United Arab Emirates University Scholarworks@UAEU

Theses

Electronic Theses and Dissertations

5-2002

Simulation and Economic Study of the MED-TVC Units at Umm Al Nar Desalination Plant

Shaikh Omar Al-Habshi

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/all_theses Part of the <u>Water Resource Management Commons</u>

Recommended Citation Al-Habshi, Shaikh Omar, "Simulation and Economic Study of the MED-TVC Units at Umm Al Nar Desalination Plant" (2002). *Theses.* 670. https://scholarworks.uaeu.ac.ae/all_theses/670

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarworks@UAEU. It has been accepted for inclusion in Theses by an authorized administrator of Scholarworks@UAEU. For more information, please contact fadl.musa@uaeu.ac.ae.

UNITED ARAB EMIRATES UNIVERSITY M. Sc PROGRAM IN WATER RESOURCES RESEARCH THESIS (WATR 604)

Simulation and Economic Study of the MED-TVC Units at Umm Al-Nar Desalination Plant

Submitted By: Shaikh Omar Al-Habshi

A thesis Submitted to the Deanship of Graduate Studies at United Arab Emirates University in partial fulfillment of the requirements for the degree of

Master of Science in Water Resources

Under the supervision of

Supervisor:

Prof. Gharib S. Aly Chemical & Petroleum Engineering Department

Co-supervisor:

Dr. Mohammed Abd-Alkareem Chemical & Petroleum Engineering Department

May 2002

THESIS REPORT

SUMMARY

A rigorous mathematical model has been used to develop a steady state simulation program MEDNAR to analyze the multi-effect thermal vapor compression desalination (MED-TVC) plant at Umm Al-Nar power and desalination plant. The effect of thermodynamic losses on the thermal performance ratio, the specific heat transfer area and the specific flow rate of the cooling water are taken into account. The losses contemplated are the boiling point elevation and the temperature depression corresponding to the pressure drop during the vapor condensation process. The MEDNAR also takes into consideration the variation in the physical properties of the seawater with temperature and salt concentration, and the effect of the presence of non-condensable gases on the heat transfer coefficients in the evaporators. Sensitivity analyses, using this software, were conducted to study the effect of a number of process variables on the plant performance.

As a part of this thesis, an economic study has been carried out to determine the total water unit cost. This includes a cost break down in details for capital investment and production costs. Also an economic sensitivity analysis was performed to investigate the relationships between the fuel cost, plant production rate, operation and maintenance cost and plant running factor, and the total water unit cost.

TABLE OF CONTENTS

SUM	MAR	Y	•••••••••••••••••••••••••••••••••••••••		1
TABI	LEOF	CON	TENTS		2
TABI	LE OF	FIGU	RES		5
TABE	ELOF	TABE	ELS		7
1	IN	TROD	UCTION .		8
2	RE	SEAR	CH OBJEC	TIVES	10
3	LII	TERAT	URE SUR	VEY	11
	3.1	Тур	oes of Eva	porator	12
		3.1.1	Vertica	al Climbing Film Evaporators	12
		3.1.2	Vertica	al Falling Film Evaporators	12
		3.1.3	Horizo	ontal Falling Film Evaporators	13
	3.2	The	e Multiple	Effect Desalination (MED) Processes	14
		3.2.1	Proces	s Description	15
		3.2.2	MED	Flow Sheets	19
			3.2.2.1	Horizontal and Stacked layout	19
			3.2.2.2	Brine Re-circulation within Effects	19
			3.2.2.3	Brine paths through MED Plants	20
			3.2.2.4	Feed Heating and Heat Recovery Systems	
	3.3	Ene	ergy Integ	rated MED Processes	21
		3.3.1	Therm	al Vapor Compression (TVC)	21
		3.3.2	Mecha	nical Vapor Compression (MVC)	24
		3.3.3	Adsor	ption Vapor Compression (MED-ADS)	25
		3.3.4	Absor	ption Vapor Compression (ABVC)	26
	3.4	Ad	vantages o	of the MED Process	
		3.4.1	Comp	arison between MED & other processes	
		3.4.2	Advar	ntages of the Low Temperature MED process	29
	3.5	Ma	thematica	l Modeling	
4	CA	SE ST	UDY (UM	M AL-NAR PLANT)	
	4.1	Ger	neral Desc	ription	
	4.2	Pro	cess Desc	ription	
5	M	ATHE	MATICAL	MODELING OF THE MED-TVC PROCESS	
	5.1 Material Balance Equations				

THESIS REPORT

6

7

		5.1.1	Material balance for the first effect	37
		5.1.2	Material balance for the other effects	38
5	.2	Energ	y Balance Equations	39
		5.2.1	Energy balance for the final Condenser	39
		5.2.2	Energy balance for the feed pre-heaters	42
		5.2.3	Energy balance for the first effect	42
		5.2.4	Energy balance for the other effects	43
5	.3	Equati	ions for Temperature Profiles	44
		5.3.1	Temperature profile of the feed seawater	44
		5.3.2	Temperature profile for the first effect	45
		5.3.3	Temperature profile for the other effects	46
5	.4	Equati	ions for Steam Jet Ejector	46
5	.5	Model	l Solution	48
		5.5.1	Feed water pre-heating	48
		5.5.2	Hot effects	49
		5.5.3	Cold Effects	50
	RES	SULTS A	ND DISCUSSIONS	52
6	.1	Evalua	ation of MEDNAR simulator results	52
6	.2	Sensiti	ivity Analysis of the MED-TVC Process	67
		6.2.1	Effect of feed salinity	67
		6.2.2	Effect of the flow rate of motive steam	68
		6.2.3	Effect of seawater temperature	69
6	.3	Umm	Al-Nar MED-TVC Plant evaluation	82
	EC	ONOMIC	C ANALYSIS	86
7	.1	Total (Capital Investment	86
		7.1.1	Purchased equipment cost	86
		7	1.1.1 Cost Index	87
		7.1.2	The Annual Worth of a Present	87
7	.2	Total l	Production Cost	87
		7.2.1	Utility cost	88
7	.3	Net ar	nnual Water Cost	89
7	.4	Econo	mic Results and Discussion	89
		7.4.1	Cost analysis	89
		7.4.2	Cost sensitivity analysis	93

 CONCLUSIONS	8
 ACKNOWLEDGMENTS	9
 ERENCES	REF

TABLE OF FIGURES

Figure 3-1: Vertical Falling Film Evaporator
Figure 3-2: Horizontal Falling Film Evaporator
Figure 3-3: Process flow diagram for the multiple effect evaporator (MED)
desalination process
Figure 3-4: Thermal vapor compression evaporator-desalination
Figure 3-5: Different processes in steam jet ejector
Figure 3-6: Mechanical vapor compression evaporator-desalination process
Figure 3-7: Single-effect evaporator driven by an adsorption heat pump
Figure 3-8: Single-effect evaporator driven by an absorption heat pump27
Figure 4-1: Process flow diagram for MED-TVC plant at Umm Al-Nar
Figure 5-1: Material balance for the first effect
Figure 5-2: Material balance for effects (n = 2,3 and 6)
Figure 5-3: Material balance for effect (4)
Figure 5-4: Material balance for effects (5)
Figure 5-5: Feed water pre-heating process
Figure 5-6: Overview of the flow chart for the computer program MEDNAR
Figure 6-1: Heat and mass balance at 100% production rate
Figure 6-2: Heat and mass balance at 50% production rate
Figure 6-3: Temperature profiles for MEDNAR simulator run at 100% production
rate
Figure 6-4: Temperature profiles for MEDNAR simulator run at 50% production rate
Figure 6-5: Feed water temperature profile for 100% production rate
Figure 6-6: Feed water temperature profile for 50% production rate
Figure 6-7: Vapor condensation temperature profile at 100% production rate63
Figure 6-8: Vapor condensation temperature profile at 50% production rate64
Figure 6-9: Brine temperature profiles at 100% production rate65
Figure 6-10: Brine temperature profiles at 50% production rate
Figure 6-11: MEDNAR runs at 100% production rate for overall heat transfer
coefficient as a function of feed salinity
Figure 6-12: MEDNAR runs at 100% and 50% production rates for performance ratio
as a function of feed salinity71

THESIS REPORT

Figure 6-13: MEDNAR runs at different production rates for brine blow down
salinity as a function of feed salinity
Figure 6-14: MEDNAR runs at different production rates for performance ratio as a
function of motive steam
Figure 6-15: Generated vapor flow rates at different production rates
Figure 6-16: Flow rate of sucked vapor and mixed stream from the steam ejector at
different motive steam flow rates
Figure 6-17: MEDNAR runs at different production rates illustrating the parameters
that may limit the production rate76
Figure 6-18: MEDNAR runs for specific heat transfer area and specific cooling water
flow rates as a function of motive steam
Figure 6-19: MEDNAR runs at different production rates for cooling water and
distillate flow rates as a function of motive steam
Figure 6-20: MEDNAR runs at different production rates for overall heat transfer
coefficients as a function of motive steam
Figure 6-21: MEDNAR runs at 100% production rate for specific cooling water and
condenser overall heat transfer coefficient as a function of seawater
Figure 6-21: MEDNAR runs at 100% production rate for specific cooling water and condenser overall heat transfer coefficient as a function of seawater temperatures
Figure 6-21: MEDNAR runs at 100% production rate for specific cooling water and condenser overall heat transfer coefficient as a function of seawater temperatures
Figure 6-21: MEDNAR runs at 100% production rate for specific cooling water and condenser overall heat transfer coefficient as a function of seawater temperatures
Figure 6-21: MEDNAR runs at 100% production rate for specific cooling water and condenser overall heat transfer coefficient as a function of seawater temperatures
Figure 6-21: MEDNAR runs at 100% production rate for specific cooling water and condenser overall heat transfer coefficient as a function of seawater temperatures
Figure 6-21: MEDNAR runs at 100% production rate for specific cooling water and condenser overall heat transfer coefficient as a function of seawater temperatures
Figure 6-21: MEDNAR runs at 100% production rate for specific cooling water and condenser overall heat transfer coefficient as a function of seawater temperatures
Figure 6-21: MEDNAR runs at 100% production rate for specific cooling water and condenser overall heat transfer coefficient as a function of seawater temperatures. 80 Figure 6-22: MEDNAR runs at 50% production rate for specific cooling water and condenser overall heat transfer coefficient as a function of seawater temperatures. 81 Figure 6-23: Brine temperature profile for plant data and MEDNAR. 84 Figure 6-24: The boil and flash vapor production from effects as predicted from MEDNAR. 85 Figure 7-1: Annual share for capital cost and production cost from the net annual 85
Figure 6-21: MEDNAR runs at 100% production rate for specific cooling water and condenser overall heat transfer coefficient as a function of seawater temperatures. 80 Figure 6-22: MEDNAR runs at 50% production rate for specific cooling water and condenser overall heat transfer coefficient as a function of seawater temperatures. 81 Figure 6-23: Brine temperature profile for plant data and MEDNAR 84 Figure 6-24: The boil and flash vapor production from effects as predicted from MEDNAR. 85 Figure 7-1: Annual share for capital cost and production cost from the net annual water cost. 91
Figure 6-21: MEDNAR runs at 100% production rate for specific cooling water and condenser overall heat transfer coefficient as a function of seawater temperatures. 80 Figure 6-22: MEDNAR runs at 50% production rate for specific cooling water and condenser overall heat transfer coefficient as a function of seawater temperatures. 81 Figure 6-23: Brine temperature profile for plant data and MEDNAR. 84 Figure 6-24: The boil and flash vapor production from effects as predicted from MEDNAR. 85 Figure 7-1: Annual share for capital cost and production cost from the net annual water cost. 91 Figure 7-2: Annual cost percentage for the break down items. 92
Figure 6-21: MEDNAR runs at 100% production rate for specific cooling water and condenser overall heat transfer coefficient as a function of seawater temperatures
Figure 6-21: MEDNAR runs at 100% production rate for specific cooling water and condenser overall heat transfer coefficient as a function of seawater temperatures
Figure 6-21: MEDNAR runs at 100% production rate for specific cooling water and condenser overall heat transfer coefficient as a function of seawater temperatures
Figure 6-21: MEDNAR runs at 100% production rate for specific cooling water and condenser overall heat transfer coefficient as a function of seawater temperatures

TABEL OF TABELS

Table 6-1: Comparison of Design data, EVAPOLUND and MEDNAR at 100%
production rate
Table 6-2: Comparison of Design data, EVAPOLUND and MEDNAR at 50%
production rate
Table 6-3 :Comparison of plant data and MEDNAR run
Table 6-4: The plant overall heat transfer coefficients from the MEDNAR simulation
run
Table 6-5: The plant performance parameters from the MEDNAR simulation run83
Table 7-1:Net annual water cost break down with fuel price sensitivity
Table 7-2 :Cost break down with desalination production plant load sensitivity96
Table 7-3 :Cost break down with operation and maintenance cost sensitivity
Table 7-4 :Cost break down with desalination running plant load sensitivity

1 INTRODUCTION

Desalination of seawater has been developed considerably over the past four decades. The number of desalination plants in 1960 was 5 units with total production rate of 5000 m³/d, while in 1999 the number of units was around 12500 with a capacity of 22.8*10⁶ m³/d. This capacity is expected to double within the next 20 years [1].

Nevertheless, many other countries still suffer from water shortage and cannot afford the high capital required and running costs of desalination plants. Desalination processes have so far mostly been built when there is no practical alternative, cost of other water resources is high, low cost energy is readily available and high living standards override the cost factor. These conditions are met in the Arabian Gulf countries. The first application of seawater desalination in the gulf began in Kuwait in 1958, with a multi-stage flash (MSF) plant of 1.0 MIGD [2].

Presently, the majority of desalination plants in operation are based on the multistage flash (MSF) desalination system. However, the Multi-Effect Desalination (MED) process has recently acquired a potential interest as a large-scale desalinations technique. This dose not means that the MED process is new technology. The problems were in low unit size and gain ratio. Up to the 1980s, the MED with its different combinations was well known as a small-scale desalination technique.

In UAE, tens of MED units have been supplied in different places during the last three decades. In general, the unit size varies from 17 to 700 m³/d. The MED units were installed in arid areas, islands and offshore platforms. In 1973, the first two multiple effect thermal vapor compression units were installed in Das Island, each unit consists of two effects and a capacity of 125 m³/d. Many other plants had been also installed in Sir Baniyas Island, Abu Mussa Island, Delma Island, Alfutaysi Island and Al-Ruwais. The largest size was in Al-Ruwais with 600 m³/d in 1978 [3].

From the year 1989, UAE played a major rule in developing the MED's plant size. The French company SIDEM developed a process of MED technique with Thermal Vapor Compressor (MED-TVC). This combination allowed for large-scale plants.

Three plants were erected in Jebel Dhanna, Sila and Ras Al Khiema, each plant capacity was 1.0 MIGD [4]. Another plant had been also erected in Mirfa with 2.0 MIGD capacity. In the year 2000, two units were commissioned in Umm Al-Nar Power Station; each plant has a nominal capacity of 3.5 MIGD. These units were then

the largest using this desalination technique. A contract had been signed for 14 units -3.8 MIGD each- in Al-Taweelah power plant. Recently, the largest MED-TVC units commissioned in Al-Layyah power station, in Sharjah have a nominal capacity of 5 MIGD. This process is developing rapidly with regard to unit capacity and is gaining more market shares in the desalination market in UAE.

2 RESEARCH OBJECTIVES

The French company Sidem has designed and installed two MED-TVC units at Umm Al Nar. The nominal capacity and thermal energy requirement of each plant is 3.5 MGD and 85 tons of low-pressure steam per hour, respectively.

The proposed study covers the following tasks:

- A- Development of a computer algorithm for modeling and simulation of the MED-TVC process at Umm Al Nar based on a rigorous mathematical model. The software should be capable of computing temperature, concentration and flow rate profiles for the whole plant.
- B- Validation of the developed software through comparison between the computed results with both design and operational data from the plant, and with corresponding results using the commercial software "Evapolund".
- C- Calculation of energy consumption under different operation conditions.
- D- Estimation of unit cost of water at full and partial load operating conditions.

THESIS REPORT

3 LITERATURE SURVEY

There are limited number of publications that handle the low temperature multi effect evaporation with the thermal vapor compression process. Most of the available publications have concentrated on describing the application of the process in desalination plants with relatively low capacity and on comparing its features with other desalination process. The following abstracts represent the most related articles to this thesis:

Jernqvist, et al., [5] developed a computer program called Evapolund. It simulates different flow sheets for thermal desalination processes. The program includes a comprehensible database for the physical properties of seawater as well as other liquids. The program can be used for the design and evaluation of all types of thermal desalination processes. Simulation results can be displayed either graphically, or as a text, or in any form such as temperature, pressure and concentration profiles.

Ettouney and El-Dessouky [6] developed a computer package for the design and simulation of thermal desalination processes. The package includes models for multi effect evaporation (MED) systems; both stand alone and with vapor compression. The vapor compression systems include mechanical, thermal, absorption and adsorption heat pumps. The compute

rating, flow charting and performance calculations.

Al-Shammini and Safar [7] discussed the general features of existing commercial MED plants and associated technical aspects related to steam, condensers, evaporators, pumps and capacity. They also discussed the gain ratio, operating temperature, materials of construction, operation and maintenance of these plants, as well as associated problems, and other available information.

Al-Najem et al. [8] conducted a parametric analysis for the TVC system using first and second laws of thermodynamics, e.g., steam ejector, evaporator, condenser as well as the system as a whole.

Temstet et al. [9] presented a case study for a plant in Sicily having 12 effects with thermo-compression. The design gain output ratio of the unit is 16.7. Heat and mass balance diagrams, material choice, description of plant cells and overall layout were given. Main construction and erection details are described with particular reference to the environmental aspects of this installation.

3.1 Types of Evaporators

The MED process has many possible configurations. The heat transfer area in evaporators can be classified as vertical climbing film, vertical falling film and horizontal falling film. The choice between these configurations depends mainly on the physical properties of the evaporated liquid and the maximum allowable temperature.

3.1.1 Vertical Climbing Film Evaporators

In this configuration steam is condensing on the outside surface of vertical tubes in which seawater is fed at the lower end of the tube. At a predetermined level, the steam causes the brine to boil, vapor to be released and a thin film of brine to be established on the inside surface of the tube wall. The vertical straight-tube design has good heat transfer characteristics, with good operation at low temperature differentials, allowing a reasonable number of effects to be put in series between the available temperature limits and thus achieving high performance ratios.

Water production costs with this design are favorable particularly when a reasonable performance ratio can be achieved [10].

3.1.2 Vertical Falling Film Evaporators

The difference between this design and the climbing film evaporator lies in the way the seawater is distributed within the tubular heat transfer surface. Here, the seawater is allowed to flow inside of the tube wall as a thin film. The objective is to eliminate the wastage on temperature differential caused by the hydrostatic head, and to create better heat transfer properties, which is less dependent on operating temperature and temperature differential. Figure 3-1 shows schematically the different streams entering and leaving this type of evaporators [10].

3.1.3 Horizontal Falling Film Evaporators

In this configuration, the brine is distributed as a thin film over the outside surface of horizontal tubes, and the heating steam is condensing on the inside surface of the tubes. High heat transfer coefficients are achieved, and this design has a number of distinctive practical *advantages*:

- 1. Visual monitoring to prevent scale and corrosion.
- 2. Non-condensable gases are driven positively, and uni-directionally, out of the heat transfer zone.
- 3. Release of vapor is very gentle, so that droplets carryover is minimal [10].

For potable water, therefore, demisters are not necessary. For process and boiler feed water, the purity obtained with demisters is very high indeed. This design is very stable when operated at reduced loads. The response to changes in terminal conditions is very smooth and rapid owing to the relatively small quantity of brine in the effects. Figure 3-2 shows schematically the different streams entering and leaving this type of evaporators.

Figure 3-2: Horizontal Falling Film Evaporator

3.2 The Multiple Effect Desalination (MED) Processes

The MED-TVC is the major competitive distillation alternatives to MSF process. The vapor formed in each effect, except the last one, flows to the condensing side of the next lower temperature effect. The latent heat of condensation is transferred through the tube wall to evaporate part of the feed water flowing across the surface. The main difference between MSF and MED is the way evaporation and heat transfer take place. In an MED plant, vapor is generated from seawater film in contact with the heat transfer surface; whereas in the MSF plant seawater is only heated by convection within the tubes and vapor is generated by flashing from a streaming in each stage.

High heat transfer rates are achieved in the MED process due to the thin film boiling and condensing conditions. Also the evaporation process takes place at a uniform temperature within each effect. The required heat transfer area for the MED plant is close to that used by MSF, even though the plant is operated over a smaller temperature range than MSF. Most modern large MED plants have a horizontal tube configuration (HTE), with the feed water film sprayed on the outer side of the tubes and vapor condensation inside. The horizontal tube design uses a system of spray nozzles or perforated trays to distribute the feed water evenly over the heat transfer tubes. MED plants using polymer additive scale control are generally designed for low temperature operation. The evaporation temperature in the first effect is around 65 °C to limit scale formation. Acid cleaning for MED plants is needed more frequently than in MSF plants Evaporation from the outer side of the heat transfer surface tubes makes sponge ball cleaning not suitable.

The performance ratio of water production to steam consumption of conventional MED plant is approximately equal to the number of effects minus 1 (n-1). To obtain a performance ratio of 8.0, the number of effects needed in a straight MED plant would be 9 [2]. This is much lower than in an equivalent MSF plant. The smaller number of effects in MED plants contributes to saving in capital cost compared with MSF.

The performance of MED plants can be improved still further by combining the MED process with different heat pumps.

The idea from these heat pumps is to improve the thermal performance of the system by integrating the energy of the steam supply to the process.

The modern combinations are:

- 1) Thermal vapor compressor (steam jet ejector).
- 2) Mechanical vapor compressor.
- 3) Absorption column.
- 4) Adsorption bed.

3.2.1 Process Description

A flow sheet for conventional Multiple Effect Desalination (MED) seawater desalination process is shown in Figure 3-3. The system consists of number of evaporators, final condenser and a feed heater. Cooling seawater is introduced to the inner side of the condenser tubes where it is heated and then divided into two parts. The first and larger part is rejected back to the sea and the second smaller part represents the feed to the evaporator. The rejected seawater removes the excess heat added to the system by the heating steam. The heating of the feed seawater in the condenser increases the thermal performance of the process. The heat source in the condenser is supplied by condensing the vapor formed by boiling in the last evaporator. Accordingly, the condenser has three functions: to remove the extra heat from the system, to improve the process thermal efficiency, and to adjust the boiling temperature inside the evaporator.

Within an evaporator, the feed water is sprayed at the top where it falls in the form of a thin film down the succeeding rows of tubes arranged horizontally. The feed water temperature is raised to the boiling temperature and part of this feed is evaporated. The boiling temperature in the first effect is dictated by the nature of chemicals used to control the scale formation and the state of the heating steam. This temperature is mastered in other effects through adjusting the pressure in the vapor space of the evaporator. The vapor formed by boiling is free of salts and its saturation temperature is less than the boiling temperature by the boiling point elevation. The vapor flows through a knitted wire separator, demister, to remove the entrained brine droplets. The saturation temperature of the vapor departing the demister is reduced to a somewhat lower value because of the frictional pressure loss in the demister.

The vapor leaving the demister of the first effect is transported to the second effect and so on to the last effect. This transport inevitably involves a pressure drop and hence a corresponding decreases in saturation temperature. Another pressure fall and consequent depression in the saturation temperature of the vapor is associated with vapor condensation inside the heat transfer tubes in the evaporators or over the heat transfer area in the pre-heaters. The remaining brine in the first effect flows to the second effect, which operates at a lower pressure.

The vapor is formed in any effect, other than the top effect, by two different mechanisms. The first is by boiling over the heat transfer surfaces and the second by flashing within the liquids (distillate and brine) bulk moving from upstream effect due to pressure drop, and generating a much less amount of vapor. The temperature of the vapor formed by flashing is less than the effect boiling temperature due to non-equilibrium allowance.

It is worth mentioning that the amount of steam generated by evaporation in each effect, other than the first, is less than the amount generated in the previous effect. This is due to the increase in the specific latent heat of vaporization with the decrease in the effect temperature. Moreover, part of the latent heat of an incoming vapor to the effect is used to raise the temperature of the feed to its boiling point. Consequently, the amount of vapor generated in an evaporator by boiling is less than the amount of condensing steam used for heating in the following evaporator. The

brine flowing into the last effect reaches its final concentration by evaporating more vapors. The remaining brine is rejected to the sea. The vapor formed by boiling and flashing in the last effect passes to the final condenser.

3.2.2 MED Flow Sheets

Once a heat transfer surface configuration has been selected for a plant there are still large numbers of variants, which the effects are linked together to form an MED plant. These variants methods:

- 1. Horizontal or a stacked layout of the effects.
- 2. 'Re-circulation' or 'Once Through' operation of each effect.
- 3. Feed heating/brine path through the plant.
- 4. Heat recovery from the distillate. [10]

Although these choices are not strictly independent of one another or for that matter independent of the heat transfer configuration, there are still a large number of possible combinations.

3.2.2.1 Horizontal and Stacked layout

There are basically two ways to link the effects together to form an MED plant. The first one is the horizontal layout where the effects are linked together horizontally, and the second is the stacked layout where the effects are linked vertically. Almost all larger MED plants tend to be arranged horizontally because of their stability and simplicity in operation and maintenance. The stack layout already exists in many small MED plants. A multi-effect stack (MES) plant can be arranged in two ways: simple MES where evaporators are stacked one on the top of the other or a double stack configuration where the effects are arranged in a double stack configuration, i.e., effects 1,3,5... one on the top of the other in one stack and effects 2,4,6... above each other in the other stack. The main difference between the horizontal and stack arrangement is that the brine in MES flows by gravity from the top effect to the next effects without pumps. [10]

3.2.2.2 Brine Re-circulation within Effects

If the brine from one effect is simply pumped to the top of the next effect and there is no re-circulation then the brine flow available to each effect decreases as the brine flows through the plant. This means that the flows over the heat transfer surfaces in each effect are different and tied to the brine throughput. If, however, the brine is recirculated over the heat transfer surface by a pump from the last effect sump, then the re-circulation flow rate can be varied independently of the brine feed rate to the effect and can be set at the optimum value regardless of the rest of the plant operation. [10]

3.2.2.3 Brine paths through MED Plants

Another configuration in MED plants is based on brine flow-direction with respect to the vapor direction from one effect to the other. This type of arrangement includes a forward configuration, backward configuration and parallel feed configuration.

The normal arrangement is to have the feed preheated in heat exchangers up to a temperature just below the boiling temperature of the first effect. It is then heated to the evaporation temperature in the first effect. The brine blowdown from the first effect is passed to the second effect as its feed. The brine from the second effect becomes the feed for the third effect and so on. This is the forward configuration.

Separate feed heaters may be eliminated from the flow sheet by feeding the brine in the opposite direction up the temperature gradient of the plant - a little bit of feed heating being done in each effect as the brine passes through. This system is referred to as 'reverse' or 'backward fed'. One of the reasons for using a backward fed system is to avoid separate feed heaters where it is most likely to get trouble with product contamination due to tube leaks.

Parallel feed configuration is also possible in which the brine is fed in parallel to several effects at once. It is not usual for all the effects of a plant to be parallel fed at once. Normally the brine would be fed in series through groups of three or four parallel fed effects. [10]

3.2.2.4 Feed Heating and Heat Recovery Systems

The distillate produced from the high temperature effects contains significant sensible heat. This energy is usually recovered by allowing the distillate to flash off vapor at the various intermediate effects further down the plant. The vapor produced may either be fed to the main evaporator/condensers on the way down or may be used to preheat the feed in the feed heater train. As has been mentioned flashing both of the distillate and of the brine in fact produces a significant amount of vapor in a normal MED plant when the brine is being operated with the feed forward configuration. [10]

3.3 Energy Integrated MED Vapor Compression Processes

There are four types of modern combinations used in MED vapor compression plants, low temperature MED with mechanical vapor compression (MED-MVC); low temperature MED combined with thermal vapor compression (MED-TVC); MED combined with absorption heat pump (MED-ABS); and MED combined with adsorption heat pump (MED-ADS).

Al-Juwayhel et al. [11] conducted a comparative study between these four different types on a single effect evaporator desalination system. The study includes the development of mathematical models for the four systems. The analysis was based on comparison of the performance ratio, specific power consumption, specific heat transfer area, and specific cooling water flow rate. The study shows that the performance ratio for the thermal vapor compression decreases as the boiling temperature and pressure of motive steam increases.

El-Dessouky and Ettouney [7] found through a mathematical simulation model that the MED-ABS system can reach a performance ratio of 25 with only 12 effects at 110 °C, and the MED-ADS system can reach a performance ratio of 20 at the same number of effects and operating temperature. For comparison, the performance ratio of a conventional MED system with the same number of effects cannot exceed 10.

3.3.1 Thermal Vapor Compression (TVC)

The performance of conventional MED plants can be improved further by means of vapor compression whereby part of the vapor formed in a low temperature effect is recompressed and reintroduced into the first effect. In large plants, the method used is thermal vapor compression alternative.

A schematic diagram for the single-effect thermal vapor compression (TVC) seawater desalination process is given in Figure 3-4. The system constitutes of an evaporator, a steam jet ejector, and a final condenser. The vapor leaving the evaporator splits into two parts. The first part flows to the condenser where it condenses and second part is sucked by the steam jet ejector.

In general, the ejector is a pumping device, which uses jet action of a high pressure and temperature primary motive fluid to entrain and accelerate a slower secondary fluid. The steam ejector is used to compress the vapor from pressure P_{ev} (which is the vapor pressure leaving the evaporator) to P_s (which is the vapor pressure entering the first effect) by using an external source of steam at a pressure P_{ms} greater than

PAGE 21

both P_{ev} and P_s . A typical ejector consists of four parts nozzle, suction chamber, mixing section and diffuser as shown in Figure 3-5. The motive steam is expanded through the nozzle to a low pressure, and high velocity steam jet. This high velocity steam entrains the low vapor pressure leaving the evaporator and entering the ejector from the suction chamber on the low pressure mixing zone. The velocity after mixing is lower than that at the nozzle exit. The loss in the kinetic energy is converted into the pressure discharge head, and the mixture flows through the diffuser, emerging from the discharge at a pressure between the suction and the motive fluid pressures [12].

Figure 3-4: Thermal vapor compression evaporator-desalination.

THESIS REPORT

Figure 3-5: Different processes in steam jet ejector [1]

3.3.2 Mechanical Vapor Compression (MVC)

The MVC system is the most attractive configuration among various single stage desalination processes because it is compact, confined, and does not require external heating source in most cases. The system is driven by electric power or a prime mover; and is therefore suitable for small population areas with access to the power grid lines. Another advantage is the absence of the down condenser and the cooling water requirements. This is because the entire vapor formed in the last effect is routed to the compressor.

The disadvantages of the MVC system include:

• Use of electrical energy, or mechanical work.

• Limitations imposed on the vapor compression ratio, and size of the available mechanical compressor.

• Maintenance and spare parts requirements for the compressor moving parts.

The first disadvantage limits the use of the MVC system in countries with limited energy resources. The second disadvantage limits its operation to low top brine temperatures, 60-70 °C. This results in a larger heat transfer area for the evaporator unit, which increases the capital cost. In addition, the single unit production capacity is limited to about 800 m³/d (0.21 MIGD). This problem is addressed to some extent by operating MVC with multi-effect arrangement with 3 to 4 effects, where the capacity increases to about 3,000 m³/d (0.8 MIGD) [13]. The last disadvantage increases the operating cost and dictates the use of highly skilled labor.

Energy conservation within the MVC system is maintained by recovery of energy in the rejected brine and distillate product. The specific power consumption of the MVC plant can be below 10 kWh/m³ [2].

A schematic diagram for the proposed system is shown in Figure 3-6. As shown, the compressor raises the pressure of the vapor formed in the evaporator. The compressed vapor is superheated vapor with saturation temperature higher than the temperature of the boiling brine. This vapor is introduced into the inner side of the evaporator tubes; hence, it is de-superheated and condensed by releasing its latent heat. The condensate and the rejected brine have substantial amount of energy, which is recovered by heating the feed water in multi flow exchanger. Therefore, the feed temperature is increased from a low value of about 25 °C to higher value of 3-6 °C below the condensate and the rejected brine temperature.

Figure 3-6: Mechanical vapor compression evaporator-desalination process.

3.3.3 Adsorption Vapor Compression (MED-ADS)

THESIS REPORT

The process does not include moving parts, has a long life, and is vibration free. For these reasons, the adsorption-desorption heat pump started to attract attention due to the concern of replacing the traditional compressor-based systems, which utilize ozone harmful fluids. Applications of the adsorption-desorption heat pumps are found in air-conditioning and in ice making. The ADVC system is shown in Figure 3-7. The system includes the evaporator/condenser unit, two adsorption beds, and two heat exchangers. It is interesting to note that the evaporator and condenser form a single unit in this configuration, which replaces the individual condenser and evaporator in a conventional adsorption heat pump. Also, the liquid-to-liquid heat exchanger (HE1) preheats the feed seawater by condensed distillate product and rejected brine. The adsorber (bed II in Figure 3-7) plays the role of the bottom condenser in the TVC system. That is, this adsorber adsorbs or rejects the excess heat added to the system in the second adsorber [11].

Figure 3-7: Single-effect evaporator driven by an adsorption heat pump.

3.3.4 Absorption Vapor Compression (ABVC)

The absorption heat pumps are used widely for air-conditioning purposes. There are many working fluids that are used in the absorption heat pump such as ammoniawater, LiBr-water [14], KOH and NaOH. The absorption heat pumps include four main components, which include the generator, the absorber, the evaporator, and the condenser. The pump receives heat in the evaporator and the generator and rejects heat in the condenser and the absorber. The pump can be configured for simultaneous heating and cooling purposes.

The ABVC system is shown in Figure 3-8. The system contains six elements, which include the generator, the absorber, the evaporator/condenser, and three heat exchangers. In this configuration, the evaporator desalination unit acts as the individual evaporator and condenser; this is different from conventional absorption heat pumps [11].

Figure 3-8: Single-effect evaporator driven by an absorption heat pump.

3.4 Advantages of the MED Process

3.4.1 Comparison between MED & other processes

The MED process has highly attractive design and operating features that make it competitive against the dominant MSF process. These features include the following:

- The process configuration allows for simple modifications in the routing and distribution of the brine stream among the system effects [11].
- The MED system has stable operation over a load range of 30-120% of the design capacity, while the MSF system has a narrower range of 70-110% [15]. This gives the MED system an added edge, since operation for most of the desalination units is tied with power plants [1, 16].
- The MED system is more efficient, from a thermodynamic and heat transfer point of view, than the predominant MSF system [17].
- The MED process can be operated at low temperatures and hence with much less scaling than MSF [16].
- The specific power consumption for running the pumps of MED is less than that of MSF. Rautenbach [18] shows 2 kWh/m³ for MED and 5 kWh/ m³ for MSF.
- For the same thermal performance ratio, the MED system has fewer effects than the MSF system: typically the conventional MED system has 12 effects, while the MSF system has 24 stages for a typical performance ratio of 9. Assuming a similar specific heat transfer area for both systems, the capital cost of the MED is lower than the MSF system because of the fewer effects, tube connections, and partition walls [1].
- The MED process is not yet fully developed. The unit capital costs (\$/IGD) at various performance ratios are [16]:

Process Vs PR	8	10	12
	(\$/IGD)	(\$/IGD)	(\$/IGD)
MSF	7.68	8.7	10.08
MED-TVC	7.11	7.8	8.55

- The total production cost is \$1.86/m³ for the MSF process and \$1.49/m³ for the MED system [16].
- Al-Juwayhel et al. [11] indicated that the water cost in 1997 basis at the distribution point is \$1.35/m³ for MED-TVC process.

3.4.2 Advantages of the Low Temperature MED process

Low temperature distillation is the basis for a series of features, forming the core of the plants' highly economical operation [19]. These features are summarized below:

Low corrosion rates: The reduced corrosiveness of seawater, at the low operating temperature, permits safe and economic use of corrosion proof plastic materials and coatings both for piping and for vessel linings, as well as the use of aluminum for heat transfer tubing and vessel internals. Low maintenance and extended plant life (exceeding twenty-five years) result from the combination of the low corrosion rates and the use of a mild anti-scalant.

Flexibility: MED plants have short startup periods with little time loss for heating up. They also have excellent load following capabilities allowing for plant production that closely match both water demand and energy supply.

Thermodynamic efficiency: The use of generous heat transfer surfaces results in a reduction of heat fluxes and temperature differentials and therefore in an increase of thermal efficiencies. As a result, the evaporators can be operated with overall temperature differentials, including thermal driving forces, boiling point elevations and non-condensable gases and fouling factors, as low as 2 - 2.5 °C.

Minimal scaling rates: The operating temperatures are well below the saturation limits of problematic scalants found in seawater and most ground waters. The reduction of scales is to insignificant level, enables the plants to operate for long periods between cleanings. Low cost polyelectrolyte feed pretreatment is adequate. De-scaling is a simple procedure, consisting of mild acid re-circulation, using the plants own re-circulation pumps.

High purity distillate: An additional advantage is the high purity of the product water (usually less than 20 ppm and as low as 2-5 ppm for special applications). This

allows the water to be used directly for industrial processes, such as in refineries, power stations, breweries etc, where boiler water quality is required or in municipal installations to reduce further the production costs by blending the high purity distillate with local brackish or poor quality water and satisfy the potable water standards.

Reliability: Experienced engineering, rugged construction and proven equipment combined with extremely low corrosion and scaling rates result in minimal maintenance, and lead to annual plant availability in excess of 95%.

Low energy costs: The low temperature operation enables the low temperature distillation units to utilize low grade, low cost sources of heat, which would otherwise be lost through being released into the environment in the form of stack gases or low pressure exhaust steam. The motive energy cost component for the desalination process is reduced to a minimum and consequently the water production costs are lower than any other seawater desalination system [10].

Cheap material of construction: The economy of using aluminum tubes for heat transfer as compared with copper alloy tubes which are essential for higher temperature plants enables the doubling the specific heat transfer area in the desalination plant for the same investment costs [1].

El-Dessouky et al. [20] showed that using high quality plastic as heat exchangers in the low temperature process would have a direct cost effect in the desalination industry. Jaakkola et al. [21] developed the AQUAMAX, which is a heat exchanger made of thin plastic film and welded to plastic envelope elements "Plastic bag". These AQUAMAX evaporators yield low potentiality of scale formation, corrosion and the cost of pretreatment.

3.5 Mathematical Modeling

Narmine et al. [22] presented a computer simulation model for steam jet ejectors. The model was developed by the application of the equations of continuity, momentum and energy to individual operation of nozzle, mixing chamber and diffuser, the effect of motive steam pressure, evaporator temperature, and pressure rise across the ejector.

Hamed and Ahmed [23] proposed a mathematical model for a four-effect thermal vapor compression process of 1500 m³ per day. They predicted the impact of different process variables on the thermal behavior of the system.

El-Dessouky et al. [24] developed a mathematical model for a multiple effect evaporation (MED) desalination process. The influence of the important design and operating variables on the parameters controlling the cost of produced fresh water were analyzed. The model assumes the practical case of constant heat transfer areas for both the evaporators and feed pre-heaters in all effects. In addition, the model considered the impact of the vapor leak in the venting system, the variation in thermodynamic losses from one effect to another, the dependence of the physical properties of water on salinity and temperature, and the influence of noncondensable gases on the heat transfer coefficients in the evaporators and the feed pre-heaters. Results showed that the heat transfer coefficients increase with increasing the boiling temperature. Also, the heat transfer coefficient in the evaporator is always higher than that in the feed pre-heater at the same boiling temperature. The plant thermal performance ratio is nearly independent of the top brine temperature and strongly related to the number of effects.

Darwish and El-Dessouky [15] presented technical factors affecting the choice of a distillation system for desalting water. The thermal vapor compression process is compared with the predominant multi-stage flash (MSF) desalting system. They concluded that mechanical or thermal vapor-compression desalting systems are more cost effective when compared with directly boiler operated MSF systems. Thermal analysis of the multi-effect thermal vapor compression system is presented. A simple analytical simulation of MED plant is presented by W. T. Hanbury [25] based on the alternative assumptions of a linear decreases in the boiling heat transfer

coefficient and equal effect thermal loads from the second effect down. This results in a simple simulation giving a plant temperature profile far closer to reality.

El-Dessouky [26] reported a steady state mathematical model developed to analyze the single effect thermal vapor compression (TVC) desalination process. The model considered the effects of all thermodynamic losses on the thermal performance ratio, the specific heat transfer area and the specific flow rate of the cooling water. The model also takes into consideration the variation in the physical properties of the seawater with temperature and salt concentration, the effect of fouling factors and the presence of non-condensable gases on the heat transfer coefficients in the evaporator and the condenser. The relationships between the parameters that control the product water cost, and important parameters such as the motive steam pressure, the vapor compression ratio and the boiling temperature are presented.

El-Dessouky and Ettouney [1] proposed a thermal analysis for multiple-effect evaporation desalination systems. Several operating configurations were analyzed, including the parallel flow, the parallel/cross flow, and systems combined with thermal or mechanical vapor compression. Results were presented as a function of parameters controlling the unit product cost, which include the specific heat transfer area, the thermal performance ratio, the specific power consumption, the conversion ratio, and the specific flow rate of the cooling water. THESIS REPORT

4 CASE STUDY (UMM AL-NAR PLANT)

4.1 General Description

The seawater desalination plant of Umm Al-Nar in Abu Dhabi represents one of the latest examples of the application of the multiple effect process at low temperature with thermal vapor compressor for seawater desalination. The nominal capacity and thermal energy requirement of each unit is 3.5 MIGD and 85 ton of low-pressure steam per hour, respectively. The plant includes multi effect evaporation desalting system with steam jet ejector. This multi effect unit is of the horizontal tube falling film type with plain tubes, see Appendix B. The plant has six effects operating at different levels of temperature. The effects are arranged horizontally with satisfactory permanent access to all effects. The thermal vapor compression (TVC) technique is applied to two parallel sections of three effects each. Motive steam is admitted to the unit through two parallel thermo-vapor compressors one for each of the TVC section with three effects. The other part of vapor is allowed to pass through cells 4,5,6 and final condenser. Each unit produces a guaranteed rated output of 3.5 MIGD. Scale control is achieved by controlled dosing of polymer type additives (the anti-scalant (Sokalan) and anti foam (Belite M8)) into the seawater feed. The distiller is capable of operating at reduced output up to 50% of the rated design output. The design temperature of seawater input to the distillers is 33 °C and minimum temperature is 16 °C. the design seawater salinity is 52000 ppm, typical seawater intake analysis of Umm Al-Nar and its expected seasonal temperature variations are given in Appendix B.

The maximum design vapor temperature of the first and highest temperature, effect shall not exceed 65 °C, main operating parameters are given in Appendix B. The corrected performance ratio, with all evaporator tubes fouled to the design fouling factors is not less them 8.0 kg of product per 2300 kJ net heat input. The quality of distillate produced is guaranteed to have a total dissolved solids content not grater than 25 mg/l. Most of material used for the distiller is stainless steel; see Appendix B for distiller materials.

4.2 **Process Description**

The incoming seawater after being heated up in pre-heaters, is sprayed on the main tube bundles of each effect, where it is partially evaporated as it flows as thin films outside the tubes due to the heat released by condensing vapor flowing inside the tubes. The condensed steam represents the distillate production of each effect. Vapor generated by this evaporation goes to the next adjacent effect where it condenses inside the tubes forming again the distillate production of that effect. The stage process illustrate tube bundle and make up shower as shown in Appendix B.

The process is repeated in each of the six effects. Distillate and brine from each effect are cascaded to the next effect. In the last effect, brine is extracted and distillate is cascaded to the final condenser. Both brine and distillate streams are extracted by horizontal centrifugal pumps. Part of the production of the first effect is returned to the boiler by a condensate pump.

Part of the vapor leaving the third effect of the TVC section is re-compressed to the first effect of this section by the steam ejector; while the other part is used as heating steam for the top effect of 3 effects conventional MED system. Vapor generated in the 4th effect is introduced as heating vapor in the fifth effect and so on to the last effect.

Figure 4-1: Process flow diagram for MED-TVC plant at Umm Al-Nar

5 MATHEMATICAL MODELING OF THE MED-TVC PROCESS

The steady state MED-TVC model includes a set of material and energy balances, heat transfer equations, and thermodynamic correlations. The main features of the model for the six-effect MED-TVC plant include the following:

- It considers the effect of the vapor leak to the venting system.
- It takes into consideration variations in the thermodynamic losses within the system. This includes the boiling point elevation, flashing boxes and temperature depression corresponding to the pressure drop during condensation process.
- It takes into consideration temperature and salinity effects on the water physical properties such as heat capacity, density, viscosity and thermal conductivity.
- The effect of non-condensable gases on the heat transfer coefficients in the evaporators, condenser and feed heaters are taken into account.
- Constant heat transfers area for the first three effects and another constant heat transfer area for the last three effects.
- The third effect brine temperature is controlled as a fixed value.

The following assumptions are used in the model:

- Distillate product is salt free.
- Energy losses from the effects to the surroundings and non-condensable gases are considered equal to 2% of the first effect thermal load.
- An averaged overall heat transfer coefficient for the first three effects and another averaged overall heat transfer coefficient for the last three effects (cold effects).
- An averaged value for ΔT losses due to condensation is considered for the first three effects and another averaged value is considered for the last three effects.

The mathematical model is divided into three parts, which include material balances, energy balances, and the heat transfer rate equations. Also, the model includes equations for the heat transfer coefficients, thermodynamic losses, and the physical properties of seawater. The following section gives balance equations for the evaporators, down condenser, flash boxes, temperature profiles of effects, and steam jet ejector (thermo-compressor).

5.1 Material Balance Equations

The total mass and the salt balance in the system are given by

$$M_{f} = M_{d} + M_{b}$$

$$M_{b} = \frac{M_{f} * X_{f}}{X_{b}}$$
(5-1)
(5-2)

Where M is the mass flow rate, X is the salt concentration, and the subscripts d, f and b denote the product water, feed seawater and brine respectively.

5.1.1 Material balance for the first effect

The mass and salt balances for the first effect are

$M_{f01} = M_{b1} + M_{v1}$	(5-3
$M_{b1} = \frac{M_{f01} * X_{f01}}{X_{b1}}$	(5-4
$M_s = M_{d1} + M_{cond}$	(5-5

Where cond is the condensate leavening the first effect to be pumped back to the boiler; v is the vapor formed in the evaporator, b is brine concentrated in the effect bottom, s is the discharged vapor from the thermal vapor compressor.

Figure 5-1: Material balance for the first effect

5.1.2 Material balance for the other effects

The mass and salt balances for other effects are

$$M_{f0n} + M_{d(n-1)} + M_{b(n-1)} = M_{bn} + M_{vn}$$
(5-6)

$$M_{bn} = \frac{M_{f01} * X_{f01} + M_{b(n-1)} * X_{b(n-1)}}{X_{bn}}$$
(5-7)

$$M_{vn} = M_{d(n+1)}$$

Where n is the effect number.

The unit cell process equations for brine, distillate and vapor are

effect (4)

Brine:

 $M_{b(n-1)} = L_{bn} + V_{bn}$

$$L_{bn} = \frac{M_{b(n-1)} * X_{(n-1)}}{X_{Lbn}}$$

effects (5)

(5-9)

(5-8)

(5-10)

$M_{bn} = M_{bn'} + L_{bn}$

Where L_b is the remaining brine from the inlet brine stream due to flashing; V_b is the flashed vapor from the inlet brine stream, b_n' is the brine created from the boiling process inside the effect.

Distillate:

The distillate leaving each effect starting from effect two to effect n is a combination of two streams. One is the vapor condensate inside the tubes and the other one is the remaining distillate from the flashing process of the distillate coming from the previous effect.

$M_{d(n-1)} = L_{dn} + V_{dn}$	(5-12

$$M_{dn} = M_{dn} + L_{dn} \tag{5-13}$$

Where L_d is the remaining distillate from the inlet distillate stream due to flashing; V_d is the flashed vapor from the inlet distillate stream, d_n ' is the condensed vapor inside the tubes.

Vapor:

From effect two to effect n, the total vapor generated in each effect is a combination of three streams. The first one is the vapor generated from the boiling process outside tube surface, the other two streams come from the flashing process, they are flashed vapor from brine and distillate streams cascaded from the previous effect.

 $M_{vn} = M_{vn}' + V_{bn} + V_{dn}$

(5-14)

Where vn' is the vapor generated from the boiling process.

5.2 Energy Balance Equations

5.2.1 Energy balance for the final Condenser

Heat transfer between the condensing vapor and the feed seawater in the condenser can be written in terms of an overall heat transfer coefficient (U_{FC}), condenser heat transfer area (A_{FC}), and the logarithmic mean temperature difference (LMTD)_{FC}; thus: $Q_{FC} = U_{FC} * A_{FC} * (LMTD)_{FC} = M_{vn} * \lambda_v$ (5-15) Where (LMTD)_{FC} is defined by

(5-11)

$$(LMTD)_{FC} = \frac{(T_{f} - T_{sw})}{\ln\left[\frac{(T_{v} - T_{sw})}{(T_{v} - T_{fl})}\right]}$$
(5-16)

The overall heat transfer coefficient based on the outside surface area U_0 is related to the individual thermal resistance by the following expression.

$$\frac{1}{U_0} = \frac{1}{h_i} \frac{r_o}{r_i} + R_{f_i} \frac{r_o}{r_i} + \frac{r_o \ln(r_o / r_i)}{k_w} + R_{f_o} + \frac{1}{h_o}$$
(5-17)

Where h is the heat transfer coefficient, R_f is the fouling resistance, k_w is the thermal conductivity of tube material, and r is the radius. The subscripts i and o refer to the inner and outer tube surface, respectively.

The inside tube heat transfer coefficient hi is calculated from the empirical formula developed by Wangnick [26] especially for desalination plants.

$$h_{i} = 3293.5 + T_{f} \left(84.24 - 0.1714T_{f} \right) - X_{f} \left(\frac{\left(8.471 + 0.1161X_{f} + 0.2716T_{f} \right)}{\left(\frac{\delta_{i}}{0.17272} \right)^{0.2}} \right) (0.656V)^{0.8} \left(\frac{\delta_{i}}{\delta_{0}} \right)$$
(5-18)

Where X_f is the salt concentration in ppm, T_f is the feed temperature, and δ_i and δ_o are the inside and outside the tube diameters, respectively.

Henning, et al. [26] developed the following equation to calculate the heat transfer coefficient during vapor condensation outside the tubes.

$$h_{o} = 0.725 \left(\frac{k_{l}^{3} \rho_{l} (\rho_{l} - \rho_{v}) g \lambda_{v}}{(\delta_{0} \mu \Delta T)^{0.25}} \right) C_{1} C_{2}$$
(5-19)

Where k_1 is the thermal conductivity at bulk temperature (W/m[°]C), ρ is the density (kg/m³), g is the gravity (m/s²), μ is the dynamic viscosity at bulk temperature (Pa.s), subscripts 1 and v represent liquid and vapor phases respectively. The correction factors C_1 and C_2 consider the influence of the condensate dripping down and the presence of non-condensable gases. The size of the coefficients C_1 and C_2 are given by the following equations.

$$C_1 = 1.23795 + 0.353808 \text{ N} - 0.0017035 \text{ N}^2$$

$$C_2 = 1 - 34.313 \text{ X}_{nc} + 1226.8 \text{ X}_{nc}^2 - 14923 \text{ X}_{nc}^3$$
(5-21)

PAGE 40

Where X_{nc} is the weight percentage of the non-condensable gases and N is the number of tube rows inside the condenser. The total number of tubes is calculated by

$$N_{t} = \frac{4M_{f}}{\pi\delta_{t}\rho_{t}V}$$
(5-22)

Where M_f is the feed flow rate. The following relation determines the number of tubes N

$$N = 0.564\sqrt{N_t} \tag{5-23}$$

For the first loop in the calculation procedure the overall heat transfer coefficient in the final condenser, U_{FC} , is obtained from the correlation developed by El-Dessouky et al. [11]

$$U_{\text{condenser}} = 1.7194 + 3.2063\text{E}-2 * T_{v} - 1.5971\text{E}-5 * T_{v}^{2} + 1.9918\text{E}-7 * T_{v}^{3}$$
(5-24)

Where U is in $kW/m^2 \circ C$ and T_v in $\circ C$.

The thermal load of the condenser, QFC is given by

$$Q_{FC} = (M_{cw} + M_f) * Cp * (T_f - T_{sw})$$
(5-25)

In the above equation T_{sw} is the feed seawater temperature Then,

$$\mathbf{M}_{cw} = \frac{U_{FC} * A_{FC}}{\overline{Cp} * \left[\ln \frac{T_{cnd} - T_{sw}}{T_{cnd} - T_{f1}} \right]} - \mathbf{M}_{f}$$
(5-26)

Where subscript f1 denotes the outlet feed water from the final condenser, T_{cnd} is the condenser vapor temperature. T_{cnd} is less than the temperature of vapor released from the last effect by pressure drop during vapor condensation outside the condenser tubes expressed by the temperature drop ΔT_{cnd} . Thus,

$$T_{cnd} = T_{vn} - \Delta T_{cnd}$$

(5-27)

Figure 5-5: Feed water pre-heating process

=

5.2.2 Energy balance for the feed pre-heaters

Heat transfer between the condensing vapor from the fourth effect and feed seawater coming from the final condenser can be written by the following three equations:

$$Q_{HE12} = U_{HE12} * A_{HE12} * LMTD_{HE12}$$

= $M_{d4}'' * \lambda_{v4}$

$$= M_{f2} * Cp * (T_{f04} - T_{f06})$$
 (5-28)

Where M_{d4} " is the vapor condensed in pre-heater 12, U_{HE12} is the overall heat transfer coefficient and A_{HE12} is the heat transfer area for pre-heater 12, the subscript f2 denotes outlet feed water from pre-heater 12.

Similar equations can be applied for pre-heater 3:

$$Q_{HE3} = U_{HE3} * A_{HE3} * LMTD_{HE3}$$

= $M_{d3}'' * \lambda_{v3}$
= $M_{f3} * Cp * (T_{f02} - T_{f04})$ (5-29)

Where M_{d3} " is the vapor condensed in pre-heater 3, U_{HE3} is the overall heat transfer coefficient and A_{HE3} is the heat transfer area for pre-heater 3, the subscript f3 denotes outlet feed water from pre-heater 3.

The last step for feed preheating is the ejector-driven condensers. Medium pressure steam is used as motive steam. Usually its flow and temperature are constant, so the thermal load of these ejector condensers could be considered constant

$$Q_{EC} = M_{MPS}'' * \lambda_{MPS}$$

= $M_{f4} * Cp * (T_{f01} - T_{f02})$ (5-30)

Where Q_{EC} is the thermal load for ejector condenser, MPS and f4 subscripts are medium pressure steam and outlet feed water from the ejector condenser, respectively.

5.2.3 Energy balance for the first effect

The latent heat (λ s) for the condensed vapor inside the effect tubes (Ms) represents the effect thermal load and it is equal to the thermal energy access through the tubes area (A_{e1}). The driving force for the heat transfer process is the apparent temperature difference between the condensed vapor temperature (T_s) and brine temperature (T₁). The overall heat transfer coefficient (U_{e1}) includes the convective local film coefficients and the conductive resistances of the tube wall and any scales.

$$Q_{e1} = M_s * (H_{mix} - h_{c1})$$

= U_{e1} * A_{e1} * (T_s - T₁) (5-31)

The brine salinity can be calculated from the above equation resulting in

$$X_{1} = \frac{M_{f01} * X_{f01} * (H_{\nu 1} - Cp_{@T1} * T_{1})}{M_{f01} * (H_{\nu} - Cp_{@Tf01} * T_{f01}) - M_{s} * \lambda_{s}}$$
(5-32)

Where Cp is the specific heat at constant pressure; T_1 is the brine temperature; H is the enthalpy for saturated vapor; λ_s is the latent heat for vapor-steam mixture from the thermal vapor compressor; and the subscript s denotes the compressed vapor.

5.2.4 Energy balance for the other effects

In effects 2 to n, the condensed vapor temperature is decreased due to the decrease in pressure as we move downwards in the plant. The condensate temperature was obtained previously. The thermal load of effects 2-n can be written as:

$$Q_{en} = M_{v(n-1)} * \lambda_{c}$$

= $U_{en} * A_{en} * (T_{cn} - T_{n})$ (5-33)

The boiling process in all effects is similar. The salinity of the brine due to boiling is given by

$$X_{n}' = \frac{M_{f \, 0 \, n} * X_{f \, 0 \, n} * (H_{\nu n} - Cp \, @ \, Tn * T_{n})}{M_{f \, 0 \, n} * (H_{\nu} - Cp \, @ \, Tf \, 0 \, n) - M_{d \, (n - 1)} * \lambda_{\nu (n - 1)}}$$
(5-34)

Flashing process

The remaining brine flow rate L_{bn} and salinity X_{Lbn} are given by

$$L_{bm} = \frac{M_{b(n-1)} * (Cp @ T(n-1) * T(n-1) - H_{vn})}{Cp @ TLbn * T_{Lbn} - H_{vn}}$$
(5-35)

and

$$X_{Lbm} = \frac{X_{(n-1)} * (Cp @ TLbn * TLbn - H_{vn})}{[Cp @ T(n-1) * T_{(n-1)} - H_{vn}]}$$
(5-36)

The overall brine salinity of each effect is expressed by

$$X_{n} = \frac{M_{bn} * X_{n} + L_{bn} * X_{Lbn}}{M_{bn}}$$
(5-37)

The remaining distillate Ld2 is given by

$$L_{dn} = \frac{M_{d(n-1)} * (h_{ld(n-1)} - H_{vn})}{h_{ldn} - H_{vn}}$$

5.3 Equations for Temperature Profiles

5.3.1 Temperature profile of the feed seawater

Seawater feed is preheated in four steps as was shown in Figure 5.3. The first step is in the final condenser. The outlet temperature is expressed by

$$T_{f1} = T_{v6} - \left[\frac{(T_{v6} - T_{sw})}{\exp\left[\frac{U_{FC} * A_{FC}}{(M_{cw} + M_{f}) * \overline{CP}}\right]} \right]$$
(5-39)

Where T_{f1} is the feed water outlet temperature from the final condenser. The cooling water temperature T_{cw} , sixth effect feed water temperature T_{f06} and fifth effect feed water temperature T_{f05} are equal to this temperature.

The second step in feed water heating take place in pre-heaters 1 and 2

$$T_{f2} = T_{v4} - \left[\frac{(T_{v4} - T_{f1})}{\exp\left[\frac{U_{HE12} * A_{HE12}}{M_{f2} * CP}\right]} \right]$$
(5-40)

Where T_{f2} is the feed water outlet temperature from pre-heaters 1 and 2. The fourth effect feed water temperature T_{f04} is equal to this temperature. U_{HE12} is the overall heat transfer coefficient for pre-heaters 1 and 2.

The third step in feed water heating take place in pre-heater 3

$$T_{f3} = T_{v3} - \left[\frac{(T_{v3} - T_{f2})}{\exp\left[\frac{U_{HE3} * A_{HE3}}{M_{f3} * CP}\right]} \right]$$

(5-41)

Where T_{f3} is the feed water outlet temperature from pre-heater 3. The second and third effects feed water temperature, T_{f02} , T_{f03} respectively, are equal to this temperature. U_{HE3} is the overall heat transfer coefficient in the pre-heater 3.

The fourth step takes place in the ejector condensers. The outlet temperature feed to first effect T_{f01} is:

$$T_{f01} = T_{f3} + \frac{Q_{EC}}{M_{f4} * CP}$$
(5-42)

5.3.2 Temperature profile for the first effect

The brine temperature in the first effect is:

$$T_{1} = T_{s} - \frac{M_{s} * (H_{mix} - h_{c1})}{U_{e} * A_{e}}$$
(5-43)

The saturation temperature of the formed vapor is given by

 $T_{v1} = T_1 - (BPE_{mean} + \Delta T_m + \Delta T_h)$ (5-44)

The boiling point elevation (BPE)_{mean}, at a given pressure, results in an increase in the boiling temperature due to the effect of dissolved salts. In horizontal tube falling film evaporators, the mean BPE is used to determine the vapor temperature. This is due to the extreme change in salinity for falling film evaporation. The BPE is calculated from the following empirical formula [12]:

$$BPE = \frac{x * T^2}{13832} \begin{bmatrix} 1 + 1.373 * 10^{-3} * T - 2.72 * 10^{-3} * \sqrt{x} * T + 17.86 * x - \\ 1.52 * 10^{-2} * x * T * \left(\frac{T - 225.9}{T - 236}\right) - \frac{2583 * x * (1 - x)}{T} \end{bmatrix}$$
(5-45)

Where

x = salt concentration, wt. fraction

T = Temperature, K

The above equation is valid over the following ranges: 20000 < X < 160000 ppm, 20 < T < 180 °C.

 ΔT_m expresses temperature decrease due to vapor pressure drop through demister. In general, the pressure loss during the vapor flow through a wire mesh pad, which is widely used as the mist eliminator in water desalination industry, is relatively small because of the high void fraction of these pads.

The boiling point rise caused by the hydrostatic head ΔT_h has a negligible effect in horizontal falling film evaporators.

5.3.3 Temperature profile for the other effects

The brine temperature from the boiling process is given by

$$T_{n}' = T_{c(n-1)} - \frac{M_{dn} * \lambda_{cn}}{U_{e} * A_{e}}$$
(5-46)

Where T_{bn} is the brine temperature generated from the boiling process on the tube outside surface, T_c is the condensation temperature of vapor inside the evaporator tubes and ΔT_c compensates for the pressure drop due to condensation.

The condensation temperature of vapor inside the tube bundle of the second effect T_{c1} is less than the boiling temperature in the first effect T_1 by the mean boiling point elevation (BPE_{mean})₁ and the saturation temperature depressions associated with the pressure loss during the vapor flow in the demister (ΔT_m)₁, vapor transmission lines (ΔT_t)₁ and vapor condensation inside the horizontal tubes (ΔT_c)₁. Thus,

$$T_{cn} = T_n - (BPE_{mean} + \Delta T_m + \Delta T_t + \Delta T_c)_1$$
(5-47)

The pressure drop during the vapor condensation inside the evaporator tubes is the sum of the frictional, gravitational and acceleration components.

The final brine temperature in each effect is expressed by the brine temperature, which is generated from the boiling process and the remaining brine temperature from the flash process, can be calculated by the following equation:

$$T_{n} = \frac{M_{bn} * Cp * T_{bn} * + L_{bn} * Cp * T_{Lbn}}{(M_{bn} + L_{bn}) * Cp}$$
(5-48)

5.4 Equations for Steam Jet Ejector

The general material and energy balance equations for the steam jet ejector are:

$$M_{ms} + M_{ev} = M_s \tag{5-49}$$

$$M_{ms} * H_{ms} + M_{ev} * H_{ev} = M_s * H_s$$
(5-50)

The most important and critical step in modeling the thermal vapor compressor in this type of desalination process is the evaluation of the performance of the steam jet ejector. The main data required for analyzing the steam jet ejector is the determination of the mass of motive steam required per unit mass of the entrained

PAGE 46

vapor (Ra), given the pressure of the motive steam (P_{ms}), discharge pressure (P_s) and the suction pressure (P_{ev}). There is very limited number of methods available in the literature analyzing the steam jet ejector.

The method reported by El-Dessouky et al. [15] was adopted in this work for the design of the steam ejector. The first equation in the model gives the compression ratio, Cr, of the compressed and the entrained vapors,

$$C_r = \frac{P_s}{P_v}$$
(5-51)

Where P_s and P_v are the pressures of compressed and entrained vapor. The compression ratio can be varied over a range from 1.8 to 5. Specification of its value together with the pressure of the entrained vapor is used to determine the pressure of the compressed vapor, which is assumed to be at saturation conditions. The entrainment ratio (Ra) is defined as the mass of motive steam (M_{ms}) per unit mass of sucked vapor (M_{ev}). The ratio is obtained from the following relation:

$$Ra = 0.296 \frac{P_s^{1.19}}{P_v^{1.04}} \left(\frac{P_{ms}}{P_v}\right)^{0.015} \frac{(PCF)}{(TCF)}$$
(5-52)

Where PCF and TCF are pressure and temperature correction factors expressed as

$$PCF = 3 \times 10^{-7} (P_{ms})^2 - 0.0009 (P_{ms}) + 1.6101$$

$$TCF = 2 \times 10^{-8} (T_y)^2 - 0.0006 (T_y) + 1.0047$$
(5-54)

$$M_{ev} = \frac{M_{ms}}{R_a}$$
(5-55)

Where P_{nv} , P_s and P_v are the pressure of the motive steam, compressed vapor, and entrained vapor, respectively. PCF is the motive steam pressure correction factor and TCF is the entrained vapor temperature correction factor. The pressures, temperature and flow rates in the above equations are in kPa, °C, and kg/s, respectively. The above correlation is valid in the following ranges: $Ra \le 5$ $500 \ge T_m > 10 \ ^{\circ}C$ $3500 \ge P_{ms} \ge 100 \ kPa$ $\frac{P_s}{P_v} \ge 1.81$

5.5 Model Solution

The mathematical model was coded using Excel and the developed computer program was called the MEDNAR simulator. It is designed for the MED-TVC plant at Umm-Al-Nar.

This plant is split in two parts, hot effects (effect 1,effect2 and effect3) using MED-TVC process and cold effects (effect 4, effect 5, effect6) using MED process.

The following set of specifications is used for the solution procedure:

- Seawater temperature, T_{cw} = 33 °C.
- Seawater salinity, X_f = 52000 ppm.
- Number of effects, n = 6.
- Evaporator heat transfer area for hot effects, A_{HOT} = 13099 m².
- Evaporator heat transfer area for cold effects, A_{COLD}= 4453 m².
- Condensate vapor temperature from third effect, $T_{c3} = 54$ °C.
- Last stage vapor temperature, T_{v6} = 43 °C.
- Condensation temperature losses are:

 ΔT_c for hot effects = 0.415 °C.

 ΔT_c for cold effects = 0.68 °C.

- Feed pre-heaters (1 and 2) area is 578 m² each and pre-heater 3 area is 693 m².
- Down condenser Area, A_{cnd} = 2874 m².
- Motive steam pressure, P_{ms} = 239 kPa.
- Motive steam flow, M_{ms} = 10.6 kg/sec.
- Ejector Condenser thermal load, Q_{EC} = 2475 kW.

The solution procedure is sequential and proceeds as listed below:

5.5.1 Feed water pre-heating

- 1. The seawater temperature is given.
- 2. Guess the cooling water flow rate, Mcw.

- 3. Guess the vapor temperature in effect 6.
- 4. Calculate U_{FC} using equations (5-17 to 5-23).
- 5. Calculate the feed temperature T_{f1} using equation (5-39).
- 6. Guess vapor temperature in effect 4, Tv4.
- 7. Calculate U_{HE12} using equation (5-17 to 5-23).
- Calculate the outlet feed temperature from pre-heater 12, T_{f2}, using equation (5-40).
- 9. Obtain U_{HE3} from equation (5-17 to 5-23), where T_{c3} is input data.
- 10. Calculate outlet feed temperature from pre-heater 3, T_B, using equation (5-41).
- Calculate the outlet feed temperature from Ejector Condenser, T_{f01}, using equation (5-42).

5.5.2 Hot effects

- 12. Guess the overall heat transfer coefficient for hot effects, UHOT.
- 13. Calculate the vapor condensation temperature, $T_{c(n-1)}$, using equation (5-27).
- Calculate the effect thermal load, Q_{inv} knowing the condensed vapor flow and temperature using equation (5-33).
- 15. Use NCG as reduction percentages from the thermal load Qin.
- 16. Get the boiling temperature T_n from equation (5-46).
- 17. Guess the brine salinity generated from boiling process, X_n '.
- 18. Obtain mean salinity X_{mean}, knowing the seawater salinity.
- 19. Calculate BPE_{mean} from equation (5-45).
- 20. Calculate the vapor temperature using equations (5-47 and 5-27).
- 21. Obtain the specific heat, Cp for brine and feed using the correlation from Appendix B.
- 22. Calculate the brine salinity from the boiling process, X_n ', using equation (5-34).
- Go back to step 17 and re-guess X_n' using the calculated X_n' from the previous step. Do the loop till reaching acceptable accuracy.
- Calculate the brine and vapor flow rates generated from the boiling process,
 M_{bn}' and M_{vn}' respectively, using general equations (5-2 and 5-3) respectively.
- Calculate the salinity and flow rate for the remaining brine generated from the flashing process. X_{Lbn} and L_{bn} respectively, using equations (5-36 and 5-35).
- 26. Calculate the brine flow rate, M_{bn} , and the salinity, X_n , for overall unit operation in effect using equations (5-11 and 5-37) respectively.
- 27. Calculate the remaining distillate L_{dn} from equation (5-38).

- Obtain the effect unit operation distillate, M_{dn}, and vapor, M_{vn}, using equations (5-13 and 5-14) respectively.
- 29. Repeat steps 13 to 28 for second and third effects.
- 30. Go back to step 12 and re-guess U_{HOT}. Do the loop till calculated condenses vapor temperature, T_{c3}, equals T_{c3} set value.

5.5.3 Cold Effects

- 31. Guess the overall heat transfer coefficient for cold effects, UCOLD.
- 32. Repeat steps 13 to 28 for effects 4, 5 and 6.
- 33. Calculate the final condenser thermal load knowing the condensed vapor temperature and flow rate in condenser (shell side), Q_{FC(out)}, and compare it with calculated thermal load ,Q_{FC}, knowing overall heat transfer coefficient ,U_{FC}, and heat transfer area ,A_{FC}, using equations (5-15 and 5-25) respectively.
- 34. Go back to step 31 and re-guess U_{cold} . Stop when $Q_{FC(out)} = Q_{FC}$.
- 35. Calculate M_{cw} using equation (5-26) and re-use it in step 2. Use vapor temperature of effect 4, T_{v4} , and effect 6, T_{v6} , in steps 6 and 3 respectively. Do the loop till M_{cw} calculated equal M_{cw} guessed.

Notes:

- A. There is no flashing in first effect, skip steps 25 to 28.
- B. There is no ΔT_c in the first effect, skip step 13.
- C. NCG percentage in step 15 is only for the first effect.
- D. In the first loop for feed water heating, use the U correlation to find a good guess for U_{FC} , U_{HE12} and U_{HE3} .
- E. In effect 3, the vapor temperature, $T_{v3} = 54$ °C, is controlled by the final condenser cooling water.
- F. For the steam jet ejector, get the pressure correction factor from equation (5-51) and the temperature correction factor from equation (5-52). The compressed vapor pressure, P_s, is obtained from the specification of the compression ratio, Cr, and the entrained vapor pressure, P_{ev}. Calculating the saturation temperature, Ts, at the corresponding vapor pressure, Ps, from the steam tables, follows this. Finally, Get the entertained ratio, Ra, from equation (5-50) and the sucked vapor from equation (5-53).

Calculate ** for n= 1 2.3

Figure 5-6: Overview of the flow chart for the computer program MEDNAR

6 **RESULTS AND DISCUSSIONS**

The simulation results of the developed model MEDNAR for the MED-TVC plants at Umm Al Nar power station are presented and discussed in this chapter. The MEDNAR computer program is validated through analysis of the effect and preheater characteristics. This includes analysis of profiles for the temperature and the distillate flow rates across the effects. The results have been compared with both contractors design data and with the commercial software EVAPOLAND. In addition, sensitivity analysis was conducted to investigate the variation in the system performance parameters as a function of seawater salinity, seawater temperature and motive steam flow rate.

6.1 Evaluation of MEDNAR simulator results

In this part, MEDNAR results are compared with the contractors design data and with the commercial software EVAPOLAND. The main objective is to calibrate, verify and check the reliability of the mathematical model and the developed computer code.

The temperature profiles in the effects and the pre-heaters at both 100% and 50% production rates are shown in Figures 6-3 and 6-4, respectively. The temperature of vapor produced in any effect is higher than the temperature of brine leaving the next effect. This is because the distillate is the energy stream, which condenses and gives energy to the brine side.

The brine temperature is approximately equal to the next effect distillate temperature plus the losses, which are the mean boiling point elevation and the temperature drop due to the pressure drop during the vapor condensation inside evaporator's tubes.

The feed water temperature profile is also shown in the same figures. The lowest temperature is the seawater temperature. The feed water is heated up in the final condenser, feed pre-heaters and venting condensers. The low temperature feed water streams are feed to last stages. This is due to lower temperature needed for boiling process.

Figures 6-5 and 6-6 display the feed water temperature profiles at 100% and 50% production rates, respectively. In these figures, the design data are compared with the MEDNAR runs. The maximum deviation (1.2%) at 100% production rate was

found in the final condenser. At 50% production rate, the largest net deviation (1.7%) was found in pre-heater 12.

Figures 6-7 and 6-8 illustrate the vapor condensation temperature profiles at 100% and 50% production rates, respectively. In these figures, MEDNAR runs are compared with the design data and EVAPOLAND runs. The maximum deviation (1.6%) is observed at the last effect condensation temperature T_{c6} between MEDNAR and EVAOLAND runs.

The brine temperature profiles at 100% and 50% production rates are shown in Figures 6-9 and 6-10, respectively. The maximum deviation (1.6%) is found between MEDNAR run and design data at 100% production rate in the last stage brine temperature T_6 . This difference may be attributed to error accumulation based on different assumptions.

In general, the results for the different models runs are very close; see tables 1 and 2 for 100% and 50% production rates results respectively. The tables display the final brine and final distillate flow rates. The maximum brine flow rate deviation is 0.2% compared with design data at 100% production rate run. At 50% production rate run, the distillate flow rate deviation is 3.2% compared with EVAPOLAND run.

The largest deviation was observed in the cooling water flow rates. Compared with design data, the results show 18.9% deviation at 100% production rate and 13% deviation at 50% production rate.

This difference is may be attributed to many reasons. The first reason is the MEDNAR simulator methodology. The program is based on a number of loops. The main loop checks the cooling water flow rate. The deviation is due to the accumulation of all the errors resulted from the different assumptions.

The other reason is the condensers overall heat transfer coefficient, U_{cond} . Henning and Wangnick [26] show different equations calculating the local heat transfer coefficients for inside and outside condensers tube. The results showed different overall heat transfer coefficient valves with different methods. The U value is affects the final condenser thermal load directly and indirectly through the deviation in the feed temperature profile which finally affects the cooling water flow rate. Another reason could be the designer is using different fouling factors and empirical values gained by experience. Practically speaking, this difference could be accepted if we are considering the feed water flow rate in our calculations in addition to the cooling water flow rate. In this case, the total seawater intake flow rate deviation will reduce from 18.9% to 11% at full production rate and from 13% to 2% at half production rate.

Table 6-1: Comparison of Design data, EVAPOLUND and MEDNAR at 100%

production rate

Variable Design Data Δ1 EVAPOLUND Δ2 MEDNAR Simulator A- Feed water temperature profile °C (100%) </td

Tsw	33.0	0.0	33.0
Tf06	40.5	1.2	41.0
Tf05	40.5	1.2	41.0
Tf04	48.3	1.9	49.2
Tf03	52.0	2.3	53.2
Tf02	52.0	2.3	53.2
Tf01	55.9	2.2	57.1

B- Vapor condensation temp. profile °C (100%)						
Tc1	65.0	0.0	65.0	0.0	65.0	Coc of the Arts
Tc2	61.3	0.1	61.8	0.7	61.4	
Tc3	57.7	0.2	58.2	0.7	57.8	
Tc4	54.0	0.0	54.7	1.3	54.0	
Tc5	50.3	1.1	50.5	1.5	49.7	
Tc6	46.7	1.0	47.0	1.6	46.2	
Tdistillate	43.0	0.0	43.0	0.0	43.0	

C-Brine temperature profile °C (100%)					
T1	62.5	0.1	62.7	0.2	62.6
T2	58.9	0.2	59.1	0.1	59.0
Т3	55.2	0.5	55.6	0.3	55.5
T4	51.7	1.0	51.4	0.5	51.1
T5	48.1	1.0	47.8	0.5	47.5
Т6	44.4	1.6	43.8	0.4	43.6

C- Other variables (100%)						
Mcw, kg/s	929.4	18.9			753.7	
Mdistillate, kg/s	184.2	0.1	184.4	0.0	184.3	-
Mbrine, kg/s	456.7	0.2	455.6	0.0	455.7	-
Tbrine, °C	44.4	1.7	43.8	0.4	43.6	
Xbrine, 1000*ppm	73.0	0.0	73.0	0.0	73.0	

Where:

 $\Delta 1 = 100 * (design data - MEDNAR result) / design data$

 $\Delta 2 = 100 * (EVAPOLUND result - MEDNAR result) / EVAPOLUND result$

Table 6-2: Comparison of Design data, EVAPOLUND and MEDNAR at 50%

production rate

Variable	Design Data	Δ1	EVAPOLUND Run	1.02	MEDNAR Simulator R
A-Feed water temper	ature profile °C (50%)	S. S. Market	an a	Station of the	
Tsw	33.7	0.0			33.7
Tf06	43.4	0.8			43.8
Tf05	43.4	0.8			43.8
Tf04	49.0	2.5			50.2
Tf03	52.0	2.8			53.5
Tf02	52.0	2.8			53.5
Tf01	55.9	2.7			57.4
B. Vanor contraction		441		s internation	
Tc1	62.2		62.2	0.0	62.2
Tc2	59.5	0.0	59.9	0.0	59.5
Tc3	56.7	0.3	57.3	0.7	56.0
Tc4	54.0	0.0	54.7	1.2	54.0
To5	54.0	1.0	54.2	1.5	54.0
TeS	51.0	1.0	51.5	1.0	50.5
100	48.0	0.8	48.4	1.0	47.0
Idistillate	45.0	0.0	45.0	0.0	45.0
C-Brine temperature	profile °C (60%)	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Section 10	
T1	60.7	0.2	60.6	0.0	60.6
T2	57.9	0.1	58.0	0.0	58.0
T3 -	55.4	0.0	55.4	0.1	55.4
Τ4	52.4	1.0	52.0	0.3	51.8
T5	49.4	0.9	49.1	0.4	48.9
Т6	46.4	1.6	45.7	0.2	45.6
C Other underland 100		alous and the			
L- Other variables (60	111.4	120	an san an a	and an and a second of	125.0
Micw, Kg/s	111.4	13.0	01.2	22	042
MOISTINATE, Kg/S	92.1	2.3	91.2	5.2	54.2
Mbrine, kg/s	548.8	0.5	548.8	0.5	545.6
Tbrine, °C	46.4	1.7	45.7	0.2	45.0
Xhrine 1000*nom	60.6	06	60.6	1 0 6	61.0

Where:

Xbrine, 1000°ppm

 $\Delta 1 = 100 * (design data - MEDNAR result) / design data$

60.6

 $\Delta 2 = 100 * (EVAPOLUND result - MEDNAR result) / EVAPOLUND result$

0.6

60.6

0.6

	MEDNAR MEDNAR JOURNELATOR JOURNELATOR JOURNELATOR JOURNELATOR
R	
- DN	U.A.E University
	™ Figure 6-1: Mass & Energy Balance for 100% Production Rate

	MEDNAR SIMULATOR UANPC MED-TVC UNITS
	<u>Key :</u> F: Flow Rate (kg/s) T: Temperature (°C) X: Salinity (1000 x ppm)
R	
<u>.</u> DN	
	U.A.E University The: Figure 6-2: Mass & Energy Balance for 50% Production Rate

Figure 6-3: Temperature profiles for MEDNAR simulator run at 100% production rate

Figure 6-4: Temperature profiles for MEDNAR simulator run at 50% production rate

Figure 6-5: Feed water temperature profile for 100% production rate

Figure 6-6: Feed water temperature profile for 50% production rate

Figure 6-7: Vapor condensation temperature profile at 100% production rate

Figure 6-8: Vapor condensation temperature profile at 50% production rate

Figure 6-9: Brine temperature profiles at 100% production rate

Figure 6-10: Brine temperature profiles at 50% production rate

6.2 Sensitivity Analysis of the MED-TVC Process

In this part, sensitivity analysis was conducted to investigate the variation in the system performance parameters as a function of seawater salinity, seawater temperature and motive steam flow rate.

6.2.1 Effect of feed salinity

Figure 6-11 illustrates the effect of seawater salinity on the overall heat transfer coefficients for hot and cold effects, U_{HOT} and U_{COLD} . As can be seen, both U_{HOT} and U_{COLD} are increasing when seawater salinity increases. This behavior is related to the increase in the boiling point elevation as feed water salinity increases which directly affects the brine temperature. At the same time, the mixed vapor stream temperature is not changing due to the operating characteristics of the thermal vapor compressor. The driving force for the heat transfer process is the apparent temperature difference between the condensed vapor temperature T_s and the brine temperature T_1 . This driving force clearly decreases when the feed water salinity increases. So the overall heat transfer coefficient will increase at a constant heat transfer area.

The figure also shows that the U_{HOT} is always higher than U_{COLD} and this is due to the assumptions of the condensation temperature losses (ΔT_c) at hot and cold effects, which is strongly dependent on the specific volume and vapor velocity. From equation (5-47), the condensation temperature (T_c) decreases at higher condensation temperature losses. The driving force will reduce more, which will reduce the U_{COLD}.

Variation in the performance ratio as a function of the feed water salinity is displayed in Figure 6-12. As is shown, the performance ratio is nearly independent of the variation in the feed water salinity. This behavior is explained in terms of the constant evaporators thermal load. The driving force is reduced as previously explained. At the same time, the overall heat transfer coefficient is increased. The other variables remain constant, which keep the evaporators thermal load nearly constant. The produced distillate from each effect will remain also constant. Therefore, the performance ratio is not function of feed salinity.

Figure 6-13 shows the concentration of the rejected brine leaving the last stage at different feed water salinity for different plant distiller load factors. This figure could

be very helpful to determine the maximum allowable load at different feed concentration based on the maximum allowable blow down brine salinity.

6.2.2 Effect of the flow rate of motive steam

A number of simulation runs were executed to investigate the effect of the flow rate of motive steam on several process variables.

Figure 6-14 shows the performance ratio (PR) as a function of the flow rate of motive steam. It is clear that PR is strongly dependent on the motive steam. In the MED theory, each 1 kg of steam supplied to an effect will produce 1 kg of distillate. The more steam supplied the higher the evaporator thermal load, see equation (5-31). This will lead to higher heat transfer rates and more vapors will be generated. This extra vapor is used as energy stream in the next evaporator and which condenses at the same time and cascaded as a distillate. In this plant, the first two effects produce most of the vapor, see Figure 6-15. The first three effects have much larger area compared to the next three effects (around three times). Also it has the thermo vapor compressor, which is a recycling part of the vapor from the third effect to the first one. The curves in Figure 6-15 have small drop in the fifth effect, because of the preheater 12, which condenses part of the vapor to heat up the feed water.

The increase in the PR as a function of motive steam has a lot of restrictions. Two of these restrictions are the blow down brine salinity and the last effect vapor velocity, see Figure 6-17. As the motive steam increases the brine salinity increases in each effect, see equations (5-32) and (5-34). This rejected salinity has environmental restrictions that do not allow it to be exceeded. The maximum design value in this plant is 73000 ppm.

The last effect vapor velocity is also an important restriction. As the temperature is reduced from effect to effect due to heat transfer losses the pressure will also drop. The last effect vapor velocity is the lowest because of its high specific volume confined in a limited space. As the pressure is reduced the vapor velocity is increased and could reach a limit that disturbs the thin seawater-brine film around the evaporator tubes, which reduce the evaporator efficiency and may create dry spots, which lead to fatal scaling. On the other hand, a tube and baffle erosion could also be created.

Figure 6-16 shows the thermal vapor compressor behavior. The difference between the mixed vapor flow curve and the sucked vapor flow curve is the motive steam flow rate.

The mechanical size for the thermal vapor compressor could be one of the important capacity restrictions. The more vapor sucked, the larger size needed.

The relation between the specific heat transfer area and the specific cooling water flow rate as a function of the motive steam is illustrated in Figure 6-18. The specific heat transfer area strongly depends on the motive steam flow rate. It decreases linearly as the motive steam flow increases. This drop is due to constant area and strong relation between the motive steam and distillate flow rate as was discussed previously. The specific cooling water flow rate is increasing as the load increases. The curve reaches a maximum value at full load and start reducing again. The explanation for this behavior is clear in Figure 6-19. The cooling water flow rate shows a sharp increase at high load due to high performance ratio as explained before, go back to Figure 6-14 for more details. The differences between the two curves increases again at high load, which results in a maximum point.

Figure 6-20 shows the evaporators overall heat transfer coefficients as function of the flow rate of the motive steam. When more motive steam is used, the evaporators thermal load will increase, with constant heat transfer area and temperature driving force, the U value will increase. The difference between the U_{HOT} and the U_{COLD} is due to the assumptions of the condensation temperature losses (ΔT_c) at hot and cold effects, which have been discussed before. The U_{COLD} dotted line expresses the design data, which gives at low load higher final condenser condensation temperature (T_{c6}) than high load. This is to increase the U_{COLD} at low load to an acceptable average as indicated by equations (5-15) and (5-16).

6.2.3 Effect of seawater temperature

The next two Figures (6-21, 6-22) depict the specific cooling water flow rate and final condenser overall heat transfer coefficient as functions of seawater temperature.

In general, when the seawater temperature increases, the U_{cond} will increase as indicated by equations (5-15) and (5-16). At the same time, more cooling water is needed according to equation (5-26).

The interesting point that these two figures are observed a minimum seawater temperature at low load. Seawater pre-heater is therefore a must with low seawater temperature.

Figure 6-11: MEDNAR runs at 100% production rate for overall heat transfer coefficient as a function of feed salinity

Figure 6-12: MEDNAR runs at 100% and 50% production rates for performance ratio as a function of feed salinity

Figure 6-13: MEDNAR runs at different production rates for brine blow down salinity as a function of feed salinity

Figure 6-14: MEDNAR runs at different production rates for performance ratio as a function of motive steam

Figure 6-15: Generated vapor flow rates at different production rates

Figure 6-16: Flow rate of sucked vapor and mixed stream from the steam ejector at different motive steam flow rates

Figure 6-17: MEDNAR runs at different production rates illustrating the parameters that may limit the production rate

Figure 6-18: MEDNAR runs for specific heat transfer area and specific cooling water flow rates as a function of motive steam

Figure 6-19: MEDNAR runs at different production rates for cooling water and distillate flow rates as a function of motive steam

Figure 6-11: MEDNAR runs at 100% production rate for overall heat transfer coefficient as a function of feed salinity

Figure 6-12: MEDNAR runs at 100% and 50% production rates for performance ratio as a function of feed salinity

Figure 6-13: MEDNAR runs at different production rates for brine blow down salinity as a function of feed salinity

Figure 6-14: MEDNAR runs at different production rates for performance ratio as a function of motive steam

Figure 6-15: Generated vapor flow rates at different production rates

Figure 6-16: Flow rate of sucked vapor and mixed stream from the steam ejector at different motive steam flow rates

Figure 6-17: MEDNAR runs at different production rates illustrating the parameters that may limit the production rate

Figure 6-18: MEDNAR runs for specific heat transfer area and specific cooling water flow rates as a function of motive steam

Figure 6-19: MEDNAR runs at different production rates for cooling water and distillate flow rates as a function of motive steam

Figure 6-20: MEDNAR runs at different production rates for overall heat transfer coefficients as a function of motive steam

Figure 6-21: MEDNAR runs at 100% production rate for specific cooling water and condenser overall heat transfer coefficient as a function of seawater temperatures

Figure 6-22: MEDNAR runs at 50% production rate for specific cooling water and condenser overall heat transfer coefficient as a function of seawater temperatures

6.3 Performance Evaluation of the Umm Al-Nar MED-TVC Plant

Frequent evaluation of plant performance is an important procedure for operation engineers to ensure the plant capability of maintaining the nominal capacity at minimum cost. This can be done either by computer simulation using well-known plant design data or by experimental measurement of the most important process variables. Real plant data for the Umm Al-Nar MED-TVC plant was collected, analyzed and used to test the reliability of the MEDNAR simulator. The software was executed to simulate plant operation under clean conditions.

The brine temperature profiles from plant operation and the computed profiles using MEDNAR show close results with maximum difference of 1.6% in the first effect while the difference in distillate production is 0.5%, as shown in table 6-3.

The next two tables 6-4 and 6-5 illustrate the plant overall heat transfer coefficients and performance parameters respectively, as predicted by MEDNAR simulator.

Figure 6-23 shows the vapor production from each effect based on boiling or flashing process. The vapor produced from the boiling process is much higher than the vapor produced from flashing process. The portion of the flashed vapor is less than 7% of the total vapor produced.

The figure also shows that the flashed vapor increases from effect to other, due to the accumulation of distillate and brine streams, which are cascaded from one effect to the next.

Variable	Plant Data	MEDNAR Simulator	Δ3
A-Brine temperature profile			a vancha
T1	62.5	61.5	1.6
T2	58.9	58.3	1.1
T3	55.2	55.0	0.4
T4	51.7	51.1	1.1
T5	48.1	47.7	0.7
T6	44.4	44.1	0.6

Table 6-3: Comparison of plant data and MEDNAR run

B- Other variables		A STATE OF STATES	1422/17/4-8
Mdistillate, kg/s	187.2	186.4	0.5
Mbrine, kg/s	468.1	469.0	0.2
Tbrine, °C	45.2	44.1	2.5

Where:

 $\Delta 3 = 100 * (MEDNAR run - Plant data) / plant data$

Table 6-4: The plant overall heat transfer coefficients computed by MEDNAR

Equipment	Value	Unit
Hot effects, U _{HOT}	3.69	kW/m².°C
Cold effects, U _{COLD}	3.52	kW/m².°C
Final condenser, U _{FC}	3.78	kW/m².°C

Table 6-5: Plant performance parameters computed by MEDNAR

Performance parameters	Value	Unit
Performance ratio, PR	8.97	kg D/kg motive steam
Specific cooling water, sMcw	2.88	kg SW/kg D
Specific area, sA	310.7	m²/ kg D

Figure 6-23: Brine temperature profile for plant data and MEDNAR

Figure 6-24: The boil and flash vapor flow rates (kg/s) production from effects as predicted from MEDNAR

7 ECONOMIC ANALYSIS

7.1 Total Capital Investment

The capital investment for a desalination plant is approximately similar to any other industrial plant. Before it can be put into operation, a large sum of money must be supplied to purchase and install the necessary machinery and equipment. Land and service facilities must be obtained and the plant must be erected complete with all piping, controls and services. In addition it is necessary to have money available for the payment of expenses involved in the plant operation.

The capital needed to supply the necessary manufacturing and plant facilities is called the *fixed capital investment*, while that necessary for the operation of the plant is termed the *working capital*. The sum of these is known as the *total capital investment*.

Various methods can be employed for the estimation of capital investment. The choice of any one method depends upon the amount of detailed information available and the accuracy desired. Many methods are outlined in reference [27], with each method requiring progressively less detailed information and less preparation time. A reasonable accuracy can be obtained with the *Detailed Item Estimate* method [27].

The fixed capital (C_{FCI}) and total capital (C_{TCI}) investments can be estimated by

$$C_{FCI} = 1.581 (2.145 C_{Pr} + C_{Inst})$$

= 4.75 C_{Pr} (7-1)

 $C_{TCI} = 1.177 C_{FCI}$

= 5.59 C_{Pr}

(7-2)

Where C_{Pr} is the purchased cost of process equipments. C_{Inst} is the installation cost of process equipments. For desalination process, 75% of the purchased cost for evaporators, and 45% of the purchased cost for heat exchangers and pumps.

7.1.1 Purchased equipment cost

In desalination plants, the major equipments are the heat transfer equipments that include the evaporators, heat exchangers and condensers and the pumping machinery, which are in general centrifugal pumps.

7.1.1.1 Cost Index

Most available cost data for immediate use in cost estimates are based on conditions at some time due to changes in economic conditions; some method must therefore be used for updating cost data applicable at a past date to costs that are representative of conditions at a later time. This can be done by the use of cost index.

$$C_{\rm P} = C_{\rm O} \left(\frac{I_P}{I_O} \right) \tag{7-3}$$

Where C_P is the present cost. C_O is the original cost. I_P and I_O represent the index value at present time and original time, respectively.

7.1.2 The Annual Worth of a Present

In our calculations, we want to find the net annual water cost. Thus, the total capital cost must be put in *annual worth* form, which is an equal annual series of money for a stated period that is equivalent to the cash inflows and outflows at an interest rate.

$$A = P\left(\frac{e^{rN} (e^r - 1)}{e^{rN} - 1}\right)$$
(7-4)

Where r represents the annual interest rate, N is the number of years, A and P represent the annual and present equivalent amounts respectively [28].

7.2 Total Production Cost

Determination of the necessary capital investment is only part of a complete cost estimate. Another equally important part is the estimation of costs for operating the plant and delivering the product to the distributor. These costs can be grouped under the general heading of total production costs and general expenses. Manufacturing costs are known as operating or production costs. The annual cost basis is probably the best choice for estimation total cost. Total Production Cost (C_{TPC}) equals the sum of the manufacturing cost plus the general expense.

- A. Manufacturing cost equals the sum of the following costs:
 - 1. Utilities (C_{Ut})
 - 2. Maintenance and repairs (C_{Mnt}) ; about 4% of the fixed capital investment
 - 3. Operation (Coprt); about 15% of the maintenance and repairs
 - 4. Laboratory charges (C_{LChrg}); about 2.25% of the total production cost

- 5. Direct supervision (C_{Dsup}); about 2.263% of the total production cost
- 6. Depreciation (C_{Dpr}); about 8% of the fixed capital investment
- 7. Local taxes (C_{Tax}); about 3% of the fixed capital investment
- 8. Insurance (Clnsur); about 1% of the fixed capital investment
- 9. Plant overhead (CPIOvh); about 10% of the total production cost

B. General expenses equal the sum of the following costs:

- 1. Administrative costs (C_{Admn}); about 3.75% of the total production cost
- Distribution & selling costs (C_{Sell}); about 5% of the total production cost

The general formula is

 $C_{TPC} = 1.629 (C_{Ut} + 0.189 C_{FCI})$

(7-5)

7.2.1 Utility cost

The cost for utilities such as steam, electricity, process cooling water and compressed air varies widely depending on the plant capacity and location. In desalination plants, the most critical economic calculation is the steam cost. The energy consumption in desalting water processes is one of the important parameters that dictate the choice of one desalination method over another and the final unit cost of desalted water. This cost accounting issue related to cogeneration plants is how to equitably split the total cost of owning and operating the plant between its main products, namely, electricity and heat. This is important since the way cost allocation is made will directly influence the cost of electricity generated as well as the cost of desalted water from the desalination plant. Allocating the cost of cogeneration between its two products in a fair and equitable manner not only affects the costs of water and electricity but also influences a host of products and services, which depend on these two products. Therefore, it is crucial to have a rational basis for pricing the two products.

Several methods for cost allocation have been developed; some of them allocate the total cost of owning and operating the plant among the two products direct without having to split the total cost into its components (direct method) and other methods allocate each cost component (e.g. manpower, material, fuel and capital depreciation) among the two products (indirect method). Assumptions regarding cost separation

can also have an effect on the resulting product costs. This is why there are number of cogeneration cost allocation methods available [29].

Another method described by El-Nashar [30] in many papers is based on cost accounting using exergy as the commodity of value. A steam cycle with low temperature MED plant has been analyzed by Kamal [31]. Cost allocation methods were proposed in details by Darwish M. et al. [32] and Elsayed M. [33]. The method used in this thesis is called *prorating on the basis of power generated*, which has been mentioned by M. Elsayed. The steam cost is evaluated by the electricity loss in the turbine due to the low energy steam extracted to the desalination plant. The energy consumption and capital investment cost of steam turbine and high-pressure boiler are between water and electricity cost, the percentage is based on the electricity loss.

7.3 Net annual Water Cost

After annualizing the total investment cost by equation (7-4) we obtain the total production cost, which is calculated on annual base. The total yearly water production is calculated from the daily designed production and the plant running factor. The net annual water cost will be the total annual cost divided by the annual water production.

7.4 Economic Results and Discussion

A simple model has been adopted from previous equations to obtain the net annual water cost. The following assumptions used in this model are:

- The desalination plant life is 25 years
- The interest rate is 8%
- The plant running load factor is 0.9
- No local taxes
- The fuel cost is 1 \$ per 1 GJ based on the local market

Note: this assumed fuel cost is equivalent to 6 \$ per barrel of oil which is too low. A sensitivity analysis for different fuel cost has been done in this chapter.

7.4.1 Cost analysis

The model results give 1.09 \$ for each m³ of water. The annual production cost share is 73% while the annual capital cost share is 27% as shown in Figure 7-1. From the annual percentage cost break down analysis, the largest item is depreciation (23%). Purchased equipments, utility and maintenance come next with more than (10%) each. Figure 7-2 illustrates the break down cost percentage. The cost break down prices is displayed in table 7-1.

Figure 7-1: Annual share for capital cost and production cost from the net annual water cost

Figure 7-2: Annual cost percentage for the break down items

PAGE 92

7.4.2 Cost sensitivity analysis

Figure 7-3 illustrates the steam cost and the net annual water cost based on different fuel cost rates. Both steam cost and net annual water cost increase linearly with increasing fuel cost. When the fuel cost increases 50%; the steam cost and net annual water cost increase with an average of 40% and 6%, respectively.

This figure also helps for easier cost evaluation and comparison with other cost studies. Hanbury et al. [10] mentioned a 1.31 \$ per m³ water for a MED plant with fuel cost of 2.8 \$/GJ. The model adopted in this study gives 1.30 \$ per m³ water cost at the same fuel cost, which means less than 1% deviation between the two results.

Another paper prepared by Wade [2] illustrates 0.953 \$per m³ water for LT-MED-TVC plant at 1.5 \$per GJ fuel cost. At the same fuel cost, Figure 7-3 shows 1.15 \$ per m³ water, which means 17% deviation observed between the two results.

The relation between the distiller production load and the net annual water cost is illustrated in Figure 7-4. As continues production increases the net annual cost will decrease. The figure shows that keeping 10% production more will give 9% less water cost and 10% less production will give 11% more water cost. The interesting point here is that the low production is uneconomic and could double the net annual water cost at 50% production rate.

Figure 7-5 shows the sensitivity of the net annual water cost with the distiller load factor. Usually, this value is assumed to be 0.9 of the year days. Planned maintenance and better operation could increase this value to a higher value. The water cost will reduce by 2.5% in average if the average plant availability is increased by 10 days. On the other hand, if the plant running factor is reduced to 0.8 the net annual water cost will increase by 11%.

The sensitivity of the net annual water cost from the annual operation and maintenance cost is observed in Figure 7-6. The figure shows that each 5% saving or losing in operation and maintenance cost will affect the net annual water cost by less than 1%.

Table 7-1: Net annual water cost break down with fuel price sensitivity

Plant Gross Output	MW	75	75	75
Audiary Loads	MW	7	7	7
Net Output	MW	68	68	68
Load	%	100	100	100
Extr Steam to Desal	T/h	84.25	84.25	84.25
Enthalpy of Desal Steam	kg/kJ			
Enthalpy of Return	kg/kJ			
Desal Production	MIGD	3.5	3.5	3.5
Desal Production	m³/ħ	663	663	663
Desal Aux Loads	kW	980	980	980
Desal Plant Type		MED-TVC	MED-TVC	MED.TVC
Desal Plant Life	vear	25	25	25
Desal Discount Rate	%	8	25	25
Desal Load Factor		0.9	0.9	0.9
Power Plant Type		PDST	PDCT	DDCT
Power Plant Life		Droi	DF31	BPSI
Power Plant Life	year	25	25	25
Power Discount Rate	%	8	8	8
Power Plant Factor		0.9	0.9	0.9
H.P.B.Capital Cost	\$	\$2,650,000	\$2,650,000	\$2,650,000
Turbine Capital Cost	\$	\$7,150,000	\$7,150,000	\$7,150,000
Thermal Efficiency Turbine		0.4	0.4	0.4
Thermal Efficiency Boiler		0.92	0.92	0.92
Desal Capital Investment Cost				
Purchased Equipment Cost Cor	s	30 589 711	30 589 711	30 589 711
Equipment Installation Cost Cinst	e e	20,262,214	20.262.214	20,262,214
Instrumentation & Control Cost Cinet	e	1 770 104	1 770 104	1 770 104
Electrical Equipment Cost		1,770,194	1,770,194	1,770,194
electrical Equipment Cost	3	1,830,553	1,830,553	1,830,553
CIVI COST	5	4,550,000	4,550,000	4,550,000
Service facilities Cost	\$	4,550,000	4,550,000	4,550,000
TOTAL	\$	60,375,960	60,375,960	60,375,960
Desal Production Cost		ALL DY AN AN AN	te tat in the second second	
Fuel Cost	\$/y	2,617,249	4,424,258	6,231,267
Fuel Price	\$/GJ	1.00	1.80	2.60
Extraction Steam Cost	\$/T	1.07	1.81	
				2.56
Manufacturing Cost		40.070.400	40.070.400	2.56
	\$/y	10,976,186	10,976,186	2.56
Maintenance & Repair Cost	\$/y \$/y	10,976,186 2,415,038	10,976,186 2,415,038	2.56 10,976,186 2,415,038
Maintenance & Repair Cost Operation Cost	\$/y \$/y \$/y	10,976,186 2,415,038 362,256	10,976,186 2,415,038 362,256	2.56 10,976,186 2,415,038 362,256
Maintenance & Repair Cost Operation Cost Laboratory Charges	\$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244	10,976,186 2,415,038 362,256 418,244	2.56 10,976,186 2,415,038 362,256 418,244
Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost	\$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951	10,976,186 2,415,038 362,256 418,244 487,951	2.56 10,976,186 2,415,038 362,256 418,244 487,951
Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Deprectation	\$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077	2.56 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077
Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance	\$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760	2.56 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760
Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead	\$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861	2.56 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861
Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs	\$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 18,653,451	2.56 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 20,460,460
Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost	\$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 18,653,451 697,073	2.56 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 20,460,460 697,073
Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost	\$/y \$./y \$./y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,848,443 697,073 929,431	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 18,653,451 697,073 929,431	2.56 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 20,460,460 697,073 929,431
Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost	\$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 18,653,451 697,073 929,431 17,026,948	2.56 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 20,460,460 697,073 929,431 18,833,956
Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost TOTAL	\$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 18,653,451 697,073 929,431 17,026,948	2.56 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 20,460,460 697,073 929,431 18,833,956
Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost TOTAL Total Annual Cost	\$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 18,653,451 697,073 929,431 17,026,948 22,682,894	2.56 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 20,460,460 697,073 929,431 18,833,956 24,489,903
Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost TOTAL Total Annual Cost Total Annual Water Production	\$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939 20,875,885 5226138.364	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 18,653,451 697,073 929,431 17,026,948 22,682,894 5226136.364	2.56 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 20,460,460 697,073 929,431 18,833,956 24,489,903 5226136.36
Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost TOTAL Total Annual Cost Total Annual Water Production Net Annual Water Cost	\$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 18,653,451 697,073 929,431 17,026,948 22,682,894 5226136.364	2.56 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 20,460,460 697,073 929,431 18,833,956 24,489,903 5226136.36 4.69
Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost TOTAL Total Annual Cost Total Annual Water Production Net Annual Water Cost Net Annual Water Cost	\$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 18,653,451 697,073 929,431 17,026,948 22,682,894 5226136,364 4.34 19,73	2.56 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 20,460,460 697,073 929,431 18,833,956 24,489,903 5226136.36 4.69 21,30

Figure 7-3: Net annual water cost and Extraction steam cost as a function of fuel price

Table 7-2: Cost break down with desalination production plant load sensitivity

Plant Gross Output	A /DA/	76			
Auxiliary Loads	NDA/	/5	75	75	75
Not Output	IVIVV	1	7	7	7
Net Output	MVV	68	68	68	68
LOad	%	100	100	100	100
Extr Steam to Desal	T/h	55.32	66.89	78.46	90.04
Enthalpy of Desal Steam	kg/kJ				
Enthalpy of Return	kg/kJ				
Desal Production	MIGD	1.75	2.45	3.15	3.85
Desal Production	m³/h	331	464	597	729
Desal Aux Loads	kW	980	980	980	980
Desal Plant Type					
Desal Plant Life	vear	25	25	MED-TVC	MED-TVC
Desal Discount Rate	%	8	0	25	25
Desal Load Factor		0.9	0.9	0.9	0.9
			0.0	0.0	0.0
Power Plant Type		BPST	BPST	BPST	BPST
Power Plant Life	year	25	25	25	25
Power Discount Rate	%	8	8	8	8
Power Plant Factor		0.9	0.9	0.9	0.9
H.P.B.Capital Cost	\$	\$2,650,000	\$2,650,000	\$2,650,000	\$2,650,000
Turbine Capital Cost	\$	\$7,150,000	\$7,150,000	\$7,150,000	\$7,150,000
Thermal Efficiency Turbine		0.4	0.4	0.4	0.4
Thermal Efficiency Boiler		0.92	0.92	0.92	0.92
Denal Castilat Investment Cast	Contraction of the second	- And			
Dosta Capital Investment Cost					CONTRACTOR AND
Purchased Equipment Cost, Cpr	\$	30,589,711	30,589,711	30,589,711	30,589,711
Equipment Installation Cost, Cinst	\$	20,262,214	20,262,214	20,262,214	20,262,214
		1 770 194	1,770,194	1.770.194	1.770.194
Instrumentation & Control Cost, Cinstr	4	1,110,104			
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost	s	1,836,553	1,836,553	1,836,553	1,836,553
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost	s s	1,838,553	1,836,553	1,836,553	1,836,553
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost	\$ \$ \$	1,836,553 4,550,000 4,550,000	1,836,553 4,550,000 4,550,000	1,836,553 4,550,000 4,550,000	1,838,553 4,550,000 4,550,000
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL	\$ \$ \$ \$	1,836,553 4,550,000 4,550,000 60,375,960	1,836,553 4,550,000 4,550,000 60,375,960	1,836,553 4,550,000 4,550,000 60,375,960	1,836,553 4,550,000 4,550,000 60,375,960
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL	\$ \$ \$ \$	1,836,553 4,550,000 4,550,000 60,375,960	1,836,553 4,550,000 4,550,000 60,375,960	1,836,553 4,550,000 4,550,000 60,375,960	1,836,553 4,550,000 4,550,000 60,375,960
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Dessil Production Cost	\$ \$ \$ \$	1,836,553 4,550,000 4,550,000 60,375,960	1,836,553 4,550,000 4,550,000 60,375,960	1,836,553 4,550,000 4,550,000 60,375,960	1,836,553 4,550,000 4,550,000 60,375,960
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Desal Production Cost	\$ \$ \$ \$ \$	1,836,553 4,550,000 4,550,000 60,375,960	1,836,553 4,550,000 4,550,000 60,375,960	1,836,553 4,550,000 4,550,000 60,375,960	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Desal Production Cost Fuel Cost Eucl Price	\$ \$ \$ \$ \$/y \$/g	1,170,104 1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1,00	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1,00
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Dessil Production Cost Fuel Cost Fuel Price Extraction Steam Cost	\$ \$ \$ \$ \$ \$ \$ \$/y \$/GJ	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.64	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.35	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.00
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Dessil Production Cost Fuel Cost Fuel Cost Fuel Price Extraction Steam Cost	\$ \$ \$ \$ \$/y \$/GJ \$/T	1,836,553 4,550,000 4,550,000 60,375,980 2,617,249 1.00 1.64	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.35	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.00
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Desal Production Cost Fuel Cost Fuel Cost Fuel Price Extraction Steam Cost Manufacturing Cost	\$ \$ \$ \$ \$/y \$/GJ \$/T \$/y	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.64 10,976,186	1,836,553 4,550,000 4,550,000 60,375,980 2,617,249 1.00 1.35 10,976,186	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15 10,976,186	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.00 10,976,186
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Desel Production Cost Fuel Cost Fuel Cost Fuel Price Extraction Steam Cost Manufacturing Cost Maintenance & Repair Cost	\$ \$ \$ \$ \$/y \$/GJ \$/T \$/y \$/y	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.64 10,976,186 2,415,038	1,836,553 4,550,000 4,550,000 60,375,980 2,617,249 1.00 1.35 10,976,186 2,415,038	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15 10,976,186 2,415,038	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.00 10,976,186 2,415,038
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Dessil Production Cost Fuel Cost Fuel Cost Fuel Price Extraction Steam Cost Manufacturing Cost Maintenance & Repair Cost Operation Cost	\$ \$ \$ \$ \$/y \$/GJ \$/T \$/y \$/y \$/y \$/y	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.64 10,976,186 2,415,038 362,256	1,836,553 4,550,000 4,550,000 60,375,980 2,617,249 1.00 1.35 10,976,186 2,415,038 362,256	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15 10,976,186 2,415,038 362,256	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.00 10,976,186 2,415,038 362,256
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Dessil Production Cost Fuel Cost Fuel Cost Fuel Price Extraction Steam Cost Manufacturing Cost Manufacturing Cost Maintenance & Repair Cost Operation Cost Laboratory Charges	\$ \$ \$ \$ \$/y \$/GJ \$/T \$/y \$/y \$/y \$/y \$/y	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.64 10,976,186 2,415,038 362,256 418,244	1,836,553 4,550,000 4,550,000 60,375,980 2,617,249 1.00 1.35 10,976,186 2,415,038 362,256 418,244	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15 10,976,186 2,415,038 362,256 418,244	1,838,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.00 10,976,186 2,415,038 362,256 418,244
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Dessil Production Cost Fuel Cost Fuel Price Extraction Steam Cost Manufacturing Cost Manufacturing Cost Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost	\$ \$ \$ \$ \$/y \$/GJ \$/T \$/y \$/y \$/y \$/y \$/y \$/y \$/y	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.64 10,976,186 2,415,038 362,256 418,244 487,951	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.35 10,976,186 2,415,038 362,256 418,244 487,951	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15 10,976,186 2,415,038 362,256 418,244 487,951	1,838,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.00 10,976,186 2,415,038 362,256 418,244 487,951
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Dessil Production Cost Fuel Cost Fuel Cost Fuel Price Extraction Steam Cost Manufacturing Cost Manufacturing Cost Depretion Cost Laboratory Charges Direct Supervision Cost Depreciation	\$ \$ \$ \$ \$ \$/y \$/GJ \$/T \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.64 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.35 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077	1,838,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.00 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Dessil Production Cost Fuel Cost Fuel Cost Fuel Price Extraction Steam Cost Manufacturing Cost Manufacturing Cost Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance	\$ \$ \$ \$ \$ \$/y \$/GJ \$/T \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.64 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.35 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.00 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Descil Production Cost Fuel Cost Fuel Cost Fuel Price Extraction Steam Cost Manufacturing Cost Manufacturing Cost Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead	\$ \$ \$ \$ \$ \$/y \$/GJ \$/T \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.64 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861	1,836,553 4,550,000 4,550,000 60,375,980 2,617,249 1.00 1.35 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.00 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Desal Production Cost Fuel Cost Fuel Cost Fuel Price Extraction Steam Cost Manufacturing Cost Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead	\$ \$ \$ \$ \$ \$/y \$/GJ \$/T \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.64 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.35 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.00 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Desal Production Cost Fuel Cost Fuel Cost Fuel Price Extraction Steam Cost Manufacturing Cost Manufacturing Cost Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs	\$ \$ \$ \$ \$ \$/y \$/GJ \$/T \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.64 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.35 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.00 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Desal Production Cost Fuel Cost Fuel Cost Fuel Price Extraction Steam Cost Manufacturing Cost Manufacturing Cost Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost	\$ \$ \$ \$ \$ \$/y \$/GJ \$/T \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.64 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.35 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.00 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Desal Production Cost Fuel Cost Fuel Cost Fuel Cost Fuel Price Extraction Steam Cost Manufacturing Cost Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost	\$ \$ \$ \$ \$ \$/y \$/GJ \$/T \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.64 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.35 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.00 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Dessil Production Cost Fuel Cost Fuel Cost Fuel Price Extraction Steam Cost Manufacturing Cost Manufacturing Cost Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost TOTAL	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.64 10,976,186 2,415,038 362,256 418,244 4,87,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.35 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.00 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Desail Production Cost Fuel Cost Fuel Cost Fuel Cost Fuel Price Extraction Steam Cost Manufacturing Cost Manufacturing Cost Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost TOTAL	\$ \$ \$ \$ \$ \$/y \$/GJ \$/T \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.64 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.35 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.00 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Desail Production Cost Fuel Cost Fuel Cost Fuel Cost Fuel Price Extraction Steam Cost Manufacturing Cost Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost TOTAL Total Annual Cost	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.64 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939 20,875,885	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.35 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,848,443 697,073 929,431 15,219,939 20,875,885	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939 20,875,885	1,836,553 4,550,000 60,375,960 2,617,249 1.00 1.00 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939 20,875,885
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Descil Production Cost Fuel Cost Fuel Cost Fuel Cost Fuel Price Extraction Steam Cost Manufacturing Cost Manufacturing Cost Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost TOTAL Total Annual Cost	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.64 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939 20,875,885 2613068.182	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.35 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939 20,875,885 3658295,455	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939 20,875,885 4703522.727	1,836,553 4,550,000 60,375,960 2,617,249 1.00 1.00 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939 20,875,885 5748750
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Desail Production Cost Fuel Cost Fuel Cost Fuel Cost Fuel Price Extraction Steam Cost Manufacturing Cost Manufacturing Cost Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost TOTAL Total Annual Cost	\$ \$ \$ \$ \$ \$/y \$/y \$/y \$/y \$/y	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.64 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939 20,875,885 2613068,182	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.35 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939 20,875,885 3658295,455	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939 20,875,885 4703522.727	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.00 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939 20,875,885 5748750 3,63
Instrumentation & Control Cost, Cinstr Electrical Equipment Cost Civil Cost Service facilities Cost TOTAL Desail Production Cost Fuel Cost Fuel Cost Fuel Cost Fuel Price Extraction Steam Cost Manufacturing Cost Manufacturing Cost Maintenance & Repair Cost Operation Cost Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost TOTAL Total Annual Cost Net Annual Water Production	\$ \$ \$ \$ \$ \$/y \$/y \$/y \$/y \$/y	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.64 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939 20,875,885 2613068,182	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.35 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939 20,875,885 3658295,455	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.15 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939 20,875,885 4703522.727 4.44 20,17	1,836,553 4,550,000 4,550,000 60,375,960 2,617,249 1.00 1.00 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 16,846,443 697,073 929,431 15,219,939 20,875,885 5748750 3.63 18,51

Figure 7-4: Net annual water cost as a function of distiller production load

Table 7-3: Cost break down with operation and maintenance cost sensitivity

Plant Gross Output	MW	75	75	75
Auxiliary Loads	MW	7	7	7
Net Output	MW	68	68	68
Load	%	100	100	100
Extr Steam to Desal	T/h	84.25	84.25	84.25
Enthalpy of Desal Steam	kg/kJ			
Enthalpy of Return	kg/kJ			
Desal Production	MIGD	3.5	3.5	3.5
Desal Production	m°/h	663	663	663
Desai Aux Loads	kW	980	980	980
Desal Plant Type		MED-TVC	MED-TVC	MED-TVC
Desal Plant Life	year	25	25	25
Desal Lead Factor	%	8	8	8
Desal Load Factor		0.9	0.9	0.9
Power Plant Type		BPST	BPST	BPST
Power Plant Life	year	25	25	25
Power Discount Rate	%	8	8	8
Power Plant Factor		0.9	0.9	0.9
H.P.B.Capital Cost	S	\$2,650,000	\$2,650,000	\$2,650,000
	2	\$7,150,000	\$7,150,000	\$7,150,000
I hermal Efficiency I urbine		0.4	0.4	0.4
Thermal Efficiency Boiler		0.92	0.92	0.92
Desai Capital Investment Cost			and Provident	
Purchased Equipment Cost, Cpr	\$	30,589,711	30,589,711	30,589,711
Equipment Installation Cost, Cinst	\$	20,262,214	20,262,214	20,262,214
Instrumentation & Control Cost, Cinstr	s	1,770,194	1,770,194	1,770,194
Electrical Equipment Cost	5	1 836 553	1.836 553	1.836.553
Civil Cost	s	4,550,000	4,550,000	4,550,000
Service facilities Cost	\$	4,550,000	4,550,000	4,550,000
TOTAL	\$	60,375,960	60,375,960	60,375,960
Desal Production Cost	AN SAME			
Fuel Cost	\$/v	2.617.249	2.617.249	2.617.249
Fuel Price	\$/GJ	1.00	1.00	1.00
Extraction Steam Cost	\$/T	1.07	1.07	1.07
			44.484.454	
Manufacturing Cost	\$/y	10,181,528	2 415 038	2 898 046
Operation Cost	\$/y	231,844	362,256	521,648
Laboratory Charges	\$/y	334,595	418,244	501,892
Direct Supervision Cost	\$/v	390,361	487.951	585,541
Depreciation	\$/y	4,830,077	4,830,077	4,830,077
Insurance	\$/y	603,760	603,760	603,760
Plant Overhead	\$/y	1,858,861	1,858,661	1,858,861
			47 670 000	47 670 000
General Expenses Costs	\$/y	697.073	697.073	697 073
Distribution & Colling Cost	¢/y	020 431	929 431	020 431
Distribution & Selling Cost	\$/Y	929,431	525,431	929,431
TOTAL	\$/y	14,425,280	15,219,939	16,043,578
Total Annual Cost	Dhs/y	20,081,227	20,875,885	21,699,524
Total Annual Water Production	M ³ /y	5226138.364	5226136.364	5226136.36
Net Annual Water Cost	Dhs/m ³	3.84	3.99	4.15
Net Annual Water Cost	Dh/kiG	17.47	18.16	18.87
N. L.A	¢/m ³	1.05	1.09	1.13

Figure 7-5: Net annual water cost as a function of operation and maintenance cost

Table 7-4: Cost break down with desalination running plant load sensitivity

Plant Gross Output	MDA/	76	75	
Auxiliary Loads	MW	75	/5	75
Net Output	MDA	69	(7
Load	0/	00	68	68
Extr Steam to Desal	TA	100	100	100
Enthaloy of Desal Steam	ko/k l	64.25	84.25	84.25
Enthalpy of Return	kg/kJ			
Desal Production	NJCD	2.5		Red Toll State
Desal Production	MIGD	3.5	3.5	3.5
Desal Aux Loade	in /n	663	663	663
Desai Aut Ludus	KVV	980	980	980
Desai Plant Type		MED-TVC	MED-TVC	MED-TVC
Desal Plant Life	year	25	25	25
Desal Discount Rate	%	8	R	8
Desal Load Factor		0.8	0.9	1
Power Plant Type		BPST	BPST	BPST
Power Plant Life	year	25	25	25
Power Discount Rate	%	8	8	8
Power Plant Factor		0.9	0.9	0.9
H.P.B.Capital Cost	S	\$2,650,000	\$2,650,000	\$2,650,000
Turbine Capital Cost	\$	\$7,150,000	\$7,150,000	\$7,150,000
Thermal Efficiency Turbine		0.4	0.4	0.4
Thermal Efficiency Boiler		0.92	0.92	0.92
Desal Capital Investment Co	st		and the second second	
Durphaged Equipment Cost		20.590.744	20.500.744	00 500 711
Furchased Equipment Cost, Cp	J S	30,589,711	30,589,711	30,589,711
Instrumentation & Control	Cost	20,262,214	20,262,214	20,262,214
Cinstr	s s	1 770 194	1 770 194	1 770 104
Electrical Equipment Cost	e	1,836,553	1,070,154	1,770,194
Civil Cost	e	4 550 000	4 550 000	1,030,553
Senice facilities Cost	3	4,550,000	4,550,000	4,550,000
TOTAL	2	4,550,000	4,550,000	4,550,000
IUIAL	\$	00,375,300	60,375,960	60,375,960
Desal Production Cost		a da a la la compañía de al		Entra Additional Are
Fuel Cost	\$/v	2,326,444	2,617.249	2,908.055
Fuel Price	\$/GJ	1.00	1.00	1.00
Extraction Steam Cost	\$/T	1.07	1.07	1.07
	<i>w</i> , ,	1.07	1.07	1.07
Manufacturing Cost				1.07
Maintenance & Repair Cost	\$/y	10,976,186	10,976,186	10,976,186
Operation Cost	\$/y \$/y	10,976,186 2,415,038	10,976,186 2,415,038	10,976,186 2,415,038
	\$/y \$/y \$/y	10,976,186 2,415,038 362,258	10,976,186 2,415,038 362,256	10,976,186 2,415,038 362,256
Laboratory Charges	\$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244	10,976,186 2,415,038 362,256 418,244	10,976,186 2,415,038 362,258 418,244
Laboratory Charges Direct Supervision Cost	\$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951	10,976,186 2,415,038 362,256 418,244 487,951	10,976,186 2,415,038 362,256 418,244 487,951
Laboratory Charges Direct Supervision Cost Depreciation	\$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077	10,976,186 2,415,038 362,256 418,244 487,951 4,830.077
Laboratory Charges Direct Supervision Cost Depreciation Insurance	\$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760
Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead	\$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861
Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead	\$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861
Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs	\$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082
Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost	\$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073
Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost	\$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431	1.07 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431
Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost TOTAL	\$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,258 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431 14,929,134	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431 15,219,939	1.07 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431 15,510,745
Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost TOTAL Total Annual Cost	\$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,258 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431 14,929,134 20,585,080	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431 15,219,939 20,875,885	1.07 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431 15,510,745 21,166,691
Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost TOTAL Total Annual Cost	\$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y \$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431 14,929,134 20,585,080	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431 15,219,939 20,875,885	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431 15,510,745 21,166,691
Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost TOTAL Total Annual Cost Total Annual Water Production	\$/y	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431 14,929,134 20,585,080 4645454.545	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431 15,219,939 20,875,885 5226136.364	1.07 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431 15,510,745 21,166,691 5806818.182
Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost TOTAL Total Annual Cost Total Annual Water Production	\$/y Dhs/y Dhs/m³	10,976,186 2,415,038 362,258 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431 14,929,134 20,585,080 4645454.545	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431 15,219,939 20,875,885 5225136.364	1.07 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431 15,510,745 21,166,691 5806818.182 3.65
Laboratory Charges Direct Supervision Cost Depreciation Insurance Plant Overhead General Expenses Costs Administrative Cost Distribution & Selling Cost TOTAL Total Annual Cost Total Annual Water Production Net Annual Water Cost Net Annual Water Cost	\$/y Dhs/y Dhs/s/m³ Dh/klG	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431 14,929,134 20,585,080 4645454.545 4,43 20,14	10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431 15,219,939 20,875,885 5226136.364 3.99 18,16	1.07 10,976,186 2,415,038 362,256 418,244 487,951 4,830,077 603,760 1,858,861 17,670,082 697,073 929,431 15,510,745 21,166,691 5806818.182 3,65 16,57

Figure 7-6: Net annual water cost as a function of distiller running load factor

8 CONCLUSIONS

This work revealed that it is too difficult to construct a general computer model for non-conventional MED desalination plants. The variation of equipment, flow sheets and heat pump combinations give a very large number of plant configurations. So, a specific model has been developed to be used for Umm Al-Nar MED-TVC plants and was called MEDNAR.

In light of the results, analysis and discussion, reported in chapters 6 and 7, the following conclusion can be made:

In such a plant, the performance ratio is strongly depending on the flow rate of motive steam. The overall heat transfer coefficients increase when more motive steam is used.

This increase in the performance ratio has some limitations. The maximum allowable brine rejects salinity, the vapor velocity in the last stage and the mechanical size of the steam jet ejector are the most important restrictions for higher production rates and higher plant performance ratios. The MEDNAR simulator also illustrates that in the UAN MED-TVC plant, most of the vapor is produced in the first two effects. Moreover, increasing the flow rate of motive steam will increase the cooling water flow rate needed while it will decrease the specific heat transfer area.

For the overall heat transfer coefficients, usually the hot effects have higher values than the cold effects. The UAN MED-TVC plant designer used higher vapor temperature for the last effect at lower production rates than full production rate to enhance the U-values of the cold effects but the cold effects driving force temperature will be reduced.

The analysis of seawater temperature variation shows that less cooling water is needed at low seawater temperatures. At critical low seawater temperatures and low production rates there will be a need for seawater pre-heater (e.g. seawater temperature less then 31.8 °C at 50% production rate).

The maximum allowable production rate could be calculated from the feed water salinity and the maximum allowable brine rejects salinity, while the overall heat transfer coefficients increased when more saline feed water was used. The plant performance ratio is nearly independent of the feed water salinity.

From the economic analysis, the following points have been proposed:

- The primary energy consumption of any desalination process has to be valued according to the international fuel price. This is to have real cost evaluation and a unified water cost base for clear and better cost analysis.
- The annual production cost share of the net annual water cost is higher than the annual capital cost. The share ratio is around (7:3).
- From the annual cost break down analysis, the depreciation cost has the higher contribution with 23%. Purchased equipment, utility and maintenance are coming next with more than 10% each.
- The net annual water cost could double if the plant is continuously operated at a partial load of 50%.
- The annual plant availability has a direct relation with the net annual water cost. The average running factor is 0.9. Four running days more or less on the average have an impact of 1% on the net annual water cost.
- The operation and maintenance cost deviation of 5% have an impact of 1% on the net annual water cost.
- From the last two points, proper maintenance and operation could give higher plant availability. The relation between these two points needs more optimization to minimize the water unit cost.

9 ACKNOWLEDGMENTS

As always in such project, there are many people to thank. I would like to express my deepest appreciation to Professor Gharib Aly of UAE University who has been particularly valuable for this thesis. His recommendations and the constructive criticism will not be forgotten.

Special thanks for my co-supervisor **Dr**. **Mohammed Abdulkarim** of UAE University for his advice and for continuous support.

The external examiner Professor Mohammed Ali Darwish from Kuwait University is also acknowledged for his thorough review of the thesis.

I want also to thank Mr. Thani Al-Sharyani, Chairman and Managing Director of UANPC, and Mr. Shamim Anwar, Operations Division Manager of UANPC for their continuous support. Thanks are also due to Dr. Ali El-Nashar and Dr. S. Agashichev of ADWEA research center for their valuable comments.

Thanks to Mr. J. Quemion and Mr. V. Baujat from Sidem Company for their cooperation and assistance. Their invitation and my visit to Sidem Paris office are appreciated. My special gratitude goes to Dr. J. Laborie, Head of Process Department of Sidem Company. Her generous cooperation and assistance are highly appreciated.

Finally, I want to thank my family who provided me with a warm and helpful environment that enabled me to do this work.

REFERENCES

1. El-Dessouky, H. T., Ettouney, H. M., Multiple-effect evaporation desalination systems: thermal analysis, Desalination, 125, 259 – 276 (1999).

2. Wade, N.M., Distillation plant development and cost update, Desalination, 136, 3-12 (2001).

3. Sidem internal report, September 1997.

4. Michles, T., Recent achievements of low temperature multiple effect desalination in the western areas of Abu Dhabi, UAE, Desalination, 93, 111-118 (1993).

5. Jernqvist, Å, Jernqvist, M., Aly, G., Simulation of thermal desalination processes, Desalination, 126, 147 – 152.

6. Ettouney, H. M., El-Dessouky, H. T., A simulator for thermal desalination processes, Desalination, 125, 277 – 291.

7. Al-Shammiri, M., Safar, M., Multi-effect distillation plants: state of the art, Desalination, 126, 45 – 59.

8. Al-Najem, N. M., Darwish, M. A., Youssef, F. A., Thermo-vapor compression desalination: energy and availability – Analysis of single and multi-effect systems, Desalination, 110, 223 – 238.

9. Temstet, C., Canton, G., Laborie, J., Durante, A., A large high-performance MED plant in Sicily, Desalination, 105, 109 – 114.

10. Hanbury, W. T., and Hodgkiess, T., Desalination technology 95, 1995, Glasgow,U. K.

11. Al-Juwayhel, F., El-Dessouky, H., Ettouney, H., Analysis of single-effect evaporator desalination systems combined with vapor compression heat pumps, Desalination, 114, 253 - 275.

12. Narmine, H., Modeling and simulation lf steam jet ejectors, Desalination 123 (1999) P 1-8.

13. Zimerman, Z., Desalination, 96, 51 (1994).

14. Mandani, F., Ettouney, H. M., and El-Dessouky, H. T., LiBr-H2O absorption heat pump for single-effect evaporation desalination process, Desalination, 128, 161-176 (2000).

15. Darwish M.A., and El-Dessouky, H.T, The heat recovery thermal vaporcompression desalting system: A Comparison with other thermal desalination Processes, Applied Thermal Engineering, 18, 523-537 (1996). 16. Morin, O. J., Design and operating comparison of MSF and MED systems, Desalination, 93, 69-109 (1993).

17. Leitner, G. F., A challenge to IDA for the 21st century, proceeding of IDA world congress on desalination and water sciences, Abu Dhabi, 137-148 (1995).

18. Rautenbach, R., Widua, J., and Schafer, S., Reflections on desalination processes for the 21st century, proceeding of IDA world congress on desalination and water sciences, Abu Dhabi, 117-135 (1995).

 El-Dessouky, H., and Bingulac, S., Solving equations simulating the steadystate behavior of the multi-stage flash desalination process, Desalination, 107, 171 – 193.

20. El-Dessouky, H. T., and Ettouney, H. M., Plastic/compact heat exchangers for single-effect desalination systems, Desalination, 122, 271-289 (1999).

21. Jakkola, H., Cost effective evaporators for desalination, Desalination, 108, 357-360 (1996).

22. Aly, N. H., Karameldin, A., Shamloul, M. M., Modeling and simulation of steam jet ejectors, Desalination, 123, 1 – 8.

23. Hamed, O. A., and Ahmed, K. A., An assessment of an ejecto-compression desalination process, Desalination, 96, 103 – 111.

24. El-Dessouky, H.T., Alatiqi, I.M., Bingulac, S., and Ettouney, H, Steady state analysis of multiple-effect evaporation desalination process, Chem. Eng. Tech., 21, 15-29 (1998).

25. Hunbury, W. T., An analytical simulation of multiple effect distillation plant, proceeding of IDA world congress on desalination and water sciences, Abu Dhabi, 375-382 (1995).

26. El-Dessouky, H. A., Modeling and simulation of thermal vapor compression desalination plant Proceedings of the Symposium on Desalination of Seawater with Nuclear Energy, Taejon, Republic of Korea (1997).

27. Max S., and Klaus D., Plant design and economics for chemical engineers, fourth edition.

28. Paul, D., William, G.S., James, A. B., and Elin, M. W., Engineering Economy, tenth edition, 82.

29. El-Nashar, A. M., Cost allocation in a cogeneration plant for the production of power and desalted water, Desalination 122, 15-34 (1999).

30. El-Nashar, A. M., and Qamhiyeh, A. A., Optimal performance of MSF distillers for UANW 9 and 10 plant: A thermo-economic study, Desalination, 93, 323-341 (1993).

31. Kamal, I., Thermo-economic modeling of dual-purpose power/desalination plants: steam cycles, Desalination, 114, 233-240 (1997).

32. Darwish, M. A., Fouad, A. Y., and Najem, N. M., Energy consumption and costs with MSF desalting system, Desalination, 109, 285-302 (1997).

33. Elsayed, M. M., Dual-purpose power desalination plant and their economics, literature note, course on fundamentals of desalination technology, Alexandria University (2000).

APPENDIX A

Thermal and Physical Properties

The billing point elevation (BPE)

It depends on both the brine salinity X and the brine temperature T. the BPE in K given by

$$BPE = \frac{X * T^2}{13832} \begin{bmatrix} 1 + 1.373 * 10^{-3} * T - 2.72 * 10^{-3} * \sqrt{X} * T + 17.86 * X - \\ 1.52 * 10^{-2} * X * T * \left(\frac{T - 225.9}{T - 236}\right) - \frac{2583 * X * (1 - X)}{T} \end{bmatrix}$$

Where

X = salt concentration, wt.frac

T = Temperature, K

The above equation is valid over the following ranges: 20000 < X < 160000 ppm, 20 < T < 180 °C.

Vapor pressure of saturated water

 $P = 10.171246 - 0.6167302 T + 1.832249x10^2 T^2 - 1.77376x10^4 T^3 + 1.47068x10^6 T^4$ Where P is kPa and T is °C

Saturation temperature

T = (42.6776 - 3892.7/(ln(P/1000)-9.48654)) - 273.15Where P is kPa and T is °C

Specific volume of water vapor

 $V = 163.3453019 - 8.041421773 T + 0.171021164 T^2 - 0.001878124x10^3 T^5$ Where V is m3/kg and T is °C

Latent heat

 $\lambda = 2499.5698 - 2.204864 \text{ T} - 1.596 \text{ x} 10^{-3} \text{ T}^2$ Where T is the saturation temperature in °C and λ is the latent heat in kJ/kg

Specific heat of water at constant pressure

 $Cp = [A+BT+CT^{2}+DT^{3}] \times 10^{-3}$ T = temperature, °C X = water salinity, g/kg A = 4206.8 - 6.6197 X + 1.2288×10^{-2} X^{2} B = -1.1262 + 5.4178×10⁻² X - 2.2719×10⁻⁴ X² C = 1.2026×10⁻² - 5.3566×10⁻⁴ X + 1.8906×10⁻⁶ X² D = 6.87774×10⁻⁷ + 1.517×10⁻⁶ X - 4.4268×10⁻⁹ X²

APPENDIX B

Umm Al-Nar Plant Information

Figure A-1: MED-TVC unit

Figure A-3: Evaporator stage process

Condensation Inside Tubes

Figure A-4: Horizontal tube falling film process

Table A-1: Umm Al-Nar Seawater Analysis

No.	Parameters	Range	Typical
1	рН @ 25 °С	8.0-8.1	8.1
2	Conductivity @ 25 °C (µS/cm)	66000-70000	69000
3	T.D.S. @ 180 °C	49000-52000	50000
4	Total Hardness (ppm CaCO3)	8900-9500	9000
5	Ca Hardness (ppm)	1400-1500	1500
6	Mg Hardness (ppm)	7400-7900	7700
7	Chloride (ppm)	26000-28000	27500
8	Sulfate (ppm)	3700-3900	3800
9	Calcium (ppm)	580-600	600
10	Magnesium (ppm)	1800-1900	1850
11	Copper (ppm)	0.01-0.02	0.02
12	lron (ppm)	0.02-0.03	0.02
13	Potassium (ppm)	600-680	650
14	Silica (ppm)	0.02-0.03	0.02
15	Bicarbonate (ppm)	91-94	94
16	Temperature °C	20-35	30

Parameter	Unit	Value
"Conditions at rated output and rated fouling factors, when operated at rated top brine temperature and seawater temperature of 33°C and salinity of 52 g/kg"		
Continuous net output of evaporator	m3/day	15911
Minimum controllable output	m3/day	7950
Steam supply to steam transformer from turbine extraction	kg/h	84000
• Pressure of steam supply to steam transformer	ata	2.8
• Temperature of steam supply to steam transformer	°C	130
• Enthalpy	kcal/kg	649.8
Steam supply to ejector from HP/MP reducing station	kg/h	3500
• Pressure of steam supply to ejector	ata	13
• Temperature of steam supply to ejector	°C	210
Specific beat consumption	kJ/kg of distillate	287.5
Performance ratio (product water per 2300 kj net heat input to steam transformer)	•	8
Steam pressure in first effect	ata	0.255
Condensate return flow rate (from steam transformer)	kg/h	84000
Condensate return temperature	°C	107.8
Heat transferred in first effect	MW	114,2
Condensate make up steam transformer	kg/h	76500
Maximum brine temperature	°C	63

Table 3-2: Main Operating Parameters

Total requirement of sea water	kg/b	5650000
Minimum brine temperature	°C	44 approx.
Maximum T.D.S. in first effect (brine)	mg/1	73000
Blow down flow rate	kg/h	1641000
Maximum blow down concentration	mg/1	73000
Feed make up flow rate	kg/h	2304000
Cooling water temperature after condenser (reject)	°C	40.5
Seawater flow rate to ejector condensers	kg/h	NA
Scale control chemical		SOKALAN PM 10
Rate of scale control chemical dosing	kg/day	166
Scale control dosing rate related to feed make-up	mg/1	3
Rate of antifoam dosing	kg/day	8.3
Maximum copper content in:		
• Distillate	mg/1	0.04
• Condensate	mg/l	0.04
	0	

Table A-3: Distiller Materials

Evaporator Vessel

- . Shell in contact with seawater
- . Shell in contact with vapor
- . External reinforcement

Heat Tubes Bundles

- . Tubes (10 top rows)
- . Tubes (all others)
- . Tube-plates

Demisters

Spray Nozzles

Distillate Condenser & Seawater Preheaters

- . Shell
- . Tubes
- . Tube-plates
- . Support plates
- . Water boxes

Thermo-Compressor

- . Nozzle
- . Diffuser

Pipe Work Material

- . Seawater
- . Distillate
- . Blow down
- . Ejector Condensate Extraction

Stainless steel 316L Stainless steel 316L Carbon steel

Titanium Aluminum brass Stainless steel 316L

Stainless steel 316-03

Stainless steel 316L

Stainless steel 316L Titanium Stainless steel 316L Stainless steel 316L Stainless steel 316L

Stainless steel 316L Stainless steel 316L

GRP GRP GRP Stainless steel 316L

APPENDIX C

MEDNAR Simulator Sub-Flow Charts

Start or stop

Guess value

Input data

Calculated result

Sub-flow charts key

Figure A-4: MEDNAR loops

Figure A-5: Feed water temperature profile (Sub-chart A)

Figure A-6: MEDNAR first effect calculations (Sub-chart B)

Figure A-7 (Part 1): MEDNAR other effects calculations (Sub-chart C)

Figure A-8: MEDNAR Thermal vapor compressor calculations

APPENDIX D

EVAPOLUND and MEDNAR Runs for 100% and 50% Production Rates

Summarizing Evaporator values

	Va	por out		-		t	_iquid out	
Evaporator No	Temp (C)	Flow (kg/s)	Area (m2)	U-value kW/(m2,C)	Temp (C)	Conc (mf)	Flow (kg/s)	Boil p el (C)
75	43 0	17.28	4,453.0	3.23	43.8	0.073	455.63	0.8
67	47 0	13.96	4,453.0	3.28	47.8	0 073	419.30	0.8
57	50.5	17.30	4,453.0	3.15	51.4	0.073	379.66	0.9
40	54.7	22.68	6,724.0	3.59	55.6	0.073	171.68	0.9
39	54.7	22.68	6,724.0	3.59	55.6	0.073	171.68	0.9
27	58.2	22.33	6,724.0	3.57	59.1	0.073	114.49	0.9
25	58.2	22.33	6,724.0	3.57	59.1	0.073	114.49	0.9
9	61 8	22.91	6,724.0	3.63	62.7	0.073	56.95	0.9
8	61.8	22.91	6,724.0	3.63	62.7	0.073	56.95	0.9

Summarizing Evaporator values

	Va	por out					Liquid out				
Evaporator No	Temp (C)	Flow (kg/s)	Area (m2)	U-value kW/(m2,C)	Temp (C)	Conc (mf)	Flow (kg/s)	Boil.p el (C)			
75	45 0	12.08	4,453.0	2.52	45.7	0.061	548.76	0.7			
67	48.4	9.14	4,453.0	2.60	49.1	0.060	507.23	0.7			
57	51.3	11.76	4,453.0	2.52	52.0	0.060	462.77	0.7			
40	54.7	9.75	6,724.0	2.31	55.4	0.059	210.46	0.7			
39	54.7	9.75	6,724.0	2.31	55.4	0.059	210.46	0.7			
27	57.3	9.49	6,724.0	2.29	58.0	0.059	140.34	0.7			
25	57.3	9.49	6,724.0	2.29	58.0	0.059	140.34	0.7			
9	59.9	9.90	6,724.0	2.33	60.6	0.059	69.96	0.7			
8	59.9	9.90	6,724.0	2.33	60.6	0.059	69.96	0.7			

WELCOME TO MEDNAR SIMULATOR

**Mass & Energy balance for Pre-Heaters

P	Area m ²	69	13	Q	7486.05	р r	Area m ²	11	56	Q 1	15464.3	F	Area m ³	28	74	Q F	43750.38
0	U _{HE3}	3.4574	16621	J		e	U _{HE12}	3.3201	11218	2		, c	UFC	3.0844	14825	С	
h	3.506418118	3.506	609656			h	3.3569733	8 3.356	356886			0	3.04017279	95 3.049	596459		
e a	Stream	Flow	Temp	Q3 in	7537.83	a t	Stream	Flow	Temp	Q12	17307.3	d e	Stream	Flow	Temp	QFC	44007,51
e	Mf2(inlet)	479.17	49.20			e r	Mf1(inlet)	532.78	40.98			n S	Mf (inlet)	1398.4	33.00		
	Mf2(outlet)	479.17	53.17	Q3	7537.83	1	Mf1(outlet)	532.78	49,20	Q12	17307.3	θ r	Mf (outlet)	1398.4	40.98	QFC	0
Ľ	Md3"	3.1738	54.68	out		2	Md4"	7.2641	50.39	out			Mdc	7.4	43.00	out	

** Local heat transfer coefficient for seawater flowing inside the tubes

dout	0.019
dinner	0.0176
salinity	52000
n12	1070.66667
n3	963
nfc	3147

Ri	0.08]	
Ro	0		
К	0.0165		
1/UFC	0.328928672	UFC	3.04017
1/UHE12	0.297887379	UHE12	3.35697
1/UHE3	0.285191317	UHE3	3.50642

temperature oC	hout	Ditus-Bolter	velocity	Reynolds	Prandtl	Kwater	muwater	cpwater	rhowater
33.00	6.02	654.40	1.768	38106.09	0.01	6.18E-01	8.44E-04	3.92	1033.05
40.98	7.24	777.53	1,986	49689.46	0.00	6.28E-01	7.24E-04	3.93	1029.92
49.20	7.90	839.57	1.9928	57337.34	0.00	6.37E-01	6.28E-04	3.93	1026.34

** Local heat transfer coefficient on the outside surface of tubes

dout	0.019	xncondout	0
con1	1.525535	con2	1
num1	0.816033	dinner	0.0176
mumt	2.093425		

temperature oC	hout	delt	rhovapor	rhocond	kliquid	lamdav	muliquid	mass	velocityout		
43.00	52.23	0.1	0.059	990.669	6.33E-04	2399.32	6.20E-04	18.24	36.14153313		
50.39	54.27	0.1	0.085	987.507	6.41E-04	2381,58	5.45E-04	7.26	27.79203266		
54.68	55.39	0.1	0.103	985.527	6.45E-04	2371.23	5.08E-04	3.17	11.76368426		
		STREAM #	FLOW	Т	SALINITY	BPE	CP	h	Н	M.B.	E.B.
---	---	----------	-------	-------	----------	------	------	--------	----------	--------	----------
С		Cell #1		61,78				258.45	2,613.02		
е		Ms	24.01	65.00					2,618.49	103.97	80827.02
l	n	Mf01	79.86	57.11	52.00		3.93			103.07	00027.03
1	0	Mb1	57.12	62.57	72.70	0.94	3.85				
	0	Mv1	22.74	61.78					2,613.02	102.97	79700.04
#	u	Md1	13.39	65.00				271.95		103.07	19100.04
1	t	Mcon	10.63	65.00				271.95			
										E-0/	4.00

Err % 1.39

		Q	T1	delta T	Qcal	Err
А	6724	55222.455	62.57	2.43	55222.45481	0
∆T loss Hot	0.415	NCG	0.02			

** BOILING POINT ELEVATION

STREAM #	X	T (K)	BPE	Tv1 (°C)	Hv1
Mb1(assume)1	0.072702159	335.72	0 9395019		
LOOP 1	0.051	335.72	0.6260898	61,94	2613.294517
LOOP 2	0.062253304	335.72	0.7841983	61.79	2613.024731
LOOP 3	0.062350255	335.72	0.7856006	61.78	2613.022338
LOOP 4	0.062351073	335.72	0.7856124	61,78	2613 022318
LOOP 5	0.06235108	335.72	0 7856125	61.78	2613.022317

** SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM #	X	Т	А	В	С	D	Ср
Mf01	52.00	57,11	3895.8024	1.076734	-0.010716138	6.76017E-05	3.934935957
LOOP 1	50	62.57	3906.535	1.014725	-0.0100305	6.54708E-05	3.94679474
LOOP 2	72.50660776	62.57	3791.4286	1.607678	-0.016873612	8 74077E-05	3.847372275
LOOP 3	72.7005107	62.57	3790.491	1.611786	-0.016924246	8.75772E-05	3.846535037
LOOP 4	72 7021453	62.57	3790.4831	1.611821	-0.016924672	8.75786E-05	3.84652798
LOOP 5	72.70215908	62.57	3790.483	1.611821	-0.016924676	8.75786E-05	3.846527921

**SALINITY

STREAM #	Assumed X	Mb1	Mv1	Ср	Calc X
LOOP 1	50	83.05556	-3 194444	3.946795	72 50660776
LOOP 2	72 50660776	57.27447	22.586638	3.847372	72,7005107
LOOP 3	72,7005107	57.12171	22,739397	3,846535	72.7021453
LOOP 4	72 7021453	57 12043	22.740681	3.846528	72.70215908
LOOP 5	72,70215908	57 12042	22.740692	3.846528	72,7021592

Cp=	(A+BT+CT^2+DT^3)E-3
WHERE	
T=	TEMPERATUREC
S=	WATER SALINITY G/Kg
A=	4206 8-6.6197S+1 2288E-2S^2
B=	-1.1262+5.4178E-2S-2.2719E-4S^2'
C=	1.2026E-2-5.3566E-4S+1.8906E-6S^2
D=	6.87774E-7+1.517E-6S-4.4268E-9S^2

		STREAM #	FLOW	T	SALINITY	BPE	CP	h	H	MB	E.B.
		Cell #2		58.20				243.43	2,606,89		
		Mf02	79.86	53 17	52.00	illillillille.	3.93				
	1	Md1	13.39	65.00				271 95		173.11	93 510 85
	n	Mb1	57.12	62.57	72.70	0.94	3 85			113.11	00,010,00
C		Mv1	22.74	61.78				258.45	2,613.02		
е	1	Md2*	22.74	61.37				256 71	2,612.31		
11	n	Mb2*	57.95	59 01	71.66	0.81	3.85				
T.	1	Mv2*	21.91	58.20					2,606.89		
	6	Ld2	13.23	58.20				243.43			
#	n	Lb2	56.80	59.01	73.12	0.92	3.84				
2	8	Vd2'	0.16	58.20					2,606.89		
	1	Vb2'	0.32	58 20					2,606.89		
	0	Md2	35.97	60.20				251 83			
	u	Mb2	114 75	59.01	72.38	0.91	3.85			173.11	93,489 74
	t	Mv2	22.40	58.20				243.43	2,606.89		
										Err %	0.02

** BOILING POINT ELEVATION

STREAM #	X	T2 (K)	BPE	Tv2 (°C)	Hv2
Mb2	0 072382699	332.16	0.9121081		
Lb2	0.073117883	332.16	0.9230707		C
Mb2' (LOOP 1)	0.054506116	332.16	0.6581367	58 35	2607 145091
Mb2' (LOOP 2)	0 065250614	332 16	0.8079357	58.20	2606.887394
Mb2' (LOOP 3)	0.065336515	332 16	0 8091673	58.20	2606 885275
Mb2' (LOOP 4)	0.065337187	332 16	0 8091769	58.20	2606 885259
Mb2' (LOOP 5)	0.065337192	332 16	0.809177	58.20	2606.885258

** SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM #	X	T2	A	В	C	D	Ср
Mf02	52 00	53 17	3895 8024	1.076734	-0.010716138	6.76017E-05	3.932919
Mb2	72 38	59.01	3792 0282	1.605044	-0.016841181	8 72992E-05	3.848038
Lb2	73.12	59.01	3788 476	1 620572	-0.017032752	8 79409E-05	3.842866
Mb2' (LOOP 1)	50	59 01	3 906 535	1.014725	-0 0100305	6 54708E-05	3 944 94
Mb2' (LOOP 2)	71.488996	59.01	3796 3643	1 585836	-0.016605551	8.65126E-05	3.849899
Mb2' (LOOP 3)	71.66079828	59.01	3795 5292	1 589557	-0.016651082	8 66644E-05	3.849156
Mb2' (LOOP 4)	71 66214257	59.01	3795 5227	1.589586	-0.016651438	8 66656E -05	3.84915
Mb2' (LOOP 5)	71 66215309	59.01	3795 5226	1 589586	-0.01665144	866656E-05	3 84513

"MODUL

STREAM #	Assumed X2'	Mb2'	Mv2'	Ср	Calc X2'
Mb2' (LOOP 1)	50	83 05556	3 19	3,94494	71 488996
Mb2' (LOOP 2)	71 488996	58 08975	21.77	3 849899	71.66079825
Mb2' (LOOP 3)	71 66079828	57 95048	21.91	3 849156	71 66214257
Mb2' (LOOP 4)	71.66214257	57.94939	21,91	3 84915	71 662 15309
Mb2' (LOOP 5)	71 6621 5309	57 94939	21.91	3.84915	71.66215317

Cp= (A+BT+CT^2+DT^3)E-3

WHERE		
T=	TEMPERATURE C	
S=	WATER SALINITY G/Kg	
A=	4206.8-6.6197S+1 2288E-2S^2	
B=	-1.1262+5.4178E-2S-2.2719E-4S^2'	
C=	1 2026E-2-5.3566E-4S+1.8906E-6S^2	
D=	6 87774E-7+1 517E-6S-4 4268E-9S^2	

		STREAM #	FLOW	T	SALINITY	BPE	CP	h	н	M.B.	E.B.
		Cell #3		54.00				225.81	2,599.62		
		Mf03	79.86	53.17	52.00		3.93				
C	1	Md2	35.97	60.20				251.83		252.07	110 180 00
	n	Mb2	114.75	59.01	72.38	0.91	3.85			202.01	110,103.55
		Mv2	22.40	58.20				243.43	2,606.89		
e		Md3'	22,40	57.79				241.69	2,606.17		
1	n	Mb3'	57.81	55 46	71.83	0.77	3 85				
	t	Mv3'	22.05	54 69					2,600.82		
	e r	Ld3	35.57	54.00				225.81			
	n	Lb3	114.09	55.46	72.80	0.90	3,84				
#	a	Vd3	0.39	54 00					2,599.62		
3	1	Vb3	0.66	54 69					2 600 82		
	-	Md3*	57.97	55.42				231.78			
	0	Mb3	171.90	55.46	72.47	0.89	3,84			252.07	110 152 12
	1	Mv3*	9.71	54.68					2,600.80	202.81	110,155,15
		Mev (tvc)in	13,39	54.68					2,600,80		
										Err %	0.03
		U	3.379757453								
					0	TO	dolta T	Ocal	Err		1442"

		Q	13	delta T	Qcal	Err	Md3"
	6724	52959 69	55.46	2.33	52959 68992	0	3 173816141
Ita loss	0.415						

" BOILING POINT ELEVATION

STREAM #	X	T3 (K)	BPE	Tv3 (°C)	Hv3
Mb3	0.072473382	328.61	0 891 1467		
Lb3	0.072798744	328.61	0 8958767		
Mb3' (LOOP 1)	0.052728823	328 61	0 6186789	54.84	2601 075056
Mb3' (LOOP 2)	0.063562425	328.61	0 7647079	54 69	2600.821848
Mb3' (LOOP 3)	0.063643873	328.61	0.765837	54 69	2600.81989
Mb3' (LOOP 4)	0 063644471	328.61	0.7658453	54.69	2600 819876
Mb3' (LOOP 5)	0 063644476	328.61	0.7658454	54 69	2600 819876

** SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM #	X	Т3	A	В	С	D	Ср
Mf03	52.00	53 17	3895 8024	1.076734	-0.010716138	6 76017E-05	3.932919
Mb3	72 47	55.46	3791 5893	1 606972	-0.016864921	8.73786E-05	3.843743
Lb3	72 80	55 46	3790.0163	1 613861	-0 016949843	8 76629E-05	3.842339
Mb3' (LOOP 1)	50	55.46	3906 535	1.014725	-0.0100305	6 54708E-05	3.943127
Mb3' (LOOP 2)	71 66720498	55 46	3795 4981	1.589695	-0.016652777	8.667E-05	3 847225
Mb3' (LOOP 3)	71.83010015	55.46	3794 707	1 59321	-0 016695841	8.68137E-05	3 846521
Mb3' (LOOP 4)	71 83129744	55 46	3794 7012	1 593236	-0.016696157	8 68147E-05	3.846516
Mb3' (LOOP 5)	71 831 30624	55.46	3794 7011	1 593236	-0.01669616	8 68147E-05	3.846516

"MODUL

STREAM #	Assumed X3'	Mb3'	Mv3'	Ср	Calc X3'
Mb3' (LOOP 1)	50	83 05556	-3,19	3.943127	71.66720498
Mb3' (LOOP 2)	71 66720498	57.9453	21,92	3.847225	71,83010015
Mb3' (LOOP 3)	71 83010015	57.81389	22.05	3.8-15521	71,83129744
Mb3' (LOOP 4)	71 83129744	57.81293	22.05	3.846516	71 83130624
Mb3' (LOOP 5)	71 83130624	57.81292	22.05	3 846516	71.8313063

Cp= (A+BT+CT^2+DT^3)E-3

WHERE	
T=	TEMPERATURE C
S=	WATER SALINITY G/Kg
A=	4206 8-6 6197S+1 2288E-2S*2
8=	-1.1262+5.4178E-2S-2.2719E-4S^2
C=	1 2026E-2-5 3566E-4S+1 8906E-6S^2
D=	6 87774E-7+1 517E-6S-4 4268E-9S^2

Steam Jet Ejector Formula: A/B

Ra	Mms	Mev	Ps	Pv	Pms	Tv	PCF	TCF	Ms
0.793572	10.625	13.38882	25.03819	15.38045	239	54.68	1.412136	0.971952	24.01382

		STREAM #	FLOW	Т	SALINITY	BPE	CP	h	H	M.B.	E.B.
		Cell #4		50.40				210.75	2,593.35		
		Mf04	53.61	49.20	52.00		3 93				
	1	Md3	119.12	55.42				231 78		532.78	153 511 73
	n	Mb3	343.80	55.46	72.47	0.89	3.84			552.10	100,011.72
С		Mv3	16.24	54.68				228.66	2,600.80		
е	1	Md4'	16.24	54.00				225.81	2,599.62		
1	n	Mb4'	37,58	51.13	74.19	0.73	3.83				
1	t	Mv4'	16.03	50.40					2,593,35		
	e	Ld4	118.07	50.40				210.75			
#	n	Lb4	341.35	51.13	72.99	0.87	3.84				
4	a	Vd4	1.05	50.40					2,593.35		
	1	Vb4	2.46	50.40					2,593.35		
	0	Md4*	134 31	50.93				212.94			
	u	Mb4	378.93	51.13	73 11	0,87	3 84			532.78	153,651.21
	t	Mv4*	19.54	50.40					2,593.35		
										Err %	-0.09
		U	3.021275618								
					Q	T4	delta T	Qcal	Err		Md4"
		A	4453		38560.917	51.13	2.87	38560 91684	0		7.264069521
		AT loss Cold	0.68								

"BOILING POINT ELEVATION

STREAM #	X	T4 (K)	BPE	Tv4 (°C)	Hv3
Mb4	0.073112953	324 28	0 8733238		
Lb4	0.072994665	324.28	0.8716527		
Mb4' (LOOP 1)	0.050566908	324 28	0.5727598	50.56	2593 622969
Mb4' (LOOP 2)	0.062574193	324 28	0.7284482	50.41	2593.350418
Mb4' (LOOP 3)	0 062660041	324 28	0.7295963	50,40	2593 348407
Mb4' (LOOP 4)	0.062660639	324 28	0.7296043	50.40	2593 348393
Mb4' (LOOP 5)	0.062660643	324.28	07296043	50.40	2593 348393

1.344207

** SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM #	X	T4	A	В	С	D	Ср
Mf04	52 00	49.20	3895 8024	1 076734	-0.010716138	6 76017E-05	3.930887
Mb4	73.11	51.13	3788 4997	1 620469	-0 017031475	8 79366E -05	3.838586
Lb4	72 99	51.13	3789 0704	1.617986	-0 017000787	8.78337E-05	3 830096
Mb4' (LOOP 1)	50	51.13	3 906 535	1 014725	-0.0100305	6.54708E-05	3.940949
Mb4' (LOOP 2)	74.01457154	51.13	3784 1613	1 639179	-0.017263642	8.87172E-05	3.834701
Mb4' (LOOP 3)	74.18626749	51 13	3783 3374	1 6427	-0.017307506	8 8865E -05	3.833963
Mb4' (LOOP 4)	74 18746307	51 13	3783.3317	1 642725	-0.017307811	8 8866E-05	3 833958
Mb4' (LOOP 5)	74 18747139	51 13	3783 3317	1 642725	-0.017307813	8.8866E-05	3.9.33967

"MODUL

STREAM #	Assumed X4'	Mb4'	Mv4'	Ср	Calc X4'
Mb4' (LOOP 1)	50	55.75556	-2.14	3 940949	74.01457154
Mb4' (LOOP 2)	74 01457154	37.66526	15 95	3.934701	74 18626749
Mb4' (LOOP 3)	74 18626749	37 57808	16 03	3.833963	74 18746307
Mb4' (LOOP 4)	74 18746307	37 57748	16 03	3 833958	74 18747139
Mb4' (LOOP 5)	74.18747139	37 57 7 47	16.03	3 833957	74 18747145

Cp= (A+BT+CT^2+DT^3)E-3

WHERE		
Γ=	TEMPERATURE C	
6=	WATER SALINITY G/Kg	
4=	4206 8-6 6197S+1 2288E-2S^2	
3=	-1 1262+5 4178E-2S-2 2719E-4S^2	
C=	1 2026E-2-5 3566E-4S+1 8906E-6S^2	
)-	6 87774E 7+1 517E 65 4 4268E 0542	

		STREAM #	FLOW	T	SALINITY	BPE	CP	h	н	M.B.	E.B.
		Cell #5		46.91				196 13	2,587.21		
		Mf05	53.61	40.98	52.00		3.93				
	1	Md4	141.58	50.93				212.94		586.30	144 095 92
	n	Mb4	378.93	51.13	73.11	0.87	3.84			000.35	144,303.02
С		Mv4	12.28	50.40				210.75	2,593.35	1	
е		Md5'	12.28	49.72				207 90	2,592 16		
1	n	Mb5'	41 94	47 55	66.47	0.64	3.87				
1	1	Mv5'	11.67	46.91					2,587.21		
	e	Ld5	140.58	46.91				196.13			
#	0	Lb5	376.96	47.55	73 49	0.86	3.83				
5	a	Vd5	1.00	46.91					2,587 21		
	1	Vb5	1 97	46.91					2,587.21		
	0	Md5	152.86	47.29				197.71			
	u	Mb5	418.90	47.55	72.79	0.85	3.84			586.39	144,535.86
	t	Mv5	14.64	46.91					2.587 21		
										Err %	0.31
		U	3 021275618								
					Q	T5	delta T	Qcal	Err		
		A	4453		29268 944	47.55	2.18	29268 94381	0		
		dita loss	0.68								

" BOILING POINT ELEVATION

STREAM #	X	T5 (K)	BPE	Tv5 (°C)	Hv3
Mb5	0.07279194	320.70	0.8466569		
Lb5	0 073494789	320.70	0.8563357		
Mb5' (LOOP 1)	0 048774343	320,70	0.5363728	47.01	2587 387055
Mb5' (LOOP 2)	0.056962342	320,70	06378716	46 91	2587 207979
Mb5' (LOOP 3)	0.057011232	32070	06384904	46 91	2587 206887
Mb5' (LOOP 4)	0.057011519	320,70	0.638494	46,91	2587.20688
Mb5' (LOOP 5)	0.05701152	320 70	0 6384941	46.91	2587 20688

" SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM #	X	T5	A	В	С	D	Ср
Mf05	52.00	40 98	3895.8024	1 076734	-0.010716138	6.76017'E-05	3.926581
Mb5	72 79	47 55	3790 0492	1 613718	-0.01694807'2	8 7657E-05	3.837885
Lb5	73 49	47 55	3786.56	1.628438	-0.017130173	8 82681E-05	3.83495
Mb5' (LOOP 1)	50	47.55	3906.535	1.014725	-0.0100305	6 54708E-05	3 939144
Mb5' (LOOP 2)	66.37599805	47.55	3821 5489	1.468971	-0.015199412	8 18767E-05	3.865834
Mb5' (LOOP 3)	66 47377833	47.55	3821 0613	1 471318	-0.01522723	8 19675E-05	3.865405
Mb5' (LOOP 4)	66.47435121	47.55	3821.0584	1,471331	-0.015227393	8.1968E-05	3 865403
Mb5' (LOOP 5)	66 47 43 54 57	47.55	3821.0584	1 47 1 33 1	-0 015227394	8.1968E-05	3.865403

**MODUL

STREAM #	Assumed X5'	Mb5'	Mv5'	Ср	Calc X5'
Mb5' (LOOP 1)	50	55.75556	-2.14	3.939144	66.37599805
Mb5' (LOOP 2)	66 37599805	41 99979	11.61	3.865834	66 47377833
Mb5' (LOOP 3)	66 47377833	41 93801	11,67	3 865405	65.47435121
Mb5' (LOOP 4)	66 47 435121	41.93765	11.67	3.865405	66 47435457
Mb5' (LOOP 5)	66.47435457	41.83764	11.67	3 865403	66 47435459

Cp= (A+BT+CT^2+DT^3)E-3

WHERE T= TEMPERATURE C S= WATER SALINITY G/Kg A= 4206.8-6.6197S+1.2288E-2S*2 B= -1.1262+5.4178E-2S-2.2719E-4S*2' C= 1.2026E-2-5.3566E-4S+1.8906E-6S*2 D= 6.87774E-7+1.517E-6S-4.4268E-9S*2

		STREAM #	FLOW	Т	SALINITY	BPE	CP	h	H	MB	E.B.
		Cell #6		43.00				179.78	2,580.28		
		Mf06	53.61	40.98	52.00		3.93				
	1	Md5	152,86	47 29				197.71		640.00	153 161 89
	n	Mb5	418 90	47 55	72.79	0.85	3.84			040.00	100,101.00
C		Mv5	14.64	46.91				196,13	2,587.21		and the second s
e	1	Md6'	14.64	46.23				193.28	2,586.01		
1	n	Mb6'	39.24	43.63	71.05	0.62	3,84				
1	1	Mv6'	14.37	43.00					2,580.28		
	e	Ld6	151.71	43.00				179.78			
#	n	Lb6	416.32	43.63	73.24	0.83	3.83				
6	a	Vd6	1 14	43.00					2,580.28		
	1	Vb6	2.57	43.00					2,580.28		
	0	Md6	166.35	43 50				181.86			
	u	Mb6	455.56	43.63	73.05	0.83	3.83			640.00	153,137.42
	t	Mv6	18.09	43 00					2,580.28		
										Err %	0.02
		U	3.021275618				The State				
					Q	T6	della T	Qcat	Err	1	
		A	4453		35024.811	43.63	2.60	35024 81051	0		

** BOILING POINT ELEVATION

dita loss

STREAM #	X	T6 (K)	BPE	Tv6 (°C)	Hv3
Mb6	0.073053274	316.78	0 8261825		
Lb6	0.073242051	316.78	0 8287076		
Mb6' (LOOP 1)	0.046813421	316.78	0.4982749	43.13	2580 506 309
Mb6' (LOOP 2)	0.057276881	316 78	0.6237633	43.00	2580283005
Mb6' (LOOP 3)	0.057338191	316.78	0.6245183	43.00	2580 281662
Mb6' (LOOP 4)	0.057338541	316 78	0 6245226	43.00	2580.281654
Mb6' (LOOP 5)	0.057338543	316 78	0.6245226	43.00	2580 281654

0.68

** SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM #	X	T6	A	В	С	D	Ср
Mf06	52.00	40.98	3895 8024	1.076734	-0.010716138	6.76017E-05	3.926581
Mb6	73.05	43.63	3788,7876	1 619217	-0.017015999	8 78847E-05	3.83434
Lb6	73.24	43.63	3787.8773	1.62317	-0 017064906	8.80488E-05	3 833523
Mb6' (LOOP 1)	50	43.63	3906.535	1.014725	-0.0100305	6 54708E-05	3.93715
Mb6' (LOOP 2)	70 92692135	43.63	3799 1014	1 57357	-0.016455809	8.60143E-05	3.843573
Mb6' (LOOP 3)	71.04954027	43 63	3798 5036	1.576258	-0 016488578	8.61233E-05	3.843039
Mb6' (LOOP 4)	71.05024062	43.63	3798 5002	1 576274	-0.016488765	8.61239E-05	3.843036
Mb6' (LOOP 5)	71 05024461	43 63	3798 5002	1 576274	-0.016488766	8 61239E-05	3 843036

"MODUL

STREAM #	Assumed X6'	Mb6'	Mv6'	Ср	Calc X6'
Mb6' (LOOP 1)	50	55.75556	-2.14	3.93715	70.92692135
Mb6' (LOOP 2)	70 92692135	39.30493	14 31	3 843573	71.04954027
Mb6' (LOOP 3)	71.04954027	39.2371	14.37	3 843039	71.05024062
Mb6' (LOOP 4)	71 05024062	39 2367 1	14.37	3 843036	71.05024461
Mb6' (LOOP 5)	71.05024461	39,23671	14.37	3 843036	71.05024464

(A+BT+CT^2+DT^3)E-3

WHERE

Cp=

1=	TEMPERATURE C
S=	WATER SALINITY G/Kg
A=	4206.8-6.6197S+1 2288E-2S^2
B=	-1.1262+5.4178E-2S-2.2719E-4S^2
C=	1 2026E-2-5 3566E-4S+1 8906E-6S^2
D=	6.87774E-7+1.517E-6S-4.4268E-9S^2

		STREAM #	FLOW	Т	SALINITY	BPE	CP	h	Н	M.B.	E.B.
		F.Condenser		43.00				179.78	2,580.28		
С		Mf+Mcw	1,398.36	33.00	52.00		3.92				
0		Md6	166.35	43.50				181.86		1,582.80	257919.7
n	n	Mv6	18.09	43.00					2,580.28		
a		Vdc'	0.14	43.00					2,580.28		
e	Internal	Ldc	166.21	43.00				179.78			
s		Mdc	18.24	43.00				179.78			
e	0	Mcw	758.36	40.98	52.00		3.93				
r	u	Mf	640.00	40.98	52.00		3.93			1,582.80	258153.8
	t	Distillate	184.44	43.00				179.78	2,580.28		

Err % -0.09

U	3.049596459
A	2874

Q	Tvc	delta T Im	Qcal	Err
43773.423	43.00	4.99	43775.40543	-1.982654161

** SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM #	X	Т	А	В	С	D	Ср
Mf+Mcw in	52.00	33.00	3895.8024	1.076734	-0.010716138	6.76017E-05	3.922094111
Mf & Mcw out	52.00	40.98	3895.8024	1.076734	-0.010716138	6.76017E-05	3.926581471

Distillate Kg/s				
Condensate Kg/s				

Brine Kg/s	
Temperature C	
Salinity *1000 ppm	

Condensed Vapor Temperature Tc

Vapor Velocity m/s

WELCOME TO MEDNAR SIMULATOR

**Mass & Energy balance for Pre-Heaters

P	Area m ²	69	13	Q	6101.31
0	U _{HE3}	3.4574	16621	Ŭ	
h	3.52533961	3 3.52	57317		
e ·	Stream	Flow	Temp	Q3	6143.7
t e	Mf2(inlet)	479.17	50.22	IN	
r	Mf2(outlet)	479 17	53 46	03	
3	1.1.2(Suilor)	0.5000	54.00	out	6143.7
	Md3	2.5868	54.65		

Area m ²	11	56	Q 1	12182.4
U _{HE12}	3.3437	22937	2	
3 41047193	31 3.409	477155		
Stream	Flow	Temp	Q12	13635.2
Mf1(inlet)	532.78	43.75		
Mf1(outlet)	532.78	50.22	Q12 out	13635.2
Md4"	5.7272	51.13		

Pre-hea

F	Area m ³	28	74	Q F	30261.14
c	U _{FC}	3.148049669		С	
0	2.29113674	15 2.30	67454		
n					
d	Stream	Flow	Temp	QFC	00447.05
Θ				in	30447.65
n	Mf (inlet)	767.61	33 70		
S			00,00		4
0	Mf (outlet)	767 61	43 75	OFC	
r	in (outer)	101.01	40.75	QIU	0
	Mdc	100	45.00	out	

** Local heat transfer coefficient for seawater flowing inside the tubes

dout	0.019
dinner	0.0176
salinity	52000
n12	1070.66667
n3	963
nfc	3147

Ri	0.08		
Ro	0		
К	0.0165		
1/UFC	0.436464564	UFC	2.29114
1/UHE12	0 293214552	UHE12	3.41047
1/UHE3	0.283660614	UHE3	3.52534

temperature oC	hout	Ditus-Bolter	velocity	Reynolds	Prandtl	Kwater	muwater	cpwater	rhowater
33,70	3.76	408.05	0.9708	21211.08	0.01	6.19E-01	8.32E-04	3.92	1032.79
43.75	7.47	798.59	1,9882	52225.49	0.00	6.31E-01	6.89E-04	3.93	1028.75
50.22	7.98	847.25	1.9937	58320.95	0.00	6.38E-01	6.17E-04	3.93	1025.86

** Local heat transfer coefficient on the outside surface of tubes

dout	0.019	xncondout	0
con1	1.538923	con2	1
num1	0.854182	dinner	0.0176
mumt	2.293731		

temperature oC	hout	delt	rhovapor	rhocond	kliquid	lamdav	muliquid	mass	velocityout
45.00	53.26	0.1	0.066	989.845	6.35E-04	2394.53	5.98E-04	12.64	22.88340011
51.13	54.94	0.1	0.088	987.173	6.42E-04	2379.80	5.38E-04	5.73	17.96367406
54.68	55.87	0.1	0.103	985.527	6.45E-04	2371.23	5.08E-04	2.59	7.781995123

		STREAM #	FLOW	Т	SALINITY	BPE	CP	h	Н	M.B.	E.B.
С		Cell #1		59.92				250.65	2,609.84		
е		Ms	10.83	62.20					2,613.73	00.60	46222.00
1	n	Mf01	79.86	57.40	52.00		3.94			90.09	40332.90
1	0	Mb1	69.70	60.61	59.58	0.74	3.90				
		Mv1	10.16	59.92					2,609.84	00.60	45022 42
#	u	Md1	3.91	62.20				260.20		90.09	40020.40
1	t	Mcon	6.92	62.20				260.20			
										Err %	1.10

U	2.332132721					
		Q	T1	delta T	Qcal	Err
А	6724	24967.662	60.61	1.59	24967.66185	-5.09317E-11
∆T loss Hot	0.415	NCG	0.02]		

** BOILING POINT ELEVATION

STREAM #	X	T (K)	BPE	Tv1 (°C)	Hv1
Mb1(assume)1	0.059581015	333.76	0.7358878		
LOOP 1	0.051	333.76	0.6177527	59.99	2609 95329
LOOP 2	0.055757684	333.76	0.6826125	59.92	2609.842136
LOOP 3	0.055790285	333,76	0.6830624	59.92	2609.841365
LOOP 4	0.055790506	333,76	0.6830655	59.92	2609.84136
LOOP 5	0.055790507	333.76	0.6830655	59.92	2609 84136

** SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM #	X	Т	A	В	С	D	Ср
Mf01	52.00	57.40	3895.8024	1.076734	-0.010716138	6.76017E-05	3.935085544
LOOP 1	50	60.61	3906 535	1.014725	-0.0100305	6.54708E-05	3 945765853
LOOP 2	59.51536793	60.61	3856.3512	1.293499	-0.013157347	7.52925E-05	3.903178653
LOOP 3	59 58056921	60.61	3856.015	1.295267	-0.013177592	7 5357E-05	3.902889634
LOOP 4	59.58101179	60.61	3856.0127	1.295279	-0.01317773	7.53575E-05	3 902887672
LOOP 5	59.58101479	60.61	3856.0127	1.295279	-0.013177731	7 53575E-05	3.902887659

**SALINITY

STREAM #	Assumed X	Mb1	Mv1	Ср	Calc X
LOOP 1	50	83.05556	-3 194444	3,945766	59 51 53 67 93
LOOP 2	59.51536793	69.77656	10.084549	3.903179	59.58056921
LOOP 3	59.58056921	69.7002	10.160908	3 90289	59,58101179
LOOP 4	59.58101179	69.69969	10.161426	3.902888	59 58 10 14 79
LOOP 5	59.58101479	69 69968	10.161429	3.902888	59.58101481

Cp= (A+BT+CT^2+DT^3)E-3

WHERE

- T= TEMPERATURE C
- S= WATER SALINITY G/Kg
- A= 4206.8-6.6197S+1.2288E-2S^2
- B= -1.1262+5.4178E-2S-2.2719E-4S^2'
- C= 1 2026E-2-5 3566E-4S+1 8906E-6S^2
- D= 6.87774E-7+1.517E-6S-4.4268E-9S^2

		STREAM #	FLOW	Т	SALINITY	BPE	CP	h	H	MB	E.B.
		Cell #2		57.27				239,53	2,605.28		
		Mf02	79.86	53.46	52.00		3 93				
	1	Md1	3.91	62.20				260.20		163.63	60.916.01
	n	Mb1	69.70	60.61	59 58	0.74	3.90			100,000	00,010,01
С		Mv1	10.16	59.92				250.65	2,609,84		
е	1	Md2*	10.16	59.51				248.91	2,609.13		
1	n	Mb2*	70.32	57.98	59.06	0.71	3.90				
1	t	Mv2*	9.54	57 27					2,605,28		
	e [Ld2	3.87	57 27				239.53			
#	n	Lb2	69 40	57.98	59.84	0.73	3.90				
2	8	Vd2'	0.03	57 27					2,605.28		
	1	Vb2'	0.30	57.27					2,605,28		
	0	Md2	14.04	58.89				246,32			
	u	Mb2	139 72	57 98	59.45	0 72	3.90			163.63	60,802.09
	t	Mv2	9.88	57.27				239.53	2,605,28		
		· · · · · · · · · · · · · · · · · · ·								Err %	0.02

0	T2	delta T	Qcal	Err
23983 202	57.98	1.53	23983 20245	4.73E-11

" BOILING POINT ELEVATION

STREAM #	X	T2 (K)	BPE	Tv2 (°C)	Hv2
Mb2	0 059445535	331 13	0.7208063		
Lb2	0.059837595	331,13	0.7262256		
Mb2' (LOOP 1)	0.053990035	331.13	0.6465181	57 33	2605 387738
Mb2' (LOOP 2)	0.058489934	331.13	0.707643	57.27	2605 282354
Mb2' (LOOP 3)	0 058519135	331.13	0 7080443	57 27	2605 281662
Mb2' (LOOP 4)	0.058519323	331.13	0.7080469	57.27	2605 281657
Mb2' (LOOP 5)	0.058519324	331.13	0.7080469	57 27	2605 281657

** SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM #	X	T2	A	В	С	D	Ср
Mf02	52.00	53 46	3895 8024	1 076734	-0.010716138	6 76017E-05	3.933068
Mb2	59 45	57.98	3856 7114	1 291603	-0 013135646	7 52233E-05	3 902102
Lb2	5984	57.98	3854 6907	1 302219	-0.013257241	7.56111E-05	3.900364
Mb2' (LOOP 1)	50	57.98	3906 535	1.014725	-0.0100305	6 5470BE-05	3.94441
Mb2' (LOOP 2)	58,99979802	57.98	3859 0133	1 27 94 48	-0.012996698	7 47809E -05	3 904081
Mb2' (LOOP 3)	59.05820059	57 98	3858 7114	1.281046	-0.013014947	7 4839E-05	3.903821
Mb2' (LOOP 4)	59.05857612	57.98	3858.7094	1 281056	-0.013015064	7.48393E-05	3,90382
Mb2' (LOOP 5)	59 05857853	57.98	3858 7054	1.281056	-0.013015065	7 48393E-05	3.90382

"MODUL

STREAM #	Assumed X2'	Mb2'	Mv2'	Ср	Calc X2'
Mb2' (LOOP 1)	50	83 05556	-3, 19	3.94441	58 99979802
Mb2' (LOOP 2)	58.99979802	70.3863	9.47	3,904081	59.05820059
Mb2' (LOOP 3)	59.05820059	75.3167	9.54	3.90:3821	59,05857612
Mb2' (LOOP 4)	59 05857612	70.31625	9.54	3.90382	59 05857853
Mb2' (LOOP 5)	59 05857853	70.31625	9.54	3 90382	59 05857855

Cp= (A+BT+CT^2+DT^3)E-3

VHERE		
=	TEMPERATURE C	
=	WATER SALINITY G/Kg	
=	4206 8-6 6197S+1 2288E-2S^2	
=	-1 1262+5 4178E-2S-2 2719E-4S^2'	
=	1 2026E-2-5 3566E-4S+1 8906E-6S*2	
)=	6.87774E-7+1.517E-6S-4.4268E-9S^2	

		STREAM #	FLOW	T	SALINITY	BPE	CP	h	Н	M.B.	E.B.
		Cell #3		54.00				225.81	2,599.62		
		Mf03	79.86	53.46	52.00		3,93				
	1	Md2	14 04	58.89				246.32		243.49	77 504 35
	n	Mb2	139.72	57.98	59.45	0.72	3.90			240.40	11,004.00
C		Mv2	9.88	57.27				239 53	2,605 28		
e	1	Md3'	9.88	56.86				237 79	2,604.57		
	n	Mb3'	70.25	55.37	59 12	0.68	3.90				
	1	Mv3'	9.61	54.69					2,600.81		
1	e	Ld3	13.91	54 00				225 81			
	n	Lb3	139.12	55.37	59.70	0.71	3.90				
#	8	Vd3	0.12	54.00					2,599 62		
3	1	Vb3	0.60	54 69					2,600.81		
	-	Md3*	23 79	55.14				230.58			
	0	Mb3	209.37	55.37	59.50	0.71	3.90			243 49	77 560 23
	t	Mv3*	6.42	54 68					2,600.80	240.40	11,000.20
		Mev (tvc)in	3.91	54.68					2,600.80		
3										Err %	0.03
		U	2.332132721		-						
					Q	T3	delta T	Qcal	Err	1.1.1.1	Md3"
		A	6724		23378.728	55.37	1.49	23378.72764	0		2 586822138

		Q	13	delta T	Qcal	Err	Md3"
	6724	23378.728	55:37	1.49	23378.72764	0	2 5868221
in loss	0.415						
112 1035	0410						

** BOILING POINT ELEVATION

STREAM #	X	T3 (K)	BPE	Tv3 (°C)	Hv3
Mb3	0.05950444	328.52	0.7085986		
Lb3	0 059700759	328.52	0.7112625		
Mb3' (LOOP 1)	0.052683076	328 52	0.6176838	54.75	2600 918147
Mb3' (LOOP 2)	0.057212664	328 52	0.6776992	54.69	2600 814072
Mb3' (LOOP 3)	0.057240728	328.52	0 6780753	54 69	2600 B1342
Mb3' (LOOP 4)	0.057240901	328 52	0 6780777	54.69	2600.813416
Mb3' (LOOP 5)	0.057240902	328 52		54.69	2600 813416

** SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM #	X	Т3	A	В	С	D	Ср
Mf03	52.00	53.46	3895.80.24	1.076734	-0.010716138	6 76017E-05	3.933068
Mb3	59.50	55.37	3856 4075	1 293202	-0 013153953	7 52817E-05	3 900462
Lb3	59.70	55.37	3855 3955	1 298522	-0 013214869	7 54759E-05	3.89959
Mb3' (LOOP 1)	50	55,37	3906.535	1.014725	-0.0100305	6 54708E-05	3.943081
Mb3' (LOOP 2)	59.05917496	55.37	3858 7064	1.281072	-0.013015251	7.48399E-05	3.902439
Mb3' (LOOP 3)	59.11530404	55.37	3858 4163	1.282606	-0.013032777	7 48957E -05	3 90219
Mb3' (LOOP 4)	59 11564851	55.37	3858 4145	1 282616	-0 013032884	7.48961E-05	3 902188
Mb3' (LOOP 5)	59 11565062	55 37	3858 4145	1 282616	-0 01 3032885	7.48961E-05	3,902188

"MODUL

STREAM #	Assumed X3'	Mb3'	Mv3'	Ср	Calc X3
Mb3' (LOOP 1)	50	83.05556	-3 19	3 943081	59.05917496
Mb3' (LOOP 2)	59 05917496	70.31554	9.55	3.902439	59 11530404
Mb3' (LOOP 3)	59 11530404	70 24878	9.61	3,90219	59 11564851
Mb3' (LOOP 4)	59 11564851	70 24837	9.61	3 902188	59 11565062
Mb3' (LOOP 5)	59.11565062	70.24836	9.61	3 902188	59.11565064

Cp= (A+BT+CT^2+DT^3)E-3

WHERE	
T=	TEMPERATURE C
S=	WATER SALINITY G/Kg
A=	4206 8-6 6197S+1 2288E-2S^2
B=	-1.1262+5.4178E-2S-2.2719E-4S^2
C=	1 2026E-2-5 3566E-4S+1 8906E-6S^2
D≃	6.87774E-7+1.517E-6S-4.4268E-9S^2

Steam Jet Ejector Formula: A/B

Ra	Mms	Mev	Ps	Pv	Pms	Tv	PCF	TCF	Ms
1.769689	6.91667	3.908411	22.02731	15.38045	166.9936	54.68	1.468172	0.971952	10.82508

		STREAM #	FLOW	T	SALINITY	BPE	CP	h	H	M.B.	E.B.
		Cell #4		51.15				213.88	2,594,65		
		Mf04	53,61	50.22	52.00		3.93				
	1	Md3	50.17	55.14				230 58		532 78	120 262 46
	n	Mb3	418.74	55.37	59.50	0.71	3.90			552.70	155,202.40
С		Mv3	10.26	54.68				228 66	2,600.80		
е	1	Md4'	10.26	54.00				225.81	2,599.62		
-1	n	Mb4'	43.51	51,82	64.07	0.67	3,88				
1	t	M∨4'	10.10	51 15					2,594,65		
	e	Ld4	49.82	51 15				213.88			
#	n	Lb4	416.12	51.82	59 88	0.70	3.90				
4	a	Vd4	0.35	51.15					2,594 65		
	1	Vb4	2 62	51.15					2,594 65		
	0	Md4*	60.08	51.76				216.44			
	u	Mb4	459.63	51.82	60.28	0.70	3 90			532 78	139,693.55
	t	Mv4*	13.07	51 15					2,594.65		
										Err %	-0.31
		U	2.510295657						_		
					Q	T4	delta T	Qcal	Err		Md4"
		A	4453		24352 436	51.82	2.18	24352 4358	0		5.727203609
				1000							
		AT loss Cold	0.68								

** BOILING POINT ELEVATION

STREAM #	X	T4 (K)	BPE	Tv4 (°C)	Hv3
Mb4	0.060275668	324 97	0.7013211		
Lb4	0.059878934	324 97	0.6960587		
Mb4' (LOOP 1)	0.050910734	324 97	0 5799125	51 24	2594 813156
Mb4' (LOOP 2)	0.057901501	324 97	0.6699897	51 15	2594 655715
Mb4' (LOOP 3)	0 057945353	324.97	0.6705649	51.15	2594 65471
Mb4' (LOOP 4)	0.057945624	324 97	0 6705685	51.15	2594.654703
Mb4' (LOOP 5)	0 057945626	324 97	0.6705685	51.15	2594 654 703

1.30524

** SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM#	X	T4	A	В	С	D	Ср
Mf04	52.00	50.22	3895 8024	1 076734	-0 010716138	6.76017E-05	3.931413
Mb4	60.28	51.82	3852 4374	1.313998	-0 01339,2419	7.50427E-05	3.895148
Lb4	59.88	51.82	3854.4779	1.303334	-0.013270029	7.56519E-05	3.89691
Mb4' (LOOP 1)	50	51.82	3906 535	1.014725	-0.0100305	6.54708E-05	3 941294
Mb4' (LOOP 2)	63 98 153378	51.82	3833 564	1 410158	-0.014506919	7 9626E-05	3.878764
Mb4' (LOOP 3)	64 0692 3873	51.82	3833.1215	1 412358	-0.014532666	7.97094E-05	3 878378
Mb4' (LOOP 4)	64 06978054	51.82	3833.1187	1.412372	-0.014532825	7 97099E-05	3878375
Mb4' (LOOP 5)	64 06978389	51.82	3833 1187	1 412372	-0.014532826	7 970995-05	3 878375

"MODUL

STREAM #	Assum d X4'	Mb4'	Mv4'	Ср	Calc X4'
Mb4' (LOOP 1)	50	55.75556	-2.14	3.941294	63 98153378
Mb4' (LOOP 2)	63.98153378	43.5716	10 04	3 878764	64 06923873
Mb4' (LOOP 3)	64 06923873	43,51195	10.10	3.878378	64 06978054
Mb4' (LOOP 4)	64 06978054	43 51159	10.10	3 878375	64 06978389
Mb4' (LOOP 5)	64.06978389	43 51158	10.10	3 878375	64 06978391

Cp= (A+BT+CT^2+DT^3)E-3

VHERE		
=	TEMPERATURE C	
5=	WATER SALINITY G/Kg	
=	4206 8-6 6197S+1 2288E-2S^2	
3=	-1 1262+5 4178E-2S-2 2719E-4S^2'	
)=	1 2026E-2-5 3566E-4S+1 8906E-6S^2	
)=	6 87774E-7+1 517E-6S-4 4268E-9S^2	

		STREAM #	FLOW	Т	SALINITY	BPE	CP	h	н	M.B.	E.B.
		Cell #5		48.30				201.92	2,589.65		
		Mf05	53.61	43.75	52.00		3.93				
	1	Md4	65.81	51.76				216.44		586 39	135 286 33
	n	Mb4	459 63	51 82	60.28	0.70	3,90			000,00	100,200.00
C		Mv4	7 34	51 15				213.88	2,594.65		
е	1	Md5'	7 34	50.47				211.03	2,593.47		
1	n	Mb5'	46,73	48.91	59.65	0.61	3,90				
1	1	Mv5'	6,88	48.30					2,589.65		
	e r	Ld5	65.41	48.30				201 92			
#	n	Lb5	457.46	48.91	60.56	0.69	3.89				
*5	8	Vd5	0.40	48,30					2,589 65		
	1	Vb5	2.16	48.30					2,589.65		
	0	Md5	72.75	48.73				203 73			
	U	Mb5	504 20	48.91	60.48	0.69	3.89			586.39	135,260,37
	t	Mv5	9.44	48 30					2,589.65		
										Err %	0.02
		U	2 510295657		_	_					
					Q	T5	delta T	Qcal	Err		
		A	4453		17494.348	48.91	1.57	17494.34846	0		

** BOILING POINT ELEVATION

dita loss

STREAM #	X	T5 (K)	BPE	Tv5 (°C)	Hv3
Mb5	0.060476727	322.06	0 6894685		
Lb5	0.060560881	322.06	0.690564		
Mb5' (LOOP 1)	0.049452939	322 06	0.5499701	48.36	2589.753807
Mb5' (LOOP 2)	0.054252777	322 06	0.6097496	48.30	2589 648654
Mb5' (LOOP 3)	0 054279268	322.06	0.6100836	48.30	2589 648067
Mb5' (LOOP 4)	0.054279413	322.06	0 6 100 8 5 4	48.30	2589 648064
Mb5' (LOOP 5)	0.054279414	322.06	0.6100854	48 30	2569 648064

** SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

0.68

STREAM#	X	T5	A	В	С	D	Ср
Mf05	52.00	43.75	3895 8024	1 076734	-0 010716138	6.76017E-05	3.928059
Mb5	6.0.40	48 91	3851 4046	1 319376	-0 013454218	7 62402E-05	3 192668
Lb5	60.56	48 91	3850.9729	1 321621	-0 013480039	7 63228E-05	3 892294
Mb5' (LOOP 1)	50	48 91	3906 535	1.014725	-0.0100305	6 54708E-05	3.939828
Mb5' (LOOP 2)	59 53967572	48.91	3855 9165	1 295785	-0.013183522	7 5376E-05	3 896573
Mb5' (LOOP 3)	59 65265827	48.91	3855 6434	1 29722	-0.013199957	7 54284E-05	3.896337
Mb5' (LOOP 4)	59 65294751	48 91	3855.6419	1.297228	-0.013200047	7.54286E-05	3.896335
Mb5' (LOOP 5)	59 65294909	48.91	3855 6419	1 26722B	0.013200047	7 54286E-05	3 896335

"MODUL

STREAM #	Assumed X5'	Mb5'	Mv5'	Ср	Calc X5'
Mb5' (LOOP 1)	50	55 7 55 56	-2.14	3 939828	59 59967572
Mb5' (LOOP 2)	59 59967572	46,77505	6.84	3 896573	59 65265827
Mb5' (LOOP 3)	59.65285827	46.7335	6,88	3 896337	59,85294751
Mb5' (LOOP 4)	59.652 4751	46 73328	6.88	3.896335	59 65294909
Mb5' (LOOP 5)	59.65294909	46.7332B	6 88	3.896335	59 6529491

(A+BT+CT^2+DT^3)E-3

Cp=

WHERE	
T=	TEMPERATURE C
S=	WATER SALINITY G/Kg
A=	4206 8-6 6197S+1 2288E-2S^2
B=	-1.1262+5.4178E-2S-2.2719E-4S^2'
C=	1 2026E-2-5 3566E-4S+1 8906E-6S^2
D=	6 87774E-7+1 517E-6S-4 4268E-9S^2

		STREAM #	FLOW	Т	SALINITY	BPE	CP	h	H	M.B.	E.B.
		Cell #6		45.00				188 14	2,583.83		
		Mf06	53,61	43.75	52.00		3 93				
	T	Md5	72.75	48 73				203 73		640.00	144 473 65
	n	Mb5	504.20	48 91	60.48	0.69	3.89			040.00	144,47 5,05
С		Mv5	9 44	48.30				201.92	2,589.65		
е	1	Md6'	9.44	47.62				199.08	2,588,45		
1	n	Mb6'	44.35	45.60	62.86	0.60	3.88				
1	t	Mv6'	9.27	45.00					2,583.83		
	e	Ld6	72.28	45.00				188 14			
#	n	Lb6	501.38	45.60	60.82	0.68	3.89				
6	a	Vd6	0.47	45.00					2,583.83		
	1	Vb6	2.82	45.00					2,583,83		
	0	Md6	81.72	45 59				190.61		_	
	u	Mb6	545.73	45 60	60.98	0.68	3.89			640.00	144,780,17
	t	Mv6	12 56	45.00					2,583.83		
										Err %	-0.21
		U	2.510295657		Second and		and the second				
					Q	T6	delta T	Qcal	Err	- Contract	
		A	4453		22561.871	45.60	2.02	22561 87147	0		

		Q	10	dena	QCal	EII
	4453	22561.871	45.60	2.02	22561 87147	
loss	0.68					

** BOILING POINT ELEVATION

dit

STREAM #	X	T6 (K)	BPE	Tv6 (°C)	Hv3
Mb6	0 060982951	318.75	0.6795769		
Lb6	0.060816507	318.75	0.6774581		
Mb6' (LOOP 1)	0 047796719	318.75	0.5171977	45.08	2583 97138
Mb6' (LOOP 2)	0.054196234	318.75	0.594 6369	45.00	2583.834174
Mb6' (LOOP 3)	0.054230935	318.75	0.5950637	45 00	2583 833418
Mb6' (LOOP 4)	0 054231 12	318 75	0.595066	45.00	2583 833414
Mb6' (LOOP 5)	0 054231121	318.75	0.595066	45.00	2583 833414

** SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM#	X	T6	A	В	C	D	Ср
Mf06	52.00	43 75	3895 8024	1.076734	-0 010716138	6.76017E-05	3.928059
Mb6	60.98	45 60	3848 8093	1 332833	-0.013609137	7 6736E-05	3 888563
Lb6	60.82	45.60	3849 6619	1.328421	-0 013558307	7.65732E-05	3 889304
Mb6' (LOOP 1)	50	45.60	3906.535	1 014725	-0.010.0305	6 54708E -05	3.938156
Mb6' (LOOP 2)	62 79503082	45.60	3839 57	1 380125	-0.014155742	7 8492E-05	3.880506
Mb6' (LOOP 3)	\$2.86443179	45 60	3839 2177	1,381829	-0.01417643	7 85587E-05	3 880199
Mb6' (LOOP 4)	62.86480253	45.60	3039_2158	1.381838	-0.01417654	7.8559E-05	3.880197
Mb6' (LOOP 5)	62 B64B0451	45.60	3839 2158	1 381838	-0.014176541	7 8550F-05	3.880197

"MODUL

STREAM #	Assumed X6'	Mb6'	Mv6'	Ср	Calc X6'
Mb6' (LOOP 1)	50	55.75556	-2.14	3.938156	62.79503082
Mb6' (LOOP 2)	62 79503082	44 39488	9.22	3.880506	62 86443179
Mb6' (LOOP 3)	62 86443179	44.34587	9.27	3.880199	62 86480253
Mb6' (LOOP 4)	62 86480253	44,34561	9.27	3 880197	62 86480451
Mb6' (LOOP 5)	62 86480451	44,3456	9.27	3 8 8 0 1 9 7	62.86480452

Cp= (A+BT+CT^2+DT^3)E-3

WHERE		
Τ=	TEMPERATURE C	
S=	WATER SALINITY G/Kg	
۵,=	4206 8-6 6197S+1 2288E-2S^2	
B=	-1.1262+5.4178E-2S-2.2719E-4S^2'	
C=	1 2026E-2-5 3566E-4S+1 8906E-6S^2	
D=	6.87774E-7+1.517E-6S-4.4268E-9S^2	

		STREAM #	FLOW	Т	SALINITY	BPE	CP	h	Н	M.B.	E.B.
		F.Condenser		45.00				188.14	2,583.83		
С		Mf+Mcw	767.61	33.70	52.00		3.92				
0	1	Md6	81.72	45.59				190.61		861.88	149487.2
n	n	Mv6	12.56	45.00					2,583.83		
d		Vdc'	0.08	45.00					2,583.83		
e	Internal	Ldc	81.63	45.00				188.14			
1		Mdc	12.64	45.00				188.14			
3	0	Mcw	127.61	43.75	52.00		3.93				
r	u	Mf	640.00	43.75	52.00		3.93			861.88	149653.6
	t	Distillate	94.27	45.00				188.14	2,583.83		librer:

Err % -0.11

Q	Tvc	delta T Im	Qcal	Err
30281.418	45.00	4.57	30282.58517	-1.166970827

** SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM #	X	Т	A	В	С	D	Ср
Mf+Mcw in	52.00	33.70	3895.8024	1.076734	-0.010716138	6.76017E-05	3.922505389
Mf & Mcw out	52.00	43.75	3895.8024	1.076734	-0.010716138	6.76017E-05	3.928059295

Distillate rigis	

Brine Kg/s	
Temperature C	
Salinity * 1000 ppm	

Condensed Vapor Temperature Tc

Vapor Velocity m/s

APPENDIX E

Plant data and MEDNAR plant evaluation Run at Clean Condition

AUTHORITY	CONSCIENCE MOLT MACDONALD
OJECT TITLE: ADDITION OF DESALINATION ANTS TO UNITS 9 & 10 IN UMM AL NAR WEST & RATING OF EXISTING UMM AL NAR EAST ODUCTION	PROJECT NO. ADWEA/PS/AD-135/268/98
IIT NO. 9	LOCATION : UMM AL NAR WEST

Unit 9

Conditions:	Steam flow:	79.97 T/h
	Make-up flow:	2359.25 T/h
	Distillate flow:	674.34 T/h

Brine temperature for each effect:

Item	AKS	Temperature
Effect 1A	9WF11T1T	62.08
Effect 1B	9WF12T1T	61.67
Effect 2A	9WF21T1T	58.11
Effect 2B	9WF22T1T	57.70
Effect 3A	9WF31T1T	55.04
Effect 3B	9WF32T1T	55.00
Effect 4	9WF04T1T	51.77
Effect 5	9WF05T1T	48.93
Effect 6	9WF06T1T	45.22

Brine & Distillate level at last effect:

Item	AKS	Temperature
Cell 6 Brine level	9WF00L1I	152.14
Cell 6 Distillate level	9WP00L1I	227.73

			D. COL
r and on behalf of		NAME SIGNATURE	DATE
B-CONTRACTOR			
NTRACTOR		LAPOINTER to	- 04/10/2000
IGINEER REP.		Osama Herkal O. Heck	
JENT		Aty AL B-, Wat 5-1	
		T. Charlen M.	-
·	Revisions	0 1 2 3 Designation	
ldem	Date	5/97 Tensorations & levels of	t 100% load
RUE DE CLICHY	Dess-Drawn	MB	
75009 PARIS	Appro	JPQ	
Dossier / File P 7685	N'PLAN-DRW	GN'	Revis
10 - 100			
98401	Echelle-Scale		1 Page

UMM AL NAR WEST UNIT 2 & 10 DESALINATION PLANT

Date : 4-0ct-2000 Time : 10:08:31 100%

REAL TIME VALUE LIST

DESALINATION UNIT 9

TAG	DESCRIPTION	TYPE	VALUE	UNIT
9WC10F11	SEA WATER INLET FLOW	REAL	5219.47	t/h
9WC20T3T	SW INLET BEFORE PREHTR TEMP	REAL	32.90	°C
9WC20T4T	SW INLET TO CONDENSER TEMP	REAL	32.70 -	°C
9WC30T2T	SW AFTER CONDENSER TEMP	REAL	40.30	°C
9WE01T2T	EJECTOCOMP A OUTLET TEMP	REAL	63.77 ~	°C
9WE02T2T	EJECTOCOMP B OUTLET TEMP	REAL	63.57	°C
9WE07P3T	CONDENSER PRESSURE	REAL	89.36	mbar a
9WE07T1I	CONDENSER TEMPERATURE	REAL	43.22	°C
9WF00L1I	CELL 6 BRINE LEVEL	REAL	152.14	mm
9WF04T1T	CELL 4 BRINE OUTLET TEMP	REAL	51.77	°C
9WF05T1T	CELL 5 BRINE OUTLET TEMP	REAL	48.93	°C
9WF10T1T	CELL 6 BRINE OUTLET TEMP	REAL	45.22	°C
9WF11T1T	CELL 1A BRINE OUTLET TEMP	REAL	62.08	°C
9WF12T1T	CELL 1B BRINE OUTLET TEMP	REAL	61.67	°C
9WF20E1T	BRINE PUMP MOTOR CURRENT	REAL	140.62	А
9WF20F1T	BRINE DISCHARGE FLOW	REAL	1576.00	t/h
9WF20P3T	BRINE DISCHARGE PRESSURE	REAL	0.81	bar
9WF20T1T	BRINE PP DRV END BEAR TEMP	REAL	39.63	°C
9WF20T4T	BRINE PP SHAFT END BEAR TEMP	REAL	45.02	°C
9WF21T1T	CELL 2A BRINE OUTLET TEMP	REAL	58.11	°C
9WF22T1T	CELL 2B BRINE OUTLET TEMP	REAL	57.70	°C
9WF30T1I	CELL 3 BRINE OUTLET TEMP	REAL	55.03	°C
9WF31T1T	CELL 3A BRINE OUTLET TEMP	REAL	55.04	°C
9WF32T1T	CELL 3B BRINE OUTLET TEMP	REAL	55.00	°C
9WH10F1I	LP STEAM TO STEAM TRFR FLOW	REAL	79.97~	t/h
9WH10P1T	LP STEAM TO STM TRFR PRES	REAL	1.65	bar
9WH10T1T	LP STEAM TO STM TRFR TEMP	REAL	135.78	°C
9WH11F1I	LP STEAM TO EJECTOCMP A FLOW	REAL	37.86	ťh
9WH11P1T	VAPOUR EJECTOCMP A DIFF PRES	REAL	-11.96	mbar
9WH11P3T	LP STEAM TO EJECTOCMP A PRES	REAL	1.35	bar 🗲
9WH11T3T	LP STEAM TO EJECTOCMP A TEMP	REAL	126.11	°C 🗲
9WH12F1I	LP STEAM TO EJECTOCMP B FLOW	REAL	37.58	t/h
9WH12P1T	VAPOUR EJECTOCMP B DIFF PRES	REAL	9.79	mbar
9WH12P3T	LP STEAM TO EJECTOCMP B PRES	REAL	1.33	bar
9WH12T3T	LP STEAM TO EJECTOCMP B TEMP	REAL	126.00	°C
9WJ11F1T	TRISODIUM PHOSPHATE FLOW	REAL	0.39	Vh
9WJ12F1T	SODIUM SULFITE FLOW	REAL	0.02	l/h
9WK01L3T	ANTISCALE TANK 1 LEVEL	REAL	0.44	m
9WK02L3T	ANTISCALE TANK 2 LEVEL	REAL	0.99	m
9WK11F1T	ANTISCALE TO SEA WATER FLOW	REAL	11.01	l/h
9WL01L3T	ANTIFOAM TANK 1 LEVEL	REAL	0.71	m
9WL02L3T	ANTIFOAM TANK 2 LEVEL	REAL	0 4 1	m
9WL11F1T	ANTIFOAM TO SEA WATER FLOW	REAL	9.94	l/h
9WM00L11	CONDENSATE STEAM TRFR LVL	REAL	199.71	mm
9WM20E1T	CONDENSATE PP MTR CURRENT	REAL	28.24	A
9WM20F1T	CONDENSATE FLOW	REAL	81.31	ťh
9WM20P3T	CONDENSATE DISCHARGE PRES	REAL	5.61	bar
9WM20T1T	CONDENSATE TEMPERATURE	REAL	96 37	°C
9WM22Q1T	CONDENSATE CONDUCTIVITY	REAL	0.09	µS/cm
9WN00L1I	STM TRFR LVL	REAL	249 69	mm
9WN01T1T	CELLIA CONDENSATE MK UP TEMP	REAL	63 51	50
9WN02T1T	CELLIB CONDENSATE MK UP TEMF	REAL	63 72	C
9WN20E1T	COND MK UP PP MTR CURRENT	REAL	2572	A
9WN20F1T	CONDENSATE MAKE UP FLOW	REAL	81 15	Vh

Date : 4-0ct-2000 Time : 10:08:31

REAL TIME VALUE LIST

DESALINATION UNIT 9

TAG	DESCRIPTION	TYPE	VALUE	UNIT
9WN20P3T	CONDENSATE MAKE UP PRES	REAL	4 30	bar
9WN20Q1T	CONDENSATE MKUP CONDUCT	REAL	1.62	uS/cm
9WN20Q2T	CONDENSATE MAKE UP PH	REAL	6.99	рН
9WN20T2T	CONDENSATE MAKE UP TEMP	REAL	63.16	°C
9WN60F1I	STM TRFR RECIRC FLOW	REAL	204.85	t/h
9WN61Q1T	STM TRFR CONDUCT	REAL	232.54	uS/cm
9WN61Q2T	STM TRFR PH	REAL	10.45	рH
9WN80E1T	STM TRFR RECIRC PP MTR CUR	REAL	22.68	A
9WN80F1I	STM TRFR RECIRC PP FLOW	REAL	124.26	t/h
9WN80P3T	STM TRFR RECIRC PRES	REAL	3.10	bar
9WP00L1I	CONDENSER DISTILLATE LEVEL	REAL	227.73	mm
9WP20E1T	DISTILLATE PUMP MTR CURRENT	REAL	147.42	А
9WP20F1T	DISTILLATE FLOW	REAL	674.34	t/h
9WP20P3T	DISTILLATE PRESSURE	REAL	2005	bar
9WP20T1T	DISTILL PP DRV END BEAR TEMP	REAL	36.82	°C
9WP20T4T	DISTILL PP SHFT END BEAR TEM	REAL	37.68	°C
9WP20T6T	DISTILL BEFORE SW PHTR TEMP	REAL	43.49	°C
9WP40T7T	DISTILLATE AFTER SW PHT TEMP	REAL	43.58	°C
9WP40Q1T	DISTILLATE CONDUCTIVITY	REAL	94.04	µS/cm
9WQ10F1I	MP STEAM TO EJECTORS FLOW	REAL	3.07	t/h
9WQ10P1T	MP STEAM TO EJECTORS PRES	REAL	11.77	bar
9WQ10T1T	MP STEAM TO EJECTORS TEMP	REAL	189.36	°C
9VVW30T1	BOTTOM TEMPERATURE	REAL	55.03	°C
9WZ01T7T	SW MK UP BFR EJEC COND TEMP	REAL	51.52	°C
9WZ01T8T	SW MK UP AFT EJEC COND TEMP	REAL	55.00	°C
9WZ04F1T	SEA WATER TO CELL 4 FLOW	REAL	201.58	t/h
9WZ05F1T	SEA WATER TO CELL 5 FLOW	REAL	186.00	t/h
9WZ06F1T	SEA WATER TO CELL 6 FLOW	REAL	217.74	t/h
9WZ11F1T	SEA WATER TO CELL 1A FLOW	REAL	289.80 -	t/h
9WZ12F1T	SEA WATER TO CELL 1B FLOW	REAL	275.00-	t/h
9WZ21F1T	SEA WATER TO CELL 2A FLOW	REAL	303.36	t/h
9WZ22F1T	SEA WATER TO CELL 2B FLOW	REAL	298.87	t/h
9WZ30T1T	SW MK UP BTW EXCHANGER TEMP	REAL	47.33	°C
9WZ31F1T	SEA WATER TO CELL 3A FLOW	REAL	312.81	t/h
9WZ32F1T	SEA WATER TO CELL 3B FLOW	REAL	298.43	t/h
9WZ40E1T	SW MK UP CIRC MTR CURRENT	REAL	29.71	A
9WZ40F1I	SEA WATER MAKE UP FLOW	REAL	2359.25 ✓	t/h
9WZ40T4T	SWMK UP CIR MTR SHT BRG TEMP	REAL	43.64	°C
9WZ40T6T	SWMK UP CIR MTR DRV BRG TEMP	REAL	52.53	°C
9WZ40T7T	SW MK UP CIRC DRV BEAR TEMP	REAL	44.58	°C
9WZ40T10T	SW MK UP CIRC MTR WDING TEMP	REAL	69.96	°C
9WZ40T11T	SW MK UP CIRC MTR WDING TEMP	REAL	70 37	S
9WZ40T12T	SW MK UP CIRC MTR WDING TEMP	REAL	69.76	°C
9WZ40T14T	SW MK UP CIRC SHFT BEAR TEMP	REAL	45 /6	°C

**Mass & Energy balance for Pre-Heaters

P	Area m ²	69	93	Q	7111.24
6	U _{HE3}	3.4452	19883	5	č., 1
- h	5.14356019	94 5.143	878096		
e a	Stream	Flow	Temp	Q3	7157 41
t e	Mf2(inlet)	490.66	49.95	ìn	7107.41
r	Mf2(outlot)	400.66	52 60	03	
3	wiz(outlet)	450.00	55.00	out	7157.41
	Md3"	3.0125	54.30		

Area m ²	11	56	Q 1	14651.7
U _{HE12} 4.86643507	3.3199 78 4.865	38448 222299	2	
Stream	Flow	Temp	Q12	16388.5
Mf1(inlet)	545.56	42.41	In	
Mf1(outlet)	545.56	49.95	Q12 out	16388.5
Md4"	6.8784	50.39		charles."

Pre-heater 12

F	Area m ³	28	74	Q F	45882.19
C 0	U _{FC} 3.76015165	3.0999 57 3.779	96413 248493	С	
d e	Stream	Flow	Temp	QFC	46121.93
n s	Mf (inlet)	1195.3	32.70		
e r	Mf (outlet)	1195.3	42.41	QFC	0
_	Mdc		43.49	our	

** Local heat transfer coefficient for seawater flowing inside the tubes

dout	0.019
dinner	0.0176
salinity	45000
n12	1070.66667
n3	963
nfc	3147

Ri	0	AN R Com	
Ro	0		
К	0.0165		
1/UFC	0.26594672	UFC	3.76015
1/UHE12	0.205489231	UHE12	4.86644
1/UHE3	0.194417867	UHE3	5.14356

temperature oC	hout	Ditus-Bolter	velocity	Reynolds	Prandtl	Kwater	muwater	cpwater	rhowater
32.70	5.32	581.81	1.5189	32936.80	0.01	6.18E-01	8.34E-04	3.95	1027.91
42.41	7.55	812.54	2.0452	53127.67	0.00	6.30E-01	6.94E-04	3.96	1024.10
49.95	8.16	871.12	2.0516	60502.30	0.00	6.38E-01	6.09E-04	3.96	1020.80

** Local heat transfer coefficient on the outside surface of tubes

dout	0.019	xncondout	0
con1	1 528671	con2	1
num1	0.824968	dinner	0.0176
mumt	2.139519		

temperature oC	hout	delt	rhovapor	rhocond	kliquid	lamdav	muliquid	mass	velocityout		
43.49	52.48	0.1	0.061	990.469	6.34E-04	2398.15	6.14E-04	19.13	37.11217912		
50.39	54.38	0.1	0.085	987.509	6,41E-04	2381.59	5.45E-04	6.88	28 48938017		
54.30	55.40	0.1	0.101	985.707	6.45E-04	2372.15	5.11E-04	3.01	12.23813533		
		STREAM #	FLOW	Т	SALINITY	BPE	CP	h	Н	M.B.	E.B.
---	---	----------	-------	-------	----------	------	------	--------	----------	--------	----------
C		Cell #1		60.82				254.42	2,611.38		
е		Ms	23.60	63.67					2,616.23	105.29	90377 49
1	n	Mf01	81.78	57.42	45.00		3.97			105.50	00377.40
1	0	Mb1	59.26	61.48	62.10	0.78	3.89				
	0	Mv1	22.52	60.82					2,611.38	105 20	70000.04
#	u	Md1	13.12	63.67				266.37		105.30	19200.21
1	τ	Mcon	10.48	63.67				266.37			
										Err %	1 38

** BOILING POINT ELEVATION

STREAM #	X	Т (К)	BPE	Tv1 (°C)	Hv1
Mb1(assume)1	0.062098964	334.63	0.7761731		-
LOOP 1	0.0475	334.63	0.5744381	60.91	2611.520386
LOOP 2	0.053505331	334.63	0.6556146	60.82	2611.381556
LOOP 3	0.053549163	334,63	0.6562161	60.82	2611.380527
LOOP 4	0.05354948	334,63	0.6562205	60.82	2611.38052
LOOP 5	0.053549482	334.63	0 6562205	60.82	2611.38052

** SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM #	X	Т	А	В	С	D	Ср
Mf01	45.00	57.42	3933.7967	0.85175	-0.008250235	5.99885E-05	3.966859977
LOOP 1	50	61.48	3906.535	1.014725	-0.0100305	6.54708E-05	3.946221135
LOOP 2	62.01066116	61.48	3843.5593	1.359795	-0.013920665	7.77355E-05	3.892606456
LOOP 3	62.09832664	61.48	3843 1127	1.362073	-0.013947054	7.78203E-05	3 892219831
LOOP 4	62.09895914	61.48	3843 1095	1.362089	-0.013947244	7.78209E-05	3.892217041
LOOP 5	62.0989637	61.48	3843 1095	1,362089	-0.013947245	7.78209E-05	3.892217021

**SALINITY

STREAM #	Assumed X	Mb1	Mv1	Ср	Calc X
LOOP 1	50	73.59888	8 177653	3.946221	62.01066116
LOOP 2	62.01066116	59.34373	22.432801	3.892606	62.09832664
LOOP 3	62 09832664	59 25995	22.516578	3.89222	62.09895914
LOOP 4	62 09895914	59 25935	22.517182	3 892217	62.0989637
LOOP 5	62.0989637	59.25934	22.517186	3.892217	62.09896373

Cp= (A+BT+CT^2+DT^3)E-3

WHERE

- T= **TEMPERATURE C**
- S= WATER SALINITY G/Kg
- A= 4206 8-6 6197S+1 2288E-2S^2
- B= -1.1262+5.4178E-2S-2.2719E-4S^2
- C= 1 2026E-2-5 3566E-4S+1 8906E-6S^2
- D= 6.87774E-7+1.517E-6S-4.4268E-9S^2

		STREAM #	FLOW	Т	SALINITY	BPE	CP	h	н	M.B.	EB
	IIIIII	Cell #2		57.54				240.66	2,605.75		
с		Mf02	81.78	53.60	45.00		3.96				
	1	Md1	13.12	63.67				266.37		176.68	03 857 20
	n	Mb1	59.26	61.48	62.10	0.78	3.89			110.00	00,007,00
		Mv1	22.52	60.82				254.42	2,611.38		
0	1	Md2*	22.52	60.41				252.68	2,610.67		
1	n	Mb2*	59,94	58.27	61 39	0.73	3 89				
1	1	Mv2*	21.83	57.54					2,605.75		
	e	Ld2	12.98	57.54				240.66			
#	n	Lb2	58.95	58,27	62.42	0.76	3.89				
2	a	Vd2'	0.14	57.54					2,605.75		
	1	Vb2'	0.31	57 54					2,605,75		
	0	Md2	35.50	59.36				248.28			
	U	Mb2	118.89	58 27	61 90	0.76	3.89			176.68	93,841.68
	t	Mv2	22:29	57 54				240.66	2,605.75		and the second second
										Err %	0.02

** BOILING POINT ELEVATION

STREAM #	X	T2 (K)	BPE	Tv2 (°C)	Hv2
Mb2	0.061903308	331.42	0.7564739		
Lb2	0 062424723	331.42	0.7637908		
Mb2' (LOOP 1)	0.054134434	331.42	0 6497556	57.62	2605 879876
Mb2' (LOOP 2)	0.059790794	331.42	0.7270309	57.54	2605 74673
Mb2' (LOOP 3)	0.059829438	331 42	0.7275666	57.54	2605 745807
Mb2' (LOOP 4)	0.059829699	331,42	0.7275703	57.54	2605 745801
Mb2' (LOOP 5)	0.0598297	331.42	0.7275703	57 54	2605.745801

"SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM #	X	T2	A	В	C	D	Ср
Mf02	45.00	53.60	3933 7967	0.85175	-0.008250235	5.99885E-05	3.964987
Mb2	61 90	58 27	3844 1065	1 357001	-0.01388831	7 76315E-05	3 891381
Lb2	62 42	58 27	3841 4515	1 370522	-0.01404505	7 81355E-05	3 889082
Mb2' (LOOP 1)	50	58 27	3906 535	1.014725	-0.0100305	6 54708E-05	3.944558
Mb2' (LOOP 2)	61 3127 1922	58.27	3847 1219	1 341537	0 013709534	7 70577E-05	3.893985
Mb2' (LOOP 3)	61 39000674	58.27	3846.7268	1 343569	-0.013733005	7.7133E-05	3 893648
Mb2' (LOOP 4)	61.39052885	58.27	3846 7241	1.343583	-0.013733163	7 71335E-05	3.893645
Mb2' (LOOP 5)	61 39053237	58.27	3846 7241	1.343583	-0 013733164	7.71385E-05	3 893645

"MODUL

STREAM #	Assumed X2'	Mb2'	Mv2'	Ср	Calc X2'
Mb2' (LOOP 1)	50	73 59888	8.18	3.944558	61,31271922
Mb2' (LOOP 2)	61.31271922	60 01926	21.76	3 893989	61 39000574
Mb2' (LOOP 3)	61.39000674	59 9437	21.83	3.893548	61.39052885
Mb2' (LOOP 4)	61.39052885	59 94 319	21.83	3 893645	61.39053237
Mb2' (LOOP 5)	61.39053237	59.94318	21.83	3 893645	61 3905324

Cp= (A+BT+CT^2+DT^3)E-3

WHERE

T=	TEMPERATURE C
S=	WATER SALINITY G/Kg
A=	4206 8-6 6197S+1 2288E-2S^2
B=	-1.1262+5.4178E-2S-2.2719E-4S^2'
C=	1 2026E-2-5 3566E-4S+1 8906E-6S*2
D=	6.87774E-7+1.517E-6S-4.4268E-9S^2

		STREAM #	FLOW	Т	SALINITY	BPE	CP	h	н	M.B.	E.B.
	illilli i	Cell #3		53.62		illillillilli		224.22	2,598,96		
		Mf03	81.78	53 60	45 00		3.96			5	
	1	Md2	35.50	59.36				248.28		258.45	111 222 36
С	n	Mb2	118.89	58 27	61.90	0.76	3.89			200 40	111,222.00
		Mv2	22.29	57.54				240.66	2,605.75		
	1	Md3'	22 29	57.13				238.92	2,605.03		
1	n	Mb3'	59.72	55.00	61.62	0.69	3.89				
1	1	Mv3'	22.05	54 31					2 600 16		
	e	Ld3	35.14	53 62				224.22			
	n	Lb3	118 26	55.00	62.24	0.74	3.89				
	8	Vd3	0.36	53.62					2,598.96		
3	1	Vb3	0.63	54.31					2,600.16		
	0	Md3*	57.42	54.95				229.78			
		Mb3	177.98	55.00	62.03	074	3.89			258 45	111 105 06
	t	Mv3*	9.93	54.30					2,600,14	200,43	111,100,00
		Mev (tvc)in	13.12	54.30					2,600.14		
										Err %	0.02
		U	3.690603926		-					22.1	
					Q	T3	delta T	Qcal	Err		Md3"
		A	6724	1.000	52729 382	55.00	2,12	52729 38178	-5.82E-11		3.012460294

52729 382	55.00	2,12	52729.38178	-5 82E

** BOILING POINT ELEVATION

STREAM #	X	T3 (K)	BPE	Tv3 (°C)	Hv3
Mb3	0 06202832	328.15	07411561		
Lb3	0.062235615	328.15	0.7435-988		
Mb3' (LOOP 1)	0.052500726	328 15	0.6137275	54 39	2600 292355
Mb3' (LOOP 2)	0 058272095	328 15	0.690172	54.31	2600 15968
Mb3' (LOOP 3)	0.058309409	328.15	0 6906736	54 31	2 600 158809
Mb3' (LOOP 4)	0.058309648	328.15	0 6906768	54 31	2600.158803
Mb3' (LOOP 5)	0.058309649	328.15	0.8906708	54.31	2600.158803

" SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM #	X	T3	A	В	С	D	Ср
Mf03	45.00	53.60	3933 7967	0.85175	-0 008250235	5 99885E-05	3 964987
Mb3	62.03	55.00	3843 4694	1.360254	-0.013925983	7.77526E-05	3 889094
Lb3	62.24	55.00	3842 4137	1 365633	-0.013988322	7,7953E-05	3.888179
Mb3' (LOOP 1)	50	55.00	3906.535	1 014725	-0 0100305	6.54708E-05	3 942896
Mb3' (LOOP 2)	61 54273898	55.00	3845.9464	1.347578	-0 01377932	7 72816E-05	3 891239
Mb3' (LOOP 3)	61 61735688	55 00	3845 5654	1 349533	-0.013801918	7.73541E-05	3.890909
Mb3' (LOOP 4)	61 61784366	55.00	3845 5629	1 349546	-0.013802062	7 73546E-05	3.890907
Mb3' (LOOP 5)	61 617 8467	55 00	3845 5629	1 349546	-0.013802063	7 73546E-05	3.890907

**MODUL

STREAM #	Assumed X3'	Mb3	Mv3'	Ср	Calc X3'
Mb3' (LOOP 1)	50	73 59888	8 18	3.942896	61.54273898
Mb3' (LOOP 2)	61 5427 3898	59.79493	21.98	3 891239	61.61736688
Mb3' (LOOP 3)	61.61736688	59 72251	22.05	3 890909	61.61784366
Mb3' (LOOP 4)	61.61784366	59 7220 5	22 05	3,890907	61.6178467
Mb3' (LOOP 5)	61.6178467	59.72205	22.05	3.890907	61.61784672

Cp= (A+BT+CT^2+DT^3)E-3

WHERE

Τ=	TEMPERATURE C
S=	WATER SALINITY G/Kg
A=	4206 8-6 6197S+1 2288E-2S^2
B=	-1.1262+5.4178E-2S-2 2719E-4S^2'
C=	1 2026E-2-5 3566E-4S+1 8906E-6S^2
D=	6 87774E-7+1 517E-6S-4 4268E-9S^2

Steam Jet Ejector Formula: A/B

Ra	Mms	Mev	Ps	Pv	Pms	Τv	PCF	TCF	Ms
0.798611	10.48	13.12278	23.56867	15.09475	236.1845	54.30	1.414269	0.972179	23.60278

		STREAM #	FLOW	Т	SALINITY	BPE	CP	h	н	M.B.	E.B.
		Cell #4		50.40				210.73	2,593.34		
		Mf04	54.90	49.95	45.00		3,96				
	1	Md3	117.86	54 95				229 78		EAE EE	157 970 10
	n	Mb3	355.96	55.00	62.03	0.74	3.89			040.00	157,070 10
С		Mv3	16.84	54 30				227.07	2,600.14		
е	1	Md4'	16.84	53.62				224 22	2,598.96		
1	n	Mb4'	38.19	51.07	64.68	0.67	3,88				
1	t	Mv4'	16.70	50.40					2,593,34		
	e	Ld4	116 92	50.40				210.73			
#	n	Lb4	353.58	51.07	62.45	0.73	3.89				
4	a	Vd4	0.94	50.40					2,593 34		
	1	Vb4	2.38	50.40					2,593.34		
	0	Md4*	133.76	50.88				212.75			
	u	Mb4	391.77	51.07	62.66	0.73	3,88			545.56	158,097.02
	t	Mv4*	20.03	50,40					2,593.34		
	_									Err %	-0.14
		U	3.515141263			_					
					Q	T4	delta T	Qcal	Err		Md4"
		A	4453		39989.568	51.07	2.55	39989 56818	0		6 878393374
		∆T loss Cold	0.68								

** BOILING POINT ELEVATION

STREAM #	X	T4 (K)	BPE	Tv4 (°C)	Hv3
Mb4	0 062663648	324 22	0 7292878		
Lb4	0 062445786	324 22	0.7263765		
Mb4' (LOOP 1)	0.050532617	324.22	0 5720495	50 49	2593 504165
Mb4' (LOOP 2)	0.057826667	324 22	0 6654189	50 40	2593 340697
Mb4' (LOOP 3)	0 057872603	324.22	0 666018	50 40	2593.339648
Mb4' (LOOP 4)	0.057872887	324 22	0.6660217	50 40	2593 339642
Mb4' (LOOP 5)	0.057872889	324.22	0 6660217	50 40	2593.339642

1.291048

" SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM #	X	T4	A	В	С	D	Ср
Mf04	45.00	49 95	3933 7967	0.85175	-0 008250235	5.99885E-05	3 963232
Mb4	62.66	51.07	3840 2371	1 376677	-0 0141 16529	7 83657E-05	3.884162
Lb4	62.45	51.07	3841 3444	1 371066	-0 01405136	7.81558E-05	3 885124
Mb4' (LOOP 1)	50	51 07	3906 535	1 014725	-0.0100305	6.54708E-05	3 940914
Mb4' (LOOP 2)	64 58809995	51 07	3830 5071	1 425 303	-0 014684392	8 0201E -05	3 875678
Mb4' (LOOP 3)	64 6799708	51.07	3830 0448	1 427582	-0.014711151	8.02878E-05	3 875274
Mb4' (LOOP 4)	64 68054031	51.07	3830 042	1 427597	-0.014711316	8 02883E-05	3 875272
Mb4' (LOOP 5)	64 68054384	51.07	3830 0419	1 427597	.0.014711317	8.02883E-05	3 875272

**MODUL

STREAM #	Assumed X4'	Mb4'	Mv4'	Ср	Calc X4'
Mb4' (LOOP 1)	50	49 40725	5.49	3.940914	64 5880 3995
Mb4' (LOOP 2)	64 58809995	38 247 95	16.65	3.875678	64 6799708
Mb4' (LOOP 3)	64 6799708	38 19362	16.70	3.875274	64 68054031
Mb4' (LOOP 4)	64 68054031	38.19328	16.70	3 875272	64 68054384
Mb4' (LOOP 5)	64 68054384	38.19328	16.70	3.875272	6- 6805-1386

(A+BT+CT^2+DT^3)E-3

Cp=

WHERE	
T=	TEMPERATURE C
S=	WATER SALINITY G/Kg
A=	4206 8-6 6197S+1 2288E-2S^2
B=	-1 1262+5 4178E-2S-2 2719E-4S^2'
C=	1 2026E-2-5 3566E-4S+1 8906E-6S^2
D=	6.87774E-7+1 517E-6S-4 4268E-9S^2

		STREAM #	FLOW	Т	SALINITY	BPE	CP	h	H	M.B.	E.B.
		Cell #5		47.13				197.03	2,587.59	annan an a	
		Mf05	54.90	42.41	45:00		3.96				
	1	Md4	140.63	50 88				212.75		600.45	150 940 23
	n	Mb4	391.77	51.07	62 66	0.73	3 88			000 40	100,040.20
С		Mv4	13.15	50.40				210 73	2,593.34		
θ	1	Md5'	13.15	49.72				207.88	2,592.15		in and the second s
1	n	Mb5'	42.25	47 72	58 46	0.59	3 90				
1	t	Mv5'	12.64	47 13					2,587.59		
	e	Ld5	139.71	47 13				197 03			
#	n	Lb5	389.78	47 72	62.98	0.72	3.88				
5	8	Vd5	0.92	47 13					2,587.59		
	1	Vb5	1.99	47.13					2,587,59		
	0	Md5	152.86	47.48				198.53			
	u	Mb5	432.04	47.72	62 54	0.71	3.88			600.45	150,651,99
	t	Mv5	15.56	47 13					2,587.59		
										Err %	0.19
	1	U	3.515141263								

	5.515141205	Q	T5	delta T	Qcal	Err	
	4453	31346.675	47.72	2.00	31346 67471		0
Ita loss	0.68						

"BOILING POINT ELEVATION

STREAM #	X	T5 (K)	BPE	Tv5 (°C)	Hv3
Mb5	0.062541751	320.87	0.7103659		
Lb5	0.062983719	320.87	0.7161361		
Mb5' (LOOP 1)	0 048858302	320.87	0.5380435	47.18	2587 680282
Mb5' (LOOP 2)	0.053068103	320.87	0 5897899	47.13	2587 589023
Mb5' (LOOP 3)	0.053090529	320,87	0.5900685	47 13	2587.588532
Mb5' (LOOP 4)	0.053090647	320.87	0 59007	47 13	2587 588529
Mb5' (LOOP 5)	0.053090648	320 87	0 59007	47.13	2587.588529

" SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM #	X	T5	A	В	С	D	Ср
Mf05	45.00	42 41	3933 7967	0.85175	-0 008250235	5 99885E-05	3 959654
Mb5	62 54	47.72	3840 8565	1.37354	-0.014080088	7 82483E-05	3.88284
Lb5	62 98	47.72	3838 6125	1.384881	-0 014211945	7.86732E-05	3.880883
Mb5' (LOOP 1)	50	47 72	3906 535	1 014725	-0.0100305	6.54708E-05	3.939229
Mb5' (LOOP 2)	58.41960193	47.72	3862 0169	1.263492	-0.01281471	7 42023E-05	3.901191
Mb5' (LOOP 3)	58.46445341	47.72	3861 7844	1 264731	-0.012828824	7.42471E-05	3.90099
Mb5' (LOOP 4)	58 46469006	47.72	3861 7831	1 264737	-0 012828898	7.42474E-05	3.900989
Mb5' (LOOP 5)	58 46469131	47.72	3861 7831	1 264737	-0.012828899	7 42474E-05	3 900989

**MODUL

STREAM #	Assumed X5'	Mb5'	Mv5'	Ср	Calc X5
Mb5' (LOOP 1)	50	49.40725	5.49	3.939229	58.41960193
Mb5' (LOOP 2)	58 41950193	42.28653	12.61	3 901191	58.46445.341
Mb5' (LOOP 3)	58.46445341	42 25409	12.64	3 90099	58 46469006
Mb5' (LOOP 4)	58 46469006	42 25392	12.64	3.900989	58 46469131
Mb5' (LOOP 5)	58 46 46 91 31	42.25392	12.64	3.900989	58 46469131

Cp= (A+BT+CT^2+DT^3)E-3

WHERE	
T=	TEMPERATURE C
S=	WATER SALINITY G/Kg
A=	4206.8-6.6197S+1.2288E-2S^2
B=	-1 1262+5 4178E-2S-2 2719E -4S^2'
C=	1 2026E-2-5 3566E-4S+1 8906E-6S^2
D=	6.87774E-7+1.517E-6S-4.4268E-9S^2

		STREAM #	FLOW	Т	SALINITY	BPE	CP	h	н	M.B.	E.B.
		Cell #6		43.49				181.82	2,581.15		
		Mf06	54.90	42 41	45 00		3.96				
	1	Md5	152.86	47.48				198.53		655 35	150 860 81
	n	Mb5	432.04	47.72	62 54	0.71	3.88			000.00	135,005,01
С		Mv5	15.56	47.13				197 03	2,587.59		
е		Md6'	15.56	46.45				194 18	2,586.39		
11	n	Mb6'	39.52	44.07	62.51	0.58	3,88				
1	L	Mv6'	15.38	43,49					2,581.15		
	C T	Ld6	151.79	43.49				181 82			
#	0	Lb6	429.48	44.07	62.91	0.70	3,88				
-6	a	Vd6	1.06	43.49					2,581 15		
	1	Vb6	2 55	43,49					2,581.15		
	0	Md6	167.35	43.95				183.75			
	u	Mb6	469.00	44.07	62 88	0.70	3.88			655.35	159,966.52
	t	Mv6	19.00	43.49					2,581.15		
										Err %	-0.06
		U	3.515141263		-	1					
					Q	T6	delta T	Qcal	Err	1	

37219.833 44.07 2.38 37219.83262 dita loss

** BOILING POINT ELEVATION

A

STREAM #	X	T6 (K)	BPE	Tv6(°C)	Hv3
Mb6	0.062880074	317 22	0.6960166		
Lb6	0.062913766	317.22	0.696-4451		
Mb6' (LOOP 1)	0.047034.357	317.22	0 5024796	43.57	2581 284651
Mb6' (LOOP 2)	0.053258344	317 22	0.5766531	43.49	2581 152795
Mb6' (LOOP 3)	0.053291138	317.22	0.5770501	43 49	2581 152089
Mb6' (LOOP 4)	0 053291308	317.22	0.5770522	43 49	2581 152085
Mb6' (LOOP 5)	0 053291309	317 22	0.5770522	43.49	2581.152085

** SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM #	X	T6	A	В	С	D	Ср
Mf06	45.00	42.41	3933.7967	0.85175	-0.008250235	5 99885E-05	2.959654
Mb6	62.88	44 07	3839 1383	1 382229	-0 01418109	7 85737E-05	3.879235
Lb6	62 91	44.07	3838 9674	1 383092	-0 014191125	7 86061E-05	3.879086
Mb6' (LOOP 1)	50	44.07	3906 535	1 014725	-0.0100305	6 54708E -05	3 937376
Mb6' (LOOP 2)	62 44797236	44.07	3841.3333	1 371 122	-0.014052015	7.81579E-05	3.881156
Mb6' (LOOP 3)	62.51356086	44 07	3840.9998	1.372814	-0.014071653	7 82212E-05	3.880865
Mb6' (LOOP 4)	62 51390136	44.07	3840 9981	1 372822	-0,014071755	7.82215E-05	3 880963
Mb6' (LOOP 5)	62.51390313	44 07	3840 9981	1,372822	-0 01 407 17 55	7 82215E-05	3 880863

**MODUL

STREAM #	Assumed X6'	Mb6'	Mv6'	Ср	Calc X6'
Mb6' (LOOP 1)	50	49 40725	5.49	3 937 376	62.44797236
Mb6' (LOOP 2)	62 44797 236	39 55873	15 34	3.881156	62 513 96086
Mb6' (LOOP 3)	62 51 356086	39 51722	15.38	3 880865	62 51390136
Mb6' (LOOP 4)	62 51390136	39 51701	15 38	3 880863	62 51390313
Mb6' (LOOP 5)	62.51390313	39 51701	15.38	3.880863	62.51390314

(A+BT+CT^2+DT^3)E-3

WHERE Τ= TEMPERATURE C S= WATER SALINITY G/Kg A=

Cp=

A=	4206 8-6 6197S+1 2288E-2S^2
B=	-1 1262+5 4178E-2S-2 2719E-4S^2'
C=	1 2026E-2-5 3566E-4S+1 8906E-6S^2
D=	6.87774E-7+1 517E-6S-4 4268E-9S^2

		STREAM #	FLOW	Т	SALINITY	BPE	CP	h	Н	M.B.	E.B.
		F.Condenser		43.49				181.82	2,581.15		
С		Mf+Mcw	1,195.32	32.70	45.00		3.95				
0		Md6	167.35	43.95				183.75		1,381.67	234375.7
n	n	Mv6	19.00	43.49					2,581.15		
d		Vdc'	0.13	43.49					2,581.15		
e	Internal	Ldc	167.22	43.49				181.82			
9		Mdc	19.13	43.49				181.82			
e	0	Mcw	539.97	42.41	45.00		3.96				
r	u	Mf	655.35	42.41	45.00		3.96			1,381.67	234591.1
	t	Distillate	186.35	43.49				181.82	2,581.15		

Err % -0.09

U	3.779248493
A	2874

Q	Тус	delta T Im	Qcal	Err
45906.995	43.49	4.23	45909.7279	-2.733122614

** SPECIFIC HEAT OF WATER AT CONSTANT PRESSURE

STREAM #	X	Т	А	В	С	D	Ср
Mf+Mcw in	45.00	32.70	3933.7967	0.85175	-0.008250235	5.99885E-05	3.954924584
Mf & Mcw out	45.00	42.41	3933.7967	0.85175	-0.008250235	5.99885E-05	3.959654247

Distillate *Kg/s* Condensate *Kg/s*

Brine Kg/s	
Temperature C	
Salinity * 1000 ppm	

Condensed Vapor Temperature Tc

Vapor Velocity m/s