
United Arab Emirates University
Scholarworks@UAEU

Accounting Dissertations Accounting

11-2017

Migrating From SQL to NoSQL Database:
Practices and Analysis
Fatima Jamal Al Shekh Yassin

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/account_dissertations

Part of the Software Engineering Commons

This Thesis is brought to you for free and open access by the Accounting at Scholarworks@UAEU. It has been accepted for inclusion in Accounting
Dissertations by an authorized administrator of Scholarworks@UAEU. For more information, please contact fadl.musa@uaeu.ac.ae.

Recommended Citation
Al Shekh Yassin, Fatima Jamal, "Migrating From SQL to NoSQL Database: Practices and Analysis" (2017). Accounting Dissertations.
23.
https://scholarworks.uaeu.ac.ae/account_dissertations/23

https://scholarworks.uaeu.ac.ae?utm_source=scholarworks.uaeu.ac.ae%2Faccount_dissertations%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/account_dissertations?utm_source=scholarworks.uaeu.ac.ae%2Faccount_dissertations%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/accounting?utm_source=scholarworks.uaeu.ac.ae%2Faccount_dissertations%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/account_dissertations?utm_source=scholarworks.uaeu.ac.ae%2Faccount_dissertations%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.uaeu.ac.ae%2Faccount_dissertations%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/account_dissertations/23?utm_source=scholarworks.uaeu.ac.ae%2Faccount_dissertations%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fadl.musa@uaeu.ac.ae

ii

Declaration of Original Work

I, Fatima Jamal Al Shekh Yassin, the undersigned, a graduate student at the United

Arab Emirates University (UAEU), and the author of this thesis entitled “Migrating

from SQL to NoSQL Databases: Practices and Analysis”, hereby, solemnly declare

that this thesis is my own original research work that has been done and prepared

by me under the supervision of Dr. Mamoun Awad, in the College of Information

Technology at UAEU. This work has not previously been presented or published,

or formed the basis for the award of any academic degree, diploma or a similar title

at this or any other university. Any materials borrowed from other sources

(whether published or unpublished) and relied upon or included in my thesis have

been properly cited and acknowledged in accordance with appropriate academic

conventions. I further declare that there is no potential conflict of interest with

respect to the research, data collection, authorship, presentation and/or publication

of this thesis.

Student’s Signature: Date: ________________

vi

Abstract

Most of the enterprises that are dealing with big data are moving towards using

NoSQL data structures to represent data. Converting existing SQL structures to

NoSQL structure is a very important task where we should guarantee both better

performance and accurate data. The main objective of this thesis is to highlight the

most suitable NoSQL structure to migrate from relational Database in terms of high

performance in reading data. Different combinations of NoSQL structures have been

tested and compared with SQL structure to be able to conclude the best design to use.

For SQL structure, we used the MySQL data that is stored in five tables with

different types of relationships among them. For NoSQL, we implemented three

different MongoDB structures. We considered combinations of different levels of

embedding documents and reference relationships between documents. Our

experiments showed that using a mix of one level embedded document with a

reference relationship with another document is the best structure to choose. We have

used a database that contains five tables with a variety of relationships many-to-one,

and many-to-many. Also the huge amount of data stored in all the structures about 2

millions record/document. The research compares clearly between the performance

of retrieving data from different MongDB representation of data and the result shows

that in some cases using more than one collection to represent huge data with

complex relationships is better than keeping all the data in one document.

Keywords: Big data, SQL, NoSQL, MySQL, MongoDB, Embedding document,

Reference relationship, one-to-one, many-to-one, many-to-many.

vii

Title and Abstract (in Arabic)

التحویل من قاعدة البیانات سكل الي نو سكل : تطبیقات و تحیلیل

الملخص

معظم الشركات التي تتعامل مع البیانات الكبیرة تتحرك نحو استخدام ھیاكل البیانات

سكل ثیل بیاناتھا. تعتبر عملیة تحویل ھیاكل البیانات الحالیة ملت)NoSQL(نوسكل الجدیدة

)SQL(نوسكل الي البنیھ الجدیدة)NoSQL(عملیة مھمة جدا حیث یجب ضمان الحصول

بیانات دقیقة بعد تحویل البیانات الى البنیھ الجدیدة. الھدف الرئیسي من ھذه على أداء افضل و

 مونغو لبیانات باستخدام قاعدة البیاناتالرسالة ھو تسلیط الضوء على انسب تصمیم ل

)Mongo(وكذلك مقارنتھا بأداء قاعدة نفس البیاناتومقارنة ادائھا مع تصامیم اخرى ل

في)MySQL(ماي سكل د قمنا بتمثیل البیانات بدایة باستخدام. لق)MySQL(نوسكل البیانات

ثم استخدمنا خمسة انواع مختلفة ،خمس جداول بینھا علاقات مختلفة من حیث النوع والكم

التعقید من الاوامر لاستخراج المعلومات من ھذه الجداول. وكذلك قمنا باستخدام ثلاثة تصامیم

، وایضا استخدمنا نفس)Mongo(مونغو تخدام قاعدة البیاناتمختلفة لتمثیل البیانات ذاتھا باس

الاوامر لاستخراج المعلومات نفسھا من التصامیم الثلاثة. بعد الانتھاء من تسیجل النتائج قمنا

بمقارنتھا لنتوصل في نھایة البحث الى ان استخدام تصمیم یحتوي على نوعین من المستندات

وھذه توي مستوى فرعي لبیانات مرتبطة بالمستوى الرئیسيھما مستوى رئیسي من البیانات یح

وھو مع المستند الاول مرجعیة و مستند ثان تربطھ علاقة العلاقة تعرف بالبیانات المضمنة

یحتوي على تتمت البیانات المطلوبة. لقد استخدمنا في ھذا البحث خمسة جداول بینھا جمیع

كما ان عدد)many to manyكثیر لكثیر ،one ot many انواع العلاقات (واحد لكثیر

و علاقتین او ثلاث علاقات. كما تم ایضا ااول یتراوح بین علاقھ واحده دالعلاقات بین الج

 .ملیون 2التصامیم المطروحة حوال في جمیعتخزین كم ھائل من البیانات

ماي سكل ،)NoSQL(، نوسكل)SQL(البیانات الكبیرة، سكل: مفاھیم البحث الرئیسیة

)MySQL(مونغو ،)Mongo(یة، علاقة مرجع، البیانات المضمنھ،) واحد لواحدone to

one(،) واحد لكثیرone ot many)كثیر لكثیر ،(many to many.(

viii

Acknowledgements

I would first like to thank my thesis advisor Dr. Mamoun Awad. The door to

Dr. Awad office was always open whenever I ran into a trouble spot or had a

question about my research or writing. He consistently allowed this paper to be my

own work, but steered me in the right the direction whenever he thought I needed it.

I would also like to acknowledge Mrs. Hanady Ghazal as she was the english proof

reader of this thesis, and I am gratefully indebted to her for her very valuable

comments and support.

Finally, I must express my very profound gratitude to my husband Belal Hamdan,

my kids Hasan and Nour and to my parents for providing me with unfailing support

and continuous encouragement throughout my years of study and through the process

of researching and writing this thesis. This accomplishment would not have been

possible without them. Thank you.

ix

Dedication

To my beloved parents and family

x

Table of Contents

Title ... i

Declaration of Original Work ... ii

Copyright .. iii

Approval of the Master Thesis .. iv

Abstract ... vi

Title and Abstract (in Arabic) ... vii

Acknowledgements .. viii

Dedication ... ix

Table of Contents ... x

List of Tables ... xii

List of Figures .. xiii

List of Abbreviations ... xiv

Chapter 1: Introduction .. 1
1.1 Overview .. 1
1.2 Statement of the Problem ... 4

1.2.1 Problem definition .. 4
1.2.2 Research methodology ... 5

1.3 Literature Review ... 9
1.4 Relational Database Structure .. 13
1.5 Object Oriented Database Structure ... 15
1.6 NoSQL Database Structure .. 16

1.6.1 Converting relational DB to NoSQL DB. .. 19
1.6.2 Why to choose MongoDB .. 19

Chapter 2: Experiment Implementation ... 23
2.1 Data Structuring ... 23

2.1.1 MySQL server DB structure ... 23
2.1.2 Mongo DB structures ... 24

2.2 Query Description .. 31

Chapter 3: Results and Discussion ... 33
3.1 Data Query Results based on Database Structure .. 33

3.1.1 Results of queries on MySQL database ... 33
3.1.2 Results of queries on Mongo database (Structure 1) 34
3.1.3 Results of queries on Mongo database (Structure 2) 35
3.1.4 Results of queries on Mongo database (Structure 3) 36

xi

3.2 Data Query Results based on Query .. 37
3.2.1 Results of executing Query 1 ... 38
3.2.2 Results of executing Query 2 ... 38
3.2.3 Results of executing Query 3 ... 39
3.2.4 Results of executing Query 4 ... 40
3.2.5 Results of executing Query 5 ... 41

3.3 Final Findings ... 42

Chapter 4: Conclusion and Future Work ... 45
4.1 Conclusion .. 45
4.2 Future Work and Open Issues .. 46

References .. 48

xii

List of Tables

Table 1: MySQL tables details ... 24
Table 2: Mongo database structures details ... 31
Table 3: Queries description .. 32

xiii

List of Figures

Figure 1: Insert data in MySQL database table - Java API .. 6
Figure 2: Queries used in the implementation - Java API ... 7
Figure 3: Filling MongoDB data - Java API .. 8
Figure 4: ERD for employee DB ... 23
Figure 5: Employee document sample data ... 26
Figure 6: Department and Employee documents sample data 27
Figure 7: Reference relationship between 5 documents sample data 29
Figure 8: MySQL query results .. 34
Figure 9: MongoDB Structure 1 - query results ... 35
Figure 10: MongoDB Structure 2 - query results ... 36
Figure 11: MongoDB Structure 3 - query results ... 37
Figure 12: Query 1 run time results ... 38
Figure 13: Query 2 run time results ... 39
Figure 14: Query 3 run time results ... 40
Figure 15: Query 4 run time results ... 41
Figure 16: Query 5 run time results ... 42
Figure 17: Summary of final results ... 43

xiv

List of Abbreviations

ACID Atomicity, Consistency, Isolation, Durability

API Application Program Interface

BASE Basically Available, Soft state, Eventual consistency

BSON Binary JSON

CPA Consistency, Partition-tolerance and Availability

DB Database

DBMS Data Base Management System

DDR3 Double Data Rate Type 3

ERD Entity Relationship Diagram

GB Giga Bytes

GHz Gigahertz

GPL General Public License

IDE Integrated Development Environment

IoT Internet of Things

JSON JavaScript Object Notation

MHz Megahertz

NoSQL Not only SQL

OODB Object Oriented Database

OODBMS Object Oriented Database Management System

OOP Object Oriented Programming

OS Operating System

REST Representational State Transfer

SQL Structured Query Language

1

Chapter 1: Introduction

1.1 Overview

As the world trends are moving towards having applications with cloud

computing, advancement of IT industry, web applications, internet of things and big

data [18, 21], enterprises are mostly using NoSQL instead of relational DB. The

adoption of NoSQL DB is the response of the growth of data that requires faster data

access and analysis [20]. For example big data, which is very huge and unstructured,

requires powerful machine to process. Also it needs distributed systems to contain it,

and flexible data schemas to design it. The NoSQL DB appeared to fit the needs of

the new market and to satisfy the limitation of the relational DB [15].

The use of NoSQL DB in new enterprises is not a major issue because the

new application design will be based on NoSQL DB. But the problem appears when

the existing systems that relay on relational DB are restructuring their systems to

implement NoSQL DB. They need to reanalyze the system requirements to build up

the new DB schema [4].

The migration of the legacy system to a new system and maintaining the

same functionality and data integrity of the legacy system is an important challenge

for enterprises. The migration process has two requirements. First, changing the

design and second, data migration [1].

The new design of the DB can be achieved either by an expert of the new

paradigm that will redesign the existing DB to the new system or by using tools to

automatically convert the old schema to a new one. Many researches have proven

that the relational DB can be converted into NoSQL DB. As well as many tools were

2

developed in a variety of research projects to achieve data migration by looking at

the problem from a different point of view [1, 2]. The noticeable thing in most of the

researches that presented DB schema design migration tools is that they have tested

their tools on one database only. Most of them did not show enough results that

guarantee keeping the same performance and reliability of the data. Additionally,

they used simple database implementation that contains maximum of 3 tables and

with few relationships between tables. Furthermore, the database was filled in with

few records that did not exceed a million records [1, 2, 11].

The data migration tool is simpler and easier to achieve than the schema

conversion tool. Therefore data can be imported easily to a certain format and

exported simply to the new design.

The main purpose of the research is to prove that the performance of the new

NoSQL system in reading data is better than the relational DB. In this research,

migrating the relational data schema into 3 different NoSQL schemas are designed

manually and testing the performance of reading data in the new systems after

moving the same data into the new systems was the main focus. The data reading

performance of the new systems was tested, checked and compared to the old

system. The same relational DB schema used in [17] was used in this research, but

different NoSQL database representations for the new systems. One collection of

MongoDB was used to represent my relational DB with two levels embedding

documents, another one with reference relationship and one level embedding

documents, and the last one with reference relationships between five collections.

Different types of queries with different complexity on all the designs was executed.

3

The queries vary from very simple queries to complicated queries that involve

different levels of joins and aggregation function use.

The contribution of this research includes, converting a huge amount of data

that is stored in 5 tables in MySQL DB to the best design in MongoDB. The selected

DB contains 5 tables with different numbers and types of relationships between

them. We redesigned the relational DB schema to 3 different MongoDB schemas

considering the level of embedding documents and reference document and the

number of collections generated.

The research assumes using MySQL server version 5.7.17 MySQL

Community Server (GPL) for relational database and MongoDB version v3.4.1. Both

DBs are running on MacBook Pro (13-inch, Mid 2010) with 2.4 GHz Intel Core 2

Duo processor, 4 GB 1067 MHz DDR3, NVIDIA GeForce 320M 256 MB, and the

version of OS installed in the devise is macOS Sierra Version 10.12. Java is used to

develop the API for managing the communication with the DBs through NetBeans

IDE 8.2. The library used to access MySQL server DB for java API is “mysql-

connector-java-5.1.40-bin.jar”, and the other one used to access MongoDB is

“mongo-java-driver-3.4.1.jar”.

The research is evaluated by developing Java API that filled the tables in

MySQL server database with random data and then by executing five different level

queries on the data. The time consumed to retrieve all the data was recorded for each

query. Another three API were developed to fill the MongoDB documents in the

three different schemas, and the same five queries were tested to calculate the time

needed to complete the execution of the queries on the MongoDB.

4

1.2 Statement of the Problem

The huge amount of streaming data available nowadays are due to massive

use of mobile computing, cloud computing, IoT, and other new technologies. Such

tremendous amounts of data add a great deal of challenges to the traditional

relational DB paradigm. Those challenges are related to performance, scalability, and

distribution. To over come those challenges enterprises start to move towards

implementing new DB paradigm known as NoSQL.

So given a well-designed relational DB, S, we would like to transform s into

s’, where s’ is the NoSQL structure that achieve the best performance among all

other structures, S. In other words, argmax F(s), where 𝑠 ∈ 𝑆, S is the set of all

possible NoSQL structures and F is a function to maximize. In this thesis, S has 3

different structures, and F is a function of retrieval time of data queries, i.e.,

manipulation queries are not considered.

 When an enterprise makes the decision to move to the new NoSQL DB, it

should make sure that the migration will improve the performance of the system in

addition to speed up data processing.

1.2.1 Problem definition

After the decision of converting a current relational DB in an enterprise into

NoSQL DB is made, the argument about which type of NoSQL DB should be used

will start. In NoSQL DB, data can be presented in different formats. Some of the

NoSQL DBs use document representation of data; other types use column

representation, key-values are used in some types of NoSQL DB and some use

graphs to represent data. After the enterprise chooses the most suitable NoSQL DB

5

type that meets their needs, the best design that will improve the performance of the

system must be selected to start the migration process later.

In this research, MySQL server DB that contains data related to employees

stored in 5 tables with different types of relationship between them. The data was

represented using NoSQL DB Mongo that stores data as documents. The data

reading performance of 3 different designs of the Mongo were compared with each

other and with the MySQL DB. The 3 designed were selected to cover the different

relationships between documents in MongoDB which are fully embedded documents

with different levels of embedding, reference relationship between two documents

that each of them has one level of embedding document, and completely reference

relationships between 5 documents.

In this research, the focus will be on data retrieval only, i.e., data

manipulation operations are not within the scope of this research.

The main aim of this research is to identify the best design structure of

MongoDB that achieves the highest performance compared to Relational DB design.

1.2.2 Research methodology

 The basic methodology used in this research is to identify the problem and

then manipulate solutions to this problem. The focus of this research went through

the following parts:

i) Research input: MySQL server DB that contains 5 tables with one-

to-many and many-to-many relationships between them. There is no

one-to-one relationship in this experiment as implementing it in

MongoDB will not add more embedding or reference relationships

6

that affects the experiment result. Filling the tables with random

data through java API see Figure 1. After that, applying five

different types of queries to collect data from the tables based on the

query conditions see Figure 2 and record the execution time for

each query.

Figure 1: Insert data in MySQL database table - Java API

7

Figure 2: Queries used in the implementation - Java API

8

ii) Research Process: NoSQL MongoDB is selected to create 3

different data structures that will be used to represent the same data

stored in the MySQL server DB see Figure 3. The same queries

used to collect data from MySQL server DB are used to retrieve

data from each structure. The execution time for each query was

recorded to preview the performance of each query.

Figure 3: Filling MongoDB data - Java API

iii) Research output: Selecting the best Mongo representation that has

the highest performance in retrieving data compared to other

Mongo structures and the original MySQL DB.

9

1.3 Literature Review

In this section, we summarize and present the current state of the art

regarding converting SQL database to NoSQL database.

Jia et al. developed a tool to transfer relational data model to NoSQL model

specifically MongoDB and migrate data to a new structure [1]. They used the

database log to assign description tags to entities and action tags to describe the

relationships between entities. Based on the assigned tags, the tables and

relationships will be either embedded or referenced in the MongoDB collection.

They have tested their tool by choosing 3 tables and each table has only one-to-many

relationship with other tables. The DB is small in terms of the number tables (only 3

tables), the kind of relationships between the tables (only one-to-many), and the

complexity of queries (only 3 simple quires used that did not include aggregation

functions). G. Zhao et al. [2] presented a tool for transforming SQL DB schema to

NoSQL DB. This tool attained high performance for join queries, and contained a

graph-transforming algorithm that offers a correct nesting sequence to generate

nesting sequences among relational tables. In their proposal they mapped all the

tables in the relational DB into MongoDB collections, and they offered a graph-

transforming algorithm to generate nesting sequences among relational tables. After

testing the proposal, the results showed high performance of the new data structure

and high redundancy as well. Four tables with three foreign keys were used in the

case tested and four different level join queries were used as well. They have not

included any aggregation function in the query and the size of the database is not

mentioned as well.

A new design of a database systems migration tool shared by G. Zhao et al.

10

[3], the design helped in converting relational database into HBase database. They

mentioned that using aggregation in the new design will lead to duplication of

information but this is not a concern as the storage is already available.

Converting a traditional information management system (MySQL) that is

related to a school into a system that fully stores its data in NoSQL database systems

is shown in the paper published by Z. Wei-ping et al. [4]. They concluded that

MongoDB is faster than MySQL when more data is inserted in the database as well

as the development process in MongoDB is faster than MySQL. They have used a

small size database and conducted the performance test using two queries only.

More comparisons between the performance of the traditional database

systems and NoSQL systems were made by A. Boicea, F. Radulescu and L. I.

Agapin [5]. They found that oracle database is a good choice for small size data only

while MongoDB is faster in inserting and deleting big size data.

J. S. van der Veen et al. [6] were trying to find out which is more suitable for

storing sensors data in both physical servers and virtual servers SQL DB

(PostgreSQL) or NoSQL DB (Cassandra and Mongo). They have concluded that the

best database structure to be selected depends on the system requirements and the

use of the sensors. The results discussed in the research shows that mongoDB

readings was better in almost all the situations tested in the research. They did not

perform the test on distributed systems and suggested adding more types of database

to the comparision.

Based on the results of G. Zhao [7], W. Huang et al. investigated about the

feasibility of the migration and potential performance of the system after the

11

migration by modeling MongoDB with relational algebra, they set a certain

assumption to convert the MongoDB to SQL DB. Then they applied the same

relational algebra model used to define the relational database on the converted

database and found that MongoDB supports relational calculus just like relational

database. Therefore, the migration can be done safely and easily between the two

data structures [7].

Researchers discussed adding a new layer between users and data that will

enable the user to deal with different structures easily [9, 20]. R. Lawrence [9]

suggested adding a unity layer between the data and the user where users can use

SQL quiers to retrieve data from SQL or NoSQL strucutre using a single SQL query.

Liao, Y. T. et al. [20] presented two types of data adaptors in addition to a database

convertor tool. This system will provide non-stopping services while the data

transformation is performed. It also avoids stopping the application and changeing its

design before using the new NoSQL DB model. They have introduced 3 modes in

their system: Blocking transformation mode, blocking dump mode, and direct access

mode.

M. G. Jung et al. [12] assessed the performance of the relational and NoSQL

systems, and provided optimal designs for best performance when using NoSQL.

They tested the performance of PostgreSQL DB, MongoDB structured model

(structured model like the PostgreSQL with 3 collections), and the unstructured

MongoDB (one collection only). They showed that MongoDB with unstructured

model have much better performance than PostgreSQL and better than using the

MongoDB structured model (more than one collection).

In a study of comparing the performance of different database operations in

12

both relational and non-relational databases for big data application (airlines data

consistes of 1 million records and stored in three tables), S. Chickerur et al. [14]

found that MongoDB is faster than the MySQL in inserting, selecting, updating and

deleting data. In the article, they converted one table to MongoDB only, no

relationships were shown in the database, the results in all the operation were close

to each other even though the MongoDB showed better performance.

S. H. Aboutorabi et al. [15] compared the performance of the relational DB

(Microsoft SQL server) and the NoSQL (MongoDB) when implementing them both

in an e-commerce application, by testing all the operations read, insert, select, delete,

aggregated and non-aggregated functions. Their results showed that Mongo DB

achieved better performance in all of the tested operations except in the aggregated

function test, and MongoDB needs more focus with non-indexed data. They

displayed a big ERD for the database used but they have not mentioned if they

included all the tables in the experiment.

A framework that enables representing the relational DB of running

applications as NoSQL with minimum human effort and less time had been

presented by L. Stanescu et al. [17]. They listed a set of rules to convert different

types of relational databases into MongoDB based on the table constraints in the

SQL information schema. They also mentioned the benefits of MongoDB that puts it

furthur ahead of the relational database.

P. Gómez, R et al. [19] argued that structuring data has a great impact on data

size, query performance, and code readability which indeed affects the program

debugging and maintenance. They compared different models (structures of data),

different embedding structures, different access patterns, and they used indexes as

13

well. The experiment was done using MongoDB and an evaluation of the findings

was also discussed. In their research, they concentrated on the implementation of a

single 1:M relationship between two tables. Extending this expermint to test more

complex relationships and tables involoved in more than one type of relationship

with other tables will enrich the results of this research.

This reseach is different from the previous work in considering bigger scale

of study in term of number of tables, more improtantly vairous relationship between

tables that covers major relationships, namely, one-to-many, and many-to-many and

the amount of data stored in the database.

In this research, a relational database was redesigned to have a new structure

of NoSQL database specifically MongoDB that has high performance, low

redundancy and reliable taking into consideration the special characteristics of

MongoDB. We worked in one complete structure of relational database that includes

5 different tables with different types of relationships (one-to-many and many-to-

many) between them. One of the tables has 3 relationships with three different tables.

Another one has 2 relationships with two different tables in the same database. We

have converted the relational database from MySQL into three different structures of

the NoSQL MongoDB, the first structure has single document to represent the data,

while in the second includes references and embedding documents and the last one

considered a collection for each table and created reference relationships between

them.

1.4 Relational Database Structure

Relational database has been used long time ago to represent data; it has been

14

used for the past 30 years [9] and it is still one of the most widely used structures to

represent data [8] because developers are familiar with it [6], its applicable to wide

variety of data problems, and variety of vendors are available which gives the

customer more flexibility regarding the cost, feature and performance [9]. Despite

that there are several new structures that are competing in the market, relational

model is theoretically grounded and efficient to implement [9].

Relational DB strength comes form its architecture that is based on physically

representing data using fixed table structure [6, 7], interrelated tables [3], two-

dimensional tables [4], and views as virtual representation of the relationships

between the tables [7]. Primary keys, indexes are important parts of the relational DB

structures [14] in addition to foreign keys that are used to link tables with each other

[6, 14]. Quires written in SQL language are used to retrieve and manage data in

relational DB [6, 7]; those queries can vary from being very simple accessing one

table to complex where many tables are involved in what is known as join quires [3]

or join operator [6]. It offers normalization in different forms [3, 14] and enforces

data integrity as well [10, 14]. Furthermore, it is small in size, fast, cheap [4] in terms

of performance with small amount of data [10]. The data represented in relational

DB is strongly stable, consistence, and available [6].

As data recently is growing rapidly and very fast, relational DB is facing

many challenges like less ability to scale, less efficiency, in addition to the

restrictions of the ACID [3] when data consistency became less important in the new

systems requirements [7]. Relational DB is not very effective to represent huge

amount of data [3] because of the low querying efficiency [7, 21] of multi join that is

used in big data [4]. Adding to the previously mentioned restrictions on using

15

relational database with big data, relational DB lacks the properties of reliability [2],

distribution [8] and scalability [2, 7]. Regarding scalability, it is difficult to

distribute the SQL database horizontally but scaling the data vertically can be easily

achieved by upgrading the database server [6]. Applications are portable and can be

moved to other system, with some changes to be made for some procedures and

system specific features [9].

Object-relation inconsistency is one of the weak points of relational DB,

which means that the relational model is different than the data structure in the

memory and this does not also make relational data base a good solution for

representing big data [12] as well as high maintenance cost [7].

Relational DB has high latency time that prevents it from being used for real-

time data storage [8]. The normalization and indexing require extra tables to be

added to the relational DB [14, 15] and this will result in more joins, keys and

indexes. As a result, several issues like requiring more space, and low performance

of the database will appear. Upgrading the hardware is a good solution to those

issues but this is not sufficient as it will be expensive for storing the data, support

and maintenance [14].

1.5 Object Oriented Database Structure

OODB can be defined as representing data as objects. As the OO structure is

used there is classes for the objects, inheritance, methods and subclasses. This kind

of DB has a management system known as OODBMS that supports all the functions

related to the data representation as OO [23].

16

OODB has been widely used in telecommunications, transportation, and

building management for years. When choosing to use OOP to deal with data in the

database, the OODB will be the best choice rather than the RDB. OOBD is fully

integrated with OOP as both of them are using the same objects concept, and this

integration makes the connection and communicating with data easier and faster

[24].

1.6 NoSQL Database Structure

NoSQL is the new paradigm of representing data that emerged to fulfill the

need of high performance query, high concurrency, low latency among huge data [3,

4] and high speed [18]. MongoDB is an open source [9, 21] database management

system that makes processing of massive and /or unstructured data easier [12]. It has

a database server and a simple query API for querying the data in the database

instance; its non-fixed schema is referred to as a dynamic schema [21].

 It was developed to support applications that are not well served by

relational DB [9] especially with many web applications available [3, 4] that

relational DB failed to achieve [6] like the internet, social media, multimedia [10,

21], streams, and for big data processing [9] as it operates well with clusters [12].

NoSQL has lots of features that make it totally different from relational DB.

NoSQL is a non-relational [4, 12], schema less [3], handle unstructured and different

types of data [12] and efficiently process it [21]. Unstructured data is defined as

information that is organized in a predefined manner without a predefined data

model like body of the email, blobs, audio and video [21]. Also it has unstructured

ways to store and retrieve data [2, 4, 17]. It does not support the join query [2, 4] and

17

has less powerful query language to retrieve data than the relational DB [6]. In other

words, it is better to say that NoSQL has no common query language available so it

needs custom API to interact with the system using NoSQL DB to be able to

communicate with the data [9]. NoSQL solved the mismatch between the relational

DB and the OOP [17].

NoSQL uses key value format to store data [6, 10]. It also performs fast read

and write because of the map functions used in processing big data [12] as well as

high flexibility in adding or deleting attributes [10].

NoSQL is very flexible, reliable [5, 18], its structure is more based on what a

you are doing of data, and does not need fixed tables to store data [5]. Basically

NoSQL relaxes either consistency or availability of data that is very helpful to

distribute data across networks [6]. NoSQL is not restricted by ACID and this is one

of the main reasons of its high performance, high scalability [7, 9, 18] and high

availability [7, 18]. On the other hand, it offers BASE properties. BASE is an

acronym coined by Eric Brewer who developed the CAP theorem about consistency,

availability and partition-tolerance [21]. It is suitable to be used in systems that deal

with short data inconsistency and location independence [18]. It supports distributed

data mining [2] and horizontal scalability [21].

Definitely, easy design and implementation, high performance and horizontal

scalability are of the strength points of the NoSQL DB [6]. Although NoSQL needs

huge storage [6] but it is not meant to be a concern as storage is available and cheap

over the cloud [3, 18, 21].

NoSQL has four different ways to represent data. Designers select one of

18

them based on the enterprise requirements. Those representations are [9, 10]:

• Key-value stores like HBase: uses hash interface to store and retrieve

data through a simple interface [9]. The key can be self generated and

the value can be anything [2, 7, 10, 15, 18, 19].

• Document stores like MongoDB, CouchDB: it attaches structured

documents with a key, it has different representation format like

MongoDB is using BSON [9]. The document types of NoSQL DB are

key-value database with the ability to find documents based on their

contents [2, 7, 10, 15, 18, 19].

• Column stores comes from the BigTable category. HyperTable is one

example of NoSQL databases using the columns stores. This type of

data representations requires a predefined schema. Data is saved in

cells, cells grouped in columns, and columns grouped in families.

The columns can be created at run time or using predefined schema

[2, 7, 10, 18, 19].

• Graph database like Neo4J [2, 7, 9, 10, 18, 19].

Despite all the solutions provided by NoSQL, it has few drawbacks; for

example, using aggregation may lead to duplication of information [3]. As it has no

standard way to access data, it requires system-specific code to do that, which

reduces the adoption of the new system [9]. Inability to structure unstructured data is

one of the main issues of NoSQL, as well as the high performance cost of processing

big data [12].

Lots of examples of NoSQL DBs available like BigTable used by google and

it was the first NoSQL DB [15, 21], MongoDB, HBase, Cassandra [20], Facebook

19

Cassandra, Amazons’ SimpleDB, Microsoft Azure, and Oracle Corporations’ Oracle

NoSQL [21].

1.6.1 Converting relational DB to NoSQL DB.

Many applications started to adopt MongoDB instead of their old relational

DB [5] like Telefonica [1]. This shift towards NoSQL DB is facing many challenges

such as schema conversion and maintaining the reading efficiency after the

conversion [2]. Some organizations prefer to keep the old relational DB and use new

NoSQL DB, hence; they will end up with running two DB implementations at the

same time [20].

One of the data model transformation challenges is that, it is done most of the

time manually by experts. The expert should consider that MongoDB does not

support join and when to embed or reference tables. Such critical decision might

affect the performance and data redundancy of the DB. Regarding data migration, the

expert should move all the data into the new model correctly [1].

Data migration from relational DB to NoSQL is not an easy task to

accomplish because of the absence of the methods that guide the migration. After the

migration, there is no evaluation on the performance and the capabilities of the data

in the new data model compared to the data in the old model [7].

1.6.2 Why to choose MongoDB

MongoDB is one type of the NoSQL databases that stores data in a structured

way as JSON like document called BSON [10, 19]. It is developed in C++ [7, 15,

21]. It is best described as dynamic representation of data that makes implementing it

easier and simpler on most types of applications [5, 14]. MongoDB was launched in

20

2009 [1, 5, 10, 15], and it is still expanding and developing [10]. One of the main

reasons of MongoDB popularity is the focus on the flexibility, speed, power and ease

of use [5].

The need of MongoDB emerged as a result of the failure of relational DB to

handle applications with very large datasets and very flexible data structure [1, 19].

Many applications started to adopt MongoDB instead of their old relational DB [5]

like Telefonica [1].

MongoDB has become a good solution for the new applications as it does not

require predetermined data schema. It is an open source and a document-oriented DB

[1, 4, 5, 6, 7, 15, 17, 19, 21] that can store different types of objects like XML,

JSON, BSON and other types [1, 5, 15, 19, 21]. The ACID transaction properties are

not considered and they are replaced with the BASE architecture [1, 5, 15, 19]. Join

and transaction concepts are not introduced in MongoDB [13] that help in improving

its performance [1, 4]. It is a cross platform DBMS and supports multiusers [5].

Despite that it is new in the market, it proved high functionality. Lots of big

companies have their own justification to choose using MongoDB in their projects

[5, 15]. Some of the major attractive features of MongoDB include scalability [13,

15, 17]; to meet the web2.0 applications [7]; usability in distributed environment [6,

15]; that is suitable for real time query data and massive log analysis [8]; high

performance [7, 13, 15], load balancing [7] as it automatically sets data to portioning

mode and this helps in dividing the load evenly and improves the performance [15,

17], easy way to store data [15], consistency, durability, conditional atomicity [5],

and availability [13, 17].

MongoDB has lots of features that make it a preferred solution for lots of

21

companies. It supports dynamic and non-predefined schemas [1, 5, 4, 7, 15, 19],

ability to be used with small size project and big data projects [6, 10]. It supports

serialization, indexes [13], map/reduce operations, master-slaves replication [7], and

data sharding that are important for achieving horizontal scalability and high

availability of data [1, 5, 19]. Including indexes in MongoDB is an option available

for the database users [6, 7]. Using indexes decrease the data read time in both

virtual and physical server and help in locating data easily [6], because it stores index

into memory and leaves data on disks [8]. It also uses internal memory for storing the

working set to enable faster access to data [17].

MongoDB is made of collections that include documents. Documents contain

simple and complex structures like lists, arrays, documents, etc. [4, 10, 19, 17, 21]

with different data types content. Documents are structured as “field: value” [19] or

“key: value” [6]. Each document has an ID field [10] that is given automatically or

assigned by the user [1, 5]. It does not support the join but it has the reference and

embedding features [3, 7, 10, 17, 19]. Embedding means adding a document inside

another document. Reference means adding one or more fields of a document in

another document [19]. MongoDB includes rich data processing functions [13] like

creating and dropping a collection. When inserting the first record into your

database, the collection will be created automatically. The absence of dependences

between collections allowed safely deleting collections [5]. Inserting new data has no

constraints and is achieved by using one of the functions save or insert. More

functions are available to find data use the function find(), sort data use the function

sort(), remove data use the function remove(), and update data use the function

update() [5].

22

MonogDB provides rich document-based query language [13] that is applied

to a concrete document collection. The complexity of the query is related to the

number of collections involved, and the embedding level in the document. Filters,

projections, selections [19], aggregation [7] and many other operators to compare

and find data in a document exist in the language supported by the database [19]. The

aggregation operations for example can be divided into several phases including

$project, $wind, $unwind, $group, $match [8]. Developer’s skills are very important

to improve the performance and readability of the query program [19]. Also

developers have flexibility to choose any programming language to use with

MongoDB [5, 9, 15] because it consists of API calls, java scripts [6]; as the JSON

objects stored in MongoDB can be easily converted to javascripts objects in code [9];

and REST to query data [5]. MongoDB provides well query performance and

aggregation analysis [8].

There is no limit to embedding too many documents in one document, but

this process will increase the document size and will slow down the query [4].

23

Chapter 2: Experiment Implementation

2.1 Data Structuring

This section explores the different database structures used in the research.

First, we will explain in details the relational DB representation and then we will go

through the three different designs of the same data in Mongo database.

2.1.1 MySQL server DB structure

The sample DB used in the research is named Employee, which ERD is

shown in Figure 1. The ERD shows that the DB contains 5 tables with multiple

relationships and different types of relationships. Each department has many

employees and runs many projects. Every employee in a department might be

involved in more than one project in her/his department only. The many_to_many

relationship between project table and employee table is represented in the table

works_on. Employee table has a one_to_many relationship with child table. Primary

and foreign keys are indexes in all the tables. The relationships and number of

records inserted in each table are summarized in Table 1.

Figure 4: ERD for employee DB

24

Table name Type of
relationship

Relationship with
table

Number of records

Employee Many to one Department 2 million

Many to many Works_on

One to many Child

Department One to many Project 100 records

One to many Employee

Project Many to one Department 2 million

Many to many Works_on

Child Many to one Employee 40 millions record

Works_on Many to many Employee 11 millions record

Many to many Project

Table 1: MySQL tables details

The database was created through a java API and filled with random data

using the same API.

 2.1.2 Mongo DB structures

As MongoDB contains two types of relationships between their collections:

embedded and reference relationships, both of them are used in this research. Three

database structures were designed and will be explained in details in the coming

section. Different combinations of the those relationships are tested to find out which

is the best way to achieve best results of querying data in the term of time efficiency.

The first structure uses one collection. Data is represented using embedded

relationship. The second one has two collections with both embedded and reference

25

relationships. And the last one contains reference relationships between all the

collections.

 The database was created using the terminal window but creating all the

collections and filling them with data was through java API. It is important to

mention that the data used in all the collections is identical to the data stored in

MySQL tables.

2.1.2.1 Mongo Structure 1 (Fully embedded document)

 After studying the MySQL database design, we found that the best way to

represent all the data in one document is to embed all the data related to one

employee in a document called Employee. Employee document contains all the

information related to the employee. The department information in which she/he is

working is represented as an embedded document. The project details that the

employee is involved in are the second embedded document and her/his children

information as the third embedded document in the collection. Figure 5 shows

sample of the document employee, it shows a clear picture about the embedded

documents. The collection contains 2 million employee documents.

26

Figure 5: Employee document sample data

2.1.2.2 Mongo Structure 2 (Embedded and reference documents)

 This representation divides the data into two documents. The first document

is the Department document, and it contains information about departments and their

projects. Project information is represented as an embedded document in the

department collection. The second document is the employee document that contains

information about the employee, its department using the reference relationships,

projects she/he is involved in as a reference relationship as well, and the children

27

information as an embedded document. Figure 6 shows a sample of the documents

department and employee; it shows a clear picture about the embedded documents

and reference relationships. The department collection contains 100 documents and

the employee document has 2 million documents.

 Figure 6: Department and Employee documents sample data

28

Figure 6: Department and Employee documents sample data (cont.)

2.1.2.3 Mongo Structure 3 (All Reference documents)

This representation implements each table in MySQL database in a separate

collection. Each collection has a reference relationship with the other collections.

The first document, Department document doesn’t have reference relationship with

any other collection. The employee collection has a reference relationship with

department collection. The project collection has a reference relationship with

department collection. Child document has a reference relationship with employee

collection. The last collection works_on has a reference relationship with both

29

employee and project collections. Figure 7 shows a sample of the how data is

referenced in all of the five documents.

Figure 7: Reference relationship between 5 documents sample data

30

Figure 7: Reference relationship between 5 documents sample data (cont.)

31

Table 2 summarizes the collections used and number of documents in each

one of the mongo structures explained earlier.

Collection
name

Mongo Structure 1 Mongo Structure 2 Mongo Structure 3

Employee 2 millions 2 millions 2 millions

Department - 100 documents 100 documents

Project - - 1 million

Child - - 40 millions document

Works_on - - 5 millions document

Table 2: Mongo database structures details

2.2 Query Description

After creating the databases in both MySQL and Mongo and filling it with

data, five different types of queries were used to retrieve data. Different types of

queries were included with different levels of difficulty, the number of tables and

collections involved in retrieving the data and aggregation functions are used as well.

The 5 queries are explained in Table 3.

32

Query Number Description

1 • Select all information about the employees that
work in a certain department.

• Each department in the experiment has 20000
employees.

2 • Select all information about the employees
working in a certain project in a certain
department.

• The employee can work on different projects in
his department only.

3 • Find all the information about the projects where
an employee is working.

4 • Select all information about the projects in a
certain department.

• Each department in the experiment has 20000
projects.

5 • Select the employees who have a certain number
of children.

• Each employee has a maximum of 3 children.

Table 3: Queries description

 To get more accurate results, the average execution time of running the same

query 20 times on the same dataset was calculated, and to make be fair in calculating

the execution time in all the structures, no additional indexing for any structure were

added. MySQL database has primary key and foreign key as indexing fields and

mongo DB has the collection id as an index only.

33

Chapter 3: Results and Discussion

3.1 Data Query Results based on Database Structure

In this section, we will elaborate on the results that we obtained and

justify/explain the results.

3.1.1 Results of queries on MySQL database

The chart in Figure 8 below shows the time spent in executing the 5 queries

explained earlier. The chart shows that the time needed to retrieve all the data related

to one employee is very short because of using primary or foreign keys in each table;

it is about 1.10 parts of the second. While the last query that requires aggregation

took very long time 299.37 parts of the second, this result is accepted as the count

aggregation function for each employee is processed then a check to find if it meets

the condition given or not is executed. The three queries in the middle have more

conditions to be satisfied before retrieving data; the time needed to execute those

queries was very close to each other in average of about 67 parts of the second.

34

Figure 8: MySQL query results

3.1.2 Results of queries on Mongo database (Structure 1)

The chart in Figure 9 below depicts the time consumed in executing each one

of the 5 queries used in the research when data is presented in one Mongo collection

with embedded documents. The 3 embedded documents in the collection contain the

data related to the department, projects and children. Department and children are in

the same embedding level -first embedding level- and project is embedded in the

department document-second embedding level-.

About 2 parts of the second needed to execute the first 3 queries and the last

one as well. But for the fourth query where the data requested will be collected from

the embedded documents only, as the query will pass all the second embedding level

35

documents (project) to find all the projects related to each department (refer to table

3), it took longer time compared to the other queries.

Figure 9: MongoDB Structure 1 - query results

3.1.3 Results of queries on Mongo database (Structure 2)

The chart in Figure 10 below illustrates the time consumed in executing each

one of the 5 queries used in the research when data is presented in two Mongo

collection with embedded documents and reference documents. There is one

embedded document in each collection; employee collection contains children as an

embedded document and department collection has project as an embedded

document; in this structure and two reference documents in employee collection one

for the department and the other one for the projects.

36

All the queries execution in this structure used about 2 parts of the second.

Query 3 took more time as it retrieves data elated to an embedded document from the

two collections.

Figure 10: MongoDB Structure 2 - query results

3.1.4 Results of queries on Mongo database (Structure 3)

The chart in Figure 11 below shows the time consumed in executing each one

of the 5 queries used in the research when data is presented in five Mongo collection

with reference documents. Each document has a reference relationship with one or

more documents in the database.

It is clear from the chart that the execution time for the queries vary based on

which documents are used to find the requested data. The time needed to get data in

query 1 is very long, as it is required to access all the documents using the reference

37

variable involved in the query. Query 2 as well is quite long as it uses the reference

variables and many documents. Query 5 is using lookup function and the time is not

very short compared to the time of query 3 and 4. The fastest query to be executed is

query 3 because the query is collecting data from 3 collections only using the

reference keys employee id, project id and department id only.

R. Lawrence

Figure 11: MongoDB Structure 3 - query results

3.2 Data Query Results based on Query

In this section we will display the results of executing the same query on all

the database structure. The aim of doing this is to know which structure performs

better in terms of executing time.

38

3.2.1 Results of executing Query 1

The chart in Figure 12 below shows that MySQL database achieved the best

time when the query needs all the information about one employee as primary and

foreign keys are used to collect the data. The time is for structure 2 (two collections

with both embedded and reference documents) because there is no need to access

second level embedded document. For MonogDB structure 1 (one collection with

embedded documents), the time consumed is very close to structure 2. Regarding

MongoDB structure 3 the chart shows that executing this query will need about

101263.5 seconds, which means about 28 hours because of using the lookup

functions in all the data retrieval requests as explained before.

Figure 12: Query 1 run time results

3.2.2 Results of executing Query 2

The best time achieved in executing query 2 is with MongoDB structure 2; it

was about 1.92 parts of the second as shown in the chart in Figure 13. MonogDB

39

structure 1 execution time for query 2 was very close to MongoDB structure 2

execution time. A noticeable increase in the execution time of the same query in

MySQL structure, as the query will access projects and works_on tables to find

employee id then will get all the information related to that employee. All of the

three previous structures execution time was very short in compare with the

execution time of MongoDB structure 3 that reached about 24 hours to get the

results. The reason behind the very high execution time in structures 3 is the

reference relationship between the collections and the need to access all the

collections after finding the employeeID required.

Figure 13: Query 2 run time results

3.2.3 Results of executing Query 3

MySQL database structure recorded the worst time in executing query 3. The

time needed to retrieve data was about 65.95 parts of second refer to Table 3 for the

40

query description, the process will access the works_on table then the project table

and will use the id_employee, id_department, and id_project to collect all the

required data and this is no happening in the other structures as the design is

different. While MongoDB structures1, 2 and 3 results were close to each other as

what is displayed in Figure 14. We can conclude that any representation in

MongoDB is better that MySQL representation of data in executing this kind of

queries that does not rely on key data.

Figure 14: Query 3 run time results

3.2.4 Results of executing Query 4

The chart in Figure 15 shows the execution time of query 4 in the 4 different

database structures used in the research. It is obvious that MongoDB structure 1 is

not a good choice to execute this type of queries. MongoDB structure 2 is the best

structure for retrieving data according the query 4 requirements. The time needed in

41

MongoDB structure 3 was about 14.10 parts of the second, and MySQL structure

used almost 69 parts of the second to complete the same task as it collects data about

the project using project id and department id and then retrieves the department

information from the department table.

Figure 15: Query 4 run time results

3.2.5 Results of executing Query 5

It is very clear in the chart represented in Figure 16 that MongoDB structures

1 and 2 completed the task in much less time than MongoDB structure 3 and MySQL

structure. The time difference is very clear between the two groups. Even though

MongoDB structure 1 is better than structure 2 but both of them have close results.

42

While MySQL needed time to execute the query was very less compared to

MongoDB structure 3 but both of then used long time for this query.

Figure 16: Query 5 run time results

3.3 Final Findings

After discussing the results in the previous two sections 3.1 and 3.2 and

explaining in details each one of the data structures and how they act with different

types of queries. The chart in Figure 17 represents the average of the execution time

for all the structure. In comparison with MySQL database structure, the green bar

that represents the MongoDB structure 2 shows stable and much better execution

time for all the types of the suggested queries than MySQL results. MongoDB

structure 2 represents data in two collections with both one level embedded

document and reference documents. MongoDB structure 1 representation shows

better results than MySQL as well except for query 4 as it requires collecting data

from the embedded documents and this problem can be solved when using indexing

43

in embedded documents [6]. The last MongoDB structure, structure 3, requires

longer time than MySQL to execute the queries except query 3 and 4, but even

though the very long execution time for query 1 and 2 make it inconvenient to use

this representation instead of MySQL.

Figure 17: Summary of final results

As my research main objective is to find out which is the best way to

represent a complete SQL database in NoSQL. We have chosen MongoDB as

NoSQL database to represent MySQL database that contains 5 tables with different

relationships and millions of records.

 The research final output recommends any company that is willing to move

from SQL to NoSQL and has a big number of records stored in tables with different

types of relationships to represent data using MongoDB collections that include one

level embedded documents and reference relationships between the collections, as

44

this representation proved the most efficient time in executing different types and

levels of queries.

45

Chapter 4: Conclusion and Future Work

Data growth is one of the most significant issues nowadays. As a response to

this growth enterprises are moving towards using NoSQL databases instead of the

existing SQL database [20]. The main idea of this research came to find the best way

to represent the current SQL database in an enterprise with NoSQL database

specifically MongoDB.

4.1 Conclusion

In conclusion, a database that contains five tables with a variety of

relationships many-to-one, and many-to-many was used. Also the huge amount of

data stored in all the structures about 2 millions record/document. The research

compares clearly between the performance of retrieving data from different MongDB

representation of data and the result shows that in some cases using more than one

collection to represent huge data with complex relationships is better than keeping all

the data in one document.

After filling all the tables in the MySQL database with random data, the five

queries were executed 20 times and the average time was recorded for each query.

Then 3 different structures of MongoDB were designed to include all the different

relationships in MongoDB. The first structure has one collection with two levels of

embedding documents. The second one contains two collections with one level of

embedding document in both and reference relationship between them as well. The

third structure has five collections with only reference relationships between them.

After designing the new structures, they were filled with the exact data saved in

46

MySQL database to have fair results. And then the five queries were executed 20

times and the average time was recorded for each query.

In the research the results from three different perspectives were discussed as

follows: Firstly, compare all the result based on the structure type. Secondly,

compare the result of each query with the registered results of the other structures for

the same query. Lastly, comparing the average execution time of the queries results

for all the structures to find out that the best structure to implement when the

enterprise decides to move to NoSQL.

The research findings indicates that using two collections with one level of

embedding documents and reference relationship between the collections to

represent the current MySQL database because the execution time recorded in all the

queries was the least with no odd readings.

4.2 Future Work and Open Issues

In this research, the default indexing in both MongoDB and MySQL database

were used. The results in this research may change when using indexes in both

databases MongoDB and MySQL. Trying to include more tables in the database then

testing who it will affect the results will enrich the findings of this research. Those

two points can be a starting point for a new research that will help in deciding the

best NoSQL representation of SQL existing model.

One the important limitation that affected this research is maximum

document size in MongoDB. The maximum document size in MongoDB is 16

Megabytes [22]. This limitation will restrict the design of the mongo collection. For

example we failed to use the department as the main document and add all the other

47

data as embedded documents within this document due to this limitation of

MongoDB.

48

References

[1] T. Jia, X. Zhao, Z. Wang, D. Gong and G. Ding, "Model Transformation and
Data Migration from Relational Database to MongoDB," 2016 IEEE
International Congress on Big Data (BigData Congress), San Francisco, CA,
2016, pp. 60-67.doi: 10.1109/BigDataCongress.2016.16

[2] G. Zhao, Q. Lin, L. Li and Z. Li, "Schema Conversion Model of SQL Database
to NoSQL," 2014 Ninth International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing, Guangdong, 2014, pp. 355-362. doi:
10.1109/3PGCIC.2014.137

[3] G. Zhao, L. Li, Z. Li and Q. Lin, "Multiple Nested Schema of HBase for
Migration from SQL," 2014 Ninth International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing, Guangdong, 2014, pp. 338-343. doi:
10.1109/3PGCIC.2014.127

[4] Z. Wei-ping, L. Ming-xin and C. Huan, "Using MongoDB to implement
textbook management system instead of MySQL," 2011 IEEE 3rd International
Conference on Communication Software and Networks, Xi'an, 2011, pp. 303-
305. doi: 10.1109/ICCSN.2011.6013720

[5] A. Boicea, F. Radulescu and L. I. Agapin, "MongoDB vs Oracle -- Database
Comparison," 2012 Third International Conference on Emerging Intelligent Data
and Web Technologies, Bucharest, 2012, pp. 330-335. doi:
10.1109/EIDWT.2012.32

[6] J. S. van der Veen, B. van der Waaij and R. J. Meijer, "Sensor Data Storage
Performance: SQL or NoSQL, Physical or Virtual," 2012 IEEE Fifth
International Conference on Cloud Computing, Honolulu, HI, 2012, pp. 431-
438. doi: 10.1109/CLOUD.2012.18

[7] G. Zhao, W. Huang, S. Liang and Y. Tang, "Modeling MongoDB with
Relational Model," 2013 Fourth International Conference on Emerging
Intelligent Data and Web Technologies, Xi'an, 2013, pp. 115-121. doi:
10.1109/EIDWT.2013.25

[8] Lv, Q., & Xie, W, “A Real-Time Log Analyzer Based on MongoDB. In Applied
Mechanics and Materials” , Trans Tech Publications , Vol. 571, pp. 497-501,
2014.

[9] R. Lawrence, "Integration and Virtualization of Relational SQL and NoSQL
Systems Including MySQL and MongoDB," 2014 International Conference on
Computational Science and Computational Intelligence, Las Vegas, NV, 2014,
pp. 285-290. doi: 10.1109/CSCI.2014.56

49

[10] C. Győrödi, R. Győrödi, G. Pecherle and A. Olah, "A comparative study:
MongoDB vs. MySQL," 2015 13th International Conference on Engineering of
Modern Electric Systems (EMES), Oradea, 2015, pp. 1-6. doi:
10.1109/EMES.2015.7158433

[11] V. Guimarães et al., "A study of genomic data provenance in NoSQL document-
oriented database systems," 2015 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), Washington, DC, 2015, pp. 1525-
1531. doi: 10.1109/BIBM.2015.7359902

[12] M. G. Jung, S. A. Youn, J. Bae and Y. L. Choi, "A Study on Data Input and
Output Performance Comparison of MongoDB and PostgreSQL in the Big Data
Environment," 2015 8th International Conference on Database Theory and
Application (DTA), Jeju, 2015, pp. 14-17. doi: 10.1109/DTA.2015.14

[13] Y. Gu, S. Shen, J. Wang and J. U. Kim, "Application of NoSQL database
MongoDB," 2015 IEEE International Conference on Consumer Electronics -
Taiwan, Taipei, 2015, pp. 158-159. doi: 10.1109/ICCE-TW.2015.7216831

[14] S. Chickerur, A. Goudar and A. Kinnerkar, "Comparison of Relational Database
with Document-Oriented Database (MongoDB) for Big Data Applications,"
2015 8th International Conference on Advanced Software Engineering & Its
Applications (ASEA), Jeju, 2015, pp. 41-47. doi: 10.1109/ASEA.2015.19

[15] S. H. Aboutorabi, M. Rezapour, M. Moradi and N. Ghadiri, "Performance
evaluation of SQL and MongoDB databases for big e-commerce data," 2015
International Symposium on Computer Science and Software Engineering
(CSSE), Tabriz, 2015, pp. 1-7. doi: 10.1109/CSICSSE.2015.7369245

[16] C. H. Lee and Y. L. Zheng, "SQL-to-NoSQL Schema Denormalization and
Migration: A Study on Content Management Systems," 2015 IEEE International
Conference on Systems, Man, and Cybernetics, Kowloon, 2015, pp. 2022-2026.
doi: 10.1109/SMC.2015.353

[17] L. Stanescu, M. Brezovan and D. D. Burdescu, "Automatic mapping of MySQL
databases to NoSQL MongoDB," 2016 Federated Conference on Computer
Science and Information Systems (FedCSIS), Gdansk, 2016, pp. 837-840.

[18] A. Goyal, A. Swaminathan, R. Pande and V. Attar, "Cross platform (RDBMS to
NoSQL) database validation tool using bloom filter," 2016 International
Conference on Recent Trends in Information Technology (ICRTIT), Chennai,
2016, pp. 1-5. doi: 10.1109/ICRTIT.2016.7569537

[19] P. Gómez, R. Casallas and C. Roncancio, "Data schema does matter, even in
NoSQL systems!," 2016 IEEE Tenth International Conference on Research
Challenges in Information Science (RCIS), Grenoble, 2016, pp. 1-6. doi:

50

10.1109/RCIS.2016.7549340

[20] Liao, Y. T., Zhou, J., Lu, C. H., Chen, S. C., Hsu, C. H., Chen, W., ... & Chung,
Y. C., "Data adapter for querying and transformation between SQL and NoSQL
database," 2016 Future Generation Computer Systems, pp. 111-121.

[21] V. Anand and C. M. Rao, "MongoDB and Oracle NoSQL: A technical critique
for design decisions," 2016 International Conference on Emerging Trends in
Engineering, Technology and Science (ICETETS), Pudukkottai, 2016, pp. 1-4.
doi: 10.1109/ICETETS.2016.7602984

[22] "MongoDB Limits and Thresholds". (n.d.). Retrieved September 27, 2017, from
https://docs.MongoDB.com/manual/reference/limits/

[23] Prof. Dott-Ing. Roberto V. Zicari: "Introduction to ODBMS". Retrieved
September 27, 2017, from http://www.odbms.org/introduction-to-
odbms/definition/

[24] J.J. Simmins, P.T. Myrda & B.Taube, "Advanced utility analytics with object
oriented database technology," T&D Conference and Exposition, 2014 IEEE
PES, Chicago, IL, USA, 2014, pp. 1-5. doi: 10.1109/TDC.2014.6863346

	United Arab Emirates University
	Scholarworks@UAEU
	11-2017

	Migrating From SQL to NoSQL Database: Practices and Analysis
	Fatima Jamal Al Shekh Yassin
	Recommended Citation

	Microsoft Word - Fatima-Final-Thesis-updated.docx

		2018-05-05T09:08:24+0400
	Shrieen

