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TH8'>IS REP R1 

SUMMARY , , 

' . .  -

A rigorous mathematical model has been used to develop a steady state 

simulation program MEDNAR to analyze th� multi-effect thermal vapor 

compression desalination (MED-TVC) plant at Umm AI-Nar power and desalination 

plant. The effect of thermodynamic losses on the thermal performance ratio, the 

specific heat transfer area and the specific flow rate of the cooling water are taken 

into account The losses contemplated are the boiling point elevation and the 

temperature depression corresponding to the pressure drop during the vapor 

condensation process. The MEDNAR also takes into consideration the variation in 

the physical properties of the seawater with temperature and salt concentration, and 

the effect of the presence of non�ondensable gases on the heat transfer coefficients in 

the evaporators. Sensitivity analyses, using this software, were conducted to study 

the effect of a number of process variables on the plant performance. 

As a part of this thesis, an economic study has been carried out to determine 

the total water unit cost This includes a cost break down in details for capital 

investment and production costs. Also an economic sensitivity analysis was 

performed to investigate the relationships between the fuel cost, plant production 

rate, operation and maintenance cost and plant running factor, and the total water 

unit cost. 
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THISI REPORT 

1 INTRODUCTION 

De alination of seawater has been developed considerably over the past four 

decades. The number of desalination plants in 1960 was 5 units with total production 

rate of 5000 m31 d, while in 1999 the number of units was around 12500 with a 

capacity of 22.8*1()6 m3 I d. This capacity is expected to double within the next 20 

years [1]. 

Nevertheless, many other countries still suffer from water shortage and cannot afford 

the high capital required and running costs of desalination plants. Desalination 

processes have so far mostly been built when there is no practical alternative, cost of 

other water resources is high, low cost energy is readily available and high living 

standards override the cost factor. These conditions are met in the Arabian Gulf 

countries. The first application of seawater desalination in the gulf began in Kuwait 

in 1958, with a multi-stage flash (MSF) plant of 1.0 MIGD [2]. 

Presently, the majority of desalination plants in operation are based on the multi

stage flash (MSF) desalination system. However, the Multi-Effect Desalination 

(MED) process has recently acquired a potential interest as a large-scale desalinations 

technique. This dose not means that the MED process is new technology. The 

problems were in low unit size and gain ratio. Up to the 1980s, the MED with its 

different combinations was well known as a small-scale desalination technique. 

In UAB, tens of MED units have been supplied in different places during the last 

three decades. In general, the unit size varies from 17 to 700 m3 I d. The MED units 

were installed in arid areas, islands and offshore platforms. In 1973, the first two 

multiple effect thermal vapor compression units were installed in Das Island, each 

unit consists of two effects and a capacity of 125 m3 I d. Many other plants had been 

also installed in Sir Baniyas Island, Abu Mussa Island, Delma Island, Alfutaysi Island 

and AI-Ruwais. The largest size was in AI-Ruwais with 600 m3/d in 1978 [3]. 

From the year 1989, UAE played a major rule in developing the MED's plant size. 

The French company SIDEM developed a process of MED technique with Thermal 

Vapor Compressor (MED-TVC). This combination allowed for large-scale plants. 

Three plants were erected in Jebel Dhanna, Sila and Ras AI Khiema, each plant 

capacity was 1.0 MIGD [4]. Another plant had been also erected in Mirfa with 2.0 

MIGD capacity. In the year 2000, two units were commissioned in Umm AI-Nar 

Power Station; each plant has a nominal capacity of 3.5 MIGD. These units were then 
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the largest using this desalination technique. A contract had been signed for 14 units 

-3.8 MIGD each- in Al-Taweelah power plant. Recently, the largest MEO-TVC units 

commissioned in Al-Layyah power station, in Sharjah have a nominal capacity of 5 

MIGO. This process is developing rapidly with regard to unit capacity and is gaining 

more market shares in the desalination market in U AE. 
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2 RESEARCH OBJECTIVES 

The French company Sidem has designed and installed two MED-1VC units at 

Umm AI Nar. The nominal capacity and thermal energy requirement of each plant is 

3.5 MGD and 85 tons of low-pressure steam per hour, respectively. 

The proposed study covers the following tasks: 

A- Development of a computer algorithm for modeling and simulation of the 

MED-TVC process at Umm AI Nar based on a rigorous mathematical 

model. The software should be capable of computing temperature, 

concentration and flow rate profiles for the whole plant 

B- Validation of the developed software through comparison between the 

computed results with both design and operational data from the plant, 

and with corresponding results using the commercial software 

II Evapolund" . 

C- Calculation of energy consumption under different operation conditions. 

D- Estimation of unit cost of water at full and partial load operating 

conditions. 

PAGE 10 -
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3 LITERATURE SURVEY 

There are limited number of publications that handle the low temperature multi 

effect evaporation with the thermal vapor compression process. Most of the available 

publications have concentrated on describing the application of the process in 

desalination plants with relatively low capacity and on comparing its features with 

other desalination process. The following abstracts represent the most related articles 

to this thesis: 

Jemqvist, et al., [51 developed a computer program called Evapolund. It simulates 

different flow sheets for thermal desalination processes. The program includes a 

comprehensible database for the physical properties of seawater as well as other 

liquids. The program can be used for the design and evaluation of all types of 

thermal desalination processes. Simulation results can be displayed either 

graphically, or as a text, or in any form such as temperature, pressure and 

concentration profiles. 

Ettouney and El-Dessouky [6] developed a computer package for the design and 

simulation of thermal desalination processes. The package includes models for multi 

effect evaporation (MED) systems; both stand alone and with vapor compression. 

The vapor compression systems include mechanical, thermal, absorption and 

adsorption heat pumps. The compute, r package includes displays for process design, 

ratin� flow charting and performance calculations. 

Al-Shammiri and Safar [7] discussed the general features of existing commercial 

MED plants and associated technical aspects related to steam, condensers, 

evaporators, pumps and capacity. They also discussed the gain ratio, operating 

temperature, materials of construction, operation and maintenance of these plants, as 

well as associated problems, and other available information. 

Al-Najem et al [8] conducted a parametric analysis for the TVC system using first 

and second laws of thermodynamics, e.g., steam ejector, evaporator, condenser as 

well as the system as a whole. 

Temstet et al. [9] presented a case study for a plant in Sicily having 12 effects with 

thermo-compression. The design gain output ratio of the unit is 16.7. Heat and mass 

balance diagrams, material choice, description of plant cells and overall layout were 

given. Main construction and erection details are described with particular reference 

to the environmental aspects of this installation. 
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3.1 Types of Evaporators 

The MED process has many possible configurations. The heat transfer area in 

evaporators can be classified as vertical climbing film, vertical falling film and 

horizontal falling film. The choice between these configurations depends mainly on 

the physical properties of the evaporated liquid and the maximum allowable 

temperature. 

3.1.1 Vertical Climbing Film Evaporators 

In this configuration steam is condensing on the outside surface of vertical tubes in 

which seawater is fed at the lower end of the tube. At a predetermined level, the 

steam causes the brine to boil, vapor to be released and a thin film of brine to be 

established on the inside surface of the tube wall. The vertical straight-tube design 

has good heat transfer characteristics, with good operation at low temperature 

differentials, allowing a reasonable number of effects to be put in series between the 

available temperature limits and thus achieving high performance ratios. 

Water production costs with this design are favorable particularly when a reasonable 

performance ratio can be achieved [10]. 

3.1.2 Vertical Falling Film Evaporators 

The difference between this design and the climbing film evaporator lies in the way 

the seawater is distributed within the tubular heat transfer surface. Here, the 

seawater is allowed to flow inside of the tube wall as a thin film. The objective is to 

eliminate the wastage on temperature differential caused by the hydrostatic head, 

and to create better heat transfer properties, which is less dependent on operating 

temperature and temperature differential. Figure 3-1 shows schematically the 

different streams entering and leaving this type of evaporators [10]. 
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Feed In 
�< 

Vapor inlet 

'Y 'Y 
Distillate Brine 

Vapor to next 

effect 

Figure 3-1: Vertical Falling Film Evaporator 

3.1.3 Horizontal Falling Film Evaporators 

In this configuration, the brine is distributed as a thin film over the outside surface of 

horizontal tubes, and the heating steam is condensing on the inside surface of the 

tubes. High heat transfer coefficients are achieved, and this design has a number of 

distinctive practical advantages: 

1. Visual monitoring to prevent scale and corrosion. 

2. Non-condensable gases are driven positively, and uni-directionally, out of the 

heat transfer zone. 

3. Release of vapor is very gentle, so that droplets carryover is minimal [10]. 

For potable water, therefore, demisters are not necessary. For process and boiler feed 

water, the purity obtained with demisters is very high indeed. This design is very 

stable when operated at reduced loads. The response to changes in terminal 

conditions is very smooth and rapid owing to the relatively small quantity of brine in 

the effects. Figure 3-2 shows schematically the different streams entering and leaving 

this type of evaporators. 
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Vapor inlet 
(inside tubes) 

r 
+ -

T 

Distillate 
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Brine 

Feed In 

Vapor to next 
effect 

Figure 3-2: Horizontal Falling Film Evaporator 

3.2 The Multiple Effect Desalination (MED) Processes 

The MED-TVC is the major competitive distillation alternatives to MSF process. The 

vapor formed in each effect, except the last one, flows to the condensing side of the 

next lower temperature effect. The latent heat of condensation is transferred through 

the tube wall to evaporate part of the feed water flowing across the surface. The main 

difference between MSF and MED is the way evaporation and heat transfer take 

place. In an MED plant, vapor is generated from seawater film in contact with the 

heat transfer surface; whereas in the MSF plant seawater is only heated by 

convection within the tubes and vapor is generated by flashing from a streaming in 

each stage. 

High heat transfer rates are achieved in the MED process due to the thin film boiling 

and condensing conditions. Also the evaporation process takes place at a uniform 

temperature within each effect. The required heat transfer area for the MED plant is 

close to that used by MSF, even though the plant is operated over a smaller 

temperature range than MSF. Most modem large MED plants have a horizontal tube 

configuration (HIE), with the feed water film sprayed on the outer side of the tubes 

and vapor condensation inside. The horizontal tube design uses a system of spray 
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nozzle or perforated trays to distribute the feed water evenly over the heat transfer 

tubes. MED plants using polymer additive scale control are generally designed for 

low temperature operation. The evaporation temperature in the first effect is around 

65 °C to limit scale formation. Add cleaning for MED plants is needed more 

frequently than in MSF plants Evaporation from the outer side of the heat transfer 

surface tubes makes sponge ball cleaning not suitable. 

The performance ratio of water production to steam consumption of conventional 

MED plant is approximately equal to the number of effects minus 1 (n-1). To obtam a 

performance ratio of 8.0, the number of effects needed in a straight MED plant would 

be 9 [2]. This is much lower than in an equivalent MSF plant. The smaller number of 

effects in MED plants contributes to saving in capital cost compared with MSF. 

The performance of MED plants can be improved still further by combining the MED 

process with different heat pumps. 

The idea from these heat pumps is to improve the thermal performance of the system 

by integrating the energy of the steam supply to the process. 

The modem combinations are: 

1) Thermal vapor compressor (steam jet ejector). 

2) Mechanical vapor compressor. 

3) Absorption column. 

4) Adsorption bed. 

3.2.1 Process Description 

A flow sheet for conventional Multiple Effect Desalination (MED) seawater 

desalination process is shown in Figure 3-3. The system consists of number of 

evaporators, final condenser and a feed heater. Cooling seawater is introduced to the 

inner side of the condenser tubes where it is heated and then divided into two parts. 

The first and larger part is rejected back to the sea and the second smaller part 

represents the feed to the evaporator. The rejected seawater removes the excess heat 

added to the system by the heating steam. The heating of the feed seawater in the 

condenser increases the thermal performance of the process. The heat source in the 

condenser is supplied by condensing the vapor formed by boiling in the last 

evaporator. Accordingly, the condenser has three functions: to remove the extra heat 
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from th ystem, to improve the process thermal efficiency, and to adjust the boiling 

temperature inside the evaporator. 

Within an evaporator, the feed water is sprayed at the top where it falls in the form 

of a thin film down the succeeding rows of tubes arranged horizontally. The feed 

water temperature is raised to the boiling temperature and part of this feed is 

evaporated. The boiling temperature in the first effect is dictated by the nature of 

chemicals used to control the scale formation and the state of the heating steam. This 
temperature is mastered in other effects through adjusting the pressure in the vapor 

space of the evaporator. The vapor formed by boiling is free of salts and its saturation 

temperature is less than the boiling temperature by the boiling point elevation. The 

vapor flows through a knitted wire separator, demister, to remove the entrained 

brine droplets. The saturation temperature of the vapor departing the demister is 

reduced to a somewhat lower value because of the frictional pressure loss in the 

demister. 

The vapor leaving the demister of the first effect is transported to the second effect 

and so on to the last effect This transport inevitably involves a pressure drop and 

hence a corresponding decreases in saturation temperature. Another pressure fall 

and consequent depression in the saturation temperature of the vapor is associated 

with vapor condensation inside the heat transfer tubes in the evaporators or over the 

heat transfer area in the pre-heaters. The remaining brine in the first effect flows to 

the second effect, which operates at a lower pressure. 

The vapor is formed in any effect, other than the top effect, by two different 

mechanisms. The first is by boiling over the heat transfer surfaces and the second by 

flashing within the liquids (distillate and brine) bulk moving from upstream effect 

due to pressure drop, and generating a much less amount of vapor. The temperature 

of the vapor formed by flashing is less than the effect boiling temperature due to 

non-equilibrium allowance. 

It is worth mentioning that the amount of steam generated by evaporation in each 

effect, other than the first, is less than the amount generated in the previous effect 

This is due to the increase in the specific latent heat of vaporization with the decrease 

in the effect temperature. Moreover, part of the latent heat of an incoming vapor to 

the effect is used to raise the temperature of the feed to its boiling point. 

Consequently, the amount of vapor generated in an evaporator by boiling is less than 

the amount of condensing steam used for heating in the following evaporator. The 
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brine flowing into the last effect reaches its final concentration by evaporating more 

vapors. The remaining brine is rejected to the sea. The vapor formed by boiling and 

flashing in the last effect passes to the final condenser. 
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Figure 3-3: Process flow diagram for the multiple effect evaporator (MED) desalination process 
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3.2.2 MED Flow Sheets 

Once a heat transfer surface configuration has been selected for a plant there are still 

large numbers of variants, which the effects are linked together to form an MED 

plant These variants methods: 

1. Horizontal or a stacked layout of the effects. 

2. 'R�culation' or 'Once Through' operation of each effect. 

3. Feed heating/brine path through the plant 

4. Heat recovery from the distillate. [10] 

Although these choices are not strictly independent of one another or for that matter 

independent of the heat transfer configuration, there are still a large number of 

possible combinations. 

3.2.21 Horizontal and Stacked layout 

There are basically two ways to link the effects together to form an MED plant The 

first one is the horizontal layout where the effects are linked together horizontally, 

and the second is the stacked layout where the effects are linked vertically. Almost 

all larger MED plants tend to be arranged horizontally because of their stability and 

simplicity in operation and maintenance. The stack layout already exists in many 

small MED plants. A multi�ffect stack (MES) plant can be arranged in two ways: 

simple MES where evaporators are stacked one on the top of the other or a double 

stack configuration where the effects are arranged in a double stack configuration, 

i.e., effects 1-3,5 ... one on the top of the other in one stack and effects 2,4,6 ... above 

each other in the other stack. The main difference between the horizontal and stack 

arrangement is that the brine in MFS flows by gravity from the top effect to the next 

effects without pumps. [10] 

3.2.2.2 Brine Re-drculation within Effects 

If the brine from one effect is simply pumped to the top of the next effect and there is 

no re-circulation then the brine flow available to each effect decreases as the brine 

flows through the plant. This means that the flows over the heat transfer surfaces in 

each effect are different and tied to the brine throughput. If, however, the brine is re

circulated over the heat transfer surface by a pump from the last effect sump, then 
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the re-circulation flow rate can be varied independently of the brine feed rate to the 

effect and can be set at the optimum value regardless of the rest of the plant 

operation. [10] 

3.2.2.3 Brine paths through MED Plants 

Another configuration in MED plants is based on brine flow-direction with respect to 

the vapor direction from one effect to the other. This type of arrangement includes a 

forward configuration, backward configuration and parallel feed configuration. 

The normal arrangement is to have the feed preheated in heat exchangers up to a 

temperature just below the boiling temperature of the first effect. It is then heated to 

the evaporation temperature in the first effect. The brine blowdown from the first 

effect is passed to the second effect as its feed. The brine from the second effect 

becomes the feed for the third effect and so on. This is the forward configuration. 

Separate feed heaters may be eliminated from the flow sheet by feeding the brine in 

the opposite direction up the temperature gradient of the plant - a little bit of feed 

heating being done in each effect as the brine passes through. This system is referred 

to as Ireversel or 'backward fed'. One of the reasons for using a backward fed system 

is to avoid separate feed heaters where it is most likely to get trouble with product 

contamination due to tube leaks. 

Parallel feed configuration is also possible in which the brine is fed in parallel to 

several effects at once. It is not usual for all the effects of a plant to be parallel fed at 

once. Normally the brine would be fed in series through groups of three or four 

parallel fed effects. [10] 

3.2.2.4 Feed Heating and Heat Recovery Systems 

The distillate produced from the high temperature effects contains significant 

sensible heat. This energy is usually recovered by allowing the distillate to flash off 

vapor at the various intermediate effects further down the plant. The vapor 

produced may either be fed to the main evaporator/condensers on the way down or 

may be used to preheat the feed in the feed heater train. As has been mentioned 

flashing both of the distillate and of the brine in fact produces a significant amount of 

vapor in a normal MED plant when the brine is being operated with the feed forward 

configuration. [10] 
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3.3 Energy Integrated MED Vapor Compression Processes 

There are four types of modem combinations used in MED vapor compression 

plants, low temperature MED with mechanical vapor compression (MED-MVC); low 

temperature MED combined with thermal vapor compression (MED-TVC); MED 

combined with absorption heat pump (MED-ABS); and MED combined with 

adsorption heat pump (MED-ADS). 

Al-Juwayhel et al. [11] conducted a comparative study between these four different 

types on a single effect evaporator desalination system. The study includes the 

development of mathematical models for the four systems. The analysis was based 

on comparison of the performance ratio, specific power consumption, specific heat 

transfer area, and specific cooling water flow rate. The study shows that the 

performance ratio for the thermal vapor compression decreases as the boiling 

temperature and pressure of motive steam increases. 

El-Dessouky and Ettouney [7] found through a mathematical simulation model that 

the MED-ABS system can reach a performance ratio of 25 with only 12 effects at 110 

°C, and the MED-ADS system can reach a performance ratio of 20 at the same 

number of effects and operating temperature. For comparison, the performance ratio 

of a conventional MED system with the same number of effects cannot exceed 10. 

3.3.1 Thermal Vapor Compression (TVC) 

The performance of conventional MED plants can be improved further by means of 

vapor compression whereby part of the vapor formed in a low temperature effect is 

recompressed and reintroduced into the first effect. In large plants, the method used 

is thermal vapor compression alternative. 

A schematic diagram for the single-effect thermal vapor compression (IVC) seawater 

desalination process is given in Figure 3-4. The system constitutes of an evaporator, a 

steam jet ejector, and a final condenser. The vapor leaving the evaporator splits into 

two parts. The first part flows to the condenser where it condenses and second part is 

sucked by the steam jet ejector. 

In general, the ejector is a pumping device, which uses jet action of a high pressure 

and temperature primary motive fluid to entrain and accelerate a slower secondary 

fluid. The steam ejector is used to compress the vapor from pressure Pev (which is the 

vapor pressure leaving the evaporator) to Ps (which is the vapor pressure entering 

the first effect) by using an external source of steam at a pressure PUIS greater than 
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both Pev and Ps. A typical ejector consists of four parts nozzle, suction chamber, 

mixing section and diffuser as shown in Figure 3-5. The motive steam is expanded 

through the nozzle to a low pressure, and high velocity steam jet. This high velocity 

steam entrains the low vapor pressure leaving the evaporator and entering the 

ejector from the suction chamber on the low pressure mixing zone. The velocity after 

mixing is lower than that at the nozzle exit The loss in the kinetic energy is 

converted into the pressure discharge head, and the mixture flows through the 

diffuser, emerging from the discharge at a pressure between the suction and the 

motive fluid pressures [12]. 

Demister 
Spray Nozzels 

Evaporator 
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Feed 
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Motive Steam 

Intake Seawater 

Distillate & 
Condensate 

Figure 3-4: Thermal vapor compression evaporator-desalination. 
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3.3.2 Mechanical Vapor Compression (MVC) 

The MVC system is the most attractive configuration among various single stage 

desalination processes because it is compact, confined, and does not require external 

heating source in most cases. The system is driven by electric power or a prime 

mover; and is therefore suitable for small population areas with access to the power 

grid lines. Another advantage is the absence of the down condenser and the cooling 

water requirements. This is because the entire vapor formed in the last effect is 

routed to the compressor. 

The disadvantages of the MVC system include: 

• Use of electrical energy, or mechanical work. 

• Limitations imposed on the vapor compression ratio, and size of the available 

mechanical compressor. 

• Maintenance and spare parts requirements for the compressor moving parts. 

The first disadvantage limits the use of the MVC system in countries with limited 

energy resources. The second disadvantage limits its operation to low top brine 

temperatures, 60-70 0c. This results in a larger heat transfer area for the evaporator 

unit, which increases the capital cost. In addition, the single unit production capacity 

is limited to about 800 m3/ d (0.21 MIGD). This problem is addressed to some extent 

by operating MVC with multi-€ffect arrangement with 3 to 4 effects, where the 

capacity increases to about 3,000 m3/ d (0.8 MIG D) [13]. The last disadvantage 

increases the operating cost and dictates the use of highly skilled labor. 

Energy conservation within the MVC system is maintained by recovery of energy in 

the rejected brine and distillate product. The specific power consumption of the MVC 

plant can be below 10 kWh/ m3 [2]. 

A schematic diagram for the proposed system is shown in Figure 3-6. As shown, the 

compressor raises the pressure of the vapor formed in the evaporator. The 

compressed vapor is superheated vapor with saturation temperature higher than the 

temperature of the boiling brine. This vapor is introduced into the inner side of the 

evaporator tubes; hence, it is de-superheated and condensed by releasing its latent 

heat. The condensate and the rejected brine have substantial amount of energy, 

which is recovered by heating the feed water in multi flow exchanger. Therefore, the 

feed temperature is increased from a low value of about 25 °C to higher value of 3-6 

°C below the condensate and the rejected brine temperature. 
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Figure 3-6: Mechanical vapor compression evaporator-desalination process. 

3.3.3 Adsorption Vapor Compression (MED-ADS) 

The process does not include moving parts, has a long life, and is vibration free. For 

these reasons, the adsorption-desorption heat pump started to attract attention due 

to the concern of replacing the traditional compressor-based systems, which utilize 

ozone harmful fluids. Applications of the adsorption-desorption heat pumps are 

found in air�onditioning and in ice making. The ADVC system is shown in Figure 3-

7. The system includes the evaporator/condenser unit, two adsorption beds, and two 

heat exchangers. It is interesting to note that the evaporator and condenser form a 

single unit in this configuration, which replaces the individual condenser and 

evaporator in a conventional adsorption heat pump. Also, the liquid-to-liquid heat 

exchanger (HEl) preheats the feed seawater by condensed distillate product and 

rejected brine. The adsorber (bed II in Figure 3-7) plays the role of the bottom 

condenser in the TVC system. That is, this adsorber adsorbs or rejects the excess heat 

added to the system in the second adsorber [11] .  
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Figure 3-7: Single-effect evaporator driven by an adsorption heat pump. 

3.3.4 Absorption Vapor Compression (ABVC) 

The absorption heat pumps are used widely for air-conditioning purposes. There are 

many working fluids that are used in the absorption heat pump such as ammonia

water, LiBr-water [14], KOH and NaOH. The absorption heat pumps include four 

main components, which include the generator, the absorber, the evaporator, and the 

condenser. The pump receives heat in the evaporator and the generator and rejects 

heat in the condenser and the absorber. The pump can be configured for 

simultaneous heating and cooling purposes. 

The ABVC system is shown in Figure 3-8. The system contains six elements, which 

include the generator, the absorber, the evaporator/condenser, and three heat 

exchangers. In this configuration, the evaporator desalination unit acts as the 

individual evaporator and condenser; this is different from conventional absorption 

heat pumps [11 ] .  
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3.4 Advantages of the MED Process 

3.4.1 Comparison between MED & other processes 

The MED process has highly attractive design and operating features that make it 

competitive against the dominant MSF process. These features include the following: 

• The process configuration allows for simple modifications in the routing and 

distribution of the brine stream among the system effects [11]. 

• The MED system has stable operation over a load range of 30-120% of the 

design capacity, while the MSF system has a narrower range of 70-110% [15]. 

This gives the MED system an added edge, since operation for most of the 

desalination units is tied with power plants [1, 16]. 

• The MED system is more efficient, from a thermodynamic and heat transfer 

point of view, than the predominant MSF system [17]. 

• The MED process can be operated at low temperatures and hence with much 

less scaling than MSF [16]. 

• The specific power consumption for running the pumps of MED is less than 

that of MSF. Rautenbach [18] shows 2 kWh/m3 for MED and 5 kWh/ m3 for 

MSF. 

• For the same thermal performance ratio, the MED system has fewer effects 

than the MSF system: typically the conventional MED system has 12 effects, 

while the MSF system has 24 stages for a typical performance ratio of 9. 

Assuming a similar specific heat transfer area for both systems, the capital 

cost of the MED is lower than the MSF system because of the fewer effects, 

tube connections, and partition walls [1]. 

• The MED process is not yet fully developed. The unit capital costs ($/ IGD) at 

various performance ratios are [16] : 

Process V s PR 8 

($/IGD) 

MSF 7.68 

MED-TVC 7.11 

10 

($/ IGD) 

8.7 

7.8 

12 

($/ IGD) 

10.08 

8.55 

PAGE 28 -



TI-IESIS REPORT 

• The total production cost is $1 .86/ m3 for the MSF process and $1 .49/ m3 for 

the MED system [16]. 

• Al-Juwayhel et al. [1 1 ]  indicated that the water cost in 1997 basis at the 

distribution point is $1 .35/m3 for MED-TVC process.  

3.4.2 Advantages of the Low Temperature MED process 

Low temperature distillation is the basis for a series of features, forming the core of 

the plants' highly economical operation [19]. These features are summarized below: 

Low corrosion rates: The reduced corrosiveness of seawater, at the low operating 

temperature, permits safe and economic use of corrosion proof plastic materials and 

coatings both for piping and for vessel linings, as well as the use of aluminum for 

heat transfer tubing and vessel internals. Low maintenance and extended plant life 

(exceeding twenty-five years) result from the combination of the low corrosion rates 

and the use of a mild anti-sealant 

Flexibility: MED plants have short startup periods with little time loss for heating 

up. They also have excellent load following capabilities allowing for plant 

production that closely match both water demand and energy supply. 

Thermodynamic efficiency: The use of generous heat transfer surfaces results in a 

reduction of heat fluxes and temperature differentials and therefore in an increase of 

thermal efficiencies. As a result, the evaporators can be operated with overall 

temperature differentials, including thermal driving forces, boiling point elevations 

and non-condensable gases and fouling factors, as low as 2 - 2.5 0c. 

Minimal scaling rates: The operating temperatures are well below the saturation 

limits of problematic scalants found in seawater and most ground waters. The 

reduction of scales is to insignificant level, enables the plants to operate for long 

periods between cleanings. Low cost polyelectrolyte feed pretreatment is adequate. 

De-scaling is a simple procedure, consisting of mild acid re-drculation, using the 

plants own re-drculation pumps. 

High purity distillate: An additional advantage is the high purity of the product 

water (usually less than 20 ppm and as low as 2-5 ppm for special applications) . This 
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allows the water to be used directly for industrial processes, such as in refineries, 

power stations, breweries etc, where boiler water quality is required or in municipal 

installations to reduce further the production costs by blending the high purity 

distillate with local brackish or poor quality water and satisfy the potable water 

standards. 

Reliability: Experienced engineering, rugged construction and proven equipment 

combined with extremely low corrosion and scaling rates result in minimal 

maintenance, and lead to annual plant availability in excess of 95% .  

Low energy costs: The low temperature operation enables the low temperature 

distillation units to utilize low grade, low cost sources of heat, which would 

otherwise be lost through being released into the environment in the form of stack 

gases or low pressure exhaust steam. The motive energy cost component for the 

desalination process is reduced to a minimum and consequently the water 

production costs are lower than any other seawater desalination system [10] . 

Cheap material of construction: The economy of using aluminum tubes for heat 

transfer as compared with copper alloy tubes which are essential for higher 

temperature plants enables the doubling the specific heat transfer area in the 

desalination plant for the same investment costs [1] . 

EI-Dessouky et aL [20] showed that using high quality plastic as heat exchangers in 

the low temperature process would have a direct cost effect in the desalination 

industry. Jaakkola et al. [21] developed the AQUAMAX, which is a heat exchanger 

made of thin plastic film and welded to plastic envelope elements "Plastic bag" . 

These AQUAMAX evaporators yield low potentiality of scale formation, corrosion 

and the cost of pretreatment. 
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3.5 Mathematical Modeling 

Narmine et al. [22] presented a computer simulation model for steam jet ejectors. The 

model was developed by the application of the equations of continuity, momentum 

and energy to individual operation of nozzle, mixing chamber and diffuser, the effect 

of motive steam pressure, evaporator temperature, and pressure rise across the 

ejector. 

Hamed and Ahmed [23] proposed a mathematical model for a four-effect thermal 

vapor compression process of 1500 m3 per day. They predicted the impact of 

different process variables on the thermal behavior of the system. 

El-Dessouky et al. [24] developed a mathematical model for a multiple effect 

evaporation (MED) desalination process. The influence of the important design and 

operating variables on the parameters controlling the cost of produced fresh water 

were analyzed. The model assumes the practical case of constant heat transfer areas 

for both the evaporators and feed pre-heaters in all effects. In addition, the model 

considered the impact of the vapor leak in the venting system, the variation in 

thermodynamic losses from one effect to another, the dependence of the physical 

properties of water on salinity and temperature, and the influence of non

condensable gases on the heat transfer coefficients in the evaporators and the feed 

pre-heaters. Results showed that the heat transfer coefficients increase with 

increasing the boiling temperature. Also, the heat transfer coefficient in the 

evaporator is always higher than that in the feed pre-heater at the same boiling 

temperature. The plant thermal performance ratio is nearly independent of the top 

brine temperature and strongly related to the number of effects. 

Darwish and EI-Dessouky [15] presented technical factors affecting the choice of a 

distillation system for desalting water. The thermal vapor compression process is 

compared with the predominant multi-stage flash (MSF) desalting system. They 

concluded that mechanical or thermal vapor-compression desalting systems are 

more cost effective when compared with directly boiler operated MSF systems. 

Thermal analysis of the multi-effect thermal vapor compression system is presented. 

A simple analytical simulation of MED plant is presented by W. T. Hanbury [25] 

based on the alternative assumptions of a linear decreases in the boiling heat transfer 
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coefficient and equal effect thermal loads from the second effect down. This results in 

a simple simulation giving a plant temperature profile far closer to reality. 

EI-Dessouky [26] reported a steady state mathematical model developed to analyze 

the single effect thermal vapor compression (rYC) desalination process. The model 

considered the effects of all thermodynamic losses on the thermal performance ratio, 

the specific heat transfer area and the specific flow rate of the cooling water. The 

model also takes into consideration the variation in the physical properties of the 

seawater with temperature and salt concentration, the effect of fouling factors and 

the presence of non-condensable gases on the heat transfer coefficients in the 

evaporator and the condenser. The relationships between the parameters that control 

the product water cost, and important parameters such as the motive steam pressure, 

the vapor compression ratio and the boiling temperature are presented. 

El-Dessouky and Ettouney [1] proposed a thermal analysis for multiple-effect 

evaporation desalination systems. Several operating configurations were analyzed, 

including the parallel flow, the parallelj cross flow, and systems combined with 

thermal or mechanical vapor compression. Results were presented as a function of 

parameters controlling the unit product cost, which include the specific heat transfer 

area, the thermal performance ratio, the specific power consumption, the conversion 

ratio, and the specific flow rate of the cooling water. 
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4 CASE STUDY (UMM AL-NAR PLANT) 

4.1 General Description 

The seawater desalination plant of Umm AI-Nar in Abu Dhabi represents one of the 

latest examples of the application of the multiple effect process at low temperature 

with thermal vapor compressor for seawater desalination. The nominal capacity and 

thermal energy requirement of each unit is 3.5 MIGD and 85 ton of low-pressure 

steam per hour, respectively. The plant includes multi effect evaporation desalting 

system with steam jet ejector. This multi effect unit is of the horizontal tube falling 

film type with plain tubes, see Appendix B. The plant has six effects operating at 

different levels of temperature. The effects are arranged horizontally with 

satisfactory permanent access to all effects. The thermal vapor compression (IVC) 

technique is applied to two parallel sections of three effects each. Motive steam is 

admitted to the unit through two parallel thermo-vapor compressors one for each of 

the TVC section with three effects. The other part of vapor is allowed to pass through 

cells 4,5,6 and final condenser. Each unit produces a guaranteed rated output of 3.5 

MIGD. Scale control is achieved by controlled dosing of polymer type additives (the 

anti-scalant (Sokalan) and anti foam (Belite M8)) into the seawater feed. The distiller 

is capable of operating at reduced output up to 50% of the rated design output. The 

design temperature of seawater input to the distillers is 33 °C and minimum 

temperature is 16 0c. the design seawater salinity is 52000 ppm, typical seawater 

intake analysis of Umm AI-Nar and its expected seasonal temperature variations are 

given in Appendix B. 

The maximum design vapor temperature of the first and highest temperature, effect 

shall not exceed 65 °C, main operating parameters are given in Appendix B. The 

corrected performance ratio, with all evaporator tubes fouled to the design fouling 

factors is not less them 8.0 kg of product per 2300 kJ net heat input. The quality of 

distillate produced is guaranteed to have a total dissolved solids content not grater 

than 25 mg/I. Most of material used for the distiller is stainless steel; see Appendix B 

for distiller materials. 
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4.2 Process Description 

The incoming seawater after being heated up in pre-heaters, is sprayed on the main 

tube bundles of each effect, where it is partially evaporated as it flows as thin films 
outside the tubes due to the heat released by condensing vapor flowing inside the 

tubes. The condensed steam represents the distillate production of each effect. Vapor 

generated by this evaporation goes to the next adjacent effect where it condenses 

inside the tubes forming again the distillate production of that effect. The stage 

process illustrate tube bundle and make up shower as shown in Appendix B. 

The process is repeated in each of the six effects. Distillate and brine from each effect 

are cascaded to the next effect. In the last effect, brine is extracted and distillate is 

cascaded to the final condenser. Both brine and distillate streams are extracted by 

horizontal centrifugal pumps. Part of the production of the first effect is returned to 

the boiler by a condensate pump. 

Part of the vapor leaving the third effect of the TVC section is re-compressed to the 

first effect of this section by the steam ejector; while the other part is used as heating 

steam for the top effect of 3 effects conventional MED system. Vapor generated in the 

4th effect is introduced as heating vapor in the fifth effect and so on to the last effect 
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Figure 4-1: Process flow diagram for MED-TVC plant at Umm AI-Nar 
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5 MATHEMATICAL MODELING OF THE MED-

TVC PROCESS 

The steady state MED-TVC model includes a set of material and energy balances, 

heat transfer equations, and thermodynamic correlations. The main features of the 

model for the six-effect MED-TVC plant include the following: 

• It considers the effect of the vapor leak to the venting system. 

• It takes into consideration variations in the thermodynamic losses within the 

system. This includes the boiling point elevation, flashing boxes and 

temperature depression corresponding to the pressure drop during 

condensation process. 

• It takes into consideration temperature and salinity effects on the water physical 

properties such as heat capacity, density, viscosity and thermal conductivity. 

• The effect of non-amdensable gases on the heat transfer coefficients in the 

evaporators, condenser and feed heaters are taken into account. 

• Constant heat transfers area for the first three effects and another constant heat 

transfer area for the last three effects. 

• The third effect brine temperature is controlled as a fixed value. 

The following assumptions are used in the model: 

• Distillate product is salt free. 

• Energy losses from the effects to the surroundings and non-condensable gases 

are considered equal to 2 % of the first effect thermal load. 

• An averaged overall heat transfer coefficient for the first three effects and 

another averaged overall heat transfer coefficient for the last three effects (cold 

effects). 

• An averaged value for �T losses due to condensation is considered for the first 

three effects and another averaged value is considered for the last three effects. 

The mathematical model is divided into three parts, which include material balances, 

energy balances, and the heat transfer rate equations. Also, the model includes 

equations for the heat transfer coefficients, thermodynamic losses, and the physical 

properties of seawater. 
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Th following section give balance equations for the evaporators, down condenser, 

flash boxes, temperature profil S of effects, and steam jet ejector (thermo

compressor). 

5.1 Material Balance Equations 

The total mass and the salt balance in the system are given by 

ME = Met + Mb 
Mf * Xf Mb = -=----'-Xb 

(5-1) 

(5-2) 

Where M is the mass flow rate, X is the salt concentration, and the subscripts d, f and 

b denote the product water, feed seawater and brine respectively. 

5.1.1 Material balance for the first effect 

The mass and salt balances for the first effect are 

MfOl = Mbl + Mvl 
MfOI * XfOI Mbl = ----

Xb l  

Ms = Metl + Mcond 

(5-3) 

(5-4) 

(5-5) 
Where cond is the condensate leavening the first effect to be pumped back to the 

boiler; v is the vapor formed in the evaporator, b is brine concentrated in the effect 

bottom, s is the discharged vapor from the thermal vapor compressor. 

Mfol 

�, 
Ms Effect Mv! 

... .. ... � 
#1 

Meon 1v!.d! 
� .... 

Mbl 
.. .... 

Figure 5-1: Material balance for the first effect 
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5.1.2 Material balance for the other effects 

The mass and salt balances for other effects are 

MfOn + Md(n-l) + Mb(n-l) = Mbn + Mvn 

M /0 1 * X /01 + M b( n- I ) * X b(n- I ) 
Mbn = -'------=----'--'----'---'--

Xbn 

Where n is the effect number. 

The unit cell process equations for brine, distillate and vapor are 

MfOn 

, 
Mv(n-l) Mvn � Effect .. .. 
Md(n-l) .. (n) M�n 

.. ... 

Mb(n-l) i M�n 
... 

Figure 5-2: Material balance for effect (n = 2,3 and 6) 

MD" 
Mf04 

Md4" 
Mf05 

" 
v3-Mev �v4 

Effect .. � Effect 

MD ... (4) M�4 Md4 (5) 
... 

Mh3 i M� Mb4 
.. 

(5-6) 

(5-7) 

(5-8) 

Mv5 

MdS 

MbS 

Figure 5-3: Material balance for Figure 5-4: Material balance for 

effect (4) 

Brine: 
Mb(n-l) = Lbn + Vbn 

L 
_ M b(n-l) * X (n-l) 

bn -
X Lbn 

effects (5) 

(5-9) 

(5-10) 
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Moo = Mbn, + Lbn (5-1 1 )  

Where Lb is the remaining brine from the inlet brine stream due to flashing; Vb is the 

flashed vapor from the inlet brine stream, bn' is the brine created from the boiling 

process inside the effect. 

Distilla te: 
The distillate leaving each effect starting from effect two to effect n is a combination 

of two streams. One is the vapor condensate inside the tubes and the other one is the 

remaining distillate from the flashing process of the distillate coming from the 

previous effect. 

�(n-l) == Lrut + V dn 

Mon == Mon' + Lcin 

(5-12) 

(5-13) 

Where l<J is the remaining distillate from the inlet distillate stream due to flashing; V d 

is the flashed vapor from the inlet distillate stream, dn' is the condensed vapor inside 

the tubes. 

Vapor: 
From effect two to effect n, the total vapor generated in each effect is a combination 

of three streams. The first one is the vapor generated from the boiling process outside 

tube surface, the other two streams come from the flashing process, they are flashed 

vapor from brine and distillate streams cascaded from the previous effect. 

Mvn == Mvn' + Voo +Vdn 

Where vn' is the vapor generated from the boiling process. 

5.2 Energy Balance Equations 

5.2.1 Energy balance for the final Condenser 

(5-14) 

Heat transfer between the condensing vapor and the feed seawater in the condenser 

can be written in terms of an overall heat transfer coefficient (UFC), condenser heat 

transfer area (AFC), and the logarithmic mean temperature difference (LMTD)FC; thus: 

<2Fc == UFC * AFc * (LMTD)FC == Mvn * /...V (5-15) 

Where (LMTD)Fc is defined by 
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(5-16) 

The overall heat transfer coefficient based on the outside surface area Do is related to 

the individual thermal resistance by the following expression. 

_1_ =�  ro + R ro + ro In (ro / r, ) 
+ R + _1_ 

Uo h, ri /, r, kw f. ho 
(5-17) 

Where h is the heat transfer coefficient, Rc is the fouling resistance, kw is the thermal 

conductivity of tube material, and r is the radius. The subscripts i and 0 refer to the 

inner and outer tube surface, respectively. 

The inside tube heat transfer coefficient hi is calculated from the empirical formula 

developed by Wangnick [26] especially for desalination plants. 

(8 .47 1 + O. l 1 6 1X f 
+ 0.27 l 6TJ ( )0.8 ( 0, J X f ( 0  J02 0.656V 00 0. 1 7�72 

(5-18) 

Where Xf is the salt concentration in ppm, Tf is the feed temperature, and bi and bo are 

the inside and outside the tube diameters, respectively. 

Henning, et aL [26] developed the following equation to calculate the heat transfer 

coefficient during vapor condensation outside the tubes. 

h = 0.72S( k/ P/ (PI - Py )gAy JC C o (00 j.i./).T) 025 1 2 (5-19) 

Where kJ is the thermal conductivity at bulk temperature (W Im·C), p is the density 

(kgl m3), g is the gravity (ml S2), � is the dynamic viscosity at bulk temperature (pa.s), 

subscripts 1 and v represent liquid and vapor phases respectively. The correction 

factors C1 and C2 consider the influence of the condensate dripping down and the 

presence of non-condensable gases. The size of the coefficients C1 and C2 are given 

by the following equations. 

C1 = 1.23795 + 0.353808 N - 0.0017035 N2 

C2 = 1 - 34.313 Xnc + 1226.8 Xnc2 - 14923 Xnc3 

(5-20) 

(5-21) 
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Wher nc is th weight percentage of the non-condensable gases and N is the 

number of tube rows inside the condenser. The total number of tubes is calculated by 

4Mf N = --

I m5, p, V (5-22) 

Where Mf is the feed flow rate. The following relation determines the number of 

tubes N 

N = O.S64.JN: (5-23) 

For the first loop in the calculation procedure the overall heat transfer coefficient in 

the final condenser, UFG is obtained from the correlation developed by El-Dessouky 

et al [11] 

Ucondenser = 1 .7194 + 3.2063E-2 * Tv - 1 .5971E-5 * Ty2 
+ 

1 .9918E-7 * T� 

Where U is in kW /m2 0C and Tv in 0c. 

The therrnal load of the condenser, Q:c is given by 

Q:c = (Mew + Mf) * Cp * (Tr-Tsw) 

In the above equation Tsw is the feed seawater temperature 

Then, 

Mew = 
U FC * AFC _ Mr 

CP * [ln Tend -T sw ]  
Tend - Til 

(5-24) 

(5-25) 

(5-26) 

Where subscript f1 denotes the outlet feed water from the final condenser, Tend is the 

condenser vapor temperature. Tend is less than the temperature of vapor released 

from the last effect by pressure drop during vapor condensation outside the 

condenser tubes expressed by the temperature drop tl Tend. Thus, 

Tend = Tvn - tlTend (5-27) 

EC HE3 HE12 FC 
TfOl Tf03 Tf04 Tf06 Tsw 

Tf02 
Md3"1 

Tf05 
OEc MV6 

Figure 5-5: Feed water pre-heating process 
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5.2.2 Energy balance for the feed pre-heaters 

Heat transfer between the condensing vapor from the fourth effect and feed seawater 

conting from the final condenser can be written by the following three equations: 

<2H:E12 = UHE12 * AHE12 * LMTDHE12 

= Mn * Cp * (If04 - Tf06) (5-28) 

Where M.:t4" is the vapor condensed in pre-heater 12, UHE12 is the overall heat transfer 

coefficient and AHE12 is the heat transfer area for pre-heater 12, the subscript f2 

denotes outlet feed water from pre-heater 12. 

Similar equations can be applied for pre-heater 3: 

� = UHE3 * AHE3 * LMTDHE3 

= Md311 * Av3 = Mo * Cp * (If02 - Tf04) (5-29) 

Where �" is the vapor condensed in pre-heater 3, UHE3 is the overall heat transfer 

coefficient and AHE3 is the heat transfer area for pre-heater 3, the subscript f3 denotes 

outlet feed water from pre-heater 3. 

The last step for feed preheating is the ejector-driven condensers. Medium pressure 

steam is used as motive steam. Usually its flow and temperature are constant, so the 

thermal load of these ejector condensers could be considered constant 

(5-30) 

Where <2Ec is the thermal load for ejector condenser, MPS and f4 subscripts are 

medium pressure steam and outlet feed water from the ejector condenser, 

respectively. 

5.2.3 Energy balance for the first effect 

The latent heat (As) for the condensed vapor inside the effect tubes (Ms) represents 

the effect thermal load and it is equal to the thermal energy access through the tubes 

area CAel) .  The driving force for the heat transfer process is the apparent temperature 

difference between the condensed vapor temperature (Is) and brine temperature (IJ ). 
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The ov rall heat transfer coefficient (Del )  includes the convective local film 

coefficients and the conductive resistances of the tube wall and any scales. 

Qel = Ms * (Hnux - hel) 

= Del '" Ael '" (Is - Tl) 
The brine salinity can be calculated from the above equation resulting in 

Xl 
= 

MjOI * NOl * (R.I - CP @ Tl * TI) 
Mrol * C Rv - CP @ 7J01 * nO I) - Ms * As 

(5-31) 

(5-32) 

Where Cp is the specific heat at constant pressure; Tl is the brine temperature; H is 

the enthalpy for saturated vapor; As is the latent heat for vapor-steam mixture from 

the thermal vapor compressor; and the subscript s denotes the compressed vapor. 

5.2.4 Energy balance for the other effects 

In effects 2 to n, the condensed vapor temperature is decreased due to the decrease in 

pressure as we move downwards in the plant. The condensate temperature was 

obtained previously. The thermal load of effects 2-n can be written as: 

Qen = Mv(n-l) * Ac 
= Den * Aen * (I0l - Tn) (5-33) 

The boiling process in all effects is similar. The salinity of the brine due to boiling is 

given by 

Xn' = 
.Mron * NOn * C Hvn - CP @ Tn * Tn) 

MJon * (Hv - CP @ TfOn * nOn) - Md(n - I) * AV(n - I )  

Flashing process 

The remaining brine flow rate Lbn and salinity XLbn are given by 

Mb(n - I )  * (Cp @ T(n - I) * T(n - I )  - Hvn) Lim = ------'----=---------

CP @ TUn * TLbn - Hvn 

and 

_ X(n - I) * (Cp @ 1Lbn * TLhn - Hvn) XUm - -�""':"---':""�=-------'-

[Cp @ T(n - I ) * T(n - I) - Hvn] 

The overall brine salinity of each effect is expressed by 

Mbn '* Xn '+Lbn * X Lbn Xn = -.::.:..:....---'-'-----'-"--------'='-

Mhn 

The remaining distillate Ld2 is given by 

(5-34) 

(5-35) 

(5-36) 

(5-37) 
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L - Afd(n J )  * (hU(n - J )  - Hlon) 
dll -

5.3 Equations for Temperature Profiles 

5.3.1 Temperature profile of the feed seawater 

(5-38) 

Seawater feed is preheated in four steps as was shown in Figure 5.3. The first step is 

in the final condenser. The outlet temperature is expressed by 

[ U FC*A FC ] exp 
(M cw+M I) * CP 

(5-39) 

Where T fl is the feed water outlet temperature from the final condenser. The cooling 

water temperature Tcwi sixth effect feed water temperature Tf06 and fifth effect feed 

water temperature T!OS are equal to this temperature. 

The second step in feed water heating take place in pre-heaters 1 and 2 

Ta = Tv4 -

exp[U HEI2 * A HEI2 ] 
M 12*CP 

(5-40) 

Where Tn is the feed water outlet temperature from pre-heaters 1 and 2. The fourth 

effect feed water temperature Tf04 is equal to this temperature. UHE12 is the overall 

heat transfer coefficient for pre-heaters 1 and 2. 

The third step in feed water heating take place in pre-heater 3 

Tf3 = Tv3 -

ex [u HE3*A HE3 ] 
P M *CP 13 

(5-41) 
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Where T f3 is the fe d water outlet temperature from pre-heater 3. The second and 

third effects feed water temperature, T f02r Tf03 respectively, are equal to this 
temperature. UHEJ is the overall heat transfer coefficient in the pre-heater 3. 

The fourth step takes place in the ejector condensers. The outlet temperature feed to 

first effect T f01 is: 

T - T  + QEC f0 1  - f3 
M //CP 

5.3.2 Temperature profile for the first effect 

The brine temperature in the first effect is: 

Ms * (H ma - he ! )  Tl = Ts - ---------'---
Ue * Ae 

The saturation temperature of the formed vapor is given by 

Tvl = Tl - (BPEmean + L\Tm + L\Th) 

(5-42) 

(5-43) 

(5-44) 

The boiling point elevation (BPE)meaJlI at a given pressure, results in an increase in the 

boiling temperature due to the effect of dissolved salts. In horizontal tube falling film 
evaporators, the mean BPE is used to determine the vapor temperature. This is due 

to the extreme change in salinity for falling film evaporation. The BPE is calculated 

from the following empirical formula [12] : 

2 [1 + 1 .373 * 1 0-3 * T - 2.72 * 1 0-3 * .j";  * T + 1 7.86 * x -l 
x * T 

BPE = 1 3832 1 . 52 * 1 0-2 * X * T * (T - 225.9 ) _ 2583 * x * (1 - x) 

T - 236 T 

Where 

x = salt concentration, wt. fraction 

T = Temperature, K 

(5-45) 

The above equation is valid over the following ranges: 20000 < X < 160000 ppm, 20 < 

T < 180 °C. 

�Tm expresses temperature decrease due to vapor pressure drop through demister. 

In general, the pressure loss during the vapor flow through a wire mesh pad, which 

is widely used as the mist eliminator in water desalination industry, is relatively 

small because of the high void fraction of these pads. 

The boiling point rise caused by the hydrostatic head L\Th has a negligible effect in 

horizontal falling film evaporators. 
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5.3.3 Temperature profile for the other effects 

The brine temperature from the boiling process is given by 

Mdn * Acn 
Tn' = Tc(n-J) - ---

Ue * Ae 
(5-46) 

Where T bn' is the brine temperature generated from the boiling process on the tube 

outside surface, Tc is the condensation temperature of vapor inside the evaporator 

tubes and 6.Tc compensates for the pressure drop due to condensation. 

The condensation temperature of vapor inside the tube bundle of the second effect 

Tel is less than the roiling temperature in the first effect Tl by the mean roiling point 

elevation (BPEmea.n)l and the saturation temperature depressions associated with the 

pressure loss during the vapor flow in the demister (6. T m)l, vapor transmission lines 

(6.Tt)l and vapor condensation inside the horizontal tubes (6.Tch . Thus, 

(5-47) 

The pressure drop during the vapor condensation inside the evaporator tubes is the 

sum of the frictional, gravitational and acceleration components. 

The final brine temperature in each effect is expressed by the brine temperature, 

which is generated from the roiling process and the remaining brine temperature 

from the flash process, can be calculated by the following equation: 

Moo * Cp * Tbn * +Lbn * Cp * TLhn 
Tn =  ----�----------��---

(Mbn + Lbn) * Cp 

5.4 Equations for Steam Jet Ejector 

(5-48) 

The general material and energy balance equations for the steam jet ejector are: 

Mms + Mev = Ms 

Mms * Hms + Mev * Hev = Ms * Hs 

(5-49) 
(5-50) 

The most important and critical step in modeling the thermal vapor compressor in 

this type of desalination process is the evaluation of the performance of the steam jet 

ejector. The main data required for analyzing the steam jet ejector is the 

determination of the mass of motive steam required per unit mass of the entrained 
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vapor (Ra), giv n the pressure of the motive steam (Pms), discharge pressure (Ps) and 

the suction pressure (Pev) . There is very lirrrited number of methods available in the 

literature analyzing the steam jet ejector. 

The method reported by El-Dessouky et al. [15] was adopted in this work for the 

design of the steam ejector. The first equation in the model gives the compression 

ratio, Cr, of the compressed and the entrained vapors, 

(5-51) 

Where P s and P v are the pressures of compressed and entrained vapor. The 

compression ratio can be varied over a range from 1 .8 to 5. Specification of its value 

together with the pressure of the entrained vapor is used to determine the pressure 

of the compressed vapor, which is assumed to be at saturation conditions. The 

entrainment ratio (Ra) is defined as the mass of motive steam (Mms) per unit mass of 

sucked vapor (Mev). The ratio is obtained from the following relation: 

_ Ps l . 19 (Pms)O.OI5 (PCF) Ra - 0.296 1 04  
( )  Pv ' Pv TCF 

(5-52) 

Where PCF and TCF are pressure and temperature correction factors expressed as 

PCF = 3 x I 0-7 (PmsY - 0.0009(Pms) + 1 .6 1 0 1  

TCF = 2 x  1 0-8 (TvY - 0.0006(Tv) + 1 .0047 

Mev = Mms 
Ra 

(5-53) 

(5-54) 

(5-55) 

Where Pnv Ps and Pv are the pressure of the motive steam, compressed vapor, and 

entrained vapor, respectively. PCF is the motive steam pressure correction factor 

and TCF is the entrained vapor temperature correction factor. The pressures, 

temperature and flow rates in the above equations are in kPa, °C, and kg/ s, 

respectively. The above correlation is valid in the following ranges: 
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Ra '5:. 5 

500 � Tm > 1 0 ° 

3500 � PmJ � 1 00 kPa 
P, � 1 .8 1  P. 

5.5 Model Solution 

The mathematical model was coded using Excel and the developed computer 

program was called the MEDNAR simulator. It is designed for the MED-TVC plant 

at Umm-Al-Nar. 

This plant is split in two parts, hot effects (effect 1,effect2 and effect3) using MED

TVC process and cold effects (effect 4, effect 5, effect6) using MED process. 

The following set of specifications is used for the solution procedure: 

• Seawater temperature, T cw = 33 °C. 

• Seawater salinity, Xf = 52000 ppm. 

• Number of effects, n = 6. 

• Evaporator heat transfer area for hot effects, AHar = 13099 m2. 

• Evaporator heat transfer area for cold effects, Acow= 4453 m2. 

• Condensate vapor temperature from third effect, Tc3 = 54 0C. 

• Last stage vapor temperature, T v6 = 43 °C. 

• Condensation temperature losses are: 

i1Tc for hot effects = 0.415 0C. 

i1 Tc for cold effects = 0.68 0C. 

• Feed pre-heaters (1 and 2) area is 578 m2 each and pre-heater 3 area is 693 m2. 

• Down condenser Area, Acnd = 2874 m2. 

• Motive steam pressure, P ms = 239 kPa. 

• Motive steam flow, Mms = 10.6 kg/ sec. 

• Ejector Condenser thermal load, <2Ec = 2475 kW. 

The solution procedure is sequential and proceeds as listed below: 

5.5.1 Feed water pre-heating 

1 .  The seawater temperature is given. 

2. Guess the cooling water flow rate, Mcw. 
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3. Gu the apor temperature in effect 6. 

4. Calculate UFC using equations (5-17 to 5-23). 

5. Calculate the feed temperature Tn using equation (5-39). 

6. Guess vapor temperature in effect 4, Tv4. 

7. Calculate UHE12 using equation (5-17 to 5-23). 

8. Calculate the outlet feed temperature from pre-heater 12, T f'lt using equation 

(5-40). 

9. Obtain UHE3 from equation (5-17 to 5-23), where Tc3 is input data. 

10. Calculate outlet feed temperature from pre-heater 3, To, using equation (5-41) .  

11 .  Calculate the outlet feed temperature from Ejector Condenser, T £01, using 

equation (5-42). 

5.5.2 Hot effects 

12. Guess the overall heat transfer coefficient for hot effects, UHar. 

13. Calculate the vapor condensation temperature, Tc(n-l) ,  using equation (5-27). 

14. Calculate the effect thermal load, Qm, knowing the condensed vapor flow and 

temperature using equation (5-33) .  

15. Use NCG as reduction percentages from the thermal load Qm. 

16. Get the boiling temperature Tn from equation (5-46). 

17. Guess the brine salinity generated from boiling process, Xnl • 

18. Obtain mean salinity Xmeant knowing the seawater salinity. 

19. Calculate BPEmean from equation (5-45). 

20. Calculate the vapor temperature using equations (5-47 and 5-27). 

21 . Obtain the specific heat, Cp for brine and feed using the correlation from 

Appendix B. 

22. Calculate the brine salinity from the boiling process, Xn', using equation (5-34). 

23. Go back to step 17 and re-guess Xnl using the calculated Xn' from the previous 

step. Do the loop till reaching acceptable accuracy. 

24. Calculate the brine and vapor flow rates generated from the boiling process, 

Mbn' and Mvn' respectively, using general equations (5-2 and 5-3) respectively. 

25. Calculate the salinity and flow rate for the remaining brine generated from the 

flashing process. XLbn and Lbn respectively, using equations (5-36 and 5-35). 

26. Calculate the brine flow rate, Mbl1l and the salinity, XI1I for overall unit 

operation in effect using equations (5-11 and 5-37) respectively. 

27. Calculate the remaining distillate Ldn from equation (5-38). 
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28. Obtain the effect unit operation distillate, Mdrv and vapor, MVTl/ using 

equations (5-13 and 5-14) respectively. 

29. Repeat teps 13 to 28 for second and third effects. 

30. Go back to step 12  and re-guess UHOT. Do the loop till calculated condenses 

vapor temperature, Tc3, equals Tc3 set value. 

5.5.3 Cold Effects 

31. Guess the overall heat transfer coefficient for cold effects, UCOLD. 

32. Repeat steps 13 to 28 for effects 4, 5 and 6. 

33. Calculate the final condenser thermal load knowing the condensed vapor 

temperature and flow rate in condenser (shell side), '2Fqout), and compare it 

with calculated thermal load ,Q;c, knowing overall heat transfer coefficient 

,UFC, and heat transfer area ,AFc, using equations (5-15 and 5-25) respectively. 

34. Go back to step 31 and re-guess Ucold. Stop when '2Fqout) = '2Fc. 

35. Calculate Mew using equation (5-26) and re-use it in step 2. Use vapor 

temperature of effect 4, Tv4, and effect 6, Tv6, in steps 6 and 3 respectively. Do 

the loop till Mew calculated equal Mew guessed. 

Notes: 

A. There is no flashing in first effect, skip steps 25 to 28. 

B.  There is no �Tc in the first effect, skip step 13. 

e. NCG percentage in step 15 is only for the first effect. 

D. In the first loop for feed water heating, use the U correlation to find a good 

guess for UFc, UHE12 and UHE3• 

E. In effect 3, the vapor temperature, Tv3 = 54 °C, is controlled by the final 

condenser cooling water. 

F. For the steam jet ejector, get the pressure correction factor from equation (5-

51) and the temperature correction factor from equation (5-52) . The 

compressed vapor pressure, Ps, is obtained from the specification of the 

compression ratio, Cr, and the entrained vapor pressure, Pev. Calculating the 

saturation temperature, Ts, at the corresponding vapor pressure, Ps, from the 

steam tables, follows this . Finally, Get the entertained ratio, Ra, from equation 

(5-50) and the sucked vapor from equation (5-53) .  
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6 RESULTS AND DISCUSSIONS 

The simulation results of the developed model MEDNAR for the MED-TVC plants at 

Umm Al Nar power station are presented and discussed in this chapter. The 

MEDNAR computer program is validated through analysis of the effect and pre

heater characteristics. This includes analysis of profiles for the temperature and the 

distillate flow rates across the effects. The results have been compared with both 

contractors design data and with the commercial software EV APOLAND. In 

addition, sensitivity analysis was conducted to investigate the variation in the system 

performance parameters as a function of seawater salinity, seawater temperature and 

motive steam flow rate. 

6.1 Evaluation of MEDNAR simulator results 

In this part, MEDNAR results are compared with the contractors design data and 

with the commercial software EV APOLAND. The main objective is to calibrate, 

verify and check the reliability of the mathematical model and the developed 

computer code. 

The temperature profiles in the effects and the pre-heaters at both 100% and 50% 

product:i,on rates are shown in Figures 6-3 and 6-4, respectively. The temperature of 

vapor produced in any effect is higher than the temperature of brine leaving the next 

effect. This is because the distillate is the energy stream, which condenses and gives 

energy to the brine side. 

The brine temperature is approximately equal to the next effect distillate temperature 

plus the losses, which are the mean boiling point elevation and the temperature drop 

due to the pressure drop during the vapor condensation inside evaporator's tubes. 

The feed water temperature profile is also shown in the same figures. The lowest 

temperature is the seawater temperature. The feed water is heated up in the final 

condenser, feed pre-heaters and venting condensers. The low temperature feed water 

streams are feed to last stages. This is due to lower temperature needed for boiling 

process. 

Figures 6--5 and 6-6 display the feed water temperature profiles at 100% and 50% 

production rates, respectively. In these figures, the design data are compared with 

the MEDNAR runs . The maximum deviation (1 .2%) at 100% production rate was 
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found in th final condenser. At 50% production rate, the largest net deviation (1.7%) 

was found in pre-heater 12. 

Figures 6-7 and 6-8 illustrate the vapor condensation temperature profiles at 100% 

and 50% production rates, respectively. In these figures, MEDNAR runs are 

compared with the design data and EV APOLAND runs. The maximum deviation 

(1 .6%) is observed at the last effect condensation temperature Tc6 between MEDNAR 

and EV AOLAND runs . 

The brine temperature profiles at 100% and 50% production rates are shown in 

Figures 6-9 and 6-10, respectively. The maximum deviation (1 .6%) is found between 

MEDNAR run and design data at 100% production rate in the last stage brine 

temperature T6. This difference may be attributed to error accumulation based on 

different assumptions. 

In general, the results for the different models runs are very close; see tables 1 and 2 

for 100% and 50% production rates results respectively. The tables display the final 

brine and final distillate flow rates. The maximum brine flow rate deviation is 0.2% 

compared with design data at 100% production rate run. At 50% production rate run, 

the distillate flow rate deviation is 3.2% compared with EV APOLAND run. 

The largest deviation was observed in the cooling water flow rates. Compared with 

design data, the results show 18.9% deviation at 100% production rate and 13% 

deviation at 50% production rate. 

This difference is may be attributed to many reasons. The first reason is the 

MEDNAR simulator methodology. The program is based on a number of loops. The 

main loop checks the cooling water flow rate. The deviation is due to the 

accumulation of all the errors resulted from the different assumptions. 

The other reason is the condensers overall heat transfer coefficient, Ucond. Henning 

and Wangnick [26] show different equations calculating the local heat transfer 

coefficients for inside and outside condensers tube. The results showed different 

overall heat transfer coefficient valves with different methods. The U value is affects 

the final condenser thermal load directly and indirectly through the deviation in the 

feed temperature profile which finally affects the cooling water flow rate. Another 

reason could be the designer is using different fouling factors and empirical values 

gained by experience. 
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Practi ally speaking, this difference could be accepted if we are considering the feed 

water flow rate in our calculations in addition to the cooling water flow rate. In this 

case, the total seawater intak flow rate deviation will reduce from 18.9% to 1 1  % at 

full production rate and from 13% to 2% at half production rate. 
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Table 6-1 : Comparison of Design data, EV APOLUND and MEDNAR at 100% 

production rate 

A- Feed water temperature profile DC (100%) 

Tsw 33.0 

TfOO 40.5 

Tf05 40.5 

Tf04 48.3 

Tf03 52.0 

Tf02 52.0 

Tf01 55.9 

B- Vapor � temp. profile "C (100%) 
Tc1 65.0 

Tc2 61.3 

Tc3 57. 7 

Tc4 54.0 

Tc5 50.3 

TeS 46. 7 

Tdistillate 43.0 

-c- Brine temperature profile ·C (100%) . '. 

T1 62. 5 

T2 58.9 

T3 55.2 

T4 51. 7 

T5 48. 1 

T6 44.4 

C- Other variables (100%) 

Mew, kgls 929.4 

Mdistillate, kgls 184.2 

Mbrine, kg/s 456. 7 

Tbrine, ·C 44.4 

Xbrine, 1 000'ppm 73.0 

Where: 

0.0 

1 .2 

1 .2 

1.9 

2.3 

2.3 

2.2 

. . � � . 
0.0 

0. 1 

0.2 

0.0 

1. 1 

1.0 

0.0 

• • f� -
0. 1 

0.2 

0. 5 

1 .0 

1.0 

1 .6 

18 9 

0. 1 

0.2 

1 . 7  

0.0 

'. . .... t: .. . 
65.0 

61.8 

58.2 

54. 7 

50. 5 

47.0 

43.0 

.. �, �.�� . 1: 
62. 7 

59. 1 

55. 6 

51.4 

47.8 

43.8 

184.4 

455.6 

43.8 

73.0 

t.l = 100 * (design data - MEDNAR result)/ design data 

33.0 

41.0 

41.0 

49.2 

53.2 

53.2 

57. 1 

. .. �, �. 
0.0 65.0 

0.7 61.4 

0. 7 57.8 

1 .3 54.0 

1.5 49. 7 

1 .6 46.2 

0.0 43.0 

.. ''': � � . .  : '::J!!5..� 
0.2 62. 6 

0. 1 59.0 

0.3 55. 5 

0.5 51. 1 

0.5 47. 5  

0. 4 43. 6 

753. 7 

0.0 184.3 

0.0 455. 7 

0.4 43. 6 

0.0 73.0 

tQ = 100 * (EV APOLUND result - MEDNAR result)/ EV APOLUND result 
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Table 6-2: Comparison of Design data, EV APOLUND and MEDNAR at 50% 

production rate 

VAPQlUND 

A- Feed water temperature profile °C (60%) 

Tsw 33. 7 0. 0 33. 7 

Tf06 43.4 0. 8 43.8 

Tf05 43.4 0. 8 43. 8 

Tf04 49. 0 2.5 SO. 2 

Tf03 52.0 2.8 53.5 

Tf02 52.0 2.8 53.5 

TfQ1 55.9 2. 7 57.4 

B-Vapor condensation tempe. profile ·C (50%) , .< <" 
0 �, � 

Tc1 622 0.0 622 0.0 62.2 

Tc2 59.5 0.0 59.9 0. 7 59. 5 

Tc3 56. 7 0.3 57.3 0. 8 56.9 

Tc4 54.0 0.0 54. 7 1.3 54.0 

Tc5 51.0 1 . 0  51.3 1 . 6  SO. 5 

Tc6 48.0 0.8 48.4 1.6 47.6 

Tdistillate 45.0 0. 0 45.0 0.0 45.0 

C- Brine tempendure profile -C (50%) . . ' L . . /'[-> ,;.. .. -,.�'�:. ,. -
T1 60. 7 0.2 60.6 0.0 60. 6 

T2 57.9 0. 1 58. 0 0.0 58. 0 

T3 55. 4 0.0 55. 4 0. 1 55. 4 

T4 52.4 1 .0 52. 0 0.3 51.8 

T5 49.4 0.9 49. 1 0.4 48.9 

T6 46.4 1.6 45. 7 0.2 45. 6 

C- Other variables (60%) c. " ., ',' 

Mew, kgls 1 1 1 . 4  13.0 125.9 

Mdistillate, kgls 92. 1 2.3 91 .2 3.2 94.2 

Mbrine, kgls 548.8 0. 5 548.8 0. 5 545.8 

Tbrine, oC 46.4 1. 7 45. 7 0.2 45. 6 

)(brine, 1 000·ppm 60.6 0.6 60. 6 0. 6 61.0 

Where: 

L'l1 = 100 * (design data - MEDNAR result)/ design data 

tU = 100 * (EV APOLUND result - MEDNAR result)/ EV APOLUND result 
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6.2 Sensitivity Analysis of the MED-TVC Process 

In this part, sensitivity analysis was conducted to investigate the variation in the 

system performance parameters as a function of seawater salinity, seawater 

temperature and motive steam flow rate. 

6.2.1 Effect of feed salinity 

Figure fr.ll illustrates the effect of seawater salinity on the overall heat transfer 

coefficients for hot and cold effects, UHffi and UeoLO. As can be seen, both UHffi and 

UCOLD are increasing when seawater salinity increases. This behavior is related to the 

increase in the boiling point elevation as feed water salinity increases which directly 

affects the brine temperature. At the same time, the mixed vapor stream temperature 

is not changing due to the operating characteristics of the thermal vapor compressor. 

The driving force for the heat transfer process is the apparent temperature difference 

between the condensed vapor temperature Ts and the brine temperature T1 . This 

driving force clearly decreases when the feed water salinity increases. So the overall 

heat transfer coefficient will increase at a constant heat transfer area. 

The figure also shows that the UHffi is always higher than UCOLO and this is due to the 

assumptions of the condensation temperature losses (�Tc) at hot and cold effects, 

which is strongly dependent on the specific volume and vapor velocity. From 

equation (5-47), the condensation temperature (Tc) decreases at higher condensation 

temperature losses. The driving force will reduce more, which will reduce the UeoLO• 

Variation in the performance ratio as a function of the feed water salinity is displayed 

in Figure fr.12. As is shown, the performance ratio is nearly independent of the 

variation in the feed water salinity. This behavior is explained in terms of the 

constant evaporators thermal load. The driving force is reduced as previously 

explained. At the same time, the overall heat transfer coefficient is increased. The 

other variables remain constant, which keep the evaporators thermal load nearly 

constant. The produced distillate from each effect will remain also constant. 

Therefore, the performance ratio is not function of feed salinity. 

Figure fr.13 shows the concentration of the rejected brine leaving the last stage at 

different feed water salinity for different plant distiller load factors. This figure could 
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be ery helpful to determine the maximum allowable load at different feed 

concentration based on th maximum allowable blow down brine salinity. 

6.2.2 Effect of the flow rate of motive steam 

A number of simulation runs were executed to investigate the effect of the flow rate 

of motive steam on several process variables. 

Figure 6-14 shows the performance ratio (PR) as a function of the flow rate of motive 

steam. It is clear that PR is strongly dependent on the motive steam. In the MED 

theory, each 1 kg of steam supplied to an effect will produce 1 kg of distillate. The 

more steam supplied the higher the evaporator thermal load, see equation (5-31). 

This will lead to higher heat transfer rates and more vapors will be generated. This 

extra vapor is used as energy stream in the next evaporator and which condenses at 

the same time and cascaded as a distillate. In this plant, the first two effects produce 

most of the vapor, see Figure 6-15. The first three effects have much larger area 

compared to the next three effects (around three times). Also it has the thermo vapor 

compressor, which is a recycling part of the vapor from the third effect to the first 

one. The curves in Figure 6-15 have small drop in the fifth effect, because of the pre

heater 12, which condenses part of the vapor to heat up the feed water. 

The increase in the PR as a function of motive steam has a lot of restrictions. Two of 

these restrictions are the blow down brine salinity and the last effect vapor velocity, 

see Figure 6-17. As the motive steam increases the brine salinity increases in each 

effect, see equations (5-32) and (5-34). This rejected salinity has environmental 

restrictions that do not allow it to be exceeded. The maximum design value in this 

plant is 73000 ppm. 

The last effect vapor velocity is also an important restriction. As the temperature is 

reduced from effect to effect due to heat transfer losses the pressure will also drop. 

The last effect vapor velocity is the lowest because of its high specific volume 

confined in a limited space. As the pressure is reduced the vapor velocity is increased 

and could reach a limit that disturbs the thin seawater-brine film around the 

evaporator tubes, which reduce the evaporator efficiency and may create dry spots, 

which lead to fatal scaling. On the other hand, a tube and baffle erosion could also be 

created. 

Figure 6-16 shows the thermal vapor compressor behavior. The difference between 

the mixed vapor flow curve and the sucked vapor flow curve is the motive steam 

flow rate. 
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The mechanical size for the thermal vapor compressor could be one of the important 

capacity restrictions. The more vapor sucked, the larger size needed. 

The relation between the specific heat transfer area and the specific cooling water 

flow rate as a function of the motive steam is illustrated in Figure 6-18. The specific 

heat transfer area strongly depends on the motive steam flow rate. It decreases 

linearly as the motive steam flow increases. This drop is due to constant area and 

strong relation between the motive steam and distillate flow rate as was discussed 

previously. The specific cooling water flow rate is increasing as the load increases. 

The curve reaches a maximum value at full load and start reducing again. The 

explanation for this behavior is clear in Figure 6-19. The cooling water flow rate 

curve increases approximately linear. On the other hand, the distillate flow rate 

shows a sharp increase at high load due to high performance ratio as explained 

before, go back to Figure 6-14 for more details. The differences between the two 

curves increases again at high load, which results in a maximum point. 

Figure 6-20 shows the evaporators overall heat transfer coefficients as function of the 

flow rate of the motive steam. When more motive steam is used, the evaporators 

thermal load will increase, with constant heat transfer area and temperature driving 

force, the U value will increase. The difference between the UHar and the UCOLD is 

due to the assumptions of the condensation temperature losses (�1c) at hot and cold 

effects, which have been discussed before. The UCOLD dotted line expresses the design 

data, which gives at low load higher final condenser condensation temperature (Tc6) 

than high load. This is to increase the UCOLD at low load to an acceptable average as 

indicated by equations (5-15) and (5-16). 

6.2.3 Effect of seawater temperature 

The next two Figures (6-21, 6-22) depict the specific cooling water flow rate and final 

condenser overall heat transfer coefficient as functions of seawater temperature. 

In general, when the seawater temperature increases, the Ucond will increase as 

indicated by equations (5-15) and (5-16). At the same time, more cooling water is 

needed according to equation (5-26) . 

The interesting point that these two figures are observed a minimum seawater 

temperature at low load. Seawater pre-heater is therefore a must with low seawater 

temperature. 
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6.3 Performance Evaluation of the Umm AI-Nar MED-TVC 

Plant 

Frequent evaluation of plant performance is an important procedure for operation 

engineers to ensure the plant capability of maintaining the nominal capacity at 

minimum cost. This can be done either by computer simulation using well-known 

plant design data or by experimental measurement of the most important process 

variables. Real plant data for the Umm AI-Nar MED-TVC plant was collected, 

analyzed and used to test the reliability of the MEDNAR simulator. The software 

was executed to simulate plant operation under clean conditions. 

The brine temperature profiles from plant operation and the computed profiles using 

MEDNAR show close results with maximum difference of 1 .6% in the first effect 

while the difference in distillate production is 0.5%, as shown in table 6-3. 

The next two tables 6-4 and 6-5 illustrate the plant overall heat transfer coefficients 

and performance parameters respectively, as predicted by MEDNAR simulator. 

Figure 6-23 shows the vapor production from each effect based on boiling or flashing 

process. The vapor produced from the boiling process is much higher than the vapor 

produced from flashing process. The portion of the flashed vapor is less than 7% of 

the total vapor produced. 

The figure also shows that the flashed vapor increases from effect to other, due to the 

accumulation of distillate and brine streams, which are cascaded from one effect to 

the next. 
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Table 6-3: Comparison of plant data and MEDNAR run 

Variable Plant Data MEDNAR Simulator 

A- Brine temperature profile 

T1 62. 5 61.5 1.6 

T2 58.9 58.3 1. 1 

T3 55.2 55.0 0.4 

T4 51. 7 51. 1 1. 1 

T5 48. 1 47. 7  0. 7 

T6 44.4 44. 1 0.6 

B- other variables 
Mdistillate, kgls 187.2 186.4 0. 5 

Mbrine, kgls 468. 1 469.0 0.2 

Tbrine, oC 45.2 44. 1 2.5 

Where: 

� = 100 * ( MEDNAR run - Plant data ) / plant data 

Table 6-4: The plant overall heat transfer coefficients computed by MEDNAR 

Equipment Value Unit 

Hot effects, UHOT 3.69 kW/ m2.0C 

Cold effects, UeoLO 3.52 kW/ m2.OC 

Final condenser, UK 3.78 kW/ m2.OC 

Table 6-5: Plant performance parameters computed by MEDNAR 

Performance parameters Value Unit 

Performance ratio, PR 8.97 kg D/ kg motive steam 

Specific cooling water, sMcw 2.88 kg SW/kg D 

Specific area, sA 310.7 m2/ kg D 
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7 ECONOMIC ANALYSIS 

7.1 Total Capital Investment 

The capital investment for a desalination plant is approximately similar to any other 

industrial plant Before it can be put into operation, a large sum of money must be 

supplied to purchase and install the necessary machinery and equipment. Land and 

service facilities must be obtained and the plant must be erected complete with all 
piping, controls and services. In addition it is necessary to have money available for 

the payment of expenses involved in the plant operation. 

The capital needed to supply the necessary manufacturing and plant facilities is 

called the fixed capital investment, while that necessary for the operation of the plant is 

termed the working capital. The sum of these is known as the total capital investment. 

Various methods can be employed for the estimation of capital investment The 

choice of any one method depends upon the amount of detailed information 

available and the accuracy desired. Many methods are outlined in reference [27], 

with each method requiring progressively less detailed information and less 

preparation time. A reasonable accuracy can be obtained with the Detailed Item 

Estimate method [27] . 

The fixed capital (CFO) and total capital (CTO) investments can be estimated by 

CFO = 1 .581 (2.145 CPr + Clnst ) 

= 4.75 CPr 

CTCI = 1 .177 CFO 

= 5.59 CPr 

(7-1) 

(7-2) 

Where CPr is the purchased cost of process equipments. Clnst is the installation cost of 

process equipments. For desalination process, 75% of the purchased cost for 

evaporators, and 45% of the purchased cost for heat exchangers and pumps. 

7.1.1 Purchased equipment cost 

In desalination plants, the major equipments are the heat transfer equipments that 

include the evaporators, heat exchangers and condensers and the pumping 

machinery, which are in general centrifugal pumps. 

PAGE 86 -



THESIS REP RT 

7.1.1.1 Co t Index 

Most available cost data for immediate use in cost estimates are based on conditions 

at some time due to changes in economic conditions; some method must therefore be 

used for updating cost data applicable at a past date to costs that are representative 

of conditions at a later time. This can be done by the use of cost index. 

Cp � c,  U: J (7-3) 

Where Cp is the present cost. Co is the original cost. Ip and Io represent the index 

value at present time and original time, respectively. 

7.1.2 The Annual Worth of a Present 

In our calculations, we want to find the net annual water cost. Thus, the total capital 

cost must be put in annual worth form, which is an equal annual series of money for a 

stated period that is equivalent to the cash inflows and outflows at an interest rate. 

(7-4) 

Where r represents the annual interest rate, N is the number of years, A and P 

represent the annual and present equivalent amounts respectively [28] .  

7.2 Total Production Cost 

Determination of the necessary capital investment is only part of a complete cost 

estimate. Another equally important part is the estimation of costs for operating the 

plant and delivering the product to the distributor. These costs can be grouped under 

the general heading of total production costs and general expenses. Manufacturing 

costs are known as operating or production costs. The annual cost basis is probably 

the best choice for estimation total cost. Total Production Cost (CTPC) equals the sum 

of the manufacturing cost plus the general expense. 

A. Manufacturing cost equals the sum of the following costs: 

1.  Utilities (CUt) 

2. Maintenance and repairs (CMnt); about 4% of the fixed capital 

investment 

3. Operation (Coprt); about 15% of the maintenance and repairs 

4. Laboratory charges (CLChrg); about 2.25% of the total production cost 
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5. 

6. 

7. 

8. 

9. 

Direct supervision (CDsup); about 2.263% of the total production cost 

Depreciation (CDpr); about 8% of the fixed capital investment 

Local taxes (CTax); about 3% of the fixed capital investment 

Insurance (C1nsur); about 1 % of the fixed capital investment 

Plant overhead (CP1Ovh); about 10% of the total production cost 

B. General expenses equal the sum of the following costs: 

1 .  

2. 

Administrative costs (CAdmn); about 3.75% of the total production cost 

Distribution & selling costs (CSeu); about 5% of the total production 

cost 

The general formula is 

CTPC = 1.629 (CUt + 0.189 CPa) (7-5) 

7.2.1 Utility cost 

The cost for utilities such as steam, electricity, process cooling water and compressed 

air varies widely depending on the plant capacity and location. In desalination 

plants, the most critical economic calculation is the steam cost The energy 

consumption in desalting water processes is one of the important parameters that 

dictate the choice of one desalination method over another and the final unit cost of 

desalted water. This cost accounting issue related to cogeneration plants is how to 

equitably split the total cost of owning and operating the plant between its main 

products, namely, electricity and heat This is important since the way cost allocation 

is made will directly influence the cost of electricity generated as well as the cost of 

desalted water from the desalination plant. Allocating the cost of cogeneration 

between its two products in a fair and equitable manner not only affects the costs of 

water and electricity but also influences a host of products and services, which 

depend on these two products. Therefore, it is crucial to have a rational basis for 

pricing the two products. 

Several methods for cost allocation have been developed; some of them allocate the 

total cost of owning and operating the plant among the two products direct without 

having to split the total cost into its components (direct method) and other methods 

allocate each cost component (e.g. manpower, material, fuel and capital depreciation) 

among the two products (indirect method). Assumptions regarding cost separation 
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can also have an effect on the resulting product costs. This is why there are number 

of cogeneration cost allocation methods available [29] . 

Another method described by El-Nashar [30] in many papers is based on cost 

accounting using exergy as the commodity of value. A steam cycle with low 

temperature MED plant has been analyzed by Kamal [31 ] .  Cost allocation methods 

were proposed in details by Darwish M. et al. [32] and Elsayed M. [33]. The method 

used in this thesis is called prorating on the basis of power generated, which has been 

mentioned by M. Elsayed. The steam cost is evaluated by the electricity loss in the 

turbine due to the low energy steam extracted to the desalination plant. The energy 

consumption and capital investment cost of steam turbine and high-pressure boiler 

are between water and electricity cost, the percentage is based on the electricity loss. 

7.3 Net annual Water Cost 

After annualizing the total investment cost by equation (7-4) we obtain the total 

production cost, which is calculated on annual base. The total yearly water 

production is calculated from the daily designed production and the plant running 

factor. The net annual water cost will be the total annual cost divided by the annual 

water production. 

7.4 Economic Results and Discussion 

A simple model has been adopted from previous equations to obtain the net annual 

water cost. The following assumptions used in this model are: 

• The desalination plant life is 25 years 

• The interest rate is 8 % 

• The plant running load factor is 0.9 

• No local taxes 

• The fuel cost is 1 $ per 1 GJ based on the local market 

Note: this assumed fuel cost is equivalent to 6 $ per barrel of oil which is too low. 

A sensitivity analysis for different fuel cost has been done in this chapter. 

7.4.1 Cost analysis 

The model results give 1 .09 $ for each m3 of water. The annual production cost share 

is 73% while the annual capital cost share is 27% as shown in Figure 7-1 . From the 

annual percentage cost break down analysis, the largest item is depreciation (23%). 

Purchased equipments, utility and maintenance come next with more than (10%) 
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each. Figure 7-2 illustrates the break down cost percentage. The cost break down 

prices is displayed in table 7-1 .  
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Figure 7-1: Annual share for capital cost and production cost from the net annual water cost 
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7.4.2 Cost sensitivity analysis 

Figure 7-3 illustrates the steam cost and the net annual water cost based on different 

fuel cost rates. Both steam cost and net annual water cost increase linearly with 

increasing fuel cost. When the fuel cost increases 50%; the steam cost and net annual 

water cost increase with an average of 40% and 6%, respectively. 

This figure also helps for easier cost evaluation and comparison with other cost 

studies. Hanbury et al. [10] mentioned a 1 .31 $ per m3 water for a MED plant with 

fuel cost of 2.8 $/GJ. The model adopted in this study gives 1.30 $ per m3 water cost 

at the same fuel cost, which means less than 1 % deviation between the two results. 

Another paper prepared by Wade [2] illustrates 0.953 $per m3 water for LT-MED

TVC plant at 1 .5 $per GJ fuel cost. At the same fuel cost, Figure 7-3 shows 1 .15 $ per 

m3 water, which means 17% deviation observed between the two results. 

The relation between the distiller production load and the net annual water cost is 

illustrated in Figure 7-4. As continues production increases th� net annual cost will 

decrease. The figure shows that keeping 10% production more will give 9% less 

water cost and 10% less production will give 11  % more water cost. The interesting 

point here is that the low production is uneconomic and could double the net annual 

water cost at 50% production rate. 

Figure 7-5 shows the sensitivity of the net annual water cost with the distiller load 

factor. Usually, this value is assumed to be 0.9 of the year days. Planned maintenance 

and better operation could increase this value to a higher value. The water cost will 

reduce by 2.5% in average if the average plant availability is increased by 10 days. On 
the other hand, if the plant running factor is reduced to 0.8 the net annual water cost 

will increase by 1 1  % .  

The sensitivity of the net annual water cost from the annual operation and 

maintenance cost is observed in Figure 7-6. The figure shows that each 5% saving or 

losing in operation and maintenance cost will affect the net annual water cost by less 

than 1 % .  
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Table 7-1: Net annual water cost break down with fuel price sensitivity 

Plant Gross Output MW 75 75 75 
AUXIliary Loads MW 7 7 7 
Net Output MW 68 68 68 
Load % 1 00 1 00 1 00 
Extr Steam to Desai T/h 84 25 84.25 84.25 
Enthalpy of Desai Steam kgIkJ 
Enthalpy of Return kgIkJ 
Desai ProductJon MIGD 3 5  3 5  3 5  
Desai ProductJon m3/h 663 663 663 
Desai Aux Loads kW 980 9SO 980 

Desai Plant Type MED-TVC MED-TVC MED-TVC 
Desai Plant Ufe year 25 25 25 
Desai Discount Rate % 8 8 8 
Desai Load Factor 0.9 0.9 0 9  

Power Plant Type BPST BPST BPST 
Power Plant ute year 25 25 25 
Power Discount Rate % 8 8 8 
Power Plant Factor 0.9 0.9 0 9  
H P.B Capctal Cost $ $2,650,000 $2,650,000 $2,650,000 
Turbine Capital Cost $ $7,150,000 $7 , 1 50 ,000 $7, 1 50,000 
Thermal Efficiency Turbme 0.4 0.4 0 4  
Thermal Efficiency Boiler 0 92 0.92 0.92 

DesaI capital Investment Cost :.:�,"� "- . <�." '. ",'",.)," . '.' .�· il,'�:�'!".: '. , . 

Purchased Equipment Cost, Cpr $ 30,589,71 1 30,589,71 1 30,589,71 1  
Equipment Installation Cost, Cinst $ 20,262,214 20,262,214 20,262,214 
Instrumentation & Control Cost, Cinstr $ 1 ,770, 1 94  1 ,770, 1 94  1 ,770, 1 94  
El ectrical  Equipment Cost $ 1 ,836,553 1 ,836,553 1 ,836,553 
Civil Cost $ 4,550,000 4,550,000 4,550,000 
Service facilities Cost $ 4,550,000 4,550,000 4,550,000 
TOTAl S 60,375,960 60,375,960 60,375,960 

. ';"'F DesaI ProductIon Cost.�, ;:':.i':��;'�5 .oiT ,.�;Ji! '·�I':'!,.'1< .;q,,,;;,,:�"1t>c� • ". -jo," :J.>::-. ,�·:�'t");�xr�<i+''''·'�c'''''''''''�'''t.�,,''''':_''''''' -. �" .-

Fuel Cost 

Fuel Price 
Extraction Steam Cost 

Manufacturing Cost 

Maintenance & Repair Cost 
Operation Cost 
Laboratory Charges 
Direct Supervision Cost 
Depreciation 
Insurance 
Plant Overhead 

General Expenses Costs 

Administrative Cost 
Distribution & Selling Cost 

TOTAl 

Total Annual Cost 

Total Annual Watet" Production 

Net Annual Wider Cost 
Net Annual Water Cost 
Net Annual water Cost 

Sly 
$IGJ 

$IT 

Sly 
Sly 
Sly 
Sly 
Sly 
Sly 
Sty Sly 
Sly 
Sly Sly 
Sly 

Dhsly 

m'ly 

2,61 7,249 

1 .00 
1 .07 

10,976,186 

2,41 5,038 
362,256 
41 8,244 
487,951 

4,830,077 
603,760 

1 ,858,861 

16,846,443 

697,073 
929,431 

1 5,21 9,939 

20,875,885 

5226136.3&& 

4,424,258 
1 ,SO 
1 .81 

10,976,1 86  

2,41 5,038 
362,256 
4 1 8,244 
487,951 

4,830,077 
603,760 

1 , 858,861 

18,653,451 

697,073 
929,431 

17,026,948 

22,882,894 
5226136.3&& 

6,231 ,267 

2.60 
2.56 

1 0,976,186 

2,41 5,038 
362,256 
41 8,244 
487,951 

4,830,077 
603,760 

1 ,858,861 

20,460,460 
697,073 
929,431 

18,833,956 

24,.489,903 
5226136.3&& 
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Table 7-2: Cost break down with desalination production plant load sensitivity 

Plant Gross Output MIN 75 75 75 75 
AUXIliary Loads MIN 7 7 7 7 
Net Output MIN 68 68 68 68 
Load % 1 00 100 100 100 ExIT Steam to Desai T/h 55 32 68 89 78.46 90.04 
Enthalpy of Desai Steam kgIkJ 
Enthalpy of Return kgIkJ 
Desai Production MIGD 1 .75 2 45 3.15 3 85 
Desai Production mJ/h 331 464 597 729 
Desai Aux Loads kW 980 980 980 980 
Desai Plant Type MED-TVC MED-TVC MED-TVC MED-TVC 
Desai Plant Ute year 25 25 25 25 
Desai Discount Rate % 8 8 8 8 
Desai Load Factor 0.9 0.9 0.9 0.9 

Power Plant Type BPST BPST BPST BPST 
Power Plant Ufe year 25 25 25 25 
Power Discount Rate % 8 8 8 8 
Power Plant Factor 0.9 0.9 0.9 0.9 
H.P.B.Capltal Cost $ $2,650,000 $2,650,000 $2,650,000 $2,650,000 
Turbine Capital Cost $ $7,150,000 $7,150,000 $7, 1 50 ,000 $7,150,000 
Thermal Efficiency Turbine 0.4 0.4 0.4 0.4 
Them1aJ Efficiency Boiler 0.92 0.92 0.92 0.92 

DesaI Capital InYestment Cost <'; .. �,;�. " .  ., �'(f ,;-.. ,-�, " . • or,. -'" '. � ., 

Purchased Equipment Cost, Cpr $ 30,589,71 1 30,589,71 1 30,589,71 1 30,589,71 1 
Equipment Installation Cost, Cinst $ 20,262,214 20,262,214 20,262,214 20,262,214 
Instrumentation & Control Cost, Cinstr $ 1 ,nO, 1 94  1 ,nO, 1 94  1 ,nO, 1 94  1 ,nO,194 
EJectrical EqUipment Cost $ 1 ,836,553 1 , 836,553 1 ,836,553 1 , 836,553 
Civil Cost $ 4,550,000 4,550,000 4,550,000 4,550,000 Service facilities Cost $ 4,550,000 4 550 000 4,550 000 4,550,000 
TOTAl $ 60,375,960 60,375,960 60,375,960 60,375,960 

� DesaI ProductIcn Co¢- ' .. � .. " x "'�;��':?-;W'-.�........, ,; ,� .:,. ":"';';:,:.,,;'\;:, ;W:" .. " .. ,;.;. .> .... ...;..�-.:;.';.:r . 
Fuel Cost Sly 2,61 7,249 2,617,249 2,61 7,249 2,617,249 
Fuel Price $IGJ 1 .00 1 .00 1 .00 1 00  Extraction Steam Cost $IT 1 .64 1 .35 1 . 1 5  1 . 00  

Manufacturing Cost Sly 1 0,976, 1 86  10,976, 1 86  1 0,976, 1 86  10,976 , 1 86  
Maintenance & Repair Cost Sly 2,41 5,038 2,41 5,038 2,41 5,038 2,41 5,038 
Operation Cost Sly 362,256 362,256 362,256 362,256 
Laboratory Charges Sly 41 8,244 41 8,244 41 8,244 41 8,244 
Direct SUpervision Cost Sly 487,951 487,951 487,951 487,951 
Depreciation $Iy 4,830,on 4,830,on 4,830,on 4,830,On 
Insurance $Iy 603,760 603,760 603,760 603,760 
Plant O\Ierhead Sly 1 ,858,861 1 , 858,861 1 , 858,861 1 ,858,861 

General Expenses Costs Sly 16,846,443 16,848,443 16,846,443 1 6,846,443 

Administratiw Cost $Iy 697,073 697,073 697,073 697,073 

Dislnbulion & Selling Cost $Iy 929,431 929,431 929,431 929,431 

TOTAL Sly 1 5, 2 1 9,939 1 5,219,939 1 5,21 9,939 1 5,219,939 

Total Annual Cost Dhsty 20,875,885 20,875,885 20,875,885 20,875,885 

Total Annual Walef Production m'ly 2613068.182 3658295.455 4703522.n7 5748750 

Net Annual WatM Cost .•.. � ,� .. DhsIm3 7.99 5,71 4.44 3.63 
Net ArmuaI Waf« Cost DhsIIdG 36,31 25.94 20. 1 7  16.51 
Net Annual Watef Cost $1m3 2.18 1 .55 1 .21 0.99 
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Table 7-3: Cost break down with operation and maintenance cost sensitivity 

P1ant Gross Output MVI/ 75 75 75 
AUloilary Loads MVI/ 7 7 7 
Net Output MVI/ 68 68 68 
Load % 1 00 1 00 1 00 
Extr Steam to Desai Tth 84 25 84.25 84 25 
Enthalpy of Desai Steam kg/kJ 

Enthalpy of Return kglkJ 
Desai Production MIGD 3.5 3.5 3.5 
Desai Production m'th 663 663 663 
Desai Aux Loads kW 980 980 980 

Desai Plant Type MEn-TVC MED-TVC MED-TVC 
Desai P1ant Ute year 25 25 25 
Desai Discount Rate % 8 8 8 
Desai Load Factor 0.9 0.9 0.9 

Power Plant Type BPST BPST BPST 
Power P1ant Ute year 25 25 25 
Power Discount Rate % 8 8 8 
Power P1ant Factor 0.9 0.9 0.9 
H.P.B.Capital Cost $ $2,650,000 $2,650,000 $2,650,000 
Turbme Capital Cost $ $7,150,000 $7,150,000 $7, 1 50,000 
Thermal Efficiency Turbine 0.4 0.4 0.4 
Thermal Efficiency Boiler 0.92 0.92 0.92 

DesaI CapItal Investment cost � '*" 

Purchased Equipment Cost, Cpr $ 30,589,71 1 30,589,7 1 1  30,589,71 1  

Equipment Installation Cost, Cinst $ 20,262,214 20,262,2 1 4  20,262,214 

Instrumentation & Control Cost, Cinstr $ 1 ,nO, 1 94  1 ,nO, 1 94  l ,nO, 1 94  

Electrical Equipment Cost $ 1 ,836,553 1 ,836,553 1 ,836,553 
Civil Cost $ 4,550,000 4,550,000 4,550,000 

Service facilities Cost $ 4,550,000 4,550,000 4,550,000 
TOTAL $ 60,375,960 60,375,960 60,375,960 

,'�,:!"i')\ DesaI Production Cost .. � � '<C'. , ". ,.'. . •  ,:; .� .. �.,� ��:' -,'.,1.0', �.; >'- .  " ""."",{.<.:: .-

Fuel COst $Iy 2,617,249 2,617,249 2,617,249 
Fuel Price $IGJ 1 .00 1 .00 1 .00 

Extraction S1eam Cost $IT 1 .07 1 . 07 1 . 07 

Manufacturing Cost $Iy 10,181,528 10,976,186 1 1 ,799,826 
Maintenance & Repair Cost $Iy 1 , 932,031 2,41 5,038 2,898,046 
Operation Cost $Iy 231,844 362,256 521,648 

Laboratory Charges $Iy 334,595 41 8,244 501,892 

Direct Supervision Cost $Iy 390,361 487,951 585,541 
Depreciation $Iy 4,830,On 4,830,On 4,830,On 

Insurance $Iy 603,760 603,760 603,760 

P1ant Overhead $Iy 1 , 858,861 1 ,858,661 1 , 858,861 

General Expenses Costs $Iy 17,670,082 17,670,082 17,670,082 

Administrative Cost $Iy 697,073 697,073 697,073 

Distribution & Selling Cost $Iy 929,431 929,431 929,431 

TOTAL $Iy 14,425,280 1 5,219,939 16,043,578 

Total Annual cost otisi)' 2O,081,2Z7 20,875,885 21,699,524 
Total Annual Water Production 5226136.364 5226136.364 52261 36.364 
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Figure 7-5: Net annual water cost as a function of operation and maintenance cost 

PAGE 99 



THESIS REPORT 

Table 7-4: Cost break down with desalination running p lant load sensitivity 

Plam Gross Output MIN 75 75 75 
AU)oltary Loads MIN 7 7 7 
Net Output MIN 68 68 68 
Load % 1 00 100 100 
ExIT Steam to Desai TJh 84.25 84.25 84 25 
Enthalpy of Desai Steam kgIkJ 
Enthalpy of Return kglkJ 
Desai Production MIGD 3 5  3 5  3 5  
Desai Production m'Jh 663 663 663 
Desai Aux Loads kW 980 980 980 

Desai Plant Type MED-TVe MED-TVe MED-TVe 
Desai Plant Ute year 25 25 25 
Desai Discount Rate % 8 8 8 
Desai Load Factor 0.8 0.9 1 

Power Plant Type BPST BPST BPST 
Power Plant Ute year 25 25 25 
Power Discount Rate % 8 8 8 
Power Plant Factor 0 9  0 9  0 9  
H P.B.Capltal Cost $ $2,650,000 $2,650,000 $2,650,000 
Turbine Capital Cost $ $7,150,000 $ 7 , 1 50,000 $7,150,000 
Thermal Efficiency Turbine 0.4 0.4 0.4 
Thermal Efficiency Boiler 0.92 0.92 0.92 

DesaI capital Investment Cost " -': 
Purchased Equipment Cost, Cpr $ 30,589,71 1 30,589,71 1 30,589,7 1 1 
Equipment Installation Cost, Cinst $ 20,262,2 1 4  20,262,214 20,262,214 
instrumentation & Control Cost, 
Cinstr $ 1 ,nO, 1 94  1 ,nO,194 1 ,nO, 1 94  
Bectrical Equipment Cost $ 1 ,836,553 1 ,836,553 1 , 836,553 
Civil Cost $ 4,550,000 4,550,000 4,550,000 
Service facilities Cost $ 4,550,000 4,550,000 4,550,000 
TOTAL S 60,375,960 60,375,960 60,375,960 

r�"�::"< DesaI ProdUctIon Cost :.<." �"." .;, . '�""'{<� .. ',"" . !.I�::d�� ._::, . -.�� -'-

Fuel Cost $Iv 2,326,444 2,617,249 2,908,055 
Fuei Price $IGJ 1 . 00  1 .00 1 .00 
Extraction Steam Cost $IT 1 .07 1 .07 1 .07 

Manufacturing Cost $Iv 10,976,186 10,976,186 10,976,186 

Maintenance & Repair Cost $Iy 2,41 5,038 2,41 5,038 2,41 5,038 

Operation Cost $Iy 362,256 362,256 362,256 

Laboratory Charges $Iy 41 8,244 4 1 8,244 41 8,244 

Direct Supervision Cost $Iy 487,951 487,951 487,951 

Depreciation $Iy 4,830,On 4,830,On 4,830,On 

Insurance $Iy 603,760 603,760 603,760 

Plant Overhead $Iy 1,858,861 1,858,861 1,858,861 

General Expenses Costs SlY 17,670,082 17,670,082 17,670,082 

AdmlnistralJ\le Cost $Iy 697,073 697,073 697,073 

Dlslnbution & Selling Cost $Iy 929,431 929,431 929,431 

TOTAL Sly 14,929,134 1 5,219,939 15,510,745 

Total Annual Cost Dhsty 20,685,080 20,875,885 21,166,691 

Total Annual Water Production 5226136.360' 5806818.182 
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8 CONCLUSIONS 

This work revealed that it is too difficult to construct a general computer model for 

non-conventional MED desalination plants. The variation of equipment, flow sheets 

and heat pump combinations give a very large number of plant configurations. So, a 

specific model has been developed to be used for Umm AI-Nar MED-TVC plants and 

was called MEDNAR. 

In light of the results, analysis and discussion, reported in chapters 6 and 7, the 

following conclusion can be made: 

In such a plant, the performance ratio is strongly depending on the flow rate of 

motive steam. The overall heat transfer coefficients increase when more motive 

steam is used. 

This increase in the performance ratio has some limitations. The maximum allowable 

brine rejects salinity, the vapor velocity in the last stage and the mechanical size of 

the steam jet ejector are the most important restrictions for higher production rates 

and higher plant performance ratios. The MEDNAR simulator also illustrates that in 

the VAN MED-TVC plant, most of the vapor is produced in the first two effects. 

Moreover, increasing the flow rate of motive steam will increase the cooling water 

flow rate needed while it will decrease the specific heat transfer area. 

For the overall heat transfer coefficients, usually the hot effects have higher values 

than the cold effects. The VAN MED-TVC plant designer used higher vapor 

temperature for the last effect at lower production rates than full production rate to 

enhance the U-values of the cold effects but the cold effects driving force temperature 

will be reduced. 

The analysis of seawater temperature variation shows that less cooling water is 

needed at low seawater temperatures. At critical low seawater temperatures and low 

production rates there will be a need for seawater pre-heater (e.g. seawater 

temperature less then 31 .8 ·C at 50% production rate). 

The maximum allowable production rate could be calculated from the feed water 

salinity and the maximum allowable brine rejects salinity, while the overall heat 

transfer coefficients increased when more saline feed water was used. The plant 

performance ratio is nearly independent of the feed water salinity.  

From the economic analysis, the following points have been proposed: 

PAGE 1 02 



THESIS REPORT 

• The primary energy consumption of any desalination process has to be valued 

according to the international fuel price. This is to have real cost evaluation and a 

unified water cost base for clear and better cost analysis. 

• The annual production cost share of the net annual water cost is higher than the 

annual capital cost. The share ratio is around (7:3). 

• From the annual cost break down analysis, the depreciation cost has the higher 

contribution with 23%. Purchased equipment, utility and maintenance are 

coming next with more than 10% each. 

• The net annual water cost could double if the plant is continuously operated at a 

partial load of 50% .  

• The annual plant availability has a direct relation with the net annual water cost. 

The average running factor is 0.9. Four running days more or less on the average 

have an impact of 1 % on the net annual water cost. 

• The operation and maintenance cost deviation of 5% have an impact of 1 % on the 

net annual water cost. 

• From the last two points, proper maintenance and operation could give higher 

plant availability. The relation between these two points needs more optimization 

to minimize the water unit cost. 
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APPENDIX A 

Thermal and Physical  Properties 

The billing point elevation ( B PE) 
I t depends on both the brine salinity X and the brine temperature T. the BPE in K 
given by 

X * T 2 [1 + 1 .373 * 1 0 -3 * T - 2.72 * 1 0-3 * .JX  * T + 1 7 .86 * X -] 
BPE = 1 3832 1 .52 * 1 0-2 * X * T * (T - 225 .9) _ 2583 * X * (1 - X) 

T - 236 T 
Where 

X = salt concentration, wt.frac 
T = Temperature, K 

The above equation is valid over the following ranges: 20000 < X < 1 60000 ppm, 20 
< T  < 1 80 °C. 

Vapor pressure of satu rated water 
P = 1 0. 1 7 1 246 -0. 6 1 67302 T + 1 . 832249xl 02 '12 - 1 .77376x l 04 T3 + 1 .47068xl 0� yt 
Where P is kPa and T is °C 

Saturation tempera ture 
T = (42.6776 - 3892.7/(ln(P/ 1 000)-9.48654)) - 273. 1 5  

Where P is kPa and T is °C 

Specific volume of water vapor 
V = 1 63 .345301 9  - 8.04 1 42 1 773 T + 0. 1 7 1 02 1 1 64 T2 -O.00 1 878 1 24xl 0-3 T5 

Where V is m3/kg and T is °C 

Latent heat 
A = 2499.5698 - 2.204864 T - 1 .596x l 0-3 T2 

Where T is the saturation temperature in °C and A is the latent heat in kJ/kg 

Specific heat of water at constant pressure 
Cp = [A+BT+CT2+DT3] x l O-3 

T = temperature, °C 
X = water salinity, g/kg 

A = 4206.8 - 6.6 1 97 X + 1 .2288x l 0-2 X2 

B = - 1 . 1 262 + 5 .4 1 78xl 0-2 X - 2.27 1 9x l 04 X2 

C = 1 .2026x l 0-2 - 5 .3566x l 04 X + 1 . 8906x l O� X2 

D = 6.87774xl O-7 + 1 . 5 1 7x l 0� X - 4 .4268xl O-9 X2 



APPENDIX B 

Umm AJ-Nar Plant Inform ation 
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Table A·l : Umm Al·Nar Seawater Analysis 

No. Parameters Range Typical 

1 pH @ 25 °C 8.0-8. 1 8. 1 
2 Conductivity @ 25 °C (j.J.S/cm) 66000-70000 69000 
3 T.D.S.  fa} 1 80 °C 49000-52000 50000 
4 Total Hardness (ppm CaC03) 8900-9500 9000 
5 Ca Hardness (ppm) 1 400- 1 500 1 500 
6 Mg Hardness (ppm) 7400-7900 7700 
7 Chloride (ppm) 26000-28000 27500 
8 Sulfate (ppm) 3700-3900 3800 
9 Calcium (ppm) 580-600 600 
1 0  Magnesium (ppm) 1 800- 1 900 1 850 
1 1  Copper (ppm) 0 .01 -0.02 0.02 
1 2  I ron (ppm) 0.02-0.03 0.02 
1 3  Potassium (ppm) 600-680 650 

1 4  Silica (ppm) 0.02-0.03 0.02 

1 5  Bicarbonate (ppm) 9 1 -94 94 

1 6  Temperature °C 20-35 30 



Table 3-2: Main Operating Parameters 

Parameter Unit Value 

"Conditions at rated output and rated 
fouling factors, when operated at rated top 
brine temperature and seawater temperature 
of 33°C and salinity of 52 g/kg" 

Continuous net output of evaporator m3/day 1 59 1 1 

Minimum controllable output m3/day 7950 

Stearn supply to stearn transformer from kg/h 84000 
turbine extraction 

• Pressure of steam supply to steam ata 2.8 
transformer 

• Temperature of steam supply to steam °C 1 30 
transformer 

• Enthalpy kcallkg 649.8  

Steam supply t o  ejector from H P  IMP kglh 3500 
reducing station 

• Pressure of steam supply to ejector ata 1 3  

• Temperature of steam supply to ejector °C 2 1 0  

Specific beat consumption kJ/kg of 287.5 
distillate 

Performance ratio (product water per 8 
2300 kj net heat input to stearn transformer) 

Steam pressure in first effect ata 0.255 

Condensate return flow rate kglh 84000 

(from stearn transformer) 

Condensate return temperature °C 1 07 .8  

(from steam transformer) 
Heat transferred in first effect MW 1 1 4,2 

Condensate make up steam transformer kg/h 76500 

Maximum brine temperature °C 63 



Total requirement of sea water kg/b 5650000 

Minimum brine temperature °C 44 approx. 

Maximum T.D.S .  in first effect (brine) mg/ l 73000 

B low down flow rate kg/h 1 64 1 000 

Maximum blow down concentration mgl l 73000 

Feed make up flow rate kg/h 2304000 

Cooling water temperature after condenser 
(reject) °C 40.5 

Seawater flow rate to ejector condensers kg/h NA 

Scale control chemical SOKALAN PM 1 0  

Rate of scale control chemical dosing kg/day 1 66 

Scale control dosing rate related 
to feed make-up mg/I 3 

Rate of antifoam dosing kg/day 8.3 

Maximum copper content in: 

• Distil late mg/I 0.04 

• Condensate mg/I 0.04 

• Brine blow down mg/I 0.04 



Table A-3: Distiller Materials 

Evaporator Vessel 
· Shell in contact with seawater 
· Shell in contact with vapor 
· External reinforcement 

Heat Tubes Bundles 
· Tubes ( 1 0  top rows) 
· Tubes (a l l others) 
· Tube-plates 

Demisters 

Spray Nozzles 

Distillate Condenser & Seawater Preheaters 
· Shell 
· Tubes 
· Tube-plates 
· Support plates 
· Water boxes 

Thermo-Compressor 
· Nozzle 
· Diffuser 

Pipe Work Material 
· Seawater 
· Distillate 
· Blow down 
· Ejector Condensate Extraction 

Stainless steel 3 1 6L 
Stainless steel 3 1 6L 
Carbon steel 

Titanium 
Aluminum brass 
Stainless steel 3 l 6L 

Stainless steel 3 1 6-03 

Stainless steel 3 l 6L 

Stainless steel 3 l 6L 
Titanium 
Stainless steel 3 1 6L 
Stainless steel 3 1 6L 
Stainless steel 3 1 6L 

Stainless steel 3 l 6L 
Stainless steel 3 l 6L 

GRP 
GRP 
GRP 
Stainless steel 3 1 6L 



APPEN DIX C 

M EDN A R  Simulator Sub-Flow Charts 

Start or stop r-

Guess value L� I 
Input data 17 L _I 

Calculated result  l�-- l 
Sub-flow charts key 
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APPENDIX D 

EV APOLUND and M EDNAR Runs for 1 00% and 50% Production Rates 



Summarizing Evapora tor values 

V a p o r  o ut L i q u i d  o u t  

Evaporator Temp F l ow Area U-va lue Temp Cone F low 8011 p el  
No (C) (kg/s) (m2) kW/(m2,C) (C) (mf) (kg/s) (C) 

75 4 3 0 1 7 .28 4 , 4 5 3 0 3 .23 43.8 0 07 3  455.63 0 .8 

67 4 7 0 1 3 96 4 , 4 5 3 . 0  3 . 28 47.8 0 073 4 1 9 .30 0 . 8  

5 7  50 . 5  1 7 . 3 0  4 , 4 5 3 . 0  3 . 1 5  5 1 . 4  0 . 073 379.66 0 . 9  

40 54 7 22.68 6 , 724.0 3 .59 55.6 0.073 1 7 1 .68 0 . 9  

39 54 . 7  22.68 6 , 724.0  3 .59 55 .6  0 . 073 1 7 1 .68 0.9 

27 58 . 2  22 . 3 3  6 , 724 . 0  3 . 5 7  5 9 . 1  0 .073 1 1 4 .49 0.9 

25 58.2 22 . 33 6 , 724 . 0  3 . 5 7  59 . 1  0 .073 1 1 4 .49 0 . 9  

9 6 1  8 22 . 9 1  6 , 724 . 0  3 . 63 62.7 0 . 073 56 .95 0.9 

8 6 1 . 8  22. 9 1  6 , 724 . 0  3 .63 62.7 0 . 07 3  56 .95 0 .9 

Sum 1 34 37 53 703 0 

'"/) 1 1  0 1  0) 0, 39 



Summarizing Evapora tor values 

V a p o r  o u t  L i q u i d  o ut 

E v a porator Temp F l ow Area U-value Temp Cone Flow Boi l . p  e l  
No (C) (kg/s) (m2) kW/(m2, C) (C) (mf) (kg/s) (C) 

7 5  4 5 0 1 2 . 08 4 , 453.0  2 . 52 4 5 . 7  0.061 54 8.76 0 .7  

6 7  4 8 . 4  9 . 1 4  4 , 453.0  2.60 4 9 . 1  0.060 507 .23 0.7 

57 5 1 . 3 1 1 . 76 4 , 4 5 3 . 0  2 . 52 52.0 0 . 060 462.77 0 . 7  

4 0  54.7  9 . 7 5  6 ,724.0  2 .31  55 .4  0.0 59 2 1 0 . 46 0 . 7  

3 9  54 . 7  9 . 75 6 , 724 . 0  2 . 3 1  5 5 . 4  0 .059 2 1 0 . 46 0 . 7  

27 5 7 . 3  9 . 49 6,724.0 2 .29 58 .0  0 . 059 1 40.34 0.7 

2 5  5 7 . 3  9 . 4 9  6 , 724.0  2 . 29 58 .0  0 .059 1 40 . 34 0.7 

9 59.9 9.90 6 , 724 . 0  2 . 3 3  60.6 0 . 059 69.96 0 . 7  

8 59 . 9  9 . 90 6 , 724 . 0  2 . 3 3  6 0 . 6  0.059 69 .96 0 . 7  

Sum 9 1  2 4  53 703 0 

')') 1 1 n 1 ()') ?h () 



Mf 640 

1 0 .63 

52 

33 

Goal I 0.00 

Diff I 0.00 

65 

Tc3 54 

Tv6 43 

Pms 239 

r AI{OT 6724 

I ACQLD 4453 

3.38 

758.4 

SI M U LAT E 

1 00% 

ATHOT 0.41 5 

IATcOLD 0.68 

3 .021 

50.39 

I : 50%) 

�Ap rnNnl 2874 

I NeG j 0.02 

REST 

WELCOM E  TO MEDNAR S I M U LATOR 

[ PR I 8.68 

[SMcwl 4.1 1 

[ sA I 316.8 

T °c 
A m2 
M kg/s 
U kW/m2.oC 
X *1 000 ppm I 

UANPC "'ED·rve UNITS 



EFFECT 

2A 

EFFECT 

2B 

EFFECT 

1 A  

EFFECT 

1 B  

EFFECT 

3A 

EFFECT 

38 

"Mass & Energy balance for Pre-Heaters 

Area m2 Q p 693 7486.05 
3 e UHE3 3 4574 1 662 1 

h 3.5064 1 8 1 1 8  3 506609656 

e 
Stream Flow Temp Q3 

in 
7537.83 

Mf2(1nlet) 479. 1 7  49.20 

Mf2(outlet) 479. 1 7  53 1 7  Q3 7537.83 
out 

Md3" 3 1 738 54.68 

EFFECT 

4 

p 

e 

h 
e 

e 

1 
2 

EFFECT 

5 

Area m2 1 1 56 

UHE12 3. 320 1 1 1 2 1 8  

EFFECT 

6 

Q 

2 

3.35697338 3 . 356356886 

Stream Flow Temp Q 1 2  
in 

Mf1 (inlet) 532.78 40.98 

Mf1 (out/et) 532. 78 49 20 Q 1 2  
out 

Md4" 7 2641 50.39 

1 5464 3 F 

c 
0 
n 
d 

1 7307. 3  e 
n 

e 
1 7307 3 

E 
j 2823 237993 e - I c QEC 2475 24 888 07671 9 1  

c 
0 
n stream d e Mf(inlet) 
n 
s Mf(outlet) e 

Area m3 2874 

UFC 3 0844 1 4825 

3 0401 72795 3 049596459 

Stream Flow Temp 

Mf (in let) 1 398 4 33 00 

Mf (outlet) 1 398.4 40.98 

Mdc 43.00 

Flow Temp 

1 59 72 53 1 7  

1 59 72 57 1 1  

Q 
F 43750 38 
C 

QFC 44007 51 
In 

QFC 0 
out 



.. Local heat transfer coefficient for seawater flowing inside the tubes 

dout 0.0 1 9  
dinner 0.01 76 
sal in ity 52000 
n 1 2  1 070.66667 
n3 963 
nfc 3147 

temperature oC hout Ditus-Bolter 
33 00 6 02 654 40 
40 98 7 24 777 53 
49 20 7 90 839 57 ------ --

Ri  
Ro 
K 

1 /UFC 

1 /U H E 1 2  

1 /UHE3 

velocity Reynolds 
1 768 38 1 06 09 
1 986 49689 46 

1 9928 57337 34 

0 .08 
0 

0 .0165 

0 328928672 UFC 

0 297887379 U HE 1 2  

0 2851 9 1 3 1 7  UHE3 ----- � -

Prandtl Kwater 
0 01 6 1 8E-0 1  
0 00 6 28E-01 
0 00 6 37E-01 

3 040 1 7  
3 35697 
3 50642 

muwater cpwater rhowater 
8 44E-04 3 92 1 033 05 
7 24E-04 3 93 1 029 92 
6 28E-04 3 93 1 026.34 



... Local heat transfer coefficient on the outside surface of tubes 

temperature oC 
43 00 
50 39 
54 68 

Idout 0 .0 1 9lxncondoutl -01 
con 1  1 525535 con2 J 1 1 
num 1 0 8 1 6033 dinner I 0. 0 1 76 1 
mumt 2 093425 

hout delt rhovapor rhocond 
52 23 0 1  0 059 990 669 
54 27 0 1  0 085 987 507 
55 39 0 1  0 1 03 985 527 

kl iquid lamdav muliquid mass velocityout 
6 33E-04 2399 32 6 20E-04 1 8 24 36 1 4 1 533 1 3  
6 4 1 E-04 2381 58 5 45E-04 7 26 27. 79203266 
6 45E-04 237 1 23 5 08E-04 3 1 7 1 1 .76368426 



.. STREAMS DATA & RESULTS 

Iu 3 3197574531 
IA 67241 
16T loss Hot ()4 1 51 

•• BOILING POINT ELEVATION 

STREAM # X 
Mb1 (assume)1 0 072702 1 59 
LOOP 1 0 05 1  
LOOP 2 0 062253304 
LOOP 3 0 062350255 
LOOP 4 0 06235 1 073 
LOOP 5 0 06235 1 08 

T (K) 
335 72 
335 72 
335 72 
335 72 
335 72 
335 72 

INCG 0 021 

BPE Tv1 ( OC) 
(} (1 �(--1r)(I' (� 
r, (j.� �..)[rl:SII�, 6 1 94 
o jtl4 1 'J�, l 61 79 
r, 'kSf,'J'f 61 78 
0 7fj5t 1 /4 6 1 78 
o n��I.J l ;)C:! 6 1_� 

** SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE 

STREAM # X T A B 
Mf01 52 00 57 1 1  3895 8024 1 076734 
LOOP 1 50 62 57 3906 535 1 0 1 4725 
LOOP 2 72 50660776 62 57 3791 4286 1 607678 
LOOP 3 72 7005 1 07 62 57 3790 49 1  1 61 1 786 
LOOP 4 72 7021 453 62 57 3790 4831 1 6 1 1 82 1  
LOOP 5 72 7021 5908 62 57 3790 483 1 6 1 1 821 

" SALINITY 

STREAM # Assumed X Mb1 Mv1 Cp 
LOOP 1 50 83 05556 3 1 94444 3 946795 
LOOP 2 72 50660776 57 27447 22 586638 3 847372 
LOOP 3 72 70051 07 57 1 2 1 7 1  22 739397 3 846535 
LOOP 4 72 702 1 453 57 1 2043 22 740681 3 846528 
LOOP 5 72 7021 5908 r-17 1 :1r)4.' .I} l'4r.j-,r-1�' 3 846528 

Hv1  

C 

26 1 3 2945 1 7  
261 3 024731 
26 1 3 022338 
261 3 0223 1 8  
26 1 3 0223 1 7  _ .. -- --------

·0 0 1 07 1 6 1 38 
-0 0 1 00305 

-0 0 1 68736 1 2  
·0 0 1 6924246 
-0 01 6924672 
·0 0 1 6924676 

Calc X 
72 50660776 

72 7005 107 
72 7021 453 

72 7021 5908 
72 7021 592 

D 
6 760 1 7E·05 
6 54708E-05 
8 74077E-05 
8 75772E-05 
8 75786E-05 
8 75786E-05 

Err 
o 

Cp 
J 'ilJ493505� 

3 94679474 
3 847372275 
3 846535037 

3 84652798 
3 846527921 

Cp= (A+BT +CP2+DP3)E-3 

WHERE 
T= 
S= 
A= 
B= 
c= 
D= 

TEMPERATURE C 
WATER SALINITY G/Kg 
4206 8-6 61 97S+ 1 2288E-2SA2 
-1 1 262+5 4 1 78E-2S-2 271 9E-4SA2' 
1 2026E-2-5 3566E-4S+ 1 8906E-6SA2 
6 87774E-7+ 1 5 1 7E-6S-4 4268E-9SA2 



• •  STREAMS DATA & RESUL TS 

Iu :I 379157453J 

IA '6724] 
IdUa loss --� 0 41 51 

• •  BOILING POINT ELEVATION 

STREAM # X 
Mb2 0 0723"'2699 
Lb2 0 0731 1 7883 
Mb2' LOOP 1 0 054506 1 16 
Mb2' LOOP 2 J 0652�14 
Mb2' (LOOP 3) 0 065336515  
Mb2' (LOOP 4) 0 065337181 
Mb2' (LOOP 5) o 0653�'1 92 

T2lK) 
�.'L 16  
332 16 
332 16 
132 16 
332 16 
132 16 
332 16 

BPE 
" . /"" 
t� '" 

0 6581367 
( 807' <J�-
0 8091613 
0 809116\1 

(I .,i�"_' 1 ' ,'  

• •  SPECIFIC HEAT O F  WATER A T  CONSTANT PRESSURE 

STREAM # X T2 A 
Mf02 52 00 53 1 ,  3895 B024 
Mb2 -2 38 5� 01 1792 02� 
Lb2 73 1 2  59 01 3788 476 
Mb2' LOOP 1 50 59 01 390fi S olS 

Mb2' LOOP 2 '1 4889% 59 01  '96 Jti43 
Mb2' LOOP 3 7 1 66079828 59 01 119'> �292 
Mb2'(LOOP 4) 71 6621425, "9 01 379" 522 
Mb2' (LOOP 5) 7 1 66215:109 59 01 95 5; 2., 

··MODUL 

STREAM # Assumed X2' Mb2' Mv2' 
Mb2' (LOOP 1 )  50 83 05550 J 19 
Mb2' LOOP 2 ' 1 4H996 �8 OB;)i 21 
Mb2'(LOOP 3) 7 1 660 CJ.I328 �7 J�48 2' <)1 
Mb2' LOOP 4) 7 1 6621425i 57 94939 21 91 
Mb2' (LOOP 5) 7 1 6621 53119 '�'4_' _ _ ' - " 

Tv21'C) Hv2 

>8 35 2Fo07 145091 
58 20 2600 88 '4 
58 20 2bOb 88521� 
�8 20 2606 885259 
58 20 )606 885;>58 

B C 0 
1 O'E 14 ·0 0107 1f Ub 
1 60S044 -a 01684 '  181 
1 620572 0 01 7032752 
1 014/25 -a 0100�05 
1 5�58� -0 16605- -,1  
1 589557 -0 016651082 
1 569'>86 .Q 0166t1 4l8 
1 t>6�"86 (I O'f)6.'", � 44 

Cp Calc X2' 
J 94494 11 4�89% 

� 84'J899 1 61.01 "'I. -
3 8-19156 662142' 
3 8491 S : 1 66, 1 ' 30.1 

l'491 < . f:£21 � � I '  • 

Cp 
t 16017E·05 �, � - ' .  " -
!' 12992E-0< , ,,�,;T_ ,,� 
8 19409E·05 � f. -l. " . ..  
E '>4 70BE ·O� 3 94494 
8 65126E·05 3 84ge�9 
8 66644E l" 3 849156 
8 66656E {J" 3 8491 
8 &6b56E {J� PJ '"; \ ;  

Cp= (A+BT +CP2+DP3)E·3 

WHERE 
T= 
s= 
A= 
B= 
c= 
D= 

TEMPERATURE C 
WATER 5ALlNITY GIKg 
4206 8-6 61975+1 2288E·2S'2 
·1 1 262+5 4 1 78E·25·2 2719E-45'2' 
1 2026E·2·5 3566E-45+1 8906E-65'2 
6 87774E·7+1 51 7E-6S-4 4268E·9S'2 



• •  STREAMS DATA & RESULTS 

lu 3i97�i4�11 
IA 1 - 61241 
IdllB loss 1-- a 41  � J 

• •  BOILING POINT ELEVATION 

STREAM II X 
Mb3 a 07247338L 
Lb3 0 072798744 
Mb3' LOOP 1 a 052f2682� 
Mb3' LOOP 2 o 063rx.< 4'� 
Mb3' LOOP 3 0 063643873 
Mb3' (LOOP 4 o Of Jl>44471 
Mb3' (LOOP 5) 0 06'1644476 

T3 (K) BPE 
3;'8 61 � < '  •.• ' 
3;'8 61 >-I .'.� 1f 
326 61 [ 6165 89 
,16 61 0 '64 07a 
328 61 0 7656:1 
328 61 a '6584' 3 
3L8 61 C' �t:,�8'1S.1 

• •  SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE 

STREAM II X 
Mf03 �. 00 
Mb3 72 47 
Lb3 12 80 
Mb3' (LOOP 1) '>0 
Mb3' LOOP 2 1 6€  104gB 
Mb3' LOOP 3 7 1 6301001S 
Mb3' LOOP 4 71 63129744 
Mb3' (LOOP 5) 71 631 10624 

"MODUL 

STREAM II Assumed X3' 
Mb3' (LOOP 1 )  50 
Mb3' LOOP 2 71 Sf �049h 
Mb3' LOOP 3 7 1 83010015 
Mb3'(LOOP 4) 7 1 83129144 
Mb3' LOOP 5 -, 831 306�4 

T3 
53 1(  
5�  4f 
55 46 
5" 4f 
55 46 
55 46 
55 46 
S� 40 

Mb3' 
B3 OS�,56 
51 ')4' 
7 t11.-;�q 

�' 8129] 
/" , 

A 
3895 80;'4 
1791 589: 
3790 0163 

901 535 
3/95 4981 
3794 707 

3'94 '012 
94 

Mv3' 

1 

1 1 9 
21 '2 
2; 05 
2 OS 

, - -

Tv3( 'C) Hv3 

54 �  261' 1 07SOrx. 
>4 <;9 2600 621>14f 
�4 69 '600 81 1B9 
">4 69 ibOO 81YS7f 
54 69 "",00 81�R 

B C 
1 IT 34 C 110'1P1 \8 
1 506!1,2 -0 016864971 
1 613�b1 -0 016949841 
1 014 -:'5 0 01 0('  105 
1 58%95 0 0166'>. 
1 59321 -0 016695841 

1 59��-16 � 0166961' 
1 L.,J�'L '-' -0 0166 ' 1f 

Cp Calc X3' 
1 9431£7 71 66 20498 

84: 'L 1 8]01001 
ft..16" " 1 8312J'-44 

1 846�1b 71 8J1J(),24 
f:\.1f H ' .  U�"I1 •. • :' 

D Cp 
Ii '6017E.(J� .: Y • • ' . 
0 7  766E -ClS ' ,,-1 ' ,:.  
8 c6629E-05 'lA_ 
b 54-0BE-OS 1 9431 7 

8 667!' 05 3 84 ',25 
8 6813iF-05 3 84liS21 
A 6A147E-05 " 846516 
8 6814 E -'.! . .  -

Md3" 
3 173816141 

Cp= 

WHERE 
T= 
S= 
A= 
B= 
C= 
D= 

(A+BT +CT'2+DT'3)E-3 

TEMPERATURE C 
WATER SALINITY G/Kg 
4206 8-6 6197S+1 2288E-2S'2 
-1 1262+5 41 78E-2S-2 2719E-4S'2' 
1 2026E-2-5 3566E-4S+, 8906E-6S'2 
6 87774E-7+1 51 7E-6S-4 4268E-9S'2 



Mms 
1 0 625 



C 
8 
I 
I 

II 
4 

•• STREAMS DATA & RESULTS 

o I���----r-������ 

Iu 30212156181 

� «�I 
I" T loss Cold · 068 J 

• •  BOILING POINT ELEVATION 

STREAM II X 
Mb4 0 0731 1  u--,5 
Lb4 0 01299400 
Mb4' LOOP 1 0 050566908 
Mb4' LOOP 2 o 06':�,419: 
Mb4' (LOOP 3) o 062ti60041 
Mb4' (LOOP 4) 0 062660039 
Mb4' (LOOP 5) 0 062660643 

T4 (K) 
1;14 28 
324 'S 
324 28 
124 �'8 
;J24 ,:8 
324 28 
324 .'8 

BPE 
'i � . '.  V" 
"' - ' 1,' ," 

o �72 �98 
0 7<64462 

7795'<1>, 
0 7296043 
(I ;·�"Jt-):).1} 

•• SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE 

STREAM II X T4 A 
Mf04 �2 00 49 20 389� 8Ol4 
Mb4 '3 1 1  51 1 '788 499-
Lb4 72 99 51 1 3789 0104 
Mb4' (LOOP 1) 50 51 1 3  3906 535 
Mb4' LOOP 2 74 0145 , 1� 51 1 3784 101'1 
Mb4' LOOP 3 4 186'6 '49 51 n 378:' '3,'4 
Mb4' LOOP 4 14 18146307 51 1 3  '83 331 -
Mb4' (LOOP 5) 74 187471 39 51 1 3'83 " \1 ' 

··MODUL 

STREAM . Assumed X4- Mb4- Mv4' 
Mb4' (LOOP 1 )  50 �� 5551' ,2 14 
Mb4' LOOP 2 74 01457154 17 66: 26 1 �  9' 
Mb4,(LOOP 3 74 18626749 11 5 B()O  H 03 
Mb4'(LOOP 4) 74 113746307 jl 57 '48 1( 0, 
Mb4' LOOP 5 74 1 8747 1 39 j.' �,; :·C· -r r,"1 

Tv4 ( 'C) Hv3 

50 '>6 2�93 622969 
G 41 2',93 3:.041'  

Sf' 40 2�9J ;j484' 
50 40 2593 348393 
<;() 40 ;93 348:19: 

B C 
1 0';,/34 -0 010116138 
1 € 704"9 -V 01 70314 '5 
1 b1 486 ' 0 1 1000 '87 
1 01 4/25 -0 0100J05 
1 1;39179 -0 '1 7:1f 164: 

l ' ·1LI -O O1 730,'5Qb 
1 542 '2S -0 01 730i81 1 
1 64, '25 -0 01 130 31  

Cp Calc X4' 
94o,'4� '4014511 >4 
'l:I4101 14 18626 '4Y 

3 "31!"3 '4 1874(."lF 
8 J�58 '4 1a74 1J� 

3 833957 ",1 � fS/4 :' 1'V' 

1 344207 

D Cp 
€ 7601 7E 05 1 �_ ! I  ,qP "' 
8 '9:\66E,O� .1. ... .. '"" . ..  ,; 
� 18331E-0� -, � ;',1, "', 
6 �708E-05 3 940949 
8 8T1 72E.o5 3 834 '01 
8 8B6<;E ,0<; 3 8�19fi3 
8 8866E 05 3 833958 
S 8866f-O� -, .0, ' �l " - I 

cp= 

WHERE 
T= 
s= 
A= 
B= 
C= 
D= 

1 1  

(A+BT +CTA2+DT'3)E-3 

TEMPERATURE C 
WATER SALINITY G1Kg 
4206 8-6 6197S+1 2288E-2SA2 
-1 1 262+5 41 78E-2S-2 2719E-4S'2' 
1 2026E-2-5 3566E-4S+1 8906E-6S'2 
6 87774E-7'1 51 7E-6S-4 4268E-9S'2 



.. STREAMS DATA & RESULTS 

lu 3 0212756181 
IA 44531 
IdUa loss 0 S8 1 

• •  BOILING POINT ELEVATION 

STREAM " X 
Mb5 0 0,�N194 
Lb5 0 073494/89 
Mb5'(LOOP 1t 0 048774343 
Mb5' LOOP 2 0 056962342 
Mb5' LOOP 3 o 0�"01 1212 
Mb5' LOOP 4 0 05101 15 19  
Mb5' (LOOP 5) 0 05101 1 52 

T5(K) BPE 
J20 70 ,,,\.1'" " '�  
.20 ,� ' .  -' � �  , 
320 70 0 5363128 
120 '0 o 6378! 16 
320 '0 Q 6384" )4 
320 '0 0 638494 
120 '0 �-} .. ..  ;·4"�·1 • 

• •  SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE 

STREAM . X T5 A 
MfOS ,2 00 40 98 3895 8024 
MbS '2 79 47 ,5 3790 0492 
LbS 73 49 47 5� 3786 'olo 
Mb5' LOOP 1 50 47 55 3906 535 
Mb5' (LOOP 2) 66 375\1980� 47 55 3821 5489 
Mb5'(LOOP 31 66 471'7833 47 5< 1821 (),1 
Mb5' LOOP 4 66 47435121 47 55 3821 0584 
Mb5' lOOP 5 66 414J5457 47 �5 3821 05114 

"MOOUL 

STREAM . Assumed X5' Mb5' Mv5' 
Mb5' (LOOP 1 )  50 55 '55!:>6 1 4  
Mb5' LOOP 2) 66 37599805 41 99979 1 1 61 
Mb5' LOOP 3 66 4737'833 41 93801 1 1 6  
Mb5' lOOP 4 66 47415121  4 1  D'6: 1 1 6  
MbS'iLOOP 5 66 41435457 4 '  -, ', ?f..4 . .  ,- -

Tv5( 'C) Hv3 

4' 01 ?�87 3870�5 
46 31 2587 207979 
4F 91 2'�7 206887 
46 91 2�87 20668 
46 Jl 2587 2Ob88 

B C 0 
1 076734 ·0 010716138 
1 611' 18  .Q 0169480:'2 
1 6:'8438 ·0 01 1 1 301 7  
1 014725 -0 0100305 
1 468971 -0 01 5199412 
1 4  1318  {) 01 52, '2 
1 47 1 331 ·0 01S?2 391 
1 41 1 331 ·0 01 5227J94 

Cp Calc X5' 
1 9: 9 144 '0 J759",,0� 
' 86�6�4 'b 47311ti3J 
3 8<,54, )5 " 47435121 

'. 40:' Sf; 474354�7 
, 86�403 c/, 414]54�� 

Cp 
6 1601iE-05 1 :,Jf :.'1'  

8 7657E-05 ' 11 \ "hlF"' 
8 82681 E-O' M 1-1::,'.-
6 547Q8E-05 3 939144 
8 18767E-0!\ 3 865834 
· 1 9b75E·0' 3 865405 

8 1968E-05 3 865403 
8 1968E·05 1 HI,5403 

Cp= 

WHERE 
T= 
S= 
A= 
B= 
C= 
0= 

(A+BT +CP2+0P3)E-3 

TEMPERATURE C 
WATER SALINITY G/Kg 
4206 8-6 6197S+1 2288E·2SA2 
-1 1262+5 41 78E-2S-2 271 9E-4SA2' 
1 2026E-2-5 3566E-4S+1 8906E-6SA2 
6 87774E·7+1 5 17E-6S-4 4268E-9SA2 



• •  STREAMS DATA & RESULTS 

Iu 3 02 1 2756181 
IA 44531 
Idlla loss 0 681 

.. BOILING POINT ELEVATION 

STREAM " X 
MbS o 0/30� n'4 
LbS o OfJl42USl 
MbS' (lOOP 1) 0 04681 3421 
MbS' (lOOP 2) 0 057276881 
MbS' lOOP 3 o 0571.18191 
MbS' lOOP 4 0 057338541 
MbS' (lOOP 5) 0 057338543 

Q 
1�24 81 1 

T6 (K) BPE 
" F.- 8 
316 6 '"' .. ';' , 
116 /8 0 4982749 
116 78 0 62376.'.3 

16 ., o 624�183 
316 78 0 6245226 
31G 18 (0 t,_ 4',.-;·r, 

•• SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE 

STREAM " X T6 A 
Mf06 52 00 40 98 1895 8024 
MbS n os 43 e,l " 88 '816 
lbS /1 24 43 6] l18' 8,  73 
MbS' lOOP 1 50 41 63 3906 535 
MbS' lOOP 2 70 926921 35 43 6 3'GY 101. 
MbS' (lOOP 3) ' 1 04%402, 43 • '98 503-
MbS' lOOP 4) 1 05024062 43 63 3798 500< 
MbS' lOOP 5 71 05024461 43 t I 3798 'iDOL 

" MODUl 

STREAM II Assumed X6' MbS' MvS' 
MbS' (lOOP 1 )  50 .5 5551> , . 
MbS' (lOOP 2) 10 \j2bj21 3� 39 304Q3 14 31 
MbS' lOOP 3 71 049540, 19 }:71 14 
MbS' lOOP 4 71 05024Of.2 g ..-:Jf 1 14 l 
Mb6' (lOOP 5) 71 05024461 r. , �v ' "  

T6 delta T 
1. t F.' 

TvS (·C) Hv3 

4' 1 3  2 '>80 500 109 
4.' 00 258028 iOO! 
4 · 00 2�80 28160 
43 00 2580 281654 
43 00 Z580 281654 

B C 
1 076734 -0 010716138 
1 61 9717  -0 0 1 701 59\19 

1 f, 317  -O ,J 1 7064906 
I 014725 -0 0100305 

1 <. 157 -0 016455809 
1 ' 76258 -0 016488' i 8 
1 576274 ,0 016488'65 
1 Sd::'774 c.Jl.Q164R8,'f,6 

Cp Calc X6' 
9, ,1 1 5  0,2£ ,21 

' 84J�71 1 049540. 
) q4 j ,'1 [)50L4(l1 

84. \"'6 1 050; 441 1 
3 84]0:"; • ' 150:/·141;4 

Qcal Err 
">024 611  ,< 1 

0 � 
6 76017E-05 J ,-� .. ,_,c.,"\ • 
8 78847E-05 "l M .J. -'4 
8 80488(-0' ' '::. ':.' - .:  
6 54708£-0.< 3 9371 5 
8 60141£,05 3 843573 
8 612J3E 15 3 8410:1'1 
6 61 <39E-05 3 643036 
8 61239E,(J� � lj.l-e . y 

Cp= 

WHERE 
T= 
5= 
A= 
B= 
C= 
D= 

(A+BT +CP2+DP3)E-3 

TEMPERATURE C 
WATER 5ALlNITY G/Kg 
4206 8-6 6197S+1 2288E-25'2 
-1 1 262+5 41 78E-25-2 2719E-45'2' 
1 2026E-2-5 3566E-45., 8906E-65'2 
6 87774E-7+1 5 17E-6S-4 4268E-95'2 



0 
n 
d 
e 
n 
s 
e 

** STREAMS DATA & RESULTS 

n 

I intemal 

Iu 3 049596459J 
IA -2874] 

* *  SPECIFIC H EAT OF WATER AT CONSTANT PRESSURE 

STREAM # X T A 
Mf+Mew in  52 00 33 00 3895 8024 
Mf & Mew out 52 00 40 98 2895 8024 

B 
1 076734 

�Jl7673� 

delta T 1m lOcal IErr 
4 99 1 43775 405431 - 1 _982654 16 1  

C D Cp 
-0 0 1 07 1 61 38 6 760 1 7E·05 3 922094 1 1 1  
-0 0 1 07 1 61 38 6 760 1 7E-05 3 926581 471  

1 , 582 80 1 2581 53 8 

Err % -0 09 



EF FECT 38 EFFECT 28 EFFECT 1 8  

EF FECT 4 EFFECT 5 EFFECT 6 CONDENCER 

EF FECT 3A EFFECT 2A EFFECT 1 A  

Distillate 



EFFECT 38 EFFECT 28 EFFECT 1 8  

57. 1 

EFFECT 4 EFFECT 5 EFFECT 6 

378.9 4 1 8.9 

455.6 
EFFECT 3A EFFECT 2A EFFECT 1 A  

1 1 4.7 57.1 



/"'- /"'- /"'-
EF FECT 38 58.2 EFFECT 28 61 .8  EFFECT 1 8  65.0 

A� 

1 1 1 ... I /"'- /"'- /"'-
EFFECT 4 54.7 EFFECT 5 50.4 EFFECT 6 46.9 CONDENCER 43.0 

I ... 

1 1 1 /"'- /"'- /"'-
EFFECT 3A 58.2 EFFECT 2A 61 .8 EFFECT 1 A  65.0 

-- --- ----------r---..., 
Condensed Vapor Temperature Tc 



EFFECT 38 EFFECT 28 EFFECT 1 8  

EFFECT 4 27.8 EFFECT 5 24.4 EFFECT 6 36. 1 

EFFECT 3A EFFECT 2A 1 5.4 EFFECT 1A 1 3 .3 

[ Vapor Velocity mls 



Mf 640 

Mms 6.9 1 7  

XSW 52 

Tsw 33.7 

Goal I 0 .00 

Diff I 0.00 

Ts 62.2 

Tc3 54 

Tv6 45 

Pms 1 67 

AHOT 6724 

ACOLD 4453 

2.332 

1 27.6 

SI M U LAT E 

1 00% 

�THOT 0.41 5 

�TCOLD 0.68 

2 .51 

51 . 1 3  

50% 

AF.COND 2874 

NeG 0.02 

R EST 

WELCOM E  TO MEDNAR S I M U LATOR 

[ PR [ 6.81 

[SMCw[ 1 .35 

I sA I 61 9.7 

T °c 
A m 2 
M kg/s 
U kW/m2.oC 
X *1 000 ppm j 

UANPC ,-,w·lve U�JITS 



EFFECT 

2A 

CT ' ... EFFE I -.a81 
26 

EFFECT 

1A 

EFFECT 

1 6  

EFFECT 

3A 

EFFECT 

36 

« Mass & Energy balance for Pre-Heaters 

p Area m2 693 Q 
6 1 0 1 .3 1  

3 
e UHE3 3.4574 1 6621 

h 3 5253396 1 3  3. 525731 7  

e 
Stream Flow Temp Q3 

in  
61 43. 7 

e Mf2(inlet) 479. 1 7  50 22 

Mf2(outlet) 479 1 7  53 46 Q3 6143 7 
out 

Md3" 2 5868 54.68 

EFFECT 

4 

p 

e 

h 
e 

1 
2 

E FFECT 

5 

Area m2 1 1 56 

UHE12 3 343722937 

EFFECT 

6 

Q 
1 
2 

3 . 4 1 0471 931 3 409477 1 55 

Stream Flow Temp Q 1 2  
i n  

Mf1 ( in let) 532.78 43.75 

Mf1 (outlet) 532 78 50 22 Q 1 2  
out 

Md4" 5. 7272 51 . 1 3  

E 
j 2823 237993 
e 
c QEC 2475 24 888 0767 1 9 1  

c 
0 
n stream Flow Temp 
d 
e Mf(lnlet) 1 59 72 53 46 
n 
5 Mf(outlet) 1 59 72 57 40 
e 

Area m3 2874 
Q 

1 2 1 82 .4  F F 30261 1 4  

UFC 3 1 48049669 C 
c 
0 2 291 1 36745 2 3067454 
n 
d Stream Flow Temp QFC 1 3635 2 e 30447 65 

In n Mf ( inlet) 767.61 33 70 

e 
Mf (outlet) 767 61  1 3635.2 43 75 QFC 0 

out 
Mdc 45 00 



** Local heat transfer coefficient for seawater flowing Inside the tubes 

temperature oC 
33 70 
43 75 
50 22 --- ----

dout 
d inner 
salin ity 
n 1 2  
n3 
nfc 

hout 
3 76 
7 47 
7 .98 

0 .0 1 9  
0 .0 1 76 
52000 

1 070.66667 
963 

3 1 4 7  

Ditus-Bolter 
408 05 
798 59 
847 25 

velocity 
0 9708 
1 9882 
1 9937 

R i  
Ro 
K 

1 /UFC 

1 /U HE 1 2  

1 /UHE3 

Reynolds 
2 1 2 1 1 08 
52225 49 
58320 95 

0 .08 
0 

0 . 0 1 65 

0 436464564 
0 2932 1 4552 
0 2836606 1 4  

Prandtl 
0 0 1 
0 00 
0 00 

UFC 2 29 1 1 4  
UHE 1 2  3 4 1 047 
UHE3 3 52534 

Kwater m uwater cpwater rhowater 
6 1 9E-0 1 8 32E-04 3 92 1 032 79 
6 3 1 E-0 1 6 89E-04 3 93 1 028 75 
6 38E-0 1  6 1 7E-04 3 93 1 025 86 



* "  Local heat transfer coefficient on the outside surface of tubes 

Idout 0 .0 1 9lxncondout I 0 I 
con 1 1 538923 con2 1 1 1 
n u m 1  0 854 1 82 dinner 1 0.0 1 76 1 
mumt 2 293731  

temperature oC hout delt rhovapor rhocond kl iqu id lamdav m ul iquid mass velocityout 
45 00 53 26 0 1  0 066 989 845 6 35E-04 2394 53 5 98E-04 1 2 64 22 883400 1 1  
5 1  1 3  54.94 0. 1 0 088 987 1 73 6 42E-04 2379 80 5 38E-04 5 73 1 7 96367406 
54 68 55 87 0 1  0 1 03 985 527 6 45E-04 237 1 23 5 08E-04 2 59 7 78 1 995 1 23 -



.. STREAMS DATA & RESULTS 

Iu 332'-327., 11 
IA 67241 
I,\T loss Hot 0 4 1 51 

• •  BOILING POINT ELEVATION 

STREAM # X 
Mb1 (assume)1 0 05958 1 0 1 5  
LOOP 1 0 051  
LOOP 2 0 055757684 
LOOP 3 0 055790285 
LOOP 4 0 055790506 
LOOP 5 0 05579050, 

T (K) 
333 76 
33:' 76 
333 76 
33 7f 
333 76 
133 76 

INCG 
- () 021 

BPE Tv1 (oC) 
. .. .  -

1 1 { j 59 99 
( ',2f 1 . "  59 92 
' 3( ' . -\  59 92 
' -,.3(. - , 59 92 
f �''11 . cC' 59 92 

•• SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE 

STREAM # X T A B 
Mf01 52 00 57 40 3895 8024 1 076734 
LOOP 1 50 60 6 1  3906 <;35 1 01 4�25 
LOOP 2 59 51 536793 60 6 1  3856 3512 1 293499 
LOOP 3 59 5805692 1 60 61 3856 0 1 5  1 295267 
LOOP 4 59 58 1 0 1 1 79 60 61 3856 0 1 27 1 29527\l 
�.- 59 581 0 14.7!l. ,----60 61 .1856 0 1�1 1 295279 

" SALINITY 

STREAM # Assumed X Mb1 Mv1 Cp 
LOOP 1 50 83 05556 -3 1 94444 3 945766 
LOOP 2 59 51 536793 69 17656 10 084549 3 903 1 79 
LOOP 3 59 5805692 1 69 7002 1 0 1 60908 3 90289 
LOOP 4 59 58101 1 79 69 69969 1 0 161 426 3 902888 
LOOP 5 59 �8 ' 0 1479 f.-'c' 61.,, - I, ' 6" :� - 3 902888 

Hv1 

2609 95329 
2609 8421 36 
2609 84 1 365 

2609 84 1 36 
2609 84 1 36 

C D Cp 
·0 0 1 0 7 1 6 1 38 6 760 1 7E 05 

·0 0 1 00305 6 54708E·05 
-0 0 1 3 1 57347 7 52925E·05 
·0 0 1 31 77592 7 5357E·05 

-0 0 1 31 7773 7 53575E-05 
·0 0 1 3 1 77731 7 53575E·05 

Calc X 
59 51 536793 
59 5805692 1 
59 58 1 0 1 1 79 
59 58 1 01 4 79 
59 58 1 0 1 48 1  

5 093 1 7E 1 1  

3 935085544 
3 945765853 
3 9031 78653 
3 902889634 
3 902887672 
1 902887659 

Cp= (A+BT +CT"2+DP3)E·3 

WHERE 
T= 
S= 
A= 
B= 
C= 
0= 

TEMPERATURE C 
WATER SALINITY GIKg 
4206 8·6 6197S+ 1 2288E·2S'2 
·1 1 262+5 4 1 78E·2S·2 271 9E-4S'2' 
1 2026E·2·5 3566E-4S+ 1 8906E·6S'2 
6 87774E·7+1 51 7E·6S·4 4268E·9S'2 



" STREAMS DATA & RESULTS 

lu 7 1321 ' '1] 
IA 5724J 
Idlt8 loss " 41 

•• BOILING POINT ELEVATION 

STREAM II X 
Mb2 o 05l144S�3� 
Lb2 ( 059837<;95 
Mb2' (LOOP 1 0 053'190 ,35 
Mb2' LOOP 2 0 0�4E,,' .; 
Mb2' LOOP 3 0 058',191  
Mb2' LOOP 4 () aS8�1I:'2� 
Mb2' (LOOP 5) O�<; I", , 4  

T2 (K) 
�:;t 1 1 
3 1  1.1 
'11 

1 
'1 1 1 "  
> 1 1 
).' 1 t 

o IT2 delta T lOcal IErr 
� 48:" �O:.l .81 1 <; I �tl3 2024'01 4 71E 1 1  

BPE Tv2 (·C) Hv2 

fi4F.C I � 5' ,3 '6r5 3�' '" 
[ 'E4 ,;OS 2" 4 

a 7080443 S, 2' 'bOS 261"';, 
(, 'l804bf 4 , LbO'; :l81t 

. � l : �· ., � 21:11'"  

" SPECIFIC HEAT O F  WATER AT CONSTANT PRESSURE 

STREAM # X T2 A 
Mf02 , I() S-:\ 4t 1�95 flU '4 
Mb2 :t 4� 5, '16 38� 1 1 4  
Lb2 5984 S: 98 38:>4 f90 
Mb2' (LOOP 1 50 <; "8 1()6 
Mb2' (LOOP 2) 511 �\l9 i 9tlO, < '." IR'ig 1 
Mb2' LOOP 3 S9 058200O;>I 57 98 1858 71 1 4 
Mb2' LOOP 4 '>9 058,· 'F 1)  '1'1 IS 38S8 094 
Mb2' LOOP 5 ,� 05B� B5' � )f 858 �',4 

"MODUL 

STREAM # Assumed X2' Mb2' Mv2' 
Mb2' (LOOP 1 )  50 8: 05�>6 1 19 
Mb2' LOOP 2 SA 91 ii"'l,- 'O lN' 4 
Mb2' LOOP 3 59 8, ,)()�" J .J 1 !  l I 
Mb2' LOOP 4 t;9 o�a� lo1.l if) 31t....:':J l 54  
Mb2' (LOOP 5) 1 O�8� 'H� 

B C 
I , 14 '1!J7 1 ·1 
1 ,  l16Cl ·0 1 3 1 3�t-,4t 

1 30<,21 g  ,0 01 J251241 
1 � 1 4 '2� ()10(lIO' 

? '144E � 01 29%1 ." 
I <,81046 ,0 0 ' 30 1 444 
1 ,'810';6 ,0 01 301 '0.,4 
1 .  ' I  � ) fl1JOlc.,,6:, 

Cp Calc X2' 
1 MAil '09997"80i 

I!J.ICiIll ; O,,�, 

I() 18�1 5; )58�:£: _  
• IS2 59 05B�78�3 
<� 182 ::, ',5S,)i6�!-1 

D 
'Wl ' E O� 
5L21JE ,0 

7 %1 1 1 E,OS 
, 541(J8f II 

4i80!>E 0 
' 48J9E ,0<; 
48393E 05 
4R3'..!2-E--OI: 

Cp 
Ib!: 

LO'l? 
' " .03&4 

4440 1 
, 

14Utll 

3 90�8l1 
" '10382 

{lJ!l2 

Cp= 

WHERE 
T= 
S= 
A= 
B= 
C= 
D= 

(A+BT +CT'2+DT'3)E-3 

TEMPERATURE C 
WATER SALINITY G/Kg 
4206 8-6 6197S+1 2288E-2S'2 
-1 1 262+5 41 78E-2S-2 271 9E-4S'2' 
1 2026E-2-5 3566E-4S+1 8906E-6S'2 
6 87774E-7+1 51 7E-6S-4 4268E-9S'2 



.. STREAMS DATA & RESULTS 

lu 321 J, .'11 
� �{�I 
Idlta loSS 41  

•• BOILING POINT ELEVATION 

STREAM " X 
Mb3 oS95l!144 
Lb3 a 0"91C')7�9 
Mb3' LOOP 1 !'I..:�f)8. 
Mb3' (LOOP 2) n I�i:t ' .lt 114 
Mb3' (LOOP 3) a O�1740; L8 
Mb3'LLOOP 4 o QSli4' 0' 
Mb3' LOOP 5 ("\ nf)1:C.'41 0 

T3 (Kl BPE 
�18 . .t. 

,26 
., I I- � r 

'8 5, t t J, 
328 S.' o 67'1l� 51 
,/I; J 6'�(1 
�.(3 

•• SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE 

STREAM # X T3 A 
Mf03 5: ell 41, 389' C '4 
Mb3 59 50 S J, 18� II 
Lb3 59 iO 55 3: 18<;<; 3'6' 
Mb3' LOOP 1 "0 5' 31 yl,): �5 
Mb3' LOOP 2 5<> 0<;91 -496 " I.��P: '0>4 
Mb3' LOOP 3 <;9 1 1 5; \0404 q, 3858 4163 
Mb3' (LOOP 4) <;9 1 1 '*>4','" 55 3 1858 4 1 4'> 
Mb3' (LOOP 5) 59 1 1 ""'5:11\. 5' 18S8 4 1 4  

"MODUL 

STREAM " Assumed X3' Mb3' Mv3' 
Mb3' (LOOP 1 )  50 �J (15 I H  
Mb3' LOOP 2 j J� '1 '4" 1 ; 
Mb3' (LOOP 3) 59 1 1  JU404 U :<4'1, po-1 
Mb3'.(LOOP 4} 59 l '  <;(>48' , (j 248' { 1 f 1 
Mb3' LOOP 5 l 1 1  '>651lt' 

Tv3 ( 'Cl Hv3 

>4 �5 < '() 91� 4 
� ';9 If,flQ 8141 
M n9 .'bOO B 1 <4� 

, l , "'0 81 .>4 11 ,  
4 9 .'� 10 8114'15 

B C 
'! '4 .f1 1  1071b1 ;1.,8 

1 '1,'�O2 f\ 01:Jl�3\;' 
1 29fl5li ·0 n13214/lJ g 
1 01,1  '7 .(1 01 Q(  l( 
1 , 10, J 1 301 ',i,[.·' 
, '8<606 ·0 01 303' 
, . "' '6 � �  11 l Jc.j: 'lK4 
1 'P.'F 1 3(JJ� '1� 

Cp Calc X3' 
'14.10A1 ; 0591 {4J'-: 

'4 1 1 SJ041)4 
j ' 1�19 ,9 l '  '>b4B�' 

1 00:>1 'Ill "' 1 1 "Q�Ob2 
'8 1 1 5€�.>4 

D (:P. 
( ;f,()1 ,[ as 

�,,81 ,[ 0 
S4759E 0' 
54T'lAE '1, '� 1 
4B3!j�f IIJ: � : � 
489�1� ·o� 3 ;C'�19 
48%ll I', � "  1 
4'1% ' [  0 

Cp= 

WHERE 
T= 
S= 
A= 
B= 
C= 
D= 

(A+BT+CP2+DP3)E-3 

TEMPERATURE C 
WATER SALINITY GIKg 
4206 8-6 6197S+1 2288E-2S"2 
·1  1 262+5 4 1 78E·2S-2 2719E-4S"2' 
1 2026E-2-5 3566E-4S+1 8906E-6S"2 
6 87774E-7+1 5 1 7E-6S-4 4268E-9S"2 



Mms 
6 9 1 667 



# 

• •  STREAMS DATA & RESULTS 

o 

IA '4: II 
I,n loss Cold I - h81 

•• BOILING POINT ELEVATION 

STREAM # X 
Mb4 ()fj(jZI ",Ii' 
Lb4 r O��� I "9:4 
Mb4' (LOOP 1) o OSOQ1Q: '\4 
Mb4' [LOOP 2) 0 0519( 1 5  1 
Mb4' LOOP 3 o Of>lB4' 
Mb4' LOOP 4 o '5194%14 
Mb4' LOOP 5 o O�7�4lbl" 

T4 (K) 
24 " 
'4 j; 

�L4 q: 
lJ4 3; 
.';4 
124 3, 
,24 J, 

IQ� , I
T4 

I
deltaT---

r
caI

L4352 I
Err 

BPE Tv4 ( ·C) Hv3 

I) S:'Cj9 1 ? '  r..., L4 . 594 81 ' 1 ""  
:-'j': �; .) 1 t:, .. (: <;4  b,)� ' 1 5  1 30524 
'0 ,1 ... l '  .�5Sf4 6'A 

O F.  '05OB' 1 5 ,94 b5-4''1 
- i; -,-,I .. _,4 \�4 F)54 '(1 

.. SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE 

STREAM # X T4 A B C 0 Cp 
Mf04 SZ 00 �o v  �89� 8{ }� 1 n'E j4 ,0 0107 1 6 1 18 . '&01 , E 'O� ! l ; 
Mb4 1'>0 '8 51 8: 'I'. 4 1 1 >98 ' 3?�.'41 'j  7 :>0427E 
Lb4 5'l BII 51 �: ,854 4 , 1 1Q,,'14 'U i '3£'/') 7' 56�1 9f 
Mb4' LOOP 1 50 '1 82 39f16 ',)5 1 01 4" "  -II 01 00:l05 E '>4708£ 0<' J 341 7,,4 
Mb4' LOOP 2 • !J6 1 5. -" I 51 �. 3") 504 1 ; ' 0 1 51'  11 4'>Ob'dl..l �2bE ,t" ts, A 'f,4 
Mb4' (LOOP 3) 6-1 069.1 �8' 51 f" <8 , , - ...- ' 41 ",  ,p 0145j�, .,;" ;j�LI�J4l iJ� 1 ,  '� " 
Mb4' LOOP 4) 64 06978054 5, 8, 18: J 1 , 87 , 4 1 71: � 01 45328" 170'l'lE '" J 8:'8:,75 
Mb4' LOOP 5 64 06gr�389 , A: 183: 1 ' 87 1 4 1 «,  2 ) '4'>2, �2( q709�[ }C 

"MOOUL 

STREAM # Assumed X4' Mb4' Mv4' Cp Calc X4' 
Mb4' (LOOP 1 )  50 ,5 '" ? 1 4  ' � ,4 Ie 98 , " _ � 
Mb4' (LOOP 2) fij qti ' '->3: '8 4 H 10 �4 8,6764 f 4 Ob9<1� 
Mb4'lLOOP 3) h4 Of. >. 1/l , , 1  ' n ' 0 q/Pl� � 0691 'il -4 
Mb4' LOOP 4 64 Q697BO�4 43 ';1 & � 1 0 , � 1 h4 Q691W 19 
Mb4' LOOP 5 64 Ob,,'�J8Y : - - 3 Hr8. , <  .1 "£Q l " ,  , .  " 

I
Md4" -� 

727Z036Oil 

Cp= 

WHERE 
T= 
S= 
A= 
B= 
C= 
0= 

(A+BT +CT'2+0T'3)E-3 

TEMPERATURE C 
WATER SALINITY G/Kg 
4206 8-{i 61 97S+1 2288E·2S"2 
-1 1 262+5 4 1 78E-2S-2 271 9E-4S"2' 
1 2026E-2-5 3566E-4S+1 8906E-{iS"2 
6 87774E-7+1 S17E-{iS-4 426BE-9S"2 



•• STREAMS DATA & RESULTS 

Iu < �1 029�� I 
IA u 44�31 
Idlla loss 0 681 

" BOILING POINT ELEVATION 

STREAM II X 
MbS lfi04 , � 
LbS o 06056(l'181 
MbS' LOOP 1 0 0494' ij'd 
MbS' LOOP 2 0 0'>425 .. 7 
MbS' (LOOP 3) o 054ll J/f.ll 
MbS' (LOOP 4) o 0�427q41 1 
MbS'lLQOP �- r 0542794 1 4  

TS IKI BPE 
,LL ,.: 
.. " .. ', . 

3'{t:. 06 0 5499'01 
14:L. ) F.('I'�, $40 
,<2 6 101: 
�?2 06 n h 1 00!!'.! 
� - '- () _:i. r ,) 

" SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE 

STREAM II X TS A 
MfOS �. 00 4.1 ' 1895 B074 
MbS F,. 41 48 G1 il:" ·1 4()4c 
LbS On 51 48 J 1 ,8"'- ,\, 
MbS' (LOOP 1l 'i0 48 g 1  1 90f  �:l'> 
MbS' LOOP 2 lJ9 5'f'lt '';-;""L 48 � ,  3 �  , '1 ' , 
MbS' LOOP 3 S'l f ]t;' �2 4� 9'  8", '>4 , ,4 
MbS' LOOP 4 'i9 65<'94 51 48 Yl 18�' 1)4 1 ';  
MbS' (LOOP S) ,9 65l44' 'O'J 48 '" 185: '4 1 9  

"MODUL 

STREAM II Assumed X5' MbS' MvS' 
MbS' (LOOP 1 )  50 " f 14  
MbS' LOOP 2 "9 5�Qf., r; 7 '  4(- 7 >,;,o� f 84 
Mb5' LOOP 3 i 6�2f� .Q 4' 
Mb5' (LOOP 4) 5� b�144 ·1 4� 7 I: f l", 
MbS' LOOP 5 S9 ��29490q ,�, 

TvS I 'Cl Hv3 

48 \I) 2�89 75,,80' 
4.' 10 2t::.q� 64fV:.'i.� 
4fj 1(1 l '"9 &41'''' 
48 10 'SB9 64B0b4 
41 10 l<,s.-'9 648OfA 

B C 
, 01(714 11 11 07 1 /,; 1 18 
1 1 4  II 11 34�4. 1�  
1 , . 1 1 34e. 9 
, 0 1 4 ..:'c; 1 01 0030'> 
" �' 1 318: 

L C 1 11 '1"'3' 
1 �, 178 ·0 01 3200047 

1 11'17:'R 0 01 ;1,,00< 4 , 

Cp Calc XS' 
t '��B l-'J 44t 

1. 8�"";� ,9 652t '2, 
t; . ' )�):l';l4 1 

K';" tt. I "!>l\l4' IY 
1 e'" ,e f��i�:: 

D 
'6017E ·OS 

6240�;E Ie 
fj:s228E I' 

6 S4708E-0' 

S376� ·o� 
:4LB4f .0'1 
142B6E C" 
'>42B6E " 

Cp 
4. " 

, ... ; . .. 

3 q398i8 
B9<-,S 

::; " "  
8� 
,-,"t 

Cp= 

WHERE 
T= 
S= 
A= 
B= 
C= 
D= 

(A+BT +CP2+DP3)E-3 

TEMPERATURE C 
WATER SALINITY G/Kg 
4206 8-$ 61975+1 2288E-2S'2 
-1 1 262+5 41 7BE-2S-2 27 19E-4S'2' 
1 2026E-2-5 3566E-4S+1 8906E-6S'2 
6 87774E-7+1 5 1 7E-6S-4 4268E·9S'2 



,. STREAMS DATA & RESULTS 

Iu 2 5102956"-

IA 44� J 

Idlla loss I.e I 

.. BOILING POINT ELEVATION 

STREAM II X 
Mb6 1 .;098 , I 
Lb6 601l'6"O7 
Mb6' LOOP 1 0 04 1�" 19 
Mb6' (LOOP 2) lJ 0!>41')o ,'34 
Mb6' (LOOP 3) o O�),l()9Jc 
Mb6'lLOOP 4 o OS421" £ 
Mb6' LOOP 5 o 154.£ n 121  

T6 (K) 
l18 

I II  

10 IT6 ---jd9lIar- -Ideal ---il9 
,�. 1 1 .4 '561 B ' 4 , r 

BPE TvS ( 'C) Hv3 

; . .. .  
1 1 8  " a 1 19, 4� 08 �83 \" U 8  
' 1b }4 F  t � 4, 00 < ,�" 8:41 4 
'18 o 59� � 45 \11 ,81 A> '4" 
318 5 0 59',06<> 'I" 00 L::.83 8�.t4 14 
� H �  .,s . ' 4, <J 2 �j 8" '41 

.. SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE 

STREAM II X T6 A B C D CP 
Mf06 t. J DC' 43 '� 3B9� AD; 4 '6/34 ·0 0'0716138 6 '<jOHE,()" ., ,:')� 
Mb6 f 91 4� f 1841 ; �f: 1: 11J€,(j,fi 1j736E,Q'o ,,,,� J 
Lb6 fil, 82 4'0 f> 184f/ f>61 J j;?H4£ .Q (\1 1.S'o8 S932E:-O< � -" '�I��()4 
MbS' LOOP I 50 45 60 1906 '35 1 014/'0 -{J OHl I!D' o 54lOAf ,05 3 9181Y; 
Mb6' LOOP 2 , 71]5[.,) )8 ... 4� � r 3t"l3'� " 1 1'1{..1 1 141!,r:, '4 ' 849,'[ 0' 01 �05.J6 
Mb6' LOOP 3 ',2 8644 oJ 4' 0 J , 1 ' �18" ;141 'f� e".,IFf 'j ':I'�('199 
Mb6' (LOOP 4) bl 8648025: 45 S' 36.19 1 1 5l  ,8 1 e38 -t 01 4 1 -bS4 ' �5�\JE: ( '  1 8801 " 
Mb6' (LOOP 5) 6L Ah4R04S, 4t; , ,( 18 q " A .�1 �JA r. 1 4 1  "F,�41 ' AS��'IE (' 1 ,-4 � 

"MODUL 

STREAM # Assumed XS' Mb6' MvS' Cp Calc XS' 
Mb6' (LOOP 1 )  50 - }o., 14 . , >f '��: 0 
Mb6' LOOP 2 02 1\l�OJ082 �4 .l94rl8 , 11<050< o£ 8644: , 
Mb6' (LOOP 3 6l l:lf)\, ,,' ' I W l!j!)" , %4� 
Mb6' (LOOP 4) 6< tlt>4R' �4 4�'(:' 1 r iP1 F M64�(J4�) 
Mb6' (LOOP 5) 0< R64804'" ,;.: ':--'- 1 �11f"1 P _ ��Al!' __ ,.. " _  

Cp= 

WHERE 
T= 
S= 
A= 
B= 
C= 
D= 

(A+BT +CP2+DP3)E·3 

TEMPERATURE C 
WATER SALINITY G/Kg 
4206 8-6 S197S+1 2288E·2S'2 
-, 12S2+5 41 78E·2S·2 2719E-4S'2' 
1 202SE·2-5 3566E-4S.' 8906E-6S'2 
S 87774E-7 +1 51 7E-6S-4 42S8E·9S'2 



0 
n 
d 
e 
n 
5 
e 

.. STREAMS DATA & RESULTS 

n 

I Internal 

Iu -i30674541 
IA 28741 

.. SPECIFIC H EAT OF WAT E R  AT CONSTANT PRESSURE 

STREAM # X T A 
Mf+Mew in 52.00 33 70 3895.8024 
Mf & Mew out 52.00 43 75 3895.8024 

1 49653 .6 

0. 1 1  

Err 
30282.585 1 71 1 1 66970827 

B C D Cp 
1 .076734 0 0 1 07 1 6 1 38 6 .760 1 7E-05 922505389 
1 076714 -0.0 1 07 1 6 1 38 6.760 1 7E-05 3 928059295 



EFFECT 38 EFFECT 28 EFFECT 1 8  

EFFECT 4 EFFECT 5 EFFECT 6 

EFFECT 3A EFFECT 2A EFFECT 1 A  

Distillate 



EF FECT 3B EFFECT 2B EFFECT 1 B  

1 39.7 69.7 

EFFECT 4 EFFECT 5 EFFECT 6 CONDENCER 

504.2 

545.7 
EFFECT 3A EFFECT 2A EFFECT 1 A  

1 39.7 69.7 

Sali 



/f'.. /J'... 71" 
EFFECT 38 57.3 EFFECT 28 59.9 EF FECT 1 8  62.2 

A 

1 1 1 .. J /f'.. -71": /f'.. 
EFFECT 4 54.7 EFFECT 5 51 .2 EFF ECT 6 48.3 CONDENCER 45.0 

l ..... 

1 1 1 /J'... /J'... .7r': 
EFFECT 3A 57.3 EFFECT 2A 59.9 EFFECT 1 A  62.2 

Condensed Vapor Temperature Tc 



EF FECT 38 7.8 EFFECT 28 7 . 1  EFFECT 1 8  6 .5 

EF FECT 4 1 8.0 EFFECT 5 1 4.8 EFF ECT 6 22.9 

EFFECT 3A 7.8 EF FECT 2A 7 .1 EFFECT 1 A  6 . 5  

[ Vapor Velocity mls 



APPENDIX E 

Plant data and M EDNAR plant evaluation Run at Clean Condition 



; "_ " 1 'v ..... · '- t � · , ...... � , _ 1  " '-.." l l '( C t.. l{ :  M { ) ! -:" }v: /\(:D'J�l"�; � 

� O J ECT TITLE : A D D I TION OF DESA L I N ATION 

ANTS TO UN I TS 9 & 1 0  TN UMM AL N A R  W EST & 
'RA TfNG O r- EX I STfNG U M M  A L  N A R  EAST 

O DUCTI ON 

P R OJECT NO. ADWEAfPS/AD- 1 3 Sn6 8/98 

H T N O .  3 

r 2 11 d  o n  i..> c h a i f  o r  
8-CONTRACTOlt 

l Ei .  r 

' L J I  D I : Cl . IC I I Y 
Y'lO'-J I 'A I  J S  
O� I r I I I \c 

P700SJ 
I '"  - J b 

, 

LOCA n O N : UMM AL NAR W EST 

U n it 9 
Steam flow: 

Condit ions: Make-up flow: 
Dist i l late flow: 

B ri n e  tem peratu re fo r each effect: 
I tem AKS 

Effect 1 A  9WF 1 1 T 1 T  
Effect 1 B 9WF 1 2T 1 T  
Effect 2A 9WF2 1 T 1 T  
Effect 2 B  9WF22T 1 T  
Effect 3A 9WF3 1 T 1 T  
Effect 3 B  9WF32T1 T  
Effect 4 9WF04T1 T  
Effect 5 9WF05T 1 T  
Effect 6 9WF06T 1 T 

Brine & Dist i l late level at last effect: 
I tem AKS 

Cel l  6 Brine level 9WFOOL 1 1  
Cel l  6 Disti l l ate level 9WPOOL 1 1  

t J ' I ' I  M'l - J) [{ WGN '  

I J 

79.97 T/h -
2359. 2 5  T/h 

674.34 T/h 

Temperature 
62.08 
6 1 .67 
58. 1 1 
57.70 
55.04 
55.00 
5 1 . 7 7  
48.93 
45.22 

Tem erature 
1 52 . 1 4  
227.73 
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Date : «>ct·2000 
Time : 1 0:08:31 

REAL TIM E  VALUE LIST 

DESALINATION U NIT 9 

TAG D E S C RIPTION TYPE VALUE U NIT 

SWC 1 0 F 1 1  S EA WATER I N LET FLOW R EAL 521 S.47 tIh 
SWC20T3T SW I NLET BEFORE PREHTR TEMP REAL 32.S0 ·C 
SWC20T4T SW I N LET TO CONDENSER TEMP REAL 32.70 ../ ·C 
SWC30T2T SW AFTER CONDENSER TEMP REAL 40.30 ·C 
SWEO H2T EJECTOCOMP A OUTLET TEMP REAL 63.77 v- ·C 
SWE02T2T EJ ECTOCOMP B OUTLET TEMP REAL 63.57v ·C 
SWE07P3T CONDENSER PRESSURE 

-
REAL 8S.36 mbar_a 

SWE07T1 I  CONDENSER TEMPERATURE REAL 43.22/ ·C 
SWFOOL1 1 CELL 6 B R I N E  LEVEL REAL 1 52. 1 4  m m  
SWF04T1 T CELL 4 B R I N E  OUTLET TEMP REAL 5 1 .77 ·C 
SWF05TH CELL 5 B R I N E  OUTLET TEMP REAL 48.S3 ·C 
SWF 1 0T H  CELL 6 B R I N E  OUTLET TEMP REAL 45.22 ·C 
SWF 1 H H  C E L L  1 A  B R I N E  OUTLET TEMP R EAL 62.08 ·C 
SWF 1 2T H  C E L L  1 B B R I N E  OUTLET TEMP REAL 6 1 .67 ·C 
SWF20EH B R I N E  P U M P  MOTOR CURRENT REAL 1 40.62 A 
SWF20F 1 T  B R I N E  DISCHARGE FLOW REAL 1 576.00 tIh 
SWF20P3T B R I N E  DISCHARGE PRESSURE REAL 0.81 bar 
SWF20T 1 T  B R I N E  P P  DRV END BEAR TEMP REAL 3S.63 ·C 
SWF20T4T B R I N E  PP SHAFT END BEAR TEMP R EAL 45.02 ·C 
SWF2H H  CELL 2A B R I N E  OUTLET TEMP REAL 58. 1 1  ·C 
SWF22TH CELL 2B B R I N E  OUTLET TEMP REAL 57.70 ·C 
SWF30T 1 1  C ELL 3 B R I N E  OUTLET TEMP REAL 55.03 ·C 

SWF 3 H H  C E L L  3 A  B R I N E  OUTLET TEMP R EAL 55.04 ·C 

SWF32TH CELL 3B B R I N E  OUTLET TEMP REAL 55.00 ·C 

SWH 1 0F 1 1  LP STEAM TO STEAM TRFR FLOW REAL 7S.S7V tIh 
SWH 1 0P H  .LF;> STEAM T O  STM TRFR PRES R EAL 1 .65 bar 

SWH 1 0T H  L P  STEAM T O  STM TRFR TEMP REAL 1 35.78 ·C 

SWH 1 1 F1 I  LP STEAM TO EJECTOCMP A FLOW REAL 37.86 v tIh 
SWH 1 1 P H VAPOUR EJ ECTOCMP A DIFF PRES R EAL -1 1 .S6 mbar 

SWH 1 1 P3T LP STEAM TO EJECTOCMP A PRES REAL 1 . 35 bar 

SWH 1 H3T LP STEAM TO EJECTOCMP A TEMP REAL 1 26. 1 1 ·C 

SWH 1 2F 1 1  L P  STEAM T O  EJECTOCMP B FLOW REAL 37.58v tIh 
SWH 1 2P H  VAPOUR EJ ECTOCMP B DIFF PRES R EAL S.7S mbar 

SWH 1 2P3T LP STEAM TO EJECTOCMP B PRES R EAL 1 . 33 bar 

9WH 1 2T3T LP STEAM TO EJECTOCMP 8 TEMP REAL 1 26.00 ·C 

SWJ 1 1 F H TRISODIUM PHOSPHATE FLOW R EAL 0.3S IIh 
SWJ 1 2F H  SODIUM S U LFITE FLOW R EAL 0.02 IIh 
SWK01 L3T ANTI SCALE TANK 1 LEVEL R EAL 0.44 m 

SWK02L3T ANTISCALE TANK 2 LEVEL REAL O.SS m 

SWK1 1 F H ANTISCALE TO SEA WATER FLOW REAL 1 1 .0 1  IIh 
SWL0 1 L3T ANTI FOAM TANK 1 LEVEL R EAL 0.7 1 m 

9WL02L3T ANTI FOAM TANK 2 LEVEL R EAL 0 4 1 m 

9WL 1 1 F H ANTIFOAM TO SEA WATER FLOW R EAL S.94 IIh 
CONDENSATE STEAM TRFR LVL R EAL 

i':"" " � - "!jJ SWMOO L 1 1 i "" . , · ·:-l.9.L . mm 

SWM2 0 E H  CONDENSATE PP M T R  CUR RENT R EAL 28.24 A 

SYVM20 F H  CONDENSATE FLOW REAL 81 . 3 1  tlh 
9WM20P3T CONDENSATE DISCHARGE PRES R EAL 5.61 bar 

SWM20T H CONDEN SATE TEM PERATURE R EAL 96 37 ·C 

9WM22Q 1 T  CONDENSATE CONDUCTIVITY REAL 0.09 �S/cm 

9WNOOL1 1 STM TRFR LVL REAL 249 6S mm 

9WNO H H  CELL 1 A  CONDENSATE MK U P  TEMP R EAL 63 5 1  ·C 

9WN02T H CELL 1 8  CONDENSATE MK UP TEMP R EAL 63 72 °C 

S N 2 0 E H  C O N D  M f <  U P  P P  MTR CURREtH R EAL 25 72 A 

9WN20F H  CONDENSATE MAKE U P  FLOVV REAL 81 1 5  t1h 

P<:gc 1 17 

, 0 0 /0 � 

4-
� 



r - - -- ---.. --- � .:--"' ':'''''.; ':"'''::.. .. : .. =-. =-:. � _ __ _ _ _  . I U M M  f\L NJU\ YVt:� ! u NiT f, 8. i u  uESALiNA I iON t'LANT 

Date : 4-Oct·2000 
Time : 1 0:08:31 

REAL TIME VALUE LIST 

DESALINATION U NIT 9 

TAG DESCRIPTION TYPE VAL U E  UN IT 

9WN20P3T CONDENSATE MAKE UP PRES REAL 4.30 bar 
9WN20Q 1 T  CONDENSATE M K  U P  CONDUCT R EAL 1 .62 �S/cm 
9WN20Q2T CONDENSATE �E UP PH REAL 6.99 pH 
9WN20T2T CONDENSATE MAKE UP TEMP REAL 63. 1 6  ·C 
9WN60F 1 1  STM TRFR RECIRC FLOW REAL 204.85 tIh 
9WN6 1 Q H  STM TRFR CONDUCT REAL 232.54 �S/cm 
9WN6 1 Q2T STM TRFR PH REAL 1 0.45 pH 
9WN80E 1 T  STM TRFR RECIRC PP MTR C U R  R EAL 22.68 A 
9WN80F1 1  STM TRFR RECIRC PP FLOW REAL i 24.26 tIh 
9WN80P3T STM TRFR RECIRC PRES REAL 3 . 1 0  bar 
9WPOOL1 1 CONDENSER DISTILLATE LEVEL REAL 227.73 mm 

9WP20E H DISTILLATE PUMP MTR CURRENT REAL 1 47.42 A 
9WP20FH DISTILLATE FLOW R EAL tIh 
9WP20P3T DISTILLATE PRESSURE REAL bar 
9WP20T 1 T  DISTILL PP DRV END BEAR TEMP REAL 36.82 ·C 
9WP20T4T DISTILL PP SHFT END BEAR TEM REAL 37.68 ·C 
9WP20T6T DISTILL BEFORE SW PHTR TEMP REAL 43.49"'" ·C 
9WP40T7T DISTILLATE AFTER SW PHT TEMP REAL 43.58 ·C 
9WP40 Q H  DISTILLATE CONDUCTIVITY REAL �� �S/cm 

9WQ 1 0F 1 1  M P  STEAM TO EJECTORS FLOW REAL 3.07 tIh 
9WQ 1 0PH M P  STEAM TO EJECTORS PRES REAL 1 1 .77 bar 
9WQ 1 0T H  M P  STEAM T O  EJECTORS T E M P  REAL 1 89.36 ·C 
9WW30T1 BOnOM TEMPERATURE R EAL 55.03 ·C 
9WZ0 1 T7T SW M K  UP BFR EJEC COND TEMP R EAL 5 1 .52 ·C 
9WZOH8T SW MK UP AFT EJEC COND TEMP REAL 55.00 ·C 
9WZ04F H  SEA WATER T O  CELL 4 FLOW REAL �·� v tIh , .• Q1,-S�8,; 
9WZ05 F H  SEA WATER T O  CELL 5 FLOW R EAL 1 86.00 ./ tIh 
9WZ06FH SEA WATER TO CELL 6 FLOW REAL 21 7.74 ./ tIh 
9WZ1 1 F H  SEA WATER TO CELL 1 A  FLOW REAL 289.80 ,/ tIh 
9WZ 1 2 F H  SEA WATER T O  CELL 1 B  FLOW R EAL 275.00""- tIh 
9WZ2 1 F H  SEA WATER TO CELL 2A FLOW R EAL 303.36 / tIh 
9WZ22FH SEA WATER TO CELL 2B FLOW R EAL 298.87 / tIh 
9WZ30TH SW MK UP BTW EXCHANGER TEMP R EAL 47.33 ·C 
9WZ3 1 F H  SEA WATER T O  CELL 3A FLOW REAL 3 1 2 . 8 1 / tlh 
9WZ32FH SEA WATER TO CELL 3B FLOW REAL 298.43 / tIh 
9WZ40E 1 T  SW MK U P  CIRC MTR CURRENT R EAL 29.71  _ A 
9WZ40F 1 1  SEA WATER MAKE U P  FLOW REAL 2359.25 ./ tIh 
9WZ40T4T SWMK UP CIR MTR SHT BRG TEMP REAL 43 .64 ·C 
9WZ40T6T SWMK UP CIR MTR DRV BRG TEMP R EAL 52.53 ·C 
9WZ40T7T SW MK UP CIRC DRV BEAR TEMP REAL 44.58 ·C 
9WZ40T1 0T SW MK UP CIRC MTR WDING TEMP REAL 69.96 ·C 
9WZ40T1 1 T  SW M K  U P  CIRC MTR WDING TEMP R EAL 70 37 ·C 
9WZ40T1 2T SW MK UP CIRC MTR WDING TEMP REAL 69 .76 ·C 
9WZ40T1 4T SW MK UP CIRe SHFT BEAR TEMP REAL 45 76 ·C 



Mf 655.4 

Mms 1 0 .48 

Xsw 45 

Tsw 32.7 

Goal 0.00 

Dlff 0.00 

Ts 63.67 

Tc3 53.62 

Tv6 43.49 

Pms 236.2 

AHOT 6724 

4453 

3.691 

540 

SI M U LAT E 

1 00% 

ATHOT 0.41 5 

ATCOLD 0.68 

3 .51 5 

50.39 

50% 

AF.CON D 2874 

NeG 0.02 

R EST 

WELCOM E TO M EDNAR S I M U LATOR 

I PR I 8.89 

ISMcwl 2.90 

I sA I 31 3.5 

T °c 
A m2 
M kg/s 
U kW/m2. oC 
X *1 000 ppm 



EFFECT 

2A 

EFFECT 

2B 

EFFECT 

1 A  

EFFECT 

1 B  

E FFECT 

3A 

E FFECT 

3B 

--Mass & Energy balance for Pre-Heaters 

p Area m2 693 

e UHE3 3.44521 9883 

h 5 1 435601 94 5 1 43878096 

e 
Stream Flow Temp 

e Mf2(inlet) 490 66 49.95 

Mf2(outlet) 490 66 53.60 
3 

Md3" 3 0 1 25 54 30 

o 
3 

03 
In 

03 
out 

7 1 1 1 .24 

7 1 57 4 1  

7 1 57 .4 1  

EFFECT 

4 

p 

e 

h 
e 
a 

e 

1 
2 

E FFECT 

5 

Area m2 1 1 56 

UHE12 3.31 9938448 

E FFECT 

6 

0 
1 
2 

4 .866435078 4.865222299 

Stream Flow Temp 0 1 2  
in 

Mf1 ( in let) 545.56 42 .41  

Mf1 (outlet) 545. 56 49 95 0 1 2  
out 

Md4" 6 8784 50 39 

1 4651 . 7 F 

c 
0 
n 

d 
1 6388.5 e 

s 

1 6388.5 1 1 
e 
r 

E 
) 2823 237993 
e 
c OEC 2475 24 888 07671 91 

c 

0 
n stream 
d 
e Mf(mlet) 
n 

Mf(outlet) 
e 

Area m3 2874 

UFC 3 0999964 1 3  

3 . 760 1 5 1 657 3 779248493 

Stream Flow Temp 

Mf (inlet) 1 1 95 3 32 70 

Mf (outlet) 1 1 95 3  42 4 1  

Mdc 43 49 

Flow Temp 

1 63 55 53 60 

1 63 55 57 42 

0 
F 45882 1 9  
C 

OFC 46 1 2 1 .93 
In 

OFC 0 
out 



** Local heat transfer coefficient for seawater flowing inside the tubes 

R i  0 
Ro 0 

dout 0. 0 1 9  K 0.0 1 65 
d inner 0 .0 1 76 
sal inity 45000 1 /UFC 0.26594672 UFC 3 760 1 5  
n 1 2  1 070.66667 1 /U H E 1 2  0 205489231  U HE 1 2  4 86644 
n3 963 1 /UHE3 0 1 944 1 7867 UHE3 5 1 4356 
nfc 3 1 47 

temperature oC hout Ditus-Bolter velocity Reynolds Prandtl Kwater muwater cpwater rhowater 
32 70 5 32 581 8 1  1 5 1 89 32936 80 0 0 1 6 1 8E-01 8 34E-04 3 95 1 027 9 1  
42 . 4 1  7 55 8 1 2 54 2 0452 531 27 67 0 00 6 30E-01 6 94E-04 3 96 1 024 1 0  
49 95 8 1 6 87 1 1 2  2 05 1 6  60502 30 0 00 6 38E-01 6 09E-04 3 96 1 020 80 -



"* Local heat transfer coefficient on the outside surface of tubes 

temperature oC 
43 49 
50 39 
54.30 

Idout 0.019lxncondoutl 01 

con 1  1 528671 con2 J 1 1 
num1 0 824968 dinner 1 0.0 1 761 
mumt 2 1 395 1 9  

haut delt rhovapor rhocond 
52 48 o 1 0 06 1  990 469 
54.38 o 1 0 085 987 509 
55 40 0 1 0 1 0 1  985 707 

kl iquid lamdav mul iquid mass velocityout 
6 34E-04 2398 1 5  6 1 4E-04 1 9 1 3  37 1 1 2 1 79 1 2  
6 4 1 E-04 2381 59 5 45E-04 6 88 28. 489380 1 7  
6 45E-04 2372 1 5  5 1 1  E-04 3 0 1 1 2 .2381 3533 -



,. STREAMS DATA & RESULTS 

1 U 1-16906039261 
IA 67241 
I� T loss Hot 0 415] 

.. BOILING POINT ELEVATION 

STREAM # X 
Mb1(assume)1 0 062098964 
LOOP 1 0 0475 
LOOP 2 0 053505331 
LOOP 3 0 053549163 
LOOP 4 0 05354948 
LOOP 5 0 053549482 

T (K) 
334 63 
334 63 
334 63 
334 63 
334 63 
334 63 

[i�-t� 0 021 

BPE Tv1 (oC) 
o r,)1 �3 1  
0 <,144 ',81 60 91 
o F,5561 4f, 60 82 
(j 656:" 1' ,  60 82 
0 '1562,105 60 82 
o fi5fj::;'0�· 60 82 

.. SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE 

STREAM # 
Mf01 
LOOP 1 
LOOP 2 
LOOP 3 
LOOP 4 
,1QQF'ii _ _ __ 

··SALINITY 

STREAM # 
LOOP 1 
LOOP 2 
LOOP 3 
LOOP 4 
LOOP 5 

X T 
45 00 

50 
62 0 1 066 1 16 
62 09832664 
62 0989591 4 

62 0989637 - -

57 42 
6 1 48 
6 1 48 
6 1 48 
61 48 
�1 � 

Assumed X Mb1 
50 73 59888 

62 0 1 0661 16 59 34373 
62 09832664 59 25995 
62 09895914 59 25935 

62 0989637 �, 2� . .  : 

A B 
3933 7967 0 85175  

3906 535 1 01 4725 
3843 5593 1 359795 
3843 1 1 27 1 362073 
3843 1095 1 362089 
3843 1 095 1 362089 

Mv1 Cp 
8 1 77653 3 946221 

22 432801 3 892606 
22 5 16578 '3 89222 
22 5 1 7 1 82 3 8922 1 7  
. _ ,- 1:, 1 j 1 +':' 1  3 8922 1 7  

Hv1 

26 1 1  520386 
261 1 381 556 
261 1  380527 

261 1  38052 
261 1  38052 

C D Cp 
-0 008250235 5 99885E 05 

·0 0 1 00305 6 54708E-05 
-0 0 1 3920665 7 77355E 05 
0 01 3947054 7 78203E·05 

·0 0 1 394 7244 7 78209E·05 
·0 0 1 3947245 7 78209E·05 

Calc X 
62 0 1 0661 16 
62 09832664 
62 0989591 4  

62 0989637 
62 09896373 

o 

3 9>:ib859917 
3 946221 1 35 
3 892606456 
3 892219831 
3 89221 704 1 
j 8922 1 7021 

Cp= (A+BT +CP2+DP3)E·3 

WHERE 
T= 
S= 
A= 
B= 
C= 
0= 

TEMPERATURE C 
WATER SALINITY G/Kg 
4206 8·6 6197S+ 1 2288E·2SA2 
·1 1 262+5 4 1 78E·2S-2.271 9E-4SA2' 
1 2026E-2·5 3566E·4S+ 1  8906E·6SA2 
6 87774E·7+ 1 51 7E·6S-4 4268E·9SA2 
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e 
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.. STREAMS DATA & RESULTS 

o �I __ �� ____ +-���� __ �� 

lu 1 6906039;'6] 
IA 6724] 
Idlls loSS -] 0 4 1 �1 

.. BOILING POINT ELEVATION 

STREAM _ X 
Mb2 o ObI903JOO 
Lb2 o 062424 '23 
Mb2' (LOOP 1) 0 054134434 
Mb2' LOOP 2 0 059790794 
Mb2' LOOP 3 0 059829438 
Mb2' LOOP 4 0 059829699 
Mb2' (LOOP 5) 0 0598297 

T2 (K) 
331 , 
331 4. 
��1 4. 
331 42 
331 4 
331 4. 
331 42 

la - IT2 Idells T lacal - IErr -� 
iOq� �81 A � 14 ,'"\q� ; )� A _ ' t  11 

BPE Tv2 ('C) Hv2 
' ·4 1  ... 

,_ "J'. _!� 
0 64'l:�'if 6. �hC-" 879,�'f 
0 7. '0309 � 54 2605 146 " 
o 2 '''''''' , �4 'E05 74�80' 
0 ;  70� c, � ?f,QS l41 ,6U 1 
(j 7; ' -'Xl 5/ 54 'fi05 14',�OI 

.. SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE 

STREAM ' X T2 A B C D Cp 
Mf02 4S 00 53 ,,0 J,\ ' 196 O J� 1 ,'1 0 0082' I' c., 9988�£ -1' " : . 
Mb2 P1 90 58 2  31>44 1065 1 3! '001 01 ln�R 1 :IB1 ',[ 
Lb2 62 42 '8 27 384 1 4�1 5  I 3'0522 ·0 0140450� 7 81 J5�f ·0.' ." 
Mb2' LOOP I c,o �' 2' 3900 5:<5 1 014  25 O OHX: to- 6 '>4108� �' -t·t� 
Mb2' (LOOP 2) 61 3121 192< 58 , I ,84 1< 19  1 341 '  '7 0 013/0\15:<4 ro�,f,'E I' 8-,.:Jf1 j 
Mb2' LOOP 3) 61  39000674 'ill , - 1846 1268  1 34 1">69 ·0 01 37T1005 IH.lE·O' i 8'=.15' .4/j 
Mb2' LOOP 4 61 390',2885 58 7 34F '241 1 34.I�)f1.'l ·0 0137' 1163 7 1B',E lj f_ ,4� 
Mb2' LOOP 5 61 390�323, �8 , 3846 ;14 1 1 34.\583 ·0 0137 .l.' I f  A 11 u�,� 1 -l. I "  .: � 

"MODUL 

STREAM ' Assumed X2' Mb2' Mv2' Cp Calc X2' 
Mb2' (LOOP 1 )  50 l� 5�c�j 8 1 8 � 044 ,"<:; I 1 I I  19;"'.1 
Mb2' (LOOP 2) 61 j lU192) liD D192b l1 16 l 89.1989 " 19000 '4 
Mb2' LOOP 3 61 3'*00, I �, ',4. .'1 8: 3 .� � ·">48 f 1 !90�. '-I_�' 
Mb2' LOOP 4 61 �OO5l!lt\S S9 94319 < 1 8: 1 8�.164< 1 390� 3: 
Mb2' (LOOP 5) 61 300�3n' .' ' .  l 89:1G4� . . 19(.', ',., 

Cp= 

WHERE 
T= 
S= 
A= 
B= 
C= 
0= 

(A+BT +CTA2+0TA3)E-3 

TEMPERATURE C 
WATER SALINITY G/Kg 
4206 8-£ 61975+1 2288E-2S'2 
-1 1262+5 41 78E-2S-2 2719E-4S'2' 
1 2026E-2-5 3566E-4S+1 8906E-£S'2 
6 87774E-7+1 5 1 7E-£S-4 4268E-9S'2 
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•• STREAMS DATA & RESULTS 

o 

lu F JOf>( nt I 
IA ' �41 
Idlta loss 64, -J 

• •  BOILING POINT ELEVATION 

STREAM II X 
Mb3 o 062[)28�' 
lb3 o Of'?73' ,- , 
Mb3' lOOP , (, )52SOO7:::'f 
Mb3' lOOP 2 o O�Bn20�� 
Mb3' lOOP 3 o 05830�j409 
Mb3' (lOOP 4) o USt!J0'-l648 
Mb3' (lOOP 5) o 0�830%49 

T3(Kt BPE 
328 , ,- , .  , �, . 
12� 1 '-- 13�·,J'· 

l '  0 13127" 
328 l '  0 ',90,72 

� ' S  O b'IOIF"" 

V8 " o 6!�OE)lr° 
328 , S  �'. ':' Klt  ijj 

•• SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE 

STREAM # X T3 A 
Mf03 4-=- 00 5 hO 39J.' 79" I 
Mb3 (,'- l (\0 3t><l' 4694 
Lb3 b7 .'4 c,� 00 3842 4 1 37 
Mb3' (lOOP 1) c 00 lOb 535 
Mb3' (lOOP 2) r 1 542i '89f 5 00 ,184 9454 

Mb3' lOOP 3 F, 6, P'>ti8� 55 0v 384 56'>4 
Mb3' lOOP 4 F ' 61 7"" "" -: . . ' �t><l ot).:..� 
Mb3' lOOP 5 51 61184' 5' 0, 384 �29 

"MODUl 

STREAM II Assumed X3' Mb3' Mv3' 
Mb3' (LOOP 1 )  50 l!" " " 
Mb3' LOOP 2 iii ' 4.' 18<)" , 149: ....: 1 " .. A 
Mb3' LOOP 3 I bl ' Cdf , 1 'L l� 
Mb3' LOOP 4 f, 6 1 ft:l4 �?- 59 D� L J: 
Mb3' (LOOP 5) '·1 bl le,1f C '  

Tv3 ('C) Hv3 

54 \g 1600 292355 
�4 31 2600 , 5968 
�4 . ,  2t>(1() , 58809 
54 3, £'00 1 58803 
54 <1 2600 1 58803 

B C 
0 851 IS ·0 0082">0235 

1 360'54 -0 01 19:' 5983 
1 365633 -0 0,3988322 
1 014 ·O O'W:IO� 
1 4 t! -r o 1377'jJ2 
1 3495,3 ·O O I 3A01'lI8 
' 34',',4E .Q 01 381): (If,L 

14%4� ·0 " 380; '06 

Cp Calc X3' 
'4 o'� 61 ')4; Jl9b 

3 ' ,I 1G hI h l Y"'6i1 
� f. f ,  1 T84366 

�Q ;(7 1 61 784'1 
p, < 1 184blL 

D Cp 
• 9988�E-05 ' oJ' :  ... 

77510E-05 It . . ' : 
' 795JE-05 AI" - 1  Q 

b :,4(08E n5 3 94" I'¥ 
7 7281t>E- ,� l �9 p a 
, 73S4 1 E  1 . ' 89090� 

n54nE·O! �9U"Q 
' 73546[-OS ' \  fY,," '-.'(�' -

Cp= 

WHERE 
T= 
S= 
A= 
B= 
C= 
D= 

(A+BT +CT'2+DP3)E-3 

TEMPERATURE C 
WATER SALINITY G/Kg 
4206 8-6 61975+1 2288E-2S'2 
-1 1 262+5 41  78E-2S-2 271 9E-<lS'2' 
I 2026E-2-5 3566E-4S+1 8906E-6S'2 
6 87774E-7+1 517E-6S-4 4268E-9S'2 





•• STREAMS DATA & RESULTS 

IA �45; 1 
16 T loss Cold I--u 6 Ij� 1 

.. BOILING POINT ELEVATION 

STREAM . X 
Mb4 0 062-,<: "48 
Lb4 0 062445766 
Mb4' (LOOP 1) o 050<;3: '61 ' 
Mb4'_LLOOP 2 05782'}66-
Mb�' LOOP 3 0 05781'60 l 
Mb4' LOOP � o 0578Uf\87 
Mb4' (LOOP 5) ( 0f',81, 88' 

T� (K) ePE 
�l� 'r . � .... 
324 12 C � ._� r ' __ 
32� , o S7)�9S 
lL4 o 56s.118� 
324 <2 0 66-'018 
324 c O f.h"�Z' 
124 )'  - ; .. , .. -,'--.. .  -

.. SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE 

STREAM . X T� A 
MfO� 45 00 49 95 3933 7967 
Mb4 t . Go �, 07 3840 2371 
Lb4 L 44 _.1 0' 3841 3444 
MM' LOOP 1 50 S1 07 3906 S35 
Mb4' LOOP 2 ". 58�(l9�,· 1 0' J8:« S(F 1  
Mb4' (LOOP 3) 1';4 t 199 OP ',1 ( J8JO 044f 
MM' (LOOP 4) fi4 oR0540� 1 51 7 la30 � 
Mb4' LOOP 5 __ _ fi4� ---- �)41S 

" MODUL 

STREAM . Assumed X4' MM' Mv4' 
Mb4' (LOOP 1 )  50 49 4f' 5 4' 
Mb4' (LOOP Z 1-.>4 r..tS80 (t9� 1" .'4 " 16 -,L 
MM' (LOOP 3) &;4 h:G9 ()A ,8 1 '·(If'''l 1& n 
Mb4' LOOP 4 -1 f..BC'j l , 11  I) 
Mb4' LOOP 5 b4 1',6054 IIJ4 

Tv4 ( 'C) Hv3 

50 49 < ,93 S�'fiS 
5 �O '593 .l4()''l7 
50 �0 2�93 3. 19648 
50 40 '0; .3 33%42 
5(' 4e - '3 J3\J64< 

B C 
0 85115 ,0 008250235 

1 3766,- .Q 0141 16529 
1 371 0b6  {) 014051 16 
1 0147/5 ·0 0100305 
1 42< '0: ·0 014684' 12 
1 4,7Sft7 .(J ' 1411 1 1 �'  
1 4; 75� ,0 01471 13H 
1 4.( 'C .... ,() 147 1 1  -

Cp Calc X4' 
ot -I40�::r 4 , j >Sb!. ,��: 
1 8  'i , 8  "4 (;, .-JI06 

8 '>.' '4 ',4 68054031 
� r:-,80� 4 �Evt 

, ... .: '�.1., .... 

D 
5 998e5E-0� 
1 83657E-OS 

e l S58E·05 
6 54708E-05 

8 0Z01E OS 
8 OZ8ISE-O� 
8 0288JE·05 
8 07R83E")S 

1 291048 

Cp 
� 9J ' .  \ ,  
j .. ·,4 11  . 

" . .. -
3 940914 

8r6'8 
l 87S2'4 

87Sc :2 
- -

/Md4" .. :;] 
6 87839 3 ]  

cp= 

WHERE 
T= 
S= 
A= 
B= 
c= 
D= 

(A+BT +CP2+DP3)E·3 

TEMPERATURE C 
WATER SALINITY G/Kg 
4206 8-6 6197S+1 2288E·2S'Z 
-1 1 262+5 41 78E-2S·2 Z719E-4S'2' 
1 Z026E-2·5 3566E-4S+1 8906E-6S'z 
6 87774E·7+1 51 7E-6S-4 4268E·9S'2 



.. STREAMS DATA & RESULTS 

!A 4453] 
!dlta loss r 0 66 ! 

• •  BOILING POINT E LEVATION 

STREAM # X 
Mb5 () 162'>4 1 1�1 
LbS 0 062<,>6' 19  
MbS' LOOP 1 0 048851:l302 
MbS' (LOOP 2) o 0530f>1I10: 
MbS' (LOOP 3) 0 0530905'-9 
Mb5' LOOP 4 o 05309Ob4" 
Mb5' LOOP 5 0 053090648 

T5 (K) BPE 
320 8 . ... ·r, " , 
120 8 '1., ' 11·1 
32C 8/ a );i80435 
320 8 o 58!1;8'" 
320 1'7 0 5900685 
320 87 o S90(J 
121 E" ,,�o(� 

.. SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE 

STREAM # X TS A 
MfOS 45 00  42 41  393: 7967 
MbS f.l 54 47 n 31140 8565 
LbS f 'ld 4 , 38:18 6125 
MbS' LOOP 1 50 47 72 3906 535 
MbS' LOOP 2 58 11'*::l('1Y;';' 4 ' 386 .. 0169 
MbS' LOOP 3 58 4 •• 44 ' ,34 I 41 " 1861 /844 
MbS' (LOOP 4 58 464' I()()I- 4, < 181-1 78:' 1 
MbS' (LOOP 5) '" 4f>'lf '1 31 4 t�'i1 ' -1"').1 

" MODUL 

STREAM # Assumed XS' MbS' MvS' 
MbS' (LOOP 1 )  SO 4'1 4( " 4� 
MbS' LOOP 2 58 4 1�",01'P 42 _ ;< 1 , 6  
MbS,(LOOP 3 )8 41j44�_'\4' 4l , ,40Y M 
MbS' (LOOP 4) 4fi41 1() 4. . � ,,: 1 
MbS' LOOP 5 41i4� 11 4. -" 

Tv5 ('C) Hv3 

4 1 8  2587 680282 
4 1 3  L 087 58 0023 
4 1 3  2587 58853< 
4 1 3  "587 588: ,29 
4 1 3  2 '  ,87 588529 

B C 
0 85175 0 008250235 
1 3/354 -0 01 4080088 

1 3M881 -0 01421 1945 
1 014125 -0 0100305 
1 2f3492 �O 012814'1 
1 264'11 -0 01 2828824 
1 264, I -0 01 2828898 
1 04 , 11 :.!8� it�9Y 

Cp Calc X5' 
J-'9; '9 "6 41"'/ H. 

I 'll 46445 .4 1 
� "O()<,j'-l 58 4641,9000 

, :11 "Ii ' 4(,4""1;)1 
K..J =tf 4646�1:,1 

D 

11 346 E '4 1 

5 99885E 05 
7 B248JE-05 

8673:'E-OS 
6 54708E�OS 

420;' IE-OS 
7 424 1 E �OS 
i 42474E 0', 

4l4 '4E05 

� 
3 t�,� '·4 

, ..... ,l;'1·4 
1 ,*,. .&I..� 
� 939229 
3 9\)1 191 

3 9DO!19 
3 CIQ0989 .,' 

Cpo 

WHERE 
T= 
S= 
A= 
B= 
C= 
D= 

(A+8T +CT'2+DT'3)E�3 

TEMPERATURE C 
WATER SALINITY G/Kg 
4206 8-6 6197S+1 2288E·2S'2 
·1 1 262+5 41 78E·2S·2 2719E-4S'2' 
1 2026E·2·S 3566E-4ST1 8906E-6S'2 
6 87774E·7+1 51 7E-6S-4 4268E·9S'2 



C 
e 

II 
6 

.. STREAMS DATA & RESULTS 

o 

Iu j �I � 1 4 1 .  ,31 
IA 44 31 
Idlla loss 1- liB 1 

00 BOILING POINT ELEVATION 

STREAM II X 
MbG 0028800'4 
LbG 0 00291 3766 
MbG' LOOP 1 r )41(,34.15 
MbG' LOOP 2 0 053;>58344 
MbG' (LOOP 3) 0 05.,;>91 1 3" 
MbG' (LOOP 4) 0 053291 lOR 
MbG' (LOOP 5) o 053L91 J09  

T6 (K) 
31 
11  
Jl 

2 

fa--1""6 --ldeJiaT -�cal I� . ' 1 " 0 '  44 2 8 - ' y f  '21c. � 

BPE TvS ( 'C) Hv3 
. .  r 1! J 

2L U ' . ·44� • 
•. 0 �024'Qr 4. 5 2"'31 284"51 

3F 7.2 0 <.766;,31 43 49 2 ,81 1 52'95 
1 �1. c- -)501 43 49 2581 1 5;>089 
31 I.? 0 5'70522 4) 49 2581 152085 
'1( _,2 . I :. • -, �':' .. .  43 49 2<;81 1 52085 

00 SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE 

STREAM . X T6 
Mf06 4'i 00 42 4 1  
MbG I ?  88 44 07 
LbG r.. �1 44 u' 
Mb6'(LOOP 1) 'i0 44 1)7 
Mb6' LOOP 2) �I':' 447972 44 r7 
MbG' LOOP 3 �2 'il 1SS0Bb 44 07 
MbG' LOOP 4 f,t. 513!..C1 I 44 r 
Mb6' (LOOP 5) E7 51 J,(l" 44 r 

OOMODUL 

STREAM . Assumed X6' MbG' 
Mb6' (LOOP 1 )  50 49 10, " ,  
MbG' LOOP 2 F, .. 44 1�'2 Itl 9 ,'I, 
Mb6' LOOP 3 E .,1 '60b' j 1 ,  • 
MbG'fLOOP 4 f:j2 �1 ��i 1 ' � \ n1 
MbG' (LOOP 5) '-Int. i' J 

A 
'933 967 
3839 1.183 
),'18 9<, '4 106 �35 
IA41 
3840 g998 
1840 9�81 
84U ';81 

MvS' 
' 49 

I '  , 
�e 

' '8 

B 
0 85 1 75 

1 382229 
1 J8309:.: 
1 014'/5 
1 . 71 I . •  
1 l77814  
I �'2a. 
1 '72 

Cp 
I :1:qJ16 
f\Q· 1 SF  

! 118URli5 
I�r " '), 

c 

C D Cp 
·0 008250235 5 99885E·05 l, I ' _� ' ,4 

-0 01418109 7 85737E-05 � 'i; , 1f 
·0 014191 1 2' 7 86061 E -05 ' - <0< ,  

.Q 0100:105 6 54708E 05 3 937376 
::l14(Je)201t:;  7 81�79E U5 881 1 S. 

.Q 01407 1653 7 82212E -05 J 880865 
014071 5' 7 8221SE .05 880 ... 

.(l 01 40717',') 8,,2 1 5E 05 :: /-I-� "jj:,�. 

Calc X6' 
b1 4471 21':> 

S1"  H1Bb 
6'( 5 1 �9(q 36  
6 QJ9031 3 

�l'J9("" 4 

Cp= 

WHERE 
T= 
S= 
A= 
B= 
C= 
D= 

(A+BT +CT'2+DT'3)E-3 

TEMPERATURE C 
WATER SALINITY G/Kg 
4206 8-6 6197S+1 2288E-2S'2 
-I 1 262+5 41 78E-2S-2 271 9E-4S'2' 
1 2026E-2-5 3566E-4S+1 8906E-6S"2 
6 87774E-7+1 51 7E-6S-4 4268E-9S'2 



0 
n 
d 
e 
n 

s 
e 

** STREAMS DATA & RESULTS 

n 

I iniemal 

lu 3 779248493J 

IA 2-a1'4J 

* *  SPECIFIC H EAT OF WATER AT CONSTANT PRESSURE 

STREAM # X T A 
Mf+Mcw i n  45 00 32 70 3933 7967 
Mf & Mcw out 45 00 42 4 1  3933 7967 

B 
0 85 1 75 
0 85 1 75 

delta T 1m  lOcal IErr 
4 23 1 45909 72791 -2 733 1 2261 4  

C D Cp 
-0 008250235 5 99885E-05 3 954924584 
-0 008250235 5 99885E-05 3.959654247 

234591 1 

-0 09 



EFF ECT 38 EFFECT 28 EFFECT 1 8  

EFFECT 4 EFFECT 5 EFFECT 6 

EFFECT 3A EFFECT 2A EF FECT 1 A  

Distillate 



EFFECT 38 EFFECT 28 EFFECT 1 8  

1 1 8.9 59.3 

EFFECT 4 EFFECT 5 EFFECT 6 

391 .8 432.0 

469.0 62 .9 
EFF ECT 3A EFFECT 2A EFFECT 1 A  

1 1 8.9 59.3 

Te 



EF FECT 38 57.5 EFFECT 28 

EFFECT 4 54.3 EFFECT 5 

EFFECT 3A 57.5 EFFECT 2A 

60.8 EF FECT 1 8  

50.4 EFFECT 6 

60.8 EFFECT 1 A  

63.7 

63.7 

[CO�d�nsed Vapor Temperature Tc 



EFFECT 38 1 2 .2 EFFECT 28 EF FECT 1 8  

EFFECT 4 28.5 EFFECT 5 25.7 EFFECT 6 37.1  

EFFECT 3A 1 2.2 EFFECT 2A 1 5.8 EFFECT 1 A  1 3 .7 

I-�apor-�elocity mls 
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