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Abstract  

Fiber reinforced pol  mers ( FRP) are extensively used in several engineering 
field due to their uperior prop rt ies. In structural engineering appl ications, fiber 

polymer have been recent ly u ed for retrofitt ing and strengthening of existing 
structures. A common technique for trengthening steel structures invol es bonding 

FRP composites to targeted steel elements. However, bonding practices and 

researches revealed unde i rable britt le fai l ure of the adhesive at the FRP-steel 
interface. A recent research program conducted at UAB University val idated the 

effectiveness of using mechanical ly fastened hybrid FRP ( HFRP) laminates in 
strengthening steel beams .  Outcomes of the research program revealed that the 

fastening technique could provide a good alternative to overcome the unfavorable 

britt le fai lure of bonded FRP composites. In addit ion, the stud y was enl ightening and 
showed promi sing results in tenns of both yield and ult imate load capacities of the 

strengthened steel beams. However, a l imited range of fastening parameters was 
examined in the above mentioned research program. 

The current research study is  motivated by the need to investigate the 

influence of wider range of fastening parameters and geometrical configurations on 

the interfacial behavior of fastened HFRP-steel cormections. An extensive 

experimental progran1 was carried out on 62 fastened connections on two phases. In 

the first phase. the effect of d ifferent number of washers-per-bolt. c lamping torque. 

bolt-hole diameter and bolt spacing were investigated on connections formed using 

steel bolts. Whi le the second phase was conducted using FRP anchors to examine the 

effect of fastener type and diameter along with the sheared edge di stance on the 
perfonnance of the connections. Test results reconunended to snug-tight the steel 

bol ts after placing them in standard hole-diameters with the use of 2 washers-per­
bolt. Bolt spacing was proven to have insignificant effect on both fai lure modes and 

load carrying capacity of the HFRP-steel connect ions. The study also suggested the 
use of FRP anchors with 1 3  mm diameter with a sheared edge di stance that is three 
times the hole-diameter for optimal performance in telms of duct i l i ty and load 
carrying capacity. Recorded experimental measurements were ut i l i zed to develop 

nonl inear load-s l ip model s  which were integrated in developing nonl inear 3D finite 
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element ( FE)  models using SY oftware. FE models were used to simulate the 
beha\ ior of the fa tened connections and to accurately predict their load cany ing 
capac ity. umeri al predictions were in excel lent agreement with the experimental 

iindings \\'h ich veri fied the accuracy of the proposed nonlinear load-sl ip  models .  

Key" o rd : H) brid fiber reinforced polymers (HFRP). fastened connect ion. HFRP­

steel connection . wa hers. c lamping torque. bolt-hole diameter. FRP anchors. fmite 

element method. 
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C h a pter  1 :  I n t rod u c t i o n  

For over 70  year . steel has been widel used in several structural 

appl ication for its h igh duct i l i ty, st i ffi1ess-to-weight ratio, trength-to-weight ratio 

and ease of constructabi l ity. However, tee I structures are susceptible to 

deteriorations due to the exposure to repeated cyc l ic loading and moist envi ronments 

\\i'hich consequently l imi t  thei r  serviceab i l i ty .  Recent strengthening practices involve 

the u e of fiber reinforced polymers (FRP )  as an altemative to conventional 

rehabi l i tation methods of steel structures. FRP composites are favored in  several 

structural appl ications due to their h igh strength-to-weight rat io and efficiency lD 

resist ing flexural and fat igue loads. The commonly used FRP composites lD 

structural rehabi l i tation appl ications are Carbon Fiber Reinforced Polymers (CFRP) 

and Glass F iber Reinforced Polymer (GFRP) .  Despite the very high strength-to­

weight rati o  offered by CFRP,  their corrosion i nduced problems when connected to 

steel l i mi ts thei r  appl ications in meta l l ic structures. Meanwhile.  the use of GFRP 

provides better corrosion resist ivi ty with lower strength than the CFRP when 

connected to steel .  Hybrid CFRP-GFRP composites ( HFRP) combine both CFRP 

and GFRP and uti l ize their advantages in  an efficient marmer. I t  should  be noted that 

the uti l i zation of CFRP in the HFRP composites promotes for high tensi le strength of 

the composites and i ncreases their stiffness. I n  addition, the incorporation of GFRP 

enhances the corrosion resist ivi ty of HFRP and prevents their spl i tt ing when dri l led . 

Regular strengthening techniques of steel structures involve bonding FRP 

composites to steel elements. However, research studies revealed britt le fai lure of the 

system before the ful l  uti l i zation of the strength of the composites. Therefore, recent 

studies were d irected towards using fastened FRP-steel systems. This current study is  
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motivated by th need to inve t igate the effect of various fastening parameters on the 

performance and load caITying capacity of fastened H FRP-steel s) stem. 

Experimental and numerical invest igations are performed in order to asse s the 

interracial beha\'ior of the fastened system vlith respect to the tudied parameters. 

This introductory chapter inc ludes five sections start ing by presenting the 

problem to be investigated and the objectives of the study, fol lowed by the adopted 

methodology to execute the research. Final ly, the structure of the thesis and its 

contribution to the area of rehabi l i tation of steel stmcture are described . 

1 . 1  Problem Statement  

Fiber reinforced polymers (FRP)  are extensively used i n  several engineering 

fields due to their uperior propert ies of cOITosion resistivi ty, l ightweight, lugh 

strength-to-weight rat io and easy handl ing. In structural engineering appl ications. 

fiber polymers have been recent ly  used for retrofitting and strengthening of existing 

stnLctures. A common technique of strengthening steel structures involves bonding 

FRP composites to targeted steel elements . However, bonding practices and 

researches revealed undesirable brittle fai lure of the adhesive at the FRP- teel 

interface.  Very l im ited studies were conducted recent ly to i nvest igate the 

effectiveness of mechanical ly  fastened hybrid fiber reinforced polymers ( HFRP) in 

strengthening steel elements. These studies validated the use of fastened HFRP-steel 

technique and proposed it as a good alternative to overcome the unfavorable brittle 

fai lure of bonded FRP-steel systems. Reported experimental and numerical results by 

Sweedan et a1. ( 20 1 4, 20 1 6) revealed signi ficant improvements in both ultimate and 

flexural capacit ies of steel beams strengthened using fastened HFRP laminates. 

Obtained results estab l i shed a potential interest to investigate the effect of different 
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geometrical and fa tening parameters on the behavior of the fastened HFRP-steel 

y tem .  nother tudy by  weed an et a1 . ( 20 1 3 )  examined the effect of selected 

geometrical parameter on fastened HFRP- teel connections. Promising results, in 

"iew of both yield and ult imate load capacities. were repOlied in the study. However, 

the study considered a l imited range of fastening parameters. 

The cunent thesis is motivated by the need to i nvestigate the infl uence of 

wider range of fastening parameters and geometrical configurations on the interfacial 

behavior and response of fastened HFRP-steel cOlmections. A wide spectrum of 

design parameters i s  examined including fastener type and diameter, sheared edge 

distance, spacing between fasteners, number of washers-per-bolt. c lamping torque 

and bolt-hole d iameter. Both experimental and numerical approaches are uti l ized in  

conducting the study in  order to propose prefened configurations for optimum 

performance of mult i -fastened HFRP-steel lap connect ions.  

1 .2 Obj ect ives of the Study 

The main objective of the cunent research work i s  to identify the influence of 

maj or fastening parameters on the i nterfac ia l  behavior of fastened HFRP-steel 

connections. The conducted research includes experimental and numerical 

i nvest igations. The experimental program is divided into two main phases depending 

on the fastener type. The first phase is conducted on double-lap HFRP-steel 

connections fastened using steel bolts. The effect of different number of washer-per­

bolt. c lamping torque, bolt-hole diameter and bolt spacing on the fastened 

connections is investigated in this phase. Meanwhi le, the second phase ut i l izes FRP 

anchors with different d iameters to assess the effectiveness of using FRP anchors in 

structural app l i cations. Outcomes of the experimental program are used to 
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recommend fa t ning configurations that would re ult in  optimum perf0D11anCe of 

imi lar connections. The responses of the te ted configurations are used to establ ish 

load-s l ip  models. for each fastener type. that are capable of describing the interfacia l  

beha\ ior of the connections con idering the d ifferent fai lure modes. The research 

then proceeds by performing numerical model ing and analysis of the fastened HFRP­

steel connect ions. The developed load-sl ip models are used to model three 

dimen ional ( 3D )  nonl inear fini te element (FE )  model s  to simulate the behavior of 

the tested connections. The developed FE models are val idated against the 

exper imental results .  umerica l ly  predicted load-displacement curves and strains in 

the HFRP are compared to the experimental measurements to verify the accuracy of 

the proposed load-s l ip  models .  

1 .3 M ethodo logy and A p p roach 

The cun'ent study i s  conducted experimenta l ly and numerical ly .  The 

experimental program aims at i nvest igating the i nterfacial behavior of fastened 

HFRP-steel double- lap cOl1l1ections. Designed direct shear connections are subjected 

to tensi l e  loading using a displacement-contro l led Universal Test ing Machine. The 

experimental invest igation includes two main phases based on the type of fasteners. 

Steel bolts are used in the fi rst phase in order to examine the effect of the number of 

washers-per-bol t  on the response of the HFRP-steel connections. Recommended 

configuration i s  then used in designing the next set of connections which focuses on 

examining the effect of c lamping torque on the tested cOlmections. After that. the 

performance of the HFRP-steel cOl1l1ections under various bolt-hole d iameters and 

spacing values is assessed. The second experimental phase highl ights the use of non­

corrosive fiber fasteners as replacement of the steel bolts. FRP anchors with d ifferent 
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diameters are u ed to form the onnect ion between the HFRP laminates and steel 

plates. In thi phase. the influence of the bol t  d iameter along with the sheared edge 

d istance on the response of the HFRP-steel cOlU1ect ions is i nvestigated . Linear 

variable  displacement tran ducer ( L  V DTs) and strain gauges are used to monitor the 

i n-plane and out-of-plan defonnations of the tested cOIU1ections. Recorded 

measurements, along with the conesponding appl ied loads, enable tracking the 

behavior of the fastened connections. Experimental measurements are also used to 

develop nonl i near load-sl ip  models  that account for the different fai l ure modes 

contro l l i ng the interfacial behavior of tested cormections. Fastening configurat ions 

which resulted in optimum perfonnance of the tested cOl1l1ections in  each phase are 

recommended and modeled numerical ly .  

Three-d imensional non l i near FE models of the fastened HFRP-steel connections 

with the recommended configurations are developed. The interfacial  behavior 

between the HFRP l am inates and steel p lates is taken into consideration through the 

implementat ion of the load -s l ip models developed in the experimental phase into the 

FE mode l .  F in i te element s imulat ions are canied out using the general purpose fini te 

element software package ANSYS.  The FE models are designed to s imulate the 

behavior of the tested connections and predict the load distribution between bolts in 

mult i -bolt connections. Resulted numerical predict ions are compared to the 

experimental findings in order to ensure the accuracy of the proposed load-sl ip  

models .  The developed load-sl ip  models should  serve as  tool s  to accurately pred ict 

the load carrying capac ity of the fastened HFRP-steel connections. 
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l A  O rga n iza t ion  of  the The i 

The current re ar h the i s  consist of five chapters. Brief description of the 

content of each chapter i provided in  thi section. 

Chapter 1 discu e the problem statement of the CUlTent research, fol lowed by 

an i l lustrat ion of the objectives of the stud and the methodology adopted in 

conducting the experimental and numerical work. The chapter proceeds by 

pre enting the organizat ion of the thesis  and concludes by the contribution of this 

study to the structural engineering field .  

Chapter 2 addre se the previously publi shed research work related to the use of 

FRP composites. The pros and cons of bonded FRP-steel system are displayed in this 

chapter fol lowed by a unID1ary of research studies on the behavior of fastened FRP 

composites with respect to arious fasten ing parameters : presence of washers, 

c lamping torque. bolt-hole  diameter. bolts spacing and fastener diameter and type. 

Final ly.  the latest experimental and numerical researches evaluating the performance 

of fastened F RP-steel system in strengthening steel structures are discussed. 

Chapter 3 di scusses in deta i l s  the experimental work performed on fastened 

HFRP-steel double-lap connections. The executed experimental procedures to 

i nvesti gate the behavior of fastened H FRP-steel connect ions with respect to di fferent 

fastening parameters using steel and fiber bolts are displayed. Obtained experimental 

results in  terms of load-displacement curves and strain measurements are also 

reported in  this chapter. Developed nonl inear load-sl ip models reflecting the 

interfaci al behavior of the tested HFRP-steel connections using both types of 

fasteners are also presented and di scussed in deta i l s. 
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Chapter '-I- focuses 11 the development of finite element models based on the 

nonl inear load-s l ip  mode ls obtained from the experimental findings in order to 

accurately predict the behavior of the fastened H FRP-steel connections. Detai led 

de criptions of the geometries. materials,  boundary conditions and loading system of 

the 3D finite element model s  are also presented . umerical ly predicted load­

disp lacement curves and strain measurements of each model are verified against their 

experimental counterparts .  

At the end of this thesis, chapter 5 provides a summary of the work canied out 

in the thesis: i t  a lso presents conclusions regarding the interfac ial behavior of the 

fastened HFRP-steel connections. Conclusions related to the influence of each tested 

parameter on the behavior of the fastened connections are also dra\VIl. Technical 

reconm1endations of the prefelTed configurations for optimum perfom1ance of 

s imi lar mult i -fastened HFRP-steel cOlmections in tem1S of ducti l i ty and strength are 

presented. Final ly ,  the chapter provides recommendat ions for future researches based 

on  the [mdings of the study. 

1 .5 Study Con tr ibut ion  

The outcomes of the CUlTent study enrich the l i terature with technical data 

related to the use of fastened HFRP-steel systems in the structural engineering field .  

The study provides better understanding of the interfacial behavior between steel and 

HFRP l am inates considering d ifferent types of fasteners. Flllihermore, the wide 

range of design parameters considered in the study provides rel iable database for 

engineers to produce safe and economical design of s imi lar connections. The 

developed and veri fied non l inear load-sl ip models al low designers to accurately 

consider the partial composite act ion taking place at  the HFRP-steel interface. 
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Outcome of the tudy are expected to provide code developers with practical design 

recommendation for afe and opt imum de ign of fa tened HFRP-steel connections. 
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C h a pter  2 :  Lite ra t u re Review 

2. 1 I n t roduct ion  

Fiber reinforced polymers (FRPs) are extensively used in  several engineering 

appl ication due to their superior propert ies compared to conventional construction 

material . Their marvelous characteristics of con-osion resisti vity, l i ghtweight, hi gh 

strength-to-weight ratio and easy handl ing enabled them to be used in  aerospace and 

mi l i tary app l ications. I n  the mid- 1 980 ' s. an urgent need for the implementation of 

FRP composites in retrofitting and strengthening deteriorated concrete and steel 

structures erected after the Second World War had emerged (Hol laway and Teng, 

2008) .  FRP composites have been a good replacement for steel p lates used III 

conventional  structural steel repamng tec1miques. A common teclmique of 

strengthening steel structures i nvolves bonding FRP composites to targeted steel 

elements. Al though bonded FRP-steel systems have proven effectiveness III 

strengthening steel members, steel beams strengthened with bonded FRP strips were 

found to fai l  i n  a brittle mechanism due to debonding of the FRP.  Recently, an 

alternative strengthening technique was proposed in which FRP composites are 

fastened to targeted steel members. Despite the proved efficiency of the fastened 

F RP-steel system. very few researchers attempted to invest igate the effect of 

fastening parameters on i ts performance. 

This chapter swnm.arlzes the pros and cons of the bonded FRP-steel 

strengtheni ng system. After that, i t  reviews vanous research studies which were 

conducted on fastened FRP composite systems in d ifferent engineering appl ications. 

The effect of the fasten ing parameters ( i .e . ,  c lamping torque, spac ing, . . .  , etc . )  on the 

performance of the connections is discussed. Research studies on each parameter are 
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pre ented in a historical order. F inal ly, the late t studies that address ut i l izina b 

fa tened FRP heets in  trengthening steel element are presented . 

2.2 Bon ded F R P-Steel Con nect ions 

Com entional tructural steel repairing techniques i nvolve the use of steel 

plate either bonded or fa tened to the metal l ic structure. Many di sadvantages are 

a ociated with the tradi t ional method s ince the additional plates are suscept ible to 

corrosion. difficult  to shape. transport and instal l ,  prone to buckle and impose extra 

loads on the exist ing structure. Bonded steel plates require careful surface 

preparations and expensive fal se work to stab i l ize the steel plates unti l  they are ful ly 

bonded to the structure. 

With the evolut ion of FRP composites, they have been introduced to replace 

the steel p lates in strengthening appl ications due to their excel lent properties. Three 

fibers are commonly used in the construction i ndustry : glass, aramid  and carbon 

fibers (Ho l laway, 20 1 0 ) .  The mechanical and physical properties of carbon fibers 

( CFRP)  make them excel lent al ternative for the rehab i l i tation of steel structures. 

Their h igh strength-to-weight ratio enables 2 kg of FRP to equate, approximately in  

20 1 6. the strength of 47  kg of steel . Although the in it ial cost of fiber composites i s  

genera l ly  h igher than that of steel (4  to 20 times), their instal lation savings can 

overcome thei r  h igh cost. Considering the faci l itated transportation and long-term 

perfonnance of FRP composites, they can result  in cost savings by 1 7.5% ( Hol laway 

and Cadei.  2002) .  Practical steel retrofitt ing techniques i nvolve bonding FRP strips 

to steel e lements by an adhesive. Earl ier researches c lassi fied six d ifferent fai lure 

modes for bonded FRP-steel systems: fai l ure of steel and adhesive interface. fai lure 

of FRP and adhesive i nterface, adhesive layer fai lure, FRP delamination, FRP 
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rupture and steel yielding. sual l  the la t h o  fai lure modes ( i .e . .  FRP rupture and 

teel yielding) are avoided by using nOlmal modulus FRP ( i . e  .. e lastic modulus 

between 1 00 GPa and 250 GPa) and sufficient steel thickness (Zhao and Zhang. 

2007) .  schematic vie\\!' of the described fai lure modes i s  shown in  Fig .  2 . 1 .  

General ly .  the performance of bonded FRP-steel s stems depends on the 

effectiveness of the adhesive and the pre-treatment of the bonded surfaces. Unl ike 

FRP-concrete bonded system where concrete presents the weak l i nk.  epoxy adhesive 

i s  the \veak l i nk i n  bonded FRP-steel connections. It i s  c lear that the fai l ure of 

bonded FRP-steel connections significant ly  depends on the adhesive properties and 

thickne ses. As bond length affects the fai lure of bonded FRP composite system.  Xia 

and Teng ( 2005)  proposed a b i - l uJear bond-s l ip model that can be used in predict ing 

the effective bond length in  bonded FRP-steel connections. 
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(I) Sleel yeildlng 
(e) FRP and adheSive interface debondlf1g 
(b) Adhesive layer failure {al Steel and adhesive interface debonding 

Figure 2 . 1 : Schematic view of the fai lure modes [after Zhao and 

Zhang ( 2006)] 

The qual ity of bonded FRP-steel composites depends on the surface 

preparations prior to the appl ication of the adhesive which is considered one of the 

drawbacks of bonded connections. Therefore, ski l led labors are required to prepare 
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th surface and mix the adhesi \'e in  a proper manner. Basic principles of urface 

preparation inc lude prov iding a bonding surface that is: free from contamination. 

chemical l y  react i \ e (0 enable rel iable chemical bond betv,leen the adhesive and the 

teel and re istant to en i ronmental deteriorations. 

Durabi l ity i a common concern 1 11 the bonded connections since they are 

expected to withstand a wide range of environmental conditions including high 

temperature, high humidity ,  freezing-and-thm ing cycles, chloride and de-icing salts 

penetration.  Water can ad ersely  affect the durabi l ity of the bonded connect ions if 

d iffu ed through the adhesive, transported along the interface or by capil lary action 

through adhesive crack . Bonded cOlmections could experience a reduction in their 

strength if exposed to l iquid water, h igh temperature and/or h igh humidi ty .  They are 

also sensit ive to thermal changes . At high temperature, the adhesive can soften 

resulting in a reduction i n  the mechanical performance of the connection. Freezing­

and-thawing cycles can induce moisture i nto the bond faci l itating the de-bonding 

process of the laminates.  A comprehensi e state-of-the-art review performed by 

Heshrnati et al .  ( 20 1 5 ) addressed the effect of moi sture and temperature on the 

durab i l ity of adhesively bonded FRP-steel connections. Although FRP composites 

are corrosion resistant, their contact with meta l l ic  materials can i nit iate a galvanic 

i nteraction between them .  Practical applications h ighl i ght the importance of the use 

of glass fiber layer as corrosion barrier between the CFRP plate and the steel during 

bonding to prevent galvanic action ( Hol laway and Cadei ,  2002) .  

Several research studies were conducted to  investigate the perfOlmance of  

bonded FRP-steel system under variable factors. An experimental investigation was 

conducted by Sen et a l .  (200 1 ) to examine the feasibi l ity of using CFRP in repairing 
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teel member . teel peClmen were loaded unti l ielding then high modulus CFRP 

laminates were bonded to the tension flange and te ted to fai lure. Result showed 

signi ficant gain in the u l t imate strength b 2 1 %  ( for 2 mm thick CFRP laminates) .  

howe\ er. smal l  enhancement in the ela t ic sti ffness was ob erved . The study 

reconmlended increa ing the capac i t  of the adhesive by using fasteners to ensure 

) ielding of teel members before fai lme.  I t  a lso highl ighted that bonded steel-FRP 

composites do not ful ly ut i l ize the ducti l ity of the steel member. 

The discussed drawbacks of bonded FRP-steel strengthening system provoke 

researchers to consider the potentia l  use of fastened composite connections in steel 

construction appl ications. 

2.3 Fastened Com posite Co n n ect ions 

A summ ary of research work on the behavior of fastened FRP composites is 

presented i n  this section. Focus wil l  be placed on studies that invest igate the effect of 

selected parameters ( i .e . ,  c lamping torque. bolt-hole diameter, . . .  etc . )  on the behavior 

of fastened FRP composite connections. The majority of these research papers was 

d irected to aerospace appl ications, whi le a l imited number was implemented in the 

area of structural engineering.  It should be noted that the perfom1ance of fastened 

FRP-steel connect ions is discussed separate ly in section 2 .4 .  

Coelho and Mottram ( 20 1 5 ) reported four main fai lme modes for statical l y  

loaded fastened composite plate connection with steel plate through a single bol t  as 

shown in F ig. 2 .2 .  Bearing fai lme ( F ig. 2 .2 (a ) ) occurs close to the contact region. 

whi le net-tension is  characterized by sudden cracks transverse to the loading 

direction ( Fig .  2 .2 (b) ) .  In some cases, bearing fai lme causes shear-out fai lure ( Fig. 
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2 .2(c ) )  of the connect ion \ hjch, when joined with net-ten jon, produces the 

clea\ age "failure ( Fig .  2 .2(d» ) .  Experimental re earches indicated that bearing fai l ure 

i s  a progre ive damage that al lows for ducti le beha ior of the connect ions. 

therefore. mo t connection are rather designed to fai l  in bearing. 
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F igure 2 . 2 :  Fai lure modes of fastened plate-to-plate connections: (a )  bearing. (b )  

net-tension. ( c )  shear-out and (d )  c leavage. [after Coelho and Mottram (20 1 5 ) ] 

2.3. 1 Effect of Wa hers 

To the best of the author ' s  knowledge. no one had yet investigated the effect 

of the presence of washers and thei r thickness on the behavior of mechanical l y  

fastened FRP-metal connect ions. However, few researchers studied washers' effect 

on F RP-concrete and FRP-FRP fastened connect ions as out l i ned hereunder. 

A numerical study was performed by Feo et a l .  (20 1 2 ) to examl l1e the 

influence of the presence of washers on the bearing stresses of GFRP-GFRP 

connections formed using 1 4  mm steel bolts. traus7 software was used to perform 

the finite e lement analysis in which connect ions \ ere modeled using eight-node 

elements. whi le the contact between the bolts and the F RP was simulated by one-

dimensional point-contact elements. umerical results revealed that the presence of 
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\\ a hers reduced the bearing tre se of the fa tened connection and influenced their 

fai lure mode . The FE analysi showed dominant bearing fai lure of the modeled 

connections \\' ith the pre ence of washers due to the compression stresses around and 

under the washer . The numerical results were al idated tlu'ough an experimental 

inve t igati on for elected connections in the University of alemo. 

The effect of wa hers on mechanical ly  fastened FRP-concrete connections 

\vas investigated by Real fonzo et a 1 .  ( 20 1 3 ) .  The experimental program tested 1 7  

spec imens of d ifferent layouts with the presence of washers and 1 7  other specimens 

without washers. Test specimens were made of 1 50 x 200 ITlln2 concrete pri sms 

fastened to FRP laminates using 6 mm diameter steel bolts. Results revealed that 

specimens v.:ith w'ashers had greater load canying capacity than those without 

washers . Such behavior can be refened to the fact that washers provided larger 

contact area for the appl ied c lamping pressure, therefore enhancing the bearing 

strength of the connections. The absence of washers caused early dan1age of the 

outer surface of the FRP lan1 inates as evident by the observed punching of the 

laminates due to the rotation of the bolt head which, consequently, reduced the 

capacity of the connection. The presence of washers kept the post-peak response of 

the connection almost stable for wide range of s l ip values. Specimens without 

washers showed remarkable softening after the peak load which led to col lapse of the 

connections at lower s l ip  values. Using washers in  s ingle-fastener connections 

s l ight ly enhanced the strength of the cOlmections; however. i t  almost doubled the s l ip 

at  the peak load providing more duct i l i ty of the connections. On the other hand. the 

use of washers in mult i -fastener FRP-concrete cOlmections significant ly increased 

the peak loads by about 3 8% and showed higher displacements at fai lure . S impl ified 

FEM model s  were developed by Mart inel l i  et aI . ,  ( 20 1 2 ) usi ng SAP2000 to simulate 
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and \'eri f), the experimental results. The author u ed the findings of the 

e'>.:perimental program to propo e an inver e numerical procedure for ident i fying the 

interfacial beha\ ior of mechanical ly  fastened FRP-concrete connection . 

2.3.2 C l a m p i n g  To rq ue 

eyeraJ studie ll1ce the 1 970 's  have in estigated the effect of c lamping 

torque on the behavior of fastened composite connections. D ifferent terminologies 

have been used to ident ify the c lamping torque such as: t ightening torque, c lamping 

pre sure and pre- loading moment. Stockdale and Matthews ( 1 976) examined the 

effect of c lamping pressure on the bearing fai l ure of bi-directional E-glass fiber­

reinforced polymeric connections. A special bolt was placed in a 6 .3  mm hole­

diameter i n  s ingle shear setup. The spec imens were tested under four c lamping loads: 

O .  4905. 98 1 0  and 1 47 ]  5 N using washers of different outer diameters. Test results 

were a lso compared to pin testing condition where washers were excluded from the 

setup without c lamping pressure . Experimental results revealed a sign ificant increase 

in the fai lure loads of the specimens associated with increasing the c lamping loads. 

An enhancement of 75% in the load canying capacity of the specimens was obtained 

for the examined range of c lamping loads. Failure of the zero c lamped specimens 

\-vas located near the hole: however, with the i ncrease of the clamping loads. fai lure 

':vas characterized by cracking i n  the hole and compression at the washer edge. One 

of the remarkable  h ighl ights of the research was the observed post peak sudden 

britt le fai lure with the increase of the c lamping loads. It is worth noting that the 

fai lure load of pin type connection was 40% lower than the zero c lamping condition 

(with restraining washer) with noticeable fiber delamination. 
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Another tudy b Crew ( 1 98 1 )  inv stigated the torque effect on 

mechanical ly  fa tened composi tes USlllg 2 . 24 mm thick [0/45/90/-45b 

graphite/epoxy laminates fastened using 6 .35  mm steel bolts with 0. 1 5  mm 

c learance. Te  ted torque alues inc lude: 0,  2 . 82 ,  5 .65 .  8 ,48  and 1 1 . 3 .m .  

Experimental results revealed that increasing the torque delayed the onset of fai l ure 

of the assembly and i ncreased its ul t imate strength. Signi ficant improvements in the 

bearing strength were observed at higher torque values. I t  was al so observed that the 

appl ied torque considerably affected the fai lure modes of the composites and 

combined modes were detected at increa ed c lamping. Typical ly .  the noticed fai l ure 

modes were shear-out under washer and bear ing fai lure beyond it . A 1 00% 

i mprovement i n  the ult imate strength of spec imens torqued to 1 1 .3 N .m.  was 

observed relative to the pin-bearing condition. The research concluded that strength 

improvements caused by increasi ng the appl ied torque were reflected on the 

associated fai lure modes. 

In the early 1 990's ,  Hom and Schmitt ( 1 994) examined the influence of 

c lamping force on the bearing strength of mult i -directional fiber composite materia l .  

A total of 32  single-shear connections were prepared using composite materia l  and 

t i tanium fasteners. et-fit  holes were dri l led in the composites with diameter of 6 . 35  

mm and edge distance of 1 9 .05 mm.  The effect of fastener types ( in terms of bolt­

head type) on the strength of the connections was also i nvestigated using protrudi ng 

and countersi nk head fasteners. The study concluded that increasing the c lamping 

force enhanced the bearing strength of the composite connections. Assembl ies with 

protruding head fasteners showed higher strength than those with countersi nk 

fasteners. 
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Another experimental invest igation was conducted by Cooper and Turvey 

( 1 99 5 )  using double-lap- ingle-bolt connection made of 6 .35 111m thick layered 

GFRP heet in order to examine the effect of bolt c lamping torque. pec imens were 

tested under three c lamping condit ions: pin-bearing ( zero c lamping torque). l i ghtly 

c lamped ( 3 . 0  . m . )  and ful ly  c lamped condition (30 .0 N .m . ) .  Connections were 

connected by M I O  grade 8 . 8  bolts .  I ncreasing the applied torques from zero to 3 

.m.  resulted i n  30% improvement in the average fai l ure loads. Meanwhi le, 96% 

enhancement in the fai lure loads was obtained \ ith the use of 30 N .m .  torque. 

l though the appl ied torque had almost negl igible effect on the st i ffness of the 

connections. it had signi ficant effect on the composite plate critical edge-to-diameter 

and \·vidth-to-diameter rat ios to ensure bearing beha ior of the tested c0l111ections.  

Further study performed by Wang et a l .  ( 1 996) aimed at evaluating the effect 

of c lamping pressure on the bearing response and strength of fastened composite 

connections .  Double- lap connections were designed using high strength steel and 

carbon composites with bolt-hole clearance of 0 .002 i nches. The study was 

conducted using carbon composites of b i - and multi -directional fibers. A pre­

designed load cel l was used to measure the clamping force generated from the 

app l ied torque. Different c lamping forces were te ted ranging from "finger t ight " to 

" 1 .2 kips" . Specimens were tested using MTS machine in tensi le mode at a loading 

rate of 0 .05 i nch/min .  Two fai lure modes were observed : bearing fai l ure ( for 

specimens with WID greater than 8 and E/D greater than 6) and shear-out fai l ure . 

Results revealed that increasing the c lamping pressure improved the bearing strength 

of the connections. I ncreasing the c lamping force reduced the visible cracks under 

the washer since the c lamping pressure reduced the probabi l ity of transverse 

expansion of the laminates. It was also observed that bearing damage under washers 
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depended on the appl ied c lamping cond ition. s bearing load increased. damage 

accumulated under the wa hers and shear cracks were fom1ed unt i l  it over-pa sed the 

\\ a hers and crack appeared on the lan1inate urface. The researches interpreted the 

enhanced bearing trength associated \ ith increasing the c lamping pressure to the 

friction between \va her and the lan1 inates. 

Three years later, Yan et a l . ( 1 999 ) examined the effect of c lamping pressure 

on composite-focused level using composite-bolted laminates .  The experimental 

stud) tested the re ponse of graphite/epoxy laminates with d ifferent fiber orientations 

under various c lamping forces. Lan1 inates which were prone to fiber-matrix spl itting 

and delamination exhibited decreased tens i le  strength at higher clamping pressure. 

Although spl i tt i ng of fiber-matrix could improve the tensi le strength around the hole 

through releasing stress concentrations in  the O-degree pl ies around the bolt-hole, 

appl ied c lamping pressure restrained fiber-matrix splitting leading to higher stress 

concentrations i n  the O-degree pl ies assoc iated with lower tensi le strength around the 

hole. evertheless. laminates which were not prone to fiber-matrix splitting were 

i nsensit ive to the c lamping conditions. Tested laminates were then used in double-lap 

fastened connections to examine the effect of c lamping pressure on the tensi le  

strength of the connections. Results revealed enhancement in the strength of the 

connections with the increase of the c lamping pressure. 

I n  2000. Tong i nvestigated the effect of c lamping torque along with the 

rel ative positions of bolt and washer on bearing fai l ure of composite connections. 

CFRP laminates, with carbon fibers oriented in a quasi - isotropic sequence. with 

width of 3 8 . 1  mm and thickness of l . 72 nun were fastened in  a double- lap setup 

using 6 .25 mm bolt diameter. Tested spec imens bad edge di stance of 38 . 1 mm, hole-
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diam ler of 6 . 35  mm and length of 1 78 mm. The tested conflguration resulted in 

hole-bolt c learance of 0 . 1 mm and hole-washer c learance of 0.65 mm. Two offsets 

were studied:  po i t ive offset where the center of the washers had offset in the 

direction of the load leaving a gap benveen the i nner surface of the washer and the 

upper surface of the hole and (b )  negat ive offset, where washer offset is assumed in  

the opposi te d irect ion of that i n  the positive offset. Specimens with posit ive offset 

were tested under 3 torque values ( 0, 6 .4 and 1 2 . 8 8  N .m . ), whi le  those with negative 

offset experienced 5 torque values (0 .  6.4, 1 1 . 88 ,  1 7 . 1 9  and 1 9 .77  N .m . ) .  

Experimental results showed increase i n  the i ni tial and ultimate fai l ure loads with 

i ncreasing the appl ied torques regardless of the setup offset. Local delam inat ion 

buckl i ng was observed around the edge of the washer at ul t imate fai lure loads. 

A more recent experimental progran1 by Kbashaba et a l .  (2006) studied the 

effect of c lamping torque on the performance of single-bolt connections using GFRP 

composites. Glass fibers were arranged in  an angle-ply of [0/±45/90Js with a 

thickness of 5 .2 mm . Typical 0 . 1 mm c learance of aircraft connections was selected 

i n  designing the connections. Results of the investigated torque values (0 .  5 ,  1 0  and 

1 5  .m. ) showed an improvement i n  the sti ffness of the connection with increasing 

the appl ied torque from finger-t ight to 1 5  N .m .  This improvement was attributed to 

the increase in the contact pressure between the washer and the laminate . Increasing 

the appl ied torque enhanced the bearing strength of the connection and a l lowed it to 

carry higher ul t imate loads, hence, enhanc ing its load carrying capacity.  The 

observed fai lure modes were s imi lar for most of the specimens starting by 

delamination between the lam inate layers fol lowed by a net-tension fai l ure in  the 90° 

layers, then shear-out of the 0° layers and final ly  bearing fai lure in  the 45° l ayers. 
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Kapti et a l .  ( 20 1 0) conducted experimental and numerical i nvestigations to 

explore the faj lure mechanisms of carbon/epoxy composite connections under 

d ifferent pre- loading moments ( torques) .  Carbon/epoxy laminates with thickness of 

1 .6 mm and lay-up of [90/0] 5  were used to form fastened connections using 8 mm 

bolts. peci mens were tested w1der 3 N .m.  and 6 N .m .  pre loading moments. Testing 

was performed on I nstron- 1 1 1 4  Tensi le  Machine at a rate of 1 lnmlmin .  Three main 

fai lure modes were observed depending on the dimensions of the tested specimens: 

shear-out net-tension and bearing. Increasing the pre- loading moment enhanced the 

bearing strength of the connections. Specimens tested under 3 N .m .  and 6 N .m .  

exhibited enhancement of the bearing strength by  of 1 52% and 24 1 %. respect ively. 

compared to non-pre-Ioaded specimens. 

Another study by Ozen and Sayman ( 20 1 1 )  examined the effect of torque on 

the load carrying capaci ty of rectangular glass fiber composite l aminates. 

Connections were tested under O. 3 and 6 N .m .  in tension witb a displacement rate of 

1 mm1min .  Experimental results showed improvement in  the load capacity of tbe 

connections with increasing the c lamping torque. Net-tension and bearing fai l ure 

modes were observed for connections with zero torque, whi le only net-tension fai l ure 

was detected for h igher torque values. A two dimensional fini te element mode l was 

deyeloped on ANSYS 1 1 .0 software using the S HELL 1 8 1  element. Predicted fai l ure 

loads were c lose to the experimental ones with a maximum error of 1 0%. 

2.3.3 Bolt -Hole  D i a m eter 

Bolt-hole diameter i s  one of the principle paran1eters considered in  designing 

mechanical ly  fastened connections. The effect of the c learance between the bolts and 

the dri l led holes i s  of great i nterest especia l ly for aerospace appl ications. McCarthy 
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et aJ . ( 2002) in\'e t igated the effect of boIt-hole diameter on tbe sti ffness and bearing 

trength of single-lap composite connections \-"itb a single-bolt using protruding and 

countersunk bolts. 8 111m diameter bolts made of t itanium al loy were uti l ized in the 

tudy along with graphite/epoxy composites of mult i-directional fibers. Four 

d ifferent c learances were examined in  the experimental program: net-fit, 80 !lm, 1 60 

!lm and 240 !lm .  Connections were loaded in tension in  a displacement-contro l led 

manner v,'i th a rate of 0 . 1 mm/min .  Result ing load-displacement curves showed 

delayed in i t ial load take-up of the connect ions \ i th increasing the bolt-hole diameter. 

Experimental observations revealed i ni tial bearing fai lme of al l connections, whi le 

the final fai lure was characterized by bolt fai l ure. I t  was al so noted that bolt-hole 

d iameter affected the duct i l ity of the connections as net-fit assembl ies fai led at lower 

displacements than others. For finger-tight connections with protruding head bolts. a 

reduction of about 1 0% in  the st iffness of the connections was observed with 

increasing the c learance to 240 !lm.  This decrease in  the sti ffness was attributed to 

the reduced bolt-hole contact area assoc iated with increasing the bolt-hole diameter. 

One of the most i mportant findings of this study is the insignificant effect of bolt ­

ho le  d ian1eter on the ult imate strength of the cOlmections, despite i t s  i nverse effect on 

the i nit ia l  bearing of the connections. Connections with protruding head bolts were 

stiffer than those fastened with countersunk bolts. 

In 2004, Kel l y  and Hal l strom conducted experimental and numerical studies 

on the effect of geometrical parameters. lateral c lamping load and bolt-hole c learance 

on the bearing strength of laminated mult i-directional  carbon fibers . The 

experimental program tested tlu-ee d ifferent c learance levels :  0%, 1 . 55% and 3 .05% 

as percentage i ncrease of the bolt d iameter (db = 6 .35  111m) .  Specimens were prepared 

with different edge-to-diameter width-to-diameter and thickness-to-diameter a lues 
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and were tested under a univer al test ing machine with a constant cross-head speed 

of 1 nun/min .  Test re ults revealed that bolt-hole c learance inversely influences the 

bearing strength of the lam inate . For finger-tightened laminates, a reduction of 7% 

and 1 9% of the bearing strength \\'as observed for c learances of 1 . 55% and 3 .05%, 

respectivel y .  However, the percentage reduct ion was sl ightly  improved with the use 

of lateral c1anlping of 5 N .m .  to 4% and 1 2% for c learance level s  of 1 . 55% and 

3 .05%, respectively .  One of the most important high l ights of the study was the 

i ns ignificant effect of bolt-hole c learance on the ult imate bearing strength of the 

connection .  However, i t  was suggested to use of a smal l  bolt-hole c learance for 

better bearing strength of the connections. 

The effect of di fferent bolt-hole c learances on load distribution between bolts 

was exami ned by Lawlor et a1 .  ( 2005 ) using double-lap mult i -bolt connections. 

Graph ite/epoxy speci mens with width of 48 nml, thickness of 4 . 1 6  mm . edge 

distance of 24 mm and bolt d iameter of 8 mm were prepared. The composite 

l am inates had quasi- isotropic l ay-up of [45/0/-45/90] .  Bolts were torqued to 0.5 N .m.  

to present a finger-t ight condit ion.  Selected c learances used i n  the experimental study 

were : net-fit. 80 11m,  1 60 11m and 240 11m.  Small c learances were considered to 

reflect practical appl icat ion of aircraft connections. S ix d ifferent clearances cases 

were exannned : one connection with a l l  neat-fit holes, four cOID1ect ions with one 

loose-fit hole and a s ixth cOlmection with two loose-fit holes. E ight stra in gauges 

were instal led on each specimen to trace the load d istribution benveen the bolts. Test 

resul ts  revealed that c learances had a remarkable effect on load distribution in multi ­

bolt connections. Genera l ly, loads were transfened to net-fit bolts first due to their 

high st iffness. In all net-fit connections, the outer two bolts carried the majority of 

the load. However, connections having one loose-fit hole placed at one end showed 
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di fferent beha\ ior since the two net- fit holes shared the entire load init ia l ly ,  then at a 

later tage the 100 e-fit bolt tarted contribut ing in carr ing the load. At the de cribed 

ca e of one 100 e-fit hole located at one end, load tried to be equa l ly  di stributed 

among a l l  bolt but material fai lure occurred first . The anal s is of the results showed 

that net-fit connections were the st iffest and underwent the shortest deflect ions. The 

experimental findings indicated that bolt-hole clearance had insignificant effect on 

the ul t imate fai l ure load ; however. it influenced the i ni tial fai l ure loads of the 

pecimens. Connection with all net-fit c learance showed 25% increase in  the ini t ial 

fai lure loads than those with two loose holes. 

The findings of the above mentioned experimental study were used to 

val idate a 3D FE model de eloped by McCarthy et a1 . (2005) .  The nonl inear fini te 

element software ABAQUS was used i n  model ing and predicting load distributions 

and redistributions between bolts when bearing fai l ure occurred. The val idation of 

the model was performed through comparing the load-displacement characterist ics 

and surface strains of the connections with the experimental results. Results revealed 

that bolt-hole diameter affected the i ni tial fai lure loads of the connections but had 

i nsign ificant effect on their ult imate load capac ity.  

Esendemir and Oendueruecue ( 20 1 1 )  performed an experimental 

i nvest igati on to exami ne the effect of bolt-hole diameter on the bearing  strength of 

mechanical l y  fastened connections. Specimens with different widths and edge 

distances were tested to set l i mits for width-to-diameter ( Wid) and edge di stance-to­

diameter ( E/d) ratios that are necessary to avoid the undesi rable  net tension fai l ure. 

Glass fiber composites were used in preparing a total of 20 speci mens with thickness 

of 1 .45 mm and length of 80 mm. Al l  bolts used in the i nvest igation had diameter of 



25 

5 mm and torqued to 0 .m .  to present finger-tight conditions. The setup of the 

experiment identified two types of clearances: T pe- I  had hole-diameter of 5 mm 

(net-fi t ) ,  whi le Type- I I  had hole-diameter of 5 .2 nun ( l oose-fit) .  Each specimen was 

loaded to ult imate fai lure and fai lure modes and loads were recorded . Three fai lure 

mode were ob erved in each c learance type : net tension, cleavage with net tension 

and bearing with net tension. Results showed that bolt-hole diameter had 

i ns ign ificant effect on the fai lure mode of the connections. However, c learance was 

Sho\\11 to inverse ly  affect fai lure loads of the connections. where connections with 

smal ler clearances withstood more loads before fai l ure . Resul ts showed 35 . 72% 

i ncrease in the bearing strength of connect ions with Type- I  than Type- I I .  

Another experimental study by Rosales- l riarte et a l .  ( 20 1 1 )  examined the 

effect of bolt-hole diameter on carbon fiber lam inates under bearing and bypass 

loads. Tested spec imens were made of layered uni-directional carbon fibers. Three 

d ifferent c learances were tested: net-fit .  ] 60 /.lm and 240 /.lm. Obtained bearing­

bypass-load curves revealed a reduction in  the load carrying capaci ty of the 

connection with increasi ng the c learance when bearing loads govern the behavior of 

the connect ion.  On the other hand, increasing the c learance improved the capacity of 

the connection when bypass stresses control led. The presence of c learance reduced 

the bolt-hole contact area under bearing conditions generating higher stresses which. 

in-turn. reduced the canying capac ity of the connection. In conditions where 

bypassing stresses were dominant, the clearance reduced the stresses produced 

between the hole-edge and the pin al lowing the connection to carTY more loads. A lso, 

the experimental program invest igated the effect of c lamping torque on the capacity 

of the cOnl1ection . Results showed enhancements in the bearing strength of the 

connection with i ncreasing the clamping forces from finger-t ight to 1 5  N .m.  
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The tern1 ' pacing'  i u ed in  thi s study to de cribe the row spacing between 

connecting bolt along the ame gauge l ine in the loading direct ion. To the best of 

the author' s  knowledge. only one research work was conducted by Chutima and 

Blackie ( 1 996) to explore the effect of row spacing on fastened composite 

connections. two dimensional FE model was developed to examine the effect of 

row pacing and bolt diameter on the stress distribution at the bolt-hole interface and 

load tran fer between bolts i n  a multi -fastened composite plate .. The modeled 

connection con i sted of laminated mult i-directional CFRP fastened to a rigid fixture 

u ing 6 .35  mm titan ium bolts loaded in tension. Integer mult ip les of the hole­

diameter from 2 to 4 were modeled to invest igate the effect of spac ing on the 

connection.  whi le the selected range of bolt-diameter aried between 5 mm and 1 6  

l1U11. The developed FE model was veri fied against perv ious experimental data and 

showed rel i able predictions. Resulted simulations revealed more uni fOlm load 

d istribution across the rows of the connection at h igher spacing. Meanwhi le . vary ing 

the spacing had negl igible effect on load transfer between bolts. I ncreasing the bolt­

diameter resulted in  lower stresses at the hole boundary and non-unifonn load 

distribution across the connection. For the range of bol t  diameter i nvestigated in this  

study. bolt  diameter of 8 mm was selected for ideal performance of the modeled 

connection. 

The effect of bolt diameter was also investigated experimental ly  by Asc ione 

et al . ( 20 1 0) .  The study was conducted using mono-directional and bi-directional 

GFRP laminates with three d ifferent bolt  diameters : 1 8  mm, 1 9  mm and 20 mm . 

Increasing the bolt diameter in fastened GFRP laminates was shown to have a direct 

l inear relation with the p in-bearing capac ity of tested composite laminates. The 
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experimental utcome were then u ed to propo e a design formula that predict the 

pin-bearing fai lure load of s imi lar connect ions as a function of the bolt diameter and 

fiber inc l inat ion angle. 

2.3.5 Bolt Ty pe 

Researcher investigated the use of different bolt  types on the behavior of the 

fastened connections in several application . Genera l ly . metal bolts were used with 

d ifferent shapes ( i .e .. countersunk. hexagonaL . . .  etc . ) .  Few researchers designed their 

0\\11 composite bolts for research purposes. Erki ( 1 995 )  compared the use of two 

types of fasteners: GFRP threaded rods and steel threaded rods. The experimental 

program examined the effect of 1 9  mm diameter rods on the strength of composite­

composite double lap cOlmections. I t  was noted that GFRP threaded rods reduced the 

capaci ty of the composite connections by half s ince they were weaker than the 

connected composite plate. However. the fai lure of connections fastened using the 

steel threaded rods was governed by the mechanical properties of the composite 

laminates. 

Another experimental study by Starikov and Schon ( 200 1 )  i nvestigated the 

use of composi te ( AC F )  bolts made of carbon rei nforced polymers on the mechanical 

behavior of mult i -bolt CFRP-CFRP connections. The composite plates were made of 

carbon fibers with quas i - isotropic lay-up. The behavior of connections with 

composite bolts was compared to that of connections made using t i tan ium bolts :  

torque-set and Hunk-comp. Composite bolts were designed so that the part where 

torque was appl ied broke after attain ing an average torque of 2 . 7  .m .  Constant bolt 

diameter of 6 nm1 was maintained throughout the investigation for al l types of bolts. 

Each cOlmection was equipped with ten strain gauges to monitor the transfer of load 
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bet\:\'een tlu'ee rows of bolts . Five train gauges were placed between the fIrst and 

second row of bolts whi le  the remaini ng were placed between the second and third 

row of bolt . Connections were exposed to static tensi le loading with a constant 

displacement rate of 1 mm/min .  Experimental results showed better load carrying 

capacity for cOlmections with t itan ium bolts than those with ACF bolts .  COlmections 

fastened using both torque-set and Hunk-comp t i taniwn bolts had the same ult imate 

strength and fai l ure mode which was characterized by sudden post peak net-section 

fai l ure. The load-displacement cur e for cOlmect ion with ACF bolts showed two 

fai l ure modes. Fracture of the composite bolts was the dominant fai lure mode. 

fol l owed by late bearing damage resulted from the left fractured pieces in the bolt­

hole which created a pin loadi ng set-up. The tested mult i -bol t  cOlmections a l lowed 

the authors to examine the load distribution between bolts using the torque-set and 

ACF bolts . Results i ndicated that the row of bolts c loser to the loading direction 

transferred the maximum amount of the applied loads, whi le the other two rows of 

bolts shared the remain ing loads almost equal ly .  Connections with the same 

confIgurations were tested under fatigue loading by Starikov and Schon (2002) .  The 

main d ifference in the behavior of the cOlmections was the observed fai l ure modes, 

where a l l  connections fai led in bolt fracture regardless of their type. 

I n  2005, Riccio and Marciano conducted an experimental study in  order to 

examine the effect of bolt type and bolt diameter on the behavior of fastened 

composite-composite connect ions. Titanium bolts and nuts were used to COlmect the 

CFRP laminates, with lay-up of [ (0/±45/90)4]s, i n  a single-lap setup. Protruding 4 . 8  

mm diameter bolts were ut i l i zed in the study along with 4 .8  mm and 6 . 4  mm 

countersunk bolts. Connections were loaded stat ical ly  in  tension with a displacement 

rate of 1 mm/min .  The study results indicated that increasing the bol t  diameter 
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enhanced the load carr ing capacity of the cOlmections, while changing the bolt  type 

had insigni ficant effect on the fai l ure load of the CFRP-CFRP connections. It was 

al 0 conc luded that the protruding bolts delayed the fai lure onset of the connection 

compared to cow1tersunk bolts. e lected connections \ ere numerical ly modeled by 

Riccio ( _005 ) using a 3D  progressi e damage approach for the CFRP laminate . 

A SY oftware was ut i l ized in  developing the model ,  where brick elements 

( BRICK 45 )  and ( BRICK 46)  were used to model the bolts and the composite 

l am inates. respectively .  Numerical load-disp lacement curves were in good agreement 

\vith the experimental results. which validated the predictions of the FE mode l .  Also, 

numerical stra in predictions were compared to their experimental c01..mterparts and 

showed acceptable  match. The developed model was able to give detai led 

i nformation on matrix crack ing, fiber breakage and delamination at the damage onset 

of the joi nts which can be hardly identi fied using the non-destmct ive ultrasonic 

evaluat ions. 

2.4 Fastened F RP-Steel Con n ect ions 

A very l imited number of research studies were found in  the l i terature related 

to fastened F RP-steel cOImections. Hai and Mutsuyoshi ( 20 1 2) perf01111ed 

experimental study to i nvestigate the behavior of double-lap connections of steel 

spl ices fastened to hybrid CFRP -GFRP ( HFRP) laminates .  E ighty m i l l imeter wide 

H F RP l aminates were cut from the flanges of manufactured H FRP I -beams with a 

thickness of 1 4  mm . HFRP laminates were connected to the splices plates using steel 

bolts of 1 0  mm dian1eter. Connections were loaded in  tension using a universal 

test ing machine with 500 kN load capacity. Analysis of the resulted load­

displacement curves of the fastened connections indicated i ni t ia l  negl igible s l ip  
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resi stance between the spl ice plate and the H FRP laminates, fol lowed by gradual s l ip 

of the bol t  toward the bearing region. fier that, bearing fai lure and bend ing of the 

bolt took place reaching the ult imate load capacity of the connection before fai lure . 

The tudy a lso examined the effect of end-di stance on the fai lure loads and fai lure 

mode of the steel -HFRP connections. Fastened connections with end-di stances that 

are t\'\ o-to-four times the nominal bol t  diameter were tested . The lowest fai l ure load 

\\ a recorded for connect ions with end-di stance that i s  double the bolt d iameter with 

hear-out fai l ure .  The study uggested the use of end-di stance that is four-times the 

bolt d iameter to ful l y  uti l ize the load capacity of the fastened connections with 

ducti le bearing fai l ure. 

In 20 1 3 . an experimental study was conducted by Sweedan et a1 .  to examine 

the effect of sheared and rol led edge di stances and bolts' spacing on the behavior of 

FRP-stee l  connections. Two hybrid GFRP-CFRP laminates with thickness of 3 . 1 7  

mrn were fastened to 1 0  runl thick steel p lates i n  a double-lap setup using M6 

hexagonal steel zinc coated bolts .  Connections were loaded in  tension fol lowing a 

d i sp lacement-contro l led manner i n  a rate of 1 mm/min .  Tested connections 

experienced combination of fai lure mechanisms inc luding: bearing at the bolts-FRP 

i nterface, fol lowed by bending in  bolts and folding of washers and final ly tear out of 

the F RP laminates. All spec imens fai led in  a duct i le maImer veri fying the abi l ity of 

mechanicall y  fastened systems to overcome the undesirable britt le fai l ure of bonded 

FRP-steel systems .  The experimental findings reconmlended the use of sheared edge 

distance that is s ix to seven t imes the hole-diameter for better duct i l ity and carrying 

capacity of the connections. The study had shown the insignificant infl uence of 

rol led edge d istance on the behavior of the FRP-steel connections. For the examined 

range of spacing ( l 00, 1 25 and 1 68 mm), the study revealed negl igible effect of bolt 
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pacing on both fai l ure load and modes. Th experimental outcomes were used to 

de\ elop a impl i fied load- l ip  model for the various mechanism taking place at the 

teel-FRP interface. The int rfac ial behavior of the fastened system was modeled 

numerica l ly  u ing A I Y oftware. Predicted peak loads were in  agreement \vith 

tho e obtained experimenta l ly  with error range between 0 .25% and 8 . 8 7%, which 

val idated the accuracy of the proposed load-sl ip  model . 

Val idated load-s l ip model was furiher used by Sv.'eedan et a 1 .  ( 20 1 4 )  to 

s imulate the behavior of steel beanls strengthened with FRP laminates that are 

fastened to the bottom flange. Material and geometrical non l ineari ties were 

considered in the simulation along with the relative s l ip at the FRP-steel interface. 

Resulted FE predictions revealed a duct i l e  behavior of the strengthened beams and 

hO\\'ed excellent agreement \vith the experimental measurements which confirmed 

the rel iabi l ity of the developed mode l .  An additional beam was simulated where the 

F RP laminates covered the total span of the beam. Stress distribution in the steel 

fasteners and the F RP laminates were studied in  addition to the composite action of 

the mechanical ly strengthened beams. The main conc lusions of the conducted 

numerical study highl i ghted the ducti le behavior of the mechanical l y  strengthened 

beams with the use of sufficient number of fasteners. The contribution of the FRP 

laminates in  carrying the appl ied loads became apparent after yie lding of the extreme 

fibers of the steel beams .  umerical results indicated that reduc ing the length of the 

FRP laminates required less number of fasteners and hence inducing more hear 

forces in each fastener risking the ducti l ity of the strengthened system. However. 

increasing the sti ffness of the fasteners enabled them to withstand higher shear 

forces. It was also concluded that increasing the thickness of the FRP laminates 

enhanced the load carrying capacity of the FRP-steel beams. 
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An extensi, e experimental investigation of the beha ior  of ful l - cale steel 

beam external ly  reinforced with fa tened FRP composites was conducted by 

\\ eedan et al. (20 1 6) .  E leven UB203 x 1 02 x23 steel beams were reinforced using 

h) brid GFRP-CFRP composite strip which were fastened to the bottom flange of 

the beams u ing 6 mm diameter zinc coated teel bolt . The experimental program 

examined the influence of various lengths and thicknesses of the FRP laminates 

along with d ifferent number of fastening bol ts .  Yield flexural capac ities and fai l ure 

modes of the trengthened beams were assessed . Test matrix invol ed using three 

lengths of F RP laminates : 1 200 mm, 1 800 nm1 and 2200 mm with single and double 

la) ers of the FRP laminates corresponding to thicknesses of 3 . 1 75 mm and 6 .35  mm , 

respectively.  Reinforced beams were tested in three-point loading system and their 

behavior .vas compared to un-strengthened control beams. The experimental results 

revealed enhancements of both yield and ult imate loads of the strengthened beams 

compared to the control beams. I ncreasing the length of the FRP laminates showed 

s l ight improvement in the yield loads of the beams ranging between 1 . 8% and 6.4%. 

Ho\vever. the strengthened beams exhibited signiflcant enhancement in their ult imate 

flexural capacity by 1 1 . 1  %, 1 6 .7% and 1 9 .4% for FRP lengths of 1 200 mm, 1 800 

mm and 2200 mm . respect ively .  Moreover. doubl ing the thickness of the FRP 

laminates with maintaining sufficient number of bolts improved the yield and 

ult imate load carrying capac ities of the beams by 9. 1 % and 30.6%. respectively .  Irs  

worth noting that a l l  beams strengthened using single FRP laminate fai led i n  a 

ducti le manner by combination of bearing in  the FRP lan1inates. rupture of the FRP 

fibers and local buckl i ng in the compression steel flange. The same fai l ure modes 

were observed with doubl ing the thickness of the FRP laminates whi le preserving 

adequate number of bolts .  Using insufficient number of fastening bolts caused 
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udden fai l ure in the beam by shear fracture of the bolts before ut i l izino the ful l  I::> 

trength of  the laminate . 

2.5 Co n c l u d i n g  Rema rks 

The research studies rev iewed in thi chapter covered a wide-range of the 

exist ing l iterature relevant to bonded and fastened FRP-Steel and FRP-FRP 

connect ions. The review included experimental and numerical research work that 

investigated the effect of main paranleters contro l l ing connection behavior such as 

use of washer , c lamping torque. bolt-hole diameter, bolt d iameter. spacing between 

bolts and fastener type. The review indicated that the response and strength of 

fastened composite connections are h igh ly influenced by several fai l ure modes 

including bearing at the F RP-bolt interface, bending in connecting bolts and tear out 

of F RP lam inate. The few cited research studies devoted to structural appl ications of 

F RP-steel connections were l imi ted to cOl1l1ections fomled using 6 mm diameter 

steel bolts with bolt spacing that ranged between 1 00 mm to 1 68 mm. The sensitivity 

of connection behavior and the contro l l ing fai lure mechan i sm to bolt spacing values 

beyond this l imi t  needs to be invest igated careful ly .  Other factors such as bolt-hole 

d iameter. washers thickness and clamping torque need also to be explored . 

Moreover. the possible use of FRP anchors to enhance corrosion resist ivity of the 

connections need to be addressed . I rrespective to the fastener materiaL the nature of 

the prevai l ing fai l ure mechan ism is of significant concem that needs to be careful ly 

explored to avoid undesirable britt le fai lure of the FRP-steel connect ion. This 

l iterature review indicates that several aspects of fastened FRP-steel connections 

have not yet been extensively explored. This greatly  emphasizes the importance of 

conducting the current study which also embarks upon the promising results reported 
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b) weedan et al. (20 1 3 . 20 1 4  and 20 1 6) on the efficienc of the fastened FRP-steel 

trengthening y te111 . 
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C h a pter  3:  E x pe ri m e n t a l  P rogra m 

3. 1 I n t rod uct ion 

The f0I111er l i terature shovved an evident potential of the fastened FRP-steel 

) tem in trength ning steel members .  The fastening technique was proven to 

present a duct i le behavior of the composite hybrid fiber reinforced polymers-steel 

( HFRP-steel ) system with significant  enhancements in the load carrying capaci ty of 

the strengthened teel elements. How·ever, no information was found in  the l i terature 

discussing the effect of various fastening parameters on the response of HFRP-steel 

fa tened s) stem. TIm , the aim of this study is to i nvest igate the effect of d ifferent 

fa tening parameters on the inteIfacia l  behavior of the fastened HFRP-steel system. 

The current chapter presents the experimental program that was carried out to 

achieve the main goal of this stud with emphasis  on the materials used and the 

experimental methodology. procedures and results . The experimental study was 

perfonned to investigate the effect of several parameters inc luding:  fastener type and 

diameter, sheared edge di stance. spacing between fasteners, number of washers-per­

bolt c lamping torque and bolt-hole diameter on the response of the fastened H FRP­

steel connections. The obtained experimental results were reported in view of the 

load-disp lacement curves and measurements of strain gauges for a l l  the specimens. 

3.2 M a teria l  and I nst ru mentat ion 

The experimental  program involved testing two main types of direct shear 

connections. The first type employs steel bolts to connect the HFRP laminates to 

steel p lates. Meanwhile, in the second type, fiber anchors are ut i l i zed to form the 

connection between the HFRP laminates and steel plates. Materials and components 
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that were used to a emble the tested pecimens are ful ly  de cribed in th is  section 

along \\ ith u ed mea uring devices to al low for better understanding of the te ting 

procedure . 

3.2. 1 Hybrid F RP  L a m i nate 

Hybrid CFRP-GFRP ( H FRP) laminates produced by TRONGWELL k were 

u ed in thi tudy . The hybrid laminates were supplied in  rol l s  of 30 m length, 1 0 1 .6 

mm v.idth and 3 . 1 75 mm thickness. The H FRP laminates are composed of carbon 

tows and\\1ched between fiberglass mat bonded by highly corrosion resi stant resin .  

Carbon tows en11ance the strength of the composite whi le  fiberglass provides better 

bearing trength.  The pecia l  composition of the used laminates makes it the only 

a\ ai lable dril l able type of FRP. Additional ly ,  a synthetic surfacing veil i s  

incorporated into the H FRP laminates to prevent corrosion at the interface between 

the H F RP and the steel plates. A cross-sectional view of the H FRP l an1inates. as 

proyided by the manufacturer, is presented in Fig .  3 . 1 .  

---L--3. 1 75 mm 

Polyester Surfacing VeIl � 

Continuous Strand Glass Mat 
Carbon Tows 

Continuous Strand Glass Mat - �J-----­
Polyester Surfaclllg Vell -

1 0 1  6 mm 
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Figure 3 . 1 :  Cross-section of the HFRP laminate used in the experimental study 

The tensi le properties of the HFRP lan1 inates were identified by the 

manufacturer in accordance with ASTM D63 8 - 1 0 standards ( 20 1 0) as displa ed in 

Table 3 . 1 .  
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Table " . 1 :  Ten i l e  propertie of HFRP Laminat ( Provided by the Manufacturer) 

Pro pert) verage Value (MPa)  Design Value (MPa)  

Ten i le  trength 852 640 

Tensi le  10dulus 62 . 1 90 62. 1 90 

I n  order to confirm the accuracy of the H FRP tensi le properties reported in 

Table  3 . 1 .  three coupons were uniaxial ly  te ted in tension using a 1 00 k MTS 

hydraulic te t ing machine \'vith a d isplacement rate of 1 mm/min .  These coupons 

were cut from the same material of the HFRP laminates and the tensi le properties 

were determined according to ASTM D3039- 1 4  standards (20 1 4) .  The typical 

dimensions of the rectangular tested coupons are shown in Fig.  3 .2 .  Each coupon has 

an overa l l  length of 250 mm and a cross-sectional area of 79 . 375 mm2 ( see Fig. 3 . 2 ) .  

A lum inum (A I )  tabs with thickness of 3 mm were bonded using M-Seal adhesive to 

both ends of the HFRP coupon to al low for proper fixation with the grips of the 

tensi l e  machine ( see Fig .  3 . 3 ) . Each coupon was instrumented with two electrical 

strain gauges at the front and backsides of the coupon for calculation of the stresses 

i nduced in the gauge section of the coupon as displa ed in Fig.  3 . 3 .  

3.175 
* t t 

3 
c )  t 

Figure 3 . 2 :  (a )  Photo of the HFRP coupon, (b )  chematic view and dimensions of HFRP 

Coupon (c) S ide view of the HFRP coupon (mm ) [According to A T M  D3039] 
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I Tab 

' / 
Figure 3 . 3 :  Locat ion of the strain gauges in the tested coupons 

Test coupons "vere gripped from their enlarged ends using rough wedge 1 11 

order to prevent s l ippage of the coupons before fai l ure occur . The used MTS 

electromechanical machine \ as connected to a computer where the appl ied loads 

were automatical l y  recorded as the te t was being canied out. trains gauges were 

connected to a data acqui sit ion system for strain measurements. F igure 3 .4 shows a 

photo for a coupon during the progress of the tensi le  test, whereas Fig.  3 . 5  i l lustrates 

the shape of a typical coupon after fai lure. which was characterized by edge 

delamination fai lure at the gauge length. The stress-strain curve for each coupon was 

then p lotted and the ul t imate tensi le  stress and elastic modulus were calculated. The 

tens i le properties obtained from the three tests were ery c lose as displayed in Table 

3 .2 .  The average properties showed 867.6 M Pa for ult imate tensi le strength and 

63.5 1 9  MPa for the modulus of elasticity. The average values of both the tensi le 

strength and elastic modulus of the tested coupons were in excel lent agreement with 

those recommended by the manufacturer ( Table 3 . 1 )  with an average difference in 

the order of 2%. G iven that manufacturer values are always less than their 

experimental counterparts, i t  has been decided to use the manufacturer recommended 

values throughout the study for con istency with other publ i shed l iterature of the 

same HFRP.  



Table '" . 2 :  Ten i l e  propertie of the tested HFRP coupons 

Tested Coupon 

1 

2 

3 

AYerage 

H FR P  

Coupon 

Tensi le Strength ( M Pa)  E lastic Modulus (MPa)  

88 1 . 5  63 , 1 42 

86 1 .3 64.679 

860 . 1 62.735 

867.6 63,5 1 9  

F igure 3 .4 :  H FRP Coupon being tested i n  MTS machine 

Figure 3 . 5 :  Photo of the HFRP coupon after fai l ure 

39 
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3.2.2 Steel P late  

The steel plate used in the experimental program \ ere prepared, cut and 

dri l led u ing the computerized cuning and dri l l ing equipment at Al  Fara ' a teel 

tructure located in  I -Ain,  U E .  The plates had uniform cross-section with 1 0  mm 

thickness and 1 00 mm width. However, the length of the plates varied depending on 

the different pecimen configurat ions as explained in section 3 . 3 .  Three steel 

coupons were prepared and tested according to the ASTM A370 standards ( 20 1 4 ) .  

Obtained mechanical propert ies from the tested coupons were very c lose and, 

therefore, average values were used in model ing the connections. Average yield and 

tensi le  strength of the steel plates were 300 M Pa and 460 MPa, respect ively. 

Furthennore. an average value of 200 OPa was calculated for the modulus of 

elastic i ty of the tested coupons. 

3.2.3 Steel B o lts 

The conducted experimental investigations involved using two different types 

of fasteners to connect HFRP laminates to steel p lates. The [list type of fasteners was 

hexagonal galvanized zinc coated steel bolts provided by H i l t i .  The used M6x40 

bolts had a diameter of 6 mm and threaded length of 40 mm. Bolts were made of 

h igh tens i le  steel of grade 8.8 according to D IN I SO 40 1 7  (20 1 1 )  standards with 375 

MPa shear strength.  A photo and sketch i l l ustrating the dimensions of the steel bolt  

are shown i n  Fig.  3 .6 .  
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(a )  

Figure 3 .6 :  ( a )  Photo of the M 6x40 steel bolt u ed in the experimental study, 

(b )  ketch and dimensions of the used steel bolt  ( mm )  

3.2,-t Steel  Was hers a n d  N u ts 

4 1  

Galvanized zinc coated flat washers manufactured by H i lt i  were uti l ized in 

thi  tudy. The u ed \Va hers have thickness of 2 mm. i nner diameter of 8 .4  mm and 

outer diameter of 28  nUll a shown in Fig .  3 . 7 .  

2 

F igure 3 . 7 :  Galvanized steel washer used in  the 

experimental study (D imensions are in " mm " )  

M6  zinced hexagonal steel nuts were used to fi mlly t ighten washers to the 

steel bolts. The thickness of the nuts is 5 mm with an inner diameter of 6 mm and 

outer diameter of 1 0  mm as presented in Fig. 3 . 8 .  

5 

Figure 3 . 8 :  Galvanized steel nut (D imensions are in "111m" ) 
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3.2.5 F R P  nchor  

FRP anchors, F I B RE BOLT" . provided by TRO GWELL R manufacturer 

were used in the econd pha e of the tudy. They were proposed as an alternative to 

replace the steel bolts used in the first experimental phase due to their cOrTosion 

re i ti\ ity. low conduct ivity and resi t ivity to V degradat ion. The FRP anchors are 

compo ed of fiberglass tuds, wa hers and nuts. I t  should be noted that the washer i s  

readi l y  attached to the nut  ( i .e . .  nut  and washer come in  one piece ) as  can be seen in 

Fig.  3 .9 .  

F igure 3 .9 :  Photo of the F IBREBOLT1l. studs. washers 

and nuts used in the second experimental phase 

Pultruded fiberglass vinyl ester rods were machined by the manufacturer to 

form the studs, which were then l ubricated to faci l i tate the movement of the 

thermoplastic hexagonal fiberglass nuts through them. The fiberglass studs and nuts 

\\-'ere easil y  assembled using six point socket wrench. The experimental program 

adopted two sizes of the FRP anchors in order to examine the effect of anchor 

d iameter on the response of fastened HFRP-steel lap connect ions. FRP anchors of 1 3  

mm nominal diameter were ut i l i zed to provide shear strength of 1 1 .6 kN which i s  

almost equal t o  the 1 0 .6 kN strength of the M6 steel bolt di scussed in  sect ion 3 .2 . 3 .  

Moreover. FRP anchors with smal ler nominal diameter ( 1 0 mm) were used to 

minimize the reduction in the original cross-sectional area of the connected elements 
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due to dri l l i ng of bolt-hole .  I I  FRP anchors were provided in a length of 1 20 ml11 . In  

ord r to d ifferent iate bet'vveen the two ize of the used studs. designations of FB 1 0 

and FB 1 "")  were u ed to refer to the l O  nm1 and 1 3  ml11 anchor-d iameters, 

re pective l ) . Table 3 . 3  ummanze the mechan ical propertie of the used FRP 

anchors a provided by the manufacturer. 

Table  3 . 3 :  Mechanical propert ies of F I BREBOL T il ( Provided by the Manufacturer 
based on the nominal diameter) 

Properties FB I O  FB l 3  

Ul t imate Tensi le  tress ( MPa) 65 . 5  70 .2 

Transverse hear tress (double shear) ( M Pa) 1 87 . 3  1 75 .6 

Given the fact that FRP anchors are sensit ive to the appl ied torque. caution 

wa requ ired dur ing t ightening the nuts. A breaki ng type torque wrench was used to 

apply the proper t ightening torque in accordance wlth the ultimate and recommended 

values provided by the manufactmer as displayed in Table 3 .4 .  

Table 3 .4 :  U l timate and recommended torques of the used F I B REBOLT � 

Torq u e  F B I O  F B 1 3  

Ult imate Torque Strength (N.m . )  1 1  24 

Recommended Instal l ation Torque (N .m . )  5 . 5  1 1  

3.2.6 Torq u e  W rench 

An adj ustable breaking torque wrench was purchased from Torqueleader Co . . 

UK.  to allow for better control of the t ightening process of the FRP anchors. The 

\\Tench was set to the required l imit ing torque value and automatica l ly  broke after 

reaching this l im it to avoid the possibi l ity of under- or over- t ightening the fasteners. 

The used ATB 25A model has a sensit iv ity of 0. 1 N .m .  and accuracy of ± 0 .04 with a 

torque range from 5 to 25 .m .  A photo of the used torque wrench is  shovm in Fig.  

3 . 1 0. 
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F igure 3 . 1 0 : Photo of the used breaking torque wrench 

3.2.7 tra i n  G a uge 

The HFRP-steel connections were instrumented with electrical resi stance 

train gauges ( ER G )  \"hich were bonded at di fferent locations on the H FRP 

laminates to record the induced strains dur ing testing. FLA-3- 1 1 -3L strain gauges 

purcha ed from T 1L ,  Japan were uti l ized in  the experimental program. The train 

gauges (SG)  had a gauge length of 3 mm, gauge factor of 2 . 1 2  ± 1 % and 1 1 9 .6 ± 0 .5  

n e lectrical resi stance. CN-type strain gauge adhesive was used to mount the strain 

gauges to the surface of the HFRP laminates. Recorded strain gauge measurements 

were u ed for d ifferent purposes at each phase of the experimental study. They were 

also used later to val idate the perfomlance of the developed fini te element model by 

comparing the experimental measurements against their numerical counterpat1s. 

3.2.8 LVDT 

L inear variable d ifferential transducers ( L  V DTs) were used to measure the 

longitudinal displacement of the tested connect ions during testing. These L V DTs 

were of CDP- I OO contact type with a capacity of 1 00 mm. The recorded 

d isp lacements were used to develop load-di splacement curves for the different te ted 

configurations. 
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3.3 Exper imenta l  Methodology ,  P roced u re and Re u l t  

The purpo e of the experimental program \Va to investigate the interfacial 

behavior of fa tened I I FRP- teel shear lap connect ions under variable fastening 

parameters. The i l1 \ e t igation wa conducted on two main phases based on the type 

of fasteners. teel bolt were u ed in the fi r t phase to invest igate the effect of the 

number of washers-per-bolt ,  c lamping torque, bol t-hole diameter and spacing 

between bolts on the perfol111ance of H FRP-steel cOlmections. The second phase 

involved the u e of FRP anchors with d ifferent d iameters and sheared edge di stances 

to form the HFRP- teel connections. 

The experimental program was designed to study the influence of each 

individual  parameter by changing one parameter at a t ime whi le keeping a l l  other test 

parameters unchanged. I n  the first phase. the effect of different number of washers­

per-bolt .  referred to as ( W).  \,vas examined under standard fastening conditions. After 

processing the results, the recommended number of washers-per-bolt  was used to 

design the next set of tested connections that aimed at studying the effect of the 

c lamping torque (T)  on the behavior of the H FRP-steel c01U1ections. Fol lowing that. 

connections with d ifferent bolt-hole dian1eters CD )  were tested uSl l1g the 

recommended number of washers-per-bol t  and tightening torque alue. The 

configurat ion which revealed an optimal performance of the connection, based on the 

three tested parameters ( W. T and D)  was implemented in the design of a new set of 

connections that examines the effect of spacing between bolts ( ) on the c01U1ection 

perfonnance. Based on the results an optimum range of spacing ( ) was suggested 

for designers. 
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FRP anchor were u ed in the econd phase of the experimental program to 

fa ten the I I FRP laminate to the steel plate . This  pha e was conducted using two 

tud diameter " alue � 1 0  mm and 1 3  mm. For each diameter, five values of sheared 

edge distance ( h )  were te ted. Final l _ comparison was held bet\veen conl1ections 

that were f0I111ed u ing teel bolts aJ1d those with FRP anchors. The fol lowing 

section inc lude detai led description of the experimental procedures, results and 

di cussion of the outcomes of each pha e .  

3.3. 1 P hase I :  H FRP-Steel C o n n ect ions u s i n g  tee) Bolts  

This sect ion i l l ustrates the tests carried out on various configurations of 

H FRP-steel connections f0I111ed using steel bolts .  The test procedures and results of 

each tested configurat ion are out l ined and discussed in detai ls .  

Effect of umber of Washers-per-Bolt  (W) 

Three different configurations were considered to examll1e the effect of 

variable number of  washers-per-bolt (W) on the behavior of fastened H FRP-steel lap 

connections. F igure 3 . 1 1 shows schematic views of a typical connection. The 

connection is composed of two steel p lates (c lamped and loaded plates) and two 

HFRP laminates placed at the top and bottom of the steel plates in a double-lap 

arraJ1gement. The clamped side of the connection was provided with quadruple the 

number of bolts insta l led at the loaded side in order to ensure that s l ippage and 

bearing disp lacements wi l l  occur at the loaded side of the connection only. The 

design values of rol led ( R) and sheared ( Sh )  edge di stances (R = 20 mm and Sh = SO 

mm, respectively) were adopted from earl ier researches to ensure bearing fai lure of 

a l l  specimens ( weedan et  a I . ,  20 1 3 ) .  H FRP laminates were dri l l ed at  the peci fied 
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bolt ' location w ith th exact diameter at I Fara'a teel tructure ' workshop. The 

detai l d imen ion of a t  pical cOImect ion are presented in Fig.  3 . 1 2 . 

C lamped 
P late 

teel  washer ---::)� 

• 

• 

R=20 

Steel washer --� ...... 

Steel nut � 
Steel bolt 

3D V iew 

• • •  • 
Two HFRP Laminates 

• • • • 

Top V iew 

Front V iew 

Steel Plates 

Side V iew 

Loaded 
P late 

Top HFRP 
Y laminate 

� 
Bottom HFRP 

laminate 

F igure 3 . 1 1 :  chematic views of a typical HFRP-steel c01mection using steel bolts 
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peclmen \\'ere loaded in ten ion u l llg di placement-control led MT 

ni\er al Te ting Ma hine with a 1 00 k capacity. The di placement-control led test 

\\ as per£ rmed in a c n tant cross-head speed of 1 mm/min.  The in-plane 

di placement \\'a 111 a ured u ing N.'o L V DT attached to metal brackets mounted to 

both side of the loaded teel plate a hown i n  Fig. 3 . 1 3 . The two L V DTs \;\,'ere used 

to enable pred ictions of an undesirable in-plane rotat ion of the specimen during 

test ing. 

Loaded �t-it-+ ....... 
teel P late 

Ti'fi;;,,2���---- Steel bol t  

� _____ H FRP 
train

_ 
..... __ - Laminate 

Gauge 

Figure 3 . 1 3 :  Experimental setup of the tested H FRP-steel connect ion using 
steel bolts 

The longitudinal strains 111 the HFRP laminates were measured using two 

electrical strain gauges mounted at the center of the 1 0  mm gap betv,reen the two 

steel p lates as presented in Figs .  3 . 1 3  and 3 . 1 4 . One strain gauge was glued to the 

outer face of each H FRP laminate to moni tor any out-of-plane bending during testing 

( Fig.  3 . 1 4) .  This part icular location wa selected for being relatively awa from the 

bolts' locations where it i s  most l ikely to experience unifol111 stress distribution. 
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Front train Gauge ( G )  

Front G 
\It 

t 
Back G I 

Figure 3 . 1 -+ : Locations of the train gauges in  the tested HFRP-steel 
cOID1ect ion using steel bolts 
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A mentioned earl ier. three configurations were selected to evaluate the 

respon e of the specimens with respect to variable number of washers-per-bolt ( WO. 

W2 and \\'-+ ).  I n  the first configurat ion (WO).  no washers were used with the t",;o 

bolts at the loaded s ide of the connection as shown in Fig. 3 . 1 5 (a ) .  The second 

configuration ( W2 )  used hvo washers-per-bol t ;  one of which was p laced at the bolt 

head whi l e  the other one was used at the nut side as shown in Fig. 3 . 1 5 (b) .  The third 

configuration ( W4 )  examined the use of [our washers-per-bol t  ( two on each s ide of 

the connected plates) as d isplayed in Fig. 3 . 1 5 (c ) .  Whi le bolts at the C lam ped side of 

HFRP-steel connection of a l l  configurations uti l ized two washers-per-bolt .  Bolts 

were instal led through standard holes of S mm diameter and snug t ightened after the 

ful l  effort of a worker with an ordinary spud wrench (A ISe. 20 1 0 ) .  Each test 

configurat ion was repl icated three t imes to ensure the repeatabi l i ty and accuracy of 

the obtained results . Each connection is referred to as ( W#_DS_ST_X ).  In this 

designation. C W#)  represents the number of \ ashers-per-bol t, CDS )  denotes the bolt-
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bole diameter, e T )  refer to th snug-tight torque and eX)  defines the index of the 

repl icate in the te ted group of pecimens. 

Wa her 
, 2 

4 
2 Washers 

'/ 
Steel ..... HFRP Plate I 2 

5 
ut ,. 

6 
5 4 

5 
...- Bolt 

( a )  (b )  ( c )  

Figure 3 . 1 5 : Number o f  washers-per-bolt for : (a )  no washers, ( b )  two 
washers and ( c )  four washers. ( Dimensions are in mm) 

Discussion of Re ults of  umber of Washers-per-bolt Specimens 

The load-di placement curves of the three repl icates of WO_D8_ST 

specimens are shown in Fig.  3 . 1 6 . These plots reveal a s l ight i ncrease in the load t i l l  

2 . 5  kN at  a displacement of about 1 mm due to the init ial friction between the HFRP 

laminates and the steel plates. At thi s load value. re lative s l ippage started to take 

place betv;een the H FRP laminates and the steel plates due to the 2 nm1 standard 

bolt-hole c learance. After that, the load value increased in a l i near trend unti l  it 

reached a value of about 26.5 kN at an average displacement of about 8 mm. This 

load increase was assoc iated with a noticeable bearing between the bolts and the 

H F RP l aminates as shown in Fig. 3 . 1 7 . Once the peak load was reached, bolts started 

to punch through the HFRP laminates along the loading direction ( refer to Fig. 3 . 1 8 )  

causing progressive rupture o f  the CFRP matrix and peel ing o f  the GFRP layers. The 

described rupture of the H FRP led to a gradual drop in the load values unt i l  the 

connect ion fai led. The softening post-peak response displayed in the load-

displacement curves of WO _ D8 _ ST connections ( Fig .  3 . 1 6) indi ates unfavorable 
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performance along \\ ith a l imited load carrying capacity of this type of connections 

\\ hen no \\ a her are u ed . 

.... 0 

2 5  

_ 20 

� 
:; 1 5  
� 0 ....:J 

1 0  

5 

0 
0 5 1 0  1 5  20 

Displacement ( m m )  
----

25 30 

-- WO_D8_ST_ l -- WO_D8_ST_2 -- WO_D8_ST_3 - Average ( WO_D8_ST) 

Figure 3 . 1 6 : Load-displacement curve for connections without washers 

( WO_D8_ T )  

Figure 3 . 1 7 : Bearing fai l ure i n  

W O  D8 ST 2 
- - -



Figure 3 . 1 8 : Rupture of CFRP matlix and 

GFRP peel ing fai l ure in WO D8 T 2 
- - -

53 

A substantial improvement in the connection response was noticed upon the 

u e of two washers-per-bolt as implied by Fig.  3 . 1 9 . I nit ial ly, the connection carried 

a load of about 5 kN before the interfacia l  l ippage took place at a displacement of  1 

nml. Fol lowing that the load value increased significant ly in  a nearly l i near maImer 

unt i l  i t  reached a value of about 25 k at a corresponding displacement value of 

about 5 nU11 . At th is  stage. smal l  parts of the HFRP fibers arowld the fastened bolts 

started to rupture causing a noticeable bearing damage associated with low c l icking 

noi se heard during the test as exhibited in  Fig. 3 . 20 .  Fol lowing that, the load values 

continued to i ncrease at a lower rate as observed by the relative reduction in the 

lope of the load-displacement curve for load values that range between 25 k and 

about 45 kN. A significant increase in the peak load. re lative to C WO )  configuration, 

was evident with the peak load reaching a value of about 45 to 47  kN for all 

speci mens. This stage was characterized by noticeable bending in the bolts with 

remarkable c l icking noises indicat ing peel ing of the GFRP layers which was 

associated with folding of the washers as shown in Fig.  3 .2 1 .  
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F igure 3 . 1 9 : Load-displacement curves for connections with two washers-per­
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Figure 3 .2 1 : ( a )  Bending in the conllecting bolts, ( b )  Folding of washers jn  
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Once th peak load wa reached, the load carrying capac ity of the cOlmection 

tarted to decrease gradual l  . reduction in  the load carrying capac i ty of the 

connection was obser d be ond peak point as result of excessive bearing damage 

and in i t ial tearing of the CFRP Ja ers ( see F ig .  3 .22) .  Final ly a progressive tearing 

out of the H FRP laminates took place \ ith a B lock Shear Rupture ( BSR)  of the 

i ntact fibers as displayed in F ig .  3 .2 3 .  Howe er. bending of the bolts fai lure mode 

depended on the strength of the bol t  materia l .  The steel bolts bended due to the 

combined effects of the i nduced shear and flexural stresses which were associated 

with the s l ip  in the double lap-connections. Bending of the bolts along with the 

accumulation of peeled GFRP layers underneath the washers led to folding of the 

\vashers. I t  i s  W0l1h mentioning that a l l  tested ( W2 )  specimens, i .e . ,  with two 

washers-per-bolt  showed a c lear duct i le behavior as they underwent sign ificant ly 

large displacement of about 1 6  mm before onset of reduction in  their load calTying 

capacity, as i mpl ied by Fig. 3 . 1 9 . 

Figure 3 .22 :  I ni t ia l  tearing out fai lure in  

W2 D8 ST 2 



Figure 3 .2 3 :  B lock hear rupture of the H FRP laminates in W2 D8 T 2 
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The load-displacement response curves of the connections with four washers-

per-bolt ( W4)  fol lowed a imi lar trend to those with two washers-per-bolt  ( W2 ), with 

an increa ed peak load of about 49± 1 kN at a displacement of about 1 8± 1  mm as 

shown in  Fig. 3 .24 .  I t  hould be noted that, unl ike all other ( W4 )  speci mens, the 

( W4_D8_ST_ l ) specimen fai led by excessive shear in bolts ( Fig.  3 .24) .  For this 

part icular specimen, no c lear folding of washers was observed which could result in 

h igher tens i le  stresses to be i nduced in the bolts. These excessive tensi le stresses, 

\\ hen combined \vith shear stre es i nduced in the bolts, led to the immediate post-
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F igure 3 .24 :  Load-displacement curves for connections with [om washers-per­

bolt ( W4_D8_ T )  
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The average load-di placement curves o f  the three te ted configurations ( WO. 

W2 and W4) are pre ented in  Fig. 3.25. The compari son between these curves reveal 

a considerable  enhancement in the performance and load carrying capacit of 

connection that u e wa hers ( W2 and W4 ) over those without washers ( WO) .  

Additional ly.  using fOLlr wa her ( W4 cOlmect ions) resulted in  s l ight increase in  the 

connect ion load carrying capaci ty compared to their counterpali connections with 

t\\ O \Va hers only ( W2 connect ions ) .  Meanwhile,  the overal l  behavior of both ( W2 )  

and ( W4 )  connections i s  very simi lar as re flected b y  their plots i n  Fig. 3.25. 

Experimental observations revealed that ut i l i zation of washers improves the 

perfomlance through the i ntroduction of additional mechanisms that did not take 

place in cOlmections with no washers including bending of bolts and folding of 

washers. 
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Figure 3.25 : Average load-displacement response curves for each number of 

washers-per-bolt  configurations 
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Figure 3 . _6  di play the average peak loads for the three tested 

configuration . Result highl ight the significant effect of washers in enhancing the 

load carrying capacity of the cOlmections which is consistent with the findings of 

Realfonzo et a l .  ( 20 1 3 ) .  For in tance, cOlmections with two washers-per-bolt ( W2 )  

revealed 75% increase i n  their average load carrying capac it compared to those with 

no \\lashers CWO) .  Meam hi le, an enhancement of 86% was obtained for connections 

"'ith four washer -per-bol t  ( W4 )  rel at i ve to those without washers ( WO) .  I t  i s  important 

to note that increasing the number of washers from 2 to 4 causes a s l ight increase 

(about 6 . 5% )  i n  the load carry capac ity of the connection. It is, therefore, recom mended 

to use 2 \Nashers-per-bol t  ( W 2 )  for opt i m u m  performance consideri ng econom ic and 

pract ica l  aspects .  
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Figure 3 .26 :  Average peak loads for the ( W#_D8_ST) configurations 

A l l  tested speci mens were instrumented with two strain gauges at the outer 

face of each H FRP lam inate ( Fig.  3 . 1 4) to monitor the occurrence of out-of-plane 

bending during testing. The strain gauges' measurements as a function of the appl ied 

loads for a representative specimen of W4_D8_ST_2 are presented in  Fig. 3 .27 .  

P lotted resu l ts reveal that longitudinal tensi le strains were developed i n  the front and 

back strain gauges during the test. The absence of compression strains at ei ther 
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I I FRP laminate imply a negl igible effect for the out-of-plane bending on the 

re pon e of the tested connect ion. The di fference in the mea ured strains at both 

gauge can be referred to the non-identical effect of the combined fai l ure mode ( i .e . ,  

peel i ng of fiber . bo lt ' bending. and wa hers' folding) on the two HFRP laminates. 
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F igure 3 .27 :  train gauge measurements for W4_D8_ST_2 

Effect of C lamping Torque (T) 

I n  order to investigate the effect of c lamping torque on the behavior of 

fastened H FRP-steel lap connections, four level s  of c lamping torque were 

considered. Connections with snug-t ightened ( ST) bolts were considered as reference 

specimens ( T 1 ) .  Three other sets of specimens were tested with various c lamping 

torque level s  T2, T3 and T4 corresponding to 1 .2 T L  1 . 5 T1 and 1 . 8 T L  

respect ively.  Based on the outcomes of the effect o f  number o f  washers-per-bolt 

study. al l  bolts were suppl ied with two washers. Bolts were instal led in standard size 

holes to al low for in  estigat ing the pure effect of the c lamping torque on the 

beha ior of tested cOlmections. A breaking-type torque wrench ( Fig .  3 . 1 0 ) \ as 
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uti l i zed to cal ibrate the torque equivalent to the snug-tight condition and apply a l l  

other t ightening torque value . The snug-tight condition CST)  of the connections with 

two \\a her -per-bolt COtTe ponded to a torque val ue of 1 1  .m .  The various 

c lamping torque values considered in  this phase of the study are swnmarized i n  

Table 3 . 5 .  

Table 3 . 5 :  Design torque levels and values 

Torque Level Torque (N .m . )  Torque/Snug-tight 

T l  1 1 . 0 ( ST) l . 0 

T2 1 3 .2 l .2 

T3 1 6 . 5  l . 5 

T4 20.0 l . 8 

I t  should be noted that each configuration was repeated three t imes for qual i ty 

control purposes. Specimens were typical ly  labeled ( W2_D8_T#_X ), where the 

symbol CT#) refers to the torque level and ( X) indicates the i ndex of the repl icate. 

Discussion of Results of C lan1ping Torgue Specimens 

Twelve specimens were tested to examine the effect of the c lamping torque 

on the HFRP-steel connections. I n  these specimens two washers-pre-bol t  were used 

along \vith a typical 8 mrn bolt-hole size ( i .e . ,  2 mm bolt-hole clearance) .  Load-

disp lacement curves obtained experimental ly  for torque levels T l  through T4 are 

displayed i n  F igs. 3 . 28 through 3 . 3 1 ,  respectively. The experimental results showed 

that for the range of appl ied torques covered in this study, i ncreasing the c lamping 

torque has insignificant effect on the fai lure modes of fastened HFRP-steel 

connecti ons. This observation is in agreement with the results reported by Khashaba 

et a1. (2006) .  A l l  specimens fol lowed the fai lure mechanisms experienced by the 

connections with two washers-per-bolt  as explained in the previous section . 
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The flat part of the respon e curve (enclosed in the circle in Fig.  3 . 32 )  

indicate the relative l ippage of the H FRP laminate relative to  the steel plates due 

to the 2 mm typical bolt-hole c learance. Increa ing the torque led to c lamping the 

component of the connection together more tight ly and caused the s l ippage to occur 

at higher loads as howl1 in Fig .  3 . 32 .  For example, the s l ippage of T l  assemblies 

occurred at 4 . 5  kN . while it took place at about 1 0  kN for T4 cOlmectiol1s .  
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Figure 3 . 32 :  A erage load-displacement curves for tested torque configurat ions 

The experimental outcomes revealed that increasing the c lamping torque 

resulted in a s l ight increase of no more than 7 .5% in the load carrying capacity of the 

connection .  Figure 3 . 33  i l lustrates the average peak loads of the three repl icates of 

the torque configurations. The average percentage increase in the ult imate loads of 

T2, T3 and T4 configurations with respect to T I  are 4%, 7 .5% and 4%, respectively. 

This s l ight increase impl ies that rais ing the appl ied torque above 50% of the nug-

tight condition had inverse effect on the attained peak loads. This  reversed effect 
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may be attributed to the micro-crack induced in the H FRP laminates associated with 

increa ing the t ightening torque. I t  i s  c lear that using a high c lamping torque that is 

80°'0 higher than that of the snug-t ight ( te t configuration T4) did not result in 

considerable  enbancement in  the load canying capac ity of tbe connection. I t  i s  worth 

noting that a ignificant increase in the applied torque value would lead to high 

ten ile tresse in  the bolts, which are expected to alter the fai l ure mode of the 

connection to the undesirable mechani sm of tensi le  rupture in  the bol t  as shown in 

Fig. 3 .34 .  Therefore. it i s  recommended to apply the snug-tight cond itions to ensure 

that fai lure of the H FRP-steel connection is control led by bearing mechani sm and the 

associated duct i le behavior. 
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F igure 3 . 3 3 :  Average peak loads for the torque configurat ions 

Figure 3 . 34 :  Shear fai lure in  the bolts of W2_D8_T3_ 1 
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Figure 3 . 3  � how the train gauge mea urements [or speCl lnen 

\\'2_DB_T2_ 1 as a ample connection. Recorded strain mea urement are used to 

monitor the out-of-plane bending of the fa tened connection whi le being tested . 

Longitudinal ten i l e  trains were measured in  both HFRP laminates during the test. 

The clo e train value . especia l ly at re latively low loads, indicate that the 

connection experienced a negl igible bend ing. I t  should.  however. be noted that more 

diver e strain gauges measurements were recorded at high load values due to the 

effect of pee l ing of fibers. bending in bolts and washers which are not identical in  

the tv" o HFRP laminates. 
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F igure 3 . 3 5 :  Strain gauge measurements for W2_DB_T2_ 1 

Effect of Bolt-Hole Diameter CD) 

BOO 

The effect of bolt-hole diameter on the behavior of the fastened H FRP-steel 

connection was examined by testing three sets of specimens sharing different hole-

diameters (6,  B and 1 0  mm) in  both the HFRP laminates and the loaded steel plates. 
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Al l  te ted connection \\ere fom1ed u mg two wa hers-per-bolt and M6 snug 

tightened teel bolt . et- fit condition was attained through the 6 mm hole-diameter. 

tandnrd and 100 e-fit con figuration were pre ented by 8 mm and 1 0  mm hole-

diameters, re pe live I ' . a hown in Table 3 .6. Three repl icates were considered per 

configuration. \\ ith imi lar de ignation as described before. A schematic view of the 

te ted assembl ie i presented in Fig. 3 .36 .  

Table 3 .6 :  Design bolt-hole diameter values 

Designation Bolt-Diameter (mm) Hole-Diameter (mm) Clearance (nun) 
D6 6 6 (net-fit-hole) 0 
D8 6 8 ( standard-hole) 2 
D I 0  6 1 0  (oversized-hole ) 4 

�------------------------------------ I I--------------------�� 

Clamped 
Steel 
Plate 

• • 
Hole diameter = 

6 mm for all specimens 

• • • • 

I I 
I I 
I I 
I : Hole diameter ( D) = 

6, 8, or 1 0  nun 
I I 
I I 

� 

Loaded 
Steel 
Plate 

F igure 3 .36 :  Schematic view of assemblies testing the bolt-hole diameter 

D iscussion of Results of Bolt-Hole Diameter pec imens 

The load-displacement relations of the tested connect ions appeared to be 

sensitive to the various bolt-hole diameter values as presented in Fig. 3 .37 .  The 

d ifferent response curves imply the sign ificant impact of the hole-size on the 

response of the fastened HFRP-steel connections. 
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The graphical representat ion of the load-displacement curve for the 

connections with net-fit holes (D6 with 0 nm1 c learance) i nd icated a persistent l i near 

trend unt i l  the l oad reaches a value of about 40 k at an average d isplacement value 

of about 4 mm as depicted by Fig .  3 .3 8 .  After thi s stage, a fluctuation in the range of 

about 3 k was observed in the load values of the three repl icates of D6 spec imens 

without considerable  increase in the load unt i l  fai lure of the cOlmection takes p lace at 

an average displacement of about 1 7  mm . I t  i s  obvious that the use of net -fit holes 

(D6) results in constant sti ffness of the assembly ( represented by the slope of the 

load-displacement curve ) up to a load value that i s  very c lose to the peak load as 

shown in Fig .  3 .3 8 .  This part icular effect of the net-fit c learance on the sti ffness of 

the connection confirms the findings of Lawlor et a1 . (2005 ) .  The direct contact 

between the bolts and the HFRP laminates in D6 assembl ies a l lowed bearing to take 

place once the load was appl ied ti l l  the peak load was attained. The post-peak 
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lluctuation in the load val ue attributed to the continuous rupture of GFRP layers 

and FRP fiber and the a ociated load re-distribution among the intact fiber as 

presented in Fig .  "' . 39 .  It i important to note that a l l  rep l icates of W2_D6_ST 

pec lmen fai led by b nding of the bolt ( Fig .  3 .40) fol lov" ed by bolts' shear ( Fig. 

3 .4 1 ) wi thout noticeabl contribution of the washers in re isting the appl ied load . 
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Figure 3 . 3 8 :  Load-displacement curves for W2_D6_ST cOlmections 

Figure 3 .3 9 :  Rupture of the GFRP and CFRP in W2_D6_ST_3 cOlmection 



Figure 3 .40 :  Bending of the fa tened bolts of W2_D6 T 3 connection 

F igure 3 .4 1 :  Bolt shear rupture in (a )  W2_D6_ST_3 and (b) W2_D6_ST_2 
connections 
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The D8 configuration showed more duct i le behavior compared to D6 

connect ions. Bearing effects started to take place once the gap between the bolt 

shank and HFRP was c losed fol lowing the relative s l ip  between HFRP and steel 

p late. This can be seen by the flat part of the load-displacement curves of D8 

connections (in F igs .  3 . 1 9  and 3 . 3 7 )  of about 2 mm displacement at a load val ue of 5 

kN. A simi lar behavior can be seen in the D 1 0 connections with the only d ifference 

being that the flat part of the response cw-ve extended to about 4 nun due to the 

bigger c learance in D I O  cOImections compared to that in the D8 assemblies. The 

detai led behavior of D8 is presented earl ier in the "Discussion of Re ults of umber 
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of Wa her -per-bolt pec l lnen section. The load-displacement profi le  for the 

\\,2 0 1 0  T connecti n in Fig. 3 .42 howed an initial increa e in the canying 

capacit) of the cOlUlection t i l l  a load of 5 k at a di placement of 1 mm before the 

load \ aJ ue stabi l ized unti l a di p lacement of 4± 1 mm was reached . Fol lowing that, 

the load carry ing capacity of the connection started to increase until a load of 22 kN 

wa reached at a di p lacement of 7± 1 mm. During thi stage, a noticeable bearing 

dan1age was observed in the connection as displayed in Fig .  3 .43 . 
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F igure 3 .42 :  Load-displacement curves for W2_D I 0_ST connections 

Figure 3 .43 : Bearing fai l ure of W2_D l O_ T 1 connection 
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F 01 10\-\ ing the first peak of 22 k , a  significant increase in the di splacement 

occurred (reaching a total d isplacement of about 1 5  mm) with relat ively no change in 

the load value . This phase of the respon e of D 1 0  connect ions was characterized by 

a noticeable accumulation of the GFRP layer behind the washers as shown in Fig .  

3 .44 . Beyond the 1 5  mm di placement l imit ,  the load values started to pick up again 

unt i l  the load carrying capaci t  of a l l  specimens was almost doubled by reaching a 

peak value of about 4 1 ± 1  kN at a total displacement of about 24 mm marking a 

econd peak for the D 1 0 connections. This stage was characterized by sl ight bending 

i n  the bolts with remarkable c l icking noise hich was associated with folding of the 

\vashers. F inal ly. excessive bearing damage took place leading to progressive tear 

out and block shear rupture of the connection as shown in Fig . 3 .45 .  

Figure 3 .44 : Accumulation of GFRP layers behind 
the washers in W2 D l O ST 3 connection 

- - -

Figure 3 .45 : Block shear rupture of the HFRP lan1 inates i n  W2_D l O_ST_2 
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Test re ults highl ighted the in ignificant effect of bolt-hole diameter on the 

ultimate load canying capacity f the cOJmection . This conclusion is  consi tent \ ith 

the finding of Lmvlor et a1 . (2005), McCarth et a1. (2005) and Kel ly and Hal l strom 

( 2004) .  Re ul t  revealed that the net- fit c learance condit ion (D6)  maintained the 

carr) ing capacity of the connections almost unchanged compared to cOlmections 

with standard hole ize ( D8) .  Meanwhi le, increasing the bolt-hole c learance by 1 00% 

of the reconullended standard c learance ( from 2 mm in D8 to 4 mm in D 1 0) reduced 

the peak load of the connection by 8%. F igure 3 .46 displays the a erage peak loads 

for the three tested configurations of bolt-hole diameter (D6, D8 and D 1 0 ). 
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Figure 3 .46 : Average peak loads for the bolt-hole diameter configurat ions 

S imi lar to the previously tested sets of specimens, all the bolt-hole dian1eter 

connections were i nstrumented with two strain gauges at both faces of the cOlmect ion 

on the HFRP laminate ( Fig . 3 . 1 4) to monitor the occurrence of out-of-plane bending 

during test ing. The stra in gauges' measurements of W2_D6_ST_3 specimen were 

plotted versus the appl ied loads in Fig. 3 .47 .  The figure shows no sign of the 

connection out-of-plane bending since tensi le longitudinal strains were recorded at 

both HFRP laminates. At low load values. measured trains at both ides of the 
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connect ion \\ ere ver) cl e .  l Io\yever. as the load increased. mea ured trains at the 

front ide de\ iated from that at the backside of the HFRP laminate . Thi s d ifference in 

the plotted trains could be referred to the combined effects of fai l ure mechanisms 

\\ hich do not coincide in  the t\\·o HFRP laminates. 
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Figure 3 .47 :  Strain gauge measurements for W2_D6_ST_3 

3.3.2 E ffect  o f  Spac ing  between Bolts  

This pari of the experimental program aims at proposing a range of spac ing 

between bolts that ensures the optimum performance of the fastened HFRP-steel 

connection in terms of both load calTying capacity and duct i l ity. A test matrix 

including n ine different spacing configurations was considered to cover a wide range 

of spacing values ranging between 50 mm and 300 nun as displayed in Table 3 . 7 .  

The specimens were named a s  ( S  _ #D) .  where (S )  refers t o  the parameter being tested 

which is the spacing and (#D) i nd icates the value of the spacing as the nearest 

multiple integer of the bolt-hole diameter. Two repl icates were tested for each 

configuration to ensure consistency and rel iabi l ity of the experimental 

measurements. Based on the outcomes of section 3 .3 . 1  of this study, the cOlmections 
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\\ re II tmed u ing M6 nug-tight steel bolts \\ hich \\'ere instal led in tandard 8 mm 

hole . Each bolt \va PI' vided with tvvo \Va her ; one at the head and the other at the 

nut. igure 3 .48 how a chematic view of a typical pacing onnection. Detai led 

d imen ion of the nine tested configuration are presented in Fig .  3 .49. Each 

conn ction incl uded three bolt placed along a ingle gauge l ine in  the loaded ide of 

the connection. Meanwhi le, eight bolt were used in the c lamped side as shown in 

Fig .  3 .49. Thi arrangement wa fol lowed to en ure that fai lure would take place in 

the \veak s ide of the connection ( loaded side ) \ here various spacing values are 

employed. The total length of the connection aried from 6 1 0  mm to 1 1 1 0 mm 

depending on the pacing value. It should be noted that the sheared edge distance at 

the loaded ide of the connection was maintained 50 mm, while placing the bolts at 

the centerl i ne of the HFRP width results i n  rol led edge distance of 50.8 mm. 

Table 3 . 7 :  Bolts spacing test matrix 

Designat ion Spacing/Bolt-hole diameter Spacing value ( nU11) 
S 60 6 .25 50 
S 90 9 . 375 75 
S 1 2D 1 2 . 5  1 00 
S 1 5D 1 5 .625 1 25 
S 1 8D 1 8 . 75  1 50 
S 2 1 D 2 1 .875 1 75 
S 250 25 200 
S 3 1 D  3 1 .25 250 
S 3 70 3 7. 5  300 

Figure 3 .48 : Schematic view of a typical spa ing configurat ion 
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LFRP Lfree Ltot S = Variable ( see table) 
3 80 5 1 0  6 1 0  S I = 30 
430 560 660 S2 = 40 
480 6 1 0  7 1 0  S 3  = 40 
530 660 760 Sh = 50 
580 7 1 0  8 1 0  : W = 1 0 1 .6 
630 760 860 R = 50.8 
680 8 10  9 1 0  Sv = 6 1 .6 
780 9 1 0  1 0 1 0  ev = 20 
880 1 0 1 0  1 1 1 0 Gap = 1 0  

Figure 3 .49 :  Geometrical deta i l s  o f  the spacing connections ( Dimensions i n  "mm") 
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V1 
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Di cu sion of Result of  peclmens 

For the nine te t d pacing configurations. representat ive samples of load-

di placement re pon e curve for spec imens _6D through _ 1 8 D  are presented in  

F ig .  3 . 50. \ \  hi le Fig .  3 . 5 1 di plays the re ponse curves for representative spec imens 

_ 1 8 D  through _3 7D.  
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Figure 3 . 50 :  Load-displacement curves for connect ions from _6D to S 1 8D 

70 

60 

50 

"0 
� 30 

...J 
20 

1 0  

o �----+-----r---��---4-----+-----r----� 
o 5 1 0  25  30 35 

1- 1 80 - S  370 

Figure 3 . 5 1 :  Load-displacement curves for cOlmections from S_ 1 8D to S_3 7D 
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Both figure re\ eal that load-di placement curves for a l l  pecimens fol lowed 

almo t the same trend. In it ia l ly,  the connection carried up to 8±2 k at a 

displacement of about ] . S±O.S mm. Then, the load tabi l ized unt i l  a displacement of 

J±O.5 mm at \\ h ich bearing bet'v\ een the bo lts and the HFRP laminates took place 

leading to a sign i ficant l inear increase in the load alue t i l l  35 k at 6 mm displacement. 

The assoc iated bearing effect observed during the test is displayed in F ig. 3 .52 (a ) .  

Fol lo\\ ing that, the load cont inued to increase with a reduced connection st iffness 

mark ing a peak of 65± I k at d i splacement of 1 9± I mm. Th is stage was characterized 

b) a noticeable bend ing in the bo lts and folding of the \ ashers as shown in F ig. 3 . S2 (b) .  

The load caI1) ing capacil:) of the connection was then reduced by about 1 5% unt i l  a load 

\ alue of 55 k at a di splacement of about 27± I mm was reached. The response in th is  

post-peak stage was assoc iated with exce sive bearing and tear out in the HFRP lami nate 

as sho\\ n in Fig. 3 .52(c ) .  Beyond the 28 mm di splacement l im it, connect ions fa i led by 

progressive damage and B R in the HFRP laminates as shown in F ig .  3 . 52 (d ) ,  followed 

by sudden fai lure due to excess ive shear in the bolts as displayed in F ig .  3 .52(e ) .  I n  

general. a l l  cOlmections fol lowed almost the same fai lure mechanisms experienced 

by the ( W2_D8_ST) cOlmections explained in the previous sections. This h ighl ights 

the insignificant effect of considered bolts spacing on the fai l ure modes contro l l i ng 

the response of the connections. 
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Figure 3 . 52 :  Typical behavior of S_#D connections: (a) bearing between bolts and 

HFRP. (b )  folding of the washers, ( c )  excessive bearing and tear out. ( d )  

progre si e damage and BSR in  HFRP and (e )  bolt  shear fai l ure 
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Experimental mea urements showed al 0 that, for the particular range of 

bolt pacing considered in  thi study, there i s  no remarkable effect on the ult imate 

load can) ing capacity of the HFRP-steel connections as reflected in Fig .  3 . 5 3 .  Whi le 

a l l  tested conn ction sho\ ed s imi lar ducti le behavior, the S_1 2D specimen 

exhibited the be t perfomlance vvith a di splacement range that is 1 0% higher than a l l  

other spec imen configurat ions. The concluded insignificant effect of bol t  spacing on 

both fai lure modes and loads of the tested connections confimls the findings of 

weedan et a 1 .  ( 20 1 3 ) .  
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Spacing Configurat ion 

F igure 3 . 5 3 :  U ltimate peak loads of the different spacing configurations 

Bolts loads 

Strain distribution and load transfer between the bolts at the loaded steel plate 

was calculated experimental ly in order to be used later i n  chapter 4 for the 

verification of the developed fin ite element model .  For thi s  purpose, each of the 

specimens was i nstrumented with eight strain gauges at one side of the connection as 

sho\',;n in Fig.  3 . 54. Four strain gauges were mounted mid-way between the first ( B  1 )  

and the second ( B2 )  bolts, whi l e  the remaining four strain gauges were attached 
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between the econd ( B:2 )  and the third ( B3 )  bolts as shown in Fig. 3 . 54 .  The 

mea ured train \\ ere col lect d through a multi -channel digital data acquisit ion 

) stem. 
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F igure 3 . 54 :  Locations of the strain gauges on the l oaded side of spacing 
connect ion (D imensions in  mm) 

Bo l t  loads were est imated using integration approach which is  s imi lar to  the 

methods adopted by Lawlor et a1. (2005)  and Starikov and Schon ( 2002 ) .  This 

approach involves integrating the strain across the width of the HFRP laminate . The 

stresses at the cross section were calculated by mUlt iplying the integrated strains by 

the e lastic modulus of the laminates. The load transferred from the loaded steel p late 

to the HFRP laminates through bolt ( B 3 )  was estimated using strains measured by 

gauges ( G5 through G8 ) . Meanwhi le, stra ins measured by gauges SG 1 through 

SG4 correspond to the loads transferred from steel plate to HFRP laminates by bolts 

( B2 )  and ( B3 ) .  F inal ly,  the load induced in  the segment of HFRP laminates to the left 

of (B 1 )  ( i .e . .  the HFRP width bridging the gap between the two steel plates) should 

be equal to the ful l  load appl ied to the steel plate as a result of the stat ic equ i l ibrium 

of the c01U1ected parts. 

The effect of spacing on the bolt  load distribution i s  displayed in  Fig.  3 . 5 5  for 

the three d ifferent loading stages : e lastic, hardening and at peak loads. The load 
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acting on each bolt wa calculated after ident i fying the loads induced i n  the cro s­

sect ion of the I I FRP laminate where strain gauges v,'ere attached. A numerical 

integration of the measured strains acro the width of the laminate was perfol111ed 

and then mult ipl ied by the ela t ic modulu and the cross-sect ional area of the HFRP 

laminate. I t  i s  worth mentioning that the train readings benveen B l and B2 (gauges 

L 2. 3 and 4) "" ere higher than tho e between B2 and B3 (gauges 5, 6 , 7 and 8 )  

becau e the loads bypassing ( B 1 ) are higher than tho e for ( B2 ) .  Figure 3 . 5 5  does not 

i ndicate any pec ific trend for the bolt- load distribution with the change of spac ing. 

However. the bolt- load di tribution is  affected by the stage of loading. At the elastic 

range. the three bolts shared the appl ied loads in a random manner as shown in Fig . 

3 .5 5a. This fluctuation of the bolt- load distribution before the yielding load can be 

attributed to the random distribution of the fibers and the unpredicted bearing 

betv,een the bolts and the untorn fibers .  At the strain hardening zone, ( B  1 )  can'ied the 

highest portion of the transferred loads from the HFRP laminates which is 

consistence \\1th the findings of Starikov and Schon (2002 ) .  This i s  also in agreement 

with the results of Hanauska et al . (200 1 ) which predicted that bolts c lose to the 

loaded s ide of the composite carry most of the appl ied loads. The remain ing appl ied 

loads were distributed between bolts (B2 )  and (B 3 )  randomly ( see Fig. 55b ) .  Results 

revealed that ( B  1 )  carried almost 60% more loads than (B2 )  and (B 3 )  at the 

hardening zone, while i t  can'ied around 1 . 86 times the average loads of ( B2 )  and 

(B3 ) at ul t imate loading. A sample load distribution between bolts of S_ 1 8D 

specimen is  presented in Fig .  3 . 56 .  At the e lastic zone ( i .e .  before the 36 kN ), the 

three bolts shared the appl ied loads almost equal ly, however. (B 1 )  carried most of 

the loads after yielding t i l l  the fai lure of the specimen. The same behavior was 

repeated in most of the spec imens as in Fig . 3 . 5 7  for S_ 1 2D. 
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3.3.3 Pha e l I :  H F R P- teel Con nect ions  u ing F RP  Anchor 

The u e of the steel bolt in connecting the HFRP laminate to the targeted 

steel elements may raise durabi l i ty concerns related to potential corrosion of the 

metal l ic component of the connection. In order to overcome this potential 

dra\\ back. fibergJa s studs ( Fiberbolts) were selected to substitute the steel bolts due 

to thei r  high corro ion resistivit . Thi phase of the experimental study i nvestigates 

the re ponse of the HFRP-st el double-lap connect ions fa tened using FRP anchors. 

The fa tell lng parameters tested throughout this phase i nc lude sheared edge di stance 

( h) and bolt-diameter. In this section. the procedure of the experimental 

i nve t igation using the F ibrebolts is i l l ustrated. Additional ly. the response of the 

proposed fasterung technique was analyzed with respect to the various fastening 

parameters. 

Test Procedure of Phase I I  

FRP anchors FB 1 0  and FB 1 3  with two different diameters. 1 0  and 1 3 . 

respect ively. were used i n  the experimental invest igation. The mechanical properties 

of the uti l ized F RP anchors are presented in Table 3 . 3  of section 3 .2 . 5 .  For each stud 

diameter, fi ve d ifferent test configurations were considered in order to investigate the 

effect of sheared edge d istance on the response of HFRP-steel connections fa tened 

using FRP anchors. A schematic view of a typical FRP anchors connection is  

presented i n  Fig .  3 . 58 .  The loaded s ide of the connection consi sted of one FRP 

anchors that was centered across the width of the HFRP laminates. Simi lar to the 

connections tested in phase I of the study, the clamped side of the connect ion was 

fastened using eight M6 steel bolts. The geometrical detai l s  of connections fastened 

using FRP anchors are d isplayed in Fig . 3 . 59. 
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Figure 3 . 5 8 :  Schematic v iews of a typical HFRP-steel connection 
using FRP anchors 
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Figure 3 . 59 :  Geometrical deta i l s  of a typical H FRP-steel connect ion using FRP anchors ( Dimcnsions in "mm") 00 0\ 
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FRP anchor were inserted in standard size hole having diameters that are 2 

mm bigg r than tho e of the bolt hank. The FRP stud and nut were lubricated 

before being used in order to ease their mo ement as recommended in the 

manufacturer product sheet. The FRP nut were tightened using a breaking type 

torque wTench to apply the recommended in tal lation torque provided by the 

manufacturer. pecimen \\ ere loaded in tension using 1 00 kN MTS Machine with a 

rate of 1 nmllmin .  The longitudinal displacement of the connection was measured 

using two L VDTs at both sides of the specimen \ ith a s imi lar setup to that used in 

the connections wi th teel bolts .  The experimental setup of the HFRP-steel 

connections using FRP anchors is presented in Fig .  3 .60. Each spec imen V,ias 

instrumented with two strain gauges at the front and backsides of the connection to 

monitor the out-of-plane bending dur ing test ing. The locations of the mounted strain 

gauges are shown in Fig. 3 . 6 1 . 

FRP anchor 
Loaded Steel 

P late ---+-

LVDT 

... t--- HFRP Lam inate 
train Gauge 

Figure 3 .60: The experimental setup of HFRP-steel connections using FRP anchors 
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Figure 3 .6 1 : Locations of the train gauge of the HFRP-steel connection 
using FRP anchors 
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For each anchor d iameter, fi e configurations were tested for sheared edge 

distances that cover the range of two to six t imes the anchors-hole diameter. Tables 

3 . 8  and 3 .9 display the de ign alue of the tested sheared edge di tances using the 

FB I O  and FB  1 3  anchors, respectively. 

Table 3 . 8 :  Designed sheared edge distances for the FB I O  spec imens 

Specimen Designation Sheared Edge distance (mm) 
FB I O  2D 24 
FB I O  3 D  36 
FB I O  4D 48 
FB I O  5D 60 
FB I O  6D 72 

Table 3 .9 :  Designed sheared edge distances for the FB 1 3  spec imen 

Specimen Designat ion Sheared Edge distance (mm) 
FB 1 3  2D 30 
FB I 3  3 D  45 
FB 1 3  4D 60 
FB ] 3  5 D  75 
FB 1 3  6D 90 
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peClnlCn were designated a ( FB#_ D) where the symbol ( # )  indicates the 

diameter of the tud. v, hi le (y )  refers to the multiple of the hole-diameter 

repre enting the heared edge d istance. Two spec imens of each confi guration were 

te ted to en ure consistency of the exp rimental results . 

Discu sion for of Results of heared Edge Distance (Sh) 

FiYe contlgurat ions for the sheared edge d istance of each anchor-diameter 

were tested. The load-displacement profi les of the FB 1 0 connections showed close 

behavior as i l lustrated in F ig .  3 .62 . The figure indicates that the load value i ncreased 

instantaneously with the appl ication of the tensi le load unt i l  i t reached a value of 

about 2±0.5  kN at displacement of 0.2 mrn .  Following that considerable increase in 

the displacement occuned ( reachi ng a total displacement of about 2.5 mm) with 

relatively no increase in the appl ied load . This flat segment of the response curve can 

be attributed to the relat ive sl ippage between the HFRP laminates and steel plates .  

Beyond the 2 .5  mm displacement. the load value increased significantly in a l i near 

manner unti l it reached a peak of 1 3± 1 kN at an average displacement value of about 

7 .5  mm. This stage was characterized by noticeable bearing between the FB 1 0 

anchor and the HFRP laminates. Then, the excessive stresses induced i n  the FRP 

anchor caused its sudden fai lure by shear as depicted by Fig 3 .63 .  I t is c lear that 

changing the sheared edge distance from 2 to 6 t imes the hole-diameter using the 

FB 1 0 didn' t  affect the duct i l ity of the connection as all connections experienced 

brittle fai lure once the peak load was reached . 
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F igure 3 .62 :  Load-displacement curves for the tested connections using FB 1 0 

, 

Figure 3 .63 : Shear fai lure in FB 1 0  

F igure 3 .64 presents the load-displacement response curves for HFRP-steel 

connections fastened using the FB 1 3  studs. I nit ial ly, al l spec imens with various 

sheared edge d istance values showed a s l ight increase in the load value (around 3 

kN) at a displacement of 0.2 mm. After that, the load value remained constant ti l l  a 

displacement of 3 rnnl i n  a simi lar manner to the behavior of the FB 1 0 connections. 

At thi s  d isplacement a lue. the bearing action between the FB 1 3  and the HFRP 
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laminate tarted to take place causmg a signi ficant increase in the load value 

reaching a peak \ alue that range between 1 9  kN and 22 k at a displacement about 

7 mm. Once the peak load was attained, a gradual reduction in the load carr ing 

capacity of the corU1ection was ob erved fol lowed by sudden shear fai l ure of the 

FRP anchors. The peak load and po t-peak behavior aried from one connection to 

another depending on the i nve t igated heared edge di tance. For example, specimen 

FB 1 3  _20 experienced sudden drop in the load value at a d i splacement of 8 mm with 

a corresponding load of 1 5  kN . On the other hand, cOlmection FB 1 3_30 showed 

more ducti le behavior a evident b the stable post-peak response corresponding to 

d isplacement value of 8 nm1 through 1 3  mm. The fai l ure load of the FB 1 3  _3 D 

connection \\'as 22 kN at a di splacement of 1 3  mm. Using a sheared edge di stance 

that is greater than three t imes the hole-diameter resulted in reduction in the peak 

load and connection ducti l i ty compared to those of the FB 1 3  _3� specimen . 
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Figure 3 .64 : Load-displacement curves for the tested connections using FB 1 3  
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F igure 3 .65 pre ents the a erage peak loads for connections fastened using 

FB 1 0 FRP an hors. The ult imate can ing capac it of the connection increa ed with 

increasing the heared edge di tance ( h) from twice to five t imes the hole-diameter. 

Further increa e of the heared dge distance to six t imes the hole-diameter reduced 

the ultimate peak load of the connection from 1 3 . 5  kN to 1 1  kN as shO\vn in Fig . 

3 .65 . 
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Figure 3 .65 : Average peak loads for FB l O  connections 
with various sheared edge d istances 

The average peak loads for the HFRP-steel connect ions fastened using FB 1 3  

FRP anchors are summarized in Fig. 3 .66. No spec ific trend between the ultimate 

load carry ing capac ity of the connections and the d ifferent sheared edge di stance can 

be observed from the p lotted results . Increasing the sheared edge di stance ( Sh )  from 

two (2D) to three ( 3D )  t imes the hole-diameter enhanced the maximum load capacity 

of the connection from 1 8 . 5  kN to 23 kN. However, using a ( Sh )  that i s  four times 

the hole-diameter (4D) caused a reduction in the peak load of the connection. FU11her 

i ncrease of the ( Sh )  from 4D to 6D resulted in a s l ight increase in the ult imate peak 

load of the connection by about 1 3  %. ( from 1 9  kN to 2 1 . 5 kN). FB I 3_3D 

configuration showed a maximum peak load of 23 kN among al l tested 
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configuration . The ab ence of a c lear trend bet, een the sheared edge d istance and 

the peak loads could be attributed to the random rupture of the glass fibers 

constituting the material o f  FRP tud . Ba ed on the resu lts obtained in the cunent 

tud) . the FB 1 3  _3D is elected as the configuration with the best performance in 

telm of both ultimate load and duct i l ity response. 
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Figure 3 .66: Average peak loads for FB 1 3  
connections with various sheared edge distances 

I t is important to rughl ight that the out-of-plane bending experienced by 

FB 1 0 and FB 1 3  cOlmections was negl igible as revealed by strain gauges 

measurements recorded for all tested connections. F igures 3 .67 and 3 .68 show the 

strain gauges measurements for representative the samples FB 1 0_ 4D and FB 1 3  _3D, 

respectively. A l though the deformation increases, this is not completely translated to 

elongation in the HFRP laminates, but rupture o f  the threaded part of the FRP anchor 

that absorbed considerable amount of the deformation leading to strain reduction in 

the HFRP. This was not the case of the steel bolts with strong threaded part relative 

to the HFRP laminates. Strain gauges at both sides of the both specimens recorded 
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ten i l e  train o f  ver) c lo e alues implying the minimal effect of out-of-plane 

bend ing in the connection under ten i le loading. 
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F igure 3 .67 :  Strain gauge measurements for pecimen FB I O  40 
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Figure 3 .68 :  Strain gauge measurements for specimen FB l 3_3D 

Discussion of Results of Bolt Diameter 

Two different sizes of the FRP anchors were employed in this phase of the 

experimental program ( FB I 0 and FB l 3 ) .  For comparison purposes, the average peak 
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loads of th HFRP- teel connection con idering al l  tested FB 1 0 and FB 1 3  

pecl lnen \\ ith \ arious sheared edge di tance are plotted in Fig. 3 .69. The column 

chart hO\\- a 65% enhancement in the ult imate load carrying capacity of the 

connection as oc iated \ itb the increase of the stud diameter by 30%. For the 

propo ed optimum heared edge distance of tlu'ee times the hole-diameter ( 3D) .  the 

recorded peak load u ing the FB 1 0 was 1 2  kN. whi le that for FB 1 3  was 23 k ( see 

Fig. 3 . 70)  i ndicating 9 1 .5% improvement in the load canying capacity of the 

connection. It should be noted that the previously mentioned experimental peak loads 

are in excel lent agreement with the values obtained using nominal stud d iameter and 

the manufacturer recommended ult imate stresses presented in Table 3 .3 that 

correspond to ult imate loads of 1 4 . 7  kN and 23 .3  kN for FB I O  and FB 1 3 . 

respectively. Additional ly .  the response curves shown in Fig. 3 . 70 indicate clearly 

the considerable enhancement of the FB 1 3  connection duct i l ity compared to that of 

the FB 1 0 connection. imi lar effect of the bolt diameter on the ducti l i ty of the 

connection was observed for a l l  tested specimens with various sheared edge 

d istances as depicted by Figs. 3 .62 and 3 .64 for FB 1 0  and FB 1 3  connections. 

respect ively . 

FB 1 0  FB l 3  

Figure 3 .69: Average peak loads for FB 1 0  and FB 1 3 
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F igure 3 . 70 :  Load-displacement curves for FB l O_3D and FB 1 3  3D 

3.3A I n fluence of Fastener Type o n  Con nect ion Behavior 
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The experimental program was div ided into two main phases based on the 

type of the fastener used to connect the HFRP lam inates to the steel plates ( i .e . ,  steel 

bolts and FRP anchors ) .  Comparing the best perfomling configurations in the t\\'o 

phases ( W2_D8_ST and FB 1 3_3D )  several conclusions can be outlined. From 

strength stand point. both connections were shown to provide, almost, the same load 

carr ing capacity with a d i fference that does not exceed 2% ( 1 1 . 7 kN for W2_D8_ T 

in s ingle shear plane per bolt and 1 1 . 5 kN for FB I 3  _3D in  single shear plane per 

anchor), as depicted by Fig .  3 . 7 1 . 

As evident by F ig .  3 . 7 1 ,  connections that use steel bolts exhibit a more 

ducti le response compared to those with FRP anchors. Addi tional ly. attain ing the 

same strength requires uti l ization of FRP anchors of much bigger diameter compared 

to their steel counterparts. This is d irectl reflected on the size of holes to be dri l led 

in the cOlmected elements and the negative impact thi s  may have on the tensi le 
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trength of uch elements. Fm1hermore, the steel bolts provide an economical option 

for de igner since one teel bolt with it acce sorie ( including tv:o wa hers and a 

nut) co t around 0.22 . while the u e of one FB I 3  (a  stud and a nut) with one 

tightening nut co t around 7 .6 . 

1 4  

1 2  

1 0  

.-., 8 
z � 
-- 6 "0 � 0 ....:l 4 

2 

0 
0 5 1 0  1 5  20 25 

D i  placement  ( m m )  

- FB 1 3  3D  W2 D8  ST 

30 3 5  

F igure 3 .7 1 :  Load-d isplacement curves for single steel bolt in ( W2_D8_ST) and 
FB 1 3  anchor (FB 1 3  _3D )  bearing against one HFRP laminate 

On the other hand, a main drawback in the use of steel bolts could be their 

long-term durabi l ity which needs to be i nvest igated careful ly . Durabi l i ty concerns 

related to the possible corrosion that may be induced in both the steel bolts and 

rehabi l itated steel e lements may adversely  affect the performance of the HFRP-steel 

connection. To overcome the potential corrosion of the steel ,  FRP anchors had been 

i ntroduced as a good alternative to replace the steel bolts .  One of the main 

advantages FB 1 3  offer, i s  high corrosion resist ivity. since they are made of glass-

fibers. Additional ly ,  the used FB 1 3  is much l ighter than the steel bolts and hence. 

reduces the total imposed weight on the strengthened structure . 



3.4 u m m a ry  and Conc lu  ion 
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Thi chapter focu ed on inve tigat ing the interfacial behavior of the HFRP-

teel fa tened connect ions. The hybrid connections were fastened using two types of 

fa tener ( i .e .. steel bolts and FRP anchors) and subjected to axial tensi le load along 

it longitudinal d i rection. An experimental program was conducted on a total of 62 

HFRP-steel fastened connect ions in order to study and identify their response under 

29 d ifferent configurations. Tens i le tests were caJTied out to obtain the load­

d i  p lacement relationships and record the associated HFRP longitudinal strains. The 

first phase of the experimental stud investigated the response of HFRP -steel 

connections that use steel bolts considering various fastening parameter such as 

nwnber of washers-per-bolt. c lan1ping torque and bolt-hole c learance. Furthermore. 

n ine d ifferent alues for the spacing between the steel bolts were tested in order to 

propose a practical range of spacing for ideal performance of the connection. In the 

second phase of the experimental program. FRP anchors were employed to fasten the 

HFRP l aminates to the steel plates. The main focus of this phase was to examine the 

efficiency of using FRP studs in forming hybrid connections. This phase included 

testing two d ifferent bolt d iameters with several sheared edge di stance values. I n  

view of  the experimental outcomes, the fol lowing observations and conclusions can 

be dra\,ll1 : 

• The presence of washers significantly enhanced the ducti l ity and the load 

carrying capacity of the connections. Enhancements of 75% and 86% in the 

load capacity of the tested connections were obtained with the use of two and 

four washers-per-bolt respectively, compared to those with no washers. 
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• The interfacial beha\. ior of HFRP-steel c011J1ections fastened without washers 

d iffered from that ob erved for connections fastened \\'ith two and four 

wa her -per-bol t .  The ob erved oftening post-peak response in the load­

d isplacement urves of connections without \ ashers indicated unfavorable 

perfonnance of this type of cOlmections when no washers are used . 

• Connections with washers fai led by a combination of fai lure modes inc luding 

bearing at the bolt-HFRP interface. bending in the steel bolts. folding of the 

wa hers and final l tearing out and BSR in the HFRP laminates. 

• The investigated clamping torque alues ranging between 1 1  N .m .  and 20 

.m .  were proven to have negl igible effect on the fai lure modes and load 

canying capac ity of the fastened HFRP-steel connections. 

• Bolt-hole diameter significantly influenced the response of the tested 

connections. The use of a net fit bolt-hole reduced the connection duct i l i ty 

compared to standard and loose fit connections. Meanwhi le, the ult imate load 

capac ity of the tested connections was maintained unchanged regardless of 

the used bolt-hole diameter. 

• For the considered range of bolts spacing (50 mm to 300 nID1) .  negl igible 

effect of spacing on the ult imate load capacity of the fastened HFRP-steel 

connections was observed. However, using spacing value that is twelve times 

the bolt-hole diameter showed best perfom1ance in tenns of ducti l ity with 

1 0% higher displacement than other spac ing values. I t  was also concluded 

that bolts' spacing had insigni ficant in fl uence on the fai l ure mechanisms of 

the connection . 

• The influence of considered sheared edge distance on the response of HFRP­

steel cOlmections fastened with FRP anchors was negl igible for both tested 
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diameter . This could be attributed to the fact that this part icular t) pe of 

corulections [ai led b) hear in the ancllor before the contribution of the 

heared edge di tance becomes noticeable. 

• The max imum recorded load capacity of a l l  connections fastened using FRP 

anchors of 1 0  mm diameter cOlTesponded to corulections with sheared edge 

d istance that is five time the hole-diameter. 

• Using FRP anchors of 1 3  mm diameter with a sheared edge distance that i s  

three times the hole-dianleter enhanced the duct i l ity of the fastened 

connections and re ulted in the highest peak load (23  k ) anlong all tested 

sheared edge distances. 

• I ncreasing the bolt diameter of the FRP anchors from 1 0  mm to 1 3  mm 

resulted i n  65% i ncrease in the ult imate load carrying capacity of the 

connection and enhanced its duct i l ity . 

• The load capacity of the HFRP-steel connection using a single FRP anchor of 

1 3  mm diameter was almost equal to the one provided by a steel bolt of 6 mm 

d ianleter i n  a single shear setup. 

• From economic standpoint, i t  i s  recommended to use steel bol ts ( 0 .22 $ per 

bolt) over the FRP anchors ( 7 .6  $ per bolt )  in fastening HFRP-steel 

connections. However, FRP anchors are expected to provide better corrosion 

resistivity than steel bolts. 



C h a pter  4 :  F i n i te  E l e m e n t  M od e l i n g  of  Fa t e n ed H y b ri d  F R P-Steel  

Co n n ec t i o n s  

4. 1 I n troduct ion 

1 0 1 

The Fini te E lement Method (FEM)  is a wel l -establ i shed numerical simulation 

technique that has been used by many researchers in d ifferent areas. It provides a 

ri k-free approach to imulate the behavior of the connections considered in the 

current study .  lthough finite element model ing is  used to evaluate the structural 

respon e, obtain ing accurate predictions depends on the accuracy of the elements 

const i tut ing the fini te element model and the associated boundary conditions. In view 

of the experimental response curves presented i n  Chapter 3 ,  it i s  c lear that mode l ing 

the fastened HFRP-steel cOlmections requires the introduction of an element that 

properly accounts for the interaction of the components at the HFRP-steel interface. 

The fol lowing sections describe in detai l s  the development of nonl inear load-s l ip 

models that can be used to simulate the interfacia l behavior of the connections taking 

i nto considerat ion the interaction between the various fai lure modes that control the 

response of these connections. The proposed models also accounted for the fastener 

type ( i .e . ,  steel bolt of FRP anchor). The load-s l ip models were then incorporated in 

fini te element models for the HFRP-steel connections tested in Chapter 3 .  The 

developed FE model s  of the connections were validated against the reported 

experimental results. 

4.2 F i n ite E lement  Model i n g  of Con nect ions w it h  Steel Bolts  

The proposed load-sl ip  model i s  intended to simulate the interfacial behavior 

of the fastened HFRP-steel connections that are fom1ed using steel bolts whose 

propert ies match those l i sted in section 3 .2 .3 .  The model was based on the 
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experimental load-d i splacement profi le of W2 08 T connection sho\ n in Fig. 

3 .25 .  This pari icular connection was cho en due to it optimal performance out of al l 

other configurations tested in  the e peri mental program. It should be noted that the 

re ponse presented in Fig .  3 .25 cOlTesponded to two steel bolts bearing against two 

HFRP laminate . Thus, the average loads reported in this figure were divided by 4 to 

obtain reference val ues of one steel bolt bearing against one HFRP laminate ( i .e . ,  

single-shear configuration) .  FUlihermore. the experimental d isplacement values 

hO\\"11 in the curve \ ere cOITected to exclude the influence of the steel and HFRP 

elongations during the test. Thus, the proposed load-sl ip model accounts for the 

various actions that take p lace at the steel -HFRP interface inc luding relative 

s l ippage. bearing between the bolts and HFRP laminates. bending in the steel bolts, 

folding of washers and tear out of the HFRP laminates. The proposed nonl i near load­

s l ip model is shown in F ig .  4 . 1 .  where the response curve is div ided i nto six 

segments. Segment " A" relates main ly to the relati e frict ion between the HFRP 

l aminates and the steel plates. Part " B" of the curve represents the relative sl ippage 

between the HFRP and the steel plates due to the standard hole-size c learance. 

Segment " C" shows the effect of pure bearing between the bolts and the HFRP 

laminates. Meanwhi le, pari "D" demonstrates the combined effect of bearing. 

bending of the bolts and folding of the washers. The excessive bearing damage and 

init ia l tearing of the CFRP layers are represented by segment "E " of the curve. 

F inal ly, part "F" indicates the progressive tearing and associated BSR of the intact 

fibers that lead to complete fai l ure of the connection. 

The fol lowing section describes the main features of a nonli near flnite 

element model that was developed using the load-sl ip  model .  The accuracy of the 

proposed load-s l ip model in simulating the overal l response of HFRP-steel 
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connection [a tened with teel bolt wa veri fied in s ction 4 .2 .2 based on 

companng the I1wnelical pred iction to the experimental outcomes reported in 

Chapter "" .  The val idated finit element mod I was then used to simulate the behavior 

of the variou pac ing configurations in section 4 .2 . 3 .  
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Figure 4 . ] : on l inear load-sl ip  model of the W2_D8_ST connection 

4.2. 1 De cr ipt ion of the F i n ite E lement  M odel  

The general purpose finite element software package A SYS ( 2009) was 

used to develop a three d imensional ( 3D )  model to simulate the behavior of fastened 

HFRP-steel connections. The developed model took into consideration the relat ive 

s l ip at the HFRP-steel interface. It also accounted for both geometrical and material 

nonl i nearit ies . 

Geometries of the analyzed steel plates and HFRP laminates were modeled 

using the 8-node sol id  element ( SOL ID45 ) ,  as denoted by A SYS (2009) .  This 

element is suitable for model ing of sol id structures incorporating plast ic ity, tress 

stiffening. large deflection and large strain capabi l it ies. Meanwhile, the 
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unidirectional nonl inear pring element (CO 1B I  3 9 )  was used to model the HFRP-

teel connect i\ it)' . The spring element was uti l ized to simulate the s l ip behavior at 

the I l FRP-steel interface fol lov.. ing the profile of the proposed load-s l ip model (Fig. 

4 . 1 ) . The spring element was used to connect two coincident node points: one of 

them \\ as located on the surface of the steel plate and the other was placed on the 

oppo ite surface of the HFRP laminate. The direction of the COMBIN39 element 

can be selected to fol low any of the tlu'ee basic d irect ions; X. Y or Z to simulate the 

spat ial connectivity condit ions behveen the components of the connection. 

Model Geometry 

The geometry of the modeled connection is  shown in  FigA.2 . S ince the 

geometry was symmetrical about t l1e loading p lane, only one half of the connection 

was modeled. Therefore, one HFRP laminate was considered in the FE model along 

\vith half the thickness of the steel plates. The geometry was defined using a global 

Cartesian coordinate system with its origin located at the mid width of the left-end of 

the outer surface of the c lamped steel p late as presented i n  FigA.2 .  The longitudinal 

d i rection of the connection was d irected along the X-ax is, the width was parallel to 

the Y-axis. whi le the e lements' thicknesses were along the Z-ax is .  The main 

geometrical parameters of the connection are its width ( W) ,  l ength of HFRP laminate 

( LHFRP). length of steel plates ( Lclamped) and ( L loaded), HFRP thickness (tHFRP) and steel 

thickness ( tslee l ) .  The double node technique was used to model the interface between 

the steel and HFRP elements, by connecting each interface node (at the bolts' 

locations) on the surface of the steel plate to its counterpart node on the HFRP 

surface as presented in Fig .4 . 3 .  Each pai r of conjugate nodes was connected using a 

non l inear spring element (COMBIN39)  directed along the X-direction ( loading 
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dire t ion) .  Ful l compatib i l ity wa implemented along the Y and Z-directions of the 

interface node . Thi assumption wa justi fied due to the restrictions imposed b the 

c lamping force in the Z-direction and the fact that no loading was applied along the 

Y-direction. 

tee l P late 
( Half  

Thickness)  

Steel Plate ( Ha lf  Thickness) ---�-� 

I\N 

Figure 4 . 2 :  General geometry of half model of the W2_D8_ST connection 

I\N 

teel Plates 

H F RP Lam inate 

pring Element (COMBIN39)  ----......... 

Figure 4 . 3 :  Locat ions of the steel bolts springs i n  the modeled W2_D8_ T 

connection ( pac i ng between stee l  and H F R P  i exaggerated for c l arity o f  the 

presentat ion)  
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1aterial Model ing 

The steel material i s  known to exhibit an elasto-pla tic stress-strain 

relationship. Figure 4 .4  shoy the ideal ized multi - l inear sires -strain relation hip 

propo ed by almon et al . ( 2009) .  Thi material model was adopted in the cunent 

stud) \\ ith the teer s elast ic Young ' s modulus E (200,000 MPa).  tangential modulus 

E/ = 2% E ( 4000 MPa) ,  yield tress a) ( 300 MPa)  and ult imate stress all ( 460 MPa) 

and Poisson 's  ratio l' of 0 . 3 .  

The H FRP laminates were modeled as  a l inear e la  t i c  materia l .  The 

longitudinal elastic modulus Ex was taken as 62, 1 90 MPa as reported in the 

manufacturer data sheet. The transverse elastic modul i  of the H FRP laminates £.1" and 

E= v;ere taken as 4 .800 M Pa ( Kachlake , 1 998 ) .  Poisson ' s  ratios uyz• Uz;" and up . \ ere 

considered to be equal to 0 .30, 0 .22 and 0 .22,  respectively ( Kachlakev. 1 998 ,  

Kachlakev and McCurry, 2000) .  
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u - - - - - - - - - - - - - - - - - - - -
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I E 

2 �  __ 

3 4 

Figure 4 .4 :  Ideal ized stress-strain relationship for model ing of steel material 
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Boundan Condition and Loading \' tem 

C lamped boundar cond ition were impo ed along the exterior edge of the 

c lamped teel p late which was connected to the fixed machine head during the 

experimental testing. The c lamping conditions were attained through restraining al l 

degree of freedom.  \ and Uz at  a l l  nodal points located a t  the c lamped edge as 

ho\'>'11 in F igA .5 .  Furthelmore. ymmetry boundary conditions were achieved by 

preventing out-of-plane translation. Uz• for all points on the steel surface 

perpendicular to the plane of symmetry as displayed in Fig .  4 .6 .  A l l  other nodes of 

the model \,.-ere left umestrained against any kind of trans lation. The numerical 

anal ) sis was conducted in  a displacement-control led manner along the X-direction. 

C l am ped Boundary 

Cond it ions 

I\N 

Figure 4 . 5 :  C lamping restrains at the edge of the c lamped steel plate 



� 
<EI 
<EI 
<El 
<El 
<El 
<El 
<El 
<El 
<El x <El Lateral -«l 
"",E3l<E(�-- Restrain for 

: Symmetry 
-«l 
-«l 
-«l 
-«l 
-«l 
--«l 

Figure 4 .6 :  ymmetry boundary condition for restraining lateral movement 

4.2.2 Verificat ion of the  F in ite E lement  M odel  

1 08 

The de eloped FE model was used to simulate the behavior of the tested 

FHRP-steel connection fa tened with steel bolts as described in sect ion 4 . 2 . 1 . The 

characterist ics of the proposed spring system that simulates the sti ffness of the steel 

bolts in responding to the appl ied load were adopted based on the non l inear load-s l ip 

model sho\'\TI in  Fig 4 . 1 .  

F igure 4 . 7  shows a companson between the experimental and numerical 

load-di sp lacement response curves of the modeled W2 D8 ST connection. By 

examining these curves. excel lent match between the experimental behavior and the 

numerical l y  modeled predictions can be observed. It can be seen that the developed 

fini te e lement model resulted in accurate predictions for the response of the 

connection through its various stages .  Furthermore, comparing the experimental peak 

load value (45 .5  kN) with that predicted by the FE model (42 .5  kN) reveals a very 

good agreement with an error of 6.6%. 
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F igure 4 . 7 :  Experimental and numerical response curves for the W2 D8 ST 

modeled connection 

The numerical predictions of the strains induced in the H FRP laminates were 

also used to validate the accuracy of the developed FE model and the proposed load-

s l ip  mode l .  I t  i s  worth mentioning that the experimental phase involved measuring 

the longitudinal strains in the HFRP laminates at both front and back sides of the 

connection as shown in Fig.  3 . 1 4 . Strain gauges at both sides showed simi lar 

readings as they were used to verify the negl igible effect of the out-of-plan bending 

on the tested connections. Figure 4 . 8  shows the strain gauge measurements for the 

Front G of W2_D8_ST_2 connect ion as a representative sample of the 

experimental results. The strain predictions, based on FE results, at the location of 

the Front SG are also plotted on the same strain-displacement curve. It can be noted 

that the trend and values of the experimental and numerical strain -displacement 

curves are in excel lent match. The experimental and numerical load-strain curves of 

the same strain gauge are shown in Fig. 4 .9 .  P lotted numerical predictions confirm 
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the good agreement with the experimental mea urements which validate the 

accuracy of the developed FE model . 

The FE model was also used to eval uate the di tribution of the appl ied loads 

on both bolts at the loaded side of the connection ( see Fig. 4 . 1 0 ) .  The predicted loads 

calTied by each of the steel bolts in the modeled W2_D8 T connection are 

d ispJa) ed in Fig.  4 . 1 1 .  I n  this figure. "RB" denotes the right-sided bolt and "LB" 

indicate the left-sided bolt .  P loned results imply that the applied load was 

distributed equal ly  between the two bolts. 
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Figure 4 .9 :  Experimental and numerical load-strain curves for W2_D8_ST_2 

connect ion at the Front G location 
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F igure 4 . 1 0 : Typical locations of steel bolts in the experimental setup of the 
tested W2 D8 ST connection 
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Figure 4 . 1 1 :  Distribution of the appl ied loads on the bolts of the 
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4.2.3 A p pl icat ion of the FE M odel  on Spacing C o n n ect ions  

1 1 2 

The proposed load-s l ip  model for the steel bolts shown i n  Fig.  4 . 1 was used 

to predict the behavior of HFRP-steel connections with three bolts . The model was 

employed to define the spring parameters when model ing the tested connections with 

n ine different bolt-spacing configurations. The distribution of the bolts in  a typical 

spacing connection is presented in  Fig. 4 . 1 2 . S imi lar boundary condit ions to those 

described in section 4 .2 . 1 were i mposed on the modeled connect ions to simulate the 

real behavior during test ing. Predicted results revealed a very good agreement 

behveen the experimental and numerical load-di splacement response curves of the 

nine modeled connections as i l l ustrated in Fig .  4 . 1 3  through Fig.  4 .2 1 .  In ten-ns of 

peak loads, results indicated comparative values with a percentage of difference that 

ranged from 0.02% to 7 .0 1 % as summarized in Table 4. 1 .  The predicted peak loads 

of the d ifferent spacing configurations confim1ed the insignificant effect of bolt-
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paci ng on th ult imate load canying capac it of the H FRP-steel conn ction as 

ob en ed i n  the experimental te ti ng and discu sed in hapter 3 .  

x 

Clamped / Steel Plate 

AN 

Loaded 
Steel Plate 

/ 
H FRP 

pring Element (COMBIN39)  -----..... 

Figure 4 . 1 2 : Typical locations of the springs to represent steel bolts in the 
modeled spacing connections ( pacing between steel and H FRP is 

exaggerated for clari ty of the presentation ) 
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Table 4 . 1 :  Experimental and numerical peak loads for the spacing cOl1l1ections 

Connection Peak Load (kN )  
% Difference Designation Experimental Numerical 

S 60 63 . 1 42 63 . 1 28 0.02 

S 90 65 .327 63 . 1 05 3 .40 

S 1 2D 63 .753 63 . 1 0 1  1 .02 

S 1 50 67.863 63 . 1 08 7 .0 1 

S 1 80 65 .287 63 . 1 1 9  3 . 32 

2 1 0  67. 399 63 . 1 33 6 .33 

S 250 65 .742 63 . 1 7 1 3 . 9 1  

S 3 1 D  65 . 863 63 .206 4.03 

S 3 7D 67.62 1 63 .269 6.44 

Strain values were also evaluated in  the H FRP laminates of al l  modeled 

spacing cOl1l1ections configurations in  order to verify the FE model accuracy. I t ' s  

worth noting that the experimental setup of the spacing connect ions involved the use 

of e ight strain gauges per speci men which were distributed as displayed in Fig.  3 .5 1 .  

The predicted strain values at the eight locations were compared to the experimental 

strain measurements for each spacing configuration. Unfortunatel , some strain 

gauge measurements for connections \ ith small spacing ( S-6D to S _ 1 5D)  were not 

re l iable due to the observed damage in the strain gauges placed at or near the 

center l ine of the connection as presented in Fig .  4 .22 .  Records of these strain gauges 

were not shown to avoid confusion. umerical strain predictions for the modeled 

connections were plotted versus their experimental counterparts in Fig. 4 .23 through 

Fig .  4 .3 1 .  Comparison between plotted results reveals good match between the 

measured and predicted strain values for almost all the modeled cOl1l1ections. 



Figure 4 .22 :  Photo of the damaged strain gauges i n  S 6D connection 

between "B2" and " Br 
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Load carried by each of the three bolts connect ing the HFRP to the loaded 

teel plate in the pacing a embl ies ,,\,ere al 0 evaluated by the FE model .  Figure 

4 . .... 2 displays a sample of  the numerical ly predicted loads carried by "B 1 " , " BT and 

.. B .... . , of the _ 1 2 D  configuration. It i c lear that the load i equal l  di stributed 

among t the three connect ing bolts. Each predicted bolt load was compared to its 

corre ponding experimental value that was evaluated in sect ion 3 . 3 .2 of Chapter 3 .  

Comparison between numelical ly  asses ed  bolt loads and their experimental 

counterparts are shown in Figs. 4 . 33  and 4 .34  for representative configurations of 

S_1 2D and _3 7D.  respect ively. These figures reveal a perfect match between the 

numerical and experimental results up to an applied load of 36 kN. This l imit 

corre ponds to the end of stage "C ' of the load-sl ip cur e (F ig. 4 . 1 )  before which the 

response is mainly contro l led by bearing action . Beyond this l imit ,  bending in bolts 

starts to take place and the applied load is  di stributed in  an uneven fashion among the 

three bolts. The developed FE model underestimated the loads for "B 1 "  and 

overestimated the loads of both "BT and · 'B3" . im i lar trend was observed for a l l  

other tested configurat ion . This i s  because thi s  simple model ing of the bolt  as 

nonl inear spring is not capable of simulating the e act behavior of the plate with 

multiple holes on the same gaugl ine. In the experimental setup, the fi rst bolt typical l y  

carries more load than the other ones. 25 
� 20 
'-' 

.=g 1 5  
� .: 1 0  
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o o 5 7 
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F i gure 4 . 32 :  O i tr ibut ion of the appl ied load on the bolts  o f  the 1 20 connection 
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·-'.3 F i n ite E lement  Model ing  of Con n ect ions  w it h  F RP  A n c h o r  

Connection f0l111ed u mg FRP anchors were modeled fol lowing simi lar 

procedure to tho e u ed in  model ing connection fastened with steel bolts. 

i\leanv, b i le. a new load- l ip model was proposed to s imulate the interfacial behavior 

of the H FRP- teel connection fastened with FRP anchors. As discussed in  ect ion 

3 . 3 .2 .  the FB 1 3_3 D configurat ion (with a sheared edge di stance of tlu'ee t imes the 

hole-diameter) was recommended for optimal performance of s imi lar H FRP-steel 

connections fastened by FRP anchors. Ba ed on the load-displacement response 

curve of this selected configuration. the load-sl ip  model shown in Fig.  4 . 35  was 

developed. As the experimental load-di placement curve of F B  1 3  _3 D accounted for 

the response of one FB 1 3  bearing against two H FRP laminates, the load values were 

adj usted to repre ent s ingle-shear setup. Therefore. the loads of the response curve of 

F B 1 3_3 D ( sbo",'11 in  Fig .  3 .64) v ere divided by two in  order to obtain reference 

values of one FB 1 3  bearing against one HFRP lam inate . It should be noted that the 

influence of the steel and H FRP elongations during testing were exc luded from the 

displacement values of the response curve to avoid double count ing of these effects 

in the FE model . The various segments constituting the proposed model 

corresponded to five d ifferent fai l ure modes of the FB 1 3  _3D connect ion. Segment 

" A " ' represents the friction between the HFRP laminates and the steel plates. whi le 

segment " B"' relates to the relat ive s l ippage ari sing from the bolt-hole clearance. 

Bearing action between the FB 1 3  and the H FRP laminates is reflected by segment 

"C ' .  Part "D" represents the combined effect of bearing and bending in anchors. 

Final ly.  the ult imate shear fai lure of the FB 1 3  is demonstrated by segment " F '

. 

Description and verificat ion of the developed FE model are di scussed in  sections 
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4 .3 . 1  and 4 . 3 . 2 .  Compari on between the numerical ly predicted load-di placement 

relation hip and train and th ir experimental counterparts are a lso presented . 

A B 

o 2 4 

c 

6 8 
Slip (mm) 

D E 

1 0  1 2  1 4  

Figure 4 . 3 5 :  Nonl inear load-s l ip model of the FB l 3  3 D  connection 

�.3. 1 Descr ipt ion of the F in ite E lement  M odel  w i t h  FRP Anchors 

Simi lar to the procedure out l ined in  section 4 .2 . 1 ,  a three-dimensional model 

\vas developed using A YS ( 2009) to simulate the behavior of fastened HFRP-

steel connections using FRP anchors. Considering the symmetry of the connection, 

one-half of the connection was modeled involv ing one HFRP laminate and half the 

thickness of the steel plates. The FE model used the previously described ( OL ID4S ) 

element to model the geometry of both the HFRP laminate and the steel plates. 

Meanwhi le ,  the non l inear spring element (COMBIN39)  was used to model both steel 

bolts and FB 1 3  anchors located at the clamped and loaded sides of the connection. 

respectively .  Therefore. the (COMBIN39)  element was defined twice in  the FE 

mode l .  At the loaded steel plate, where the FB 1 3  was employed, the load-sl ip model 
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hO\\11 in Fig.  4 . "  5 ,va introduced to de cribe the (COMBIN39) .  In  th meant ime, 

the load- lip model that wa d \ loped earl ier to simulate the behavior of the steel 

bolts ( Fig .  4 . 1 )  \'v as u ed to define the (COM B IN39) elements at the c lamped side of 

the connection. I t  i \vorth ment ioning that the u ed material s, boundary conditions 

and loading ) tem were identical to those descri bed in section 4 .2 . l .  The numerical 

analy is was conducted in a displacement-control manner along the X-direction. 

Figure 4 . 36  pre ents the geometr of the modeled FB l 3  _3 D connection and the 

location of the FB 1 3  at the loaded steel p late. 

C lamped 
Steel P late 

H FRP Laminate 

COMBIN39 
( For teel Bolts) 

AN 

COMBIN39 

/' 
Loaded 

Steel P late 

F igure 4 .36 :  Geometry and l ocations of FB 1 3  and steel bolts in the 
modeled FB l 3  _3 D connection ( Spacing between steel and HFRP is  

exaggerated for c larity of the presentation) 

4.3.2 Verificat ion o f  the F in ite E lement  Model  w ith F RP  A n c h o rs 

The FE model developed in section 4 .3 . 1  was used to simulate the 

experimental behavior of the HFRP- teel connection fastened using FB l 3 . To 

validate the accuracy of the FE model and FB 1 3  load-s l ip model .  a compari on was 
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held bet\\een the experimental and numerical load-displacement respon e curves of 

the FB l 3_3 D connect ion as hO\m in Fig .  4 . 37 .  An excel lent match between the 

experimental and the numerical response curves can be observed. It should be noted 

that the (COMBIN39)  pring element which was used to simulate the FB 1 3  was 

k i l led at a di splacement of around 1 3  mm to reflect the sudden fai l ure of the element 

as hO\\l1 in Fig. 4 . 35 .  An error of 1 . 85% was calculated between the predicted and 

the experimental  peak loads of the FB 1 3  _3 D connection, which proves the accuracy 

of the prediction of the FE model at the various loading stages .  

25  
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� 1 0  
� 0 ..J 
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Dis lacemen t .-______________ ���_ L __ � ____ _ 

F i n i te E lement - Experimenta l  
----------------------

1 4  

F igure 4 . 37 :  Experimental and numerical load-displacement curves for the 

modeled FB 1 3  3 D  connect ion 

For further val idation, a companson between the numerical ly  predicted 

strains i n  the HFRP laminates and those measured experimenta l ly was conducted. 

The comparison was based on the measurements of the two strain gauges that were 

attached to the front and backsides of the tested FB 1 3  3D  connection. Experimental 

results revealed very c lose strain measurements at both gauges, thus, the recorded 

strai ns at the Front G were plotted against the finite e lement predictions in Fig. 
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4 . 38 .  It can be ob en'ed that the FE model pro ides reasonabl predictions of the 

slrain induced in the HFRP laminate . Du to its ensitivity to local effect thal take 

place in the fibers dur ing te l ing. train measurements are always more difficult to 

imulate \'vith the arne order of accuracy achieved in  load-di splacement 

measurements. 
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F igure -l .3 8 :  Experimental and numerical strain-displacement curves for 

FB 1 3  3 D  connection at the Front SG location 

...... u m m a ry a n d  Conclus ion  

The objective of th is  chapter was to develop 3 -Dimessional nonlinear finite 

e lement model s  that simulate the behavior of H FRP-steel connections fastened using 

steel bolts and FRP anchors. This was attained through developing nonl inear load-

s l ip  models  for connections fastened with two types of fasteners :  steel bolts and FRP 

anchors. Two load-s l ip model s  were proposed to account for the d ifferent fai l ure 

modes of each connection. Based on the observat ions and discussion presented in  

Chapter 3 W2 D8 ST connection with steel bolts was modeled since it showed 
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opt imal beha\ ior. imi larly .  the FB 1 3  3D connect ion was modeled to simulate the 

be t perf0l111anCe of connections fastened with FRP anchors. The adopted load-sl ip  

models were incorporated into FE models using A SYS software to address the 

HFRP-steel interfacial behavior. Both models were verified through comparing the 

numerical ly  predicted load-displacement curves to their experimental counterparts. 

Re ults revealed excel lent agreement which al idated the accuracy of the proposed 

load-sl i p  model s  and the developed FE models .  The FE model s  were capable of 

predict ing the load carrying capac ity of the connections with acceptable margin of 

error of 6 .6° 0 and 1 . 85% for connections fastened with steel bolts and FRP anchors, 

respectively .  Measured FRP strains were also u ed as an addit ional means to verify 

the accuracy of the models through comparing the numerical and experimental 

strain-displacement cur es. Results showed reasonable agreement in  both modeled 

connections using steel bolts and FRP anchors with lower level of accuracy to that 

obtained using the load-displacement measurements. Moreover, the developed load­

sl ip model for connections with steel bolts was used to simulate the behavior of a l l  

tested assembl ies with various spacing between bolts .  The results revealed excel lent 

match between the experimental measurements and predicted peak loads with a 

percentage error that ranges from 0 .02% to 7 .0 1 %.  
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C h a pter  5 :  C o n c l u s i o n  a n d  Reco m m e n d a t io n s  

The cunent study is  de  oted to  in estigate the effect of various fasten ing 

parameter on the performance and load can-ying capaci ty of fastened HFRP-steel 

connect ions for possible u e in strengthen ing steel members. An extensive 

e:\perimental program was canied out fol lowed by numerical model ing of the 

experimental findings. This chapter presents a brief summary for the main outcomes 

of the conducted experimental and numerical studies. Recommendat ions for future 

research studies relevant to the topic of this thesi s are also stated at the end of the 

chapter. 

5. 1 S u m m a ry a n d  Conclus ions  

The conducted experimental program aimed at  exploring the interfacial 

behavior of fastened HFRP-steel connections under various fastening parameters 

inc lud ing :  fastener type and diameter. sheared edge distance, spacing between bolts, 

number of washers-per-bolt, c lamping torque and bolt-hole diameter. The 

i nvest igat ion was can-ied out in  two main phases based on the type of fasteners ( i .e . ,  

steel bolts and F RP anchors) .  A series of 62 double-lap H FRP-steel cOLUlections with 

different geometrical and fastening configurations were subjected to tens i le  loading. 

Load-displacement response curves and FRP longitudinal strains were mon itored and 

recorded during test ing. The main outcomes of the experimental program are 

highl i ghted in the fol lowing points: 

• The presence of washers significantly enhanced the ducti l ity and the load 

carrying capac ity of the connections. Enhancements of 75% and 86% in the 

load capac ity of the tested cOLUlections were obtained with the use of two and 

four washers-per-bolt .  respectively, compared to those with no washers. 
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• The int rfac ial beha\ ior of HFRP-steel corulections fastened \-\' i thout washers 

di ffered [rom that ob el-ved for connections fastened with two and four 

washer -per-bolt .  The observed soften ing post-peak response in the load­

di p lacement curve of connect ions without washers indicated unfavorable 

perfomlance of this type of connections when no washers are u ed . 

• Connection 'W ith wa hers fai led by a combination of fai lure modes including 

bearing at the bolt-HFRP interface. bending in  the steel bolts. folding of the 

washers and final! tearing out and BSR in the H FRP laminates. 

• The investigated clamping torque value ranging between 1 1  N .m .  and 20 

.m. were proven to have negl igible effect on the fai lure modes and load 

carrying capaci ty of the fastened HFRP-steel corulections. 

• Bolt-hole diameter significant ly influenced the response of the tested 

connections. The use of a net fi t bolt-hole reduced the connection ducti l i ty 

compared to standard and loose fit  connect ions. Meanwhi le ,  the ult imate load 

capacity of the tested connections was maintained unchanged regardless of 

the used bolt-hole diameter. 

• For the considered range of bolts spac ing ( 50  mm to 300 mm), negl igible 

effect of spacing on the ult imate load capac ity of the fastened H FRP-steel 

connect ions was observed. However. using spacing value that is twelve t imes 

the bolt-hole diameter showed best performance in terms of ducti l i ty with 

1 0% higher displacement than other spacing values. It was also concluded 

that considered bolts' spacing had insignificant influence on the fai lure 

mechanisms of the connection. 

• The influence of considered sheared edge di stance on the response of HFRP­

steel connections fastened with FRP anchors was negl igible for both tested 
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diameters. Thi could be attributed to the fact that this particular type of 

connection fai led by shear in  the anchor before the contribution of the 

sheared edge distance becomes noticeable. 

• The maximum recorded load capac ity of a l l  connections fastened using FRP 

anchor of 1 0  mm diameter corresponded to connections with sheared edge 

d istance that is five t imes the hole-diameter. 

• Using FRP anchors of 1 3  mm diameter with a sheared edge distance that i s  

three times the hole-diameter enhanced the duct i l ity o f  the fastened 

connections and resulted i n  the highest peak load among al l tested sheared 

edge distances. 

• I ncreasing the bolt d iameter of the FRP anchors from 1 0  ITU11 to 1 3  mm 

resulted i n  65% increase i n  the ult imate load carrying capaci ty of the 

connection and enhanced its duct i l i ty. 

• The load capacity of the HFRP-steel cOl1l1ection using a s ingle FRP anchor of 

1 3  mm diameter was almost equal to the one provided by a steel bolt of 6 ITUn 

diameter i n  a single shear setup. 

• From economic standpoint, i t  i s  recommended to use steel bol ts ( 0 .22 $ per 

bolt)  over the FRP anchors ( 7 .6 $ per bolt) in fastening H FRP-steel 

connections. However, F RP anchors are expected to provide better corrosion 

resist ivity than steel bolts. 

Recorded experimental measurements of HFRP-steel connect ions fastened 

with steel bolts and FRP anchors were uti l ized to develop two nonl inear load-sl ip 

models for the interfacia l  behavior and associated relative s l ippage. Both load-s l ip 

models were uti l ized in developing 3D non l inear finite element models  that simulate 
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the behavior of the fa tened connection . H FRP- teel connections with optimal 

performance ( i . e  . . W2_D8_ T and FB 1 3_3 D )  were modeled using Y Y software. 

De\'eloped FE model were veri fied through comparing the numerical load­

di p lacement curves to their experimental counterparts. Results revealed excel lent 

agreement \-vhich validated the accuracy of the propo ed load-sl ip  models and the 

developed FE model . The developed FE model s  were capable of predicting the load 

carrying capacity of the connections with acceptable margin of error of 6 .6% and 

1 . 8 50/0 for connect ions fastened vvith steel bolts and FRP anchors, respect ively. 

1 easured FRP strains were also used a additional means to veri fy the accuracy of 

the model s .  Results showed reasonable agreement between the numerical ly  predicted 

strains and the recorded experimental ones. Moreover, the developed load-s l ip model 

for connecti ons fastened using steel bolts was used to simulate the behavior of a l l  

tested assembl ies with various spacing between bolts .  The results showed excel lent 

match between the experin1ental measurements and predicted peak loads with a 

percentage of error ranging from 0 .02% to 7 .0 1 %. 

5.2 Reco m m en da ti o n  fo r Fu t u re Resea rc h 

Based on the outcomes of the conducted experimental and numerical 

investigations, the fol lowing recommendations are suggested for future studies to 

enrich the l i terature of strengthening steel elements by HFRP laminates using 

fasteners: 

• The findings of thi s study could be implemented on a larger scale through 

strengthening ful l -scale steel beams.  
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• The perfol111unce of fa tened H FRP -sleel connect ions under fatigue loading 

with respect to the \'ariou fasten ing parameters i s  of high importance and 

requires experi mental anciJor numerical investigat ions. 

• The response of fastened HFRP-steel connections under creep is  essent ial and 

requires experimental and/or numerical investigat ions. 

• The beha ior of the fastened HFRP-steel connections under vanous 

environmental conditions especia l ly  at e levated temperatures needs to be 

studied. 

• The cal ibrated finite element model could be used in  future studies. 

• The experimental resul ts of thi study could be compared to test spec imens 

\�.:here FRP laminates are bonded to steel plates using adhesive . 
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