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Abstract 

 

In this thesis, we present a computational method for solving a class of 

fractional singularly perturbed Volterra integro-differential boundary-value problems 

with a boundary layer at one end. The implemented technique consists of solving two 

problems which are a reduced problem and a boundary layer correction problem. The 

reproducing kernel method is used to the second problem. Pade’ approximation 

technique is used to satisfy the conditions at infinity. Existence and uniformly 

convergence for the approximate solution are also investigated. Numerical results 

provided to show the efficiency of the proposed method. 

 

Keywords: Singularly perturbed Volterra integro-differential, Caputo fractional 

derivative, nonlinear initial value problem 
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Title and Abstract (in Arabic) 

 

التفاضلية  الكسرية -طريقة حسابية لحل مجموعة من مسائل فولتيرا التكاملية

 المضطربة المعتلة المحيطية غير الخطية

 صالملخ

 

-لحل مجموعة من مسائل فولتيرا التكامليةفي هذه الأطروحة عرضنا طريقة حسابية 

خدمة . الطريقة المستغير الخطيةالخطية  و التفاضلية  الكسرية المضطربة المعتلة المحيطية 

 .المحيطية غير الخطية والثانية المسألةضطربة المعتلة مكونة من مسئلتين وهما المسألة الم

ت حقق من الشرط عند المالانهاية. تم دراسواستخدمنا طريقة توليد كرنيل وايضا تقريب بادي للت

نتائج عددية تم عرضها لاثبات دقة وفعالية الطريقة وجود وتقارب الحل التقريبي ونتج عن ذلك 

 المستخدمة.

 

، المشاكل ابوتوك كسورالمشتقة  ،ضلية المضطربةالتفا-فولتيرا التكاملية: مفاهيم البحث الرئيسية

 .لقيمة الأوليةلغير الخطية 
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Chapter 1: Introduction 

 

1.1 Fractional Derivative 

In 1695, a French mathematician called L’hopital stopped in an important 

question and decided to send a message to asked a German mathematician named 

Leibnitz to find the solution of the following question, if the order n =
1

2
 , how I can 

find the derivative for this function;  

𝑓(𝑥) = 𝑥. 

Leibnitz’s answer was "This is an apparent paradox from which, one day, useful 

consequences will be drawn" [1]. As a result of this, the fractional calculus started to 

appear in the world by the question of L’hopital. The date September 30, 1695 is 

considered as the exact birthday of the fractional Calculus. Later, numerous of 

mathematicians studied the question of L’hopital like Euler in 1738, Lagrange in 1772, 

Laplace in 1812, Lacroix in 1819, Fourier in 1822, Abel in 1826, Liouville in 1832, 

Riemann in 1847, Greer in 1859, Holmgren in 1865, Griinwald in 1867, Letnikov in 

1868, Sonin in 1869, Laurent in 1884, Nekrassov in 1888, Krug in 1890, and Weyl in 

1917. Each mathematician used their own notation and methodology and they found 

many concepts of the functional integral and derivative [2]. 

The most important achievements in this regard are, in [3], as follow: 

1. In 1822, Fourier proposed an integral representation in order to determine the 

derivative, and his proposition can be considered as the first definition for the 

derivative of positive order. 

2. In 1826, Abel solved an integral equation related to the tautochrone problem 

which is count to be the first application of Fractional Calculus. 
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3. In 1832, Liouville suggested a definition based on the formula for 

differentiating of the exponential function. The definition considered as the 

first definition of Liouville. The second definition formulated by Liouville was 

written in terms of an integral and is now known as the version of the 

integration of noninteger order. 

4. Weyl defined a derivative to circumvent a problem including a particular class 

of functions, name is the periodic functions. 

The story of fractional derivative and integral is more than 300 years old; however in 

the modern decades the applied scientists and the engineers realized that the fractional 

derivative and integral supplied better processes to describe the complicated 

phenomena in nature. For examples, non-Brownian motion, systems identification, 

control, viscoelastic materials, and polymers. We can use the non-local property of the 

fractional derivative to describe those complex systems which involve long-memory 

in time in a better way. Accordingly, the numerical process has become a very required 

method to analyze the experimental data which is described in a fractional way [4].  

Moreover, the applications of fractional derivative and integral are varied and diffuse 

in engineering and science. For instance, electromagnetics, viscoelasticity, fluid 

mechanics, electrochemistry, biological population models, optics, signals processing, 

quantum mechanics, electricity, and ecological systems [5].  

In this section, we introduce several definitions for the fractional derivative and 

integral.  

 

Definition 1.1.1 The Riemann–Liouville fractional derivative of 𝑦 is defined as 

𝐷𝑎,𝑡
∝ 𝑦(𝑡) = 𝑅𝐿

1 1

Γ(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑥𝑛
∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑦(𝜏)𝑑𝜏,     𝑡 > 𝑎,   𝑛 − 1 < ∝ < 𝑛 ∈ 𝑍+
𝑡

𝑎
  

Definition 1.1.2 The Grünwald–Letnikov fractional derivative of 𝑦 is defined as 
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𝐷𝑎,𝑡
∝ 𝑦(𝑡) =  lim

𝑛→∞
{
(
𝑡 − 𝑎
𝑁 )−∝

Γ(−∝)
∑

Γ(𝑗−∝)

Γ(𝑗 + 1)
𝑦(𝑡 − 𝑗 (

𝑡 − 𝑎

𝑁
))},

𝑁−1

𝑗=0

   

   𝐺𝐿

1

 

                                 𝑡 > 𝑎,   𝑛 − 1 < ∝ < 𝑛 ∈ 𝑍+.    

Definition 1.1.3 The Weyl fractional derivative defined as 

𝐷∞
∝ [𝑓(𝑥)] = 𝐷−

∝[𝑓(𝑥)] = (−1)𝑚(
𝑑

𝑑𝜏
)𝑛[ 𝑊∞

∝
𝑥
1 [𝑓(𝑥)]].𝑥

1  

Definition 1.1.4 The Riemann-Liouville definition of fractional integral of a function 

𝑦 reads as 

𝐽𝑎.𝑡
∝ 𝑦(𝑡) =  

1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑦(𝜏)𝑑𝜏,     𝛼 > 0.
𝑡

𝑎

 

Definition 1.1.5 The Weyl definition of fractional integral 

𝐷∞
∝[𝑓(𝑥)] =

1

Γ(𝛼)
∫ (휀 − 𝑥)𝛼−1𝑓(휀)𝑑휀.
∞

𝑥
𝑥
1  

Definition 1.1.6 The Local fractional Yang integral 

𝐼𝑎
𝑎
𝑏
∝[𝑓(𝑥)] =  

1

Γ(1 + 𝛼)
∫ 𝑓(휀)(𝑑휀)𝛼.
𝑏

𝑎

 

In this thesis, we use the Caputo derivative which is given as follows. 

Definition 1.1.7 The Caputo derivative of fractional order of function 𝑥(𝑡) is defined 

as 

𝐷0
∝x(t) = 𝐷0,t

−(m−∝) 𝑑
𝑚

𝑑𝑡𝑚
𝑥(𝑡) =

1

Γ(𝑚−∝)
∫ (𝑡 − 𝜏)𝑚−∝−1𝑥(𝑚)(𝜏)𝑑𝜏,   
𝑡

0
∁
1  

t< 𝑇. 𝑛 which 𝑚 − 1 <∝< 𝑚𝜖𝑍+. 

Caputo derivative has many properties for examples:  

1. 𝑙[ 𝐷0,𝑡
∝ 𝑥(𝑡)] (𝑠) = 𝑠∝Γ

1 𝑥(𝑠) − ∑ 𝑠∝−𝑘−1𝑥(𝑘)(0),𝑚−1
𝑘=0  

 𝑤ℎ𝑒𝑟𝑒 𝑥(𝑠) = 𝑙[𝑥](𝑠),𝑚 − 1 <∝≤ 𝑚𝜖𝑍+. 

2. 𝐷0,𝑡
∝ 𝑐 = 0, 𝑤ℎ𝑒𝑟𝑒 𝑐 𝑖𝑠 𝑎𝑛𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.𝐶

1  



4 

 

 

 

 

Theorem 1.1.1 𝐼𝑓 𝑥(𝑡)𝜖 𝐶𝑚[0, 𝑇] 𝑓𝑜𝑟 𝑇 > 0 and 𝑚 − 1 <∝< 𝑚𝜖𝑍+. 

Then, 𝐷0,𝑡
∝ 𝑥(0) = 0.𝐶

0    

Proof. By using the definition of Caputo derivative, one has 

         𝐷0
∝x(t) =

1

Γ(𝑚−∝)
∫ (𝑡 − 𝜏)𝑚−∝−1𝑥(𝑚)(𝜏)𝑑𝜏,       
𝑡

0∁
1 𝑡 < 𝑇. 

Put 

           M = 𝑚𝑎𝑥𝑡𝜖[0,𝑡]|𝑥
(𝑚)(𝑡)|, where 𝑀 is a positive constant, 

Then, 

𝐷0
∝x(t) ≤ |

𝑀

Γ(𝑚−∝)
∫ (𝑡 − 𝜏)𝑚−∝−1𝑑𝜏 =  

𝑀

Γ(𝑚−∝ +1)
𝑡𝑚−∝  

𝑡

0

|∁
1  

which follows that 𝐷0
∝x(0) = 0.∁

1   ∎ 

 

Remark 1.1.1  

1. 𝐼𝑓 𝑥(𝑡)𝜖𝐶0[0, 𝑇]𝑓𝑜𝑟 𝑇 > 0 and ∝> 0, then 

𝐷∁
−∝x(0) = 0 or  lim

𝑡→0

1

Γ(∝)
∫ (𝑡 − 𝜏)𝛼−1𝑥(𝜏)𝑑𝜏 = 0.
𝑡

0
  

2. Theorem 1.1.1 does not hold for the Riemann-Liouville derivative.  

 

Theorem 1.1.2 𝐿𝑒𝑡 𝑓 𝜖 ∁−1
𝑚 , 𝑚 ∈  𝑁0. Then the Caputo fractional derivative 

𝐷∁
1
0
𝜇
𝑓, 0 ≤ 𝜇 ≤ 𝑚, is well defined and the inclusion 

𝐷∁
1
0
𝜇
𝑓 𝜖 {

∁−1,                                                                                                  𝑚 − 1 < 𝜇 ≤ 𝑚

∁𝑘−1[0,∞) ⊂  ∁−1,           𝑚 − 𝑘 − 1 < 𝜇 ≤ 𝑚 − 𝑘, 𝑘 = 1,……… . ,𝑚 − 1
 

holds true. 

Proof. In the case m − 1 < µ ≤ m, the inclusion under consideration follows from the 

definition of the Caputo derivative 𝐷∁
1
0
𝜇

, m ≥ 1, and the corresponding mapping 
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properties of the Riemann-Liouville fractional integral give us the inclusion 𝐷∁
1
0
𝜇

 ∈ 

∁𝑘−1[0,∞) for 𝑚− 𝑘 − 1 < 𝜇 ≤ 𝑚 − 𝑘, 𝑘 = 1,……… . ,𝑚 − 1.  

The inclusion ∁𝑘−1[0,∞) ⊂ ∁−1. ∎ 

 

From now on, we use 𝐷𝛼𝑓 as the Caputo derivative of 𝑓. 

 

Example 1.1.1 𝐿𝑒𝑡 𝛼 =
1

2
 and 𝑓(𝑡) = 𝑡. Then, for 𝑛 = 1, by applying the previous 

definition of Caputo derivative we get:  

𝐷
1
2⁄ 𝑡 =

1

𝛤(
1
2)
∫

1

(𝑡 − 𝜏)
1
2⁄

𝑡

0

𝑑𝜏. 

Taking into account the properties of the Gamma function and using the substitution 

𝑢 = 𝑡 − 𝜏, the final result for the Caputo fractional derivative of the function 

 𝑓(𝑡) = 𝑡 is obtained as: 

 

𝐷
1
2⁄ 𝑡 =

1

√𝜋
∫

1

(𝑡−𝜏)
1
2⁄

𝑡

0
𝑑𝜏. 

= −
1

√𝜋
∫

𝑑𝑢

√𝑢

0

√𝑡
 

=
1

√𝜋
∫

𝑑𝑢

√𝑢

√𝑡

0

 

   =
2

√𝜋
(√𝑡 − 0). 

Thus, it holds  

𝐷
1
2⁄ 𝑡 =

2√𝑡

√𝜋
. 

 

Lemma 1.1.1 𝐿𝑒𝑡 𝑛 − 1 <∝< 𝑛, 𝑛 ∈ ℕ, 
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 𝛼 ∈ ℝ and 𝑓(𝑡) be such that 𝐷0
𝛼𝑓(𝑡) exists. Then, the following properties for the 

Caputo operator hold 

lim
𝛼→𝑛

𝐷0
𝛼𝑓(𝑡) =  𝑓(𝑛)(𝑡), 

lim
𝛼→𝑛−1

𝐷0
𝛼𝑓(𝑡) =  𝑓(𝑛−1)(𝑡) − 𝑓(𝑛−1)(0).                                                                                      

Proof. Let’s proof it by using integration by parts.  

𝐷0
𝛼𝑓(𝑡) =

1

Γ(n − α)
∫

𝑓(𝑛)(𝑡)

(𝑡 − 𝜏)𝛼+1−𝑛

𝑡

0

𝑑𝜏 

               =
1

Γ(n−α)
(−𝑓𝑛(𝜏)

(𝑡−𝜏)𝑛−𝛼

𝑛−𝛼
 | 𝑡
𝜏=0

−  ∫ −𝑓(𝑛+1)(𝜏)
(𝑡−𝜏)𝑛−𝛼

𝑛−𝛼

𝑡

0
𝑑𝜏)                           

              =
1

Γ(n−α+1)
(𝑓𝑛(0)𝑡𝑛−𝛼 +  ∫ 𝑓(𝑛+1)(𝜏)(𝑡 − 𝜏)𝑛−𝛼

𝑡

0
𝑑𝜏). 

 

Now, by taking the limit for 𝛼 → 𝑛 and 𝛼 → 𝑛 − 1, respectively, it follows 

lim
𝛼→𝑛

𝐷0
𝛼𝑓(𝑡) =  (𝑓(𝑛)(0) + 𝑓(𝑛)(𝜏)) |

𝑡

𝜏 = 0
= 𝑓(𝑛)(𝑡) 

and  

lim
𝛼→𝑛−1

𝐷0
𝛼𝑓(𝑡) =  (𝑓(𝑛)(0)𝑡 + 𝑓(𝑛)(𝜏)(𝑡 − 𝜏)) |

𝑡

𝜏 = 0
− ∫ −𝑓(𝑛)(𝜏)

𝑡

0

𝑑𝜏 

                           = 𝑓(𝑛−1)(𝜏) |
𝑡

𝜏 = 0
 

                          = 𝑓(𝑛−1)(𝑡) − 𝑓(𝑛−1)(0). ∎ 

For the Riemann–Liouville fractional differential operator, the corresponding 

interop-lotion property reads  

lim
𝛼→𝑛

𝐷𝛼𝑓(𝑡) =  𝑓(𝑛)(𝑡), 

lim
𝛼→𝑛−1

𝐷𝛼𝑓(𝑡) =  𝑓(𝑛−1)(𝑡). 

 

Corollary 1.1.1 𝐿𝑒𝑡 𝑡 > 0, 𝛼 ∈ ℝ, 𝑛 − 1 <∝< 𝑛 ∈ ℕ. 
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If 𝑓(𝜏) and 𝑔(𝜏) and all its derivative are continuous in [0, 𝑡], then the following 

holds 

             𝐷∗
𝛼(𝑓(𝑡)𝑔(𝑡)) 

=∑(
𝛼

𝑘
) (𝐷𝛼−𝑘𝑓(𝑡))

∞

𝑘=0

𝑔(𝑘)(𝑡) −∑
𝑡𝑘−𝛼

Γ(𝑘 + 1 − 𝛼)

𝑛−1

𝑘=0

((𝑓(𝑡)𝑔(𝑡))𝑘(0)). 

We called this Property as Leibniz Rule.  

Proof. Applying the Leibniz Rule for the Riemann-Liouville  

𝐷𝛼(𝑓(𝑡)𝑔(𝑡)) = ∑(
𝛼

𝑘
) (𝐷𝛼−𝑘𝑓(𝑡))

∞

𝑘=0

𝑔(𝑘)(𝑡), 

Then, the Leibniz rule for the Caputo derivative is obtained 

𝐷0
𝛼(𝑓(𝑡)𝑔(𝑡)) = 𝐷𝛼(𝑓(𝑡)𝑔(𝑡)) −∑

𝑡𝑘−𝛼

Γ(𝑘 + 1 − 𝛼)

𝑛−1

𝑘=0

((𝑓(𝑡)𝑔(𝑡))
𝑘
(0)) 

                     = ∑(
𝛼

𝑘
) (𝐷𝛼−𝑘𝑓(𝑡))

∞

𝑘=0

𝑔(𝑘)(𝑡) −∑
𝑡𝑘−𝛼

Γ(𝑘 + 1 − 𝛼)

𝑛−1

𝑘=0

((𝑓(𝑡)𝑔(𝑡))𝑘(0)).∎ 

 

At the end of this section, some important properties of fractional integral operators 

should be mentioned [6]:  

1. Semi-Group Property L: 𝐷𝑥
−𝜎 𝐷𝑥

−�̃�𝑢 = 𝐷𝑥
−𝜎−�̃�𝑢.𝑎

1
𝑎
1

𝑎
1  

2. Semi-Group Property R: 𝐷𝑏
−𝜎 𝐷𝑏

−�̃�𝑢 = 𝐷𝑏
−𝜎−�̃�𝑢.𝑥

1
𝑥
1

𝑥
1  

3. Adjoint Property: ( 𝐷𝑥
−𝜎

𝑎
1 𝑢, 𝑣)𝐿2(𝑎,𝑏) = (𝑢, 𝐷𝑏

−𝜎
𝑥
1  𝑣)𝐿2(𝑎,𝑏). 

4. Commutative Property L: 𝐷𝑥
−𝜎𝐷𝑢 =𝑎

1 𝐷 𝐷𝑥
−𝜎𝑢.𝑎

1  

5. Commutative Property R: 𝐷𝑏
−𝜎𝐷𝑢 =𝑥

1 𝐷 𝐷𝑏
−𝜎𝑢.𝑥

1  
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1.2 Volterra Integro-Differential Equations 

Volterra integral equations considered as type of integral equations.  In 1913, 

Volterra published the first book talk about Volterra integral equations with title 

“Leçons sur les équations intégrales et les équations intégro-différentielles”. In 1884, 

Volterra began working on integral equations, but his important study began in 1896. 

However, the name Volterra integral equation was first called by Lalesco in 1908.  

Since then, Volterra integral equations have been a major source of research work.  

Many application in science and engineering that used Volterra integral equations such 

as elasticity, semi-conductors, scattering theory, seismology, heat conduction, 

metallurgy, fluid flow, chemical reactions, population dynamics, and spread of 

epidemics [7] 

Volterra integral equations have growingly been recognized as useful tools for 

problems in science and engineering. In [8], they proposed and examined a spectral 

Jacobi-collocation approximation for fractional order integro-differential equations. 

According to Suha and Ray [9], they used Legendre wavelet method to find the 

solutions of system of nonlinear Volterra integro-differential equations. In [10], they 

used Laguerre polynomials which depended on the collocation method to solve the 

pantograph-type Volterra integro-differential equations under the initial conditions.  

Yang, Tang, and Zhang [11], discussed about the blow-up of Volterra integro-

differential equations with a dissipative linear term to beat the differences of the 

solutions. In [12], they solved a non-linear system of higher order Volterra integro-

differential equations by using the Single Term Walsh Series (STWS) method. Also 

in [13], they solved the fractional Fredholem–Volterra integro-differential equations 

by defining the new fractional-order functions based on the Bernoulli polynomials. We 
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also indicate the interested reader to [14, 15, 16, 17, 18, and 19] for more research 

works on Volterra integro-differential equations.  

Volterra integro-differential equations divided into two groups referred to as the first 

and the second kind. 

The first kind, [20], is 

f(x) =  ∫ K(x, t)u(t) dt
x

0

 

 where u(x) is the unknown function and it occurs only under the integral sign. 

The second kind, [21],  

u(x) =  f(x) +  λ∫ K(x, t)u(t) dt.
x

0

 

where u(x) is the unknown function and it is occurs inside and outside the integral 

sign. K(x, t)  is the kernel and the function f(x) are given real-valued functions, and λ 

is a parameter. 

In this section, we will present some example of Volterra integro-differential 

equations. 

Example 1.2.1 u′′(x) =  −x + ∫ (x − t)u(t)dt,     u(0) = 0,   u′(o) = 1,
x

0
 

 

Example 1.2.2 u′(x) =  − sin x − 1 + ∫ u(t)dt,     u(0) = 1,   
x

0
 

 

Example 1.2.3 Show that  u(x) =  ex is the solution of the Volterra integral equation 

u(x) =  1 + ∫ u(t) dt.
x

0

 

Substituting u(x) =  ex in the left hand side to get  

1 + ∫ et dt
x

0
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                                                          = 1 + [et] 10
x  

= ex =  u(x). 

                                   

 

1.3 Non-linear Singularly Perturbed 

In 1904, A German physicist called Ludwig Prandtl revolutionized fluid 

dynamics with his concept. He noted that "the influence of friction is experienced only 

very near an object moving through a fluid".  In one of his paper [22], he presented, in 

the Third International Mathematics Congress in Heidelberg, the idea of the boundary 

layer and its significance for drag and streamlining and the title of his paper was "Fluid 

Flow in Very Little Friction". In his paper, Ludwig Prandtl assumed that the impact of 

friction was to cause the fluid instantly adjacent to the surface to stick to the surface. 

This boundary-layer notion has been the basis stone for the new fluid dynamics. 

Schlichting was one of the most famous books on boundary layer theory [23]. The 

scientific justification of boundary layer theory gave us a more general hypothesis to 

determine asymptotic expansions of the solutions to the complete equations of the 

motion. Singular perturbation problem was the result of reduced the problem which is 

then solved by the method of matched asymptotic expansions. In 1946, Friedrichs and 

Wasow were the first time used the expression ‘‘singular perturbation” [24]. 

The differential equations of singularly perturbed indicate to the study of a group of 

differential equations including an asymptotically small parameter where the character 

of the limiting solution was totally various than the solutions acquired at finite values 

of the parameter. The singularly perturbed problem is very important to both applied 

and pure mathematicians, physicists and engineers because of the fact that the 
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solutions exhibit some interesting behavior, for example, boundary layer, interior 

layer, and resonance phenomena [25]. 

There are a lot of applications of singularly perturbed problem such as Chou Huan-

wen discussed the nonlinear problems of plates and shells by means of the singular 

perturbation method [26], Petar discussed typical applications of singular perturbation 

techniques to control problems in the last fifteen years [27], Kokotovic, O'malley and 

Sannuti, showed recent results on singular perturbations surveyed as a tool for model 

order reduction and separation of time scales in control system design [28], Ghorbel 

and Spong, reviewed results of integral manifolds of singularly perturbed non-linear 

differential equations and outlined the basic elements of the integral manifold 

method in the context of control system design [29], Fridman, studied the 𝐻∞ control 

problem for an affine nonlinear singularly perturbed system [30], Fridman, studied 

the infinite horizon nonlinear quadratic optimal control problem for a singularly 

perturbed system [31]. 

 

1.4 Perturbed Problem 

Definition 1.4.1 When the problem does not include any small parameter is 

defined as unperturbed problem [26]. 

Example 1.4.1  
d2y

dx2
+ 2

dy

dx
+ y = 2x2 − 8x + 4,   y(0) = 3,      

dy

dx
(0) = 3. 

 

Definition 1.4.2 When the problem include a small parameter is defined as perturbed 

problem [26]. 
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Example 1.4.2  
dy

dx
+ y = 휀𝑦2,   y(0) = 1. 

The perturbed problem can be divided into two groups and that depending onto the 

nature of the perturbed problem. The two groups are 

1. Regularly perturbed. 

2. Singularly perturbed.  

 

Definition 1.4.3 A regular perturbation problem 𝑃𝜀(𝑦𝜀) = 0 depends on its small 

parameter 휀 in such a way that its solution 𝑦𝜀(𝑥) converges as 휀 → 0 (uniformly with 

respect to the independent variable 𝑥 in the relevant domain) to the solution 𝑦0(𝑥) of 

the limiting problem 𝑃0(𝑦0) = 0. In general, the parameter presented at lower order 

terms [32]. 

Example 1.4.3  
d2y

dx2
+ y = ε𝑦2,   y(0) = 1,      

dy

dx
(0) = −1. 

 

 

Example 1.4.4  
dy

dx
+ y = ε𝑦2,   y(0) = 1.       

 

Definition 1.4.4 A singular perturbation is said to be occur whenever the order of the 

problem is reduced when we set 휀 = 0. In general, the parameter presented at higher 

order terms and the lower order terms start to dominate [33].  

 

Example 1.4.5  ε
d2y

dx2
+
dy

dx
= 2x + 1,   y(0) = 1,      y(0) = 4. 

 

Example 1.4.6  ε
d2y

dx2
+
dy

dx
− y = 0,   y(0) = 0,      y(1) = 1. 
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Example 1.4.7  ε𝑥2 − 𝑥 + 1 = 0. 

 

Example 1.4.8  ε
d2y

dx2
+
dy

dx
= 1 + 2x,   y(0) = 0,      y(1) = 1. 

 

 

1.5 Fractional Perturbed Problem 

It is clear that the fractional-order models of the integration and the derivative 

are more satisfactory than formerly integer-order models. Specially, they have been 

confirmed that fractional integrals and derivatives give a phenomenal instrument for 

the depiction of memory and hereditary properties of different materials and 

procedures, impacts neglected in traditional integer-order models. In 1998, Podlubny 

discussed the history of the Fractional differential equations, applications, and a 

scanning of a literature of fractional integrals and derivative models [34].  

One of the uses of singular perturbation techniques is to find the solution of the 

problems of numerous sections of applied sciences and to have a successful 

approximation. Excessive use of fractional order models in physical processes impacts 

the necessity to have appropriate corresponding singular perturbation techniques 

available. The reason for this fundamentally because in the process of modeling, one 

is properly to end up with a singularly perturbed problem. In [35], [36], and [37], the 

method of additive decomposition was used successfully to build asymptotic solutions 

of nonlinear singularly perturbed Volterra integral equations with smooth kernels, to 

the main and higher order terms.  

One of the significant points of singularly perturbed problems is to obtain asymptotic 

solutions of the problem to all orders since in most problems the singularness of the 
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problem is reveal only in the higher order adjustment terms of the perturbation 

extension. Furthermore, the higher order of the asymptotic solutions are given as far 

as the linear equations and it's solvable. 

There are some examples of singularly perturbed fractional order models and this 

motivated the current research:  

1) Problem with order 
1

2
 explaining the process of cooling of a semi-infinite body 

by radiation 

휀 𝐷𝑡

1
2𝑦(𝑡) = {𝑎0 − 𝑦(𝑡)}

4, 𝑡 > 0,0
1  0 < 휀 ≪ 1, 𝑦(0) = 0, 

and here 𝑎0 is a given constant such that 𝑥(𝑡) = 𝑎0 − 𝑦(𝑡), where 𝑥(𝑡) is the 

surface temperature to be determined.  

2) In [38], the author considered a class of fractional singularly perturbed two 

boundary-value problems with Dirichlet boundary conditions of the form  

−휀𝐷𝛼𝑦(𝑥) + 𝑢(𝑥, 𝑦)𝑦′(𝑥) + 𝑣(𝑥. 𝑦)𝑦(𝑥) = 0,       

𝑥 ∈ 𝐼 ∶= [0,1], 1 <∝≤ 2, 

subject to 

𝑦(0) = 𝛽1,   𝑦(1) = 𝛽2, 

where 휀 > 0 is a small positive parameter, 𝛽1, 𝛽2 are given constant, 𝑢(𝑥, 𝑦),

𝑣(𝑥, 𝑦) are sufficiently smooth function such that 

𝑢(𝑥, 𝑦(𝑥)) ≠ 0 for all 𝑥 ∈ 𝐼, and 𝑦 ∈ 𝐿1[𝑎, 𝑏]  ∶= {𝑧 ∶  [𝑎, 𝑏]  →

ℝ |∫ 𝑧(𝑡)𝑑𝑡 < ∞
𝑏

𝑎
}. Here, 𝐷∝ denoted the left-sided Caputo fractional 

derivative, defined as follows 

         𝐷∝𝑦(𝑥) = 
1

Γ(𝑘−∝)
∫ (𝑥 − 𝑡)𝑘−∝−1𝑦(𝑘)(𝜏)𝑑𝜏, 𝑤ℎ𝑒𝑟𝑒 𝑘𝜖ℕ   
𝑥

0
 

where the definition left-sided Caputo fractional derivative is 
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𝐷𝑎+
𝑎

∗
1 [𝑓(𝑥)] =

1

𝜏(𝑛 − 𝛼)
∫ (𝑥 − 𝜉)𝑛−𝛼−1

𝑑𝑛

𝑑𝜉𝑛
[𝑓(𝜉)]𝑑𝜉, 𝑥 ≥ 𝑎

𝑥

𝑎

 

3) In [39], the author presents analysis and computational experiments for the 

singularly perturbed fractional advection–dispersion equation in one spatial 

dimension: 

−휀𝐷(𝑝 𝐷𝑥
𝛼−2 + 𝑞 𝐷𝑏

𝛼−2 )𝐷𝑢 − 𝑢𝑥 = 𝑓, 𝑖𝑛 𝛺𝑥
1  𝑎

1  

𝑢 = 0, 𝑜𝑛 𝒹𝛺, 

where 𝛺 is the real interval (𝑎, 𝑏), 1 <∝≤ 2 is the order of the fractional 

dispersion operator. With skewness parameters define by 𝑝, 𝑞 satisfying 

 𝑝 +  𝑞 = 1, and 휀 ≪ 1. 
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Chapter 2: First Order Fractional Initial Value Problems 

 

In this chapter, we study the first order fractional initial value problems. In 

the next section, we presented Kernel method for first order initial value problems. 

2.1 Reproducing Kernel Method for First Order Initial Value Problems 

Definition 2.1.1 Let 𝐸 be a nonempty abstract set. A function 𝑀:𝐸 × 𝐸 → 𝐶 is a 

reproducing Kernel of the Hilbert space  𝐻 if and inly if 

 𝑀(. , 𝑥) ∈ 𝐻 for all 𝑥 ∈ 𝐸, 

 (𝜙(. ),𝑀(. , 𝑥)) = 𝜙(𝑥) for all 𝑥 ∈ 𝐸 and 𝜙 ∈ 𝐻. 

The second condition is called the reproducing property and a Hilbert space which 

possesses a reproducing kernel is called a reproducing kernel Hilbert space.  

Consider the first order nonlinear fractional equation of the form 

                                           𝐷𝛼𝑦 + 𝑔(𝑦) = 𝑐, 𝑥 ∈ [0,1], 0 < 𝛼 ≤ 1                        (2.1.1) 

subject to  

                                                         𝑦(0) = 𝜃                                           (2.1.2) 

where 𝑐 and 𝜃 are constants. First, we study the linear case where 𝑔(𝑦) = 𝑎(𝑥)𝑦.  To 

homogenize the initial condition, we assume 𝑢 = 𝑦 − 𝜃. Thus, Problem 2.1.1-2.1.2 

can be written as  

                                         𝐷𝛼𝑢 + ℎ(𝑢) = 𝑐, 𝑥 ∈ [0,1], 0 < 𝛼 ≤ 1                           (2.1.3) 

subject to 

                                                    𝑢(0) = 0.                                 (2.1.4) 

In order to solve the linear Problem 2.1.3-2.1.4, we construct the kernel Hilbert spaces 

𝑊2
1[0,1] and 𝑊2

2[0,1] in which every function satisfy the initial condition 2.1.4.  

Let 𝑊2
1[0,1] = {𝑢(𝑠): 𝑢 is absolutely continuous real value function, 𝑢′ ∈ 𝐿2[0,1]}. 
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The inner product in 𝑊2
1[0,1] is defined as 

(𝑢(𝑦), 𝑣(𝑦))𝑊21[0,1] = 𝑢(0)𝑣(0) + ∫𝑢
′(𝑦)𝑣′(𝑦)𝑑𝑦,

1

0

 

and the norm ‖𝑢‖𝑊21[0,1] is given by 

‖𝑢‖𝑊21[0,1] = √(𝑢(𝑦), 𝑢(𝑦))𝑊21[0,1] 

where 𝑢, 𝑣 ∈ 𝑊2
1[0,1].  

 

Theorem 2.1.1 The space 𝑊2
1[0,1] is a reproducing Kernel Hilbert space, 𝑖, 𝑒. ; there 

exist 𝑅(𝑠, 𝑦) ∈ 𝑊2
1[0,1] and its second partial derivative with respect to y exists such 

that for any 𝑢 ∈ 𝑊2
1[0,1] and each fixed 𝑦, 𝑠 ∈ [0,1], we have  

(𝑢(𝑦), 𝑅(𝑠, 𝑦))𝑊21[0,1] = 𝑢(𝑠). 

In this case, 𝑅(𝑠, 𝑦) is given by  

𝑅(𝑠, 𝑦) = {
1 + 𝑦, 𝑦 ≤ 𝑠

1 + 𝑠, 𝑦 > 𝑠
}. 

Proof. Using integration by parts, one can get  

(𝑢(𝑦), 𝑅(𝑠, 𝑦))𝑊21[0,1] = 𝑢(0)𝑅(𝑠, 0) + ∫𝑢
′(𝑦)

𝜕𝑅

𝜕𝑦
(𝑠, 𝑦)𝑑𝑦

1

0

 

                    = 𝑢(0)𝑅(𝑠, 0)+ 𝑢(1)
𝜕𝑅

𝜕𝑦
(𝑠, 1) − 𝑢(0)

𝜕𝑅

𝜕𝑦
(𝑠, 0) − ∫ 𝑢(𝑦)

𝜕2𝑅

𝜕𝑦2
(𝑠, 𝑦)𝑑𝑦.

1

0
 

Since 𝑅(𝑠, 𝑦) is a reproducing kernel of 𝑊2
1[0,1], 

(𝑢(𝑦), 𝑅(𝑠, 𝑦))𝑊21[0,1] = 𝑢(𝑠) 

which implies that  

                                                       −
𝜕2𝑅

𝜕𝑦2
(𝑠, 𝑦) = 𝛿(𝑦 − 𝑠),                                      (2.1.5) 

                                          𝑅(𝑠, 0) −
𝜕𝑅

𝜕𝑦
(𝑠, 0) = 0,                                        (2.1.6) 
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and  

                                        
𝜕𝑅

𝜕𝑦
(𝑠, 1) = 0,                                                          (2.1.7) 

Since the characteristic equation of −
𝜕2𝑅

𝜕𝑦2
(𝑠, 𝑦) = 𝛿(𝑦 − 𝑠) is 𝜆2 = 0 and its 

characteristic value is 𝜆 = 0 with 2, multiplicity roots, we write 𝑅(𝑠, 𝑦) as 

𝑅(𝑠, 𝑦) = {
𝑐0(𝑠) + 𝑐1(𝑠)𝑦, 𝑦 ≤ 𝑠

𝑑0(𝑠) + 𝑑1(𝑠)𝑦, 𝑦 > 𝑠
. 

Since  
𝜕2𝑅

𝜕𝑦2
(𝑠, 𝑦) = −𝛿(𝑦 − 𝑠), we have   

                          𝑅(𝑠, 𝑠 + 0) − 𝑅(𝑠, 𝑠 + 0) = 0,                        (2.1.8) 

                          
𝜕𝑅

𝜕𝑦
(𝑠, 𝑠 + 0) −

𝜕𝑅

𝜕𝑦
(𝑠, 𝑠 + 0) = −1.                                           (2.1.9) 

Using the conditions 2.1.6-2.1.9, we get the following system of equations  

            𝑐0(𝑠) − 𝑐1(𝑠) = 0,                                             (2.1.10) 

                                                                     𝑑1(𝑠) = 0, 

𝑐0(𝑠) + 𝑐1(𝑠)𝑠 = 𝑑0(𝑠) + 𝑑1(𝑠)𝑠, 

𝑑1(𝑠) − 𝑐1(𝑠) = −1, 

which implies that 

𝑐0(𝑠) = 1,  𝑐1(𝑠) = 1, 𝑑0(𝑠) = 1 + 𝑠, 𝑑1(𝑠) = 0 

which completes the proof of the theorem. Next, we study the space 𝑊2
2[0,1]. 

Let 

𝑊2
2[0,1] = {𝑓(𝑠): 𝑓 is absolutely continuous real value function, 𝑓, 𝑓′, 𝑓′′

∈ 𝐿2[0,1], 𝑓(0) = 0}. 

The inner product in 𝑊2
2[0,1] is defined as 

(𝑢(𝑦), 𝑣(𝑦))𝑊22[0,1] = 𝑢(0)𝑣(0) + 𝑢(1)𝑣(1) + ∫𝑢
(2)(𝑦)𝑣(2)(𝑦)𝑑𝑦

1

0
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 and the norm ‖𝑢‖𝑊22[0,1] is given by 

‖𝑢‖𝑊22[0,1] = √(𝑢(𝑦), 𝑢(𝑦))𝑊22[0,1] 

where 𝑢, 𝑣 ∈ 𝑊2
2[0,1].  

 

Theorem 2.1.2 The space 𝑊2
2[0,1] is a reproducing Kernel Hilbert space, 𝑖, 𝑒. ; there 

exist 𝐾(𝑠, 𝑦) ∈ 𝑊2
2[0,1] which has its six partial derivative with respect to y such 

that  for any 𝑢 ∈ 𝑊2
2[0,1] and each fixed 𝑦, 𝑠 ∈ [0,1], we have  

(𝑢(𝑦), 𝐾(𝑠, 𝑦))𝑊22[0,1] = 𝑢(𝑠). 

In this case, 𝐾(𝑠, 𝑦) is given by  

𝐾(𝑠, 𝑦) = {
∑ 𝑐𝑖(𝑠)𝑦

𝑖3
𝑖=0 , 𝑦 ≤ 𝑠

∑ 𝑑𝑖(𝑠)𝑦𝑖
3
𝑖=0 , 𝑦 > 𝑠

} 

where 

𝑐0 = 0,  𝑐1 =
1

6
(8𝑠 − 3𝑠2 + 𝑠2), 𝑐2 = 0,  𝑐3 =

1

6
(𝑠 − 1), 

𝑑0 = −
𝑠3

6
,  𝑑1 =

1

6
(8𝑠 + 𝑠3), 𝑑2 = −

𝑠

2
,  𝑑3 = −

𝑠

6
. 

Proof: Using integration by parts, one can get 

(𝑢(𝑦), 𝐾(𝑠, 𝑦))𝑊22[0,1] = 𝑢(0)𝐾(𝑠, 0) + 𝑢(1)𝐾(𝑠, 1) +  𝑢
′(1)𝐾𝑦𝑦(𝑠, 1) 

− 𝑢′(0)𝐾𝑦𝑦(𝑠, 0)  − 𝑢(1)
𝜕3𝐾

𝜕𝑦3
(𝑠, 1) + 𝑢(0)

𝜕3𝐾

𝜕𝑦3
(𝑠, 0) + ∫𝑢(𝑦)

𝜕4𝐾

𝜕𝑦4
(𝑠, 𝑦)𝑑𝑦.

1

0

 

Since 𝑢(𝑦) and 𝐾(𝑠, 𝑦) ∈ 𝑊2
2[0,1], 

𝑢(0) = 0 

and  

                                                    𝐾(𝑠, 0) = 0.                                                     (2.1.11) 
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Thus,  

(𝑢(𝑦), 𝐾(𝑠, 𝑦))𝑊22[0,1] = 𝑢(1)𝐾(𝑠, 1) +  𝑢
′(1)𝐾𝑦𝑦(𝑠, 1) −  𝑢

′(0)𝐾𝑦𝑦(𝑠, 0) 

                                                   −𝑢(1)
𝜕3𝐾

𝜕𝑦3
(𝑠, 1) + ∫𝑢(𝑦)

𝜕4𝐾

𝜕𝑦4
(𝑠, 𝑦)𝑑𝑦.

1

0

 

Since 𝐾(𝑠, 𝑦) is a reproducing kernel of  𝑊2
2[0,1]  

(𝑢(𝑦), 𝐾(𝑠, 𝑦))𝑊22[0,1] = 𝑢(𝑠) 

which implies that  

                                              
𝜕4𝐾

𝜕𝑦4
(𝑠, 𝑦) = 𝛿(𝑦 − 𝑠)                                           (2.1.12) 

where 𝛿 is the Dirac-delta function and  

                                            𝐾(𝑠, 1) −
𝜕3𝐾

𝜕𝑦3
(𝑠, 1) = 0,                                        (2.1.13) 

                                                  𝐾𝑦𝑦(𝑠, 1) = 0,                                                  (2.1.14) 

                                                  𝐾𝑦𝑦(𝑠, 0) = 0.                                                  (2.1.15) 

Since the characteristic equation of  
𝜕3𝐾

𝜕𝑦3
(𝑠, 𝑦) = 𝛿(𝑠 − 𝑦) is 𝜆4 = 0 and its 

characteristic value is 𝜆 = 0 with 4 multiplicity roots, we write 𝐾(𝑠, 𝑦) as   

𝐾(𝑠, 𝑦) = {
∑ 𝑐𝑖(𝑠)𝑦

𝑖3
𝑖=0 , 𝑦 ≤ 𝑠

∑ 𝑑𝑖(𝑠)𝑦𝑖
3
𝑖=0 , 𝑦 > 𝑠

} 

Since 
𝜕3𝐾

𝜕𝑦3
(𝑠, 𝑦) = 𝛿(𝑠 − 𝑦), we have  

                                 
𝜕𝑚𝐾

𝜕𝑦𝑚
(𝑠, 𝑠 + 0) =

𝜕𝑚𝐾

𝜕𝑦𝑚
(𝑠, 𝑠 − 0),𝑚 = 0,1,2.                     (2.1.16) 

On the other hand, integrating 
𝜕6𝐾

𝜕𝑦8
(𝑠, 𝑦) =  𝛿(𝑠 − 𝑦) from 𝑠 − 𝜖 to 𝑠 + 𝜖 with 

respect to 𝑦 and letting 𝜖 → 0 to get  

                                
𝜕3𝐾

𝜕𝑦3
(𝑠, 𝑠 + 0) −

𝜕3𝐾

𝜕𝑦3
(𝑠, 𝑠 − 0) = 1.                                   (2.1.17) 
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Using the conditions 2.1.11 and 2.1.13-2.1.17, we get the following system of 

equations 

𝑐0 = 0,∑𝑑𝑖(𝑠) − 6𝑑3(𝑠) = 0,

3

𝑖=0

 

6𝑑3(𝑠) + 2𝑑2(𝑠) = 0, 𝑐2(𝑠) = 0, 

∑𝑐𝑖(𝑠)𝑠
𝑖 =∑𝑑𝑖(𝑠)𝑠

𝑖

3

𝑖=0

,

3

𝑖=0

 

∑𝑖𝑐𝑖(𝑠)𝑠
𝑖−1 =∑𝑖𝑑𝑖(𝑠)𝑠

𝑖−1

3

𝑖=1

,

3

𝑖=1

 

∑𝑖(𝑖 − 1)𝑐𝑖(𝑠)𝑠
𝑖−2 =∑𝑖(𝑖 − 1)𝑑𝑖(𝑠)𝑠

𝑖−2

3

𝑖=1

,

3

𝑖=1

 

3! 𝑑3(𝑠) − 3! 𝑐3(𝑠) = 1. 

We solved the last system using Mathematica to get 

𝑐0 = 0,  𝑐1 =
1

6
(8𝑠 − 3𝑠2 + 𝑠2), 𝑐2 = 0,  𝑐3 =

1

6
(𝑠 − 1), 

𝑑0 = −
𝑠3

6
,  𝑑1 =

1

6
(8𝑠 + 𝑠3), 𝑑2 = −

𝑠

2
,  𝑑3 = −

𝑠

6
 

which completes the proof of the theorem.  

Now, we present how to solve Problem 2.1.3-2.1.4 

𝜎𝑖(𝑠) = 𝑅(𝑠𝑖, 𝑠) 

For 𝑖 = 1,2,⋯ where {𝑠𝑖}𝑖=1
∞  is dense on [0,1].  Let 𝐿(𝜎𝑖(𝑠)) = 𝐷

𝛼𝜎𝑖(𝑠) +

𝑎(𝑠)𝜎𝑖(𝑠). It is clear that 𝐿:𝑊2
2[0,1] → 𝑊2

1[0,1] is bounded linear operator. Let 

𝜓𝑖(𝑠) = 𝐿
∗𝜎𝑖(𝑠) 

where  𝐿∗ is the adjoint operator of 𝐿. Using Gram-Schmidt orthonormalization to 

generate orthonormal set of function {𝜓
𝑖
(𝑠)}

𝑖=1

∞
 where 
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                                             𝜓
𝑖
(𝑠) = ∑ 𝛼𝑖𝑗𝜓𝑖(𝑠)

𝑖
𝑗=1                                          (2.1.18) 

and 𝛼𝑖𝑗 are coefficients of Gram-Schmidt orthonormalization. In the next theorem, 

we show the existence of the solution of Problem (2.1.3-2.1.4). 

 

Theorem 2.1.3 If  {𝑠𝑖}𝑖=1
∞  is dense on [0,1], then 

                                            𝑢(𝑠) = 𝑐 ∑ ∑ 𝛼𝑖𝑗𝜓𝑖(𝑠)
𝑖
𝑗=1

∞
𝑖=1                                  (2.1.19) 

Proof: First , we want to prove that {𝜓𝑖(𝑠)}𝑖=1
∞  is complete system of 𝑊2

2[0,1] and 

 𝜓𝑖(𝑠) = 𝐿(𝑘(𝑠, 𝑠𝑖)). It is clear that 𝜓𝑖(𝑠) ∈ 𝑊2
2[0,1] for 𝑖 = 1,2,⋯  Simple 

calculations imply that  

𝜓𝑖(𝑠) = 𝐿
∗𝜎𝑖(𝑠) = (𝐿

∗𝜎𝑖(𝑠), 𝐾(𝑠, 𝑦))𝑊22[0,1] 

                = (𝜎𝑖(𝑠), 𝐿(𝐾(𝑠, 𝑦)))𝑊22[0,1] = 𝐿(𝐾(𝑠, 𝑠𝑖)). 

For each fixed 𝑢(𝑠) ∈ 𝑊2
2[0,1], let 

(𝑢(𝑠), 𝜓𝑖(𝑠))𝑊22[0,1] = 0, 𝑖 = 1,2,⋯ 

Then 

(𝑢(𝑠), 𝜓𝑖(𝑠))𝑊22[0,1] = (𝑢(𝑠), 𝐿
∗𝜎𝑖(𝑠))𝑊22[0,1]

 

    = (𝐿𝑓(𝑠), 𝜎𝑖(𝑠))𝑊22[0,1]
 

    = 𝐿𝑢(𝑠𝑖) = 0. 

Since {𝑠𝑖}𝑖=1
∞  is dense on [0,1], 𝐿𝑢(𝑠) = 0. Since  𝐿−1 exists, 𝑢(𝑠) = 0. Thus, 

{𝜓𝑖(𝑠)}𝑖=1
∞  is the complete system of 𝑊2

2[0,1]. 

Second, we prove Equation 2.1.19. Simple calculations implies that 

𝑢(𝑠) =  ∑(𝑢(𝑠), �̅�𝑖

∞

𝑖=1

(𝑠)) 𝑊22 [0,1]�̅�𝑖(𝑠) 
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                                     =  ∑∑𝛼𝑖𝑗

𝑖

𝑗=1

∞

𝑖=1

(𝑢(𝑠), 𝐿∗ (𝐾(𝑠, 𝑠𝑗)))  𝑊22 [0,1]�̅�𝑖(𝑠) 

                              =  ∑∑𝛼𝑖𝑗

𝑖

𝑗=1

∞

𝑖=1

(𝐿𝑓(𝑠), 𝐾(𝑠, 𝑠𝑗))  𝑊22 [0,1]�̅�𝑖(𝑠) 

        =  ∑∑𝛼𝑖𝑗

𝑖

𝑗=1

∞

𝑖=1

(𝑐 , 𝐾(𝑠, 𝑠𝑗))  𝑊22 [0,1]�̅�𝑖(𝑠) 

          = 𝑐 ∑∑𝛼𝑖𝑗

𝑖

𝑗=1

∞

𝑖=1

�̅�𝑖(𝑠)                                                   

 

and the proof is complete. 

Let the approximation solution of Problem 2.1.3-2.1.4 be given by 

 

                         𝑢𝑁(𝑠) = 𝑐 ∑ ∑ 𝛼𝑖𝑗
𝑖
𝑗=1

𝑁
𝑖=1 �̅�𝑖(𝑠).                                                    (2.1.20) 

In the next theorem, we show the uniformly convergence of the { 
𝑑𝑚 𝑓𝑁(𝑠)

𝑑𝑠𝑚
 } 𝑁=1
∞   to  

𝑑𝑓(𝑠)

𝑑𝑠
  for 𝑚 = 0,1,2. 

 

Theorem 2.1.4 If  𝑢(𝑠) and 𝑢𝑁(𝑠) are given as in (2.1.19) and (2.1.20), then 

{ 
𝑑𝑚 𝑓𝑁(𝑠)

𝑑𝑠𝑚
 } 𝑁=1
∞  converges uniformly to 

𝑑𝑚 𝑢(𝑠)

𝑑𝑠𝑚
  for 𝑚 = 0,1. 

Proof: First, we prove the theorem for 𝑚 = 0. For any 𝑠 ∈ [0,1],  

‖ 𝑢(𝑠) − 𝑢𝑁(𝑠) ‖ 𝑤22[0,1]
2   = (𝑢(𝑠) − 𝑢𝑁(𝑠), 𝑢(𝑠) − 𝑢𝑁(𝑠)) 𝑊22[0,1] 

= ∑ (
(𝑢(𝑠), �̅�𝑖(𝑠))  𝑊22[0,1]�̅�𝑖(𝑠)

, (𝑢(𝑠), �̅�𝑖(𝑠))  𝑊22[0,1]�̅�𝑖(𝑠)
)  𝑊22[0,1]        

∞

𝑖=𝑁+1
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                               =  ∑ (𝑢(𝑠),

∞

𝑖=𝑁+1

�̅�𝑖(𝑠)) 𝑊22[0,1]
2 . 

Thus,  

𝑆𝑢𝑏𝑠∈[0,1]‖𝑢(𝑠) − 𝑢𝑁(𝑠)‖ 𝑊22[0,1]
2 = 𝑆𝑢𝑝𝑠∈[0,1] ∑ (𝑢(𝑠),

∞

𝑖=𝑁+1

�̅�𝑖(𝑠)) 𝑊22[0,1]
2 . 

From Theorem (2.1.3), one can see that ∑ (𝑢(𝑠),∞
𝑖=1 �̅�𝑖(𝑠)) 𝑊22[0,1]

 �̅�𝑖(𝑠) converges 

uniformly to 𝑢(𝑠). Thus, 

lim
𝑁
 
→ ∞

𝑆𝑢𝑝𝑠∈[0,1] ‖𝑢(𝑠) − 𝑢𝑁(𝑠)‖ 𝑊22[0,1] = 0 

    

which implies that {𝑢𝑁(𝑠)} 𝑁=1
∞  converges uniformly to 𝑢(𝑠). 

Second, we prove the uniformly convergence for 𝑚 = 1. Since 
𝑑𝑚𝐾(𝑠,𝑦)

𝑑𝑠𝑚
   is bounded 

function on [0,1] × [0,1] , 

‖
𝑑𝑚 𝐾(𝑠, 𝑦)

𝑑𝑠𝑚
‖  𝑊22[0,1]  ≤ 𝑋𝑚 ,   𝑚 = 1. 

Thus, for any 𝑠 ∈ [0,1], 

        |𝑢(𝑚)(𝑠) − 𝑢𝑁
(𝑚)
(𝑠)|  = |(𝑢(𝑠) − 𝑢𝑁(𝑠),

𝑑𝑚𝐾(𝑠,𝑦)

𝑑𝑠𝑚
) 𝑊22[0,1]| 

                                     ≤   ‖𝑢(𝑠) − 𝑢𝑁(𝑠)‖ 𝑊22[0,1] ‖
𝑑𝑚 𝐾(𝑠, 𝑦)

𝑑𝑠𝑚
‖  𝑊22[0,1]  

 ≤   𝜒𝑚 ‖𝑢(𝑠) − 𝑢𝑁(𝑠)‖ 𝑊22[0,1] 

        ≤ 𝜒𝑚𝑆𝑢𝑝𝑠∈[0,1] ‖𝑢(𝑠) − 𝑢𝑁(𝑠)‖ 𝑊22[0,1]. 

Hence, 

𝑆𝑢𝑝𝑠∈[0,1] ‖𝑢
(𝑚)(𝑠) − 𝑢𝑁

(𝑚)(𝑠)‖ 𝑊22[0,1]   

≤   𝜒𝑚𝑚 𝑆𝑢𝑝𝑠∈[0,1]‖𝑢(𝑠) − 𝑢𝑁(𝑠)‖ 𝑊22[0,1] 
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which implies that 

 lim
𝑁
 
→∞
 𝑆𝑢𝑝𝑠∈[0,1]  ‖𝑢

(𝑚)(𝑠) − 𝑢𝑁
(𝑚)(𝑠)‖ 𝑊22[0,1] = 0. 

Therefore, {
𝑑𝑚𝑢𝑁(𝑠)

𝑑𝑠𝑚
}  𝑁=1
∞  converges uniformly to 

𝑑𝑚 𝑢(𝑠)

𝑑𝑠𝑚
  for 𝑚 = 1. 

Now, we discuss how to solve Problem (2.1.1) – (2.1.2). Let ℒ(𝑦(𝑥)) = 𝐷𝛼 𝑦(𝑥) − 𝑐 

and 𝑁(𝑦(𝑥)) = 𝑔(𝑦) are the linear and nonlinear parts of Problem 2.1.1, respectively.  

We construct the homotopy as follows: 

                     𝐻(𝑦, 𝜆) =  ℒ(𝑦(𝑥)) +  𝜆𝑁(𝑦(𝑥)) = 0                                                (2.1.21) 

 

where 𝜆 ∈ [0,1] is an embedding parameter. If 𝜆 = 0,  we get a linear equation 

𝐷𝛼𝑦(𝑥) − 𝑐 = 0 

which implies that 𝑦(𝑥) = 𝑐 
𝑥𝛼

Γ(1+𝛼)
 . If 𝜆 = 1, we turn out to be Problem 2.1.1. 

Following the Homotopy Perturbation method [40], we expand the solution in term 

of the Homotopy parameter 𝜆 as 

                                        𝑦 =  𝑦0 +  𝜆𝑦1 + 𝜆
2𝑦2 + 𝜆

3𝑦3 + ⋯                                (2.1.22)                    

Substitute Equation 2.1.22 into Equation 2.1.21 and equating the coefficient of the 

identical power of 𝜆 to get the following system 

                        𝜆0 ∶  𝐷𝛼𝑦0(𝑥) = 𝑐, 𝑦0(0) = 𝜃, 

                        𝜆1 ∶  𝐷𝛼𝑦1(𝑥) = −𝑁(∑ 𝜆𝑖𝑦𝑖(𝑥)
∞
𝑖=0 )| .

𝜆=0
, 𝑦1(0) = 0, 

                        𝜆2 ∶  𝐷𝛼𝑦2(𝑥) = −
𝑑𝑁(∑ 𝜆𝑖𝑦𝑖(𝑥)

∞
𝑖=0 )

𝑑𝜆
| .
𝜆=0
, 𝑦2(0) = 0, 

                        𝜆3 ∶  𝐷𝛼𝑦3(𝑥) = −
𝑑2𝑁(∑ 𝜆𝑖𝑦𝑖(𝑥)

∞
𝑖=0 )

𝑑𝜆2
| .
𝜆=0
, 𝑦3(0) = 0, 

                                                 ⋮ 

                        𝜆𝑘 ∶  𝐷𝛼𝑦𝑘(𝑥) = −
𝑑𝑘−1𝑁(∑ 𝜆𝑖𝑦𝑖(𝑥)

∞
𝑖=0 )

𝑑𝜆𝑘−1
| .
𝜆=0
, 𝑦𝑘(0) = 0. 
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To solve the above equations, we use the RKM which is described above and we 

obtain  

                              𝑦𝑘(𝑥) =  ∑ ∑ 𝛼𝑖𝑗
𝑖
𝑗=1

∞
𝑖=1 ℎ𝑘(𝑥𝑗)�̅�𝑖(𝑠), 𝑘 = 0,1,⋯                 (2.1.23) 

where  

                                    ℎ0(𝑠) = 𝑐 

                                    ℎ1(𝑠) = −𝑁(∑ 𝜆𝑖𝑦𝑖(𝑥)
∞
𝑖=0 )| .

𝜆=0
 

                                               ⋮  

                                    ℎ𝑘(𝑠) = −
𝑑𝑘−1𝑁(∑ 𝜆𝑖𝑦𝑖(𝑥)

∞
𝑖=0 )

𝑑𝜆𝑘−1
| .
𝜆=0
, 𝑘 > 1. 

From Equation 2.1.23, it is easy to see the solution to Problem 2.1.1-2.1.2 is giving 

by  

                         𝑦(𝑠) = ∑ 𝑦𝑘(𝑥) =
∞
0 ∑ (∑ ∑ 𝛼𝑖𝑗

𝑖
𝑗=1

∞
𝑖=1 ℎ𝑘(𝑥𝑗)�̅�𝑖(𝑥)) .

∞
𝑘=0         (2.1.24) 

We approximate the solution of Problem 2.1.1-2.1.2 by 

                            𝑦𝑛.𝑚(𝑠) = ∑ (∑ ∑ 𝛼𝑖𝑗
𝑖
𝑗=1

∞
𝑖=1 ℎ𝑘(𝑥𝑗)�̅�𝑖(𝑥))

∞
𝑘=0 .                     (2.1.25) 

 

2.2 Analytical Results 

In this section, three important theorems are presented which are the maximum 

principle, the stability theorem, and the uniqueness theorem. Firstly Eqs. 2.2.1-2.2.2 

are transformed into an equivalent problem as follows: 

𝑃𝑦 ∶  𝜖𝐷𝛼𝑦 + 𝑢(𝑥, 𝑦) + ∫ 𝐾(𝑥, 𝑡)𝑣(𝑡, 𝑦)𝑑𝑡
𝑥

0
= 𝑓(𝑥), 𝑥 ∈ (0,1), 0 < 𝛼 ≤ 1,     (2.2.1) 

subject to 

                                                         𝑦(0) =  𝑦0                                                          (2.2.2)                    

The following conditions are needed in order to guarantee that Eqs. 2.2.1-2.2.2 does 

not have turning-point problem;  
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                                                   −𝑘2 ≥ 𝑢(𝑥, 𝑦) ≥ −𝑘1,                                      (2.2.3)                    

                                                   0 ≥ 𝑣(𝑥, 𝑦) ≥ −𝑘3,                                          (2.2.4)                    

                                                   𝐾(𝑥, 𝑡) ≥ 𝑘4 ≥ 0,                                              (2.2.5)                    

for all 𝑥 ∈ [0,1], where 𝑘1, 𝑘2, 𝑘3, 𝑎𝑛𝑑 𝑘4 are positive constants and 𝑦 ∈ 𝐶1(0,1) ∪

𝐶[0,1]. 

 

Theorem 2.2.1 (Maximum Principle). Consider the initial value problem 2.2.1-2.2.2 

with conditions 2.2.3-2.2.5. Assume that 𝑃𝜙 ≥ 0 and 𝜙(0) ≥ 0. Then 𝜙(𝑥) ≥ 0 in 

[0,1]. 

Proof: Assume that the conclusion is false, then 𝜙(𝑥) < 0 for some 𝑥 ∈ [0,1]. Then, 

𝜙(𝑥) has a local minimum at 𝑥0 for some 𝑥0 ∈ (0, 1]. Simple calculations and using 

(2.2.5) implies that 

                      𝑃𝜙(𝑥0) =  𝜖𝐷
𝛼𝜙(𝑥0) + 𝑢(𝑥0, 𝜙) + ∫ 𝐾(𝑥0, 𝑡)𝑣(𝑡, 𝜙)𝑑𝑡

𝑥0

0
 

                                    ≤ 𝜖
𝑥0
−𝛼

Γ(1−α)
(𝜙(𝑥0) − 𝜙(0)) + 𝑢(𝑥0, 𝜙) + ∫ 𝐾(𝑥0, 𝑡)𝑣(𝑡, 𝜙)𝑑𝑡

𝑥0

0
 

                                   ≤ 0. 

This a contradiction. Therefore, 𝜙(𝑥) ≥ 0 in [0,1]. ∎ 

In the next theorem, the stability result is presented.  

 

Theorem 2.2.2 (Stability Result). Consider Eqs. 2.2.1-2.2.2 with conditions 𝑢 = 𝑢(𝑥) 

and 𝑣 = 𝑣(𝑥). If 𝑦(𝑥) is a smooth function, then 

‖𝑦‖ =
1

𝜖
𝑚𝑎𝑥{|𝑦(𝑥)|: 𝑥 ∈ [0,1]} ≤

1

𝜖
𝑚𝑎𝑥{|𝑦0|,𝑚𝑎𝑥𝑥∈[0,1]|𝑃𝑦|}. 

Proof: Let 

𝐾0 = 𝑚𝑎𝑥{|𝑦0|,𝑚𝑎𝑥𝑥∈[0,1]|𝑃𝑦|} = 𝑚𝑎𝑥{|𝑦0|,𝑚𝑎𝑥𝑥∈[0,1]|𝑓(𝑥)|} 

and let  
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𝑠±(𝑥) =
𝐾0
𝜖
(1 +

𝑥𝛼

Γ(1 + α)
) ± 𝑦(𝑥), 𝑥 ∈ [0,1]. 

Then,  

𝑃𝑠±(𝑥) = 𝜖𝐷𝛼 (
𝐾0
𝜖
(1 +

𝑥𝛼

Γ(1 + α)
) ± 𝑦(𝑥)) + 𝑢(𝑥) + ∫𝐾(𝑥, 𝑡)𝑣(𝑡)𝑑𝑡

𝑥

0

 

                          = 𝜖
𝐾0

𝜖
± 𝑃𝑦(𝑥) = 𝐾0 ± 𝑃𝑦(𝑥) ≥ 0 

for all 𝑥 ∈ [0,1] Also,  

𝑠±(0) =
𝐾0
𝜖
± 𝑦(0) > 𝐾0 ± 𝑦0 ≥ 0 

since 0 < 𝜖 ≪ 1. From Theorem 3.2.1, we can see that 𝑠±(𝑥) ≥ 0 for all 𝑥 ∈ [0,1]. 

Therefore,  

‖𝑦‖ ≤ 𝑚𝑎𝑥𝑥∈[0,1] {
𝐾0
𝜖
(1 −

𝑥𝛼

Γ(1 + α)
)} ≤

𝐾0
𝜖
=
1

𝜖
𝑚𝑎𝑥{|𝑦0|,𝑚𝑎𝑥𝑥∈[0,1]|𝑃𝑦|}.∎ 

 

Theorem 2.2.3 (Uniqueness Theorem). Consider Eqs. 2.2.1-2.2.2 under the conditions 

2.2.3-2.2.5 with conditions 𝑢 = 𝑢(𝑥) and 𝑣 = 𝑣(𝑥). If 𝑦1 and 𝑦2 are two solutions to 

Eqs. 2.2.1-2.2.2, then 𝑦1(𝑥) = 𝑦2(𝑥) for all 𝑥 ∈ [0,1]. 

Proof: Let 𝑤(𝑥) = 𝑦1(𝑥) − 𝑦2(𝑥). Then,  

𝑃𝑤 = 0, 𝑤(0) = 0, 

𝑃(−𝑤) = 0, −𝑤(0) = 0. 

Using Theorem 2.2.2, it follows that 𝑤(𝑥) ≥ 0 and 𝑤(𝑥) ≤ 0 for all 𝑥 ∈ [0,1] which 

implies that 𝑦1(𝑥) = 𝑦2(𝑥) for all 𝑥 ∈ [0,1]. ∎ 

 

2.3 Method of Solution 
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Consider the following of class of fractional nonlinear Volterra integro-differential 

type of singularly perturbed problems of the form  

           𝜖𝐷𝛼𝑦 + 𝑢(𝑥, 𝑦) + ∫ 𝐾(𝑥, 𝑡)𝑣(𝑡, 𝑦)𝑑𝑡
𝑥

0
= 𝑓(𝑥), 𝑥 ∈ (0,1), 0 < 𝛼 ≤ 1,   (2.3.1) 

subject to 

             𝑦(0) =  𝑦0                                           (2.3.2) 

where 𝜖 > 0 is a small positive parameter, 𝑦0 is constant, and 𝐾(𝑥, 𝑡) and 𝑓(𝑥) are 

smooth functions. To solve Eqs. 2.3.1-2.3.2, we use the following steps.  

Step 1: A reduced problem is obtained by setting 𝜖 = 0 in Eqs. 2.3.1 to get  

                   𝑢(𝑥, 𝑦1) + ∫ 𝐾(𝑥, 𝑡)𝑣(𝑡, 𝑦1)𝑑𝑡
𝑥

0
= 𝑓(𝑥), 𝑥 ∈ [0,1].                        (2.3.3) 

On most of the interval, the solution of Eq. 2.3.3 behaves like the solution of Eqs. 

2.3.1-2.3.2. However, there is small interval around 𝑥 = 0 in which the solution of 

problem 2.3.1-2.3.2 does not agree with the solution of Problem 2.3.1-2.3.2 to handle 

this situation, the boundary layer correction problem is introduced in step 2. 

Step 2: Choose 𝑥 = 𝜖
1

𝛼𝑠
1

𝛼 to get  

𝐷𝛼𝑦(𝑥) =
1

Γ(1 − α)
∫ (𝑥 − 𝑡)−𝛼 𝑦′(𝑡)𝑑𝑡
𝑥

0

 

                              =
1

Γ(1 − α)
∫ (𝜖

1
𝛼𝑠

1
𝛼 − 𝑡)

−𝛼

 𝑦′(𝑡)𝑑𝑡
𝜖
1
𝛼𝑠
1
𝛼

0

 

                                =
1

𝜖Γ(1 − α)
∫ (𝑠

1
𝛼 −

𝑡

𝜖
1
𝛼

)

−𝛼

 𝑦′(𝑡)𝑑𝑡
𝜖
1
𝛼𝑠
1
𝛼

0

. 

Let 𝑟 =  
𝑡

𝜖
1
𝛼

. Then, 𝑑𝑡 = 𝜖
1

𝛼𝑑𝑟 and 

𝑑𝑦

𝑑𝑡
=
𝑑𝑦

𝑑𝑟

𝑑𝑟

𝑑𝑡
=  
1

𝜖
1
𝛼

𝑑𝑦

𝑑𝑟
. 

Thus,  
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𝐷𝛼𝑦(𝑥) =
1

𝜖Γ(1 − α)
∫ (𝑠

1
𝛼 − 𝑟)

−𝛼 1

𝜖
1
𝛼

𝑑𝑦

𝑑𝑟
𝜖
1
𝛼𝑑𝑟

𝑠
1
𝛼

0

 

      =
1

𝜖Γ(1 − α)
∫ (𝑠

1
𝛼 − 𝑟)

−𝛼 𝑑𝑦

𝑑𝑟
𝑑𝑟

𝑠
1
𝛼

0

 

                                                =
1

𝜖
𝐷𝛼𝑦 (𝑠

1

𝛼).                                                             (2.3.4) 

Hence, Eq. 2.3.1 becomes  

                 𝐷𝛼𝑦 + 𝑢 (𝜖
1

𝛼𝑠𝛼, 𝑦) + ∫ 𝐾 (𝜖
1

𝛼𝑠𝛼𝑠, 𝑡) 𝑣(𝑡, 𝑦)𝑑𝑡
𝜖
1
𝛼𝑠𝛼

0
= 𝑓 (𝜖

1

𝛼𝑠𝛼𝑠).      (2.3.5) 

Setting 𝜖 = 0 in Eqs. 2.3.5 implies that 

                                              𝐷𝛼𝑦 + 𝑢(0, 𝑦) = 𝑓(0).                                           (2.3.6) 

Since the solution of the reduced problem in step 1 does not satisfy the initial condition 

at 𝑥 = 0, then the solution of the above equation should satisfy it. This means, its 

solution has the form 𝑦1(0) + 𝑦2(𝑥).  Substitute 

                                             𝑦(𝑥) = 𝑦1(0) + 𝑦2(𝑥) 

in Eq. 2.3.6 to get the boundary layer correction equation 

                      𝐷𝛼𝑦2 (𝑠
1

𝛼) + 𝑢 (0, 𝑦1(0) + 𝑦2 (𝑠
1

𝛼)) = 𝑓(0).                                (2.3.7) 

The solution of Eq. 2.3.1 will be expressed in the form as 

                             𝑦(𝑥) = 𝑦1(𝑥) + 𝑦2 (
𝑥
1
𝛼

𝜖
),                                                        (2.3.8) 

and the initial condition 2.3.2 must be satisfied by expression 2.3.8. When 𝑥 = 0,  

the condition will be 

𝑦0 = 𝑦(0) = 𝑦1(0) + 𝑦2(0) 

or 

                                              𝑦2(0) = 𝑦0 − 𝑦1(0),                                              (2.3.9) 
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The solution of Eqs. 2.3.1-2.3.2 can be produced using the RKM as described in the 

previous section. More details can be found in [41]-[43]. 

 

2.3 Numerical Results 

In this section, we present two of our examples to show the efficiency of the 

proposed method. 

Example 2.3.1: Consider the following problem 

      𝜖𝐷
1

2𝑦(𝑥) + 𝑦(𝑥) + ∫ 𝑦(𝑡)𝑑𝑡
𝑥

0
= 𝑓(𝑥), 0 ≤ 𝑥 ≤ 1, 0 < 𝜖 ≪ 1,                     (2.3.1) 

subject to 

                                                 𝑦(0) = 2                                                              (2.3.2) 

where 

𝑓(𝑥) =
2

√𝜋
𝑥1 2⁄ − 𝑥1 2⁄ 𝐸1,3 2⁄ (

−𝑥

𝜖
) +

𝑥2

2
+ 2𝑥 + (2 − 𝜖)𝑒−𝑥 𝜖⁄ + (1 + 𝜖) 

and 𝐸𝑎,𝑏(𝑥) is the Mittag-Leffler function. When 𝜖 → 0, 

                                      𝑦1(𝑥) + ∫ 𝑦1(𝑡)𝑑𝑡
𝑥

0
=
𝑥2

2
+ 2𝑥 + 1                               (2.3.3) 

since lim
𝜖→0

𝐸1,3 2⁄ (
−𝑥

𝜖
) = 0. Thus, 

𝑦1
′(𝑥) + 𝑦1(𝑥) = 𝑥 + 2. 

Hence, 

                                                 𝑦1(𝑥) = 1 + 𝑥 + 𝑐𝑒
−𝑥.                                       (2.3.4) 

Substitute Eq. 2.3.4 into Eq. 2.3.3 to get 

𝐷1 2⁄ 𝑦2(𝑠
2) + 1 + 𝑦2(𝑠

2) = 1 

or  
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𝐷1 2⁄ 𝑦2(𝑠
2) + 𝑦2(𝑠

2) = 0 

subject to 

1 + 𝑥 + 𝑐𝑒−𝑥 +
𝑥2

2
+ 𝑥 − 𝑐𝑒−𝑥 + 𝑐 =

𝑥2

2
+ 2𝑥 + 1 

which implies that 𝑐 = 0 and  

𝑦1(𝑥) = 𝑥 + 1. 

Using the change of variable 𝑥 = 𝜖2𝑠2, we get 

𝑦2(0) = 𝑦0 − 𝑦1(0) = 1. 

 

 

             Figure 2.1: Approximate solution of Example 2.3.1 for 𝜖 = 0.1 

 

Using the RKM, we get 

𝑦2(𝑠
𝛼) = 1 −

𝑠

1
+
𝑠2

2!
−
𝑠3

3!
+⋯ 

            = ∑
(−1)𝑘𝑠𝑘

𝑘!
= 𝑒−𝑠

∞

𝑘=0

. 

Thus,  
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𝑦(𝑥) = 𝑦1(𝑥) + 𝑦2 (
√𝑥

𝜖
) 

     = 𝑥 + 1 + 𝑒−
√𝑥
𝜖 . 

In Figure 2.1-2.3, we plot the approximate solution for 𝜖 = 0.1, 0.01 and 0.001, 

respectively. 

 

Example 2.3.2: Consider the following problem 

          𝜖𝐷
1

4𝑦(𝑥) −
1

2
𝑦2 + ∫ 𝑦(𝑡)𝑑𝑡

𝑥

0
= 0, 0 ≤ 𝑥 ≤ 1, 0 < 𝜖 ≪ 1,                     (2.3.5) 

subject to 

                                                 𝑦(0) = 1.                                                             (2.3.6) 

When 𝜖 → 0, 

                                          −
1

2
𝑦1
2(𝑥) + ∫ 𝑦1(𝑡)𝑑𝑡

𝑥

0
= 0                                      (2.3.7) 

and 𝐸𝑎,𝑏(𝑥) is the Mittag-Leffler function. When 𝜖 → 0, 

                                    𝑦1(𝑥) + ∫ 𝑦1(𝑡)𝑑𝑡
𝑥

0
=
𝑥2

2
+ 2𝑥 + 1                                 (2.3.8) 

since lim
𝜖→0

𝐸1,3 2⁄ (
−𝑥

𝜖
) = 0. Thus, 

𝑦1
′(𝑥) + 𝑦1(𝑥) = 𝑥 + 2. 
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                       Figure 2.2: Approximate solution of Example 2.3.2 for 𝜖 = 0.01 

 

 

 

Figure 2.3: Approximate solution of Example 2.3.2for 𝜖 = 0.001 

 

Hence  

                                       𝑦1(𝑥) = 𝑐 + 𝑥.                                                             (2.3.9) 
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Substitute Eq. 2.3.9 into Eq. 2.3.8 to get  

−
1

2
(𝑐 + 𝑥)2 +

1

2
(𝑐 + 𝑥)2 −

1

2
𝑐2 = 0 

which implies that 𝑐 = 0 and  

𝑦1(𝑥) = 𝑥. 

Using the change of variable 𝑥 = 𝜖4𝑠4, we get 

𝐷1 4⁄ 𝑦2(𝑠
4) −

1

2
𝑦2
2(𝑠4) = 0 

subject to  

𝑦2(0) = 𝑦0 − 𝑦1(0) = 1. 

Using the RKM, we get  

𝑦2(𝑠
4) = 1 +

𝑠

2
+
𝑠2

4
+
𝑠3

8
+⋯ 

                     = ∑
𝑠𝑘

2𝑘
=

1

1 −
𝑥
2

=
2

2 − 𝑥
.

∞

𝑘=0

 

Thus, 

𝑦(𝑥) = 𝑦1(𝑥) + 𝑦2 (
√𝑥
4

𝜖
) 

   = 𝑥 +
2𝜖

2𝜖 − √𝑥
4 . 

In figure 2.4-2.6, we plot the approximate solution for  𝜖 = 0.1, 0.01, 𝑎𝑛𝑑 0.001, 

respectively. 
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  Figure 2.4: Approximate solution of Example 2.3.2 for 𝜖 = 0.1 

 

 

 

                        Figure 2.5: Approximate solution of Example 2.3.2 for 𝜖 = 0.01 
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Figure 2.6: Approximate solution of Example 2.3.2 for 𝜖 = 0.001 
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Chapter 3: Second Order Fractional Initial Value Problems 

 

 

In this chapter, we study the second order fractional initial value problems. In 

the next section, we presented Kernel method for fractional second order initial value 

problems. 

 

3.1 Reproducing Kernel Method for Fractional Second Order Initial Value 

Problems 

Consider the second order nonlinear fractional equation of the form 

                             𝐷𝛼𝑦 + 𝑔(𝑥, 𝑦)𝑦′ = 0, 𝑥 ∈ [0,1], 1 < 𝛼 ≤ 2                             (3.1.1) 

subject to  

                                   𝑦(0) = 𝜃, 𝑦(1) = 𝜙                                            (3.1.2) 

where 𝜃 and 𝜙 are constants. First, we study the linear case where 𝑔(𝑦) = 𝑎(𝑥). To 

homogenize the initial condition, we assume 𝑢 = 𝑦 − 𝜙𝑥 − 𝜃(1 − 𝑥). Thus, Problems 

3.1.1-3.1.2 can be written as  

      𝐷𝛼𝑢 + 𝑎(𝑥)𝑦′ = (−𝜙 + 𝜃)𝑎(𝑥) = ℎ(𝑥), 𝑥 ∈ [0,1], 0 < 𝛼 ≤ 1                   (3.1.3) 

subject to 

                                     𝑢(0) = 0, 𝑢(1) = 0.                                            (3.1.4) 

In order to solve the linear Problem 3.1.3-3.1.4, we construct the kernel Hilbert 

spaces 𝑊2
1[0,1] and 𝑊2

3[0,1] in which every function satisfies the initial condition 

3.1.4.  

Let 𝑊2
1[0,1] = {𝑢(𝑠): 𝑢 is absolutely continuous real value function, 𝑢′ ∈

𝐿2[0,1]}.  

The inner product in 𝑊2
1[0,1] is defined as 



39 

 

 

 

 

(𝑢(𝑦), 𝑣(𝑦))𝑊21[0,1] = 𝑢(0)𝑣(0) + ∫𝑢
′(𝑦)𝑣′(𝑦)𝑑𝑦,

1

0

 

and the norm ‖𝑢‖𝑊21[0,1] is given by 

‖𝑢‖𝑊21[0,1] = √(𝑢(𝑦), 𝑢(𝑦))𝑊21[0,1] 

where 𝑢, 𝑣 ∈ 𝑊2
1[0,1].  

 

Theorem 3.1.1 The space 𝑊2
1[0,1] is a reproducing Kernel Hilbert space, 𝑖, 𝑒. ; there 

exist 𝑅(𝑠, 𝑦) ∈ 𝑊2
1[0,1] and its second partial derivative with respect to y exists such 

that for any 𝑢 ∈ 𝑊2
1[0,1] and each fixed 𝑦, 𝑠 ∈ [0,1], we have  

(𝑢(𝑦), 𝑅(𝑠, 𝑦))𝑊21[0,1] = 𝑢(𝑠). 

In this case, 𝑅(𝑠, 𝑦) is given by  

𝑅(𝑠, 𝑦) = {
1 + 𝑦, 𝑦 ≤ 𝑠

1 + 𝑠, 𝑦 > 𝑠
}. 

Proof. Using integration by parts, one can get  

(𝑢(𝑦), 𝑅(𝑠, 𝑦))𝑊21[0,1] = 𝑢(0)𝑅(𝑠, 0) + ∫𝑢
′(𝑦)

𝜕𝑅

𝜕𝑦
(𝑠, 𝑦)𝑑𝑦

1

0

 

                       = 𝑢(0)𝑅(𝑠, 0)+ 𝑢(1)
𝜕𝑅

𝜕𝑦
(𝑠, 1) − 𝑢(0)

𝜕𝑅

𝜕𝑦
(𝑠, 0) − ∫ 𝑢(𝑦)

𝜕2𝑅

𝜕𝑦2
(𝑠, 𝑦)𝑑𝑦.

1

0
 

Since 𝑅(𝑠, 𝑦) is a reproducing kernel of 𝑊2
1[0,1], 

(𝑢(𝑦), 𝑅(𝑠, 𝑦))𝑊21[0,1] = 𝑢(𝑠) 

which implies that  

                                                −
𝜕2𝑅

𝜕𝑦2
(𝑠, 𝑦) = 𝛿(𝑦 − 𝑠),                                            (3.1.5) 

                                        𝑅(𝑠, 0) −
𝜕𝑅

𝜕𝑦
(𝑠, 0) = 0                                          (3.1.6) 

and  
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𝜕𝑅

𝜕𝑦
(𝑠, 1) = 0,                                                            (3.1.7) 

Since the characteristic equation of −
𝜕2𝑅

𝜕𝑦2
(𝑠, 𝑦) = 𝛿(𝑦 − 𝑠) is 𝜆2 = 0 and its 

characteristic value is 𝜆 = 0 with 2, multiplicity roots, we write 𝑅(𝑠, 𝑦) as 

𝑅(𝑠, 𝑦) = {
𝑐0(𝑠) + 𝑐1(𝑠)𝑦, 𝑦 ≤ 𝑠

𝑑0(𝑠) + 𝑑1(𝑠)𝑦, 𝑦 > 𝑠
. 

Since 
𝜕2𝑅

𝜕𝑦2
(𝑠, 𝑦) = −𝛿(𝑦 − 𝑠), we have   

                           𝑅(𝑠, 𝑠 + 0) − 𝑅(𝑠, 𝑠 + 0) = 0,          (3.1.8) 

                
𝜕𝑅

𝜕𝑦
(𝑠, 𝑠 + 0) −

𝜕𝑅

𝜕𝑦
(𝑠, 𝑠 + 0) = −1.                                (3.1.9) 

Using the conditions 3.1.6-3.1.9, we get the following system of equation  

                                           𝑐0(𝑠) − 𝑐1(𝑠) = 0,                                                   (3.1.10) 

                                                                𝑑1(𝑠) = 0, 

𝑐0(𝑠) + 𝑐1(𝑠)𝑠 = 𝑑0(𝑠) + 𝑑1(𝑠)𝑠, 

𝑑1(𝑠) − 𝑐1(𝑠) = −1, 

which implies that 

𝑐0(𝑠) = 1,  𝑐1(𝑠) = 1, 𝑑0(𝑠) = 1 + 𝑠, 𝑑1(𝑠) = 0 

which completes the proof of the theorem. Next, we study the space 𝑊2
3[0,1]. 

Let 

𝑊2
3[0,1] = {𝑓(𝑠): 𝑓 is absolutely continuous real value function, 𝑓, 𝑓′, 𝑓′′, 𝑓′′′

∈ 𝐿2[0,1], 𝑓(0) = 0, 𝑓(1) = 0}. 

The inner product in 𝑊2
3[0,1] is defined as 

(𝑢(𝑦), 𝑣(𝑦))
𝑊2
3[0,1]

= 𝑢(0)𝑣(0) + 𝑢′(0)𝑣′(0) + 𝑢(1)𝑣(1) + 𝑢′(1)𝑣′(1) 

                                        +∫𝑢(3)(𝑦)𝑣(3)(𝑦)𝑑𝑦

1

0
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 and the norm ‖𝑢‖𝑊23[0,1] is given by 

‖𝑢‖𝑊23[0,1] = √(𝑢(𝑦), 𝑢(𝑦))𝑊23[0,1] 

Where 𝑢, 𝑣 ∈ 𝑊2
3[0,1].  

 

Theorem 3.1.2 The space 𝑊2
3[0,1] is a reproducing Kernel Hilbert space, 𝑖, 𝑒. ; there 

exist 𝐾(𝑠, 𝑦) ∈ 𝑊2
3[0,1] which has its six partial derivative with respect to y such that  

for any 𝑢 ∈ 𝑊2
3[0,1] and each fixed 𝑦, 𝑠 ∈ [0,1], we have  

(𝑢(𝑦), 𝐾(𝑠, 𝑦))𝑊23[0,1] = 𝑢(𝑠). 

In this case, 𝐾(𝑠, 𝑦) is given by  

𝐾(𝑠, 𝑦) = {
∑ 𝑐𝑖(𝑠)𝑦

𝑖5
𝑖=0 , 𝑦 ≤ 𝑠

∑ 𝑑𝑖(𝑠)𝑦𝑖
5
𝑖=0 , 𝑦 > 𝑠

} 

where 

𝑐0 = 0,  𝑐1 = 0,  𝑐2 =
1

120
(5𝑠4 − 111𝑠2−10𝑠3−𝑠5), 𝑐3 = 0,  𝑐4 = −

𝑠

24
, 

 𝑐5 =
1

120
(1+𝑠5) , 

𝑑0 =
𝑠5

120
,  𝑑1 = −

𝑠4

24
, 𝑑2 =

1

120
(5𝑠4 − 111𝑠2−𝑠5),  𝑑3 = −

𝑠2

12
, 𝑑4 = 0,  

𝑑5 =
𝑠2

120
. 

Proof: Using integration by parts, one can get 
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(𝑢(𝑦), 𝐾(𝑠, 𝑦))𝑊23[0,1]

= 𝑢(0)𝐾(𝑠, 0) + 𝑢(1)𝐾(𝑠, 1) +  𝑢′(0)𝐾𝑦(𝑠, 0) +  𝑢
′(1)𝐾𝑦(𝑠, 1)

+  𝑢′′(1)𝐾𝑦𝑦𝑦(𝑠, 1) −  𝑢
′′(0)𝐾𝑦𝑦𝑦(𝑠, 0) −  𝑢

′(1)
𝜕4𝐾

𝜕𝑦4
(𝑠, 1)

+  𝑢′(0)
𝜕4𝐾

𝜕𝑦4
(𝑠, 0) + 𝑢(1)

𝜕5𝐾

𝜕𝑦5
(𝑠, 1) − 𝑢(0)

𝜕5𝐾

𝜕𝑦5
(𝑠, 0)

+ ∫𝑢(𝑦)
𝜕6𝐾

𝜕𝑦6
(𝑠, 𝑦)𝑑𝑦.

1

0

 

                                                 

Since 𝑢(𝑦) and 𝐾(𝑠, 𝑦) ∈ 𝑊2
3[0,1], 

𝑢(0) = 0, 𝑢(1) = 0 

and  

                                             𝐾(𝑠, 0) = 0, 𝐾(𝑠, 1) = 0.                            (3.1.11) 

Thus,  

(𝑢(𝑦), 𝐾(𝑠, 𝑦))𝑊23[0,1]

=  𝑢′(0)𝐾𝑦(𝑠, 0) +  𝑢
′(1)𝐾𝑦(𝑠, 1)

+  𝑢′′(1)𝐾𝑦𝑦𝑦(𝑠, 1) −  𝑢
′′(0)𝐾𝑦𝑦𝑦(𝑠, 0) −  𝑢

′(1)
𝜕4𝐾

𝜕𝑦4
(𝑠, 1)

+  𝑢′(0)
𝜕4𝐾

𝜕𝑦4
(𝑠, 0) + ∫𝑢(𝑦)

𝜕6𝐾

𝜕𝑦6
(𝑠, 𝑦)𝑑𝑦.

1

0

 

Since 𝐾(𝑠, 𝑦) is a reproducing kernel of  𝑊2
3[0,1]  

(𝑢(𝑦), 𝐾(𝑠, 𝑦))𝑊23[0,1] = 𝑢(𝑠) 

which implies that  

                                               
𝜕6𝐾

𝜕𝑦6
(𝑠, 𝑦) = 𝛿(𝑦 − 𝑠)                                          (3.1.12) 

where 𝛿 is the dirac-delta function and  
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                                                𝐾(𝑠, 1) −
𝜕5𝐾

𝜕𝑦5
(𝑠, 0) = 0,                                    (3.1.13) 

                                               𝐾𝑦(𝑠, 1) −
𝜕4𝐾

𝜕𝑦4
(𝑠, 1) = 0,                                   (3.1.14) 

                                                        𝐾𝑦𝑦𝑦(𝑠, 1) = 0,                                           (3.1.15) 

                                                        𝐾𝑦𝑦𝑦𝑦(𝑠, 0) = 0.                                         (3.1.16) 

Since the characteristic equation of  
𝜕6𝐾

𝜕𝑦6
(𝑠, 𝑦) = 𝛿(𝑠 − 𝑦) is 𝜆6 = 0 and its 

characteristic value is 𝜆 = 0 with 6 multiplicity roots, we write 𝐾(𝑠, 𝑦) as   

𝐾(𝑠, 𝑦) = {
∑ 𝑐𝑖(𝑠)𝑦

𝑖5
𝑖=0 , 𝑦 ≤ 𝑠

∑ 𝑑𝑖(𝑠)𝑦𝑖
5
𝑖=0 , 𝑦 > 𝑠

}. 

Since 
𝜕5𝐾

𝜕𝑦5
(𝑠, 𝑦) = 𝛿(𝑠 − 𝑦), we have  

                               
𝜕𝑚𝐾

𝜕𝑦𝑚
(𝑠, 𝑠 + 0) =

𝜕𝑚𝐾

𝜕𝑦𝑚
(𝑠, 𝑠 − 0),𝑚 = 0,1,⋯ ,4.                 (3.1.17) 

On the other hand, integrating 
𝜕5𝐾

𝜕𝑦5
(𝑠, 𝑦) =  𝛿(𝑠 − 𝑦) from 𝑠 − 𝜖 to 𝑠 + 𝜖 with 

respect to 𝑦 and letting 𝜖 → 0 to get  

                                        
𝜕5𝐾

𝜕𝑦5
(𝑠, 𝑠 + 0) −

𝜕5𝐾

𝜕𝑦5
(𝑠, 𝑠 − 0) = −1.                        (3.1.18) 

Using the conditions 3.1.11 and 3.1.13-3.1.18, we get the following system of 

equations 

𝑐0(𝑠) = 0, 𝑐1(𝑠) = 0 , 𝑐3(𝑠) = 0, 

6𝑑3(𝑠) + 24𝑑4(𝑠) + 60𝑑5(𝑠) = 0,∑𝑑𝑖(𝑠) − 120𝑑5(𝑠) = 0,

5

𝑖=0

 

∑𝑐𝑖(𝑠)𝑠
𝑖 =∑𝑑𝑖(𝑠)𝑠

𝑖

5

𝑖=0

,

5

𝑖=0

 

∑𝑖𝑐𝑖(𝑠)𝑠
𝑖−1 =∑𝑖𝑑𝑖(𝑠)𝑠

𝑖−1

5

𝑖=1

,

5

𝑖=1
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∑𝑖(𝑖 − 1)𝑐𝑖(𝑠)𝑠
𝑖−2 =∑𝑖(𝑖 − 1)𝑑𝑖(𝑠)𝑠

𝑖−2

5

𝑖=1

,

5

𝑖=1

 

∑𝑖(𝑖 − 1)(𝑖 − 2)𝑐𝑖(𝑠)𝑠
𝑖−3 =∑𝑖(𝑖 − 1)(𝑖 − 2)𝑑𝑖(𝑠)𝑠

𝑖−3

5

𝑖=1

,

5

𝑖=1

 

∑𝑖(𝑖 − 1)(𝑖 − 2)(𝑖 − 3)𝑐𝑖(𝑠)𝑠
𝑖−4 =∑𝑖(𝑖 − 1)(𝑖 − 2)(𝑖 − 3)𝑑𝑖(𝑠)𝑠

𝑖−4

5

𝑖=1

,

5

𝑖=1

 

5! 𝑑5(𝑠) − 5! 𝑐5(𝑠) = −1. 

We solved the last system using Mathematica to get 

𝑐0 = 0,  𝑐1 = 0,  𝑐2 =
1

120
(5𝑠4 − 111𝑠2−10𝑠3−𝑠5), 𝑐3 = 0,  𝑐4 = −

𝑠

24
, 

 𝑐5 =
1

120
(1+𝑠5) , 

𝑑0 =
𝑠5

120
,  𝑑1 = −

𝑠4

24
, 𝑑2 =

1

120
(5𝑠4 − 111𝑠2−𝑠5),  𝑑3 = −

𝑠2

12
, 𝑑4 = 0, 

 𝑑5 =
𝑠2

120
 

which completes the proof of the theorem.  

Now, we present how to solve Problem 3.1.3-3.1.4 

𝜎𝑖(𝑠) = 𝑅(𝑠𝑖, 𝑠). 

For 𝑖 = 1,2,⋯ where {𝑠𝑖}𝑖=1
∞  is dense on [0,1]. Let 𝐿(𝜎𝑖(𝑠)) = 𝐷

𝛼𝜎𝑖(𝑠) + 𝑎(𝑠)𝜎𝑖(𝑠). 

It is clear that 𝐿:𝑊2
3[0,1] → 𝑊2

1[0,1] is bounded linear operator. Let 

𝜓𝑖(𝑠) = 𝐿
∗𝜎𝑖(𝑠) 

where 𝐿∗ is the adjoint operator of 𝐿. Using Gram-Schmidt orthonormalization to 

generate orthonormal set of function {𝜓
𝑖
(𝑠)}

𝑖=1

∞
 where 

                                               𝜓
𝑖
(𝑠) = ∑ 𝛼𝑖𝑗𝜓𝑖(𝑠)

𝑖
𝑗=1                                        (3.1.19) 
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and 𝛼𝑖𝑗 are coefficients of Gram-Schmidt orthonormalization. In the next theorem, 

we show the existence of the solution of Problem (3.1.3-3.1.4). 

 

Theorem 3.1.3 If  {𝑠𝑖}𝑖=1
∞  is dense on [0,1], then 

                                            𝑢(𝑠) = ∑ ∑ 𝛼𝑖𝑗ℎ(𝑠𝑖)𝜓𝑖(𝑠)
𝑖
𝑗=1

∞
𝑖=1                            (3.1.20) 

Proof: First, we want to prove that {𝜓𝑖(𝑠)}𝑖=1
∞  is complete system of 𝑊2

3[0,1] and 

 𝜓𝑖(𝑠) = 𝐿(𝑘(𝑠, 𝑠𝑖)). It is clear that 𝜓𝑖(𝑠) ∈ 𝑊2
3[0,1] for 𝑖 = 1,2,⋯ Simple 

calculations imply that  

𝜓𝑖(𝑠) = 𝐿
∗𝜎𝑖(𝑠) = (𝐿

∗𝜎𝑖(𝑠), 𝐾(𝑠, 𝑦))𝑊23[0,1] 

                = (𝜎𝑖(𝑠), 𝐿(𝐾(𝑠, 𝑦)))𝑊23[0,1] = 𝐿(𝐾(𝑠, 𝑠𝑖)). 

For each fixed 𝑢(𝑠) ∈ 𝑊2
3[0,1], let 

(𝑢(𝑠), 𝜓𝑖(𝑠))𝑊23[0,1] = 0, 𝑖 = 1,2,⋯. 

Then, 

(𝑢(𝑠), 𝜓𝑖(𝑠))𝑊23[0,1] = (𝑢(𝑠), 𝐿
∗𝜎𝑖(𝑠))𝑊23[0,1]

 

    = (𝐿𝑓(𝑠), 𝜎𝑖(𝑠))𝑊23[0,1]
 

                                                                  = 𝐿𝑢(𝑠𝑖) = 0. 

Since {𝑠𝑖}𝑖=1
∞  is dense on [0,1], 𝐿𝑢(𝑠) = 0. Since  𝐿−1 exists, 𝑢(𝑠) = 0. Thus, 

{𝜓𝑖(𝑠)}𝑖=1
∞  is the complete system of 𝑊2

3[0,1]. 

Second, we prove Equation 3.1.20. Simple calculations implies that 

𝑢(𝑠) =  ∑(𝑢(𝑠), �̅�𝑖

∞

𝑖=1

(𝑠)) 𝑊23[0,1]�̅�𝑖(𝑠) 

                                      =  ∑∑𝛼𝑖𝑗

𝑖

𝑗=1

∞

𝑖=1

(𝑢(𝑠), 𝐿∗ (𝐾(𝑠, 𝑠𝑗)))  𝑊23[0,1]�̅�𝑖(𝑠) 
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                              =  ∑∑𝛼𝑖𝑗

𝑖

𝑗=1

∞

𝑖=1

(𝐿𝑓(𝑠), 𝐾(𝑠, 𝑠𝑗))  𝑊23[0,1]�̅�𝑖(𝑠) 

        =  ∑∑𝛼𝑖𝑗

𝑖

𝑗=1

∞

𝑖=1

(𝑐 , 𝐾(𝑠, 𝑠𝑗))  𝑊23[0,1]�̅�𝑖(𝑠) 

      =  ∑∑𝛼𝑖𝑗

𝑖

𝑗=1

∞

𝑖=1

�̅�𝑖(𝑠)                                                   

 

and the proof is complete. 

Let the approximation solution of Problem 3.1.3-3.1.4 be given by 

 

                             𝑢𝑁(𝑠) = ∑ ∑ 𝛼𝑖𝑗ℎ(𝑠𝑖)
𝑖
𝑗=1

𝑁
𝑖=1 �̅�𝑖(𝑠).                                              (3.1.21) 

 

In the next theorem, we show the uniformly convergence of the { 
𝑑𝑚 𝑓𝑁(𝑠)

𝑑𝑠𝑚
 } 𝑁=1
∞   to  

𝑑𝑓(𝑠)

𝑑𝑠
  for 𝑚 = 0,1,2. 

 

Theorem 3.1.4 If  𝑢(𝑠) and 𝑢𝑁(𝑠) are given as in (3.1.20) and (3.1.21), then 

{ 
𝑑𝑚 𝑓𝑁(𝑠)

𝑑𝑠𝑚
 } 𝑁=1
∞  converges uniformly to 

𝑑𝑚 𝑢(𝑠)

𝑑𝑠𝑚
  for 𝑚 = 0,1,2. 

Proof: First, we prove the theorem for 𝑚 = 0. For any 𝑠 ∈ [0,1],  

‖ 𝑢(𝑠) − 𝑢𝑁(𝑠) ‖ 𝑊23[0,1]
2   = (𝑢(𝑠) − 𝑢𝑁(𝑠), 𝑢(𝑠) − 𝑢𝑁(𝑠)) 𝑊23[0,1] 

    = ∑ (
(𝑢(𝑠), �̅�𝑖(𝑠))  𝑊23[0,1]�̅�𝑖(𝑠),

(𝑢(𝑠), �̅�𝑖(𝑠))  𝑊23[0,1]�̅�𝑖(𝑠)
)  𝑊23[0,1]        

∞

𝑖=𝑁+1

 

                                  =  ∑ (𝑢(𝑠),

∞

𝑖=𝑁+1

�̅�𝑖(𝑠)) 𝑊23[0,1]
2 . 
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Thus, 

𝑆𝑢𝑏𝑠∈[0,1]‖𝑢(𝑠) − 𝑢𝑁(𝑠)‖ 𝑊23[0,1]
2 = 𝑆𝑢𝑝𝑠∈[0,1] ∑ (𝑢(𝑠),

∞

𝑖=𝑁+1

�̅�𝑖(𝑠)) 𝑊23[0,1]
2 . 

From Theorem (3.1.3), one can see that ∑ (𝑢(𝑠),∞
𝑖=1 �̅�𝑖(𝑠)) 𝑊23[0,1]

 �̅�𝑖(𝑠) converges 

uniformly to 𝑢(𝑠). Thus, 

lim
𝑁
 
→ ∞

𝑆𝑢𝑝𝑠∈[0,1] ‖𝑢(𝑠) − 𝑢𝑁(𝑠)‖ 𝑊23[0,1] = 0 

which implies that {𝑢𝑁(𝑠)} 𝑁=1
∞  converges uniformly to 𝑢(𝑠). 

Second, we prove the uniformly convergence for 𝑚 = 1,2 . Since 
𝑑𝑚𝐾(𝑠,𝑦)

𝑑𝑠𝑚
   is 

bounded function on [0,1] × [0,1] , 

‖
𝑑𝑚 𝐾(𝑠,𝑦)

𝑑𝑠𝑚
‖  𝑊23[0,1]  ≤ 𝑋𝑚 ,   𝑚 = 1.   

Thus, for any 𝑠 ∈ [0,1], 

        |𝑢(𝑚)(𝑠) − 𝑢𝑁
(𝑚)(𝑠)|  = |(𝑢(𝑠) − 𝑢𝑁(𝑠),

𝑑𝑚𝐾(𝑠,𝑦)

𝑑𝑠𝑚
) 𝑊23[0,1]| 

                                            ≤   ‖𝑢(𝑠) − 𝑢𝑁(𝑠)‖ 𝑊23[0,1]‖
𝑑𝑚 𝐾(𝑠,𝑦)

𝑑𝑠𝑚
‖  𝑊23[0,1]  

                                            ≤  𝜒𝑚 ‖𝑢(𝑠) − 𝑢𝑁(𝑠)‖ 𝑊23[0,1] 

        ≤ 𝜒𝑚𝑆𝑢𝑝𝑠∈[0,1] ‖𝑢(𝑠) − 𝑢𝑁(𝑠)‖ 𝑊23[0,1]. 

Hence, 

𝑆𝑢𝑝𝑠∈[0,1] ‖𝑢
(𝑚)(𝑠) − 𝑢𝑁

(𝑚)(𝑠)‖ 𝑊23[0,1]   ≤   𝜒𝑚𝑚 𝑆𝑢𝑝𝑠∈[0,1]‖𝑢(𝑠) − 𝑢𝑁(𝑠)‖ 𝑊23[0,1] 

which implies that 

lim
𝑁
 
→∞
 𝑆𝑢𝑝𝑠∈[0,1]  ‖𝑢

(𝑚)(𝑠) − 𝑢𝑁
(𝑚)(𝑠)‖ 𝑊23[0,1] = 0. 

Therefore, {
𝑑𝑚𝑢𝑁(𝑠)

𝑑𝑠𝑚
}  𝑁=1
∞  converges uniformly to 

𝑑𝑚 𝑢(𝑠)

𝑑𝑠𝑚
  for 𝑚 = 1,2. 

Now, we discuss how to solve Problem (3.1.1) – (3.1.2). Let ℒ(𝑦(𝑥)) = 𝐷𝛼 𝑦(𝑥) and 

𝑁(𝑦(𝑥)) = 𝑔(𝑥, 𝑦)𝑦′ are the linear and nonlinear parts of Problem 3.1.1, respectively.  
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We construct the homotopy as follows: 

                          𝐻(𝑦, 𝜆) =  ℒ(𝑦(𝑥)) +  𝜆𝑁(𝑦(𝑥)) = 0                                            (3.1.22) 

where 𝜆 ∈ [0,1] is an embedding parameter. If 𝜆 = 0,  we get a linear equation 

𝐷𝛼𝑦(𝑥) = 0 

which implies that 𝑦(𝑥) = 0 . If 𝜆 = 1, we turn out to be Problem 3.1.1. Following the 

Homotopy Perturbation method [40], we expand the solution in term of the Homotopy 

parameter 𝜆 as 

                             𝑦 =  𝑦0 +  𝜆𝑦1 + 𝜆
2𝑦2 + 𝜆

3𝑦3 + ⋯                                          (3.1.23)                    

Substitute Equation 3.1.23 into Equation 3.1.22 and equating the coefficient of the 

identical power of 𝜆 to get the following system 

                        𝜆0 ∶  𝐷𝛼𝑦0(𝑥) = 0, 𝑦0(0) = 𝜃, 

                        𝜆1 ∶  𝐷𝛼𝑦1(𝑥) = −𝑁(∑ 𝜆𝑖𝑦𝑖(𝑥)
∞
𝑖=0 )| .

𝜆=0
, 𝑦1(0) = 0, 

                        𝜆2 ∶  𝐷𝛼𝑦2(𝑥) = −
𝑑𝑁(∑ 𝜆𝑖𝑦𝑖(𝑥)

∞
𝑖=0 )

𝑑𝜆
| .
𝜆=0
, 𝑦2(0) = 0, 

                        𝜆3 ∶  𝐷𝛼𝑦3(𝑥) = −
𝑑2𝑁(∑ 𝜆𝑖𝑦𝑖(𝑥)

∞
𝑖=0 )

𝑑𝜆2
| .
𝜆=0
, 𝑦3(0) = 0, 

                                                 ⋮ 

                        𝜆𝑘 ∶  𝐷𝛼𝑦𝑘(𝑥) = −
𝑑𝑘−1𝑁(∑ 𝜆𝑖𝑦𝑖(𝑥)

∞
𝑖=0 )

𝑑𝜆𝑘−1
| .
𝜆=0
, 𝑦𝑘(0) = 0. 

To solve the above equations, we use the RKM which is described above and we 

obtain  

                                𝑦𝑘(𝑥) =  ∑ ∑ 𝛼𝑖𝑗
𝑖
𝑗=1

∞
𝑖=1 ℎ𝑘(𝑥𝑗)�̅�𝑖(𝑠), 𝑘 = 0,1,⋯               (3.1.24) 

where  

                                    ℎ0(𝑥) = 𝑐 

                                    ℎ1(𝑥) = −𝑁(∑ 𝜆𝑖𝑦𝑖(𝑥)
∞
𝑖=0 )| .

𝜆=0
 

                                               ⋮  
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                                    ℎ𝑘(𝑥) = −
𝑑𝑘−1𝑁(∑ 𝜆𝑖𝑦𝑖(𝑥)

∞
𝑖=0 )

𝑑𝜆𝑘−1
| .
𝜆=0
, 𝑘 > 1. 

From Equation 3.1.24, it is easy to see the solution to Problem 3.1.1-3.1.2 is giving 

by  

                     𝑦(𝑠) = ∑ 𝑦𝑘(𝑥) =
∞
0 ∑ (∑ ∑ 𝛼𝑖𝑗

𝑖
𝑗=1

∞
𝑖=1 ℎ𝑘(𝑥𝑗)�̅�𝑖(𝑥)) .

∞
𝑘=0             (3.1.25) 

We approximate the solution of Problem 3.1.1-3.1.2 by 

                         𝑦𝑛.𝑚(𝑥) = ∑ (∑ ∑ 𝛼𝑖𝑗
𝑖
𝑗=1

∞
𝑖=1 ℎ𝑘(𝑥𝑗)�̅�𝑖(𝑥))

∞
𝑘=0 .                        (3.1.26) 

 

3.2 Analytical Results 

In this section, three important theorems are presented which are the maximum 

principle, the stability theorem, and the uniqueness theorem. Firstly Eqs. 3.2.1-3.2.2 

are transformed into an equivalent problem as follows 

𝑃𝑦:−𝜖𝐷𝛼𝑦 + 𝑢(𝑥, 𝑦)𝑦′ + ∫ 𝐾(𝑥, 𝑡)𝑣(𝑡, 𝑦)𝑑𝑡
𝑥

0
= 𝑓(𝑥), 𝑥 ∈ (0,1), 0 < 𝛼 ≤ 1, (3.2.1) 

                                         𝑦(0) =  𝑦0, 𝑦(1) = 𝑦1                                                        (3.2.2)                   

The following conditions are needed in order to guarantee that Eqs. 3.2.1-3.2.2 does 

not have turning-point problem;  

                                                −𝑘2 ≥ 𝑢(𝑥, 𝑦) ≥ −𝑘1,                                         (3.2.3)                    

                                                   0 ≥ 𝑣(𝑥, 𝑦) ≥ −𝑘3,                                           (3.2.4)                    

                                                   𝐾(𝑥, 𝑡) ≥ 𝑘4 ≥ 0,                                              (3.2.5)                    

for all 𝑥 ∈ [0,1], where 𝑘1, 𝑘2, 𝑘3, 𝑎𝑛𝑑 𝑘4 are positive constants and 𝑦 ∈ 𝐶2(0,1) ∪

𝐶[0,1]. 

Lemma 3.2.1 [44] Let 𝑦 ∈ 𝐶2[0,1] attains its minimum at 𝑥0 ∈ (0,1). Then, 𝑦′(𝑥0) ≤

0 and 𝐷∝𝑦(𝑥0) ≥ 0 for 1 <∝≤ 2.  
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Theorem 3.2.2 (Maximum Principle). Consider the initial value problem 3.2.6-3.2.7 

with conditions 3.2.3-3.2.5. Assume that 𝑃𝑦 ≥ 0 and 𝑦(0) ≥ 0. Then 𝑦(1) ≥ 0 in 

[0,1]. 

    𝜖𝐷𝛼𝑦 + 𝑢(𝑥, 𝑦)𝑦′ + ∫ 𝐾(𝑥, 𝑡)𝑣(𝑡, 𝑦)𝑑𝑡
𝑥

0
= 𝑓(𝑥), 𝑥 ∈ (0,1), 1 < 𝛼 ≤ 2,       (3.2.6) 

subject to 

                                         𝑦(0) =  𝑦0, 𝑦(1) = 𝑦1                                                        (3.2.7)                    

Proof: Assume that the conclusion is false, then 𝜙(𝑥) < 0 for some 𝑥 ∈ [0,1]. Then, 

𝑦(𝑥) has a local minimum at 𝑥0 for some 𝑥0 ∈ (0, 1]. Simple calculations and using 

Lemma (3.2.1) implies that 

                      𝑃𝑦(𝑥0) =  𝜖𝐷
𝛼𝑦(𝑥0) + 𝑢(𝑥0, 𝑦)𝑦

′(𝑥0) + ∫ 𝐾(𝑥0, 𝑡)𝑣(𝑡, 𝑦)𝑑𝑡
𝑥0

0
 

                                     ≤ 0. 

This a contradiction. Therefore, 𝑦(𝑥) ≥ 0 in [0,1]. ∎ 

In the next theorem, the stability result is presented.  

 

Theorem 3.2.3 (Stability Result). Consider Eqs. 3.2.6-3.2.7 with conditions 𝑢 = 𝑢(𝑥) 

and 𝑣 = 𝑣(𝑥). If 𝑦(𝑥) is a smooth function, then 

‖𝑦‖ = 𝑚𝑎𝑥{|𝑦(𝑥)|: 𝑥 ∈ [0,1]} ≤ 2𝜍 𝑚𝑎𝑥{|𝑦0|, |𝑦1|,𝑚𝑎𝑥𝑥∈[0,1]|𝑃𝑦|}. 

Where 𝜍 = 1 +
1

𝑘2
. 

Proof: Let 

𝐾0 = 𝑚𝑎𝑥{|𝑦0|, |𝑦1|,𝑚𝑎𝑥𝑥∈[0,1]|𝑃𝑦|} = 𝑚𝑎𝑥{|𝑦0|, |𝑦1|,𝑚𝑎𝑥𝑥∈[0,1]|𝑓(𝑥)|} 

and let  

𝑠±(𝑥) = 2𝜍 𝐾0 (1 −
𝑥

2
) ± 𝑦(𝑥), 𝑥 ∈ [0,1]. 

Then,  
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𝑃𝑠±(𝑥) = −𝜖𝐷𝛼 (2𝜍 𝐾0 (1 −
𝑥

2
) ± 𝑦(𝑥)) + 𝑢(𝑥) (2𝜍 𝐾0 (1 −

𝑥

2
) ± 𝑦(𝑥))

′

+∫𝐾(𝑥, 𝑡)𝑣(𝑡)𝑑𝑡

𝑥

0

= 2𝜍 𝐾0𝑢(𝑥) ± 𝑃𝑦(𝑥) > 𝐾0 ± 𝑃𝑦(𝑥) ≥ 0. 

for all 𝑥 ∈ [0,1]. Also,  

𝑠±(0) = 2𝜍 𝐾0 ± 𝑦(0) > 𝐾0 ± 𝑦0 ≥ 0, 𝑥 ∈ [0,1] 

and 

𝑠±(1) = 𝜍 𝐾0 ± 𝑦1 > 𝐾0 ± 𝑦1 ≥ 0, 𝑥 ∈ [0,1]. 

From Theorem 3.2.2, we can see that 𝑠±(𝑥) ≥ 0 for all 𝑥 ∈ [0,1]. 

Therefore,  

‖𝑦‖ = max {|𝑦(𝑥)|: 𝑥 ∈ [0,1] ≤ 2𝜍 𝑚𝑎𝑥{|𝑦0|, |𝑦1|,𝑚𝑎𝑥𝑥∈[0,1]|𝑃𝑦|}.∎ 

 

Theorem 3.2.4 (Uniqueness Theorem). Consider Eqs. 3.2.6-3.2.7 under the conditions 

3.2.3-3.2.5 with conditions 𝑢 = 𝑢(𝑥) and 𝑣 = 𝑣(𝑥). If 𝑦1 and 𝑦2 are two solutions to 

Eqs. 3.2.6-3.2.7, then 𝑦1(𝑥) = 𝑦2(𝑥) for all 𝑥 ∈ [0,1]. 

Proof: Let 𝑤(𝑥) = 𝑦1(𝑥) − 𝑦2(𝑥). Then,  

                                                        𝑃𝑤 = 0, 𝑤(0) = 0, w(1)=0 

𝑃(−𝑤) = 0,−𝑤(0) = 0,−𝑤(1) = 0. 

Using Theorem 3.2.2, it follows that 𝑤(𝑥) ≥ 0 and 𝑤(𝑥) ≤ 0 for all 𝑥 ∈ [0,1] which 

implies that 𝑦1(𝑥) = 𝑦2(𝑥) for all 𝑥 ∈ [0,1]. ∎ 

 

3.3 Method of Solution 

Consider the following of class of fractional nonlinear Volterra integro-

differential type of singularly perturbed problems of the form  
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                  −𝜖𝐷𝛼𝑦 + 𝑢(𝑥, 𝑦)𝑦′ + ∫ 𝐾(𝑥, 𝑡)𝑣(𝑡, 𝑦)𝑑𝑡
𝑥

0
= 𝑓(𝑥), 𝑥 ∈ (0,1), 1 < 𝛼 ≤ 2          

subject to 

                                               𝑦(0) =  𝑦0, 𝑦(1) = 𝑦1                                                                                          

where 𝜖 > 0 is a small positive parameter, 𝑦0 and 𝑦1 are constant, and 𝐾(𝑥, 𝑡) and 

𝑓(𝑥) are smooth functions. To solve Eqs. 3.2.6-3.2.7, we use the following steps.  

Step 1: A reduced problem is obtained by setting 𝜖 = 0 in Eqs. 3.3.6 to get  

              𝑢(𝑥, 𝑦1)𝑦
′ + ∫ 𝐾(𝑥, 𝑡)𝑣(𝑡, 𝑦1)𝑑𝑡

𝑥

0
= 𝑓(𝑥), 𝑥 ∈ [0,1].                          (3.3.1) 

On most of the interval, the solution of Eq. 3.3.1 behaves like the solution of Eqs. 

3.2.6-3.2.7. However, there is small interval around 𝑥 = 0 in which the solution of 

problem 3.2.6-3.2.7 does not agree with the solution of Problem 3.2.6-3.2.7 to handle 

this situation, the boundary layer correction problem is introduced in step 2. 

Step 2: Choose 𝑥 = 𝜖
1

𝛼−1𝑠 to get  

𝐷𝛼𝑦(𝑥) =
1

Γ(1 − α)
∫ (𝑥 − 𝑡)1−𝛼 𝑦′′(𝑡)𝑑𝑡
𝑥

0

 

                              =
1

Γ(1 − α)
∫ (𝜖

1
𝛼−1𝑠 − 𝑡)

1−𝛼

 𝑦′′(𝑡)𝑑𝑡
𝜖
1
𝛼−1𝑠

0

 

                          =
𝜖
1−𝛼
𝛼−1

Γ(1 − α)
∫ (𝑠 −

𝑡

𝜖
1
𝛼−1

)

−𝛼

 𝑦′′(𝑡)𝑑𝑡
𝜖
1
𝛼𝑠
1
𝛼

0

. 

Let 𝑟 =  
𝑡

𝜖
1
𝛼−1

. Then, 𝑑𝑡 = 𝜖
1

𝛼−1𝑑𝑟 and 

𝑑𝑦

𝑑𝑡
=
𝑑𝑦

𝑑𝑟

𝑑𝑟

𝑑𝑡
=  

1

𝜖
1
𝛼−1

𝑑𝑦

𝑑𝑟
. 

𝑑2𝑦

𝑑𝑡2
=
𝑑 (
𝑑𝑦
𝑑𝑡
)

𝑑𝑟

𝑑𝑟

𝑑𝑡
= ( 

1

𝜖
1
𝛼−1

)

2
𝑑𝑦

𝑑𝑟
. 

Thus,  
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         𝐷𝛼𝑦(𝑥) =
𝜖
1−𝛼
𝛼−1

Γ(1 − α)
∫ (𝑠 − 𝑟)−𝛼

1

(𝜖
1
𝛼−1)

2

𝑑𝑦

𝑑𝑟
𝜖
1
𝛼−1𝑑𝑟

𝑠

0

 

=
𝜖
−𝛼
𝛼−1

Γ(1 − α)
∫ (𝑠 − 𝑟)−𝛼

𝑑𝑦

𝑑𝑟
𝑑𝑟

𝑠

0

 

                                                 = 𝜖
−𝛼

𝛼−1𝐷𝛼𝑦(𝑠).                                                          (3.3.2) 

Hence, Eq. 3.2.6 becomes  

−𝜖𝜖
−𝛼

𝛼−1𝐷𝛼𝑦(𝑠) +
1

𝜖
1
𝛼−1

𝑢 (𝜖
1

𝛼−1𝑠, 𝑦)
𝑑𝑦

𝑑𝑠
+ ∫ 𝐾 (𝜖

1

𝛼−1𝑠, 𝑡) 𝑣(𝑡, 𝑦)𝑑𝑡
𝜖
1
𝛼−1𝑠

0
= 𝑓 (𝜖

1

𝛼−1𝑠)   (3.3.3)                                           

or 

−𝐷𝛼𝑦 + 𝑢 (𝜖
1

𝛼−1𝑠, 𝑦)
𝑑𝑦

𝑑𝑠
+ 𝜖

1

𝛼−1 ∫ 𝐾 (𝜖
1

𝛼−1𝑠, 𝑡) 𝑣(𝑡, 𝑦)𝑑𝑡
𝜖
1
𝛼−1𝑠

0
= 𝜖

1

𝛼−1𝑓 (𝜖
1

𝛼−1𝑠)          (3.3.4)                                                                                           

Setting 𝜖 = 0 in Eqs. 3.3.3 implies that 

                                      −𝐷𝛼𝑦(𝑠) + 𝑢(0, 𝑦)
𝑑𝑦

𝑑𝑠
= 0.                                           (3.3.5) 

Since the solution of the reduced problem in step 1 does not satisfy the initial condition 

at 𝑥 = 0, then the solution of the above equation should satisfy it. This means, its 

solution has the form 𝑦1(0) + 𝑦2(𝑥).  Substitute 

                                             𝑦(𝑥) = 𝑦1(0) + 𝑦2(𝑥) 

in Eq. 3.3.5 to get the boundary layer correction equation 

                    −𝐷𝛼𝑦2(𝑠) + 𝑢(0, 𝑦1(0) + 𝑦2(𝑠))
𝑑𝑦2

𝑑𝑠
= 𝑓(0).                                (3.3.6) 

The solution of Eq. 3.2.6 will be expressed in the form as 

                            𝑦(𝑥) = 𝑦1(𝑥) + 𝑦2 (
𝑥

𝜖
1
𝛼−1

),                                                       (3.3.7) 

and the initial condition must be satisfied by expression 3.3.7. When 𝑥 = 0,  the 

condition will be 

𝑦0 = 𝑦(0) = 𝑦1(0) + 𝑦2(0) 
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or 

                                                   𝑦2(0) = 𝑦0 − 𝑦1(0),                                            (3.3.8) 

 

The solution of Eqs. 3.2.6-3.2.7 can be produced using the RKM as described in the 

previous section. More details can be found in [41]-[43]. 

 

3.4 Numerical Results 

 In this section, we present two of our examples to show the efficiency of the 

proposed method. 

 

Example 3.4.1: Consider the following problem 

−𝜖𝐷
3

2𝑦(𝑥) − 2𝑦′(𝑥) − ∫ 𝑒𝑦(𝑡)𝑑𝑡
𝑥

0
= 𝑥2 − 2𝑥 −

2

𝑥−2
, 0 ≤ 𝑥 ≤ 1, 0 < 𝜖 ≪ 1,   (3.4.1) 

subject to 

                                                 𝑦(0) = 0, 𝑦(1) = 0.                                            (3.4.2) 

When 𝜖 = 0, 

               −2𝑦′(𝑥) − 2∫ 𝑒𝑦(𝑡)𝑑𝑡
𝑥

0
= −2 ln(𝑥 + 1) +

2

𝑥+1
, 𝑦(1) = 0.                 (3.4.3) 

We discretized the interval [0,1] by 𝑥𝑖 = 𝑖ℎ, ℎ =
1

𝑛
, 𝑛 ∈ 𝑁. Let 𝑦𝑘 ≈ 𝑦(𝑥𝑘) for 𝑘 =

0 ∶ 𝑛. Using the backward finite difference method to approximate 𝑦′(𝑥𝑘) and the 

trapezoidal quadrature to approximate the integral ∫ 𝑒𝑦(𝑡)𝑑𝑡
𝑥𝑘
0

, we get  

−2
𝑦𝑘 − 𝑦𝑘−1

ℎ
− ℎ∑(𝑒𝑦𝑖 + 𝑒𝑦𝑗+1) = −2 ln(𝑥𝑘 + 1) +

2

𝑥𝑘 + 1
, 𝑥𝑛 = 0.

𝑘−1

𝑗=0

 

Thus, we get the following system 

𝐴𝑌 + 𝐵𝑒𝑌 = 𝐹 
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Where 

𝐴 = −
2

ℎ

(

  
 

−1 1
0 −1

0 0
1 0

⋮ ⋱
⋮
⋮
0

⋯
⋯
⋯

⋱ ⋱
0
⋯
⋯

−1
0
⋯

⋯ 0
⋯ 0
⋱ ⋮
1 0
−1
0

1
−1)

  
 
,𝐵 = −ℎ

(

 
 
 
 

1 1
1 2

0 ⋯
1 ⋱

1 2
⋮
⋮
⋮
2

⋮
⋮
⋮
2

1 ⋱
⋮
⋮
⋮
2

⋱
⋯
⋯
⋯

0 ⋯ 0
0 ⋯ 0
0 ⋯ 0
⋱ ⋱ ⋮
2
2
2

1 0
2 1
2 2)

 
 
 
 

 

𝐹 =

(

 
 

𝑓(𝑥1)
𝑓(𝑥1)
⋮

𝑓(𝑥𝑛−1)
𝑓(𝑥𝑛) )

 
 
, 𝑌 =

(

 

𝑦0
𝑦1
⋮

𝑦𝑛−2
𝑦𝑛 )

 . 

Using Mathematica, one can see that the solution of the above system for 𝑛 = 12 is 

giving in Figure 3.1. Using the change of variable 𝑥 = 𝜖2𝑠, we get 

−𝐷
3
2𝑦2(𝑠) − 2

𝑑𝑦2
𝑑𝑠

= 0 

subject to  

𝑦2(0) = 𝑦0 − 𝑦1(0) = −0.694147, 𝑦2
′(0) = 𝜃. 

Using the RKM, we get 

𝑦2(𝑠) ≈ −0.694147 +
2𝜃𝑠

3
−
2𝑠2

√𝜋
+
8𝜃𝑠5 2⁄

5
−
32𝜃𝑠3

9√𝜋
+
16𝜃𝑠7 2⁄

7
−
64𝜃𝑠4

15√𝜋
. 

Using the Pade’ approximation of order [2,2], we have  𝜃 = −0.694147. In figures 

3.2-3.4, we plot the approximate solution for 𝜖 = 0.0001, 0.00001, 0.000001 

respectively. 
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           Figure 3.1: The approximate of Example 3.4.1 solution 𝑦1 

 

 

  

Figure 3.2: The approximate solution 𝑦 of Example 3.4.1 for 𝜖 = 0.0001 
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Figure 3.3: The approximate solution 𝑦 of Example 3.4.1 for 𝜖 = 0.00001 

 

 

 

Figure 3.4: The approximate solution 𝑦 of Example 3.4.1 for 𝜖 = 0.000001 

 

Example 3.4.2: Consider the following problem 

    −𝜖𝐷
3

2𝑦(𝑥) − 𝑦𝑦′ − ∫ (𝑥 − 𝑡)𝑦2(𝑡)𝑑𝑡
𝑥

0
= 𝑓(𝑥), 0 ≤ 𝑥 ≤ 1, 0 < 𝜖 ≪ 1,         (3.4.4) 

Subject to 

                          𝑦(0) = −1, 𝑦(1) = 6.                                                                (3.4.5) 
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where  

                                𝑓(𝑥) = −5 − 𝑥 −
25

3
𝑥3 −

5

6
𝑥4 −

𝑥5

30
. 

When 𝜖 = 0, 

                           −𝑦𝑦′ − ∫ (𝑥 − 𝑡)𝑦2(𝑡)𝑑𝑡
𝑥

0
= 𝑓(𝑥), 𝑦(1) = 6.                         (3.4.6) 

We discretized the interval [0,1] by 𝑥𝑖 = 𝑖ℎ, ℎ =
1

𝑛
, 𝑛 ∈ 𝑁. Let 𝑦𝑘 ≈ 𝑦(𝑥𝑘) for  

𝑘 = 0 ∶ 𝑛. Using the backward finite difference method to approximate 𝑦′(𝑥𝑘) and the 

trapezoidal quadrature to approximate the integral ∫ (𝑥 − 𝑡)𝑦2(𝑡)𝑑𝑡
𝑥𝑘
0

, we get  

−𝑦𝑘
𝑦𝑘 − 𝑦𝑘−1

ℎ
−
ℎ

2
∑((𝑥𝑘 − 𝑥𝑗+1)𝑦𝑗+1

2 + (𝑥𝑘 − 𝑥𝑗)𝑦𝑗
2) = 𝑓(𝑥𝑘), 𝑦𝑛 = 6.

𝑘−1

𝑗=0

 

Using Mathematics, one can see that the solution of the above system for 𝑛 = 12 is 

giving in Figure 3.5. Using the change of variable 𝑥 = 𝜖2𝑠, we get 

−𝐷
3
2𝑦2(𝑠) − (𝑦2(𝑠) + 5)

𝑑𝑦2
𝑑𝑠

= 0 

subject to  

𝑦2(0) = 𝑦0 − 𝑦1(0) = −6, 𝑦2
′(0) = 𝜃. 

Using the RKM, we get 

𝑦2(𝑠) ≈ −6 + 𝜃𝑠 −
4𝜃

3√𝜋
𝑠
3
2 +

𝜃

2
𝑠2 −

8𝜃2

15√𝜋
𝑠
5
2 −

7𝜃2

12
𝑠3 +

7𝜃3

48
𝑠4. 

Using the Pade’ approximation of order [2,2], we have  𝜃 = 0.0927388622769557. 

In figures 3.5-3.8, we plot the approximate solution for  

𝜖 = 0.001, 0.0001, 𝑎𝑛𝑑 0.00001, respectively. 
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                        Figure 3.5: The approximate solution of Example 3.4.2 for 𝑦1 

 

 

  

                       Figure 3.6: Approximate solution of Example 3.4.2 for for 𝜖 = 0.001 
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Figure 3.7: The approximate solution 𝑦 of Example 3.4.2 for for 𝜖 = 0.0001 

 

 

 

Figure 3.8: The approximate solution 𝑦 of Example 3.4.2 for for 𝜖 = 0.00001 
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Chapter 4: Conclusion 

 

In this thesis we study two classes of fractional nonlinear Volterra integro-

differential type of singularly perturbed problems which are the first order and the 

second order. The first order class has the form 

𝜖𝐷𝛼𝑦 + 𝑢(𝑥, 𝑦) + ∫ 𝐾(𝑥, 𝑡)𝑣(𝑡, 𝑦)𝑑𝑡
𝑥

0
= 𝑓(𝑥), 𝑥 ∈ (0,1), 0 < 𝛼 ≤ 1,             

subject to 

             𝑦(0) =  𝑦0                                                               

while the second order class has the form 

𝜖𝐷𝛼𝑦 + 𝑢(𝑥, 𝑦)𝑦′ + ∫ 𝐾(𝑥, 𝑡)𝑣(𝑡, 𝑦)𝑑𝑡
𝑥

0
= 𝑓(𝑥), 𝑥 ∈ (0,1), 01 < 𝛼 ≤ 2,             

subject to 

                                                      𝑦(0) =  𝑦0, 𝑦(1) = 𝑦1                                                               

where 𝜖 > 0 is a small positive parameter, 𝑦0 is constant, and 𝐾(𝑥, 𝑡) and 

𝑓(𝑥), 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡) are smooth functions.  

In chapter one, we study the classes of first order and second order fractional 

nonlinear Volterra integro-differential type of singularly perturbed problems. We 

present some preliminaries which we used in this thesis such as definition of Caputo 

derivative and its properties. In addition, we present the main definitions of the 

nonlinear Volterra integro-differential type and the singularly perturbed problems.  

In chapter two, we present some theoretical results such as the maximum 

principle, stability of the numerical scheme, and the uniqueness of the proposed 

problem. We derive the necessary kernel to be able to implement the reproducing 

kernel method.  Also, we derive the reproducing kernel method for the proposed 
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problem. Two numerical examples are presented to show the efficiency of the 

numerical scheme.  

In Chapter three, we study the classes of second order fractional nonlinear 

Volterra integro-differential type of singularly perturbed problems. We present some 

theoretical results such as the maximum principle, stability of the numerical scheme, 

and the uniqueness of the second order problem. We derive the necessary kernel to be 

able to implement the reproducing kernel method.  Also, we derive the reproducing 

kernel method for the proposed problem. Two numerical examples are presented to 

show the efficiency of the numerical scheme.  

Theoretical and numerical results show that the reproducing kernel method is 

working very efficiently especially when 𝜖 very small. We believe that this technique 

will work very efficiently for the higher order problem. However, we leave it for the 

future work. 
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