 11,

no. 6, pp. 784-793, 2015.

[9] A. Ng, Machine Learning: Supervised Learning [PowerPoint Presentation],

Coursera: Standford University, 2017.

[10] C. McDonald, "Machine learning fundamentals (I): Cost functions and gradient

descent", Towards Data Science, 2018. [Online]. Available:

https://towardsdatascience.com/machine-learning-fundamentals-via-linear-

regression-41a5d11f5220. [Accessed: 01- Mar- 2018].

[11] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From

Theory to Algorithms. New York: Cambridge University Press, 2014.

[12] K. Murphy, Machine learning: A Probabilistic Perspective. Cambridge, Mass.

[u.a.]: MIT Press, 2014.

[13] I. Goodfellow, Y. Bengio and A. Courville, Deep learning. Cambridge

(EE.UU.): MIT Press, 2016.

[14] C. McDonald, "Machine learning fundamentals (II): Neural networks", Towards

Data Science, 2018. [Online]. Available:

52

https://towardsdatascience.com/machine-learning-fundamentals-ii-neural-

networks-f1e7b2cb3eef. [Accessed: 01- Mar- 2018].

[15] K. Brantley, "BCAP: An Artificial Neural Network Pruning Technique to

Reduce Overfitting", Master Thesis, University of Maryland, Baltimore

County, 2016.

[16] B. Anderson, Computational neuroscience and cognitive modelling. Los

Angeles [u.a.]: SAGE, 2014, pp. 81 - 96.

[17] J. Schmidhuber, "Deep learning in neural networks: An overview", Neural

Networks, vol. 61, pp. 85-117, 2015.

[18] D. Kriesel, A Brief Introduction to Neural Networks. 2007. [Online] Available:

http://www.dkriesel.com/en/science/neural_networks

[19] R. Garreta, "Artificial Neural Networks & Backpropagation,” [PowerPoint

Presentation]. Academia, 2016.

[20] M. Cilimkovic, "Neural Networks and Back Propagation Algorithm", Institute

of Technology Blanchardstown.

[21] F. van Veen, "The Neural Network Zoo - The Asimov Institute", The Asimov

Institute, 2016. [Online]. Available: http://www.asimovinstitute.org/neural-

network-zoo/. [Accessed: 02- Mar- 2018].

[22] "Unsupervised Feature Learning and Deep Learning Tutorial",

Ufldl.stanford.edu. [Online]. Available:

http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/.

[Accessed: 02- Mar- 2018].

[23] A. Vedaldi and K. Lenc, "MatConvNet: Convolutional Neural Networks for

MATLAB", in MM '15 Proceedings of the 23rd ACM international

conference on Multimedia, Brisbane, Australia, 2015, pp. 689 - 692.

[24] "FANN", FANN. [Online]. Available: http://leenissen.dk/fann/wp/. [Accessed:

02- Mar- 2018].

[25] A. Pavelka and A. Prochazka, “Algorithms for initialization of neural network

weights,” in Sbornk prspevku 12th rocnku konference MATLAB, vol. 2, pp.

453 – 459, 2004.

	United Arab Emirates University
	Scholarworks@UAEU
	4-2018

	Enhancing Firewall Filtering Performance Using Neural Networks
	Heba Saleous
	Recommended Citation

	tmp.1544509287.pdf.ZY7pD

		2018-12-11T10:21:08+0400
	Shrieen

