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Abstract 

 

Intensification of agriculture and manufacturing industries has resulted in increased 

release of a wide range of xenobiotic compounds to the environment. The extensive 

discharge of hazardous waste in industrial wastewater and the recalcitrant nature of 

some of these organic pollutants have fueled a strong interest in exploring efficient 

and environmentally friendly approaches for wastewater remediation. Bioremediation 

approaches can provide efficient, inexpensive and environmentally safe cleanup tools. 

In the present study, our main objective was to isolate novel bacterial strains from 

UAE petroleum sludge and to examine their abilities to degrade various aromatic 

pollutants, including azo dyes and emerging pollutants. We report here on the isolation 

and purification of novel bacterial strains from petroleum sludge that were capable of 

efficiently degrading various classes of aromatic dyes. Of these 12 isolates, extensive 

biochemical and optimization studies were carried out with the most promising strain, 

MA1. The optimum culture conditions of MA1 strain were found to be at pH 7, with 

100 ppm dye concentration, and under aerobic condition. DNA sequencing of the 16S 

rRNA gene was carried out for the 12 bacterial strains and the data showed that the 

isolates belonged to two different bacterial species: Bacillus cereus and Pseudomonas 

guariconensis.  Confirmation of the degradation of the aromatic compounds by the 

chosen bacterial strains was done using HPLC and LC-MS/MS analyses. This novel 

strain, MA1, was able to efficiently degrade aromatic dyes (e.g. Toluidine Blue, 

Ponceau BS, Reactive Black 5 and Congo Red) and more importantly various 

emerging pollutants of human concern such as sulfamethoxazole, prometryn, and 

fluometuron.   

 

Keywords: Bioremediation, pollutant degradation, emerging pollutants, aromatic 

dyes, 16S rRNA. 
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Title and Abstract (in Arabic) 

 

 

ا مستخلصة من الرواسب التحلل الميكروبي لمختلف المركبات الملوثة بواسطة بكتري

 البترولية

 صالملخ

توظيف الزراعة والصناعات التحويلية أدى إلى إنتاج العديد من المركبات الجديده على 

ثات والبيئة. كما أدى التفريغ الواسع النطاق للنفايات الخطرة في مياه الصرف الصناعي وتمرد المل

العضوية إلى الاهتمام الشديد باستكشاف طرق فعالة وصديقة للبيئة لمعالجة المياه المستعملة. إن 

توظيف نهج المعالجة البيولوجية يؤدي إلى توفير سبل تنظيف فعالة وغير مكلفه وآمنة بيئياً. في 

مارات  ية في الإهذه الدراسة، هدفنا الرئيسي كان عزل سلالات بكتيرية جديدة من الرواسب النفط

ودراسة مدى قدرتها على تحلل الملوثات المختلفة، بما في ذلك أصباغ  الأزو والملوثات الناشئة. 

كما قمنا في هذا البحث بعزل وتنقية سلالات بكتيرية جديدة من الرواسب النفطية والتي أثبتت 

 21ن بالذكر أنه من بي قدرتها وكفاءتها على تحليل فئات مختلفة من الأصباغ الأروماتية. جدير

نوع من البكتيريا والتي تم عزلها ، أجريت دراسات بيوكيميائية واسعة النطاق ودراسات أخرى 

هي السلالة الواعدة من بين السلالات الأخرى.    MA1لمعرفة الظروف الأمثل، ليتبين أن 

روجيني ند الرقم الهيدبالإضافة إلى ذلك، تبين بأن الظروف الأمثل لكفاءة هذه البكثيريا تحدث ع

)جزء من المليون( وأيضا تحت الظروف الهوائيه أي بوجود الأكسجين .  تم  211مع تركيز  7

نوع من السلالات البكتيرية ليتبين أن البكتيريا  21تسلسل الجينات ل  16S rRNA أيضا بحث  

 Bacillus cereus, Pseudomonasالتي قمنا بعزلها تنتمي إلى أجناس بكتيرية مختلفة )

guariconensis يجدر الإشارة أيضا بأنه تم تأكيد تحلل الرواسب من قبل البكتيريا باستخدام .)

، كانت قادرة على تحليل الأصباغ MA1. هذه السلالة الجديدة LC-MS/MSالتقنية التحليلية 

( Toluidine Blue and, Ponceau BS, Reactive Black 5الأروماتية بكفاءة  مثال )

 ,sulfamethoxazoleيضا مختلف الأصباغ الجديدة ذات الإهتمام الإنساني مثال )وأ

prometryn, and fluometuron.) 

. 

.واسب النفطية، الأصبغ الأروماتيةالمعالجة البولوجية، الر: مفاهيم البحث الرئيسية  
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Chapter 1: Introduction 

 

There is a pressing need to protect our natural resources and find novel and 

innovative approaches to degrade/remove various types of pollutants from our 

environment. Research studies regarding the use of efficient processes to clean and 

minimise pollution of water bodies are increasing  (Gu et al. 2016; Petrie et al. 2014; 

Rodrigues et al. 2013; Wang et al. 2015) Extraction of natural resources, as well as 

industrialisation, have caused a wide range of environmental contamination and 

pollution. Toxic waste is being released in large amount at thousands of sites 

contaminating these places across the nation. Thus, each one of us is exposed to 

various xenobiotic/contaminants from the past due to the prevailing industrial 

practices, emission of pollutants and disposal of waste affecting natural resources (like 

air, water, and soil) both in cities and remote regions (Martins et al. 2015; Richardson 

et al. 2007; Alam et al. 2010). The risk to human health and environment is rising, and 

it is evident that the cocktail of pollutants is a contributor to the global epidemic of 

cancer and other degenerative diseases (Figure 1) (Access 2014). 

Usually, aquatic pollution occurs by several sources including discharge of 

industrial effluents, illicit dumping of untreated wastewater, and agricultural fertilizer 

runoffs. All of these play a role in the contamination of water bodies with large 

quantities of organic pollutants, inorganic chemicals, as well as heavy metals 

(Richardson et al. 2007).  
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Figure 1: Fate and transport of organic/inorganic contaminants/pollutants and their 

harmful effects (Access 2014) 

 

1.1 Aromatic compounds in the environment 

Any organic molecule that comprise one or more aromatic rings, especially 

benzene rings, for example, are known as aromatic compounds (Seo et al. 2009). 

Aromatic compounds can be classified into three major groups: polycyclic aromatic 

hydrocarbons (PAHs), heterocyclics, and substituted aromatics. Out of the three 

categories, PAHs are known to be widely spread in the environment. PAHs can be 

defined as chemicals that have two or more fused aromatic rings in linear, cluster, or 

angular arrangements (Cheung & Kinkle 2001). Environmental Protection Agency 

(EPA) in the US has recognised 16 PAHs as major pollutants. The distribution of these 

compounds (PAHs) in the environment and probable exposure to humans are causing 
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a serious concern as they are possible human carcinogens. These PAHs are widely 

produced in the environment from several sources such as fuel combustion, 

automobiles, spillage of petroleum products, and waste incinerators (Seo et al. 2009). 

Persistent Organic Pollutants (POPs) are considered as one of the most 

concerned environmental contaminants due to their presence in the environment, 

bioaccumulation through the food web, and they pose a threat of causing adverse 

effects to the environment and human health (Khodjaniyazov et al. 2012). POPs 

involve DDT, chlordane, aldrin, dieldrin, endrin, mirex, brominated flame retardants, 

and organometallic compounds such as tributyltin, PAHs, hexachlorobenzene, 

heptachlor, polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated biphenyls 

(PCBs), polychlorinated dibenzofurans (PCDFs), and toxaphene. PCDD/Fs are 

released accidentally from human activities. One of the major sources of POP is 

municipal waste incinerators (Diez 2010) 

1.2 Emerging pollutants 

Previously, organic compounds were not well-known to be present in water 

bodies, in terms of distribution or concentration but are now becoming more widely 

discovered as analytical techniques develop (Farré et al. 2012). These compounds, 

which have the ability to cause familiar or suspected adverse ecological or human 

health effects, are often called as emerging pollutants (EPs) or contaminants of 

emerging concern. EPs can be defined as any synthetic chemicals or microbes present 

in the environment and are normally not monitored but have the ability to affect several 

living organisms adversely. Emerging pollutants involve newly synthesised 

substances, and substances that were present in the environment since a long time but 

their existence and significance are only being clarified now (Daughton 2004). They 
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comprise an extensive array of various compounds and their transformation products: 

pharmaceuticals (e.g. nonsteroidal anti-inflammatory drugs (NSAIDs), analgesics, 

antibiotics, textile dyes, hormones, and personal care products pesticides (Lapworth et 

al. 2012). Although emerging pollutants may be degraded by numerous treatment 

systems of wastewater, it is noticed that these emerging pollutants have been detected 

in relatively high concentrations in different water resources (Ángel et al. 2014; Na et 

al. 2014; Sorensen et al. 2015). For example, recent studies have reported the detection 

of 10 ppm of acetaminophen, 17 b-estradiol, and up to 0.2 ppm of the reproductive 

hormone in the US water streams (Loos et al. 2007). Subsequently, the appearance of 

these physiologically active chemicals with high a concentration in the water supply 

is attracting a lot of attention by environment scientists. An interesting analysis has 

been conducted to find out physiologically active concentrations of various hormones, 

antibiotics, and other EPs in the water bodies in several countries (Table 1).  

Even though various studies have reported sources, occurrence, and 

environmental behaviour of emerging pollutants (Stuart et al. 2012; Lapworth & 

Gooddy 2006; Pal et al. 2010; Deblonde et al. 2015), the pathway of these EPs from 

sources to receptors remains a subject for advanced research. This is due to the lack of 

information, mainly because of the problems created by physicochemical properties of 

target compounds, as well as the complexity of environmental characteristics among 

others, which may determine an unexpected behaviour of the emerging pollutants in 

air, water, or soil (Stuart et al. 2012; Pal et al. 2010). In order to clarify this condition, 

a study has provided a schematic pathway by which some EPs enter different receptors 

(like groundwater, consumers, and surface water) (Figure 2) (Aamand et al. 2014). 
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1.3 Degradation of organic pollutants by various methods 

Several traditional techniques have been successfully used to treat polluted 

wastewater and remove various contaminating organic pollutants, such as chemical 

and physical methods, yet most of them have several limitations, such as overall cost, 

inefficiency, and difficulty in complete mineralisation of the pollutants. 

A wide range of approaches has been developed for the removal of various 

synthetic aromatic pollutants from water bodies, as well as wastewaters thus, reducing 

their impact on the environment. Various chemical and physical methods have been 

used for the treatment of contaminated wastewater such as membrane filtration, 

precipitation, flocculation, irradiation, adsorption, and chemical oxidation such as 

Fenton’s oxidation (Figure 3) (Franciscon et al. 2012). Although these methods can 

work effectively, they have several potential limitations, such as overall high cost, 

inefficiency, production of high sludge, and formation of toxic side products (Figure 

4) (Alhassani et al. 2007). 
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Table 1: Summary of some pharmaceuticals and emerging contaminates detected in 

drinking water supply in various countries 

 

 

 

PPC 
Representative 

concentration, ng/L 
Reference 

NSAIDs and 

analgesics 

Paracetamol 10000 (Kolpin et al. 2002) 

Diclofenac 15000 (Jux et al. 2002) 

Ibuprofen 1000 (Lapworth et al. 2012) 

Valsartan 1300 (Huerta-fontela et al. 2011)  

Antibiotics 

Sulfamethoxazole 700 
(Vanderford & Snyder 

2006) 

Lincomycin 750 (Lapworth et al. 2012) 

Erythromycin 450 (Managaki et al., 2007) 

Hormones 

Estrone (E1) 1 (Huerta-fontela et al. 2011)  

Diethylstilbestrol 5.3 (Caban et al., 2015) 

Estriol (E3) 72 (Huerta-fontela et al. 2011)  

Pesticides 

Carbofuran 25 (Papadakis et al., 2015) 

Lindane 34 (Papadakis et al., 2015) 

Personal care 

product 

Caffeine 14.60 
(García-Vaquero et al., 

2014) 

Bisphenol A 4500 (Erickson et al., 2014) 

Triclosan 35 
(Azzouz and Ballesteros, 

2013) 

Cotinine 88.5 (Sun et al., 2015) 
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Figure 2: Schematic diagram of various EPs from sources to receptors (Aamand et al. 

2014) 

 

Figure 3: Treatment methods for the removal of organic pollutants from wastewater 

effluent 
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Figure 4: An example of organic aromatic pollutants (azo dye) breaking down into 

carcinogenic amines after chemical treatment (taken from 

http://garmentstech.com/why-need-to-be-sure-your-gament-textile-fibre-apparel-

toys-leather-paper-and-plastic-product-are-azo-dyes-free/, April 09, 2016) 

  

Bioremediation of emerging pollutants using bacteria or other microorganisms 

possessing degrading abilities is a highly attractive strategy that offers distinct 

advantages over the traditional techniques of treatment. The process of bioremediation 

is defined as the use of microorganisms to detoxify or remove pollutants owing to their 

diverse metabolic capabilities is an evolving method for the removal and degradation 

of many environmental pollutants including the products of petroleum industry (Rauf 

& Salman 2012). Microbial biodegradation is more eco-friendly, economical, and 

produces less amount of sludge. In most cases, they convert the organic pollutants to 

less harmful compounds that are not deadly to life forms (Tripathi & Srivastava 2011). 

Among this biological mode of treatment, bacterial degradation has shown amazing 

ability to decolourise dyes quickly and efficiently. Recent studies have shown that 

bacteria such as Bacillus subtilis, Phanerochaete chrysosporium, Aeromonas 

hydrophila, Penicillium sp., Klebsiella pneumoniae, Proteus mirabilis, and 

Pseudomonas cepacia can degrade various classes of toxic organic pollutants (Ali et 

al. 2014). 

 

http://garmentstech.com/why-need-to-be-sure-your-gament-textile-fibre-apparel-toys-leather-paper-and-plastic-product-are-azo-dyes-free/
http://garmentstech.com/why-need-to-be-sure-your-gament-textile-fibre-apparel-toys-leather-paper-and-plastic-product-are-azo-dyes-free/


9 

 

 

 

 

1.3.1 Physical methods 

Physical techniques including filtration, adsorption, specific coagulation, and 

chemical flocculation have been widely utilised in the removal of organic pollutants. 

Various types of membrane filtration showed potential in the treatment of 

environmental pollutants. For example, Reverse Osmosis (RO) membranes showed a 

retention rate of 90% for the reactive organic aromatic pollutants (like dyes) and other 

chemical compounds (Ciardelli & Ranieri 2001). It has been indicated that RO 

membrane is capable of removal of hydrolyzed reactive dyes, all mineral salts, as well 

as chemical auxiliaries, but high energy consumption is its major limitation. Moreover, 

ultrafiltration can be utilised as a pre-treatment, followed by any other treatment 

process. Microfiltration has the ability to treat dye baths having pigment dyes, and it 

is used as a pre-treatment for nanofiltration or RO (Bruggen et al. 2005). Despite the 

effectiveness of these techniques, membranes have some considerable drawbacks 

including the formation of secondary waste streams, which requires further treatment, 

high investment costs, as well as potential membrane fouling are considered as major 

drawbacks in using membranes filtration in this field (Santos et al. 2007; Robinson et 

al. 2001). 

Adsorption techniques have also attracted significant interest in the treatment 

of contaminated water because of their effectiveness in the removal of an extensive 

range of organic pollutants. Choosing the right adsorbent is based on various 

characteristics like capacity for target compounds, pore size, and regeneration of 

adsorbent (Sadhasivam et al. 2009). Various adsorbent materials have been used such 

as Activated Carbon (AC), which is used effectively for the removal of dyes. However, 

AC has relatively high cost, and therefore, it is not widely used. The other common 
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materials, which are economically feasible, are peat, wood chips, fly ash, polymeric 

resins, and others biological materials including maize stalks, corn cobs, and wheat 

straw for the removal of coloured wastewater (Robinson et al. 2001). On the other 

hand, adsorption techniques showed several limitations regarding the disposal of 

potential sludge and regeneration of the adsorbents. Physical methods based on 

Coagulation Sedimentation and Flocculation are another group of effective means for 

the removal of organic pollutants and disperse dyes. These techniques are known for 

their selectivity towards the category of contaminants existing in wastewater (Gautami 

& Khanam 2012). Several disadvantages have been noticed regarding these methods 

including the production of high sludge, their disposal or regeneration, low 

effectiveness with regard to a wide range of dyes, as well as their high cost (Karcher 

et al. 2001). 

1.3.2 Chemical methods 

Chemical approaches involve Advanced Oxidation Processes (AOP’s), use of 

NaOCl, and electrochemical destruction (Särkkä et al. 2015; Ahmed et al. 2015; Brillas 

& Martinez-Huitle 2015; Rojas et al. 2016). The Advanced Oxidation Processes 

(AOP’s) appear to be a promising approach, which have been effectively used for the 

removal of various organic contaminants from water and soil. Various review papers 

have reported various AOPs to be efficient for the treatment of wastewater (Robinson 

et al. 2001). AOP method is based on the generation of OH radicals for a sequence of 

reactions with organic pollutants, thereafter, to degrade the molecules into less harmful 

substances. However, AOPs have been noticed to be costly, since the process requires 

a continuous addition of expensive chemicals, as well as large consumption of 

electricity. In addition, advanced oxidation processes are not capable of treating large 
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amounts of wastewater. 

Electrochemical process has also been successfully used for the treatment of 

wastewater. It has been reported that combining both UV with sonication has also 

worked to remove several organic pollutants  (Kiai et al. 2014; Furgal et al. 2014). 

However, this technique is relatively resource-intensive and expensive. Table 2 

summarised the benefits and drawbacks of the current physical and chemical methods 

of organic pollutants removal from industrial effluents (Robinson et al. 2001). 

Table 2: Advantages and disadvantages of the current approaches of organic 

pollutants removal 

Treatment methods Advantages Disadvantages 

     Physical methods 

Activated carbon 
Good removal of wide 

variety of dyes 

Very expensive and 

secondary waste 

Wood chips 
Good sorption capacity 

for acid dyes 

Requires long retention 

times 

Peat 
Good adsorbent due to 

cellular structure 

Specific surface areas 

for adsorption are lower 

than activated carbon 

Membrane filtration 

Removes all dye types 

 

Concentrated sludge 

production 

Electrokinetic 

coagulation 
Economically feasible High sludge production 

     Chemical methods 
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Fenton’s reagent 

Effective decolorization of 

both soluble and insoluble 

dyes 

Sludge generation 

 

Ozonation 
Applied in gaseous state: 

no alteration of volume 

Short half-life 

 

NaOCl 
Initiates and accelerates 

azo-bond cleavage 

Release of aromatic 

amines 

 

Ion exchange 
Regeneration: no 

adsorbent loss 

Not effective for all 

dyes 

 

Irradiation 
Effective oxidation at lab 

scale 

Requires a lot of 

dissolved O2 

 

1.4 Bioremediation/biodegradation 

Biological treatment is considered as the most economical alternative 

compared to the physical and chemical techniques (Archna et al. 2013). The process 

by which pollutants are removed from the environment using biological methods, 

which exploits the metabolic potential of microorganisms to break down a wide range 

of compounds, is called as bioremediation or biodegradation process (Rauf & Salman 

2012). The use of bioremediation processes for the removal of toxic compounds from 

water bodies is gaining considerable attention, and it is counted as a huge hope for a 

cleaner and healthier environment. Biodegradation of recalcitrant compounds relies on 

the presence of the biotransformation enzymes thus they are capable of degrading 

various types of pollutants (Rauf & Salman 2012; Saratale et al. 2011; Schückel et al. 

2011). Several biotechnological techniques have attracted attention regarding the 

treatment of organic pollutants in an eco-efficient way, usually with the use of bacteria 

or in integration with physicochemical methods. Organic pollutants are xenobiotic 
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present in nature and recalcitrant to degradation. Thus, the use of microbial treatment 

process for complete degradation of organic pollutants from wastewater has various 

advantages such as being environment-friendly, cost-competitive, producing less 

sludge, forming non-toxic end products, as well as less water consuming  (Saratale et 

al. 2011). The bioremediation methods can also be performed with a lower 

concentration of contaminants compared to the physical and chemical techniques, 

which would not be feasible. 

The efficiency of microbial degradation is based on the adaptability and 

activity of microorganisms. Accordingly, many microorganisms have been tested for 

their ability in degrading and mineralising various organic pollutants in recent years 

(Pandey et al. 2007). Isolating the potent microorganisms and testing their degradation 

is one of the commonly biological aspects of wastewater treatment (Chen et al. 2008). 

A wide range of microorganisms are efficient in degrading wide variety of organic 

pollutants including bacteria (Saratale et al. 2017; Dawkar et al. 2008; Jadhav et al. 

2007; Telke et al. 2008; Tripathi & Srivastava 2011), fungi (Table 3) (Fournier et al. 

2004; Saratale et al. 2006), plants (phytoremediation) (Aubert & Schwitzgue 2004; 

Kagalkar et al. 2009), yeasts (Jadhav et al. 2007; Lucas et al. 2006; Saratale et al. 2017) 

actinomycetes (Machado et al. 2006), and algae (Acuner & Dilek 2004; Daneshvar et 

al. 2007; Gupta et al. 2006; Yan & Pan 2004). It has been reported that these species 

are also able to mineralize various organic pollutants under certain environmental 

conditions completely. 

Many factors might affect microorganisms to use organic pollutants as 

substrates or metabolising them. Thus, it is important to understand catabolic 

pathways, mechanisms, and responsible enzymes to identify important factors for 
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effective removal of organic pollutants. A number of researches have been conducted 

to understand bioremediation process for various environmental pollutants like 

aromatic compounds that are considered as the most widespread and persistent 

environmental pollutants (Seo et al. 2009). 

Table 3: Microbial method (bacterial & fungal) of organic pollutants degradation 

(Archna et al. 2013) 

 

1.4.1 Bacterial degradation of organic pollutants 

Generally, the degradation of organic pollutants (for example dyes) may occurs 

the condition of anaerobic and aerobic by different groups of bacteria. Several current 

studies emphasis on the use of microbial biocatalysts to eliminate dye from the effluent 

(Chang et al. 2004). Wide-range studies have been done to define the role of varied 

groups of bacteria in the degradation of azo dyes (Pandey et al. 2007). The bacterial 

decolorization of these dyes has been of significant interest since it can attain an 
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advanced degree of biodegradation and mineralization, is appropriate to a wide range 

of azo dyes, is low cost and eco-friendly, and produces less sludge (Khehra et al. 2006; 

Saratale et al. 2014). 

1.4.1.1 Enzyme system involved in bacterial degradation  

The bacterial degradation of aromatic pollutants (e.g. azo dyes) is mainly 

required the involvement of various oxidoreductive enzymes, like tyrosinase, DCIP 

reductase, lignin peroxidase, laccase, manganese peroxidase, veratryl alcohol oxidase, 

amino pyrine N-demethylase, and azo reductase. These oxidoreductase enzymes 

working on transferring electrons from a substrate to an acceptor (azo dye) (Fu & 

Viraraghavan 2001; Kaushik & Malik 2009; Zille et al. 2005; Souza et al. 2007; Joshi 

et al. 2010; Kurade et al. 2011). According to earlier studies, it has been noticed that 

initial reduction of azo group done by reductive enzymes, such as NADH-DCIP 

reductase, azo reductase, and the produced intermediates are mineralized by oxidative 

enzymes. Generally, azo dyes are poor electron compounds due to the existence of the 

azo group (-N=N-) and other electron withdrawing groups, like sulphonic (SO3
-) group 

in the azo dyes (Karigar & Rao 2011). 

1.4.1.2 Mechanisms of dye degradation by bacteria  

As reviewed above, bioremediation using bacterial degradation system shows 

an efficient degradation of a wide range of organic pollutants. Interestingly, different 

bacterial species were extensively used to degrade various classes of dyes. However, 

very few published studies have proposed the exact mechanism of dye degradation 

using bacteria. For example, in the case of azo dyes, almost all the microbial 

degradation involves azo bonds (–N=N–) cleavage (Pandey et al. 2007). It was 
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proposed that this cleavage is mediated by various mechanisms, such as low molecular 

weight redox mediators and chemical reduction by biogenic resultants like sulphide. 

However, most recent studies reported that oxidoreductase enzymes, such as of 

peroxidase, laccase, tyrosinase, and reductase are the main factor in this process 

(Karigar & Rao 2011). 

Generally, the cleavage of azo bonds (–N=N–) is mediated by azoreductase 

enzyme under anaerobic conditions that involve the transformation of four electrons. 

These electrons were further transferred to the azo dye, which is considered as the final 

electron acceptor leading to the formation of colourless intermediates (Khehra et al. 

2005). These intermediates will be further degraded by these enzymes either 

aerobically or anaerobically (Chang et al. 2004). The decolorization of azo dyes under 

anaerobic conditions is considered as a non-specific and simple process (Pandey et al. 

2007). Interestingly, it has been suggested that the effectiveness of anaerobic 

conditions is mainly because it has low redox potential (50 mV) and the  absence of 

the oxygen facilitate electron transformation (Bromley-Challenor et al. 2000).  

Alternatively, nonspecific extracellular reactions that occur between reduced 

compounds, which produced by the anaerobic biomass, might lead to the 

degradation(Saratale et al. 2011).  

On the other hand, aerobic treatment of azo dye found to be less efficient 

compared to anaerobic degradation in which these aerobic microbes lack the ability to 

reduce azo dye linkages. However, several bacterial strains found to be able to 

decolourize azo dyes successfully (Pandey et al. 2007). Although these strains require 

other organic carbon sources as they cannot utilise dye as the growth substrate (Stolz, 

2001), there are very few strain that can use azo compounds as a source of carbon, 
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such as Xenophilus azovorans KF 46 (previously Pseudomonas sp. KF46) and 

Pigmentiphaga kullae K24 (previously Pseudomonas sp. K24). These strains cleave 

azo bonds reductively and use amines as the source of carbon and energy for their 

growth. It has been found that these microbes require azoreductase, as well as, a 

specific transport system that allow dye uptake (Russ et al. 2000). 

1.5 Factors affecting bacterial degradation of aromatic dyes  

The degradation of aromatic pollutants by bacteria is very sensitive to the 

difference in physico-chemical operational factors, such as pH, temperature, structure 

and concentration of organic pollutant, supplementation of different carbon and 

nitrogen sources, electron donor, redox mediators, aeration and agitation (Rauf & 

Salman 2012). Consequently, adapted bacteria, isolated from organic contaminated 

sites, are very effective in degradation process because of their adaption to various 

extreme environmental condition. Optimization of such abiotic conditions will help in 

the improvement of industrial scale bioreactors for bioremediation treatment. 

Following factors affecting the aromatic pollutants degradation by bacteria have been 

explained in detail (Pearce 2003a). 

1.5.1 Oxygen  

It is well-known that oxygen has a significant effect on the microbial 

degradation. It plays an important role in cell growth where it influences the 

physiological characteristics of the cells. On the other hand, it might influence the 

process of dye reduction where excess oxygen may inhibit this process. This is because 

it can act as electron acceptor in which it will reduce to water rather than azo dye 

(Adrian 2001). Furthermore, some of the intermediates produced, such as the 



18 

 

 

 

 

hydrazine form of the dye and azo anion free radical form of the dye, can be easily 

reoxidized by oxygen. Additionally, in the case of anaerobic bacteria, oxygen is 

considered toxic as it might directly inhibit azoreductase enzyme (Pearce 2003b). For 

instance, a study studied have tested the ability of Escherichia coli to decolorize 100 

mg/l Reactive Red 22 dye under aerobic conditions, and they found that the bacterial 

degradation was significantly inhibited due to the dissolved oxygen level (Işik & 

Sponza 2003). In anaerobic conditions, the azo bond will be cleaved, but no further 

degradation will be observed where aerobic conditions are required for efficient 

degradation of the reactive azo dye molecule. This is mainly because that 

hydroxylation and ring-opening processes require the presence of oxygen. 

Consequently, the most effective treatment is found to be a two-stage process in which 

oxygen is introduced after the initial anaerobic reduction of the azo bond has taken 

place (Pandey et al. 2007).  

1.5.2 pH  

Often, the optimum pH for aromatic dye degradation is at neutral pH values (6 

– 9) or at pH value of slight alkaline and the rate of aromatic dye decrease quickly at 

strongly acid or strongly alkaline pH values. As a result, the colored wastewater is 

often buffered to enhance the color removal performance of the cell culture (Chen et 

al. 2017; Kilic et al. 2007; Guo et al. 2007). Microbial reduction of azo bond cause an 

increase in the pH value because of the formation of aromatic amine metabolites, 

which have a basic pH more than the original azo compound. Changing the pH 

condition within a range of ~7.0 to 9.5 has shown a very slight effect on the dye 

reduction method. Previous studies have reported that the dye degradation rate raised 

nearly 2.5-fold as the pH was increased from value 5.0 to 7.0, while within pH values 
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of 7.0–9.5, no significant change was noticed on the rate of dye degradation (Chang et 

al. 2001).  

1.5.3 Dye concentration  

Scientific investigations discussed the presence of inverse relationship between 

the dye concentration and the decolorization rate. Results have shown that as the dye 

concentration increases the decolorization rate decreases. This may attributed to 

several reasons such that the increase in dye concentration may lead to a deleterious 

effects in bacteria, insufficient biomass concentration and the disturbance of 

azoreductase active sites by the dye particles with various structures (Chang 2014; 

Devassy et al. 2009; Jadhav et al. 2008). Parallel outcomes were noticed in the bacterial 

decolorization of different reactive azo dyes  (Saratale et al. 2009; Kalyani et al. 2009). 

In addition, those azo dyes characterized by the presence of sulfonic acid groups 

(SO3H) on their aromatic rings significantly led to the disruption of microorganisms 

growth at higher dye concentration (Chen et al. 2017; Kalyani et al. 2009). However, 

Saratale et al., (2009) revealed that using bacterial co-culture as an alternative to a pure 

culture led to a reduction in the increasing concentration associated effect and this may 

attributed to the synergistic effect of both microorganisms. Furthermore, other studies 

have proved the insensitivity of dye concentration on the decolorization rate. For 

example, a study on the reduction of food azo dyes in cultures of Proteus vulgaris have 

reported the absence of any effect of dye concentration on the decolorization rate 

(Pearce 2003a). This observation is well-matched with the mechanism of non-

enzymatic reduction which is regulated by processes that doesn’t depend on the dye 

concentration (Chang & Kuo 2000; Pearce 2003b; Telke et al. 2008).  
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1.5.4 Temperature  

Temperature is a significant environmental factor for all processes associated 

with microbial vitality, including the biodegradation organic pollutants by bacteria.  

Bacteria are able to adapt changes in the environmental temperature via biochemical 

or enzymatic mechanisms (Chang & Kuo 2000; Santos et al. 2007). It was detected 

that maximum rate of bacterial decolorization tends to be at optimum temperature 

required for cell culture growth, reproduction and enzyme activities. Consequently, 

the deduction in the rate of the bacterial degradation can be found because of the loss 

of cell viability, reduction in reproduction, and denaturation of enzymes which are 

responsible for degradation (e.g. azo reductase enzyme) (Solís et al. 2012; Saratale et 

al. 2011).  However, it has been detected that with some whole bacterial cells, the azo 

reductase enzyme is relatively thermostable and can stay active up to temperatures of 

60 ◦C, over short time. In many systems, results have shown that optimum temperature 

for bacterial decolorization of aromatic dyes occur at a range of 25 ± 2 ◦C (Pearce 

2003b). 

1.6 Examples of bacterial degradation of selected organic environmental 

contaminants 

1.6.1 Polycyclic aromatic hydrocarbons (PAHs)  

In general, microbial degradation of organic compounds, like PAHs, can be 

divided into groups according to whether microorganisms gain energy from the 

degradation processes or not. Biodegradation process is a growth associated procedure 

where chemoorganotrophic microorganisms convert part of the carbon atoms in the 

organic substrate into their cell constituents, while another part of the carbon atoms 

are degraded to produce energy (Seo et al. 2009). It is reported that PAH with low 
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molecular mass (less than three benzene rings) are easily degraded by various aerobic 

chemoorganotrophic bacteria. On the other hand, only limited number of bacterial 

species were able to degrade PAHs with high molecular mass (four or more benzene 

rings) such as Mycobacterium spp. or Sphingomonas spp. (Samanta et al. 2002). 

1.6.1.1 Degradation pathways of Naphthalene by Comamonas testosteroni 

Naphthalene is commonly used as a model compound to examine the ability of 

various microorganisms to degrade PAHs, due to its simplicity and solubility among 

PAHs (Mollea et al. 2005). As a result, to understand the pathways of degrading three- 

or more ring of PAHs by bacteria, numerous studies of bacterial degradation were 

carried out on naphthalene. Many isolated bacteria showed efficient degradation on 

naphthalene (used naphthalene as a source of carbon and energy), such as Alcaligenes, 

Burkholderia, Mycobacterium, Polaromonas, Pseudomonas, Ralstonia, Rhodococcus, 

Sphingomonas, and Streptomyces. Scheme 1 summarizes the pathways of naphthalene 

degradation by bacteria (Pumphrey et al. 2017; Baird et al. 2002; Seo et al. 2009).  

1.6.1.2 Bacterial degradation of polychlorinated phenols 

Chlorinated phenols are widely released in the environment because of their 

extensive use as dyes synthesis, pesticides in agriculture and pharmaceuticals. The first 

known antiseptic compound was phenol, a subsequent developments were done to 

obtain a higher antimicrobial activity and acidity than phenol compounds which 

known currently as polychlorinated phenols (Bae et al. 2017). Chlorophenols, 

particularly the fully substituted pentachlorophenol (PCP), are used as preservatives 

for timber and textiles towards fungal rot and damage by insects. The toxic nature of 

PCP is based on its ability to uncouple oxidative phosphorylation and to alter the 
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electrical conductivity of cell membranes (Kurola 2006). Due to release, accidents and 

spills during the production and application of chlorophenols pollution by PCP has 

been reported in air, water, soil and sediments. For example, in Finland the widespread 

use of PCP containing wood preservative had led to contamination of soil around 

nearly 800 former saw mill sites. Even though PCP is toxic to microbes, variety of 

bacteria and fungi has been isolated with an ability to mineralize PCP. Both Gram-

positive and Gram-negative bacteria capable of degrading PCP has been described, 

species of Alcaligenes, Pseudomonas, Mycobacterium, Sphingomonas and 

Streptomyces representing the most commonly reported taxa (Seo et al. 2009). 
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Scheme 1: Proposed catabolic pathways of naphthalene by Comamonas testosterone 

(Seo et al. 2009) 

 

 

 



24 

 

 

 

 

1.6.2 Degradation of antibiotics by various isolated bacteria  

The antibiotics in the environment are generally released from various sources, 

which include effluent from manufacturing plants of pharmaceutical and facilities 

treating wastewater collected from hospitals, sewage, and veterinary clinics 

(Karthikeyan & Meyer 2006).  The release of antibiotics in the environment generally 

gets accumulated in the ground and surface water. It has been observed by varied 

researchers that antibiotics exhibits biodegradable characteristics on making 

alterations in certain conditions (Drillia et al. 2005; Gartiser et al. 2007). 

Two antibiotics ciprofloxacin, which is particularly effective against gram 

negative bacteria, and erythromycin, which shows an effective results against gram 

positive bacteria, were used to test the ability of bacterial degradation (Nnenna et al. 

2011). Various reports have indicated that these antibiotics usually found in 

wastewater treatment facilities (Karthikeyan & Meyer 2006) The biodegradation tests 

using various bacterial isolates, such as Micrococcus sp., Bacillus sp., Pseudomonas 

sp., and Shigella sp., showed that biodegradation of the selected antibiotics was 

achieved. Besides, the study showed that variation in pH had no significant effect on 

the biodegradation of the antibiotics. Thus, pH consider as unimportant factor 

compared to the other parameters (e.g. moisture, oxygen, absence of alternative 

sources of carbon and nitrogen) which have been proved to be essential for an effective 

biodegradation of antibiotics to take place (Nnenna et al. 2011). 

1.6.3 Plastics degradation by various common isolated bacteria   

Interestingly, some of the famous bacteria exposed their ability to degrade 

plastic polymers into their respective simple monomeric (Ghosh et al. 2013). Among 
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them, Pseudomonas is dominant, since several studies have reported its ability in 

degrading polyvinyl chloride (PVC), polythene, poly (3-hydroxybutyrate-co-3-

mercaptopropionate), and poly (3-droxypropionate). However, Bacillus brevis was 

capable of degrading only polycaprolactone whereas Streptomyces have degraded 

PHB, poly (3-hydoxybutyarate-co-3-hydroxyvalerate), and starch or polyester. It has 

been stated that 39 bacterial isolates of the classes Proteobacteria and Firmicutes were 

able to degrade various types of plastics such as polyhydroxybutyrate (PHB), 

polycaprolactone (PCL), and polybutylene succinate (PBS) ( Shimao M., 2001). Other 

bacterial species recognized having the ability of degrading plastics 

were Bacillus sp., Staphylococcus sp., Streptococcus sp., Diplococcus sp., Micrococc

us sp., Pseudomonas sp., and Moraxella sp. (Kumar et al. 2007). 

1.6.4 Decolorization of various azo dyes by bacteria  

 Various number of new processes has been developed for decolorization of 

azo dye. The decolorization of azo dyes using microbes is one of the best strategies, as 

this process involves biodegradation of azo dyes and thus, it is an environmentally 

friendly process. (Pandey et al. 2007). Recently, number of diverse bacteria have 

exhibited the ability to reduce azo dyes in both aerobic and anaerobic conditions. The 

obligate anaerobes that includes Eubacterium sp and Clostridium sp facultative 

anaerobes, which includes Escherichia coli, Enterobacter agglomerans, and Bacillus 

cereus; and several aerobes such as Pseudomonas aeruginosa are also found to possess 

the ability to reduce azo dyes in both aerobic and anaerobic conditions (Saratale et al., 

2011). Two different mechanisms can be summarised for bacterial decolorization of 

azo dye. In the presence of azo compounds, aerobic bacteria are required to be 

acclimatised for an extended duration for inducing azoreductase expression as they 
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generally exhibit a high particularity to structures of dyes. On the contrary, 

decolorization completed with the use of anaerobic process is generally not specific, 

and the efficiency of anaerobic dye removal is far better in comparison to 

decolorization conducted under aerobic process. The result of these researches 

indicates that the decolorization of large range of wastewater azo dyes can be carried 

out more effectively under anaerobic process (Adrian 2001). 

1.6.4.1 Removal of navy blue using an isolated bacterial strain Bacillus pumilus 

HKG212  

Among the various azo dyes, Remazol Navy Blue (RNB), an extensively used 

azo dye in textile industries was reported to be decolorized by microbial 

degradation.(Saratale et al. 2017) .A recent study showed that Bacillus pumilus 

HKG212, a bacteria isolated from textile industry effluent waste water, is capable to 

degrade the textile azo dye, Remazol Navy Blue effectively. The optimal conditions 

for the decolorizing activity of Bacillus pumilus HKG212 were anaerobic culture 

environment with beef extract as nitrogen source supplementation, at pH 8.0, and 30 

°C. Bacillus pumilus HKG212 showed decolorizing activity through a degradation 

mechanism rather than adsorption and it could tolerate high concentrations (up to 1500 

mg L−1) of RNB dye. Different analytical techniques like spectrophotometric, HPLC 

and FTIR analysis confirmed the degradation of azo bond of the dye RNB by the 

isolated bacterial strain (Das et al. 2016). 
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1.7 Objectives 

The main objectives of the current work are summarized below: 

1- Isolate and purify 12 different bacteria from petroleum sludge capable of 

degrading organic pollutants. 

2- Study the ability of the bacterial isolates from petroleum sludge in degrading 

various azo dyes.  

3- Identify the most potent bacteria that could degrade a wide-range of organic 

pollutants using 16S rRNA.  

4- Develop a sensitive and fast LC-MSMS method for analyzing nine different 

emerging pollutants, 

5- Examine the ability of the isolated bacterial isolate for degrading these 10 

emerging pollutants. 
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Chapter 2: Materials and Methods 

 

2.1 Chemicals and organic pollutants 

All the chemicals and reagents used were of the highest purity and of analytical 

grade and were obtained from Sigma-Aldrich (USA). Toluidine Blue, Amido Black, 

Crystal Ponceau 6R, Trypan Blue, Methyl Blue, Orange G, Acid Red 40, Reactive 

Black 5 and Ponceau BS were obtained from Sigma-Aldrich (USA). Eriochrome Black 

T, Thiazole Yellow G, Naphthol Green B and Congo Red were purchased from Fluka 

chemical and Malachite Green from BDH. Drimarene Red CL 4BN was obtained from 

Clariant chemicals.  The chemical structures, dye class and the λmax (maximum 

absorbance wavelength) of all dyes are listed in Table 4. All the culture media, nutrient 

broth and nutrient agar used were obtained from Sigma-Aldrich (USA). Nutrient Broth 

composition (Sigma-Aldrich) was as follows: 1 g/L D (+)-glucose, 15 g/L peptone, 6 

g/L sodium chloride, 3 g/L yeast extract, 3 g/L, final pH 7.5 ± 0.2. All organic solvents 

(HPLC grade acetonitrile and methanol) were from Fisher Scientific (UK). LC-MS 

grade of acetonitrile, methanol, ammonium formate and formic acid were obtained 

from Sigma-Aldrich (USA). 

2.2 Microorganisms and growth conditions 

The bacterial strains were initially isolated from petroleum sludge, as described 

in the previous study (Ali et al. 2014) . However, for the current work, they were re-

isolated and re-purified by multiple rounds of streaking. Isolation of bacteria was 

carried out by using the standard procedures using Nutrient Agar (NA) containing 1g/L 

D (+)-glucose, 15 g/L peptone, 6 g/L sodium chloride, 3 g/L yeast extract, 3 g/L, final 

pH 7.5 ± 0.2. The isolates were cultured and grown in a shaker-incubator at 37 °C. 
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2.3 Isolation and screening and identification of dye decolorizing strain 

Pour plate technique was used for the isolation of the selected dye decolorizing 

bacteria. Well grown bacterial colonies were picked and further purified by streaking. 

The isolated strains were frozen in 20% glycerol at -80 oC and grown and maintained 

in Nutrient Broth at 4°C for no more than 1 week. Identification of the bacterial isolates 

was carried out using partial 16S rRNA sequencing of the crude DNA on a 3500 

Genetic Analyzer by Macrogen sequencing services (South Korea). The phylogenetic 

analyses were performed using the online site http://www.phylogeny.fr which 

produced the phylogenetic tree. 

2.4 Dye degradation 

A loopful of bacteria culture from glycerol stock was inoculated in a 50 mL 

sterile tube containing 15 ml nutrient broth and incubated at 37°C under shaking 

condition (200 rpm) for 24 h. For sampling, all dyes from stock solution (2000 ppm) 

were sterilized by filtering through 0.45 μm nylon filter, before being added at 20 ppm 

in 15 mL nutrient broth and 0.15 mL freshly grown (overnight) bacterial culture, 

incubated for 24 h while shaking. One ml of sample was withdrawn at different time 

intervals and each time it was centrifuged at 13,000 rpm for 10 minutes to separate the 

bacterial cell mass. Decolorization of dye was determined by measuring the 

absorbance of the cleared supernatant at the absorbance maxima of the respective dyes. 

All experiments were performed in triplicates. Nitrogen purging (blowing nitrogen gas 

over the surface of the culture to displace the air and immediately tightly closing the 

tube cap) followed by static incubation were used to obtain anaerobic conditions in the 

experiments. Percentage of decolorization was calculated as follows: 
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% decolorization =  
𝐴0 − 𝐴𝑡 

𝐴0
 × 100 

Where A0 is the initial absorbance and At is the final absorbance value.  

2.5 Optimization 

The effect of pH, concentration and carbon sources were studied and optimized 

using the standard “one parameter at a time” approach. For the pH optimization study, 

the decolorization of dye was observed in buffered Nutrient Broth media at pH values 

of 3, 5, 7, and 9 (after 24 hours of incubation with the bacterial strain). For the dye 

concentration experiments, Nutrient Broth (pH 7) containing increasing concentrations 

(20, 100, 200, 400, 800 and 1000 ppm) of dyes was used. The effect of carbon and 

nitrogen sources was examined by using different nutrient media such as Lysogeny 

Broth (LB). Nutrient Broth-E (NB-E), Nutrient Broth-2 (NB-2), 2xYT, Yeast Extract, 

Tryptone, and Peptone. All measurements were made by measuring the dye 

decolorization after 24 hours of bacterial strain incubation, and the experiments were 

carried out in triplicates. 
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Table 4: Classification of dyes and their structures 
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2.6 HPLC and LCMS analyses 

The chromatographic experiments using HPLC–MS/MS system were carried 

out on 1260 Infinity HPLC and 6420 LC/MS (Agilent, USA) coupled with a solvent 

gradient pump and an automatic injector.  The dye degradation products were 

separated using Agilent Zorbax SB-C18 column 150 mm × 4.6 mm packed with 5 μm 

particle size. The detection system was a diode array detector (Agilent, USA) with 

detection range between 200 and 780 nm. The signal acquired from the detector was 

recorded by HP Chemstation software. The mobile phase consisted of two solutions 

namely A and B. Solution A was made from 0.1 M ammonium formate (pH 6.7), 

whereas solution B was made from a mixture of acetonitrile + methanol (1:1). The 

gradient elution was from 0% to 80% in 40 min; the flow rate was 1 mL min−1 and the 

injection volume was 100 μL. The total run time was changed to 21 minutes for LCMS 

runs for some later samples to make the runs shorter and the analyses faster, but this 

did not change the resolution or area under the peaks of the emerging pollutants.  

The mass spectrometer was equipped with an electrospray ionization (ESI) 

source and operated in positive polarity. The ESI conditions were as follows: capillary 

voltage: 3.5 kV, endplate offset was fixed at 500 V; skimmer at 40 V; trap drive at 53 

V; the nebulizer pressure was 483 kPa; drying gas flow was 12 L min−1 and drying 

temperature was 350 °C. The mass range was from 50 to 700 Da. Tandem MS 

experiment was done using the Auto MSn mode wherein Helium gas was used as a 

collision gas. 
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Chapter 3: Results and Discussion 

 

3.1 Dye degradation 

As mentioned in the objectives, one of the main goals of the present work was 

to isolate a novel bacterial strain that would be capable of efficiently degrading various 

emerging pollutants. In order to rapidly identify the possible pollutant-degrading 

isolates, we tested the abilities of our 12 bacterial isolates to degrade 4 diverse classes 

of aromatic dyes under aerobic condition. 

Figure 5 & 6 shows the degradation of Ponceau BS as well as Malachite green, 

respectively, by the 12 bacterial isolates. The results show that after just one day of 

incubation, strains MA1 and MA10, and day six, 7 out of 12 bacterial strains were 

capable of degrading Ponceau BS effectively under gentle shaking at 37 oC. Similarly, 

most of the strains started to show Malachite Green degradation after one day, and 

most dramatically by day 3 and 6. However, the results looked very different than that 

observed for Ponceau BS, as all the strains (except MA1) showed an efficient 

decolorization of Malachite Green. These 12 strains were also tested on 2 additional 

dyes, namely Congo Red and Toluidine Blue, and the initial screening results for these 

4 dyes are summarized in Table 5. All dyes showed reasonable degradation when 

exposed to various bacterial strains, while Congo Red showed the poorest degradation 

the 12 bacterial isolates. Based on the results from this initial screening, isolates MA1, 

MA3, MA6 and MA12 showed most promising results in degrading various classes of 

dyes and were chosen for further study. 
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Figure 5: Aerobic bacterial degradation of Ponceau BS 

 

Figure 6: Aerobic bacterial degradation of Malachite Green 
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Table 5: Aerobic degradation of 4 dyes by all twelve bacterial strains 

 

Although the dye-decoloration abilities of these strains were measured to help 

with the selection of specific strains for the degradation of emerging pollutants, 

nevertheless, these strains can also be used for treating dye-contaminated textile 

industrial effluents. In fact, many other groups have identified and published on dye-

decolorizing bacteria. For example, Jadhav and Kagalkar have isolated Galactomyces 

geotrichum and Bacillus sp. strain of bacteria that could efficiently degrade Brilliant 

Blue G dye (Jadhav et al. 2008). In addition, by a newly isolated Brevibacterium sp. 

strain VN-15 have been found to degrade reactive sulfonated azo dyes effectively 

(Franciscon et al. 2012).   

3.2 16S rRNA-based identification of the isolate 

In order to identify the species and possible genus of the bacterial isolates as 

well as to see how these 12 isolates were related to each other, 16S rRNA gene 

sequencing was carried out.  The sequencing data showed that based on 16S rRNA 

analysis, the 12 bacterial strains belonged to two different bacterial species: Bacillus 

Time 

(days)
MA 1 MA 2 MA 3 MA 4 MA 5 MA 6 MA 7 MA 8 MA 9 MA 10 MA 11 MA 12

1 *** - - - - - - - - *** - *
3 *** - * * * * - - * *** - ***
6 *** ** ** * ** * * - * *** * ***

1 - * * * * * ** *** *** * ** **

3 - ** ** ** ** ** ** *** ** * ** ***
6 - ** ** ** ** *** ** *** ** ** ** ***

1 ** - * - *** * - - - * - -

3 ** - * - *** * - - - * - -
6 ** - * - *** * - - - * - -
1 * - * - - - - - - - - *
3 * - * - - - - - - * - *
6 * - * * * * * * * * * *

Toudine 

Blue 

Ponceau BS 

Malachite 

Green 

Congo Red 

MA: Bacterial strains, (-) 0-20%,(*) 21-40%, (**) 41-75%, (***) 76-100%,
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cereus (MA1), and Pseudomonas guariconensis (MA2 - MA12). Table 6 shows the 

individual bacterial strains, species name, the accession number of the closest 

GenBank match, and their identity (based on 16S rRNA sequence similarity to 

published sequences). The phylogenetic tree of these twelve strains is also shown in 

Figures 7-18. There were slight changes in the position of the isolted strains, as shown 

in their phylogenic tree (Figure 7-18), which are slightly defictual amd this may due 

to the program used by Macrogen. However, the main point of the 16S rRNA results, 

as described previously, were that MA1 seems to belong to Bacillus cereus while MA2 

– MA12 seems to belong to Pseudomonas guariconensis. 

Although MA2 to MA12 strains showed they were identical, based on the 

closest match GenBank sequence (Table 6), as well as their phylogenetic trees (Figures 

7-18), the dye degradation data (Table 5) showed that they are not identical, as some 

of them show very different dye remediation profiles. Perhaps, the 16S rRNA analysis 

is not able to detect small minor differences in other parts of these bacterial genomes. 

This seems to be indicated in Figure 19, where only the forward sequences of these 12 

strains are analyzed and displayed in a phylogenetic tree. We noticed a relative 

difference in the phylogenetic tree of the 12 isolated bacterial strains (Figure 19), this 

is might be due to the use of forward primer (partial sequence) instead of using the 

whole sequence.   

Moreover, it is interesting to note that of the two species of bacterial strains 

that we have been isolated from petroleum sludge, one (Bacillus cereus) has been 

previously shown to be able to degrade various classes of organic pollutants. These 

studies have showed that the isolated Bacillus cereus was capable of degrading and 

detoxifying red, green, black, and yellow textile dyes as well as various aromatic 

compounds like phenol (Mahmood et al. 2015).  Surprisingly, we were not able to find 
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any published references where Pseudomonas guariconensis or related bacteria could 

be used for dye degradation or other organic pollutant degradation. This is a very 

interesting observation that perhaps could be further explored in a separate project. 
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 Table 6: Bacterial strain identification using 16S rRNA sequencing 

 

Bacterial 

Isolate 

Identities Species name 

Match/Total Percentage (%) 

MA 1 1490/1494 99 Bacillus cereus 

NR_115714.1 

MA 2 1467/1474 99 Pseudomonas guariconensis 

HF674459.1 

MA 3 1486/1498 99 Pseudomonas guariconensis 

HF674459.1 

MA 4 1470/1479 99 Pseudomonas guariconensis 

HF674459.1 

MA 5 1473/1483 99 Pseudomonas guariconensis 

HF674459.1 

MA 6 1456/1465 99 Pseudomonas guariconensis 

HF674459.1 

MA 7 1476/1486 99 Pseudomonas guariconensis 

HF674459.1 

MA 8 1472/1481 99 Pseudomonas guariconensis 

HF674459.1 

MA 9 1466/1474 99 Pseudomonas guariconensis 

HF674459.1 

MA 10 1472/1481 99 Pseudomonas guariconensis 

HF674459.1 

MA 11 1471/1480 99 Pseudomonas guariconensis 

HF674459.1 

MA 12 1468/1477 99 Pseudomonas guariconensis 

HF674459.1 



43 

 

 

 

 

 

Figure 7: Phylogenetic tree of MA1 strain 

  

 

Figure 8: Phylogenetic tree of MA2 strain 
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Figure 9: Phylogenetic tree of MA3 strain 

 

  

Figure 10: Phylogenetic tree of MA4 strain 
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Figure 11: Phylogenetic tree of MA5 strain 

 

 

Figure 12:  Phylogenetic tree of MA6 strain  
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Figure 13:  Phylogenetic tree of MA7 strain  

 

 

Figure 14: Phylogenetic tree of MA8 strain  
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Figure 15: Phylogenetic tree of MA9 strain  

 

 
 

Figure 16: Phylogenetic tree of MA10 strain 
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Figure 17: Phylogenetic tree of MA11 strain 

 

 

Figure 18: Phylogenetic tree of MA12 strain 
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Figure 19: Phylogenetic tree of the 12 isolated bacterial strains based on 16S RNA 

partial sequences (using the forward primer) 
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Based on the dye degradation profiles (Table 5) as well as the phylogenetic 

analysis using partial 16S rRNA sequencing (forward primer sequencing only), we 

decided to choose the four most distinct bacterial isolates for further screening. 

Therefore, additional experiments were carried out with additional dyes (12 

dyes) with the four selected strains (MA1, MA3, MA6 and MA12) under aerobic 

conditions. These experiments were carried out in 2 mL deep 96-well blocks and the 

results are shown in Figure 20. Based on this secondary screening, one can notice that 

MA1 showed a very rapid and an efficient degradation of many diverse dyes as 

compared to the other selected strains. Impressively, MA1 was capable of degrading 

7 dyes out of the 12 tested dyes. The other three strains, MA3, MA6 and MA12 showed 

almost similar degradation results for all the 12 dyes (able to degrade Reactive Black 

5, Malachite Green and CP6R dyes). Based on this second screening, MA1 strain was 

chosen for further analysis as it showed to be the most effective strain for the efficient 

decolorization of many dyes. 

The ability of MA1 to effectively degrade organic pollutants was further 

examined by a testing it on a wide range of aromatic dyes. Figure 21 shows the 

degradation of 24 structurally diverse aromatic dyes by the bacterial isolate MA1 under 

aerobic condition. The results showed that MA1 was able to degrade almost half of the 

selected dyes within 3 days, such as Acid Red 40, Acid Fuchsin, Crystal Ponceau 6R 

(CP6R), Drimarene Red CL 4BN, Light Green SF, Methyl Blue, Methyl Orange, 

Ponceau BS, Reactive Black 5 and Toludine Blue. Out of these dyes, 4 of them (CP6R, 

Methyl Orange, Ponceau BS and Toludine Blue) were chosen to further characterize 

and optimize the bioremediation ability of MA1. These specific dyes were chosen as 

they showed rapid and more than 75% decolorization within 3 days of incubation with 

MA1. 
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Figure 20: Aerobic degradation of 12 dyes by four bacterial strains 
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Figure 21: Aerobic degradation of 24 dyes by MA1 strains 
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3.3 Effect of physicochemical parameters on the decolorization performance 

3.3.1 Effect of aerobic and anaerobic condition 

Several studies have showed that bacterial degradation is better under aerobic 

and shaking conditions (Alhassani et al. 2007). Besides, aeration condition has a 

tremendous influence on dye decolorization capacity of the bacterial strain (Das et al. 

2016). In order to examine this on the isolate (MA1), a study was done with the 

selected 4 dyes, which showed different profiles and were efficiently degraded by 

MA1 strain, under aerobic and anaerobic conditions. After incubating the dye in the 

culture medium for 48 hrs, MA1 showed >75% decolorization of Methyl Orange and 

Ponceau BS dyes at anaerobic condition which was similar (> 82%) under aerobic 

environment (Figure 22 & 23). Interestingly, Toluidine Blue showed much better 

degradation under aerobic condition (67 %), while it reduced to 4.5% under anaerobic 

environment. Taken together, it appears that these three dyes were more efficiently 

degraded under aerobic conditions when the contents were agitated as compared to 

anaerobic (static) condition. This indicates that when the contents are shaken, the 

dissolved oxygen content in the sample increased thereby increasing the % degradation 

of the dye solution. 

On the other hand, for Crystal Ponceau 6R (CP6R), it appeared that this dye 

was better degraded by MA1 under anaerobic conditions (~ 56%) than aerobic 

conditions (~ 25%). This is similar to some published bacterial decolorization studies, 

where maximum decolorization was obtained under anaerobic condition (Chen, 

Chang, & Liu, 2015). This result implies that the isolated bacterial strain (MA1) was 

also able to grow in the lack of oxygen and that some dyes and compounds (like CP6R 

dye) could be better degraded under anaerobic conditions. It is known that under 
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anaerobic conditions azo dyes can act as electron acceptors and take electrons from 

the reduced electron carriers like NADH, quinones etc. and can get reduced. However, 

the reduced products of azo dyes are normally aromatic amines, which can be quite 

toxic. However, if the extra cellular environment is aerobic, the presence of oxygen 

may inhibit the azo dye reduction mechanism, due to the oxidation of the reduced 

redox mediator by oxygen rather than by the azo dye (Pearce 2003b). Therefore, the 

possible reason for reduced decolorization at shaking condition might be the 

competition between oxygen and the azo compounds for the reduced electron carriers 

under aerobic environment (Chang et al. 2001; Zee & Villaverde 2005). 
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Figure 22: Aerobic degradation of 6 dyes by MA1 strains 

 

  

Figure 23: Anaerobic degradation of 6 dyes by MA1 strains 
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3.3.2 Effect of dye concentration 

Organic pollutant concentration is another factor that play a significant role in 

bacterial-based degradation. In addition, it’s important to find if the bacterial isolate is 

capable of decolorizing a relatively high concentration of dyes or other organic 

pollutants (which would normally be present in industrial effluents). Decolorization 

studies with different concentration ranging of Ponceau BS from 20 ppm to 1000 ppm 

was carried out under aerobic conditions (Figure 24). At initial dye concentrations of 

20, 100, and 200 ppm, % of degradation were shown to be 79%, 88.5% and 72.3% 

respectively, within 24 hrs of incubation. As the dye concentration was increased to 

400 ppm, 45.8 % decolorization was achieved after 24 hrs of incubation which 

increased to 87.7% after 48 hrs of incubation. At a subsequently increased dye 

concentration of 800 ppm, 62% decolorization was obtained after 48 hrs. Impressively, 

even at a Ponceau BS concentration of 1000 ppm (1 mg/L) Bacillus cereus (MA1) 

strain was able to degrade 50% of the dye by 48 hours.  This clearly illustrates that, as 

the concentration of dye increases, the bacterial strain would take longer time for 

decolorization. Similar results have been stated in literatures where a reduction in the 

efficiency of degradation was detected with increase in dye concentration (Chang et al 

2001; Shah et al 2013). As the dye concentration increase a toxic effect of dye and its 

metabolites became dominant, causing an inhibition in degradation. This inhibition 

can be explained by the toxic effect of dye and insufficient amount of biomass to 

uptake this higher concentration of dye and the capability of the enzyme to distinguish 

the substrate effectively at the very low concentrations (Jadhav et al 2007; Pearce et al 

2003). 
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Figure 24: Effect of dye concentration on % decolorization of Ponceau BS by 

Bacillus cereus  

 

 

Figure 25: Effect of pH on % decolorization of Ponceau BS dye by Bacillus cereus 
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3.3.3 Effect of pH 

The bacterial growth  relies on the pH of culture media, which has been 

previously shown to directly affect dye decoloration (Walters et al 2005). Thus, the 

ability of Bacillus cereus (MA1) strain to degrade Ponceau BS at different range of pH 

3, 5 and 9 (control was pH 7) was carried out. The isolated strain MA1 showed similar 

efficient decolorization efficiency at pH 7 and at pH 9. A maximum decolorization of 

around 70% was achieved under both pH values 7 and 9) within 48 hours of incubation 

(Figure 25). The % of decolorization was found to decrease dramatically at pH 5 and 

pH 3 with 2.28% and 2.39% respectively. The results showed no significant amount 

of decolorization in acidic media (pH 3 and 5) is most probably due to the inability of 

bacteria to grow sufficiently in highly acidic or alkaline media. Previously published 

studies have been found that optimum pH range of textile dye decolorization generally 

lies between 6.0 and 10.0 (Chen et al 2003; Guo et al 2007; Kılıç et al 2007). A similar 

study was depicted for the removal of various dyes (e.g. red, green, black, yellow, and 

mixed dyes), where the researchers found that Bacillus cereus was capable of 

decolorizing dyes within a broad range of pH 6 - 8.5 and optimum pH was obtained at 

pH 7.5 (Mahmood et al. 2015). 

3.3.4 Effect of nutrients 

Azo dyes may have poor carbon sources, hence to biodegrade such aromatic 

dyes, pure culture with supplement of nitrogen or carbon sources are required 

(Alhassani, 2014). Figure 26 shows the effect of various supplements (9 different 

culture media) on the decolorization of Ponceau BS. Although the Bacillus cereus 

strain was able to decolorize PBS in all media (except in water and NaCl), maximum 

decolorization was achieved with Lysogeny Broth (LB). Nutrient Broth-E (NB-E) 
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gave almost similar results as LB. Consecutively, Nutrient Broth-2 (NB-2), peptone 

and yeast extract showed a high and similar decolorization value of 75%, within 24 

hrs. According to other reports, the best bacterial decolorization was obtained with the 

yeast extract. Yeast extract metabolism is important for regeneration of NADH, which 

is the electron donor for azo bond reduction. Moreover, it’s been noticed that 

effectiveness of decolorization increased with increasing the concentration of yeast 

extract (from 1 to 5 g l-1)  (Asad et al. 2007).Whereas, tryptone and 2XYT displayed a 

moderate decolorization value of 66.7% and 64.8% respectively, within 24 hrs. 

Negligible decolorization was observed for supplements H2O and NaCl. 

3.3.5 Effect of redox mediator (RM) 

It has been noticed that some of the organic pollutants cannot be readily 

degraded by enzymatic mechanism alone, rather, an additional diffusible, readily and 

small oxidizable molecules which namely redox mediators are needed.  These 

molecules consider as “middle-men” in enzyme-based degradation of organic 

compounds (Zee & Cervantes 2009). As a result, we have decided to study this idea in 

the bacterial-based degradation. However, as can be seen in Figure 27, the addition of 

1-hydroxybenzotrizole (HOBT) to the reaction mixture showed no significant 

difference or rapid degradation between control (no HOBT) and the mixture with 

HOBT. Interestingly, the reaction proceeded very rapidly without any need for redox 

mediator, actually, addition of HOBT resulted a slight reduction in the reaction rate. 

Apparently, this might occurs as a result of the competition between redox mediators, 

which seems also to act as substrates for bacterial enzymes, and dye molecules, hence 

leading to a lower degradation rate. These results and other previous studied showed 

that redox mediators don’t play a key role for bacterial-based degradation reactions. 
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Figure 26: Effect of nitrogen source on the ability of bacterial isolate Bacillus cereus 

to degrade PBS dye 

 

 

 

 

Figure 27: Effect of HOBT on the ability of bacterial stain Bacillus cereus (MA1) to 

degrade PBS dye 
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3.4 Degradation of emerging pollutants 

As mentioned earlier, one of the main objectives of the present work was to 

isolate novel bacterial isolates capable of degrading various classes of organic 

pollutants, including dyes and emerging pollutants. The preceding section showed that 

MA1 (and to a lesser extent MA3, MA6 and MA12) was capable of very efficiently 

degrading various classes of aromatic dyes, and therefore we wanted to next test the 

ability of this strain (MA1) to degrade a range of emerging pollutants, also known as 

contaminants of emerging concern in the environment (Table 7). 

3.4.1 LC-MS/MS Method development 

In order to examine the ability of our bacterial isolates to degrade these 

emerging pollutants, we first had to develop a sensitive and robust LC-MSMS based 

assay to quantitate these compounds.  Table 7 shows the nine emerging pollutants that 

were chosen for this part of the work. As can be seen these pollutants include 

antibiotics, anti-inflammatory agents, pesticides, as well as other pharmaceuticals. 
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Table 7: Summary of the selected emerging contaminates and their detection in 

wastewater, surface water, and drinking water 

Emerging Pollutant Structure Concentration  Reference 

1. Ibuprofen 

(Anti-inflammatory) 

 

 

12000 ng/L (Lapworth et al. 

2012) 

2. Caffeine 

(Stimulant) 

 

6.0 µg/L (Vanderford & 

Snyder 2006) 

3. Fluometuron 

(Pesticides) 

 

  

317.604 µg/L (Papadakis et al. 

2015) 

4. DEET  

(Insect repellent) 

 

6500 ng/L (Lapworth et al. 

2012) 

5. Atenolol 

(Pharmaceutical: 

Beta blocker) 

 

 

900 ng/L (Huerta-fontela et al. 

2011) 

6. Sulfamethoxazole 

(Antibiotic) 

 

 

1.9 µg/L (Vanderford & 

Snyder 2006) 
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7. Meloxicam 

(Anti-inflammatory) 

 

 

218 ng/L (Dasenaki & 

Thomaidis 2015) 

8. Prometryn 

(Pesticide)  

 

0.483 µg/L (Papadakis et al. 

2015) 

9. Phenytoin 

(Pharmaceutical: 

Psychiatrics) 

 

140 ng/L (Huerta-fontela et al. 

2011) 
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The overall scheme that was employed for the LC-MSMS method 

development is summarized in Figure 28, which shows the results we obtained for 

caffeine. Basically, analytical grade standards of these 9 emerging pollutants were 

used to prepare stocks, which were then analyzed in the MS2 mode of the LC-MSMS 

as described under Materials and Methods. The MS2 mode shows the “total ion 

chromatogram” for compound (showing a major peak around 14 minutes retention 

time), from which an “extracted ion chromatogram” was generated, which conformed 

the expected molecular mass of the compound (195 Da for caffeine). After this step, 

the “daughter ions” of this compound were generated by successively increasing the 

collision energy (volts) in the MS, and looking at the fragments (daughter ions) being 

generated. As can be seen in Fig. 28, gradually increasing the collision energy from 

0V to 30V led to the generation of more and more daughter ions, with 30V producing 

the most number of daughter ions and completely breaking down all of the caffeine 

peak (195 m/z). The validity of daughter ions generated in the MSMS was confirmed 

manually by using Chem Office software to analyze all possible fragments of the 

compound (as shown in Fig. 28). Lastly, the daughter ion which had the highest 

intensity was used to generate “parent to daughter” ion pairs (195  138, in the case 

of caffeine), and this was then used to analyze the samples in the MRM (Multiple 

Reaction Monitoring) mode of the LC-MSMS, which produced a very specific, 

accurate and sensitive peak for the emerging pollutants. Table 8 shows the summary 

of the MRM method development for all the 9 emerging pollutants, which allowed for 

simultaneous and sensitive detection and analysis of these 9 emerging pollutants in a 

mixture within 30 minutes (Figure 28, “control” panel). 
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Figure 28: Schematic diagram of LC-MS method development of Caffeine 

 

 

 



66 

 

 

 

 

Table 8: Summary of the MRM mode for emerging pollutants 

 

Emerging Pollutant Parent ion 

(m/z) 

Daughter ion 

(m/z) 

Polarity Collision 

Energy 

(V) 

1. Ibuprofen 207  161 Positive 20 

2. Caffeine 195  138 Positive 30 

3. Fluometuron 233  72 Positive 30 

4. DEET  192  119 Positive 30 

5. Atenolol 267  190 Positive 20 

6. Sulfamethoxazole 254  156 Positive 20 

7. Meloxicam 352  115 Positive 6 

8. Prometryn  242  158 Positive 30 

9. Phenytoin 253  182 Positive 10 
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Incubation of this mixture of 9 emerging pollutants with MA1 bacterial isolate 

resulted significant decrease in the peak intensity of some of the emerging pollutants. 

As can be seen in Figure 29, MA1 appears to be able to significantly degrade 

Ibuprofen, Meloxicam, as well as Prometryn, as early as 3 days, and most pronounced 

by day 6. Interestingly, other emerging pollutants appeared not be degraded by MA1. 

Since, we only saw 3 of the 9 emerging pollutants degraded by our chosen bacterial 

isolate (MA1), we decided to test the other 3 “best dye-degrading” bacterial isolates 

as well, namely MA3, MA6 and MA12. 

Figures 30, 31 and 32 show the results of emerging pollutants degradation by 

MA3, MA6, and MA12, respectively. It is interesting that a similar selective 

degradation of some (and not ALL) emerging pollutants can be seen in these 

chromatograms.  

The results of these analyses are summarized in Table 9, which also shows (by 

gray shading) the emerging pollutants that showed > 75% degradation by any of the 

bacterial isolates. The cut-off of >75% degradation was chosen to account for 

significant error (~ 20%) in the emerging pollutant quantitation, due to the nature of 

the experimental setup. It is interesting to note the 4 bacterial isolates showed 

differential degradation abilities, with MA12 showing the most interesting and 

significant emerging pollutant degradation profile, as summarized below: 

MA1: Able to degrade Meloxicam, Prometryn, and Ibuprofen. 

MA3: Able to degrade Meloxicam, Atenolol, Sulfamethoxazole, Prometryn and 

Caffeine. 

MA6: Able to degrade Meloxicam, Sulfamethoxazole, Prometryn and Caffeine. 

MA12: Able to degrade Meloxicam, Sulfamethoxazole, Phenytoin, Prometryn, 

Fluometuron, and Caffeine. 
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Figure 29: LC-MS chromatograms showing the degradation of various emerging 

pollutants by Bacillus cereus (MA1) 
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Figure 30: LC-MS chromatograms showing the degradation of various emerging 

pollutants by Pseudomonas guariconensis (MA3) 
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Figure 31: LC-MS chromatograms showing the degradation of various emerging 

pollutants by Pseudomonas guariconensis (MA6) 
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Figure 32: LC-MS chromatograms showing the degradation of various emerging 

pollutants by Pseudomonas guariconensis (MA12) 
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Table 9: Summary of emerging pollutant degradation (% compound remaining 

relative to control) by bacterial isolates MA1, MA3, MA6, and MA12 

Day  1 Day 3 Day 6 Day  1 Day 3 Day 6 Day  1 Day 3 Day 6 Day  1 Day 3 Day 6

Meloxicam 100 95 50 96 88 47 84 69 48 54 49 40

Atenolol 99 93 84 94 65 56 97 96 92 96 96 92

Sulfamethoxazole 83 81 79 89 79 73 84 70 67 80 73 68

Phenytoin 95 93 84 76 67 76 94 78 76 92 94 75

Prometryn 83 70 65 77 62 57 66 65 59 66 63 49

Fluometuron 75 91 88 91 83 80 96 92 77 80 82 63

Ibuprofen 63 63 64 86 82 82 91 88 85 91 89 88

Caffeine 97 85 84 87 73 57 87 63 60 90 63 58

DEET 73 92 88 92 86 82 90 88 87 88 87 78

MA 1 MA 3 MA 6 MA 12

Emerging Pollutant

 

 

These results presented here are very interesting and appear to validate our 

hypothesis that dye-degradation based screening could be used to identify and isolate 

novel organic pollutant degrading bacteria. Furthermore, it is also interesting to note 

that some of our bacterial isolates could degrade some emerging pollutants that other 

isolates could not – for example, of the four isolates MA1 was the only one capable 

of degrading Ibuprofen and Meloxicam. Conversely, MA1 was not able to degrade 

Sulfamethoxazole, Phenytoin, Fluometuron, and Caffeine. These results underscore 

the need to employ not just single bacterial isolates in bioremediation approaches, 

rather, a consortium of many bacterial species should be used, which hopefully 

would provide the widest coverage of pollutant degradation ability. 
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Chapter 4: Conclusion 

 

In summary, the data obtained here showed that that petroleum sludge is a rich 

source of microbes that could be used to degrade various classes of organic 

compounds. Our isolated bacterial strains seem to be a versatile group of bacteria that 

have tremendous potential for organic pollutants degradation and wastewater 

remediation. However, the bacterial-based pollutant degradation is sensitive to various 

in physico-chemical operational factors, such as pH, concentration of organic 

pollutant, bacteria nutrients, as well as aerobic and anaerobic condition, and they must 

be optimized for efficient degradation. Interestingly, our isolated bacterial strains were 

able to degrade a wide variety of aromatic dyes (such as Ponceau BS, Toluidine Blue 

and CP6R).  Furthermore, an efficient LC-MS/MS method was developed to detect 

nine different emerging pollutants, which was further used to investigate their bacterial 

degradation by 4 isolated bacterial strains. The LC-MS/MS results showed a 

significant degradation of various emerging pollutants, such as Ibuprofen, Prometryn 

and Phenytoin, by our isolated bacteria, an interesting finding which needs to be 

further investigated and exploited.  

4.1 Further Studies 

The data presented here shows the power and the limitations of bacteria strains 

in degrading organic pollutants. Though our results are quite significant and very 

promising, it is obvious that additional research is needed to further enhance our 

understanding of how these versatile and powerful bacterial strains can be used for 

efficient environmental and wastewater bioremediation. A few suggestions for further 

studies in this project are presented below: 
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1. Targeted genome sequencing for the isolate bacteria strains will be useful to 

identify the various enzymes (e.g. peroxidases, laccases) that are most likely 

involved in the degradation of the aromatic pollutants and to come up with 

metabolic pathways involved in pollutant degradation. 

2. Creating a consortium of isolated bacterial strains and testing them for the 

degradation of these 9 emerging pollutants would be very interest. In a 

microbial consortium, the individual strains may be able to degrade different 

organic pollutants and may even utilize metabolites produced by the co-

existing strains for further decomposition.  

All of these might enhance our understanding of how these and other bacterial 

strains could be used efficiently for organic pollutants degradation. 
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