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Abstract 

This thesis was carried out to investigate the impact of various Tilapia (Oreochromis 

niloticus) feeding frequency and stocking density on quality and quantity of organic 

lettuce that is produced in an aquaponic system, knowing that they affect the nutrient 

content in water. Business analysis through enterprise budget was developed 

considering different feeding frequency and stocking density of the fish to predict the 

business efficiency of the system, and the net incomes were as high as AED 34,394 

and AED 46,637, respectively. On the other hand, lettuce was seeded in a culture 

raceway. The duration of the experiments was decided to be six months, which was 

divided into two parts to study each parameter, i.e. feeding frequency (Once, twice 

and three times per day) and stocking density (100,120,140 fishes per cubic meter). 

In parallel, the aquaponic system water quality (pH, temperature, total dissolved 

solids, dissolved Oxygen, total ammonia, nitrite, and nitrate) and water consumption 

were analysed at specified intervals. Furthermore, fish and cultivated plant growth 

rate and total yield were analysed at the first and last days of the experimental period. 

The purpose of that was to optimise the system feeding system and stocking from 

different approaches both agriculturally and economically. It was found that highest 

used feeding frequency and stocking density are recommended to achieve high 

profitability.   

 

Keywords: Oreochromis niloticus, aquaponic system, feeding frequency, stocking 

density, enterprise budget analysis, the UAE. 
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Title and Abstract (in Arabic) 

الأسمما  إنتاجيةعلى  النيل  وتكرار التغذيةسمما  الللي  لا المختلفة ةكثافالتأثير   

يالاقتصادمع التقييم  الإماراتنظام الاكوابونيك تحت ظروف دولة  ونلات الخس ف   

 الملخص

تشكل أزمة ندرة الغذاء في بعض مناطق العالم إلى جانب الحاجة لتوفير موارد غذائية 

كووابوني  تووراً كوييراً الأجديدة اهتماماً متزايداً لدى صناع الأغذية في العالم، وتشهد أنظمة 

كومصدر جديد للصناعة الغذائية، حيث توفر مثل هذه الأنظمة إمكانية إنتاج أسماك وخضروات 

ة في حيز مكاني واحد؛ لذا تهدف هذه الأطروحة اليحثية التعرف على أنسب عدد مرات متعدد

، إلى جانب معرفة أفضل  Oreochromis Niloticusالتغذية اليومية لسم  اليلوي النيلي 

كووابوني  المستددم إننتاج سم  الأكوثافة للأسماك في المتر المكعب الواحد، و ذل  في نظام 

آن واحد، إلى جانب التعرف على تأثير هذين العاملين المهمين على جودة اليلوي و الدس في 

منتجات هذا النظام، علماً أنهما يؤثران على المحتوى الغذائي للمياه التي تعيش فيها الأسماك، 

مرة، : )تلف وهيوقد تم إجراء التجربة على ثلاث مراحل لكل منها عدد مرات تغذية يومية مد

ثلاث مراحل أخرى لكل منها كوثافة أسماك في المتر المكعب و   ) ومياً ي مرتان، ثلاث مرات

سمكة لكل متر مكعب، كوما تم إجراء تحاليل دورية لاختيار ( 041، 021، 011: )مدتلفة  وهي

 Enterpriseجودة المياه في الأحواض، فضلاً عن  إجراء دراسة جدوى مالية باستددام طريقة 

Budget Analysis  لدراسة عاملي التغير في عدد مرات التغذية و كوثافة الأسماك على

المردود المالي و الكفاءة الاقتصادية لهذا النظام، فكانت نتيجة ذل  من ناحية المدخلات المالية 

درهماً على الترتيب عند أعلى عدد مرات تغذية يومية و أعلى  4,,4,3درهماً و  43,44,

 .عب الواحدكوثافة للسم  في المتر المك
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، كوثافة الأسماك ، تكرار التغذية تربية الأسماك، ،الأكووابوني نظام : فاهيم اللحث الرئيسيةم

.تحليل الجدوى الاقتصادية، دولة اإنمارات العربية المتحدة  
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Chapter 1: Introduction 

1.1 Overview 

Aquaponic systems are considered as fast emerging food production technology, it 

integrates recirculating aquaculture with hydroponics (Rakocy et al., 2004) into a 

commonly closed-loop ecoculture where water and other nutrients are recirculated 

and reclaimed (Diver, 2006; Rakocy et al., 2006; Endut et al., 2010; Love et al., 

2015). In aquaponic systems, the wastewater from aquaculture system that is rich in 

nutrients is circulated to vegetable grow beds in a hydroponics system. As the 

effluent from fish flows through the hydroponic system, microbes break down fish 

waste metabolites into soluble nutrients. Thus plants can uptake nutrients directly 

from water. Already treated, cleansed and safe water for the fish flows back to 

aquaculture system for reuse (Rakocy et al., 2006; Somerville et al., 2014). 

Aquaponics productions are known to be natural, organic, eco-friendly and free of 

pesticides and herbicides (Blidariu & Grozea, 2011). Other advantages are: less 

usage of water through reuse, the recycling of nutrients and management of waste, 

and minimise adverse environmental impacts such as pollution (McMurtry et al., 

1997; Al-Hafedh et al., 2003; Rakocy et al., 2004). In addition to the ecological 

benefits, aquaponics system are capable of offering several economic benefits such 

as: savings in the costs of the treatment of water in the aquaculture system, 

formulation of novel fertilizer for the hydroponics system and increasing returns 

from both harvest of fishes and vegetables, using one input, i.e. fish feed (Alder et 

al., 2000; Liang & Chien, 2013).   
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The mostly grown plants in aquaponics include lettuce, water spinach, tomato, 

cucumber, pepper and herbs (Rakocy & Hargreaves, 1993; Alder et al., 2000; 

Savidov et al., 2005). Among those, Lettuce (Lactuca sativa) is commonly used 

because it is well adapted to aquaponic systems. It can be harvested within 3 to 4 

weeks, with relatively fewer pest problems and low to medium nutritional 

requirements (Diver, 2006; Rakocy et al., 2006). Furthermore, several types of fish 

are used in the fish fragment of the system. Nile Tilapia (Oreochromis Niloticus) is a 

prevalent fish raised in such systems (Rakocy et al., 2006). This is because of its 

obtainability, quick growth, easily cultivable nature, stress and diseases resistant and 

adaptability in indoor environments (Hussain, 2004; Rakocy et al., 2006).  Tilapia O. 

niloticus can tolerate different and varying conditions of a temperature of water, 

water salinity, pH, dissolved oxygen in the water, photoperiods and light intensity. It 

can also tolerate to stress by handling (Hussain, 2004; Yue & Zhou, 2008), and to 

poor water quality and fluctuating water conditions. Moreover, it is capable of 

showing various feeding regime (Bowen & Allanson, 1982; Maitipe & De Silva, 

1985).  

1.2 Relation to the UAE 

The climate in the UAE is desert climate with low rainfall and extremely high 

summer temperatures. Like most countries in the Arabian Peninsula, UAE is facing 

freshwater shortages. Also, with the rapid population growth the demand for water 

and food production increases. UAE has limited renewable water resources which 

becoming increasingly scarce (Murad et al., 2007; Shahin & Salem, 2015). Over-

irrigation, inefficient water usage, improper irrigation systems, cultivation of water-

intensive crops and inappropriate water management practices led to water scarcity 
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that is associated with wastage of water (Murad et al., 2007; Shahin & Salem, 2015). 

Therefore, the efficient water use is needed to ensure its sustainability, which could 

be addressed through adopting modern farming methods and technologies, thereby 

the food security can be ensured throughout the country.  

The UAE relies on the imports of vegetables such as lettuce, tomatoes, cucumbers, 

and he like that often vulnerable to price and supply shocks. Therefore, aquaponics 

could be a practical solution for water-saving technology and to address water 

scarcity issues in the region while giving high economic returns (Al Hafedh et al., 

2008). Also, aquaponic systems enable prolong agricultural production in the hot 

summer months by compensating deficit of food production, and thus, regulate 

higher market prices due to seasonal shortages. Thereby, it could support to ensure 

the country’s food security through the increase of agricultural production.  

Aquaponics has been already practiced in the UAE. The Baniyas centre, located in 

the Zayed Higher Agricultural Centre for Development and Rehabilitation in Abu 

Dhabi, was formed in 2011, which is one of the most extensive commercial 

aquaponic systems in the world. It produced 10 tonnes of fish and 60,000 tonnes of 

Lettuce in the first year of operation. The centre has two greenhouses for fish and 

vegetables with an area of 2,400 m
2
 per each (Malek, 2012). In recent years, 

aquaponic farming has increased the share of locally produced vegetables like 

tomatoes, lettuce, cucumbers, and bell peppers. Also, it increased the production of 

fishes like tilapia and barramundi. Among them, lettuce and tilapia share most of the 

production for the local market. It can be concluded that Aquaponic vegetables and 

fish have good potential to supply local market and meet increasing demand. 

Statistics in 2017 show that the country imported 89% of the total lettuce consumed. 
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1.3 Feeding Frequency and Stocking Density 

The stocking density of fish in the aquaponic system is considered as an essential 

factor in addition to feeding rate and frequency since it affects nutrient availability in 

solution inside the system. Fish feed waste is considered the primary nutrient source 

for plants in the hydroponic system. Stocking density was proven to have some direct 

effects on growth, survival, water quality and fish behaviour (De Oliveira et al., 

2012). Therefore, optimum stocking density is essential to achieve maximum 

production, efficiency and profitability. Whereas, optimum feeding rate and feeding 

frequency also fundamental to obtain the best production of fish and vegetables 

(Rahman and Marimuthu, 2010). 

1.4 Objectives of the Study 

To date, there is little information about the maximum feeding frequency and 

stocking density of tilapia production with lettuce production in the aquaponic 

system in the conditions of the UAE. The information gained from the current study 

would support local aquaponic farmers to increase efficiency, economic benefits 

through maximizing production. Moreover, there are few studies that was conducted 

to examine the economic feasibility of the aquaponics systems in the climate 

conditions of the Arabian Gulf.  Current study would attempt to fill this knowledge 

gap by assessing capital and operational costs, operational costs using breakeven 

business analysis.  

Aquaponic food production in arid climates will generate additional costs that may 

be due to environmental control mechanisms (i.e. greenhouses, supplementary 

lighting, heaters and coolers), which must be used to obtain optimal production. 

Although aquaponics offers several benefits, economic analysis is essential to figure 
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out economic feasibility of the system. The current study would encourage investors 

to consider for investing more aquaponic farms in the UAE. There the objectives of 

this study were to evaluate:  

a) Lettuce and fish production with three feeding frequencies in the one-month 

trial (feeding once, twice and three times a day to satiation level ) .  

b) Lettuce and fish production with three fish stocking rates (100, 120, 140 fish 

per cubic meter). 

c) Economic evaluation of the aquaponic system using enterprise budget 

analysis which includes fish feed consumption, water, and electricity 

consumption under UAE condition.  
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Chapter 2: Literature Review 

2.1 Overview  

Enterprise budget analysis is a useful tool for understanding potential profitability 

and comparing costs and returns of a specific enterprise taking into account pre-

decided production goals. In this analysis, the breaking down costs and revenues are 

calculated in each component of the system, i.e. fish and vegetables (Engle & Neira, 

2005; Diver, 2006; Fern, 2014). Therefore, the returns from an enterprise and their 

impact on the total production cost are determined. Another advantage of enterprise 

budget analysis is to determine the potential profit. This is attained when the revenue 

from the sale of products is higher than the total of all costs associated with the 

system. Accordingly, positive returns of an enterprise indicate that it would be 

profitable, and the opposite is true (Engle & Neira, 2005; Fern, 2014). 

2.2 Enterprise Budget Analysis- A Review 

The enterprise budget analysis was developed for a greenhouse system in Alabama, 

which contains integrated tilapia and cucumber (Fern, 2014). The system produced 

23,940 lb of tilapia and 47,779 lb of cucumbers per annum. Moreover, the annual net 

return of tilapia and cucumbers were $50,274 and $47,779 respectively. The 

breakeven price for a pound of tilapia was $1.16 to cover the operation cost, with an 

extra $0.39 for each pound to cover the fixed cost. On the other hand, the breakeven 

price for a pound of cucumber was $0.25 to cover the operation cost, with an extra 

$0.11 for each pound to cover the fixed cost. For the fish component of the system, 

64% of the operational cost was for the feeding and fingerlings. For the cucumber 

component of the system, the majority of the operational cost accounted for the 
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heating of the greenhouse. The labour, land and construction costs were excluded 

from this budget analysis. 

Fern (2014) compared the economic expenses and returns of three exhaustive fish 

production systems which are: indoor recirculating tilapia system in Auburn, 

integrated tilapia/cucumber greenhouse system in Browns and catfish floating in-

pond raceway system in Alabama. The economic feasibility of each system was 

developed through the enterprise budget analysis. About catfish floating in-pond 

raceway system, in scenario one production of mixed catfish species offered net 

return which was above variable cost $13,681, and the return beyond the variable 

cost was -$1,841.  

In scenario 2, hybrid catfish production accounted higher income than variable cost 

which was $9,157 and -$6,365 return beyond the variable cost. In scenario 3, 

production of channel catfish had a net return beyond the variable and total cost of 

$18,205 and $2,684, respectively. 92% of variable cost accounted for fingerlings, 

feed and energy for aeration. While fingerling cost was the primary variable cost in 

all three scenarios. Notice that scenario 3 had a positive net return for both total and 

variable costs. While both scenarios 1 and two had gained more favourable returns 

than the variable cost, this indicates that it has potential short-term profitability. The 

least profitable among the three scenarios in the long term was scenario two because 

of the highest feed and hybrid fingerling cost. 

Economic analysis for commercial aquaponics system in Arkansas was carried out 

by (English, 2015). In this study, the author developed an individual enterprise 

budget for three scenarios that produce: tilapia and basil, tilapia and lettuce and all 

tilapia, lettuce and basil. Associated cost and revenues were calculated using cost and 
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revenues analysis. Tilapia production in aquaponics system resulted in unprofitable 

in Arkansas. The negative net return was $23,020. High fingerlings and cost of feed 

can make up for the loss of revenues related to the production of tilapia as well as the 

relatively low market prices. In the hydrodynamic fragment, the lettuce production 

was found profitable, and the expected annual net returns were $57,025.  

In this system, the high amounts of production have offset these costs, giving a net 

profit in lettuce production. For the production of basil, the enterprise budget showed 

a high potential profit with a net return of $215,753 per annum. This interestingly 

substantial return is because of the high production values and the favourable 

marketability of fresh basil. Chen et al. (2017) constructed an enterprise budget for a 

model oyster (C. gigas) farm operating at a traditional Hawaiian fishpond on the 

island of O‘ahu. In this budget, the annual projected farm output was 156,000 market 

size oysters. The total annual cost accounted $204,470.   It was estimated that net 

negative returns of −$9,469 at a selling price of $1.25 per oyster. The highest 

operational costs accounted for labour and oyster seed which comprised 64.1% and 

10.9% of the overall budget, respectively. Therefore, the study concluded that small-

scale oyster farm appears to be marginally unprofitable. However, they suggested 

that oyster enterprise may be economically viable with increasing production, 

maintain low mortality rate and high selling price. 

2.3 Aquaponics- A Review 

Aquaponics is an ecosystem that integrates the techniques of aquaculture and 

hydroponics in a recirculated manner, to produce both fish and vegetables 

concurrently. In other words, it syndicates fish and hydroponically plants production 

via symbiotically jointly, closed eco-culture (Al Hafedh et al. 2008; Graber & Junge, 
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2009; Endut et al., 2010). Due to that, aquaponic systems became ecologically 

sound, bio-integrated, productive, and sustainable technique for food production (Al 

Hafedh et al., 2008). Such systems are employed in the production of green 

vegetables, other vegetables, flowers and diverse fish kinds (Diver, 2006; Al Hafedh 

et al. 2008). This system is designed so that the waste generated from a biological 

system (i.e. fish) is used as a nutrient for the other biological system (i.e. the plant) 

(Diver, 2006).  

The aquaponic system is the water that is rich in nutrients circulated from the tank 

hosting fish to the beds were vegetable is planted. The fish effluent from the tank 

serves as fertilizer to the grown plants. It composed of fish manure, decomposing 

fish feed and algae. Aquaculture effluent contains nutrients such as ammonia, nitrate, 

nitrite, phosphorus, potassium, and other secondary, micronutrients, dissolved solids 

and waste by-products.  Plants act as a filter by absorbing the nutrients, purifying the 

water and circulated back to the fish tank.  Fish is benefited as plant roots and 

rhizobacteria removing nutrients from the water (Diver 2006; Al Hafedh et al., 

2008). 

 

The nitrifying rhizobacteria which are living in the gravel, and in association with the 

plant roots are vital to functioning the whole system through nutrient cycling. 

Nutrients in fish waste serve as a food source for nitrifying bacteria. They convert the 

toxic waste into more readily available nutrients for the plant's uptake (Diver, 2006; 

Al Hafedh et al., 2008). These nutrients have been proven to be much better and 

more effective organic fertiliser for plants compared to chemical fertilisers. Thus, the 

hydroponic plant beds important as a biofilter or natural filter. Ammonia, which is 

toxic to the fish, is broken down by Nitrosomas sp. bacteria into nitrite through the 
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process of nitrification. Nitrite, which is also toxic to fish is then converted into 

nitrate by Nitrobacter sp. Nitrate is much less toxic to fish, and it is the form of 

nitrogen that plants absorb. Nitrifying bacteria and nitrification are crucial for 

successful aquaponic production (McMurty et al., 1997).  

The aquaponics system is defined to be intensive for plant and fish production, as it 

facilitates the operational setting for the recirculation of water between the fragments 

of the system, i.e. plant growing and fish farming. As the cultivation of plant is 

performed in the hydroponic system, the vegetable produced show higher standard of 

commercial quality than conservative vegetable cultivation in an open field (Dediu et 

al., 2012). Also, an in the aquaponic system's water is used to produce the same 

amount of fish and vegetables than the water used in conventional practices (Al 

Hafedh et al., 2008). 

2.3.1 Aquaponics- Historical Development  

The history of aquaponics systems can be long back to ancient times. There were two 

independent systems namely, fish farming and hydroponics. These two systems were 

combined to integrate aquaculture with the hydroponic production of plants since the 

last few decades of the century (Fox et al., 2010). 

The practice of aquaponics was established long ago and has been in practice for 

hundreds of years. The Aztec agricultural islands system was one of the earliest, it is 

known as ‘chinampas’ which are the “floating gardens” that float on top of shallow 

lakes about 1,000 years ago to the present found in Myanmar and Bangladesh 

(Crossley, 2004). Furthermore, integrated systems where fish, ducks, pigs, chicken, 

and plants (e.g. flood rice) were grown in ponds are known since ancient times in 

Asia.  In areas like South China, Thailand and Indonesia fishes have grown in rice 
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fields 1,500 years ago (Coche, 1967). This practice of polyculture is of the present 

today, knowing that hundreds of thousands of rice field hectares are still stocked with 

fish. In integrated systems with polyculture, animal stables were built over the ponds 

for the animal faeces to be on the pond to fertilise algae eaten by fish, and the crops 

that grew in it (Coche, 1967).  

Research on combined aquaculture with hydroponics started in the early 1970s which 

at first involved experiments on different fishes and plants with different systems and 

experimental conventions (Rakocy & Hargreaves, 1993). In 1980, a significant 

revolution was attained by introducing aquaponics, which is an attractive method in 

food production that utilises only a minimum amount of fresh water resources 

(Diver, 2006; Al Hafedh et al., 2008). A research team at the University of the Virgin 

Islands (UVI) developed an aquaponic system in 1980 that produced tilapia, 

ornamental fish, aquatic plants and edible plants.   

The aquaponic researchers developed a small system at first and then expanded that 

small-scale system into a commercial system, which holds six hydroponic tanks with 

a growing area of 2,303 ft
2
 and four fish rearing tanks are containing 7798 litres of 

water each (Rakocy, 2012). This aquaponic design is one of the critical innovation in 

the aquaponics industry. McMurthy et al., (1993; 1997) introduced in 1986 the first 

closed-loop aquaponic system termed “an aqua-vegeculture system”, which used 

tilapia effluent into sand-planted tomato beds. As water drains from the sand grow 

beds, it was recirculated back into the fish tanks. The most recent developments in 

the system have also come from the University of North Carolina by some 

researchers (Fox et al., 2010).  
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2.3.2 Aquaponics in the Arabian Peninsula 

The Arabian Peninsula is one of the semi-arid regions of the world. It has low 

rainfall and extremely high evaporation rates and temperatures. Plant cultivation 

relies on the input of high amounts of irrigation water. Additionally, the region also 

has minimal fresh water resources (Nichols, 2015). These resources are also on a 

continuous decline, and the governments of these countries are supporting the 

development of farming systems with high water use efficiency, to reduce or 

minimise water wastage. In the UAE, the surface water resources are almost non-

existent, while the groundwater sources are also very few and most are non-

renewable (Mazahreh et al., 2015).  

Desalinated seawater is the primary source of potable water in the UAE. Also, the 

country is also making use of sewage water by recycling to bring it back to the 

quality that is approved by World Health Organization as potable water (Nichols, 

2015). Similarly, in Saudi Arabia and other GCC countries, there are freshwater 

shortages, and fresh water becomes a scarce commodity. Even though the water 

resources are limited, the development of aquaponics and freshwater aquaculture 

adoption are very slow in the region. However, it is being supported by the 

governments in these countries to use the latest techniques that maximize water reuse 

as well as strengthen fish culture (Al Hafedh et al., 2008; McMurtry et al., 1997; 

Simeonidou et al., 2012) stated that aquaponics could be utilized as a strategy or 

framework to diminish water necessities, fish and vegetables can be created in 

commonly advantage water reuse. 

The hydroponic systems could utilise the reused or desalinated water from the ocean 

for vegetable production and create farming in the nation. Nursery hydroponics are at 
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present advanced in the UAE. Mostly leafy vegetables are being developed utilising 

hydroponic frameworks under controlled conditions. The Zayed Higher Agricultural 

Centre for Development and Rehabilitation in Abu Dhabi was formed in 2011, which 

is the largest aquaponic centre in the world. In the very first year of operations, the 

centre produced 10 tonnes of fish and 60,000 tonnes of Lettuce (Malek, 2012).  

The project currently produces 25 tons of tilapia fish and around 400,000 head of 

lettuce annually. The Baniyas centre has a target of producing 300,000 heads of 

lettuce and 200 tonnes of fish every year (Malek, 2012). There is a proposed 

aquaponic system in Al-Khatim in Abu Dhabi. This design will include the 

production of tilapia and barramundi at intensive stocking densities, whereas the 

hydroponic system will produce leafy vegetables.  

2.4 Hydroponics and Aquaculture- A Comparison 

Hydroponics is defined as the production of vegetations without soil. In this system, 

nutrient solutions, mainly synthetic chemical fertilisers that consist some 

indispensable elements for the growth of the plant and development are supplied on a 

periodical cycle to the crop through irrigation water. There are several liquid 

hydroponic systems that include the nutrient film technique (NFT), floating rafts, and 

noncirculating water culture (Gonzales, 2002). In aggregate hydroponic systems, a 

solid, inert, medium such as sand, sand, vermiculite, perlite, gravel, coconut coir 

which contained in bag, trench, trough, pipe, or bench setups are used to provide 

support to the plant (Diver, 2006). For instance, sand growing beds were used by 

(McMurtry et al., 1990; Rakocy & Nair, 1987) used loose sheets of polystyrene to 

support the plant. Lennard and Leonard (2006) compared NFT, gravel beds, and 

floating rafts in aquaponics to produce lettuce. Hydroponic systems are usually 
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operated in a facility with a controlled environment that would help to increase the 

yield of the crops. 

Aquaculture or aquafarming, is “the breeding, rearing and harvesting of aquatic 

organisms, including fish, molluscs, crustaceans and aquatic plants”. The 

recirculating aquaculture systems (RAS) are the most efficient, water-saving and 

popular technology nowadays that is used in fish farming. Also, it offers a more 

significant advantage in optimising productivity and giving high-quality market 

products. In this system fish tank effluent is cleansed by recirculating through a 

system of filters. However, RAS is expensive and require skilled persons to operate. 

2.4.1 Plants Adapted to Aquaponics 

Green vegetables and harvests that usually consumed as a part of aquaponics are 

water spinach, spinach, lettuce, tomato, cucumber and pepper (Alder et al., 2000). 

Plants that adapt to the hydroponic cultures in an aquaponic system are selected 

based on the stocking density of the tanks hosting fish and the concentration of the 

nutrient from the effluent of the aquaculture (Blidariu and Grozea, 2011). Herbs, 

lettuce and speciality greens (e.g. chives, spinach, watercress, and basil, rosemary, 

sage, parsley and mint) are characterised by frequent requirements of nutrients and 

are suitable for aquaponic systems. Other plants that yield to fruit (e.g. tomatoes, 

cucumbers, peas, bell peppers and squash) have a higher demand of nutrients and 

respond appropriately to the well-established aquaponic systems (Diver, 2006; 

Rakocy et al., 2006). 

Lettuce is a prominent vegetable crop that grows in aquaponic systems. It has 

heritably diverse shapes, colours and textures. Lettuce proliferates, reach to 

harvestable plant age relatively quickly. Also, it is consumed slowly throughout the 
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world (Lennard and Leonard, 2006). Lettuce can be harvested within four to five 

weeks (Rakocy et al., 2006). Moreover, a high proportion of the harvested biomass is 

edible, unlike tomato and cucumber (Rakocy and Hargreaves, 1993).  

2.4.2 Fish Species in Aquaponics  

Aquaponic systems successfully raising various types of fish species including 

several varieties and hybrids of tilapia such as Nile tilapia (Oreochromis niloticus), 

red tilapia, hybrid tilapia, (Oreochromis urolepis hornorum x Oreochromis 

mosambicus), and several other fish species such as koi carp (Cyprinus carpio), 

hybrid carp (Ctenopharyngodon idella x Aristichthys nobilis), hybrid striped bass 

(Morone chrysops x Morone saxatilis) (Selock, 2003), goldfish (Carassius sp.), 

rainbow trout (Oncorhynchus mykiss) (Adler et al., 2000), Australian barramundi 

(Lates calcarifer), arctic char (Salvelinus alpinus), and murray cod (Maccullochella 

peelii peelii), and various crustaceans such as red claw crayfish (Cherax 

quadricarinatus), louisiana crayfish (Procambarus clarkii), and giant freshwater 

prawn (Macrobrachium rosenbergii) have also been grown in aquaponic systems 

(Rakocy et al., 2006; Diver, 2006; Nelson, 2009; Hollmann, 2013).   

Tilapia (Oreochromis niloticus) is the most commonly used fish in aquaponics 

systems and is the favoured species for tropical and sub-tropical regions of the world 

(Rakocy et al., 2004; 2006; Yue and Zhou, 2008). Tilapia is a warm water species 

that produces white-fleshed meat (Diver, 2006). High availability, easy to breed, 

ability to grow and reproduce in a wide range of environmental conditions, easy to 

adopt indoor environment and fast growing are the most likely factors that make 

tilapia species ideal for use in aquaponics systems. Also, they also exhibit several 

feeding regimes, consuming bacteria, diatom-rich sediments, particulate detritus, 
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phytoplankton, zooplankton, benthic organisms, insects and fish (Bowen & Allanson, 

1982; Maitipe & de Silva, 1985). Moreover, they can tolerate fluctuating water 

conditions such as pH, temperature, oxygen and dissolved solids, and also it tolerates 

stress by handling (Yue and Zhou, 2008), and has high resistant to diseases (Hussain, 

2004; Diver,2006; Tsadik & Bart, 2007). It can be produced in extensive, semi-

intensive and intensive culture systems.  

Tilapia experiencing stress at low Dissolved Oxygen, high total nitrate levels, high 

total ammonia nitrogen levels and low pH levels. The ideal growing conditions for 

this species, as most others, lean towards a higher DO than 6ppm, higher pH levels 

than 6, and low ammonia and nitrite levels. Catfish (e.g. Clarias gariepinus) is 

tolerant to low oxygen and high nutrient contents, and common carp (Cyprinus 

carpio) can be cultured at high density and much colder waters than most tilapia 

species. Although their feeding regimes are not as broad, their water quality 

tolerances are similar to or exceed those of many tilapia species (Jingbo et al., 1994).  

2.5 Aquaponic System Designs  

There are many aquaponic setups used in worldwide. Most of these setups 

constructions are based on three main types of aquaponic systems: media-based 

growing (or grow beds filled with media), deep-water culture (DWC) or floating 

rafts, and nutrient film technique (NFT). Aquaponic systems have three main 

components including the aquaculture unit, the hydroponics unit and the intermediate 

or filter unit. The essential elements of an aquaponic system include: a tank to rear 

fish; a clarifier to remove suspended solids such as small particles which originated 

from fish waste, algae, and uneaten food; a biofilter which is the substrate for 
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adhesion of nitrify bacteria, and oxygenation; a hydroponic plant growing beds and a 

sump pump (Rakocy & Hargreaves 1993; Rivara, 2000; Lennard & Leonard 2006).   

In the media-based method, plants are grown in large containers which filled with 

media (gravel and perlite) and water from the fish tank is pumped to these containers. 

There are an essential flood and drain systems, designs with sump tanks, constant 

height one pump systems, and even systems using barrels (Bernstein, 2011; Lennard 

& Leonard, 2006). In this system, seeds can be planted directly into the media, or 

transplanted from nurseries.  

The media provides several benefits including serving as an efficient solids filter, 

providing ideal growth environments for beneficial bacteria, and thereby ensuring 

biofiltration and nitrification to make the water reusable for the fish. Also, provide 

support for the plants, ensure supply of nutrients and oxygen to plants, nutrients to be 

accessible to plant roots. However, this system is more appropriate for small-scale as 

it does not produce a maximum plant production. NFT and DWC is mostly used for 

commercial scale, and they produce at a faster rate.  

NFT uses the more similar technique to hydroponics. A shallow stream of water is 

recirculated in horizontal pipes into the root system of the plants.  This water 

contains all the dissolved nutrients for plant growth. Plants are grown in small pots 

filled with media that are inserted in holes in the gutters (long tubes or channels). 

NFT is more suit for shallow roots plants such as herbs and lettuce, than the plants 

with more massive root systems that can be clogged the channels (Love et al., 2015).  

DWC system which is also known as floating rafts system. In this system plant, roots 

are suspended directly into large water-filled beds or troughs in on floating rafts. 
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Floating rafts which support the shoots above the waterline, as the roots hang into the 

water. An air pump supplied air from the bottom of the raft at regular intervals for 

oxygenating and kept the roots from drowning. This system is the most common and 

promising for large commercial aquaponics. Also, it is a more straightforward setup, 

relatively inexpensive, more comfortable to construct, low maintenance cost; crops 

are easy to harvest and reliable. The aquaponic system has been pioneering in this 

technique for many years. 

2.5.1 The University of Virgin Islands (UVI) System 

There are several aquaponic models used in the world including the systems 

developed by the North Carolina State University, the University of the Virgin 

Islands (e.g., the Speraneo system), the Freshwater Institute, the Cabbage Hill Farm, 

and the New Alchemy Institute (Diver, 2006).  

The research team of James Rakocy (the University of the Virgin Islands) led to 

developing the first aquaponic system, which could be applied either outdoors under 

suitable growing conditions or in an environmentally controlled greenhouse (Rakocy 

et al. 2006). This system has been produced tilapia and diverse types of vegetables, 

such as basil, lettuce, and okra with outstanding quality and yield. Thus, this is 

considered as a successful design model for the aquaponic industry. The UVI system 

can be produced 5MT of tilapia annually under optimum temperatures and feeding 

management.  Production averages 580 kg of tilapia every six weeks and 160 

kg/m
3
/year of rearing tank space. The system can produce 1,400 cases of lettuce (24-

30 heads/case) or 5MT of basil or 2.9MT of okra pods (Rakocy et al., 2006).   

The system consists of four aquaculture tanks (7.8 m
3
 each), two clarifiers, four filter 

tanks and one degassing tank, air diffusers, one sump, one base addition tank, pipes 
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and pumps, and six hydroponic troughs (11.3 m
3
 each) (Figure 1). The total water 

volume and hydroponic tank growing area are 110 m
3
 and 214 m

2 
respectively 

(Rakocy et al., 2006). In this system, water from the aquaculture tank goes through 

sump, clarifier and degassing tanks that remove most of the solids from the fish 

waste. The aquaculture effluent is linked to floating raft hydroponics. The water is 

pumped into six hydroponic tanks that are fed by effluent lines. Hydroponically 

grown crops take nutrients from the water and purify and then recirculate back the 

fish tank.  

The treatment processes consist of aeration, solids removal, denitrification, 

decomposition, degassing, nitrification and direct uptake of ammonia and other 

nutrients by plants. The fish are fed ad libitum three times daily with floating pellets. 

Biological methods control plant pests and diseases.  pH is monitored daily and 

maintained around 7.0 by alternately adding equal amounts of calcium hydroxide and 

potassium hydroxide (Rakocy et al., 2006).   

The UVI system is simple, reliable, and robust and represents an appropriate or 

intermediate technology. Simultaneously, it provides several substantial benefits. It is 

able to give continuous production of plants and fish and requires less land area.   

Also, it conserves and reuses water, and recycles nutrients. Thus, production is 

sustainable. However, the UVI system requires high capital investment, reduced 

energy inputs and skilled management, as illustrated in Figure 1 (Rakocy et al., 

2006). 
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Figure 1: Aquaponic system   

 (Rakocy et al, 2006) 

 

 

Figure 2: Basil production in the UVI aquaponic system   

(Rakocy et al., 2006) 

 

2.5.2 Importance of Aquaponic Systems 

Aquaponic systems integrate aquaculture and hydroponics in a recirculating 

engineered ecosystem to simultaneously produce fish and different vegetables.  Since 

an integrated system, aquaponics provides various environmental and economic 
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benefits than working as two separate systems; non-recirculating aquaculture systems 

and hydroponic systems that use chemical nutrient solutions. The study by (Adler et 

al., 2000) has also revealed that the hydroponic component provides potential 

profitability as a part of the integrated system, which gives significant annual returns 

from plant production. Also, aquaponics has great importance regarding maximising 

the food production (Mateus, 2009).  

Aquaponics is an efficient, cost-effective, and water saving technology that consume 

less water while reusing (McMurtry et al., 1997). The system is continuously 

recirculating nutrient-rich water. Thus, extra water needs to be added only to 

compensate for evaporation. The hydroponic systems need more water and should 

maintain high water quality. In fact, aquaponic systems do not require such higher 

water quality. Moreover, there is no toxic runoff to the environment.  The effluent 

from fish tank contains phosphates and nitrates which would typically be discharged 

to the environment and could contribute to pollution (McMurtry et al., 1997; Al-

Hafedh et al. 2003; Rakocy et al. 2004).  Removal of nutrients by plants prolongs 

water use and provide several environmental benefits. The system does not 

encourage the over nourishment of water resources due to nutrients, which can cause 

adverse effects including eutrophication with algal blooms (Endut et al., 2010).  

The aquaponics; however, does not need soil. Therefore, marginal land can be 

utilised to produce fish and vegetables. These systems are the commercially viable 

solution for water scarce arid regions. Growing plants in containers filled with 

different non-soil media and using direct nutrient application can eradicate soil-borne 

pests, diseases and weeds. The hydroponic unit serves as a biofilter (Mateus, 2009); 

therefore, a separate biofilter is not required. Aquaponic systems can increase local 
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availability of a variety of vegetables and fish throughout the year. No pesticides, 

herbicides or antibiotics are used at any stage in the aquaponic production system 

(Rakocy, 1999). Thus, it can be considered as a part of the organic agriculture. Also, 

aquaponic systems are leading for water, gas, energy and land conservation. 

Consequently, the aquaponic systems increase profit potential through cut off 

chemical fertiliser costs and shared costs for operation and infrastructure (Rakocy, 

1999). However, high investment and operation costs are the significant constraints 

for the adoption of this system in developing countries (Rakocy & Bailey, 2003). 

2.5.3 Aquaponic Feeding Rate Ratios  

Aquaponic fish to plant ratios or aquaponic feeding rate ratios is the most critical 

factor in the designing of an aquaponic system (Rakocy, 2007; Lennard, 2012). 

There are many approaches to size the two major components in the system (the fish 

and the plant components) either small-scale context or commercial scale context. 

However, there are two scientifically based approaches: The Rakocy approach and 

the Aquaponic Solutions/Lennard approach (Lennard, 2012). 

In the aquaponic system, the fish are fed, the fish produce wastes and this waste is 

utilised by the plants as a nutrient for their growth. Therefore, the amount of waste 

produced is in direct proportion to the amount of fish food consumed by the fish. The 

amount of plants that can be grown is proportional to the number of nutrients 

available which in turn depends on the amount of waste produced by the fish. This, 

in turn, depends on how much food is fed to the fish (Lennard, 2012).  

Lastly, the only predictable direct association between 2 major components of the 

aquaponic system is based on the amount of fish feed that enters the system and the 

number of plants we grow (Rakocy, 2007; Lennard, 2012). Accordingly, to size the 
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aquaponic system or to calculate the feeding rate ratio should determine, how many 

plants and of what species would like to produce, how much area the plants need to 

grow, how much fish feed, the fish need to eat to meet the nutrients for those plants, 

the weight of fish are required to eat that much fish food, what volume of water that 

amount of fish need to rear (Lennard, 2012).  

2.5.4 The Rakocy Approach 

James Rakocy and the team at the University of the Virgin Islands were the first to 

develop scientifically proven and predictable approach to aquaponic feeding rate 

ratios. Accordingly, for a raft hydroponic system, the optimum ratio varies from 60 

to 100 g/m
2
 /day, and for the nutrient film technique hydroponic system it is 

approximately 25% of the ratio used for a raft system (Rakocy, 2007). 

For example, if the fish are being fed 1,000 g per day on average, the area devoted to 

hydroponics production should be 16.7m
2
 for a feeding rate ratio of 60 g/m

2
 /day. 

Conversely, if 200 m
2
 are devoted to plant production, then the fish tanks, tank 

volumes, fish stocking rates, and production schedules should be manipulated in such 

a way as to achieve average daily feed input to the system of 20,000 g (44 lbs) if a 

feeding rate ratio of 100 g/m
2
 /day is desired (Rakocy, 2007). Also, (Rakocy et al., 

2006) pointed out that the rate of change in nutrient concentration can be influenced 

by varying the ratio of plants to fish. (Al-Hafedh et al., 2008) used a ratio of 56 g fish 

feed m
−2

 in their study as the efficient feeding rate ratio. 

2.5.5 Stocking Density and Feeding Frequency 

Nutrients dynamics are quite sophisticated in an aquaponics system (Seawright et al., 

1998). In such system, the feed is the primary source of nutrients which are 

eventually tied up as the biomass of animal, plant and microbes or stayed free in the 
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water. When no discharge, no nutrients are output until the animal and plant are 

harvested as commercial crops. Through microbial decomposition, the insoluble fish 

metabolite and unconsumed feed are converted into soluble nutrients which then can 

be absorbed by the plant. Therefore, plant growth and production are indirectly 

related to feeding strategies, fish metabolic condition and microbial activity. While 

plant removes the soluble nutrients, water is filtered. Consequently, the nutrient 

availability for plant and fish, and thereby water quality or fish growth and 

production highly depends on the ability of nutrient uptake by the plant (Liang and 

Chien, 2013). In addition to those factors system designs, plant and fish species and 

other physical factors such as temperature, light sources and photoperiod also impact 

it (Gopal, 1987; Urbanc-Bercic and Gaberscik, 1989).   

The stocking density of fish in the aquaponic system is essential for the proper 

functioning of the system. It is essential to maintain optimum stocking densities with 

other factors in the aquaponics systems, since it effects on the water quality, and 

consequently the production of plant and fish. Also, it leads to higher growth rate, the 

yield of fish, and in turns provides higher economic benefits from the system (Shoko, 

2016). Good water quality conditions allow higher stocking densities. Tilapia can be 

cultured at high densities in floating cages wherein large lakes and reservoirs which 

practised in China, Indonesia, Mexico, Honduras, Colombia, and Brazil to achieve 

higher productivity (FAO, 2018). However, high stocking densities could adversely 

impact on feeding, growth, and other physiological processes of fish (Wedemeyer, 

1997). For instance, high stocking densities can cause intraspecific competition for 

sharing space and feed. It also resulted in declining of water quality conditions and 

uneven food distribution. Consequently, high density leads to stressful condition for 

fish (Houlihan et al., 2001). 
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Feeding frequency can affect feed intake of fish, the quantity of uneaten feed, feed 

utilisation efficiency, and consequently, metabolite and excreta of fish and water 

quality. In an intensive culture of fingerling walleye Stizostedion vitreum, (Phillips et 

al., 1998) found that higher frequency feeding resulted in higher daily dissolved 

oxygen (DO) and lower total ammonia nitrogen in the system. Postlarval Ayu 

Plecoglossus altivelis with higher feeding frequency at lower feeding rate had higher 

survival and growth (Cho et al., 2003). When fed at 10% body weight daily, newly 

weaned Australian snapper Pagrus auratus fed eight times a day had higher growth 

and lower size heterogeneity than fed 4 and two times a day (Tucker et al., 2006). 

The feeding rate of an aquaculture system relies on the stocking fish density, feeding 

frequency, feeding practices, the health of the fish, size of the fish and feed pellet. In 

addition to these factors, it depends on water temperature, water quality and the 

specific objectives of the aquaculture production system (Wellborn, 1989; 

Hargreaves & Tucker, 2003). The amount of feed supplied to the tank is related to 

the density of the fish. More feed is needed for higher stocking densities of fish than 

at lower densities. The size of fish affects food consumption. Because small fish 

require more food about body weight, and more abundant fish need a higher overall 

quantity of food. Moreover, feed distribution should be properly done by considering 

sufficient time and space for fish to consume all the feed, and in turns attain adequate 

growth while minimising feed waste (Cho & Bureau, 2001).   
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Chapter 3: Materials and Methods 

3.1 System Description 

This section provides descriptive illustration and outline of the aquaponic system 

used in the experimental part of this thesis. The dimensions of the insides Aquaponic 

units inside was 400 m
2
 greenhouse with a 120 m

2
 plantation area in four turfs (each 

24.4* 1.23* 0.42 m
3
 L W H covered with 2-inch-thick perforated Styrofoam sheets), 

two circulars (3m diameter and 1.2 m high) fish tanks each with 7.7 m
2
. The fish 

tanks connected to water treatment units include circular with cone shape bottom (2 

m
2
 diameter with water volume of 4.5 m

3
) swirl separator for mechanical filtration 

connected to U-tube to remove sludge by siphoning followed by two connected 

biological filters for nitrification, (1.8*80*0.6 m
3
 each) tanks one third filled (35 kg) 

with plastic media (HDPE polymer with very high surface area; 899 m
2
/m

3
) from 

Pentair’s Sweetwater (USA).  

Water from the biological filters moves to a CO2 stripping tank (1*0.6*0.6 m
3
) 

before moving to the four plantation raceways. Water moves in the system at a rate 

of 10 m
3
L/hour from fish tanks to the water treatment system and plantation 

raceways by gravity and returns to fish tanks using 3 Hp water tanks. Total water 

volume 58 m
3
. The system was aerated by an air blower (S53-AQ Sweetwater 

Regenerative Blower 2.5 HP (MFD; Aquatic Eco-Systems, INC Apopka, Florida 

USA) through one-inch PVC pipe and a rubber houses. Each fish tank has 20 silicon 

air stones (each 20 cm length), and each water trough has ten air stones (each 10 cm 

in length). Water consumption from evaporation and evapotranspiration and cooling 

system were measured using two water meters (KENT PSM 15 mm water meter PN 

16, GRUNDFOS, England. Electricity consumption was measured using one 
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electrical meter (Elster A1100 polyphase meter by Elster metering Ltd. Stafford). 

One air cooler fan: Euroemme® EM50n, exhaust fan with 1.5 HP motor. (fan) 

Propeller diameter 1,270 mm. 6 Kista, blade, Sweden. One WATER PUMP for 

cooling pad: GRUNDFOS DK-8850, 1 HP single phase motor capacity of water 

pulling five m
3
/h. Figure 3 outlines the core components of the experimental 

aquaponic system. 

 

Figure 3: Components of the experimental aquaponic system 

3.2 Fish Introduction and Acclimatization in Aquaponic Tank 

Before starting the experiment, the whole aquaponics system was cleaned thoroughly 

and kept dry for one month. After that, tap water was introduced in full aquaponics 

system. The initial water quality parameters were analysed, and water was circulated 

in the closed condition of the aquaponics system for one week before introducing 

fish to the system. Then a sample of water was drained to analyse its quality to 

confirm that it meets the standard aquaponic water quality parameter; otherwise, the 
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water parameters should be adjusted to the desired level that allows substantial 

growth of fish and lettuce. 

Then, the selected Tilapia (Oreochromis niloticus) fish, fingerlings (approximately 5 

to 8cm length and 5 – 10 gm weight) was introduced into the stocking tank of the 

greenhouse and acclimatised for one week under greenhouse conditions. At the 

beginning of the period of acclimatisation, specifically in the first two days, the 

fingerlings are starved to reduce the stress from the new environment. Then, the 

fishes were fed using a commercial feed (32% of Crude protein) purchased from 

ARASCO Feeds from Saudi Arabia. The fishes were fed once, twice or three times a 

day with the ratio of 5% of the total weight of the fish in the tanks.  

After seven days of the fish acclimatisation, the Lettuce seeding started in cultivation 

area. The seeds are germinated directly in the same aquaponics water condition. 

Seeds can be transferred in a cleaned plastic cup of rock wool substrate. The seeds 

contained rock wool cups that are directly inserted in the stay foam sheet in the plant 

cultivating raceway of the aquaponic system. 

The aquaponic system environment is controlled by pests and ants. Also, the sticky 

papers are hanged in the surroundings of the plant cultivating areas to catch the fly 

pests. After the germination started, the growth parameters were marked once every 

ten days, while the fishes were counted and weighted two months once. Water 

quality and light intensity were monitored once every week. Also water chemistry 

was analysed twice a month.  
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3.2.1 Experiment 1- Feeding Frequency 

Fish tanks were stocked with 100 fish/m
3 

of Oreochromis niloticus; fingerling was 

achieved with an average weight of 5 g. Nile tilapias were fed while floating with a 

commercial feed of 36% protein from Arabian Agricultural Services Company 

ARASCO, Saudi Arabia. This experiment was conducted in three aquaponic 

systems; The acclimatised fishes were fed with floating feed in aquaponics system 

with feeding frequencies of 1 time per day, two times per day and three times per 

day. The experiment was performed for a period of three months with a replicated 

study. At the end of the experiment day the tilapia growth and growth parameters 

namely; fish weight gain (WG), feed intake (FI) and feed conversion ratio (FCR). 

Additionally, protein and fat deposition values were calculated using the following 

equations: 

           (1) 

    
     

  
     (2) 

Where, W1 and W2 are the mean initial and final weight in grams, 

respectively. 

Raceways were planted in Styrofoam at a rate of 24 lettuce (Lactuca Sativa) seeds 

per square meter. Lettuce seeds were inserted through a piece 1-inch Rockwool cube, 

2-inch length inside a perforated bottom plastic cub. Lettuce was harvested every 30 

days, and a new seed was planted to start a new crop. Lettuce characteristics of each 

harvest were evaluated by measuring Length (green to root), green length, root 
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length, total weight, green weight (head), leaf weight, leaf length, leaf width, and an 

average number of leaves.  

Sludge was collected daily by syphoning from the swirl separator in a plastic bucket 

in the left to settle the solids for one hour. Then, it was transferred to 2 m
2
 tray open 

to air for drying. Floating sludge was collected using fine net three times a day, and 

then placed try above a dry.  

3.2.2 Experiment 2- Fish Stocking Density 

Fish tanks were stocked with 100 fish/m
3
, 120 fish/m

3
 and

 
140 fish/m

- 3 
of 

Oreochromis niloticus fingerlings are introduced in aquaponics system one, two and 

three respectively with an average weight of 15-20g. The Nile tilapias were fed while 

floating with a commercial feed of 36% protein from Arabian Agricultural Services 

Company ARASCO, Saudi Arabia. The experiment was performed for a period of 

three months with a replicated study at the end of the experiment day the tilapia 

growth and growth parameters namely; fish weight gain (WG), feed intake (FI), and 

feed conversion ratio (FCR). Additionally, protein and fat deposition values were 

calculated using equations (1) and (2) that were mentioned in the last section. 

Raceways were planted in Styrofoam at a rate of 24 lettuce Lactuca sativa seeds per 

square meter. Lettuce seeds were inserted in a piece one-inch Rockwool cube 2-inch 

length inside a perforated bottom plastic cub. Lettuce was harvested every 30 days, 

and new seeds were planted to start a new crop. Lettuce characteristics of each 

harvest were evaluated by measuring Length (green to root), green length, root 

length, total weight, green weight (head), leaf weight, leaf length, leaf width, and an 

average number of leaves.  
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Sludge was collected daily by syphoning from the swirl separator in a plastic bucket 

in the left to settle the solids for one hour. Then, it was transferred to 2 m
2
 tray open 

to air for drying. Floating sludge was collected using fine net three times a day, and 

then placed try above a dry. 

3.3 Analyses  

The LUX meter (Make:  Takemura; Model: DM-28) measured the light intensity 

weekly, whereas, analysing the water quality after treatment from tanks weekly. pH, 

Temperature and Electrical conductivity was measured using HACH HQd portable 

meter (Make: HACH; Model: HQ 40d), TDS (HACH TDS meter Pocket pro™ 

(HACH; Model: DR 900), TAN (Total Ammonia Nitrogen) (Salicylate method) 

Nitrite (USEPA Diazotization Method), Nitrate (Cadmium Reduction Method) and 

Fe (FerroVer® Method) using HACH portable calorimeter (HACH; Model: DR 

900). DO, Orion star™ and Star plus meter (Make Thermo Scientific; Model:  Orion 

4 star), Total Alkalinity and acidity were measured by titration method of APHA 

standard methods 2003, Minerals Analysis was done using ICP-OES. (Inductively 

Coupled Plasma Optic Emission Spectroscopy (ICP_OES) Model 710- ES, Varian, 

United States). 

Experimental diet and fish, lettuce and sludge samples were analysed in triplicate for 

moisture using a forced air oven, crude protein by macro-Kjeldahl, crude fat by ether 

extraction method total ash by muffle furnace (550 
o
C) for 24 h, and CF (for feed 

samples only) using Lab. Conco (Lab. Conco Corporation, Kansas City, MO, USA). 

The methods of approximate analysis were performed as described in AOAC (1990). 

Growth energy was calculated based on standard energetic values for protein (23.67 

MJ kg), carbohydrate (17.17 MJ kg)  and lipids (39.79 MJ kg) (NRC 1993).  
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Figures 4 to 6 illustrating different fragments of the adopted experimental aquaponic 

system . 

 

Figure 4: The greenhouse hosting the different system fragments 

 

 

Figure 5: Raceway 
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Figure 6: Plant culture raceway 

The different products from the system, i.e. lettuce and tilapia fish after the 

experiment period are displayed in Figures 7 and Figure 8, respectively. 

 

Figure 7: Lettuce produced from the system 
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Figure 8: Fish species used in the system 

 

3.4 Statistical Analysis 

All data were subjected to one-way ANOVA to determine significant (P > 0.05) 

differences among the treatment means. Student–Neuman–Keuls multiple range test 

(Glantz, 1989) was used to distinguish significant differences among treatment 

means. All statistical analyses were conducted using a system for Windows (version 

8.0, SAS Institute, Cary, NC, USA, 1995). 
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Chapter 4: Results and Discussion 

4.1. Experiment Results  

4.1.1 Feeding Frequency 

The factors that are manipulated by the different feeding frequencies are studied as 

well; it was observed in the experiment that while fixing initial weight (~50 g/fish) 

the mortality rate (~2%) were not changed. The final weight, weight gain, feed intake 

and feed conversion ratio of the fish increased with increasing the feeding frequency. 

Growth rate, feed utilisation, and feed conversion values for O. niloticus (each value 

is a mean of two observations) are shown in Table 1.  

Table 1: Varied feeding frequency analysis of O. niloticus 

F.F. Initial Weight 

(g/fish) 

Final Weight  

(g/fish) 

Weight Gain  

(g/fish) 

Feed Intake  

(g/fish) 

FCR*  

(%) 

Mortality 

(%) 

1 50.2 
a
 126.3 

a
 76.0

 a
 69.6

 a
 1.8

 a
 2.2

 a
 

2 52.1
 a
 144.5 

b
 93.4

 b
 180.3

 b
 1.9

 b
 2.0

 a
 

3 51.7 
a
 168.6

 c
 116.9 

c
 271.1

 c
 2.3

 c
 2.3

 a
 

abc
 Values in the same column with superscripts are significantly different (P < 0.05). 

*FCR, Feed conversion ratio (feed intake/average weight gain per fish) 

Another parameter that increased with increasing feeding frequency is the tilapia and 

lettuce production, that increased fish density. The mutual impact of fish production 

and lettuce production is shown in Table 2.  

Table 2: Fish production and L. sativa production   

F.F. No. of fish 

(fish/m
3
) 

Fish production 

(kg/m
3
) 

No. of lettuce heads  

(head/m
2
) 

Lettuce production  

(kg/m
2
) 

1 100 7.6
 a
 28 5.7

 a
 

2 100 9.3
 a
 28 6.3

 b
 

3 100 11.7
 a
 28 8.1

 c
 

abc
 Values in the same column with superscripts are significantly different (P < 0.05). 

The chemical composition of the products (Fish and Lettuce) while varying the 

feeding frequency were also studied approximate analysis (crude fats, and less 
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moisture was achieved by increasing feeding frequency, while no changes were 

observed in the crude protein and ash content ) of the fish , as shown in Table 3. 

Table 3: Tilapia O. Niloticus approximate composition 

F.F. Moisture Ash (DM) Crude Protein (DM) Crude Fat (DM) 

1 75.68
 a
 13

 a
 57.5

 a
 30.1

 a
 

2 73.84
 a
 13.0

 a
 54.4

 b
 32.4

 b
 

3 72.2
 a
 12.8

 a
 51.3

 c
 35.6

 c
 

abc
 Values in the same column with superscripts are significantly different (P < 0.05) 

Body composition expressed as a percentage of dry fish weight 

L. sativa composition was not affected by the feeding frequency, as shown in Table 

4. 

Table 4: Lettuce L. sativa head approximate composition 

F.F. Moisture  

(WB) 

Crude Protein  

(DM) 

Crude Fat  

(EE) (DM) 

CHO 

(%) 

Crude Fibre  

(DM) 

Ash  

(DM) 

Energy 

(KJ/g) 

1 97.1
a
 27.0

 a
 3.5

 a
 36.1

 a
 14.7

 a
 21.1

 a
 13.1

 a
 

2 96.6
a
 24.9

 a
 3.6

 a
 35.9

 a
 13.0

 a
 20.9

 a
 13.5

 a
 

3 95.7
 a
 23.2

 a
 3.9

 a
 36.1

 a
 12.8

 a
 22.5

 a
 13.6

 a
 

a
Values in the same column with superscripts are significantly different (P < 0.05) 

Body composition expressed as a percentage of dry fish weight 

Table 5 shows the water quality as affected by the feeding frequency. It was 

observed that ions of Sodium (Na), Copper (Cu) and Zinc (Zn) were not significantly 

changed while the other elements increased with increasing feeding frequency. 

Table 5: Average of initial/final water mineral content of each treatment in ppm 

F.F. Ca  Na K Mg P S Co Cu Fe Mn Mo Zn 

0 39.8
 a
 0.003

a
 0.01

a
 0.67

a
 1.6

 a
 3.6

 a
 0.01

a
 0.02

a
 44.2

a
 1.0

 a
 3.3

 a
 0.013

a
 

1 60.7
 b
 0.004

a
 0.02

b
 0.02

b
 8.2

 b
 8.7

 b
 0.06

b
 0.02

a
 50.8

b
 7.9

 b
 7.3

b
 0.032

a
 

2 94.4
 c
 0.003

a
 0.04

c
 0.03

b
 16.8

c
 16.0

c
 0.14

c
 0.02

a
 60.7

c
 14.5

c
 14.8

c
 0.033

a
 

3 109.9
d
 0.004

a
 0.05

c
 0.02

b
 40.9

d
 32.3

d
 0.19

d
 0.02

a
 77.8

d
 19.5

d
 41.7

a
 0.031

a
 

abcd
 Values in the same column with superscripts are significantly different (P < 0.05) 
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Table 6 shows the performed water quality tests and the effect of feeding frequency 

on it, water quality parameters changed significantly as feeding frequency increased. 

Table 6: Average of water quality parameters of each treatment in two months 

F.F. Dissolved Oxygen 

(mg/l) 

pH TDS 

(ppm) 

EC 

(mV) 

Ammonia 

(ppm) 

Nitrate 

(ppm) 

Nitrite 

(ppm) 

1 7.3
 a
 6.8

 a
 370.0

 a
 19.9

 a
 0.4

 a
 6.3

 a
 0.2

 a
 

2 6.1
b
 6.2

 b
 639.9

 b
 49.4

 b
 1.6

 b
 14.3

 b
 2.2

 b
 

3 5.9
 c
 6.8

 c
 837.1

 c
 57.7

 c
 1.4

 c
 15.5

 c
 8.3

 c
 

abc
 Values in the same column with superscripts are significantly different (P < 0.05) 

4.1.2 Stocking Densities 

Some factors manipulated by the stocking density were studied as well; it was 

observed in the experiment that while fixing initial weight (~50g/fish), the mortality 

rate (~1.8%) did not change significantly. The final weight, weight gain, feed intake 

and feed conversion ratio of the fish decreased substantially with increasing the 

stocking density, as shown in Table 7.  

Table 7: Growth, feed utilisation and feed conversion values for O. niloticus   

S.D. 

 

Initial weight 

(g/fish) 

Final weight 

(g/ fish) 

Weight gain  

(g/fish) 

feed intake  

(g/fish) 

FCR  

(%) 

Mortality 

(%) 

100 130.8 234.7
 a
 103.9

 a
 190.1

 a
 1.83

 a
 1.8

 a
 

120 131.2 212.2
 b
 81.0

 b
 138.5

 b
 1.71

b
 1.8

 a
 

140 129.5 198.3
 c
 68.8

 c
 104.7

 c
 1.52

 c
 1.6

 a
 

abc
 Values in the same column with superscripts are significantly different (P < 0.05). 

*FCR, Feed conversion ratio (feed intake/average weight gain per fish) 

Another parameter that increased with increasing stocking density is the tilapia and 

lettuce production, that increased considerably, as shown in Table 8. 
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Table 8: Fish production and lettuce production 

S.D. Fish production 

(kg /m
3
) 

No. of lettuce heads 

(head/m
2
) 

Lettuce production 

(kg/m
2
) 

100 8.20
 a
 28 6,21

 a
 

120 9.84
 a
 28 7.22

 b
 

140 12.14
 a
 28 8.65

 c
 

abc
 Values in the same column with superscripts are significantly different (P < 0.05). 

The quality of the products while varying the stocking density was also studied. 

Nutritional-wise more crude fats and less moisture were achieved by increasing 

stocking density, while no changes were observed in the crude protein and ash 

content, as shown in Table 9. 

 Table 9: Whole body composition of O. niloticus 

S.D. Moisture Ash Crude Protein Crude Fat 

100 73.7
 a
 13.2

 a
 55.3

 a
 31.8

 a
 

120 72.8
 a
 13.7

 a
 55.4 31.4

 a
 

140 73.5
 a
 13.5

 a
 56.3 30.2

 a
 

a
 Values in the same column with superscripts are significantly different (P < 0.05) 

Body composition expressed as a percentage of dry fish weight 

Lettuce L. sativa head composition was not affected by the stocking density, as 

shown in Table 10.  

Table 10: L. sativa head approximate composition  

S.D. Moisture 

(WB) 

Crude Protein 

(DM) 

Crude Fat 

 (DM) 

CHO Crude Fibre 

(DM) 

Ash 

(DM) 

Energy 

(KJ/g) 

100 95.7
 a
 26.0

 a
  3.9

 a
  3419.0

 a
 13.8

 a
 22.1

 a
 13.4

 a
 

120 95.9
 a
 25.8

 a
 3.5

 a
 35.2

 a
 13.0

 a
 22.4

 a
 13.9

 a
 

140 96.4
 a
 23.7

 a
 3.6

 a
 36.8

 a
 13.2

 a
 22.8

 a
 13.5

 a
 

a
 Values in the same column with superscripts are significantly different (P < 0.05) 

Body composition expressed as a percentage of dry fish weight 

Table 11 illustrates the quality of water was also affected by the stocking density. It 

was observed that among other elements Sodium (Na), Copper (Cu) and Zinc (Zn) 

were not significantly changed while the other elements increased with increasing 
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stocking density. Table 12 shows the performed water quality tests and the effect of 

feeding frequency on it, water quality parameters changed significantly as stocking 

density increased. 

 

Table 11: Average of initial/final water mineral content of each treatment in ppm 

S.D. Ca  Na K Mg P S Co Cu Fe Mn Mo Zn 

0 35.6
 a
 0.003

a
 0.01 0.67 1.6 3.6

 a
 0.01 0.02 44.3 1.0 3.3 0.01 

100 67.8
 a
 0.006

a
 0.02

a
 0.02

a
 11.4

a
 9.1

 a
 0.08

a
 0.02

a
 62.2

a
 8.5

 a
 7.4

 a
 0.04

a
 

120 98.1
b
 0.003

a
 0.03

b
 0.04

b
 19.8

b
 20.0

b
 0.08

b
 0.02

a
 78.4

b
 17.1

b
 17.4

b
 0.05

a
 

140 109.9
c
 0.004

a
 0.03

c
 0.03

c
 45.9

c
 38.5

c
 0.09

c
 0.03

a
 76.5

c
 22.0

c
 51.3

c
 0.04

a
 

abcd
 Values in the same column with superscripts are significantly different (P < 0.05) 

 

Table 12: Average of water quality parameters of each treatment in two months   

S.D. 

 

Dissolved Oxygen   

(mg/l) 

pH TDS  

(ppm) 

Ammonia 

(ppm) 

Nitrite 

(ppm) 

Nitrate 

(ppm) 

100 6.9
a
 6.5

 a
 395.4

 a
 1.0

 a
 0.2

 a
 5.3

 a
 

120 6.1
 b
 6.1

 b
 666.1

 b
 1.5

 b
 0.6

 b
 17.8

 b
 

140 5.4
 c
 6.2

c
 932.1

 c
 1.1

 c
 1.2

 c
 22.6

 c
 

abc
 Values in the same column with superscripts are significantly different (P < 0.05) 

4.2 Discussion 

In Aquaculture, which is the culture of aquatic organisms commonly referred to as 

animals in a designated water body wherein the water needs to be treated whenever 

the toxicants in it have built up beyond animal’s safe level. Toxicants such as 

ammonia and nitrite are derived from the decomposition of unconsumed feed and 

metabolites or a waste of the animals. Hydroponics is the culture of aquatic plants in 

soilless water where nutrients for plant’s growth come entirely from a formulated 

fertiliser. Aquaponics (a portmanteau of the terms aquaculture and hydroponics) 

integrates aquaculture and hydroponics into a common closed-loop co-culture where 
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a symbiotic relationship is created in which water and nutrients are recirculated and 

reused, concomitantly fully utilised and conserved.  

In an aquaponics system, waste organic matters from aquaculture system, which can 

become toxic to animals, are converted by microbes into soluble nutrients for the 

plants and simultaneously, hydroponics system has already treated the water and 

recirculates back to aquaculture system with cleansed and safe water for the animals. 

Besides its ecological merits, aquaponics system can obtain extra economic 

advantages: saving cost (input) on water treatment for aquaculture system, saving 

another cost on formulated fertilizer for hydroponics system and benefit from double 

outputs, harvest of animal and plant, by a single input, fish feed (Liang & Chien, 

2013). 

The aquaponics system has been modified from its original design to different 

versions that are currently in use, like the aquaponic lettuce (L. sativa) and tilapia 

production system in Hawaii with a goal to lower the capital and operational costs 

(Baker, 2010). Their study of the technology indicated that the system setup could 

vary and be modified depending on the farm's location and hardware availability, 

though optimal conditions can only be achieved under appropriate aeration, feed, and 

biomass density (i.e. some fish in the tank). Aquaponic food production is highly 

efficient because it re-uses the nutrients contained in fish feed and fish faeces to 

grow the crop plants in an ecological cycle (Love et al., 2015).  

Its potential to improve sustainability is discussed regarding food security and as an 

alternative to intensive fisheries or aquaculture, by efficiently managing the food-

water-energy-nexus (Kloas et al. 2015). Essential technical components of aquaponic 

systems are the fish tanks and plant grow beds, while dedicated biofilters and settlers 
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are optional and depend on the configuration of the system. The microbial 

community was central, not only to the catabolise of the organic matter contained in 

the faeces and feed residues but also for the conversion of the fish-generated 

ammonia to nitrate (Kloas et al. 2015; Bittsanszky et al., 2015).   

The current research was conducted as a two-way experiment; one with the increase 

in feed frequency like once a day, twice a day and thrice a day. The second 

experiment was conducted by alternating the fish ratio in the fish stocking tank like 

100 fish/m
3
, 120 fish/m

3
 and 140 fish/m

3
. Each experiment was conducted in 

triplicate, and the experimental period for each was three months. The results of the 

experiments are discussed as follows. 

4.2.1. Feeding Frequency 

In the present study, Tilapia O. niloticus growth, feed utilisation and feed conversion 

values as related to feeding frequencies, initial weights and mortality rate was similar 

in all treatments. However, the final weight, weight gain, feed intake and feed 

conversion ratio significantly increased in those experimental tanks where fish were 

fed three times a day, followed by those tanks with fish fed twice and once a day. 

When the feeding frequency was increased, the feed intake, feed conversion ratio, i.e. 

FCR were increased and the fish production also improved. Similarly, the present 

findings are in agreement with, Liang & Chien (2013) report that higher feeding 

frequency is well-effected tilapia survival, weight gain, feed intake and FCR 

increment.  Liang & Chien (2013) also concluded that higher feeding frequency with 

less feed quantity at a time can result in higher absorption efficiency and lower 

excretion into the water, consequently, less nutrient accumulation in water.  
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In an intensive culture of fingerling walleye S. vitreum, Phillips et al.(1998) found 

that higher frequency feeding resulted in higher daily DO and lower TAN but did not 

affect fish growth and size distribution. The present statement agrees with the 

suggestions of (Riche et al., 2004) who found that feeding tilapia at intervals shorter 

than the time required for their turn of appetite can lead to gastric overload resulting 

in reduced absorption efficiency. Their turn of appetite following a satiation meal is 

defined as the point at which consumption is equivalent to the amount of the previous 

meal evacuated, and this is approximately 4h in Nile tilapia held at 28°C which we 

used in our study. 

In the present study Tilapia O. niloticus body proximate composition analyses 

showed that crude protein level showed slight increase in fish fed once/day feeding 

frequency as compared to the others (two and three times per day). Tilapia body fat 

was increasing with increasing feeding frequencies while body moisture was lowered 

with increasing frequencies. Tilapia body ash level showed similar in all system. 

These results showed that the higher feeding frequencies produced fish with more 

crude fat and less moisture level. This indicates that fish fed lower feeding 

frequencies were more efficient in utilising experimental feed than those fed higher 

frequencies improving FCR percentage of the gain. On the other hand, increasing the 

frequency of feeding in tilapia produced larger fish. The present findings are in 

agreement with similar observations which were reported by some researchers (e.g., 

Tung & Shiau, 1990; NRC, 1993; Pouomogne & Ombredane, 2001). Also, the 

present findings are highly by the findings of previous researchers (e.g., Zhou et al., 

2003; Kurtikaya & Bilgüven, 2015; Lanna et al., 2016) who had reported that the 

higher feeding frequency is useful in tilapia fish species.  
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The higher feeding frequency, Resulted in the higher body fat and the less body 

moisture and protein. The present results are highly in agreement with the findings of 

Yousif (2004). In his study, he had emphasised the effects of feeding frequency on 

growth performance and feed utilisation efficiency of Nile tilapia juveniles. 

Significantly higher (P<0.05) live weight gain, and protein efficiency ratio (PER) and 

lower Feed conversion ratio, proximate body composition was achieved by receiving 

either 3 or 4 meals a day. At the same time, the present findings disagree with (Riche 

et al., 2004) evaluated statement in the consumption, growth, and feed utilisation of 

juvenile Nile Tilapias which were fed with a commercial diet once, twice, thrice or 

five times a day. No significant differences in growth, feed efficiency, or protein 

utilisation among the fish fed 2, 3, or 5 times daily, but all were significantly better 

than fish which were fed once. This could be explained by feeding small amount as a 

percentage of the fish body weight as compared to feeding to satiation in our study.  

Also, in this current study, we observed the better production of lettuce L. sativa in 

three times feeding frequency/day experimental aquaponics system with a better 

yield of Tilapia production. The results indicate that the three-time/day feeding 

frequency is more suitable for recirculation aquaponics of tilapia, lettuce L. sativa 

culture. In the present investigation, the produced Lettuce L. sativa head proximate 

composition like moisture, crude protein, crude fat, crude fibre, carbohydrates and 

total energy were shown to be none significantly different between treatments. These 

results revealed that the feeding frequencies did not affect the lettuce L. sativa head 

proximate composition, but the feed frequency affected the yield of lettuce L. sativa 

for marketing purpose. The present findings are in agreement with the findings of 
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Liang and Chien, (2013) and Rakocy, et al. (1997) who stated that higher feeding 

frequency would have an effect on plant growth, weight gain and yield performance.    

In this experiment, the nutrients content (micro and macro minerals) of the 

aquaponics water samples were analysed once every fifteen days.  The monthly 

average mineral content like Sodium, Copper and Zinc were not significantly 

affected, but other elements showed an increase with higher feeding frequency, like. 

Ca, K, Mg, P, S, Co, Fe, Mn, Mo whose levels had increased in higher feeding 

frequency which was expected. So, the present results revealed that the higher feed 

frequency increases the nutrient level in water which in turn yields a better 

production of quality lettuce Lactuca sativa. Also, water quality maintenance plays 

an essential role in an aquaponics system.  The present results are similarly in 

agreement with relevant work (e.g., Fitzsimmons, 1991; Marschner, 1995; 

Seawright, 1998; Rakocy et al., 2006; Liang & Chien, 2013). The thesis’s findings 

and suggestions were that macronutrients and micronutrients which are released from 

fish feed and excretion are essential for proper plant growth. The nutrients are 

affected by the amount of feed put into the system, the fish to plant ratios, and 

environmental parameters.  

It was indicated that water dissolved oxygen and pH plays a vital role in aquaponics 

system tilapia culture and Lettuce L. sativa cultivation (Rakocy et al., 2006). In this 

study, the higher feed frequency experiment showed the slightly low level of 

Dissolved Oxygen (DO) and pH level; but it was within the acceptable level of 

tilapia growth. Also, total dissolved solids, electrical conductivity, Ammonia, Nitrite 

and Nitrate levels had significantly increased in higher feeding frequency. That was 

due to a higher amount of feeding with increase feeding frequency. The fish excretes 
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ammonia which converted to nitrate for plant growth purpose. The nitrification 

process shows an increase in those experimental systems with increased feeding 

frequency.  The present findings are similarly in agreement to (Goto et al., 1996; 

Phillips et al., 1998; Rakocy et al., 2006; Graber & Junge, 2009) findings. They 

suggested that the feeding frequency is an essential factor in aquaponics.  

It is essential to maintain high DO levels in aquaponics systems to have healthy roots 

& also to eliminate or reduce toxicants in water. The higher frequency feeding 

resulted in higher daily TAN and lowered DO but did not affect fish growth and size 

distribution that was because the change were with accepted level. Our present 

results were not in agreement with the statement from (Liang & Chien, 2013). He 

found that higher feeding frequency produced lower ammonia and nitrate levels in 

water, but the dissolved oxygen statement was similar. Any other studies similar to 

ours can not support his resulted.  

4.2.2 Stocking Density 

The stocking density of fish is considered as one of the critical factors in aquaponics, 

besides feeding rate and frequency since it varies according to fish type and species. 

In aquaponics systems, especially for intercropping, stocking density must be ideal 

and optimum to ensure that the waste is converted to ammonia and nitrate in the final 

phase. Through the optimal stocking density, one can obtain maximum production 

without effects on the environment, optimum health, economic benefits (Rahman & 

Marimuthu, 2010) and minimum occurrence of physiological and behavioural 

disorders (Ashley, 2007; Ayyat et al., 2011). 

In the present aquaponics experimental study, the second experiment was to measure 

the optimum stocking density of tilapia. That tested densities were 100 fish/m
3
, 120 
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fish/m
3
 and 140 fish/m

3
 levels. In the present study, the initial weight and mortality 

rate were similar in all treatments (100 fish/m
3
, 120 fish/m

3
 and 140 fish/m

3
). The 

final fish production, weight gain and feed intake showed better result in 100 fish/m
3
 

when comparing with other treatments (120 fish/m
3
 and 140 fish/m

3
. In the 

production of tilapia, there was a significant increase in higher stocking densities 

(140 fish/m
3
) experiment as compared to all other treatments. Also, lettuce L. sativa 

production in per square meter was significantly higher in a high density of the fish 

experimental system. That was probably due to a higher amount of feed with higher 

stocking densities.   

Tilapia O. niloticus approximate body composition showed that lower stocking 

densities produced fish with more crude fat and less moisture while crude protein and 

ash were not significantly different in comparison to the higher stocking density. The 

results indicate that tilapia and lettuce L. sativa production increased significantly in 

the highest stocking densities of fish. The present findings are similarly in agreement 

with relevant work (e.g., Rahman, 2005; Gibton et al., 2008; Ridha, 2005; Rashid, 

2008; Alam, 2009; Rahman & Marimuthu, 2010; El-Salam et al., 2014). They 

suggested that the increase of fish stocking density produced a high yield in the same 

amount of feed when compared with lower densities of fish.  

The higher density produced better yield whereas lower density produced only larger 

fish size with feed lower conversion ratio. The present results are disagreed by 

(Ahmed & Hamad, 2013) in their statement which is, increasing the stocking density 

from 100 to 200 fish/m
3
 in the fish tank results in adverse impact by reduced 

survival, growth and benefits. That was probably due to their experimental condition 

which affected the carrying capacity of the unit of water which was not the case of 
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our study. On the other hand, another study conducted by (El-Saidy & Hussein, 

2015) on the effect of low stocking density (50 fish/m
3
) inferred that there is a 

positive effect on growth performance and feed utilisation parameters. However, 

farmers and commercial producers always look for the optimum stocking density to 

achieve maximum profits. 

Also, in this study, the better approximate composition in cultivated lettuce L. sativa 

head shows moisture, crude protein, crude fat, crude fibre, carbohydrates and total 

energy are similar in all treatments. However, the total production of Lettuce Lactuca 

sativa showed a better yield in the experiment with a higher density of fish. In other 

words, fish stocking densities did not have a significant effect on lettuce L. sativa 

head biochemical composition, but it affected the plant growth and weight gain. The 

present results are in agreement with (Licamele et al., 2009; Fytianos & Zarogiannis, 

1999; Muramoto, 1999). They suggested in their findings that, plants use ammonia 

and nitrates for growth.  

Nitrate is taken up by the plant at better rates than ammonia and nitrite which can be 

toxic to plants. Ammonia concentrations at elevated levels can inhibit nutrient uptake 

in plants by altering the ionic capacity of the water medium. The central part of the 

existing nitrogen is absorbed by the plant roots and serves as a starting material for 

synthesis of proteins and other nitrogen compounds. Nitrates and nitrites are present 

both as undesirable contaminants. Our results showed water in all treatments had 

much lower levels of ammonia, nitrites and nitrates than any level which could have 

adverse effect on fish .  
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The change of water quality in the experimental aquaponics systems initial and final 

mineral content of water were analysed. The initial mineral content of water was 

similar and significantly lower than that of each treatment after the three months’ 

experimental duration as expected. Sodium, copper and zinc were not significantly 

affected while other elements had significantly increased with higher stocking 

densities. The present results indicate that the higher density of fish did not affect 

water content of sodium, copper and zinc which indicate fish gills and plant roots 

absorb all these elements that were released from fish waste . 

The other elements were increased with increasing stocking densities. This could be 

explained by increasing the amount of feed and consequently, increasing the other 

elements above lettuce roots could absorb. Lettuce cultivation yield shows better 

results in high-density stocking aquaponics system. In other words, lettuce 

production was higher with higher stocking densities, and roots absorption requires 

certain concentration to increase their absorption Prior studies have shown that 

lettuce L. sativa in an aquaponics system can be produced with similar growth as 

hydroponics solution (Licamele et al., 2009). 

In the present investigation, the high density of fish stocking experiment showed the 

slightly low level of Dissolved Oxygen and pH level; but it is the optimal level. Also, 

the total dissolved solids, electrical conductivity, Ammonia, Nitrite and Nitrate level 

had increased significantly in high-density stocking aquaponics system.  The fish 

excretion with high ammonia is converted to nitrate for plant growth purpose. An 

increase in the level of nitrate was noted in a high density of fish stocking aquaponics 

system. The results indicate that the nitrification process is high in this system, which 

helps to increase the yield of Lettuce L. sativa production. The present findings are in 
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agreement with (Rahmatullah et al., 2010) statements. He stated that the high 

densities of fish do not affect the water quality parameters. Water quality is 

maintained at acceptable level but DO level had decreased due to the high 

metabolism of fish,  

In conclusion, this study revealed that high feed frequency (3 times/day) and high 

density of fish stocking (140 fish/m
3
) produced a significantly higher production of 

tilapia and lettuce head yield without any effect on the water quality. Also, the high 

feeding frequency and high density of fish ratio are very effective and suitable for 

greenhouse recirculation aquaponics systems in UAE condition. It has produced a 

better yield of fish and lettuce L. sativa without affecting the environmental system.  

The present results revealed that the high feeding frequency and high density of fish 

stocking are useful for sustainable and prosperous aquaponics (Fish and leafy 

vegetable cultivation) business for UAE farmers. 
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Chapter 5: Enterprise Budget Analysis 

5.1 An Overview 

This chapter is devoted to the discussion on the economic analysis of this enterprise 

budget of the aquaponics system considered in this research. This study considered 

the impact of varying fish feeding frequency and stocking density on the quality of 

the organic lettuce produced, and so produced different enterprise budget outcomes. 

The system of Aquaponics is employed in this study. Two rounds of experiments 

accomplish this; the first experiment studied the effect of different feeding frequency 

on the operation and total costs when inputs used changed. As a consequence, the 

study considered the impact of feeding frequency on revenue while inputs change 

and the result of net returns. Meanwhile, in the second experiment similar enterprise 

analysis was completed for varying stocking density instead of feeding frequency. 

The methods used are discussed in the following two sections below. 

5.2 Method of Calculating the Enterprise Budget 

To develop an enterprise budget, the scope of the system was defined, which is the 

effect of feeding and stocking Tilapia O. niloticus on the quality of producing lettuce. 

Income and expenses are defined for the system. To develop that enterprise budget, 

the following assumptions were considered: 

i) The system is devoted to the Aquaponics production of tilapia and lettuce. 

ii) The financial analysis included the calculation of revenues (quantities of 

output by multiplied prices for both fish and vegetable), the variables costs 

(i.e. operational expense), the fixed cost (annual allocation of depreciation of 

all assets used in the experiments). Net returns were then calculated after 
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subtraction of both the variables and the fixed cost for both fish and 

vegetable, and the cash flow for the allocated scenarios. 

iii) The enterprise budget was considered as annual revenues, costs and returns 

(the duration of the experimental values of the three months. However, 

enterprise budget figures/values were scaled to one year). 

iv) The economic parameters varied as the feeding frequency, three scenarios 

based on different feeding per day were investigated (1-time, 2-times and 3-

times). 

v) The economic parameters varied as the stocking density, three scenarios of a 

different number of fish per cubic meter were investigated (100, 120 and 140 

fishes). 

vi) The enterprise budget assumed prices of inputs and outputs are fixed to study 

only the impact of changing feeding frequency and stocking of fish 

variability. 

vii) The enterprise assumed the market prices of the inputs and output without 

considering real cost when government subsidies of resources such as water 

and electricity are considered. A further study may consider the net cost after 

the government subsidies are subtracted.  

The income is the value received from the sale of the system products to a 

corresponding enterprise of fish and vegetable sales. The expenses included two 

categories which are the fixed cost (fixed assets) and the variable cost (operating 

costs). For this system, the fixed cost includes the expenses of the greenhouse 

structure, excavation, lining, stabilisation, plumbing, electric hook-ups, storage 

sheds, aerators, floating piers, cages, scales, water analysis gear and miscellaneous.  
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The fixed cost does not change with other business activities like increase or 

decrease in output and sales. On the other hand, variable cost includes the expenses 

of purchasing fingerling, seeds of vegetables, chemicals used, feed consumption, 

labour, electricity, water, marketing, packaging and miscellaneous. The total cost is 

the summation of the fixed and variable costs. The revenue is whatever gained from 

the business activities of the system. The gross margin signifies the retains after 

covering the variable cost of each dollar of sales, it is found from the following 

equation: 

                                      –                        (3) 

The total earnings of a company are represented by the net income which is: 

                                     –                                          (4)   

                                                    
                

                
        (5) 

Budget analysis is developed for the two experiments of this study taking into 

account the impact of feeding frequency and stocking density. Results of these 

equations (FAO, 2018) are discussed in the following sections 5.2 and 5.3 that 

include the discussion and impact of feeding frequency and stocking density. 

5.3 Impact of Feeding Frequency on the Enterprise Budget 

Enterprise budget was developed for the feeding effect of Tilapia O. niloticus on the 

quality of the produced lettuce. This is done by defining the costs and revenues to 

determine the gross margin and net income over fixed and variable costs as well as 

the net income percentage over fixed cost. Over a three-month period of study three 
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scenarios with different feeding, frequencies were scaled to one year and 

investigated. 

5.3.1 Feeding Frequency Impact on Enterprise Economic Elements  

Table 1 shows that the variable cost (operating cost) estimated is slightly increased 

with increasing the feeding frequency of Approximately extra AED 100 as feeding 

frequency times per day from 1-time to 2-times and from 2-times to 3-times per day. 

The reason of that is obviously that the inputs increased operational (variable) costs 

with increasing feeding times per day; (i.e. for the first scenario of 1-time per day 

feeding the input of money was once doubled for the second scenario and tripled for 

the third scenario). The maximum variable cost was observed in the third scenario 

AED 55,693.  

Table 13: Enterprise budget change due to feeding frequency variability in AED 

Feeding Frequency 

(Time/day) in AED 

1.0 AED/Kg 2.0 AED/Kg 3.0 AED/Kg 

Fish Price per Kg - 10 - 10 - 10 

Vegetable price per Kg - 3.5 - 3.5 - 3.5 

Fixed Cost  33,349 2.77 33,349 2.77 33,349 2.77 

Variable Cost  55,497 3.93 55,605 3.94 55,693 3.94 

Total Cost  88,846 7.39 88,954 7.40 89,042 7.40 

Total Revenue  122,527 - 122,410 - 123,43 - 

Gross Margin  67,030 - 66,805 - 67,743 - 

Net Income  33,681 - 33,456 - 34,394 - 

Contribution of net 

income to cover total 

cost (%) 

37.9 - 37.6 - 38.6 - 

 

A similar trend was observed for the total cost that similarly increased by 

Approximately extra AED 100 with increasing the feeding times per day from the 
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first to the second scenario and from the second to the third scenario. Proportionality 

increases with feeding frequency for AED 88,846 to AED 88,954, to AED 89,042. 

This is simply because the total cost is the addition of the fixed and variable costs, 

which are both displayed in table 5.1. The fixed cost of the three scenarios was found 

to be similar which AED 33,349 is because it is independent of other business 

activities. Moreover, all of the other variables/ parameters should be fixed to obtain 

reliable results from the experiments. 

The second economic element of this enterprise budget is the total revenue. Total 

revenue perceived an increase with increasing the feeding frequency which resulted 

in an increase in production that gives more income. Total revenue changes were 

found to be more evident in the feeding frequencies experiments. The maximum total 

revenue was observed in the third scenario AED 123,436. However, for the second 

scenario where the Tilapia was fed twice a day the net revenue decreased. The 

varying experimental output justifies this regarding fish and lettuce production. The 

gross margin is the subtraction of the variable cost from the total revenue. So, it is 

strongly dependent on the experimental output that contradicted the expected trend 

for the second scenario.  

The third part of the enterprise budget analysis considered the net income which is 

the subtraction of the total cost, i.e. the variable cost and the fixed cost of the total 

revenue. The revenue that strongly depends on the experimental output (production), 

in the last paragraph it was mentioned how the revenue changes are higher values the 

second scenario compared to the first scenario. Likewise, the income is increasing 

with increasing the feeding frequency; the second scenario is higher because of the 

unexpected output for that specific experiment. The last raw in the table shows the 
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contribution of the income to cover the total cost, which means that the system is 

profitable, and can return an acceptable return on its investment.  

5.4 Impact of Stocking Density on the Enterprise Budget 

Enterprise budget was developed once again for stocking effect of Tilapia O. 

Niloticus on the quality of lettuce. This time it is done in a similar manner that is 

shown in section 5.2, over the similar three-month period of study another three 

scenarios with different stocking densities was investigated which are: 100 fish/m
3
, 

120 fish/m
3
 and 140 fish/m

3
, results are displayed in Table 2. 

5.4.1 Stocking Density Impact on Enterprise economic Elements  

In table 5.2, the variable cost (operating cost) perceived a considerable increase with 

increasing the stocking density only by 20 fishes per grazing area. The variable cost 

increased by Approximately extra AED 5,000 with increasing stocking density from; 

100 fish/m
3 

to 120 fish/m
3
 and from 120 fish/m

3
 to 140 fish/m

3
. The reason of that is 

apparently that the input of fish increased with increasing the density, i.e. within the 

three scenarios the operation of the system required more expenses while increasing 

the input of fish to the system and thus the stocking density. 
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Table 14: Enterprise budget change due to stocking density variability in AED 

Stocking Density 

(fish/m
3
) in AED 

100 AED/Kg 120 AED/Kg 140 AED/Kg 

Fish Price/Kg - 10 - 10 - 10 

Vegetable price/ Kg - 3.5 - 3.5 - 3.5 

Fixed Cost  33,349 2.77 33,349 2.31 33,349 1.98 

Variable Cost  81,829 3.94 86,805 3.63 91,797 3.40 

Total Cost  115,178 9.61 120,154 8.30 125,146 7.42 

Total Revenue  122,714 - 147,166 - 171,783 - 

Gross Margin  40,885 - 60,361 - 79,986 - 

Net Income 7,536 - 27,012 - 46,637 - 

Contribution of the 

net income to cover 

total cost (%) 

6.5 - 22.5 - 37.3 - 

 

The similar trend was observed for the total cost that similarly increased with 

increasing the stocking density per grazing area from the first to the second scenario 

and from the second to the third scenario. Proportionality increases with feeding 

frequency for AED 115,178 to AED 120,154, to AED 125,146. Moreover, again, this 

is because the total cost is the addition of the fixed and variable costs, which are both 

displayed in table 5.2. Also, because the fixed cost of the three scenarios is 

independent of other business activities AED 33,349. Furthermore, all of the other 

parameters are fixed to obtain reliable results from the experiment. 

This enterprise budget also considered the economic element of this enterprise is the 

total revenue. Total revenue has perceived a considerably high increase with 

increasing the stocking density which resulted in an increase in production that gave 

more income. This increase in the revenue was by Approximately AED 25,000 by 

increasing only 20 fishes in the stocking area; this means potential high profitability 

by increasing the stocking density more than increasing the feeding frequency that 
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increased the revenue by only a few hundred. Meanwhile, the maximum total 

revenue was observed in the third scenario to be AED 171,783. 

The gross margin is the subtraction of the variable cost from the total revenue, and it 

was increasing by AED 20,000 with increasing the stocking density each time. 

Another element is the net income which is the subtraction of the total cost from the 

total revenue, i.e. the variable cost and the total cost. Also, because it is dependent on 

the revenue that depends on the experimental output, a high increase in the income 

was observed with increasing the stocking density. The last row in the table shows 

the contribution of the income to cover the fixed cost; this exceeded 70% at the 

maximum stocking density, which means that the system is profitable, and can give 

an acceptable percentage of its initial investment. 

5.5 Summary of the Enterprise Budget Analysis 

In conclusion, it was noticed that the impact of stocking density is more significant 

than the impact of feeding frequency on the economic enterprise budget, yielding 

higher returns and incomes of the investment. Furthermore, the quality of the 

produced tilapia fish and lettuce was also confirmed by different test taking into 

account various parameter. As feeding frequency increases from 1, 2 to 3 a day, the 

net income over total cost was found to be 37.9%, 37.6% and 38.6% respectively. As 

stocking density increases from 100 fish/m
3
, 120 fish/m

3
, to 140 fish/m

3
 respectively. 

The net income over total cost was found to be 6.5%, 22.5% and 37.3%. Example of 

the enterprise budget is shown in Appendix B. 
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Chapter 6: Conclusion and Future Work 

The proposed aquaponic system offers a promising enhancement to the production of 

tilapia and lettuce in the UAE. This is expected to encourage the investors in the field 

to perform business in the country and the region, as well, knowing that the Arabian 

Peninsula has a similar climate conditions and common obstacles of water scarcity, 

lack of rainfall, high summer temperatures, high evaporation rates and increased 

electricity consumption due to the rapid population growth. 

The quality of the production of tilapia and lettuce using the aquaponic system was 

studied in this system. Although the limited use of the system in the region this study 

showed potential productivity and profitability. The effect of different daily fish 

feeding frequency was studied for three different scenarios of 1-time per day, 2-times 

per day and 3-times per day. Also, the effect of varying fish stocking density was 

studied as well, with three different scenarios of 100 fish/m
3
, 120 fish/m

3
 and 140 

fish/m
3
. 

The quality of the products from the system was investigated using different test 

methods. To confirm the optimum feed conditions, feed utilisation and conversion 

possibility were tested. Moreover, to confirm fish quality weight gain, feed intake 

and fish mortality were tested as well. Furthermore, to confirm the quality of the 

produced lettuce the nutritional components ratios were investigated, namely 

moisture, crude protein, crude fat, crude fibre, carbohydrates and total energy. Lastly, 

the quality of water and growth conditions of the system was evaluated by tracking 

different water quality parameters namely: pH, total dissolved solids (TDS), 

dissolved oxygen (DO) and ammonia and nitrate content in the water. It was 

concluded that the maximum feeding frequency of three times per day and the 
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maximum stocking density of 140 fish/m3 are recommended to achieve maximum 

profitability. It is also recommended to use either of them with any selection of the 

other one, based on the business requirements of the system.  

Enterprise budget analysis was employed to predict the profitability of the proposed 

scenarios to that was evaluated in the aquaponic system. It was found that increasing 

the stocking density can offer a better improvement in the profitability of the system 

rather than increasing the feeding frequency. The highest obtained net incomes were 

AED 34,394 contributing with 38.6% to cover the cost and AED 46,637 contributing 

with 37.3% to cover the cost for varying feeding frequency and varying stocking 

density respectively. Even at low feeding frequency and stocking density the system 

showed potential profitability of the investment. 

More comparative studies for other production systems for lettuce and fish are 

needed in the future to address the fact that there is little information about the 

optimum conditions of the system to date. Also, it is important to encourage local 

business and investors to increase utilisation of this system, and involvement with 

universities and researchers to maximise production, returns and incomes based on 

scientific efforts. Also, for future research, it seems decent to study other factors in 

the aquaponic systems, like using different water resources, feed products and 

locations of the system. Also, it is essential to study the system at different 

temperatures, humidity rates and altitudes. Based on literature survey, other fishes 

and vegetables can be tested using the current system like ornamental fish, 

barramundi fish, tomatoes, bell peppers, cucumbers, peas and squash.   



60 

 

 

 

 

References 

Adler, P. R., Harper, J. K., Wade, E. M., Takeda, F., & Summerfelt, S. T. (2000). 

Economic analysis of an aquaponic system for the integrated production of 

rainbow trout and plants. International Journal of Recirculating Aquaculture, 

1(1), 16 - 34. 

Ahmed, A. A., & Hamad, A. E. (2013) Effect of stocking density and feeding levels on 

growth and survival of Nile tilapia (Oreochromis niloticus L.) fry reared in an 

earthen pond, Khartoum, Sudan. Journal of Science and Technology, 14(2), 95-

103. 

Alam, M.N. (2009). Effect of stocking density on the growth and survival of monosex 

male tilapia (Oreoclzmnis niloticus) fry (GIFT strain) in hapa. J\11S. (Master 

Thesis), Bangladesh Agricultural University. lviymensingh. 

Al-Hafedh, Y. S., Alam, A., & Beltagi, M. S. (2008). Food production and water 

conservation in a recirculating aquaponic system in Saudi Arabia at different 

ratios of fish feed to plants. Journal of the World Aquaculture Society, 39(4), 510-

520. 

Al-Hafedh, Y.S., Alam, A., Alam, A. (2003). Performance of plastic biofilter media 

with a different configuration in a water recirculation system for the culture of 

Nile tilapia (Oreochromis niloticus). Aquacultural Engineering, 29, 139–154 

Ashley, P. J. (2007). Fish welfare: current issues in aquaculture. Applied Animal 

Behavior Science, 104, 199-235. 

Ayyat, M. S., El-Marakby, H. I., Sharaf, S.M. (2011). Effect of dietary protein level, 

stocking density, and dietary pantothenic acid supplementation rate on 

performance and blood components of Nile tilapia Oreochromis niloticus. Journal 

of Applied Aquaculture, 23, 122-135. 

Baker, A. (2010). Preliminary development and evaluation of an aquaponic system for 

the American Insular Pacific. (Master Thesis). The University of Hawaii at 

Manoa, Hawaii. 

Bernstein, S. (2011). Aquaponic gardening: a step-by-step guide to raising vegetables 

and fish together. New society publishers. 

Bittsánszky, A., Uzinger, N., Gyulai, Mathis, A., Junge, R., Villarroel, M., Kotzen, B. & 

Kornives, T. (2016). Nutrient supply of plants in aquaponic syste systems. 

Ecocycles, 2(2), 17-20. 



61 

 

 

 

 

Blidariu, F., & Grozea, A. (2011). Increasing the economic efficiency and sustainability 

of indoor fish farming using aquaponics-review. Scientific Papers Animal Science 

and Biotechnologies, 44(2), 1-8. 

Bowen, S. H., & Allanson, B. R. (1982). Behavioural and trophic plasticity of juvenile 

tilapia mossambica in the utilization of the unstable littoral habitat. Environmental 

Biology of Fishes, 7(4), 357-362. 

Cho, C. Y., & Bureau, D. P. (2001). A review of diet formulation strategies and feeding 

systems to reduce excretory and feed wastes in aquaculture. Aquaculture 

Research, 32, 349-360. 

Cho, S. H., Lim, Y. S., Lee, J. H., Lee, J. K., Park, S., & Lee, S. M. (2003). Effects of 

feeding rate and feeding frequency on survival, growth, and body composition of 

Ayu post larvae Plecoglossus altivelis. Journal of the World Aquaculture 

Society, 34(1), 85-91. 

Coche, A. G. (1967). Fish culture in rice fields a worldwide synthesis. 

Hydrobiologia, 30(1), 1-44. 

Crossley, P. L. (2004). Sub-irrigation in wetland agriculture. Agriculture and Human 

Values, 21(2), 191-205. 

De Oliveira, E. G., Pinheiro, A. B., de Oliveira, V. Q., da Silva Júnior, A. R. M., de 

Moraes, M. G., Rocha, Í. R. C. B., ... & Costa, F. H. F. (2012). Effects of stocking 

density on the performance of juvenile pirarucu (Arapaima gigas) in 

cages. Aquaculture, 370, 96-101. 

Dediu, L., Cristea, V., & Xiaoshuan, Z. (2012). Waste production and valorisation in an 

integrated aquaponic system with better and lettuce. African Journal of 

Biotechnology, 11(9), 2349-2358 

Diver, S. (2006). Aquaponics-integration of hydroponics with aquaculture. Publication 

No. IP163. ATTRA-National Sustainable Agriculture Information Service. 

El-Saidy, D.M.S.D, & Hussein, E.E. (2015). Effects of stocking density and water 

exchange rates on growth performances, production traits, feed utilization and 

body composition of mono-sex male Nile tilapia Oreochromis Niloticus (L.) 

cultured in concrete tanks. International Journal of Aquaculture, 5(3), 1-13. 

El-Salem, M. A., Jahan, N., Hashim, S., & Rana, K.M.S. (2014).Feasibility of tomato 

production in an aquaponic system using different substrates. Progressive 

Agriculture, 25, 54-62. 



62 

 

 

 

 

Endut, A., Jusoh, A., Ali, N., Nik, W. W., & Hassan, A. (2010). A study on the optimal 

hydraulic loading rate and plant ratios in recirculation aquaponic 

system. Bioresource technology, 101(5), 1511-1517. 

Engle, C. R., & Neira, I. (2005). Tilapia farm business management and economics: a 

training manual. Corvallis, OH: Aquaculture CRSP, Oregon State University. 

English, L. A. (2010). Economic feasibility of aquaponics in Arkansas. (Master Thesis), 

University of Arkansas. Fayetteville. 

English, L. A. (2015). Economic feasibility of aquaponics in Arkansas. (Master Thesis), 

University of Arkansas. Fayetteville. 

FAO (2018). Tilapia Oreochromis niloticus. Cultured aquatic species information 

programme. Fisheries and aquaculture resources. Retrieved from 

http://www.fao.org/fishery/culturedspecies/Oreochromis_niloticus/en  

Fern, M. (2014). An economic comparison of three intensive fish production 

systems. (Master Thesis). Auburn University. Auburn, Alabama. 

Fitzsimmons, K. M. 1991. Intensive tilapia production integrated with field crops in 

Southwest U.S. Third International Symposium on tilapia aquaculture. ICLARM. 

Manilla, Philipines. 

Fox, B. K., Howerton, R., & Tamaru, C. S. (2010). Construction of automatic bell 

syphons for backyard aquaponic systems. June-10, 1-11. 

Fytianos, A., & Zarogiannis, P. (1999). Nitrate and nitrite accumulation in fresh 

vegetables from Greece. Bulletin of Environmental Contamination and 

Technology. 62(2), 187-192. 

Gibtan, A., Getahun, A and S. Icngistou, I.V. (2008). Effect of stocking density on the 

growth performance and yield of Nile tilapia [Oreoclzmmis niloticus (L., 1758)] 

in a cage culture system in Lake Kuriftu, Ethiopia. Aquacultural Research, 

39(13), 1450-1460. 

Glantz , S A. 1989. Primer of Biostatistics, Seventh Edition Primer of Biostatistics 7th 

Edition. McGraw Hill Company. 

Gonzales, M. L., Lawrence, A, L, Gatlin, D.M., Velazquez, M.P. (2002). Growth, 

survival and fatty acid composition of juvenile Litopenaeus vannamei fed 

different oils in the presence and absence of. Phospholipids. Aquaculture, 205, 

325-343. 

Gopal, B. (1987). Water hyacinth. Aquatic Plant Studies. 1, 471. 

http://www.fao.org/fishery/culturedspecies/Oreochromis_niloticus/en


63 

 

 

 

 

Goto, E., Both, A. J., Albright, L. D., Langhans, R.W., & Leed, A.R. (1996, February). 

Effect of dissolved oxygen concentration on lettuce growth in floating 

hydroponics: Proceedings of the International Symposium on Plant Production in 

Closed Ecosystems, 187-192. 

Graber, A., & Junge, R. (2009). Aquaponic Systems: Nutrient recycling from fish 

wastewater by vegetable production. Desalination, 246(1-3), 147-156. 

Hargreaves, J. A., & Tucker, C. S. (2003). Defining loading limits of static ponds for 

catfish aquaculture. Aquacultural Engineering, 28(1), 47-63. 

Hollmann, R.E. (2013). An aquaponics life cycle assessment: evaluating an innovative 

method for growing local fish and lettuce. (Master Thesis) The University of 

Denver. Denver. 

Houlihan, D., Boujard, T., & Jobling, M. (Eds.). (2008). Food intake in fish. Osney 

Mead, Oxford, UK. 

Hussain, M. G. (2004). Farming of tilapia: Breeding plans, mass seed production and 

aquaculture techniques. Habiba Akter Hussain, 55, 149. 

Jingbo, X., Xunfeng, M., Wenli, H., & Xiaoyu, H. (1994). Effects of temperature and 

ammonia on silver carp, bighead carp, grass carp and common carp. China 

Environmental. Science, 14, 214-218. 

Kloas, W., Grob, R., Baganz, D., Graupner, J., Monsees, H., Schmidt, U., Staaks, G., 

Suhl, J., Tschirner, M., Wittstock, B., Wuertz, S., Zikova, A., & Rennert, B. 

(2015). A new concept for aquaponic systems to improve sustainability, increase 

productivity, and reduce environmental impacts. Aquaculture Environment 

Interactions, 7, 179-192. 

Kurtikaya, G., & Bilguven, M. (2015). The effect of feeding frequency on growth 

performance and proximate composition of young Nile tilapia. Journal of 

Agricultural Faculty of Uludeg University, 29, 11-18. 

Kurtikaya, G., & Bilguven, M. (2015). The effects of feeding frequency on growth 

performance and proximate composition of young Nile tilapia (Oreochromis 

niloticus L.). Journal of Agricultural Faculty of Uludag University, 29(1), 11-18. 

Lanna, E.A.T., Bomfim, M.A.D., Ribero, F.B., & Quadros, M. (2016). Feeding 

frequency of Nile tilapia fed rations supplemented with amino 

acids. Mossoro, 29(2), 458-464. 



64 

 

 

 

 

Lennard, W. (2012, June). Aquaponics system design parameters: fish to plant 

ratios(feeding rate ratios). Aquaponic solutions. Retrieved from 

https://www.aquaponic.com.au/Fish%20to%20plant%20ratios.pdf 

Lennard, W. A., & Leonard, B. V. (2006). A comparison of three different hydroponic 

sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic 

test system. Aquaculture International, 14(6), 539-550. 

Liang, J. Y., & Chien, Y. H. (2013). Effects of feeding frequency and photoperiod on 

water quality and crop production in a tilapia–water spinach raft aquaponics 

system. International Biodeterioration and Biodegradation, 85, 693-700. 

Licamele, J. (2009). Biomass production and nutrient dynamics in an aquaponics 

system. (PhD Dissertation), The University of Arizona. Tucson. 

Love, D. C., Fry, J. P., Li, X., Hill, E. S., Genello, L., Semmens, K., & Thompson, R. E. 

(2015). Commercial aquaponics production and profitability: Findings from an 

international survey. Aquaculture, 435, 67-74. 

Maitipe, P., & Silva, S. S. (1985). Switches between zoophagy, phytophagy and 

detritivory of Sarotherodon mossambicus (Peters) populations in twelve human-

made Sri Lankan lakes. Journal of Fish Biology, 26(1), 49-61. 

Malek, C. (2012, September 22). UAE aquaponics project hailed as a success.The 

National. Retrieved from https://www.thenational.ae/uae/uae-aquaponics-project-

hailed-as-a-success-1.394940 

Marschner, H. 1995. Mineral nutrition of higher plants, 2nd edition. Academic Press, 

London, U.K. 

Mateus, J. (2009). Acuaponía: hidroponía y acuacultura, sistema integrado de 

producción de alimentos. RED Hidroponía. Boletín, 44, 7-10. 

Mazahreh, N., Nejatian, A., & Mousa, M. (2015). Effect of different growing media on 

cucumber production and water productivity in soilless culture under UAE 

conditions. Merit Research Journal of Agricultural Science and Soil Sciences, 

3(9), 131-138. 

McMurtry, M. R., Nelson, P. V., Sanders, D. C., & Hodges, L. (1990). The sand culture 

of vegetables using recirculated aquacultural effluents. Applied Agricultural 

Research, 5(4), 280-284. 

McMurtry, M. R., Sanders, D. C., Cure, J. D., Hodson, R. G., Haning, B. C., & St 

Amand, E. C. (1997). The efficiency of water use of an integrated fish/vegetable 

co-culture system. Journal of the World Aquaculture Society, 28(4), 420-428. 

https://www.aquaponic.com.au/Fish%20to%20plant%20ratios.pdf


65 

 

 

 

 

McMurtry, M. R., Sanders, D. C., Patterson, R. P., & Nash, A. (1993). The yield of 

tomato irrigated with recirculating aquacultural water. Journal of Production 

Agriculture, 6(3), 428-432. 

Murad, A. A., Al Nuaimi, H., & Al Hammadi, M. (2007). Comprehensive assessment of 

water resources in the United Arab Emirates. Water Resources 

Management, 21(9), 1449-1463.  

Muramoto, J. (1999). Comparison of nitrate content in leafy vegetables from organic 

and conventional farms in California. (Master Thesis) The University of 

California. Santa Cruz. 

Nelson, G. C., Rosegrant, M. W., Koo, J., Robertson, R., Sulser, T., Zhu, T., ... & 

Magalhaes, M. (2009). Climate change: Impact on agriculture and costs of 

adaptation. Intl Food Policy Res Inst. 21. 

Nichols, M. (2015). Middle East miscellany. Practical Hydroponics and Greenhouses, 

(154), 22. 

NRC (National Research Council), (1993). Nutrient requirements of fish, Washington 

D.C., National Academy Press, 114. 

Phillips, T. A., Summerfelt, R. C., & Clayton, R. D. (1998). Feeding frequency effects 

on water quality and growth of walleye fingerlings in intensive culture. The 

Progressive Fish-Culturist, 60(1), 1-8. 

Pouomogne, V., & Ombredane, D. (2001). Effect of feeding frequency on the growth of 

tilapia (Oreochromis niloticus) in earthen ponds. Tropicultura, 19(3), 147-150. 

Rahman, A.K.A., 2005. Freshwater fishes of Bangladesh, 2nd edition. Zoological 

Society of Bangladesh, Department of Zoology, University of Dhaka, Dhaka, pp: 

394. 

Rahman, M. A., & Marimuthu, K. (2010). Effect of different stocking density on 

growth, survival and production of endangered native fish climbing perch 

(Anabas testudineus, Bloch) fingerlings in nursery ponds. Advances in 

Environmental Biology, 178-187. 

Rahmatullah, R., Das, M., Rahmatullah, S.M. (2010) Suitable stocking density of tilapia 

in an aquaponic system. Bangladesh Journal of Fish Research., 14(1-2), 29-35. 

Rakocy, J. (1999). Aquaculture engineering- The status of aquaponics- Part.1. 

Aquaculture Magazine, 25(4), 83-88. 



66 

 

 

 

 

Rakocy, J. (2007). Ten guidelines for aquaponic systems. Aquaponics Journal, 46, 14-

17. 

Rakocy, J. E. (2012). Aquaponics: integrating fish and plant culture. Aquaculture 

Production Systems, 1, 343-386. 

Rakocy, J. E., & Nair, A. (1987). Integrating fish culture and vegetable hydroponics: 

problems and prospects. Virgin Islands perspective (USA). Agriculture Research 

Notes, 2, 19-23. 

Rakocy, J. E., Bailey, D. S., Shultz, R. C., & Thoman, E. S. (2004, September). Update 

on tilapia and vegetable production in the UVI aquaponic system. In New 

dimensions on farmed tilapia: Proceedings of the Sixth International Symposium 

on Tilapia in Aquaculture, 12-16. 

Rakocy, J. E., Hargreaves, J. A., & Bailey, D. S. (1993). Nutrient accumulation in a 

recirculating aquaculture system integrated with vegetable hydroponic 

production. 148-158. In Techniques for modern aquaculture. American society of 

agricultural engineering, (Eds. Wang, J.K.), St. Joseph, Missouri, USA. 148-158. 

Rakocy, J. E., Masser, M. P., & Losordo, T. M. (2006). Recirculating aquaculture tank 

production systems: aquaponics-integrating fish and plant culture. SRAC 

Publication, 454, 1-16. 

Rakocy, J., & Bailey, D. (2003). Initial economic analysis of aquaponic systems. 

Aquaculture Europe. 

Rakocy, J.E., & Hargreaves, J.A. (1993). Integration of vegetable hydroponics with fish 

culture: a review. 112-136. In Techniques for Modern Aquaculture, American 

Society of Agricultural Engineers, (Eds. Wang, J.K.), USA. 

Rakocy, J.E., D.S. Bailey, K.A. Shultz and W.M. Cole. (1997). Evaluation of a 

commercialscale aquaponic unit for the production of tilapia and lettuce. 

Proceedings of the Fourth International Symposium on Tilapia in Aquaculture, 

pp. 357-372 Orlando, Florida. 

Rashid, M.H. (2008). Effect of stocking density on the growth, survival and production 

of mono-sex GIFT tilapia (Orcoclmmzis illloticus L.) reared in recirculatory 

system in cisterns. (Master Thesis), Bangladesh Agricultural University. 

lviymensingh. 

Riche, M., Haley, D.K., Oeetker, M., Garbrecht, S., Garling, D.L., 2004. Effect of 

feeding frequency on gastric evacuation and the return of appetite in tilapia 

Oreochromis niloticus (L). Aquaculture, 234, 657-673. 



67 

 

 

 

 

Ridha, M.T., 2005. Comparative study of growth performance of three strains of Nile 

tilapia, Orcoclzmnzis niloticus, L. at two stocking densities. Aquaculture 

Research, 37(2), 172-179.  

Rivara, G. (2000). Small scale aquaculture: Aquaponics. Alternative aquaculture 

association. Inc., Breinigsville. 

SAS version 8.0, SAS Institute, Cary, NC, USA, 1995 

http://support.sas.com/documentation/cdl/en/whatsdiff/63859/PDF/default/whatsd

iff.pdf 

Savidov, N. A., Hutchings, E., & Rakocy, J. E. (2005). Fish and plant production in a 

recirculating aquaponic system: a new approach to sustainable agriculture in 

Canada. In International conference and exhibition on soilless culture (ICESC). 

742, 209-221, September 2005. 

Seawright, D. E., Stickney, R. R., & Walker, R. B. (1998). Nutrient dynamics in 

integrated aquaculture–hydroponics systems. Aquaculture, 160(3), 215-237. 

Selock, D. (2003). An introduction to aquaponics: the symbiotic culture of fish and 

plants. Rural enterprise and alternative agricultural development initiative report, 

20, 1-6. 

Shahin, S. M., & Salem, M. A. (2015). The challenges of water scarcity and the future 

of food security in the United Arab Emirates. Natural Resources and 

Conservation, 3(1), 1-6. 

Shoko, A. P., Limbu, S. M., Mrosso, H. D. J., Mkenda, A. F., & Mgaya, Y. D. (2016). 

Effect of stocking density on growth, production and economic benefits of mixed 

sex Nile tilapia (Oreochromis niloticus) and african sharptooth catfish (Clarias 

gariepinus) in polyculture and monoculture. Aquaculture Research, 47(1), 36-50. 

Simeonidou, M., Paschos, I., Gouva, E., Kolygas, M., & Perdikaris, C. (2012). 

Performance of a small-scale modular aquaponic system. Aquaculture, Aquarium, 

Conservation & Legislation. International Journal of The Bioflux Society, 5(4) , 

182 - 188 

Somerville, C., Cohen, M., Pantanella, E., Stankus, A. & Lovatelli, A. (2014). Small-

scale Aquaponic Food Production: Integrated Fish and Plant Farming. FAO 

Fisheries and Aquaculture, Technical Paper No. 589, Rome, Italy. 

Tsadik, G. G., & Bart, A. (2007). Characterization and comparison of variations in 

reproductive performace of chitralada strain Nile tilapia, oreochromis niloticus 

L.. Aquaculture Research, 38, 1066-1073. 

http://support.sas.com/documentation/cdl/en/whatsdiff/63859/PDF/default/whatsdiff.pdf
http://support.sas.com/documentation/cdl/en/whatsdiff/63859/PDF/default/whatsdiff.pdf


68 

 

 

 

 

Tucker, B. J., Booth, M. A., Alla, G. L., Booth, D., Fielder, D. S. (2006). Effects of 

photoperiod and feeding frequency on performance of newly weaned Australian 

snapper Pagrus auratus. Aquaculture, 258(1-4), 514-520. 

Tung, P. H., & Shiau, S.Y. (1990) Effects of meal frequncy on growth performance of 

hybrit tilapia, Oreochromis niloticus x O.aureus, Feed different carbohydrate 

diets. Aquaculture, 92, 343-350. 

Urbanc-Bercic, O., & Gaberscik, A. (1989). The influence of temperature and light 

intensity on activity of water hyacinth (Eichhornia crassipes (Mart.) 

Solms.). Aquatic Botany, 35(3), 403-408. 

Wedemeyer, G. A. (1997). Effects of rearing conditions on the health and physiological 

quality of fish in intensive culture. 35-71. In Fish stress and health in aquaculture  

(Eds. Iwama, G. K., Pickering, A. D., & Sumpter, J. P.), Cambridge: University 

Press, Cambridge. 

Wellborn, T. L. (1989). Feeding intensively cultured catfish in levee-type ponds. SRAC 

publication (USA). 

Yousif O. M. (2004) Apparent nutrient digestibility, Growth performance and feed 

utilization of juvenile Nile tilapia, Oreochromis niloticus L., as influenced by 

stocking density and feeding frequency. Emirates Journal of Agricultural Science, 

16, 27-38. 

Yue, Y. R., & Zhou, Q. C. (2008). Effect of replacing soybean meal with cottonseed 

meal on growth, feed utilization, and hematological indexes for juvenile hybrid 

tilapia, Oreochromis niloticus× O. aureus. Aquaculture, 284(1), 185-189. 

Zhou, Z., Cui, Y., Xie, S., Zhu, X., Lei, W., Xue, M., Yang, Y. (2003). Effect of feeding 

frequency on growth, feed utilization, and size variation of juvenile gibel carp 

(Carassius auratus gibelio). Journal of Applied Ichthyology, 19, 244-249. 

 

 



69 

 

 

 

 

Appendix: Enterprise Budget Analysis Sample 

A sample excel spreadsheet where the calculation of the enterprise budget was done, 

is displayed in the following chart, it is from the first experiment for the first scenario 

“1-time of feeding per day”. 

Sample enterprise budget analysis 

Aquaponic System Enterprise Budget in Dirham’s 

Tank size: 15 m
3
 GH1 

Production time frame: 1 year 

INCOME             

Number of fish stocked 6,200 

Survival rate 0.97 

Total fish produced 6,014 

Average sale weight (Kg) 2 

Total sale weight (Kg) 12,028 

Price per Kg 10.00 

Veg. Kg           642.00 

Vegetables Sales         2,247 

Total Income 122,527 

VARIABLE COSTS Unit Amount Price Total Cost Cost / Kg 

Fingerlings each 6,200 2.89 17,918 1.49 

Total weight gained Kg 118 

 Feed conversion ratio ratio 1.81 

    
     

Seeds for 

vegetables 
  Kg 

  
3,000 0.50 

Chemicals and 

IPM  
  

   
5,250 2,625.00 

Total feed consumption Kg 433 0.15 65 0.01 

Labour for Fish Operation hour 2 
 

12,000 1.00 

Electricity and Water year 
  

6,000 0.50 

Marketing & packaging fish 24,056 0.25 6,014 0.50 

Miscellaneous year 4 500 3,000 0.25 

 
Interest on variable costs 44,997.02 0.05 2,249.85 0.19 

Total variable costs 55,496.87 3.93 

Net income over variable costs 

 

 

 

 

 

67,030.13 6.07 
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Sample enterprise budget analysis 

FIXED COSTS Costs 
Salvage 

Value 

Years 

Used 
Cost / Year Cost / Kg. 

Greenhouse Capital Cost 325,000 0 15 21,667 1.80 

Excavation 9,000 0 15 600 0.05 

Lining 6,000 0 15 400 0.03 

Stabilization 3,676 0 15 245 0.02 

Plumbing 5,100 0 15 340 0.03 

Electric hook-up 4,980 0 15 332 0.03 

Storage shed 5,320 0 15 355 0.03 

Aerator 2,561 0 5 512 0.04 

Floating pier 7,316 0 5 1,463 0.12 

Raceway 5,487 0 5 1,097 0.09 

Scale 915 0 5 183 0.02 

Water analysis gear 0 0 5 0 0.00 

Miscellaneous 3,731 0 5 746 0.06 

 Total Fixed Cost 379,086 
    

Interest and added value tax on 

fixed costs 
5,409   5,409 0.45 

Total fixed costs 33,349 2.77 

Total variable and fixed costs 88,846 7.39 

Net income over variable & fixed costs 33,681 2.80 

 

 


	United Arab Emirates University
	Scholarworks@UAEU
	4-2018

	Effect of Feeding Frequency and Stocking Density on Tilapia Oreochromis Niloticus and Lettuce Lactuca Sativa Production in Aquaponics System under the UAE Condition and Business Enterprise Analysis
	Ahmed Abdelrahman Mohamed Abdelrahman
	Recommended Citation


	tmp.1541914353.pdf.RgXO5

		2018-10-16T11:17:30+0400
	Shrieen




