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Abstract

The nonlinear Dirac equation is a relativistic classical field theory that describes

the behavior of a system of self-interacting spinor fields. According to this theory, the

interactions among spinor fields are represented by additional Kerr-nonlinearity added

to the Dirac equation, which justifies and models the noticed solitonic behavior of the

systems.

There are various models of the nonlinear Dirac equation which differ from

each other in the factors taken into account in the modelling, especially the mode of the

coupling among the spinor fields as well as the nature of the system represented by the

model.

In this present thesis, a special form of the nonlinear Dirac equation (NLDE)

is considered, namely, the massive Thirring model (MTM) in (1+1)-dimensions, which

models the vector-vector coupling mode of interactions among spinor fields in con-

densed matter. Here, exact localized stationary solutions are obtained using analytical

methods. The physical properties of MTM and the corresponding conserved physical

quantities are discussed through developing the continuity equation of the current den-

sity together with evaluating explicitly the elements of the energy-momentum tensor,

which are then used to calculate some properties like charge and energy of the fields.

Also, the same analytical methods are used to find stationary exact solutions of another

model of NLDE, the Gross-Neveu model, which is of interest in high-energy physics.

Keywords: Nonlinear Dirac equation, Massive Thirring model, Gross-Neveu model,

Self-interacting spinor fields, Energy-momentum tensor, Solitonic behaviour, Exact lo-

calized solutions.
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List of Abbreviations and Notations

• NLDE stands for nonlinear Dirac equation, MTM for massive Thirring model

And MGNM for massive Gross-Neveu model.

• The letter i is the imaginary unit i =
√
−1.

• Partial derivatives ∂x =
∂

∂x , ∂xx =
∂ 2

∂x2 .

• All bold face symbols define vectors or higher-rank tensors.

• gµν is the metric tensor.

• Latin superscripts define contravariant spatial vectors and run from 1 to 3 (de-

pending on the dimensionality of the case in hand), whereas Greek superscripts

define contravariant vectors in the spacetime and rum from 0 to 3. The subscripts

define the corresponding covariant vectors.

• Einstein summation convention is implied, i.e. AµBµ implies summation on µ .

• γµ are the Dirac matrices while σ i are Pauli matrices.

• a∗ is the complex conjugate of a, AT and A−1 are the transpose and the inverse of

A, respectively.

• Ψ̄ = (Ψ∗)T γ0.
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Chapter 1: Foundations of the Nonlinear Dirac Equation (NLDE)

1.1 Introduction

A century is about to finish since the trials of describing notions of quantization in a gen-

eral settings are crowned to success by the formulation of the general quantum theory.

Although it has been developed in two different formalisms parallel to each other: The

old quantum theory, represented mainly by Schrödinger equation [1]; and the relativistic

one, mainly represented by Dirac equation [2]. The old theory gained more reputation

and acceptance in the early days, especially in the experimental fields of physics, chem-

istry and materials science. One reason was the fact that Schrödinger equation, together

with introduction of spin; were enough to predict much of the natural phenomena and

justify the outcomes of many experiments at that time. Another reason was the need

of relativistic quantum theory to more interpretation and even to modify the axioms so

that the way they describe phenomena could fit with relativity. Besides the fact that

relativistic quantum mechanics was compatible with the quantum field theory, which

was developed later; rather than with a system composed of a fixed number of particles.

Even after developing a consistent relativistic theory, the old quantum mechanics kept

its prominence due to the successful predictions in many fields of research.

Apart from all the achievements mentioned above of Schrödinger equation,

some other phenomena and experimental outcomes were still left at that time without

being described by a satisfactory model; particularly those related to nuclear and ele-
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mentary particle physics. In fact, there has been an evidence that such fields of research

have been in need of a relativistic formalism. Keep in mind also the advantage of Dirac

equation of predicting the spin as a property resulting naturally of the particles. More-

over, if quantization is to be imposed on electrodynamics; then the relativistic quantiza-

tion will be more suitable. So, it was reasonable to proceed with relativistic theory in

parallel with the old one. Even physicists realized from the beginning that both of the

formulations were promising and even inspiring for more development, while the Dirac

equation became the dominant theory in the fields of modern physics.

Theoretical representation of real systems often requires a modification of the

basic theory or sometimes introducing new terms to account for the special effects. The

latter ones could be an external field, extending from a single particle to many parti-

cles or the interactions among system’s components. Such effects become even more

dramatic in the relativistic regime and greatly modify the behavior of the system. Let

us take a system of interacting electrons as an example. The modelling of two spin-1
2

interacting electrons can be done with the classical theory with the aid of perturbations.

Given that the interactions are small enough so that the coupling parameter is too small

to be defined as a perturbation. But if such interactions between the electrons is greatly

affecting the behavior of the systems, which results in a large coupling constant, then

the results of perturbation methods are found to be significant from the observed mea-

sures. Even the attempts to extend the Schrödinger equations to the form of a nonlinear

equation (NLS) was not a good option for many situations, where high energies are in-

volved and the behavior of the systems is expected to alter the relativistic limits. So,

the modelling of such system was realized to be possible by representing the electrons
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with an interacting spinor fields with a nonlinear representations. Within this realm, The

Dirac together with the field theories constitute the only satisfactory representations of

such system, where the result was a set of coupled Dirac equations with an additional

Kerr-nonlinearity terms and, consequently, leading to the development of the nonlinear

Dirac equation (NLDE). Those nonlinearities are considered to be an indication or a

signature for a solitonic behavior of the interacting fields.

The NLDE had been developed in different settings since the fifties of the last

century [4, 5, 6, 7] and extended to describe various interacting quantum systems in

many fields ranging from condensed matter [32] to high energy physics [8, 9, 10] in

addition to describing different modes of coupling [7]. Even it could model a system of

interacting fields for particles with zero rest mass like neutrinos [6].

All the points mentioned above worth at least a brief discussion as they con-

stitute the considerations behind which NLDE had been developed. This chapter is

devoted to this purpose. Next section shows the assumptions that led to the linear Dirac

equation. The third section presents the development of NLDE and lists some of its

forms available in the literature.

1.2 The linear Dirac equation

The Dirac equation represents the first accepted theory where quantum mechanics meets

relativity. In addition to its implementation of a satisfactory modelling of relativistic

quantum mechanical systems and a natural theoretical realization of particle’s spin, it

provided a deeper understanding of the sub-atomic world and the representation of their

interactions by introducing new concepts like spinors, particle-like fields and antiparti-
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cles. This section shows how the Dirac equation [11, 12, 13] had been developed in a

covariant form depending on the axioms of quantum mechanics and special relativity.

The starting point is the relativistic energy of a free particle

−E2 +P2 +m2 = 0, (1.1)

where we adopt the natural units (c = h̄ = 1), E is the particle’s total energy, P

denotes the spatial momentum and m is the mass.

Using the correspondence principle, where each observable can be replaced with

it’s corresponding operator, and employing the four-vector notation

pµ = (E,P) = (i ∂

∂ t ,−i∇∇∇) = (i ∂

∂x0
,−i∇∇∇) = i ∂

∂xµ
= i∂ µ ,

were µ = 0,1,2,3, Eq.1.1 becomes

(∂µ∂
µ +m2)Ψ = 0. (1.2)

This last equation is the Klein-Gordon equation[11] for a free particle. It in-

cludes a second time-derivative, which has caused major difficulties when trying to

analyze it and find its solutions. One of them is that it results in a non-positive defi-

nite probability density. Yet another one comes from the possibility of getting negative

energies as well as positive ones for free particles. These difficulties has led Dirac [2]

to think of another alternative equation, a one that is first order in space and time and
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hermitian at the same time, i.e. of the form

(
iγµ

∂µ −m
)

Ψ = 0, (1.3)

this is the covariant form of Dirac equation1. γµ are some unknowns which

need to be determined so that Eq.1.3 is consistent with the relativistic energy-momentum

relation (Eq.1.1) and hence results in the same energy eigenvalues that result from

the Klein-Gordon equation (Eq.1.2). To fulfil this requirement, apply the operator

−(iγµ∂µ +m) on Eq.1.3:

(
γ

µ
∂µγ

ν
∂ν +m2)

Ψ = 0. (1.4)

If Eq.1.4 is to be equivalent to eq.1.2, then

γµ∂µγν∂ν = γµγν∂µ∂ν = ∂ µ∂µ = ηµν∂ν∂µ , or

1
2
{γµ ,γν}= η

µν , (1.5)

this last equation results in the following conditions on γµ :

(
γ

0)2
= 1, (1.6)(

γ
i)2

= −1; i = 1,2,3 (1.7)

γ
µ

γ
ν = −γ

ν
γ

µ ; µ 6= ν (1.8)

1In the covariant form, spatial and time derivatives are multiplied by entities of the same kind. it is
suitable in studying some symmetries of the equation. Other forms (not discussed here because they are
out of the scope of this work) can be found in many texts on relativistic quantum mechanics [11, 14]
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These last equations show that γµ are not just numbers. Instead they are traceless

square matrices obeying Clifford algebra [15, 16]. γ0 is hermitian while the other γ i are

anti-hermitian [14]. For them to be large enough to realize this kind of algebra, they

have to be at least 4× 4. So, Solutions Ψ(xxx, t) of the Dirac equation are at least four-

dimensional vectors if it is to be represented in (3+1)-dimensional spacetime.

There is no unique choice of γµ . Here is the most common representation of

them

γ
0 =

 111 000

000 −−−111

 γ
i =

 000 σ i

−σ i 000

 , (1.9)

where 000 is a 2×2 null matrix, 111 is a 2×2 identity matrix. σ i are the Pauli spin

matrices

σ
x =

 0 1

1 0

 σ
y =

 0 −i

i 0

 σ
z =

 1 0

0 −1

 . (1.10)

The interpretation of the solutions of Dirac equation has come up with some

surprising results [13] that changed the visualization of subatomic world, like accept-

ing the existence of antiparticles, and the concept of spinor field to represent particles.

Physicists were ready to adopt those dramatic changes in their thoughts about matter,

particularly upon the successful quantitative representation of some experimental ob-

servations that were unresolved until that time (late twenties of the last century) like the

fine structure of the Hydrogen atom and the description of some properties that were

already known of atomic and subatomic matter, like spin, without the need to any extra



7

principles. So, the Dirac equation has became a satisfactory Lorentz-invariant quantum

theory of matter.

There is too much yet can be said about the Dirac equation and its solutions and

interpretations. But that will not be closely related to our present field of discussion.

Interested readers can check the bibliography [11, 13, 14, 12, 2, 17].

1.3 The NLDE

In this section, we proceed from the linear Dirac equation to NLDE and hence reach to

the equations that acquire the interest of this work. To make the transition reasonable,

at least from the logical point of view, I choose first to present a brief discussion of the

issues which have led to the development of NLDE; namely, the interactions among the

spinor fields. Then, I list some of the main forms of NLDE from literature to have the

reader be aware of the fact that NLDE can be defined in various settings that differ from

each other in the considerations taken into account, including the mode of coupling

among the interacting fields and whether the particle representations of those fields are

assumed to be massless or have some finite mass.

1.3.1 Interactions among spinor fields

The few decades followed the formulation of Dirac equation have witnessed a huge

theoretical advances in physics. There are many reasons behind these advances. First,

the new concepts introduced by the equation have encouraged theorists to make fur-

ther investigations searching for more obvious image about the nature of matter and

its behavior. Second, some experiments have been conducted in the thirties of the last

century on nuclear radiation have resulted in observations lacked to a reasonable ex-
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planation. They needed some new satisfactory modelling more than the single-particle

Dirac equation. The path to such new modelling has appeared with the explanation of

the beta-deacy presented by Fermi in 1933 [18] (Known as the Fermi theory of beta

decay), in which he could justify that phenomenon by proposing an interactions among

four spinor fields.

The above considerations has encouraged physicists to look for an extension to

the Dirac equation that can cover a wider range of natural phenomena and real systems

by including the interactions of the spinor fields in the new model. It was realized since

the thirties of the last century that the interactions among the relativistic particles with

intrinsic spin can have a limiting effect in the behavior of the systems and the reason for

many experimental observations.

Starting from that point, various paths were followed and many different formu-

lations were developed, where each of them had been built on its own different grounds

and assumptions. Their aim was to develop a unified field theory of matter and its

interactions. Ivanenko suggested in 1938 [19] a nonlinear generalization to the Dirac

equation

[γµ pµ −m+λ
(
Ψ̄Ψ

)
]Ψ(x) = 0, (1.11)

where pµ is the four-momentum operator, Ψ is the spinor wave function and

Ψ̄ = Ψ†γ0. Ψ† is the hermitian conjugate of Ψ.

Heisenberg [20, 21] together with his collaborators [22] tried in a series of pub-

lished papers to set a general unified theory by quantizing the field. They went for the
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idea that any complete theory of interacting particles has to include nonlinearities to

account for the self-interactions. Heisenberg [21, 23] proposed the equation

γµ

∂Ψ

∂xµ

= AγνΨ

(
Ψ

†
γνΨ

)
, (1.12)

where A is a constant parameter with the dimension of square of a length.

On the other hand, Finkelstein et al. [24, 25], Schiff [26] and Malenka [27] have

proposed a classical nonlinear spinor-field theory, where they also tried to find exact and

approximate solutions [23] . Thirring [4] suggested that a nonlinear model of interaction

can be soluble if it is formulated in one rather than three dimensions. He proposed in

the same reference a Lagrangian density for the spinor field in (1+1)-dimensions (one

time dimension and one spatial dimension) in which the self-interaction among spinor

fields is represented by the term

L ′ = λ Ψ̄ΨΨ̄Ψ, (1.13)

where Ψ in the last equation represents a wave function with components rep-

resenting the interacting spinor fields. Where this form of the Lagrangian density was

suggested by Ivanenko [19, 28] but in three spatial dimensions.

The above nonlinear representations of self interactions among particles has

formed the basis for various models of NLDE. Yet other formulations were developed

assuming different paths and considerations in modelling interactions occur in nature,

particularly in the fields of high energy physics, which are out of the scope of this thesis.
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Interested readers can check the bibliography [13, 29].

1.3.2 Models of the NLDE

The attempts to develop a unified theory of matter through the nonlinear models men-

tioned in the previous discussion, i.e. Eqs. 1.11 and 1.12, have faced much difficulties

[23, 30] inspite of some interesting inferences. Some of those problems were the inabil-

ity to include gravitation, and the disagreement of some expected values of masses and

charges with experiments. Furthermore, there was a problem in solving these equations

completely due to geometrical complications [4]. These problems led the subsequent

research to the direction of looking for a solvable models that can describe specific sys-

tems in condensed matter and particle physics. The start in such point of view came by

Thirring [4, 31] who suggested that reducing the dimensionality of the equations can

greatly simplify the problem and result in a solvable model. He depended on the (1+1)-

dimensional Lagrangian density that he obtained in Eq. 1.13 to develop a set of coupled

nonlinear equations describing the self interactions of spinor fields. Another form of

NLDE was derived by M. Soler [5], where he showed that an equation of the form

iγµ
∂µΨ−mΨ+2λ

(
Ψ̄Ψ

)
Ψ = 0, (1.14)

can have solutions interesting to physics.

Few years later, D. Gross and A. Neveu [6] used the Lagrangian density

LΨ = Ψ̄
(
iγµ

∂µΨ
)
+

1
2

g2 (
Ψ̄Ψ

)2
, (1.15)
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to describe interacting spinor fields in high-energy physics.

Another model of NLDE had been derived [32] by L.H. Haddad and L.D. Carr

representing Bose-Einstein condensates in a honeycomb optical lattice. They started

from a second-quantized Hamiltonian for a weakly interacting Boson gas to conclude a

massless (2+1)-dimensional NLDE equation

(
iσ µ

∂µ −UΨ̄AΨA−UΨ̄BΨB
)

Ψ = 0, (1.16)

where Ψ =

(
ΨA ΨB

)T

is a field composed of the components ΨA and ΨB,

the fields at the two sites A and B (degenerate sublattices) in the lattice unit cell, σ i

(i = 1,2,3) are Pauli matrices, U is the interaction energy and A and B are two constant

matrices.

A.D. Alhaidari [7] has obtained a three-parameter massive NLDE in (1+1)-

dimensions by applying variational techniques on a nonlinear self-interacting spinor

Lagrangian. His model reads

i∂tψ+ =mψ++∂xψ−

+
(
α+|ψ+|2 +α−|ψ−|2

)
ψ++αW

(
ψ+ψ

∗
−+ψ

∗
+ψ−

)
ψ−,

(1.17)

i∂tψ− =−mψ−−∂xψ+

+
(
α−|ψ+|2 +α+|ψ−|2

)
ψ−+αW

(
ψ+ψ

∗
−+ψ

∗
+ψ−

)
ψ+,

(1.18)

where ψ±(x, t) are the two components of the spinor field and m is the rest mass
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of the particle. α± = αV ±αS, where αV , αSand αW are three dimensionless parameters

defining the strengths of the different modes of coupling.

With introducing the three parameters in the last model, A.D. Alhaidari could

generalize the model to cover and include some of the previously derived models and

define new modes of coupling by setting the right values of those parameters. For

example, the vector-vector coupling in the previous Eqs. 1.17 and 1.18 (which can

be obtained by setting αS = αW = 0 and hence α+ = α− = αV ) is equivalent to the

massive Thirring [4] model (MTM)

i∂tψ+ = mψ++∂xψ−+α+

(
|ψ+|2 + |ψ−|2

)
ψ+, (1.19)

i∂tψ− = −mψ−−∂xψ++α+

(
|ψ+|2 + |ψ−|2

)
ψ−, (1.20)

whereas the scalar-scalar coupling which can be obtained by setting αV = αW =

0 and hence α+ = −α− = αS, is equivalent to the massive Gross-Neveu [6] model

(MGNM)

i∂tψ+ = mψ++∂xψ−+α+

(
|ψ+|2−|ψ−|2

)
ψ+, (1.21)

i∂tψ− = −mψ−−∂xψ+−α+

(
|ψ+|2−|ψ−|2

)
ψ−. (1.22)

In addition to the covering of the MTM and MGNM, Eqs. 1.17 and 1.18 can

be used to define other new modes of coupling. Setting αW to zero to get a general-

ized combination of the MTM and MGNM, while setting αW = 0 and αS =±αV gives

respectively the spin symmetric and pseudo-spin symmetric models [7].

In addition to the above mentioned models, various other models had been de-

rived starting with different considerations and techniques. Worth noting here that apart
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from the variety of the formulations, all the models have the same degree of nonlinearity,

the Kerr-type nonlinearity, which has the solitonic behavior [33].

Starting from the next chapter, the focus of this thesis is devoted to MTM as

defined in Eqs. 1.19 and 1.20.
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Chapter 2: Conserved Quantities, Symmetries and Applications of
NLDE

This chapter discusses some of the important physical properties of NLDE that can

be deduced from its mathematical structure, in addition to a brief summary of recent

experiments that has detected a behavior of some physical systems which can be best

modelled with one of the forms of NLDE. The first section derives the continuity equa-

tion. The conservation of physical quantities is then concluded based upon the analysis

of the components of the energy-momentum tensor. The second section considers the

symmetries of the equations. Throughout these first two sections, the discussion is fully

devoted to the MTM form of NLDE as defined by Eqs. 1.19 and 1.20

i∂tψ+ = mψ++∂xψ−+α+

(
|ψ+|2 + |ψ−|2

)
ψ+, (2.1)

i∂tψ− = −mψ−−∂xψ++α+

(
|ψ+|2 + |ψ−|2

)
ψ−. (2.2)

After that, the chapter is concluded with an abstract about some recent investi-

gations of real systems in which the NLDE is found to be the most appropriate model

for their experimental results.
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2.1 The continuity equation and the energy-momentum tensor

2.1.1 The continuity equation for MTM model

The starting point is to write the (1+1)-dimensional MTM (Eqs. 2.1 and 2.2) in a com-

pact form

iγµ
∂µΨ−mΨ−α+

(
Ψ̄γ

0
Ψ
)

γ
0
Ψ = 0, (2.3)

where Ψ =

(
ψ+ ψ−

)T

have the components ψ±, the two interacting spinor

fields, and Ψ̄ = (Ψ∗)T .γ0, γµ (µ = 0,1) are the two-dimensional Dirac matrices

γ
0 =

 1 0

0 −1

 γ
1 = i

 0 1

1 0

 . (2.4)

The “adjoint" of Eq. 2.3, i.e. the equation for Ψ̄ have the form

−i∂µΨ̄γ
µ −mΨ̄−α+

(
Ψ̄γ

0
Ψ
)

Ψ̄γ
0 = 0. (2.5)

Using this notation, the current vector jµ can be defined as

jµ = Ψ̄γ
µ

Ψ, (2.6)
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where the components

j0 = Ψ̄γ
0
Ψ

=

(
ψ∗+ ψ∗−

)
.

 1 0

0 −1


2

.

 ψ+

ψ−


= ψ+ψ

∗
++ψ−ψ

∗
−

= |ψ+|2 + |ψ−|2,

(2.7)

and

j1 = Ψ̄γ
1
Ψ

=

(
ψ∗+ ψ∗−

)
.

 1 0

0 −1

 .i

 0 1

1 0

 .

 ψ+

ψ−


= i
(
ψ
∗
+ψ−−ψ+ψ

∗
−
)
,

(2.8)

Define respectively the density ρ(x, t) and the current j(x, t) of the self-interacting

spinor fields

ρ(x, t) = j0(x, t) = |ψ+|2 + |ψ−|2 (2.9)

j(x, t) = j1(x, t) = i
(
ψ
∗
+ψ−−ψ+ψ

∗
−
)
. (2.10)

It can be easily shown that jµ is conserved. First, re-write Eqs. 2.3 and 2.5
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respectively in the forms

γ
µ

∂µΨ = −i
[
mΨ+α+

(
Ψ̄γ

0
Ψ
)

γ
0
Ψ
]
, (2.11)(

∂µΨ̄
)

γ
µ = i

[
mΨ̄+α+

(
Ψ̄γ

0
Ψ
)

Ψ̄γ
0] , (2.12)

use the last two Eqs. 2.11 and 2.12 to expand ∂µ jµ

∂µ jµ = ∂µ

(
Ψ̄γ

µ
Ψ
)

= Ψ̄∂µ (γ
µ

Ψ)+
(
∂µΨ̄

)
γ

muΨ

=−iΨ̄
[
mΨ+α+

(
Ψ̄γ

0
Ψ
)

γ
0
Ψ
]
+ i
[
mΨ̄+α+

(
Ψ̄γ

0
Ψ
)

Ψ̄γ
0]

Ψ

= 0.

(2.13)

The conservation of jµ is recognized as a continuity equation. It can be written

in the equivalent forms

∂µ jµ = ∂t j0 +∂x j1

= ∂t
(
ψ+ψ

∗
++ψ−ψ

∗
−
)
+ i∂x

(
ψ
∗
+ψ−−ψ

∗
−ψ+

)
= 0,

(2.14)

or

∂tρ(x, t)+∂x j(x, t) = 0, (2.15)

which is the mathematical statement of the conservation of the current density

ρ(x, t).



18

2.1.2 A wave equation for the field density

A condition on the quantity ∂ν jµ , where ν 6= µ can be derived for the MTM (Eqs. 2.1

and 2.2), in addition to the continuity equation ∂µ jµ = 0 defined above in Eqs. 2.13

and 2.14. A direct algebraic method is employed this time. The purpose from getting

the second condition is to use it, together with the continuity equation, to obtain a wave

equation for the density ρ(x, t) defined in Eq. 2.9.

The starting point is the three-parameter model of NLDE derived by A.H. Al-

haidari [7], Eqs. 1.17 and 1.18. Set αW = 0 to get a combined model of MTM and

MGNM

i∂tψ+ = mψ++∂xψ−+
(
α+|ψ+|2 +α−|ψ−|2

)
ψ+, (2.16)

i∂tψ− = −mψ−−∂xψ++
(
α−|ψ+|2 +α+|ψ−|2

)
ψ−, (2.17)

These last two equations involve the MTM (set α+ = α−) and the MGNM (set

α+ = −α−) in addition to other models defining different modes of couplings [7, 102]

(refer to subsection 1.3.2).

The adjoint of Eqs. 2.16 and 2.17 are respectively

i∂tψ
∗
+ = −mψ

∗
+−∂xψ

∗
−−

(
α+|ψ+|2 +α−|ψ−|2

)
ψ
∗
+, (2.18)

i∂tψ
∗
− = mψ

∗
−+∂xψ

∗
+−

(
α−|ψ+|2 +α+|ψ−|2

)
ψ
∗
−, (2.19)

multiply Eq. 2.16 by −ψ∗−, Eq. 2.17 by ψ∗+, Eq. 2.18 by ψ− and Eq. 2.19 by
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−ψ+ to yield respectively the following four equations:

−iψ∗−∂tψ+ =−mψ
∗
−ψ+−ψ

∗
−∂xψ−

−
(
α+|ψ+|2 +α−|ψ−|2

)
ψ
∗
−ψ+,

(2.20)

iψ∗+∂tψ− =−mψ
∗
+ψ−−ψ

∗
+∂xψ+

+
(
α−|ψ+|2 +α+|ψ−|2

)
ψ
∗
+ψ−,

(2.21)

iψ−∂tψ
∗
+ =−mψ−ψ

∗
+−ψ−∂xψ

∗
−

−
(
α+|ψ+|2 +α−|ψ−|2

)
ψ−ψ

∗
+,

(2.22)

−iψ+∂tψ
∗
− =−mψ+ψ

∗
−−ψ+∂xψ

∗
+

+
(
α−|ψ+|2 +α+|ψ−|2

)
ψ+ψ

∗
−,

(2.23)

add Eqs. 2.20 through 2.23 to get upon simplifying

i∂t
(
ψ
∗
+ψ−−ψ+ψ

∗
−
)
=−∂x

(
|ψ+|2 + |ψ−|2

)
− [2m+(α+−α−)(|ψ+|2−|ψ−|2)]

(
ψ
∗
+ψ−+ψ+ψ

∗
−
)
.

(2.24)

Write the last equation in a more compact form by using Eqs. 2.9 and 2.10 and
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introducing the new notation

µ(x, t) = |ψ+|2−|ψ−|2 (2.25)

τ(x, t) = ψ
∗
+ψ−+ψ+ψ

∗
−, (2.26)

to end with the following condition

∂t j(x, t)+∂xρ(x, t) =−[2m+µ(x, t)(α+−α−)]τ(x, t), (2.27)

which can be written in terms of the components of jµ as

∂t j1 +∂x j0 =−[2m+µ(x, t)(α+−α−)]τ(x, t). (2.28)

This last equation states the required condition on ∂ν jµ ,ν 6= µ . Now we are

ready to derive a wave equation for ρ(x, t). Differentiate Eq. 2.15 with respect to t to

get:

∂ttρ(x, t)+∂xt j(x, t) = 0, (2.29)

and Eq. 2.27 with respect to x to get:

∂tx j(x, t)+∂xxρ(x, t) =−∂x{[2m+β (x, t)(α+−α−)]τ(x, t)}, (2.30)

Now subtract Eq. 2.30 from Eq. 2.29 with keeping in mind that ∂xt j(x, t) =
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∂tx j(x, t), we end with the equation

∂ttρ(x, t)−∂xxρ(x, t) = ∂x{[2m+µ(x, t)(α+−α−)]τ(x, t)}, (2.31)

to get a wave equation for the density ρ(x, t). It holds for both of the MTM,

MGNM and any other model with αW = 0 in Eq. 1.17. As a special case of interest, for

the MTM, where α+ = α−, the density wave equation becomes

∂ttρ(x, t)−∂xxρ(x, t) = ∂x[2mτ(x, t)], (2.32)

2.1.3 Energy-momentum tensor for NLDE

Now we turn to the determination of some conserved quantities in a system composed

of self-interacting spinor fields described by MTM. The field representation of such sys-

tems (a consequence of the equivalence between energy and mass in relativity, and the

dual nature of subatomic entities according to quantum mechanics) implies the consid-

eration of the Lagrangian density together with the energy-momentum tensor [12, 34]

as the best tools to specify the conserved quantities.

The lagrangian density L of the field defined by Eq. 2.3 (or Eq. 2.5 as well)

can be written as

L =
i
2
(
Ψ̄γ

µ
∂µΨ−∂µΨ̄γ

µ
Ψ
)
−mΨ̄Ψ− α+

2
(
Ψ̄γ

0
Ψ
)(

Ψ̄γ
0
Ψ
)
, (2.33)

from which the MTM in the form of Eq. 2.3 results as the Euler-Lagrange
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equation

∂µ

[
∂L

∂
(
∂µΨ̄

)]− ∂L

∂ Ψ̄
= 0. (2.34)

The form of L defined in Eq. 2.33 can be simplified by doing a trick to termi-

nate the derivatives, γµ∂µΨ and
(
∂µΨ̄

)
γµ , from its expression by replacing them with

their equivalent forms defined in Eqs. 2.11 and 2.12, respectively. Applying this trick

would give L the form

L =
i
2

Ψ̄{−i
[
mΨ+α+

(
Ψ̄γ

0
Ψ
)

γ
0
Ψ
]
}

− i
2
{i
[
mΨ̄+α+

(
Ψ̄γ

0
Ψ
)

Ψ̄γ
0]}Ψ

−mΨ̄Ψ− α+

2
(
Ψ̄γ

0
Ψ
)(

Ψ̄γ
0
Ψ
)
,

(2.35)

Which simplifies to

L =
α+

2
(
Ψ̄γ

0
Ψ
)(

Ψ̄γ
0
Ψ
)
. (2.36)

Now we develop an expression for the energy-momentum tensor T µν for MTM.

For a complex field Φ, T µν is defined as [34]

T µν =
∂L

∂
(
∂µΦ

)∂
ν
Φ+

∂L

∂
(
∂µΦ̄

)∂
ν
Φ̄−gµνL , (2.37)

where the metric gµν is equivalent to γ0. For the MTM (Eqs. 2.3 and 2.5), it
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becomes

T µν =
i
2
(
Ψ̄γ

µ
∂

ν
Ψ−∂

ν
Ψ̄γ

µ
Ψ
)
−gµν α+

2
(
Ψ̄γ

0
Ψ
)(

Ψ̄γ
0
Ψ
)
. (2.38)

There are here two points worth mentioning regarding the significance of T µν .

First, each element of it represents a physical quantity [12] of the system. In general,

any element T µν represents the momentum flux (pressure) across a surface element σµν .

Specifically for our (1+1)-dimensional system described by MTM, T 00 is equivalent to

the Hamiltonian (energy) density H

H =
i
2
(
Ψ̄γ

0
∂tΨ−∂tΨ̄γ

0
Ψ
)
+

α+

2
(
Ψ̄γ

0
Ψ
)(

Ψ̄γ
0
Ψ
)
, (2.39)

where the contravariant derivatives are switched into covariant ones using the

relation

∂
ν = gνλ

∂λ . (2.40)

The element T 01 defines the momentum flux ∂xP in the x-direction

T 01 =− i
2
(
Ψ̄γ

0
∂xΨ−∂xΨ̄γ

0
Ψ
)
= ∂xP, (2.41)

whereas the element T 10 represents the time derivative of momentum flux ∂txP

T 10 =
i
2
(
Ψ̄γ

1
∂tΨ−∂tΨ̄γ

1
Ψ
)
, (2.42)
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and the last element, T 11, represents the momentum flux, or the pressure

T 11 =− i
2
(
Ψ̄γ

1
∂xΨ−∂xΨ̄γ

1
Ψ
)
+

α+

2
(
Ψ̄γ

0
Ψ
)(

Ψ̄γ
0
Ψ
)
. (2.43)

Let us now turn to the second point. It is about the way of analyzing T µν in

purpose to reveal the existence of any external forces affecting the considered system.

In the case of absence of any external forces, T µν must be conserved, which is the

present situation of our system composed of free self-interacting spinor fields. The

mathematical assertion of this requirement can be achieved by verifying that ∂µT µν = 0.

Here is a proof for that property.

Write ∂µT µν in terms of ∂µL

∂µT µν =
i
2

∂µ

(
Ψ̄γ

µ
∂

ν
Ψ−∂

ν
Ψ̄γ

µ
Ψ
)
−gµν

∂µL , (2.44)

Using the symmetry of gµν (gµν = gνµ ) together with the property stated in Eq.

2.40, one can write

gµν
∂µ = gνµ

∂µ = ∂
ν , (2.45)

apply it together with commutativity of derivatives (∂µ∂ ν = ∂ ν∂µ ) in expanding

the form of ∂µT µν in Eq. 2.44 as

∂µT µν =
i
2
[
(∂µΨ̄

)
γ

µ
∂

ν
Ψ+ Ψ̄∂νγ

µ
∂µΨ

−∂
ν
(
∂µΨ̄

)
γ

µ
Ψ−∂

ν
Ψ̄γ

µ
∂µΨ]−∂

νL ,

(2.46)
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use Eqs. 2.11 and 2.12 to replace ∂µΨ̄γµ and γµ∂µΨ in Eq. 2.46 by their

corresponding expressions and simplify to get

∂µT µν =
α+

2
{−
(
Ψ̄γ

0
Ψ
)

Ψ̄γ
0
∂

ν
Ψ+ Ψ̄∂

ν
[(

Ψ̄γ
0
Ψ
)

γ
0
Ψ
]

+∂
ν
[(

Ψ̄γ
0
Ψ
)

Ψ̄γ
0]

Ψ−
(
∂

ν
Ψ̄
)[(

Ψ̄γ
0
Ψ
)

γ
0
Ψ
]
}−∂

νL ,

(2.47)

or

∂µT µν =
α+

2
[
−
(
Ψ̄γ

0
Ψ
)

∂
ν
(
Ψ̄γ

0
Ψ
)
+3
(
Ψ̄γ

0
Ψ
)

∂
ν
(
Ψ̄γ

0
Ψ
)]
−∂

νL

=
i
2

∂
ν
[(

Ψ̄γ
0
Ψ
)(

Ψ̄γ
0
Ψ
)]
−∂

νL

= 0,

(2.48)

which proves the conservation of T µν .

2.1.4 Integrals of the conserved quantities

In all throughout this section, many physical quantities were defined for the self-interacting

spinor fields and their conservation was proved. The integration of those quantities re-

sults in turn in the evaluation of a corresponding conserved physical properties of the

involved system. Here we summarize the integrals that define some of these properties

as a quick reference, because we will come back to them in chapter 4, to evaluate the

properties that can be deduced from the exact solutions we solve for.

The first of these properties is the total energy of the system E. It can be defined

as the integral of the Hamiltonian density H that we already obtained in Eq.2.39

E =
∫ +∞

−∞

H (x, t)dx, (2.49)
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whereas the current jµ , that is defined in 2.6 and proved to be conserved in 2.13,

can be used to obtain the conserved total charge Q by the integration of j0

Q =
∫ +∞

−∞

j0(x, t)dx. (2.50)

The total momentum P is represented as the integration of T 01 that is defined in

Eq. 2.42

P =
∫ +∞

−∞

T 01(x, t)dx. (2.51)

All of the above integrals were done in one spatial dimension according to the

dimensionality of the MTM considered in this work.

2.2 The symmetry-breaking nature of NLDE

One of the major properties of MTM is the fact that it violates Lorentz symmetry. That

will be evident by applying a Lorentz transformation on the Lagrangian density. Con-

sider the Lorentz transformation

xµ → x′ν = Λ
ν
µxµ , (2.52)

where xµ is a vector in the spacetime and Λν
µ is a matrix representation of the

Lorentz transformation for vectors. On the other hand, the spinor Ψ and its adjoint Ψ̄
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transform respectively as

Ψ→Ψ
′ = Λ 1

2
Ψ, (2.53)

Ψ̄→ Ψ̄
′ = Ψ̄Λ 1

2

−1, (2.54)

where Λ 1
2

is a Lorentz representation for spinors [35]. Let us find the transfor-

mation of the Lagrangian density defined in Eq. 2.36

L →L ′

→ α+

2
(
Ψ̄
′
γ

0
Ψ
′)(

Ψ̄
′
γ

0
Ψ
′)

→ α+

2

(
Ψ̄Λ 1

2

−1
γ

0
Λ 1

2
Ψ

)(
Ψ̄Λ 1

2

−1
γ

0
Λ 1

2
Ψ

)
,

(2.55)

using the property

Λ 1
2

−1
γ

µ
Λ 1

2
= Λ

µ

ν γ
ν , (2.56)

one finds that

L ′ =
α+

2
(
Ψ̄Λ

0
νγ

ν
Ψ
)(

Ψ̄Λ
0
ν ,γ

ν
Ψ
)

(2.57)

This last result shows that MTM violates Lorentz symmetry since L ′ is not

equivalent to L .

Relativistic symmetry breaking has became a common notion in many of the

nonlinear interaction theories. Some theorists justify that notion by considering self-
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interactions as local properties that not necessarily satisfy Lorentz invariance, while

others assume that those interactions have to be included in a general relativistic formu-

lation instead of special relativity.

For more on the symmetries of NLDE, the reader can check [32].

2.3 NLDE and the recent advances in condensed matter

Inspite of the fact that the nonlinear extensions of Dirac equation had been developed as

early as only few years upon the development of Dirac equation itself, those nonlinear

models have waited up until the last decade to get realized directly in experiments. They,

of course, have been used during all these past decades in justifying and interpreting

many experimental observations, especially in high energy physics, but what we seek

here is a direct experimental investigation of real systems behaving according to NLDE.

That time-gap between theoretical settings and experimental realizations can be

justified. The fundamental interactions that occur among particles on the sub-micro

level are usually not detectable on the macro-scale, due to the fact that when consid-

ering large ensembles of particles, other properties of matter that add up, like mass,

become responsible for the appearance of other dominant forces, like gravitation; while

almost all interactions on the particle scale cancel out each other and hence vanish on

the large scale. So, it has became evident at the present that detecting fundamental in-

teractions and explaining natural phenomena among particles comprise a big challenge

to encounter. On the other hand, Physicists were able a long time ago to push charged

particles into relativistic limits in the lab. But that was accomplished inside a strong

external fields, and again, those external fields in turn overcome and terminate any in-
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teraction among those particles. Then, the difficulty was to generate a relativistic system

of controllable and trackable self-interacting particles without the need to plunge that

system inside a strong field.

The last two decades have witnessed an experimental advances, particularly in

condensed matter and material science, that helped to get over the previous difficul-

ties and to create real systems where the relativistic behavior together with the self-

interactions can be investigated in a relatively simple experiments and instrumentations.

In this section, two such experimental fields are briefly considered, namely, the electron

transport in graphene [36] and the Bose-Einstein condensates [32], which are analogous

to each other and even have been developed in-parallel so that the results of one field of

them has pushed towards new results of the other. Also considered here a presentation

of the results of a study on waveguide arrays [37, 38, 10, 39, 40] that shows that waves

can behave according to NLDE.

2.3.1 Electron transport in graphene

In 1947 [41], physicists have started to argue the possibility of producing a two dimen-

sional material from graphite as they have predicted theoretically extraordinary proper-

ties to make significant advances in industry. Until appropriate technical methods have

developed, particularly those stem from nanoscience, the experimental trials to create

such material have started in the early 90’s [42] with achieving as low as 150 to 200 lay-

ers of atoms. In 2004, A. K. Geim, K. S. Novoselov and co-workers have succeeded in

producing graphene with only few layers of carbon, the achievement upon which Geim

and Novoselov were honoured the 2010 Nobel prize in physics.
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Then, (later on became) Nobel prize winners proceeded to the investigation of

the electrical properties of graphene through a series of published works in 2005 through

2007 [43, 44, 36] , where they ended up with a surprising observations and results. The

major one was related to the electron transport, where they found that the electron’s

speed in graphene is comparable to the effective speed of light in graphene (around

106m/s), which means that a relativistic behavior of those electrons can be attained and

investigated at a relatively low speeds. As expected, the data and observations have

shown a behavior of the electrons as a massless (also had been expected theoretically

before as a result of the linear dispersion relation [45]) fermions that can be described

by the Dirac equation rather than the Schrödinger equation.

The work mentioned above has triggered a successive series of further exper-

imental investigations in many research institutes on the electrical characteristics of

graphene, focusing especially on the noticeably distinctive “ballistic" electron trans-

port [46] and asserting the previously obtained results in addition to concluding that

the interactions among electrons plays an important role that has to be involved in any

modelling of that phenomenon together with introducing also an electron-phonon inter-

action in order to explain the noticed significant effect of temperature on the behavior

of the electrons.

After almost a decade of the work on developing a satisfactory modelling to de-

scribe those interactions, no obvious complete theory has been adopted until this present

time. There is a large amount of data and many factors need to be included in any mod-

elling theory. Physicists in the field are following different paths [47, 48, 49, 50, 45],

ranging from introducing correction factors to anticipating the principles of relativistic



31

classical and quantum field theories. A heavy work is still in progress.

2.3.2 Bose-Einstein condensation in hexagonal lattice

In analogy to the electron behavior in the hexagonal lattice structure of graphene dis-

cussed in the last section, it was verified experimentally [32, 51, 52] that when a boson

gas is brought into the state of Bose-Einstein condensation and configured in a hexago-

nal optical lattice, its constituents show a behavior that can be described by NLDE. It has

became evident that the interactions among the bosons significantly modulate their be-

havior. Few years ago [53], L.H. Haddad and L.D. Carr have investigated theorectically

a system involving Bose-Einstein condensates of a boson gas in a honeycomb optical

lattice, and derived an NLDE (Eq. 1.16) for the boson gas with Kerr-nonlinearity, then

deduced numerical solutions for that NLDE they derived.

On the other hand, C. Kam and R. Liu [54], and A. Cappellaro and co-workers

[56], have considered a nonlinear extension to the Schrödinger equation as a model

to represent interactions among the constituents of the boson gas in the Bose-Einstein

condensate. So, again, the variety of the factors considered, together with the significant

variations among the results at different conditions, have reflected a variation in the

formulations among the published works. Actually, the work still continues in this

relatively new field.

2.3.3 NLDE in waveguide arrays

Another style is being adopted in studying and predicting the behavior of NLDE systems

and self-interactions of spinor fields by simulating them with waveguide arrays [38, 10,

40]. That way of modelling physical systems has became common [39] in studying
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solitary wave dynamics in lattice structures.

T. X. Tran, S. Longhi, and F. Biancalana [38] have presented a study of the non-

linear effects of NLDE and the behavior of Dirac solitons by exposing a system of binary

waveguide arrays numerically and analytically. In another article, A. Marini, S. Longhi

and F. Biancalana [10] analyzed a coupled-mode equations to model the propagation of

binary waveguide arrays with a modulated refractive index, as a simulation of a NLDE

representing a system in high-energy physics; namely the neutrino oscillations. Their

model has enabled them to consider the two cases of interacting and non-interacting

neutrinos. Within the same field, J. Cuevas-Maraver [40] and co-workers have studied

a NLDE by visualizing it as the continuum limit of a binary waveguide array.

The findings of the above optical models and the similar works can greatly help

to provide a basis for further direct theoretical and experimental investigation of systems

described by NLDE.
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Chapter 3: Exact Techniques of Solving Nonlinear Evolution
Equations

3.1 Introduction

The current understanding of natural phenomena implies obviously the realization of

the nonlinear science to be vital to a vast range of theoretical and applied fields in

mathematics, physics and engineering. Its importance to physicists is enhanced by the

invention of many fundamental processes, especially during the last century, that are

represented by nonlinear systems of equations. For instance, The explanation of the

mechanism of beta decay in the thirties of the last century has came up with a nonlinear

model in order to describe the Fermi four-spinor interaction theory. Another example

can be taken from the solid state physics. The linear dispersion equation has failed

to predict the right values of the heat capacity of solids, whereas the model that is

recognized to fit well with the practically known values is the cubic nonlinear dispersion

equation.

The general notion in scientific community is that the natural phenomena are

represented by linear models. All the known fundamental laws of nature are described

by linear mathematical formulations. But those fundamental laws can tell nothing about

any interactions between the system constituents. If such interactions have an evident

effect on the behavior of the system, then that effect must be taken into account while

developing the model, which can be achieved by introducing nonlinear coupling terms

to the original fundamental equation and hence converting it into a nonlinear equation.
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Than notion has been already observed in many fields ranging from dynamics [59], to

optics [60, 61, 62], to condensed matter and to high energy physics. In some special

situations, those effects can be defined as a perturbation, with keeping in mind that

such a technique fails when the coupling parameter is not small enough to perform such

perturbation. The alternative in this case is to handle the nonlinear equation itself.

Finding an exact solution for a nonlinear equation can be (and in fact this is the

case in many situations) a serious challenge. The source of that challenge lies mainly in

the absence of a thorough classification of them, and then no general technique is iden-

tified for a specific classification of the equations. They do not obey the superposition

principle, and so, no general solution can be identified. They can have -if they do exist-

many different solutions. Even the solution of a nonlinear initial or boundary value

problem can considerably change in form if one changes the initial or boundary condi-

tions. Add to that, the specific exact technique that is being developed to solve a given

nonlinear equation, will not necessarily work successfully for other equations, without

at least modifying the procedure. So, generally speaking, the techniques of solving non-

linear equations exactly are usually related to a specific equation, rather than to a family

of equations.

On the other hand, The study of nonlinear systems has enriched the natural

sciences with new fields, like chaos and soliton theory, in addition to the development

of a variety of the numerical approximation and exact analytical techniques, as well

as the techniques of verifying the integrability of equations and the stability of their

solutions.

Since the work in the whole thesis is concerned with exact analytical solutions
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of NLDE, we devote our discussion to exact techniques, although one can find a great

deal of numerical and approximation techniques. In the next section we present a quick

review of the methods that we adopt in the next chapter when we discuss the solutions

of NLDE. Readers interested to know more about other techniques can find detailed

discussions in the bibliography [33, 63, 64].

3.2 Lax pair and Darboux transformations

This section presents the formulation of one of the very widely employed methodologies

for analyzing nonlinear evolution equations, namely, the Lax pair formulation. Apart

from its importance that it gained upon leading to a successful exact solving of many

renowned equations, like the nonlinear Schrödinger equation (NLS) [65] and the Ko-

rteweg de-Vries equation (KDV) [66], we are giving this discussion as a basis for our

work in the next chapter when we find the Lax pair for NLDE. Also in this section,

we present the technique of finding exact solutions by using the Darboux transforma-

tions, which can be thought of as one of the possible choices to adopt as a technique of

obtaining exact solutions form the Lax pair.

3.2.1 Lax formulation

In 1968, Peter Lax [67] proposed that a given nonlinear evolution equation can be related

with some linear spectral problem. He suggested a spectral problem of the form

L φ = λφ (3.1)

∂tφ = A φ , (3.2)

where L and A are two linear operators in the auxiliary function φ(x, t,λ ).
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λ is a complex spectral parameter. In order to simplify the treatment, he imposed a

restriction on λ to be independent of x, i.e. to be either a constant or a function in

time only. With this restriction, he could conclude a condition imposed on the operators

in the above spectral problem. That condition, which is known as Lax condition or

compatibility condition, can be understood as the already known requirement of the

commutativity of the derivative (i.e. ∂xt = ∂tx). But inspite of its simplicity, it has

led to a very useful condition as we show below. Let us first derive that compatibility

condition. Differentiate both sides of Eq. 3.1 with respect to time

∂t (L φ) = ∂t (λφ)

→ (∂tL )φ +L ∂tφ = (∂tλ )φ +λ∂tφ

→ (∂tL )φ +L A φ = (∂tλ )φ +λA φ ,

(3.3)

or

{∂tL +[L ,A ]}φ = (∂tλ )φ , (3.4)

where [L ,A ] :=L A −A L is the commutator of L and A . If we choose to

consider λ to be independent of time

{(∂tL )+ [L ,A ]}φ = 0 ;∂tλ = 0. (3.5)

Eqs. 3.4 and 3.5 represent the compatibility condition or the Lax condition

for the integrability of the spectral problem defined by Eqs. 3.1 and 3.2. This condi-
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tion comprises the direct link between the spectral problem and the nonlinear evolution

equation we want to solve. What one needs is to find the two operators L and A as

defined in Eqs. 3.1 and 3.2 in such a way that their Lax condition is verified by the

validity of the evolution equation.

For a more clarification, we mention the great work that has inspired Lax while

developing this formulation. One year earlier -1967- [66], Gardner, Green, Kruskal and

Miura have considered the KDV equation

∂tu−6u∂xu+∂xxxu = 0, (3.6)

where they made a connection between the solutions of the above equation and

those for a linear spectral problem. According to Lax, he generalized their idea to the

formulation defined above in Eqs. 3.1 and 3.2. He reconsidered the spectral problem

for the KDV equation according to his generalization and defined the operators L and

A as

L φ = (∂xx−u)φ = λφ (3.7)

A φ = [4∂xxx−6u∂x−3(∂xu)]φ = ∂tφ . (3.8)

Let us show that the KDV equation is equivalent to the compatibility condition

for the operators defined in Eqs. 3.7 and 3.8

∂tL =−∂tu, (3.9)
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and for L A

L A = 4∂xxxxx−10u∂xxx−15(∂xu)∂xx

+
(
6u2−12(∂xxu)∂x

)
+(3u∂xu−3∂xxx) ,

(3.10)

while for A L

A L = 4∂xxxxx−10u∂xxx−15(∂xu)∂xx

+
(
6u2−12(∂xxu)∂x

)
+(9u∂xu−4∂xxx) ,

(3.11)

so, evaluating the expression ∂tL +[L ,A ] gives

∂tL +[L ,A ] =−(∂tu−6u∂xu+∂xxxu) , (3.12)

which shows that the validity of KDV equation, Eq. 3.6 implies the validity of

the compatibility condition in Eq. 3.5.

Now, upon finding the Lax pair for a given nonlinear equation, which represents

the corresponding linear spectral problem, one starts looking for a solutions to that

spectral problem by following one of the techniques known in the literature, or even

to develop another technique according to the nature of the problem. Regarding the

repeatedly used exact techniques in literature, one can check for the inverse scattering

transform (IST) [33], which has been used first to solve NLS equation [65]. It can be

considered as the nonlinear version of Fourier transform. Another technique that proved

its power in solving some of the equations is the Darboux transformation, which is to

be discussed in the last part of this present section. It is a special case of the more general



39

Bäcklund transformation [76, 77]. There are various other techniques in the literature,

most of them had been developed within the last few decades, although some of them

are based upon mathematical theories existed since the 19th century. The interested

reader is forwarded to the bibliography [33, 63, 64].

In the occasion of talking about Lax pair in the literature, and in order to have

reader be familiar with some terms that are frequently used, it worths mentioning that

the solution of nonlinear equation (that one seeks from the whole story and denoted

as u(x, t) in the above Lax formulation) is some times known as the potential of the

spectral problem.

We conclude this discussion with some remarks. First, there is no general struc-

tural method to construct the Lax pair. If one checks for them in the literature, one

will find a very big variety. Some of them rely upon algebraic procedures [33], others

involve the use of the relatively modern mathematical theories like groups, Lie algebras

and manifolds [68]. Even the algebraic procedures are very different from each other

in almost every single article. The way that a practitioner follows depends on his style

and on the nature of the equation. Second, although the Lax pair had been successfully

obtained for many of the equations, still many more are still without a Lax pair until

this moment inspite of the attempts to calculate it. There is no such a test to confirm a

priori whether a given equation has a Lax pair. Third, a common sense has appeared that

the successful calculation of the Lax pair for a given equation is thought of as a strong

evidence that the equation is square-integrable. This is not a theory, but it is of special

concern in physics since the integrable equations are of special importance due to the

physical meaning they could possess. Some equations are verified to have a Lax pair
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but they don’t have even a solution, others had been solved completely with physically

acceptable solutions without having a Lax pair. The last note, if one could find a Lax

pair for a given equation, one is likely able to find another ones for the same equation.

In other words, a given equation can have in general many Lax pairs. There is more

than a Lax pair for a given equation.

In the next part of the section we discuss a more general form of the Lax pair;

constructed [33] by Ablowitz, Kaup, Newell and segur in 1974, based on Lax’s formu-

lation itself and on a successful work [65] done by Zakharov and Shabat (in 1972) in

solving exactly NLS equation.

3.2.2 Matrix form of the Lax pair

According to the generalization done by Ablowitz and his coworkers, a spectral problem

can be written in the form

∂xΦ = UΦ (3.13)

∂tΦ = VΦ, (3.14)

where Φ is a n-dimensional vector. U and V are n-dimensional square matrices.

The compatibility condition for this form can be derived by ensuring the require-

ment that ∂xtΦ = ∂txΦ

∂x (VΦ) = ∂t (UΦ)

→ (∂xV)Φ+V∂xΦ = (∂tX)Φ+U∂tΦ

→ (∂xV)Φ+VUΦ = (∂tU)Φ+UVΦ

, (3.15)



41

or

∂tU−∂xV+[U,V] = 0. (3.16)

The matrices U and V are also called Lax pair. This formulation written above

had been first applied on the NLS equation

i∂tψ +∂xxψ +2σ |ψ|2ψ = 0, (3.17)

where σ = ±1 is a constant parameter. q and r are two complex potentials for

the spectral problem. Zakharov and Shabat have defined the matrices U and V as

U =

 iλ iq

ir −iλ

 (3.18)

V =

 2iλ 2− iqr 2iλq+∂xq

2iλ r−∂xr −2iλ 2 + iqr

 , (3.19)

then applied them in the compatibility condition, Eq. 3.16, so they got

i∂tr+∂xxr+2qr2 = 0 (3.20)

i∂tq+∂xxq−2qr2 = 0, (3.21)

choosing q = ±r∗ gives the two different cases σ = ±1 respectively of NLS

Eq. 3.17. After that, they used the technique of inverse scattering transform (IST) to

derive exact solutions. About two decades later [71], V. B. Matveev and A. M. Salle

have considered the above spectral problem of the NLS equation using the Darboux
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transformation, where they could find a series of multisoliton solutions, and hence they

presented the advantage of that technique in obtaining a series of solutions as well be

discussed in the next and last part of this section.

3.2.3 Darboux transformations

Following to the construction of the spectral problem (the Lax pair) defined by Eqs.

3.13 and 3.14 is the stage of finding its solutions (if they do exist), because the solution

of that spectral problem involves the determination of its potential, ψ(x, t), which is

the solution of the original evolution equation we want to solve from the beginning.

Solving such a problem can be challenging more than what it may seem. Even the

procedure of the solution is almost always tedious and lengthy. Various techniques [64]

are already developed to handle such spectral problems. Our interest here is to present

a brief discussion of the formulations and tools to be used in the next chapter, which

include the method of Darboux transformation.

Let us borrow some historical notes [77] in order to have the reader be aware

of the logic that has guided to the technique of Darboux transformation in its form

adopted in this thesis. The origin starts in 1882, when Darboux [74] has considered

the covariance of Sturm-Liouville problems under gauge transformations and derived

a transformation formula that generates a second solution from a first already-known

one. His formulation waited for almost 70 years, until Crum [75] constructed an it-

erated Darboux transformations for the Sturm-Liouville problem. In 1975, Wadati et

al. adopted Crum’s method to solve some integrable nonlinear evolution equations and

generate multi-soliton solutions. Another transformation technique was developed in

parallel to Darboux transformation, namely Bäcklund transformation, which also had
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been developed in 1882 by Bäcklund in differential geometry as a method to define

pseudospherical surfaces with constant negative Gaussian curvatures, and then adopted

in the seventies of the last century to find solutions of nonlinear equations.

The strength of Darboux and Bäcklund transformations become very obvious in

nonlinear equations, since such equations can have infinitely many solutions, which can

basically be constructed using iterative transformations. That justifies why both of the

above transformations have waited for almost seven decades until the development of

soliton theory in the course of analyzing nonlinear partial differential equations.

Now we develop the mathematical formulation of Darboux transformation. The

spectral problem defined in Eq. 3.13 can be generalized [71] according to the form

∂xΦ = ∑
n

N(n)

∑
k=1

UknΦMk
n +

N

∑
j=0

V jΦΛ
j, (3.22)

where Φ is a m×m matrix, Λ and Mn are diagonal matrices so that

Λ =diag.(λ1, ...,λm),

Mn =diag.((λ1−an)
−1, ...,(λm−an)

−1),

and N(n)≤ n.

It can be proved [71, 73, 77] that the above spectral problem, Eq. 3.22 is covari-

ant under the transformation

Φ[1] = ΦΛ−σΦ, σ = Φ1Λ1Φ
−1
1 , (3.23)
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(with Φ1 is some known fixed solution of Eq. 3.22 at a given specified Λ1) i.e.

Φ[1] is a solution of the spectral problem

∂xΦ[1] = ∑
n

N(n)

∑
k=1

Ukn[1]Φ[1]Mk
n[1]+

N

∑
j=0

V j[1]Φ[1]Λ j, (3.24)

Given that the transformed coefficients Ukn[1] and V j[1] satisfy the following

conditions

VN [1] = VN , (3.25)

VN−k[1] = VN−k +
k

∑
j=1

[VN−k+ j,σ ]σ j−1;k = 1, ...,N (3.26)

UN(n),n[1] = σnUN(n),nσn
−1, (3.27)

UN(n)−k,n[1] = σn{UN(n)−k,n +
k

∑
j=1

[UN(n)−k+ j,n,σn
−1]}σn

−1 (3.28)

k = 1,2, ...,N(n)−1, σn = σ −an. (3.29)

The definition of Darboux transformation according to Eq. 3.23 can be applied

to get a new solution Φ[1] given that: the Lax pair is obtained for the evolution equa-

tion in hand and extended to the form of Eq. 3.22, in addition to having some known

solution Φ1 together with its fixed matrix of parameters Λ1. This known solution can

be considered as a set of column eigenfunctions φk corresponding to the eigenvalues λk.

The Darboux transformation can be defined in equivalent different settings and assump-

tions, we adopt here in this section the formulation that will be employed in chapter four

to solve MTM. The reader can check the bibliography for more details and other forms

[71, 73, 76, 77].
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Chapter 4: Exact Analytical Solutions of NLDE

4.1 Introduction

Now we reach the point of being ready to discuss the solutions obtained for NLDE

after the preliminary material discussed in the previous chapters. We start with a sur-

vey from literature for the solutions of NLDE that had been derived before, in order to

show the current status of the progress in solving NLDE. That will be covered in sec-

tion 2. Section 3 shows a complete derivation of a stationary exact localized solutions

for MTM and MGNM models, while section 4 derives a Lax pair for MTM, and then

applies a Darboux transformation on that obtained Lax pair to obtain the same solutions

done already before using analytical techniques. The chapter is then concluded with a

discussion of the physical properties that can be inferred from the obtained solutions,

including a calculation of the conserved quantities which comprise the components of

the current vector and energy-momentum tensor identified in section 2.1.

4.2 A survey of the solutions in the literature

Before proceeding to the solutions obtained within the work on this thesis, where I find

it as an essential step to do is to present a brief recap of the work which has been done

so far in the aim of finding solutions of some of the NLDE models. The motivation here

is the tremendous work (both in quantity and in diversity of the techniques) that many

theorists and researchers teams have done in this topic.

The huge work done in the attempts to solve NLDE can be justified in many
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ways. First, the early nonlinear models of unified field theory of matter and proposed

mainly by Heisenberg [20, 21, 30] and his coworkers had run into difficulty as they

resulted in a diverging integrals [78]. So, it was necessary at that time to resolve that

problem in any models (namely the NLDE models) replacing the unified theory in prac-

tical fields of research. Second, as discussed in the previous chapters, the NLDE had

been defined in different settings and considered whenever self-interacting systems are

being involved in the fields of modern theoretical and applied physics, and its solutions

can reveal much of the mystery about the behavior of such systems. Even the recent

advances in experimental condensed matter has added more importance to the study of

NLDE as well as the NLS model. Third, The Kerr nonlinearity included in NLDE mod-

els has converted them into a challenging problems to solve. That point in particular

explains the diversity of the techniques and methods that one can find in the literature

in solving NLDE models.

After all, the published work on solving NLDE is too vast to be covered in one

section. Here we present specifically chosen works that show the techniques adopted so

far. The reader is forwarded to the references of the works to be mentioned below for a

deeper inspection.

The existence of localized solutions for NLDE had been targeted in many ar-

ticles. Maria J. Esteban and Eric Séré [85, 86] proved the existence of some NLDE

equations using general variational techniques. M. Balabane [82, 83, 80, 79, 84] and

coworkers have proved the existence of infinitely many stationary states for NLDE.

Thomas Bartsch and Yanheng Ding [87] proved, using variational methods, the exis-

tence of infinitely many geometrically different solutions of some classes of NLDE.
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The stability of solutions had been extensively discussed by J. Werle [88, 89],

who applied variable initial conditions on NLDE (and on nonlinear Klein-Gordon equa-

tion as well) to obtain restrictions which end with stable localized solutions. Further-

more, Pierre Mathieu and T.F. Morris [90] showed an existence of conditions for a

localized stationary solutions of a general class of NLDE under the requirement that the

nonlinearity approaches zero faster than the field itself.

Numerical solutions of NLDE can be found in the work of J. Xu, S. Shao, and

H. Tang [94, 95] as well as in that of N. Bournaveas and G. E. Zourarisn [93]

Among the notable successes in obtaining exact solutions is that done by S. Y.

Lee [96] et al., who have defined a classical Lagrangian density for interacting massive

fermions in (1+1)-dimensions. They proved that the energy-momentum tensor vanishes

for such a model and concluded that it have to possess exact stationary solutions. They

used direct analytic methods to obtain and write explicitly the solutions for different

modes of interactions. L. H. Haddad , C. M. Weaver and L. D. Carr [53] found ana-

lytical and numerical solutions for a massless NLDE model. F. Cooper, A. Khare, and

coworkers [97, 98, 99, 100, 101, 101] have considered the NLDE in a series of papers,

where they provided an extensive analysis of different models, including the derivation

of analytic stationary solutions and discussing their stability. U. Al Khawaja [102] has

derived analytic solutions for NLDE in the cases of spin symmetric and pseudo-spin

symmetric modes of interactions. Some of the derived solutions were localized while

others were oscillatory.
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4.3 New stationary solutions of MTM and MGNM

In this section, we derive new exact solutions of MTM (Eqs. 1.19 and 1.20) and MGNM

(Eqs. 1.21 and 1.22). Analytic methods are employed here to find stationary localized

solutions of the form

ψ+(x, t) = φ+(x)eiθ+(t), (4.1)

ψ−(x, t) = φ−(x)eiθ−(t), (4.2)

where φ+(x), φ−(x), θ+(t), θ−(t) are all real functions to be determined up to a

constant factor dependent on initial and boundary conditions. Within the framework, all

through this section, all the constant factors resulting from integrations will be scaled to

zero since we are not considering a specific system.

There is something that can be done to help us have an idea about the form of

the above four functions and hence reduce the ambiguity in them; which is to apply the

above forms of the solutions in the continuity equation (Eq. 2.15) and in the condition

on the expression ∂ν jµ ,ν 6= µ identified in Eq. 2.27.
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4.3.1 Conditions imposed by the conservation of current

Apply the solution forms defined in Eqs. 4.1 and 4.2 in Eqs. 2.9, 2.10, 2.25 and 2.26 to

evaluate respectively ρ(x, t), j(x, t), µ(x, t) and τ(x, t)

ρ(x) = φ
2
+(x)+φ

2
−(x), (4.3)

j(x, t) = 2φ+(x)φ−(x)sin[θ+(t)−θ−(t)], (4.4)

µ(x) = φ
2
+(x)−φ

2
−(x), (4.5)

τ(x, t) = 2φ+(x)φ−(x)cos[θ+(t)−θ−(t)]. (4.6)

Apply the above forms in the continuity equation 2.15

∂x [2φ+(x)φ−(x)sin[θ+(t)−θ−(t)]] = 0, (4.7)

which means that at least one of the following requirements must be satisfied:

φ+(x)φ−(x) is a constant independent of x, φ+(x) is reciprocal to φ−(x), or sin[θ+(t)−

θ−(t)].

The first option is excluded since it results in a non-localized wave solutions,

which is irrelevant to the physical systems. The second option means that the localiza-

tion of one of them leads to a second blowing up function and then it is also excluded. It

remains for us to adopt the third option, which is equivalent to the requirement that the

phase functions θ+(t) and θ−(t) are equivalent to each other or differ by multiples of π .

This last requirement can result in a behavior of a physical system. For simplicity, let us

assume that they are equivalent to each other and further, restrict the discussion to sys-
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tems with energy equivalent to λ and hence θ+(t) = θ−(t) =−λ t. So, the components

of the spinor field become

ψ+(x, t) = φ+(x)e−iλ t , (4.8)

ψ−(x, t) = φ−(x)e−iλ t , (4.9)

With the recognition of the last requirement, some of the previous forms will

update. One major of them is that the current j(x, t) identically vanishes. Let us list all

of the forms down for a quick reference

ρ(x) = φ
2
+(x)+φ

2
−(x), (4.10)

j = 0, (4.11)

µ(x) = φ
2
+(x)−φ

2
−(x), (4.12)

τ(x) = 2φ+(x)φ−(x). (4.13)

Now let us see whether any other modification or relation could result from the

condition on ∂ν jµ ,ν 6= µ which is implied by Eq. 2.27. Applying the above forms in it

would yield

d
dx

ρ(x) =−[2m+µ(x)(α+−α−)]τ(x). (4.14)

Now we are ready to proceed to the second stage together with the results and

forms concluded so far.
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4.3.2 Solutions of MTM using analytical methods

This part of the section is devoted to MTM. Apply the forms of ψ±(x, t) defined in Eqs.

4.8 and 4.9 in the MTM Eqs. 1.19 and 1.20

φ+(x)[m−λ +α((φ+(x))2 +(φ−(x))2)]+φ
′
−(x) = 0, (4.15)

φ−(x)[m+λ −α((φ+(x))2 +(φ−(x))2)]+φ
′
+(x) = 0, (4.16)

and multiply equation 4.15 by 2φ−(x) and equation 4.16 by 2φ+(x) yield

2φ+(x)φ−(x)
[
m−λ +α

(
φ

2
+(x)+φ

2
−(x)

)]
+2φ−(x)φ ′−(x) = 0,

(4.17)

2φ+(x)φ−(x)
[
m+λ −α

(
φ

2
+(x)+φ

2
−(x)

)]
+2φ+(x)φ ′+(x) = 0.

(4.18)

The last two equations can be replaced with another yet equivalent set of equa-

tions. Add Eqs. 4.17 and 4.18 one time, and subtract Eq. 4.17 from 4.18 respectively

another time to get

4mφ+(x)φ−(x)+
d
dx

[
φ

2
+(x)+φ

2
−(x)

]
= 0, (4.19)
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4φ+(x)φ−(x){−λ +α[φ 2
+(x)+φ

2
−(x)]}

− d
dx

[φ 2
+(x)−φ

2
−(x)] = 0.

(4.20)

It is easy to see that the last two equations can have simpler form if they can be

written in terms of ρ(x) and µ(x) and eliminate φ±(x) from the system with Noting that

2φ+(x)φ−(x) =
√

ρ2(x)−µ2(x)

2m
√

ρ2(x)−µ2(x)+ρ
′(x) = 0, (4.21)

2
√

ρ2(x)−µ2(x)(−λ +αρ(x))−µ
′(x) = 0, (4.22)

where the prime (′) means a first derivative. This last system can be decoupled.

From equation 4.21: 2
√

ρ2(x)−µ2(x) = −ρ ′(x)/m. Use it to remove the square root

and its constituents from equation 4.22 then simplify

−λρ
′(x)+αρ(x)ρ ′(x)+mµ

′(x) = 0 (4.23)

this last equation can be directly integrated to give

−λρ(x)+
α

2
ρ

2(x)+mµ(x) =C (4.24)

where C is a constant of integration. Since we are not handling any special

system, we can scale C to zero and proceed in the solving. So, let us solve equation 4.24
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for µ(x) then square it with assuming C = 0

µ
2(x) =

(
α

2m
ρ

2(x)− λ

m
ρ(x)

)2

, (4.25)

but from equation 4.21

µ
2(x) = ρ

2(x)− (ρ ′(x))2

4m2 , (4.26)

then, we end with the following equation in the function ρ(x) only

ρ
2(x)− (ρ ′(x))2

4m2 =

(
α

2m
ρ

2(x)− λ

m
ρ(x)

)2

, (4.27)

re-write the last equation for ρ ′(x)

ρ
′(x) =±ρ(x)

√
4m2− (αρ(x)−2λ )2, (4.28)

which can be solved analytically and completely. It has two different solutions:

One of them is valid for λ = m and the other one holds for λ 6= m:

4.3.3 CASE I: λ = m

In this case, direct integration of equation 4.28 gives the solution:

ρ(x) =
4m
α

(
1

4m2x2 +1

)
, (4.29)
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we have directly scaled the constant of integration to zero. Now apply the last

expression in equation 4.24 to solve for µ(x)

µ(x) =
4m
α

[
4m2x2−1

(4m2x2 +1)2

]
, (4.30)

use equations 4.10, 4.12, 4.29 and 4.30 to solve for φ±(x):

φ+(x) = ±
√

ρ(x)+µ(x)
2

=

√
m
α

4mx
4m2x2 +1

, (4.31)

φ−(x) = ±
√

ρ(x)−µ(x)
2

=

√
m
α

2
4m2x2 +1

, (4.32)

where the ± sign in front of the square root in the last two equations means that

both of the signs are solutions given that the chosen sign is the same for both of the

functions. So, one ends with the final solutions

ψ+(x, t) =

√
m
α

4mx
4m2x2 +1

e−imt , (4.33)

ψ−(x, t) =

√
m
α

2
4m2x2 +1

e−imt , (4.34)

which corresponds to a localized single-soliton solution. In case λ=−m, same solutions

are retrieved but with interchanging the expressions of ψ+ and ψ−.

4.3.4 CASE II: λ 6= m

Both of the two possibilities imposed by the (±) signs in the equation 4.28 ended with

the same solution in case I above. But here in case II, the (+) sign have ended with a

solution apparently different from that which the (¬) sign ended with. Here we consid-

ered the first solution and discarded the second one. The reason is that the second one
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is diverging at some values of the position x while the first solution is converging and

rather localized. So, our discussion from now on is restricted to the equation

ρ
′(x) = ρ(x)

√
4m2− (αρ(x)−2λ )2, (4.35)

let us make the following transformation

2mβ (x) = αρ(x)−2λ , (4.36)

use it to re-write equation 4.35 in terms of β (x):

β
′ = (2mβ +2λ )

√
1−β 2, (4.37)

where β ′ is the x-derivative of the real function β . Integrating the last equation

gives the solution (with equating the constant of integration to zero):

β =−λ

m
+

m2−λ 2

−λm+m2 cosh
(

2x
√

m2−λ 2
) , (4.38)

using this last solution in equation 4.36 and solving for ρ

ρ =
2
(
m2−λ 2)

α

[
−λ +mcosh

(
2x
√

m2−λ 2
)] , (4.39)
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now, from the last equation and equation 4.24, one could get µ:

µ =−
2
(
m2−λ 2)(m−λ cosh

(
2x
√

m2−λ 2
))

α

[
λ −mcosh

(
2x
√

m2−λ 2
)]2 , (4.40)

finally, it remains to solve for φ+ and φ−:

φ+(x) =±
√

ρ(x)+µ(x)
2

=±
√

m−λ

α
[−1+ cosh(2x

√
m2−λ 2)]

m+λ

λ −mcosh(2x
√

m2−λ 2)
,

(4.41)

φ−(x) =±
√

ρ(x)−µ(x)
2

=±
√

m+λ

α
[1+ cosh(2x

√
m2−λ 2)]

m−λ

λ −mcosh(2x
√

m2−λ 2)
,

(4.42)

upon checking for the ± signs by applying in the original MTM Eqs. 1.19 and

1.20, we found that the signs for φ+ and φ− must be opposite. So, we can write

φ+(x) =√
m−λ

α

[
−1+ cosh

(
2x
√

m2−λ 2
)] m+λ

λ −mcosh
(

2x
√

m2−λ 2
) , (4.43)

φ−(x) =√
m+λ

α

[
1+ cosh

(
2x
√

m2−λ 2
)]

λ −m

λ −mcosh
(

2x
√

m2−λ 2
) , (4.44)
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and then the following final solutions are concluded

ψ+(x, t) =

√
m−λ

α/2

(m+λ )sinh
(

x
√

m2−λ 2
)

λ −mcosh
(

2x
√

m2−λ 2
)
e−iλ t , (4.45)

ψ−(x, t) =

√
m+λ

α/2

(λ −m)cosh
(

x
√

m2−λ 2
)

λ −mcosh
(

2x
√

m2−λ 2
)
e−iλ t , (4.46)

where the expressions under the square roots are positive valued regardless of

the value of λ wether it is greater or less than m . The shape and properties of the solu-

tion varies according to the value of λ . It is localized when |λ | < m, while it becomes

oscillatory for |λ |> m. For the latter case the solution can be rewritten as

ψ+(x, t) =

√
λ −m
α/2

(m+λ )sin
(

x
√

λ 2−m2
)

λ −mcos
(

2x
√

λ 2−m2
)
e−iλ t , (4.47)

ψ−(x, t) =

√
m+λ

α/2

(λ −m)cos
(

x
√

λ 2−m2
)

λ −mcos
(

2x
√

λ 2−m2
)
e−iλ t . (4.48)

As justified below in the Discussions section, the case of interest in physical

applications is only that with |λ | = m. The other cases are physically unimportant:

They are mentioned explicitly here just for the purpose of sake of completeness.

4.3.5 Solutions of MGNM using analytical methods

Following the procedure explained in the previous section, we obtain stationary solu-

tions of MGNM equations defined in Eqs. 1.19 and 1.20, namely

ψ+(x, t) =

√
−m−λ

α/2

(m+λ )cosh
(

x
√

m2−λ 2
)

m+λ cosh
(

2x
√

m2−λ 2
)
e−iλ t , (4.49)

ψ−(x, t) =

√
−m+λ

α/2

(m−λ )sinh
(

x
√

m2−λ 2
)

m+λ cosh
(

2x
√

m2−λ 2
)
e−iλ t . (4.50)



58

The last solution shows that the wave functions totally vanish for |λ | = m. For

|λ | < m, the parameter α must be negative to fulfil the condition assumed from the

beginning that φ±(x) are real, Whereas no solutions are defined for |λ |> m.

4.4 Lax pair and Darboux transformations of MTM

In this section, the same exact stationary solutions of Thirring model derived in the last

section are to be re-addressed, but this time by following a different path, namely by

obtaining a Lax pair for the model and then applying the Darboux transformation on it.

The advantage gained here lies in the fact that basically a series of many other solutions

can be concluded by repeatedly applying Darboux transformation.

4.4.1 Lax pair of MTM

In this section we represent derivatives by subscripts: ∂tΦ := Φt and ∂xΦ := Φx which

saves space, in addition to the fact it’s the most commonly used notation in this field.

We found that the coupled equations 1.19 and 1.20 admit the following Lax pair

Φx = U0Φ, (4.51)

Φt = V0Φ, (4.52)
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where Φ is 4×4 matrix with arbitrary function components, and:

U0 =



−1
2 α J(x, t) ψ+(x, t) 0 0

m α ψ∗+(x, t) −1
2 α J(x, t) 0 0

0 0 1
2 α J(x, t) λ ψ−(x, t)

0 0 −mα

λ
ψ−(x, t)∗ 1

2 α J(x, t)



, (4.53)

V0 =



−1
2 i α ρ(x, t)− i

2 m −i ψ−(x, t) 0 0

i m α ψ−(x, t)∗ 1
2 i α ρ(x, t)+ i

2 m 0 0

0 0 −1
2 i α ρ(x, t)+ i

2 m i λ ψ+(x, t)

0 0 i m α

λ
ψ+(x, t)∗ 1

2 i α ρ(x, t)− i
2 m



.

(4.54)

Assuming solutions of the stationary forms defined in Eqs. 4.8 and 4.9, the
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Lax-pair takes the simpler form

U0 =




0 φ+(x) eiλ t

α m φ+(x) e−iλ t 0

 0

0


0 λ φ−(x)eiλ t

−αm
λ

φ−(x)e−iλ t 0





(4.55)

V0 =




−1

2 i α ρ(x)− i
2 m −i φ−(x) eiλ t

i α m φ−(x) e−iλ t 1
2 i α ρ(x)+ i

2 m

 0

0


i
2 m− 1

2 iαρ(x) i λ φ+(x) eiλ t

iαm
λ

φ+(x)e−iλ t 1
2 i α ρ(x)− i

2 m





,

(4.56)

where, 0 is a 2× 2 zero matrix. It is noted in the above Lax-pair that the 2× 2

matrices on the diagonal are decoupled. Therefore, one can reduce the Lax-pair to the
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following form

U0 =


0 φ+(x) eiλ t

α m φ+(x) e−iλ t 0

 (4.57)

V0 =


−1

2 i α ρ(x)− i
2 m −iφ−(x) eiλ t

i α m φ−(x)e−iλ t 1
2 i α ρ(x)+ i

2m

 (4.58)

The compatibility condition U0t−V0x +[U0,V0] = 0 generates the following matrix,
0 ∂xφ−(x)+φ+(x)[m+λ +αρ(x)]

∂xφ+(x)+φ−(x)[m+λ +αρ(x)] 0

= 0 (4.59)

leading to the model equations 1.19 and 1.20 in stationary form, namely

∂xφ−(x)+φ+(x)[m+λ +αρ(x)] = 0, (4.60)

∂xφ+(x)+φ−(x)[m+λ +αρ(x)] = 0. (4.61)

Applying the Darboux transformation requires a linear system associated with the NLDE

through the compatibility condition. A linear system with spectral parameters is found

here by inspection

Φx = U0Φ+U1ΦΛ, (4.62)

Φt = V0Φ+V1ΦΛ+V2ΦΛ
2. (4.63)

The consistency condition Φxt = Φtx requires the following condition on the matrices
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U0,1 and V0,1,2

U0x−V0t +
[
U0,V0

]
= 0, (4.64)

U1t−V1x +
[
U0,V1

]
+
[
U1,V0

]
= 0, (4.65)

U2t−V2x +
[
U0,V2

]
+
[
U1,V1

]
+
[
U2,V0

]
= 0, (4.66)[

U1,V2

]
+
[
U2,V1

]
= 0, (4.67)[

U2,V2

]
= 0. (4.68)

The specific forms of U1 and V1,2 will be determined only for the zero seed in the next

section.

4.4.2 Darboux transformations of MTM

Applying the Darboux transformation, as defined below, on Φ transforms it into another

field Φ[1]. For the transformed field Φ[1] to be a solution of the linear system, the Lax

pair must also be transformed in a certain manner. The transformed Lax pair will be a

functional of a new solution of the same differential equation.

Practically, this is performed as follows. First, we find the Lax pair and an exact

solution of the differential equation, known as the seed solution. Fortunately, the trivial

solution can be used as a seed, leading to nontrivial solutions. Using the Lax pair and

the seed solution, the linear system is then solved and the components of Φ are found.

The new solution is expressed in terms of these components and the seed solution. The

following detailed derivation of the new solution clarifies this procedure further. For
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zero seed (φ+(x) = φ−(x) = 0), the Lax-pair matrices take the following form

Λ =

 λ 0

0 λ

 , (4.69)

U0 = 0, (4.70)

U1 =

 a′(x)+b(x) c3c4a′(x)eiλ t− i
c1

√
α

m (m+λ )a(x)

c4a′(x)e−iλ t+ i
c1

√
α

m (m+λ )a(x) b(x)

 , (4.71)

V0 =
i
2

 λ +
√

α

m(m+λ ) 0

0 −λ −
√

α

m(m+λ )

 , (4.72)

V1 =

 c1 + c2 c4c1c3eiλ t− i
c1

√
α

m (m+λ )a(x)

c4c1e−iλ t− i
c1

√
α

m (m+λ )a(x) c2

 , (4.73)

V2 = 0. (4.74)

Considering the following version of DT

Φ[1] = Φ.Λ−σΦ, (4.75)

where, Φ[1] is the transformed field and σ = Φ0.Λ.Φ
−1
0 .

Here,

Φ0 =

 ψ1(x, t)eiλ t/2 ψ2(x, t)eiλ t/2

ϕ1(x, t)e−iλ t/2 ϕ2(x, t)e−iλ t/2

 (4.76)
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where,

ψ1(x, t) =
ic2 2xc0λ1C1(t)

m
√

α

m +
√

α

mλ −2ic1λ1

+ x
2ic0c1λ1√

α
m (m+λ )C2(t), (4.77)

ψ2(x, t) =
ic2 2xc0λ1C3(t)

m
√

α

m +
√

α

mλ −2ic1λ1

+ x
2ic0c1λ1√

α
m (m+λ )C4(t), (4.78)

ϕ1(x, t) = C1(t), (4.79)

ϕ2(x, t) = C3(t), (4.80)

is a known solution of the linear system 4.62 and 4.63. For the transformed field Φ[1]

to be a solution of the linear system, the matrix U0 for instance must be transformed as

U0[1] = σUσ
−1 +σxσ

−1 (4.81)

where, σ−1 is the inverse of σ . This equation gives the new solution of the NLDE in

terms of the seed solutions of the stationary version of the model given by Eqs. 4.60 and

4.61. By following the procedure given above we start from trivial zero seed and obtain

the auxiliary field variable of the following form. We obtain exact soliton solution of

the following forms and we classify them into four cases, namely

Case I: If λ = m

φ+(x) =
[ 4m3/2x
(1+4m2x2)α1/2

]
, (4.82)

φ−(x) =
[ 2m1/2

(1+4m2x2)α1/2

]
, (4.83)



65

with

ρ =
4m

α +4m2x2α
, (α > 0), (4.84)

J =
4m(−1+4m2x2)

(1+4m2x2)2α
. (4.85)

Case II: If λ = -m

φ−(x) =
[ 4m3/2x
(1+4m2x2)β

]
, (4.86)

φ+(x) =
[ 2m1/2

(1+4m2x2)β

]
, (4.87)

ρ = − 4m
α +4m2x2α

, (α < 0), (4.88)

J =
4m(−1+4m2x2)

(1+4m2x2)2α
. (4.89)

Case III: If λ >m

φ+(x) =

√
λ −m

α

[
1− cos

(
2x
√

λ 2−m2
)] m+λ

λ −mcos
(

2x
√

λ 2−m2
) , (4.90)

φ−(x) =

√
m+λ

α

[
1+ cos

(
2x
√

λ 2−m2
)]

λ −m

λ −mcos
(

2x
√

λ 2−m2
) . (4.91)

Case IV: If λ <m

φ+(x) =

√
m−λ

α

[
−1+ cosh

(
2x
√

m2−λ 2
)] m+λ

λ −mcosh
(

2x
√

m2−λ 2
) , (4.92)

φ−(x) =

√
m+λ

α

[
1+ cosh

(
2x
√

m2−λ 2
)]

λ −m

λ −mcosh
(

2x
√

m2−λ 2
) . (4.93)
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4.5 Discussion of the results

4.5.1 Results relevant to physics

According to MTM, the solutions which are physically important are those for |λ |= m:

i.e. those shown in Eqs. 4.33 and 4.34. The reason behind discarding the other solutions

comes from the definition of relativistic energy (in natural units) E =±
√

m2 + |p|2 and

keeping in mind that we are discussing in this present work only stationary solutions and

hence the momentum is assumed to be zero: p = 0; So it is supposed that the energy

|λ |= |E|= m. All other cases with |λ | 6= m are not to be considered from now and on.

The above discussion applies also to MGNM equations. But we show above in

section 4.3.5 that the stationary solutions already vanish in case |λ | = m for MGNM

and then no physical significance is recognized for their solutions.

So, in the remaining of this chapter; our discussion will be devoted to Eqs. 4.33

and 4.34; the solutions of MTM for the case |λ |= m.

4.5.2 Locality of the results

The solutions which are of concern to us (Eqs. 4.33 and 4.34) satisfy the most important

requirement in any representation of physical systems, namely the requirements of being

localized in space, an then they are square-integrable. To show that they are localized,

let us check first for a plot of their envelope in the following figures 4.1 and 4.2. Here

we scale both of m and α+ to 1

Also, one can check directly for the integrability by evaluating the integral of

ρ = |ψ+|2 + |ψ−|2 on the whole space. This is already done in the next section, where
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Figure 4.1: ψ+ for m = α+ = 1
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Figure 4.2: ψ− for m = α+ = 1
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we calculate the integral of j0 = ρ in order to evaluate the total charge, and find that it

is equivalent to 2π

α+
.

4.5.3 Calculations of the conserved quantities

Now, we make use of the results and formulations of the Lagrangian density and the

energy-momentum tensor that are already derived in section 2.1.3 and 2.1.4, to calculate

some of the conserved quantities of a system represented by the solution defined in Eqs.

4.33 and 4.34. Let us first write the Spinor field and its adjoint for that solution

Ψ =

√
m
α

 4mx
4m2x2+1

2
4m2x2+1

e−imt , (4.94)

Ψ̄ =

√
m
α

(
4mx

4m2x2+1 − 2
4m2x2+1

)
eimt . (4.95)

Total energy

Apply the spinor field solution (Eqs. 4.94 and 4.95) in the Hamiltonian density as

defined in Eq. 2.39

H =
1
2

α+

(
4m

α++4α+m2x2

)
2, (4.96)

then the total energy can be calculated using Eq. 2.49

E =
∫ +∞

−∞

[
1
2

α+

(
4m

α++4α+m2x2

)
2]dx =

2mπ

α+
. (4.97)

The last result shows that the total energy is a constant conserved quantity as
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expected for a stationary system.

Total charge

Use Eq. 2.7 to calculate the probability density j0 = ρ = Ψ̄γ0Ψ for the spinor field

defined in Eq. 4.94

j0 = Ψ̄γ
0
Ψ =

4m
α++4α+m2x2 , (4.98)

this last expression can be integrated according to Eq. 2.50 to give the total

charge

Q =
∫ +∞

−∞

( j0)dx =
∫ +∞

−∞

(
4m

α++4α+m2x2 )dx =
2π

α+
, (4.99)

which is also independent of x nor t and hence becomes a conserved physical

property.

Total momentum

According to Eq. 2.51 total momentum P is considered to be the spatial integration

of P =
∫+∞

−∞
T 01(x, t)dx. T 01(x, t) is already stated in Eq. 2.41. Apply the spinor field

solution forms in that equation to get

T 01 =− i
2
(
Ψ̄γ

0
∂xΨ−∂xΨ̄γ

0
Ψ
)
= ∂xP = 0, (4.100)
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And hence the total momentum vanishes. Such a result is the only logically

consistent one with our assumption of a stationary system.
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Chapter 5: Conclusions and Remarks for Future Work

The accomplishment of this present thesis work has came up with some conclusions,

in addition to other remarks that may be helpful for future work on NLDE. Here down

listed are both of them in two separate sections.

5.1 Conclusions

• The mathematical modelling of the self-interactions among spinor fields in the

relativistic classical field theory is the NLDE with all of its various formulations.

All of those models share the common property that they have the cubic Kerr-

nonlinearity. The formulation of NLDE has mainly came as a replacement of the

earlier unified field theory of matter. The major differences between a specific

NLDE model and another, involve the mode of interaction, and whether their is

an effective mass of the field particles or they are considered to be massless.

• From the formulations discussed in chapter two, we find that MTM possesses

some interesting characteristics: Its current density ρ(x, t) satisfies a wave equa-

tion (Eq. 2.32). Whereas, both the current vector and energy momentum tensor

were proved to be conserved, which means that MTM represents a conservative

stable model, and then it can describe an existing real systems. This notion is

supported by the derivation of exact localized smooth solutions for a stationary

systems.

• In chapter four, we have analyzed the MTM and derived many of the properties
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from its mathematical structure. We have verified that it has stationary solutions

by solving the model and find those solutions explicitly in exact closed form. Also

we obtained a Lax pair of MTM and concluded that in general, it can have many

Lax pairs. Then, upon applying the Darboux transformation on the obtained Lax

pair, we could recover the same stationary solutions again.

According to my present knowledge, there was no published exact stationary so-

lutions for MTM that are written in closed form before this present one derived

in this thesis. Also, no Lax pair has been derived before for any NLDE model.

Those findings, in addition to other details about the Darboux transformation,

were organized in a manuscript [103] in collaboration with the Professor Usama

Al Khawaja and P.S. Vinayagam, and submitted to the journal communications in

nonlinear science and numerical analysis.

As we found it stated in other previous published articles in the literature (Dis-

cussed in section 4.2), and concluded it as well from achieving the derivation of

Lax pair for MTM, such a model can generally have infinitely many solutions, be-

cause the repetitive application of Darboux transformation on the Obtained Lax

pair can result in a series of different solutions.

• The MGNM possess stationary analytic solutions. We have obtained these solu-

tions, although no physical relevance is realized yet to them.

5.2 Remarks for future work

The work on this thesis is considered to be a continuation to the general analytic study

of NLDE models, and focusing particularly on MTM. Inspite of the huge work done
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and the progress had been achieved so far in this field, there still much more open issues

that need to be resolved. The following is a brief listing of some of them as remarks for

future research.

• The major issue is related to the extension of the set of solutions of NLDE. The

solutions derived so far are either numerical or exact stationary ones. It will be

more useful and even interesting to look for traveling wave solutions, especially

upon the successful derivation of the stationary solutions.

In relativistic theory, the energy relation E2 = m2c4 + p2c2 leads to restricting

stationary solutions to only one case of the possible value of the energy, namely

E = m. That restriction does not exist in non-relativistic models, where a sta-

tionary model can describe a wide range of the possible energies. That crucial

difference makes it obligated to look for a travelling wave solutions for relativis-

tic models, including NLDE, if one is interested in cases other than E = m. One

of the options that one can think of is the Darboux transformation, since it can

result in other solutions from the existing ones.

• The dimensionality of the solved MTM in this work is a one spatial dimension in

addition to that representing time. When W. Thirring has restricted this dimen-

sionality to his model, he aimed to resolve the problem of the diverging integrals

in the (3+1)-dimensional nonlinear field theory, since he suggested that the dimen-

sionality is the reason behind that non-integrability. But yet a model with more

dimensions is required in many practical fields, as in nano-science and the con-

densates of ultra-cold atoms, where the two dimensional spatial system is very

useful. Obtaining solvable models in two or three spatial dimensions will find
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wide range of applications in such practical fields.

• Finally, I see it worth’s to extend the space of applying the techniques adopted

in this thesis, which worked well for the MTM and MGNM, on other forms of

NLDE.
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