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Abstract  

Data as a service (DaaS) is an important model on the Cloud, as DaaS provides 

clients with different types of large files and data sets in fields like finance, science, 

health, geography, astronomy, and many others. This includes all types of files 

with varying sizes from a few kilobytes to hundreds of terabytes. DaaS can be 

implemented and provided using multiple data centers located at different locations 

and usually connected via the Internet. When data is provided using multiple data 

centers it is referred to as distributed DaaS. DaaS providers must ensure that their 

services are fast, reliable, and efficient. However, ensuring these requirements 

needs to be done while considering the cost associated and will be carried by the 

DaaS provider and most likely by the users as well. One traditional approach to 

support a large number of clients is to replicate the services on different servers. 

However, this requires full replication of all stored data sets, which requires a huge 

amount of storage. The huge storage consumption will result in increased costs. 

Therefore, the aim of this research is to provide a fast, efficient distributed DaaS 

for the clients, while reducing the storage consumption on the Cloud servers used 

by the DaaS providers. The method I utilize in this research for fast distributed 

DaaS is the collaborative dual-direction download of a file or dataset partitions 

from multiple servers to the client, which will enhance the speed of the download 

process significantly. Moreover, I partially replicate the file partitions among 

Cloud servers using the previous download experiences I obtain for each partition. 

As a result, I generate partial sections of the data sets that will collectively be 

smaller than the total size needed if full replicas are stored on each server. My 

method is self-managed; and operates only when more storage is needed. I 

evaluated my approach against other existing approaches and demonstrated that it 

provides an important enhancement to current approaches in both download 

performance and storage consumption. I also developed and analyzed the 

mathematical model supporting my approach and validated its accuracy. 

 

Keywords: Cloud Computing, Data-as-a-Service (DaaS), load balancing, storage 

optimization. 
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Title and Abstract (in Arabic) 

 

 

تقنية التكرار الجزئي للملفات وتوزيع المهام لخدمة توفير البيانات الموزعة على مسافات كبيرة العنوان: 

 في السحب الالكترونية.

 

 الملخص:

 

عملاء مع أنواع مختلفة من الملفات الكبيرة  توفر هذه الخدمةالبيانات كخدمة هو نموذج هام على السحابة، توفير 

جالات مثل التمويل، والعلوم، والصحة، والجغرافيا، والفلك، وغيرها الكثير. وهذا يشمل جميع ومجموعات البيانات في م

استخدام مركز ب هذه البيانات إلى مئات تيرابايت. يمكن وتوفير بايتمن بضعة كيلو ها التي تتفاوتأحجامبأنواع الملفات 

سمى وت نتالإنتر تتصل عادة عبر تقع في مواقع مختلفةأو استخدام مراكز البيانات متعددة  في موقع جغرافي واحدبيانات 

ن اضم الخدمةالموزعة. وبما أن هناك الملايين من المستخدمين ومليارات من الملفات، يجب على مقدمي  البياناتخدمة 

سيتم لتي ا في التكلفة المرتبطة بها و أيضا النظرب. وضمان هذه المتطلبات يجب القيام به سرعة وجودة وفعالية خدماتهم

من  لدعم عدد كبيرالمستخدم عادة وعلى الأرجح من قبل المستخدمين أيضا. النهج التقليدي الخدمة من قبل مزود  هاتنفيذ

لجميع مجموعات البيانات  كاملاا العملاء هو تكرار الخدمات على ملقمات مختلفة في مواقع مختلفة. وهذا يتطلب تكرار

استهلاك التخزين الضخم يؤدي إلى زيادة التكاليف، التي وعليه فإن كبيرة من التخزين. المخزنة، الأمر الذي يتطلب كمية 

زيادة تكاليف  هناك أيضا يمكن أن تمنع إدخال مزيد من التحسينات من قبل مقدمي الخدمات. وبالإضافة إلى ذلك، فإن

 للعملاء، مع تعزيز استهلاك التخزين فعالةة وسريع طريقة الاستخدام للعملاء. ولذلك، فإن الهدف من هذا البحث هو تقديم

هذا البحث هو تعاوني ثنائي الاتجاه  النهج الذي نقدمه في. خدمات البياناتعلى خوادم السحابة المستخدمة من قبل مقدمي 

. رأقسام من جانب العميل، والتي من شأنها تعزيز سرعة عملية التحميل بشكل كبيكأو مجموعة البيانات  اتملفالتحميل ل

ي نحصل عليها التوعلاوة على ذلك، فإننا تكرار جزئيا الأقسام ملف بين الخوادم السحابية باستخدام تحميل التجارب السابقة 

لكل قسم. ونتيجة لذلك، فإننا توليد أقسام جزئية من مجموعات البيانات سيكون أصغر من الحجم الإجمالي المطلوب إذا تم 

. وتعمل فقط عندما تكون هناك حاجة مزيد من يعمل بشكل تلقائيعلى كل خادم. أسلوبنا  تخزين النسخ المتماثلة الكاملة

تت أنه . قمنا بتقييم نهجنا ضد النهج القائمة الأخرى وأثبللنسخة فقط عند الضرورةالتخزين. لذلك، يتم تنفيذ عمليات الإزالة 

قق من دعم نهجنا والتحيتطوير وتحليل نموذج رياضي بكما قمنا كل من الأداء تحميل واستهلاك التخزين. ليوفر تعزيزا 

على نات خدمات البيادقته. ولذلك، فإننا نعتقد أنه يوفر نتائج واعدة في مجال موازنة التحميل والتخزين الأمثل ل و صحته

 السحابة.

 خادم البيانات. السحب الإلكترونية، خدمة توفير البيانات، جودة الخدمات، تززيع المهام، الكلمات ذات الأهمية:
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Chapter 1:  Introduction 

  In this chapter, I provide a background of the cloud structure and services, 

focusing on data as a service in Section 1.1 then I discuss my research question and 

a brief summary of the current solutions in Section 1.2. I finally show the 

dissertation structure in Section 1.3. 

1.1. Background on Cloud services 

   Systems, such as grid, clusters, and cloud computing have been a trend for 

many users in the last few years. Especially cloud computing which became even 

of more interest to the users and researchers [1][2][3][4]. One of the main features 

on the cloud is that it provides flexible and easy methods to store and retrieve data 

[5][6][7], especially for large data sets and files, such as videos, scientific research, 

and bioinformatics files [8][9][10] that could be used by an increasing number of 

users around the world. Since cloud computing has great potential for data storage 

and data retrieval, it opens the opportunity to conduct research in optimizing the 

techniques for storing data in the cloud. That is the area of providing data as a 

service (DaaS) on the cloud, as shown in Figure 1-1.  

Cloud Application (Software As A Service: SaaS)

Cloud Service Environment (PaaS)

Cloud Service Infrastructure 

Computational 
Resources (IaaS)

Storage (DaaS)

Cloud Service Hardware (HaaS)

 

Figure 1-1: Cloud Computing Services Architecture. 
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 Data as a Service provides the capability to deliver specific and valuable 

data on demand [11][12]. This data can be business, scientific, medical, or any 

other useful data required by multiple users. This large data can be replicated on 

multiple servers located at different sites on the Internet to provide a scalable 

capability to support a large number of requests. The DaaS is also reviewed in [13] 

as providing data in different formats for different resources in various 

geographical locations. The clients would be able to upload, download, and edit the 

data on the cloud based on their reassigned privileges. Usually, the cloud will have 

multiple distributed servers, which are able to access the data centers to fetch the 

required data and provide it to the cloud user. Figure 1-2 shows how the cloud DaaS 

is usually structured. Distributed DaaS mainly has spatially distributed resources 

of the cloud and provides the user with access to the data independently from their 

location. For example, there could be a cluster in one country, some servers in 

another country, and other clusters in other continent [14]. 

 

Figure 1-2: DaaS Architecture in the Cloud
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1.2. How can the download speed be improved and better utilize cloud 

resources? 

 The main focus of this research is to optimize the load balancing and storage 

interface for cloud computing. The cloud uses multiple servers (usually referred to 

as cloud nodes) and each node has different performances and load characteristics 

as well as dynamically varying states of the network links between these servers 

and the requesting clients; therefore, balancing the load to improve data download 

is not a trivial task [15][16][17]. There have been some solutions proposed by 

researchers in cloud DaaS and other distributed systems, such as dual-direction 

FTP which is concerned with file download among FTP servers, the ‘Ant Colony’, 

which assigns an ‘ant’ to go through a route to pick a free cloud server to perform 

the task, and many other approaches. However, most of these approaches either 

focus on improving only the load balancing or improving only the storage 

consumption. In addition, the mere issue of creating multiple replicas of big data 

creates another problem of storage. This is because there are huge amounts of 

storage wasted by saving the same data on multiple cloud nodes [18][19].  

   In this research, I present an algorithm to reduce the load on each server 

node of the DaaS and reduce the storage needed for the replicated data sets. This is 

done using the dual-direction downloading algorithm and based on the experience 

with each cloud node of those containing data replicas. As a result, I reduced the 

size of the data files I retain on each node. The main attributes I consider in this 

research are the number of times each block has been downloaded in earlier 

requests and the speed of the download. With this information, my smart controller 

will be able to make all the decisions. Another benefit of this algorithm is that the 
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client will not have to deal with any complex calculations, which could increase 

the download time. Therefore, I believe my algorithms speed up the data download 

process and simultaneously reduce the total amount of storage needed for 

replications on the cloud servers. I use a special simulator that I built to evaluate 

the performance of the algorithm and compare it to the other existing ones. 

1.3. Dissertation Structure 

   In the rest of this dissertation, I will introduce the research by reviewing the 

current problems of load balancing and storage optimization in providing Data as 

a Service in the cloud in Chapter 2. In addition, the problem statements are 

presented in Chapter 2. 

   In Chapter 3, I provide a thorough review of the research area of providing 

DaaS in the cloud. I classify the research area into multiple levels and review the 

work done by researchers in the last few years accordingly. I then introduce the 

challenges faced in this area and the importance of overcoming them in order to 

provide an efficient method. I also compare the various methods reviewed in the 

literature according to the challenges and find the limitations of each method. I 

show that a common limitation between most of the methods used in literature is 

not being able to provide a method that has a high-speed load-balancing strategy 

that optimizes the storage used by the cloud provider. I show the importance of 

having such an approach in order to provide an efficient quality of service for the 

clients and reduce the cost to providers. 

   Chapter 4 describes the base approach of using a collaborative dual-

direction download method in the cloud. In chapter 4, I describe the advantages of 
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the dual- direction technique which enhances the speed of the download process in 

the cloud using collaborative dual cloud nodes in order to provide different 

partitions of the files. Then, I show the simulation results of using this method in 

the cloud and how it has better speed compared to the regular method used for file 

download in the cloud. 

   In Chapter 5, I demonstrate my first contribution, which is the static storage 

optimization technique. I show how I improved the collaborative dual direction by 

partially replicating the storage using download experience. I then discuss the 

results of optimizing the storage of the cloud servers and compare the 

enhancements to the previous approaches. In addition, the limitations and possible 

enhancements of the static storage optimization are discussed. 

   Chapter 6 elaborates on how a self-managed method of storage 

optimization can be added to the collaborative dual-direction download technique. 

Chapter 6 illustrates how the file can go through different stages in the cloud, 

starting from the upload stage on which the technique splits the file into multiple 

blocks and saves them each as a separate file in each cloud node to the download 

stage in which the dual-direction technique is applied and experience is saved. 

Finally, a discussion of when and in which cases the file blocks can be removed 

from a certain cloud node is provided. I display the results I obtained when 

simulating this method and comparing it to the similar approaches reviewed earlier 

in the literature.   

   In Chapter 7, I develop analytical models of the partial replication dual-

direction download. I demonstrate the effects of the technique on the time spent 

downloading the file and the amount of storage that can be saved when using this 



6 
 

 
 
 

approach. I then provide some discussion of the results I attained when validating 

these models. 

   Finally, Chapter 8 concludes this dissertation by summarizing the 

contributions and benefits of this research and the possible future works that can 

be conducted in order to enhance the current results. 
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Chapter 2:  Problem Statement, Contribution, and Research 

Scope 

   

In this chapter, I discuss the problem and motivation behind this research 

and the main contribution of this research. I also clarify the scope of my 

contribution and the areas in which it is important. 

2.1. Problem Statement and Motivation 

   Cloud services have become a trend in the last decade because of their 

agility, location independence, and cost effectiveness [20]. There are many 

organizations and cloud providers that offer DaaS [21][22]. These are very 

common services among users and are very reliable solutions to keep large files 

and share them. Examples of the most well-known industry applications are 

Dropbox, Google Drive, Apple iCloud, Microsoft OneDrive, and Amazon EC2 

[23][24]. The services provided by each of the mentioned applications vary from 

providing the ability to upload and share files to the amount of storage provided to 

the client. Table 2-1 shows a comparison of the most well-known applications in 

the industry [25]. It was found that free storage provided to normal users ranges 

from 2 GB to 15 GB. However, premium storage can reach up to 200 GB. This is 

why the Dropbox application is the dominant application in the market by 47.9%. 

Dropbox announced recently that the number of their users reached 270 million 

users [23]. Imagine having at least 2 GB for 270 Million users. The problem here 

is that storage consumes most of the cost spent to provide the cloud services. As 

stated by Greenberg [26] in his analysis of cloud costs, data centers consume 45% 

of the total costs, infrastructure consumes 25% while network and power draw 

consume 15% each. Therefore, there is a strong need to reduce the cost of data 
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centers by optimizing the way data is stored. The storage utilization however, must 

not negatively affect the download speed at the client side or the reliability of the 

storage and retrieval [27][28][29]. The main focus of this research is to use an 

effective load-balancing technique to enhance the download performance and 

optimize storage usage when providing DaaS in the cloud. 

Table 2-1: Comparison of Current Industry DaaS Providers in 2015. 

Application Free 

Storage 

Premium 

Storage 

Market 

Share 

Dropbox 2 GB Unlimited 47.9%  

Google 

Drive 

7 GB 200 GB 16.5% 

iCloud 15 GB 50 GB 10.5% 

One Drive 5 GB 200 GB 9.3% 

 

Cloud resources in the current systems consume a great deal of cost and time from 

cloud providers [30]. I noticed that there are two main scenarios usually used when 

providing DaaS on the Cloud for load balancing and storage optimizing. The scenario 

for load balancing is to look for one server in the cloud and assign the task to that 

server. This is of course while taking certain attributes into consideration. For example, 

considering the number of connections that are created with that server or the speed of 

the server. The problem with this scenario is that the server will be a bottle-nick if I 

only consider its speed. Moreover, if I consider only the number of connections, the 

server might be slow but free which will result in a slow download. Regarding storage 

of DaaS, the scenario is to replicate full files on all servers. The benefit of full 

replication is having the ability to distribute the load among the cloud servers if needed. 

However, to do that I need huge storage space which will result in very high costs, 

imagine the need to replicate a terabytes files among several servers. Here, comes a 
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question of how I can decrease the cost of storage in the cloud while still using 

replication and providing a fast download service? My algorithm has the following 

benefits to other load balancing and storage optimization techniques: 

 It does not incur a high overhead, as less communication is needed to 

finalize a file download from a cloud service. 

 It has a better handling of the resources in terms of saving more storage 

space in the cloud nodes. This is because only parts of the files are saved 

and each part is referred to with an ID so that the controller will know 

which cloud node has which partition of the file. Usually, all download 

algorithms from the cloud focus only on how to improve the speed of 

the download process and how to specify which node has the file. 

However, they do not focus on the storage consumption on the cloud 

nodes and its effect on speeding up the process of assigning the task to 

the node. In my algorithm, I treat all cloud nodes as parts of a team. This 

means that all cloud nodes will be busy downloading partitions of the 

file. 

2.2. Research Contribution and Scope 

 Based on the studies that were conducted and the various possibilities of load 

balancing in DaaS, I have defined the scope of this dissertation research to address the 

storage optimization, load-balancing, performance, and efficiency. The main 

contributions possible to this area are shown in Figure 2-1. There are three main 

research areas in enhancing DaaS in the distributed cloud; this includes enhancing the 

speed of exchanging data through the cloud and its efficiency [31][32][33], optimizing 

the amount of storage needed to host the files on the cloud, and securing the exchange 
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process. Both storage optimization and task allocation are also considered under cloud 

resources management research [34]. The cloud resources management is called green 

cloud computing by many researchers [28]. A green cloud usually aims to enhance the 

use of cloud resources and reduce the effort and energy spent to accomplish tasks. 

 The following are the specific contributions of this dissertation: 

1. A static optimization of the storage using the dual direction download 

technique. This contribution allows the cloud providers to improve the 

download speed using a dual direction download technique and optimize 

the storage by removing the redundant replicas manually. The benefit of 

this contribution over the normal dual direction technique is the storage 

optimization feature. However, the limitation is the need to perform the task 

manually at a certain stage. A file and block experience are all saved in a 

database where decisions about block removal can be made. 

2. My second contribution is autonomizing the process of storage 

optimization. This is done by an analysis carried at the upload phase of the 

file life-time in the cloud. I propose a technique in which uploading any file 

requires an analysis of the file size and the collaborative servers' available 

as well as the previous experiences of the download of each block for the 

registered files. A block would be removed automatically only if there is a 

need to do so. That is, if there is not enough space available in one server,  

and there exists previous blocks with download counter equal to zero while 

the file was downloaded several times from the cloud. The dual direction 

has also a minor modification as the files will be stored in the cloud as 
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multiple blocks. Therefore, instead of downloading from one file only, the 

process will loop through a number of block files in a folder.  

3. My final contribution is an analytical model of the amount of storage used 

when using my ssCloud technique. I analyzed the expected minimum 

amount of storage that could be saved by the cloud when using ssCloud, I 

evaluated the expected results and verified the accuracy of my model. 

Furthermore, I analyze the expected download time when using ssCloud 

and evaluated the expected results. I found a high percentage of accuracy 

in my analytical model.  

 It is important to note here that I only focus on large file sizes. I do not consider 

any file size below 1 MB as one server can provide such files in a timely manner. 

Moreover, files with sizes ranging from 1 MB to 10 MB are also convenient to be 

provided by 1 server without going through the process of assigning tasks to multiple 

servers. In this approach my main focus is large files with sizes greater than 10 MB. 

 

Figure 2-1: Dissertation Scope.
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Chapter 3:  Literature Review  

 

  In this chapter, I provide an analysis of the load balancing and storage 

optimization research area in Section 3.1. Then, I show the challenges that face 

most of the techniques reviewed in the literature in Section 3.2. In Section 3.3 I 

review the load-balancing techniques, while in Section 3.4 I review the storage 

optimization technique. Then I provide an analysis of the current approaches in 

Section 3.5. The chapter is finally concluded with Section 3.6. 

3.1. Literature Classification 

 To analyze the state of the art research in DaaS, I thoroughly studied the current 

approaches in load balancing and storage optimization in the cloud. I noticed some 

approaches focused on enhancing the load balancing of the file downloads from the 

cloud [33], while others focused on optimizing storage in the cloud [43][44][45]. 

Therefore, I classified DaaS research as in Figure 3-1 into two categories: research on 

load balancing and research on storage optimization. Each category has a sub category 

based on the common solution provided in the literature. For example, load balancing 

is categorized into static and dynamic load balancing because some solutions focused 

on assigning tasks to cloud nodes based on their ability to receive new tasks (static) 

while dynamic assigns tasks to cloud nodes by taking into consideration the node 

speed, capacity, and network load. Moreover, the storage optimization is categorized 

into full and partial replication. This is because some approaches save the same full 

file on multiple cloud nodes, while others partition the file based on certain 

characteristics and save different partitions on different servers. 
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Figure 3-1: Literature Classification. 

3.2. Research Challenges 

 Before I could review the current load-balancing approaches for cloud computing, 

I must identify the main challenges involved and that could affect how the algorithm 

would perform. Here I discuss the challenges to be addressed when attempting to 

propose an optimal solution to the issue of load balancing in cloud computing. These 

challenges are summarized in the following points.  

3.2.1. Spatial Distribution of the Cloud Nodes 

 Some algorithms are designed to be efficient only for an intranet or closely located 

nodes where communication delays are negligible. However, it is a challenge to design 

a load-balancing algorithm that can work for spatially distributed nodes. This is 

because other factors must be taken into account, such as the speed of the network 

links among the nodes, the distance between the client and the task processing nodes, 

and the distances between the nodes involved in providing the service. There is a need 

to develop a method to control the load-balancing mechanism among all the spatial 

distributed nodes, while being able to effectively tolerate high delays [46].  
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3.2.2. Storage/ Replication  

 A full replication algorithm does not take efficient storage utilization into account. 

This is because the same data will be stored in all replication nodes. Full replication 

algorithms impose higher costs since more storage is needed. However, partial 

replication algorithms could save parts of the data sets in each node (with a certain 

level of overlap) based on each node’s capabilities, such as processing power and 

capacity [47]. This could lead to better utilization, yet it increases the complexity of 

the load-balancing algorithms as they attempt to take into account the availability of 

the data set’s parts across the different cloud nodes.  

3.2.3. Network Overhead 

 A network overhead is usually known as straining the network with several 

connections and messages. Sending and receiving messages through the cloud should 

be reduced as much as possible so that the network is free to do the tasks assigned 

more efficiently. Therefore, load-balancing algorithms are preferred have less network 

overhead [48].   

3.2.4. Point of Failure  

 Controlling the load balancing and data collecting about the different nodes must 

be designed in a way that avoids having a single point of failure in the algorithm. Some 

algorithms (centralized algorithms) can provide efficient and effective mechanisms for 

solving the load balancing in a certain pattern. However, they have the issue of one 

controller for the whole system. In such cases, if the controller fails, then the whole 

system fails. Any load-balancing algorithm must be designed in order to overcome this 

challenge [49]. Distributed load-balancing algorithms seem to provide a better 
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approach, yet they are much more complex and require more coordination and control 

to function correctly.   

3.3. Load Balancing Approaches 

  In this section, I discuss the most well-known contributions in the literature 

of load balancing in cloud computing. I classify the load-balancing algorithms into 

two types: static algorithms and dynamic algorithms. I first discuss the static load-

balancing algorithms that developed for cloud computing. Then, I will discuss the 

dynamic load-balancing algorithms. 

3.3.1. Static Load Balancing Algorithms 

  Static load-balancing algorithms assign the tasks to the nodes based only 

on ability of the node to process new requests. Static algorithms do not consider 

attributes, such as network traffic, nodes CPU speed, node memory size, and other 

node capabilities. 

  Radojevic suggested an algorithm called the central load-balancing 

decision model (CLBDM)[15], which is an improvement of the round robin 

algorithm, which is based on session switching at the application layer. Round 

robin [50] is a very famous load-balancing algorithm. However, it sends the 

requests to the node with the least number of connections. The improvement in 

CLBDM is that the connection time between the client and the node in the cloud 

is calculated, and if that connection time exceeds a threshold, then there is an issue. 

If an issue is found, the connection will be terminated and the task will be 

forwarded to another node using the regular round robin rules. The CLBDM acts 
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as an automated administrator. The idea was obtained from a human 

administrator’s point of view. 

  The proposed algorithm by Nishant [51] is an improvement of the algorithm 

presented in [52]. Both algorithms use ‘ants’ behavior to gather information about 

the cloud nodes in order to assign the task to a specific node. However, the 

algorithm in [52] has an ant synchronization issue, and this paper is attempting to 

solve this by adding the feature ‘suicide’ to the ants. Both algorithms work in the 

following way, once a request is initiated, the ants and pheromones are initiated 

and the ants start a forward path from the ‘head’ node. A forward movement means 

that the ant is moving from one overloaded node looking to the next node to check 

if it is overloaded or under-loaded. Moreover, if the ant finds an under-loaded node, 

it will continue its forward path to check the next node. If the next node is an 

overloaded node, the ant will use the backward movement to get to the previous 

node. The addition in algorithm proposed in [51] is that the ant will commit suicide 

once it finds the target node. 

  The algorithm proposed in [53] is an addition to the map reduce algorithm 

[54]. The map reduce algorithm is a model that has two main tasks, map tasks and 

reduce tasks. Moreover, there are three methods in this model. The three methods 

are part, comp, and group. The map reduce algorithm first conducts the method by 

map tasks. At this step, the request entity is partitioned into parts using the map 

tasks. Then, the key of each part is saved into a hash key table, and the comp 

method completes a comparison between the parts. After that, the group method 

groups the parts of similar entities into groups using reduce tasks. Since several 

map tasks can read entities in parallel and process them, this will cause the reduce 

tasks to be overloaded. Therefore, it is proposed in this paper to add one more load 
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balancing between the map task and the reduce task to reduce the overload on these 

tasks. The load balancing in the middle divides the large blocks into smaller blocks, 

and then the smaller blocks are sent to the reduce tasks based on their availability. 

  Ni proposed a load-balancing algorithm [55] for private cloud using virtual 

machine (VM) mapping to a physical machine. The architecture of the algorithm 

contains a central scheduling controller and a resource monitor. The scheduling 

controller does all the work for calculating which resource is able to take the task 

and assigning it to a specific resource. However, the resource monitor does the job 

of collecting the details regarding the resources availability. The process of 

mapping goes through four main phases, which are accepting the VM request, 

obtaining the resource details using the resource monitor, calculating the resources’ 

ability to handle tasks (the resource with the highest score is the one receiving the 

task), and accessing the application. 

3.3.2. Dynamic Load Balancing Algorithms 

  Dynamic load-balancing algorithms take into account different attributes of 

nodes capabilities and network bandwidth. These algorithms assign the tasks 

dynamically to the nodes based on the attributes calculated. Such algorithms are 

usually harder to implement but are more efficient. 

  In [56], they proposed an algorithm to minimize data duplication and 

redundancy. The algorithm proposed is called an INS (index name server), and it 

integrates de-duplication and access point selection optimization. There are many 

parameters involved in the process of calculating the optimum selection point. 

Some these parameters are hash code of the block of data to be downloaded, the 

position of the server that has the target block of data, the transition quality, which 
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is calculated based on the node performance and a weight judgment chart, the 

maximum bandwidth of downloading from the target server and the path 

parameter. Another calculation is used to specify whether the connection can 

handle additional nodes or not (busy level). The authors classified the busy levels 

into three main categories B(a), B(b), and B(c). The B(a) category means that the 

connection is very busy, and I cannot add any more connections. The B(c) category 

means that the connection is not busy, and additional connections can be added. 

However, B(c) means that the connection is limited, and there is further study 

needed. The B(b) category is also classified into three further categories; B(b1) 

means that INS must analyze and establish a backup, B(b2) means the INS must 

send the requests to the backup nodes, and B(b3), which is the highest level 

efficiency required, means that INS must reanalyze and establish new backups. 

  Ren [57] presented a dynamic load-balancing algorithm for cloud 

computing based on an existing algorithm called weighted least connection (WLC_ 

[58]. The Weighted Least Connections algorithm assigns tasks to the node based 

on the number of connections that exist for that node. This is done based on a 

comparison of the sum of connections of each node in the cloud and then the task 

is assigned to the node with least connections. However, WLC does not take into 

consideration the capabilities of each node, such as processing speed, storage 

capacity, and bandwidth. The proposed algorithm is called exponential smooth 

forecast based on weighted least connection (ESWLC). The ESWLC improves the 

WLC by taking into account the time series and trials. The ESWLC builds the 

decision based on an experience of a node’s CPU, memory, number of connections, 

and load of disk occupation. The ESWLC then predicts which node is to be selected 

based on exponential smoothing. 
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  The algorithm proposed in [59][60][61] is a dual-direction downloading 

algorithm from FTP servers (DDFTP). The algorithm presented can be also 

implemented in cloud computing load balancing. The DDFTP works by splitting 

an m-long file into m/2 partitions. Then, each server node starts processing the 

assigned task based on a certain pattern. For example, one server will start from 

block zero and keep downloading incrementally, while another server starts from 

block m and keeps downloading decrement. Finally, when the two servers 

download two consecutive blocks, the tasks are considered finished, and other 

tasks can be assigned to the servers. The algorithm reduces the network 

communication needed between the client and nodes and therefore reduces the 

network overhead. Moreover, attributes, such as network load, node load, and 

network speed, are taken into consideration. 

  The paper in [62] proposes an algorithm called load balancing min-min 

(LBMM). The LBMM algorithm has a three-level load-balancing framework. It 

uses an opportunistic load-balancing algorithm (OLB) [63]. The OLB algorithm is 

a static load-balancing algorithm that has the goal of keeping each node in the cloud 

busy. However, the OLB algorithm does not consider the execution time of the 

node. This might cause the tasks to be processed in a slower manner and could 

cause some bottlenecks since requests might be pending while waiting for the 

nodes to be free. The LBMM algorithm improves the OLB algorithm by adding 

three-layered architecture to the algorithm. The first level of the LBMM 

architecture is the request manager, which is responsible for receiving the task and 

assigning it to one service manager in the second level of the LBMM. When the 

service manager receives the request, it divides it into subtasks in order to speed 

up processing that request. A service manager would also assign the subtask to a 
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service node, which is responsible for executing the task. The service manager 

assigns the tasks to the service node based on different attributes, such as the 

remaining CPU space (freeness of the node), remaining memory, and the 

transmission rate. 

3.4. Storage Optimization Work 

  There has been some interesting work on storage optimization in the cloud. 

I noticed that some of these works focused on either dealing with large file sizes 

or small size files. Moreover, most of the approaches dealing with small file sizes 

replicated the full file over all the cloud resources. However, the approaches 

dealing with large file sizes usually split the file onto multiple cloud servers and 

had a partial replication only. Here, I show the storage optimization related works. 

3.4.1. Full Replication Storage Work 

  Zhang [64] proposed a full replication solution that targets the download of 

small files from the cloud. The solution is referred to as BerryStore. The targeted 

file size is a maximum of 10 MB. The advantage of this solution is to group many 

small files into one large file for which there is only one directory in the cloud 

nodes. This will result in minimizing the search and queries of the small files where 

there will be only one query method for all small files. The main structure of the 

solution is the client, NameServer, and DataServer. The client requests the file, the 

NameServer attains the location of that file (in which large file it is located), and 

the DataServer contains the real file data from which the client can download the 

actual file. The solution is good, yet not practical for large files. Moreover, the 
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solution replicates the grouped large files on multiple cloud nodes, which can be 

enhanced by reducing the replication time. 

3.4.2. Partial Replication Storage Work 

  Srivastava [65] proposed another solution that works for multi-cloud 

storage and within each cloud. It reduces the migration effort of the client data from 

one cloud to another. Each cloud contains multiple clusters, Vitual Machines 

(VMs) and physical servers. Therefore, for each cloud there will be a 

CloudInterface and for each cluster, there will be a ClusterInterface. The purpose 

of having interfaces is to organize the interactions between each client and each 

cluster within the cloud. Moreover, there is a broker that obtains the client’s request 

and processes it to the multi-clouds. The client submits requests to the broker to 

either upload or download. For an upload request, the client specifies the security 

level. The ‘SecurityLevel’ is a parameter used by the ‘FileSplittingFunction’ to 

split the file into multiple files based on the percentage of security level provided 

by the client. For example, if the client specifies the security level to be 50%, then 

the file will be split into two sub files each saved in a different location. For each 

cloud, the number of sub files is equal to the number of free VMs. The limitation 

of this approach is its complexity. Especially when the files are saved in different 

clouds, the operation will be more complex. 

  Villari et al. [66][67][68] proposed the redundant residue number system 

(RRNS). Their main concern was the security of the client files hosted in the cloud. 

It is similar to Srivastava’s solution. However, it is different in terms of keeping 

the metadata of each partition and its location in the cloud at the client side as an 

XML file. This is to increase the security of the files because the only one who can 
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collect all the partitions and create the original file will be the client. The number 

of file partitions is specified by the client. The solution is also useful for clients 

dealing with multi-cloud providers. Another parameter specified by the client is 

the redundancy degree (RD), which refers to the number of replicas of the 

partitions in each cloud node. The solution has four phases, splitting, 

dissemination, retrieval, and reconstruction. The problem is that if the client has 

lost the metadata of the partitions’ locations, the client will not be able to download 

the file. Moreover, each file chunk is saved on the cloud nodes as XML files. 

Therefore, more processing is needed to convert them to their original formats. 

There are approaches to enhance the storage consumption in the cloud of 

clouds. These approaches consider avoiding vendor lock-in, enhancing the security 

and privacy, and enhancing the cost of replicating full data across multiple 

providers in the cloud. These approaches include some popular work such as 

RACS [69], DEPSKY [70], SafeStore [71], and Hybris [72]. These solutions deal 

with the service provider architecture as a black box, they integrate their solutions 

with the storage provider so that there is data gathering by a local server at the 

client side by requesting data existing in each service provider. The service 

provider’s storage architecture and load balancing technique is not touched and 

therefore, there is a latency to the download time of the file eventually. The 

approaches are very useful for avoiding vendor (service provider) lock in issue. 

This means that the client will suffer minimal effects if the vendor goes out of 

business or did not provide sufficient service to satisfy the client. Although 

replicating even partitions of the data across multiple vendors will increase the cost 

for the client as discussed in [69][70][71] and have a small latency to the download 

time, it offers a very suitable solution to prevent the service provider from having 
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access to the full data of the client and it would help the client to be somehow 

independent from the service provider. 

3.5. Discussion of Current Approaches 

  As discussed earlier, the different approaches offer specific solutions for 

load balancing that suit some situations but not others. The static algorithms are 

usually very efficient in terms of overhead, as they do not need to monitor the 

resources during run-time. Therefore, they would work very well in a stable 

environment where operational properties do not change over time and loads are 

generally uniform and constant [73][74]. The dynamic algorithms, on the other 

hand, offer a much better solution that could adjust the load dynamically at run-

time based on the observed properties of the resources at run-time. However, this 

feature leads to high overhead on the system, as constant monitoring and control 

will add more traffic and may cause more delays [75]. Some newly proposed 

dynamic load-balancing algorithms try to avoid this overhead by utilizing novel 

task distribution models [76][77]. 

  Table 3-1 shows a comparison among the reviewed algorithms. The 

comparison shows the positive and negative points of each algorithm. For example, 

the INS algorithm is able to handle the load balancing dynamically. However, the 

provided algorithm is complicated, which could cause high implementation 

complexity. I foresee that a close examination of the algorithm and changing the 

overall structure may result in a less complex algorithm.  Furthermore, the 

CLDBM algorithm solves the problem of requiring a human administrator to 

control the system all the time. Therefore, it provides a centralized controller. 

However, if the centralized controller fails at any time, the whole system will not 
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be able to operate, which will cause a system failure. Having a backup of the central 

controller could solve the issue for CLDBM in cases of failure.  

  As for the ant colony approach, I can see that the decentralized approach 

provides a good solution to the single point of failure issue. However, it could 

easily cause a network overload due to the large number of dispatched ‘ants’. In 

addition, several operational factors are not being considered, which may result in 

poor performance. This algorithm can be further improved by introducing better 

evaluation mechanisms that take into consideration the status of the node and its 

current available resources. In addition, it may also be possible to limit the number 

of ants used in the discovery process by introducing search controls that could 

reduce the branching levels required in the search.  

  In DDFTP, the control is kept to a minimum and no run-time monitoring is 

needed to keep up with environment changes, while keeping a very efficient load 

balancing. As a result, it provides a good approach, yet it still needs some 

improvements for better utilization of the available resources. One possibility is to 

find a good model that will reduce the level of replication needed, while 

maintaining the same level of performance. This may be possible with the 

consideration of partial replications with a certain level of overlap that will enable 

more efficient resource utilization and maintain minimum overhead for load 

balancing. 

  Table 3-2 illustrates a comparison between the reviewed algorithms in 

terms of the challenges discussed in Section II. For example, the only algorithm 

that avoids data redundancy and storage replication is the INS algorithm. However, 

INS is a centralized algorithm and therefore has a single point of failure. Moreover, 

it is a complex algorithm.  
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  On the other hand, DDFTP relies on replicated resources and does not 

reduce the storage size required, but it has a dynamic decentralized approach to 

balance the loads. It is also a much simpler algorithm to download stored data. By 

applying partial replication, DDFTP can be improved to use less storage. 

Generally, each algorithm satisfies a partial set of these challenges, which makes 

it suitable for specific situations that match the addressed challenges. For example 

INS, CLBDM, and VM mapping all have a single point of failure, thus they would 

function very well in a very stable environment where the resource reliability is 

very high. Moreover, all algorithms except for ant colony and VM mapping can 

handle a highly distributed environment. Therefore, they are more suitable for the 

public cloud than the other two. In addition, all but DDFTP introduce high 

overhead on the network. As a result, if the network conditions worsen, they would 

all suffer significantly as more delays will be involved, which will delay the overall 

load-balancing process. However, DDFTP would be more capable in handling 

such delays, as it does not need to rely on run-time monitoring and controls. 
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Table 3-1: Load Balancing Algorithms, their Pros and Cons. 

Algorithm Pros Cons 

INS Initially proven to 

handle certain sorts of 

dynamic balancing. 

Does not have a forecasting 

algorithm to identify how the 

behavior of the nodes will be in the 

future. 

Only certain parameters are taken 

into consideration, such as distance 

and time. 

ESWLC  Reduces the server 

load issue which 

exists the original 

WLC 

Complicated. 

Prediction algorithm requires 

existing data and takes a lot of time 

for processing. 

CLDBM Solves the issues of 

the round robin 

algorithm.  

Automated task 

forwarding eliminates 

the need for a human 

administrator at all 

times. 

Inherits round robin issues, such as 

not taking into consideration node 

capabilities. 

Single point of failure (if CLBDM 

fails, then the whole process would 

fail). 

The threshold might not be applied to 

all cases. 

ANT 

COLONY 

Best-case scenario is 

that the under-loaded 

node is found at the 

beginning of the 

search. 

Decentralized, not a 

single point of failure. 

Ants can collect the 

info in faster manner. 

Network overhead because of the 

number of ants. 

Points of initiation of ants and 

number of ants are not clear. 

Node’s status change after ants visits 

to them is not taken into account. 

Only availability of node is being 

considered, while there are other 

factors that should be taken into 

consideration. 

Enhanced 

Map 

Reduce 

Less overhead for the 

reduce tasks. 

More processing time. 

Reduce tasks capabilities are not 

taken into consideration. 

VM 

Mapping  

Reliable calculation 

method. 

Single point of failure. 

Does not take into account network 

load and node capabilities. 

DDFTP Fast. 

Reliable 

A full replication requires full 

storage in all servers. 

LBMM Reliable tasks 

assignment to nodes. 

Slower than other algorithms 

because work must pass through 

three layers to be processed. 
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Table 3-2: Comparison of Load Balancing Algorithms in Terms of Challenges. 

 

As for the storage optimization techniques, since most of the technique 

architecture rely on having the client containing the metadata of each partition on 

the service providers, then if the client fails the whole process would fail. On the 

other hand, most of them are more secure than other load balancing approaches 

since cloud provider cannot have a full access to the whole data of the client. The 

latency added to the load balancing download speed cannot be ignored since it is 

added to the latency of the cloud provider and its architecture is not changed in 

 Replication Single Point of 

Failure (SOF) 

Network 

Overhead 

Spatial 

Dist. 

Fault 

Tolerance 

INS, 2012 Partial Yes Yes Yes No 

ESWLC, 

2011 

Full No Yes Yes Yes 

CLBDM, 

2011 

Full Yes Yes Yes No 

Ant-Colony, 

2011 

Full No Yes No Yes 

Enhanced 

Map Reduce, 

2012 

Full No Yes Yes Yes 

VM 

Mapping, 

2011 

Full Yes Yes No Yes 

DDFTP, 

2013 

Full No No Yes Yes 

LBMM, 2011 Full No No Yes Yes 
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all of the techniques. Most of the approaches deal with large file sizes except for 

berrystore of which goal is collect all small files as one large file and replicate it 

among several severs which is a full replication of the files. Moreover, CDDLB 

has a high download speed but a full replication of files over the servers in the 

cloud. The goals of the storage optimization techniques are different but some of 

them can be integrated together in order to provide even better performance. For 

example, since RACS treats the cloud provider architecture as a black box and it 

solves the issues of security and vendor lock in, it can be integrated with CDDLB 

in order to provide a faster download and less effects to the client data security. 

Table 3-3: Comparison of Storage Optimization Techniques in Terms of Challenges 

  SOF Security 

 

Replication Client 

overhead 

RRNS , 2014 Yes High Partial High 

Berry-Store, 

2012 

No Moderate Full Moderate 

RACS, 2010 Yes High Partial High 

Depsky, 2013 Yes High Partial High 

Hybris, 2014 Yes High Partial High 

SafeStore,  

2007 

Yes High Partial High 

CDDLB, 2013 No Moderate Full Low 

 

3.6. Chapter Conclusion 

  In this chapter, I have reviewed the state of the art research of providing 

DaaS in the cloud. From my analysis, I noticed that the current approaches lack the 
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ability to handle both efficient load balancing and an efficient technique to reduce 

the storage consumption among the cloud servers. Both of these issues are 

important in order to provide better services to the client and reduce the cost of 

hosting millions of files in the cloud. Therefore, I aim in this dissertation to provide 

a novel technique to solve the issue mentioned earlier.
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Chapter 4:  Collaborative Dual Direction Load-Balancing 

Approach 

 

  In this chapter, I demonstrate the collaborative dual-direction load-

balancing (CDDLB) technique. I show how the technique works in the cloud and 

explain the basis of CDDLB. The technique by which files are partitioned and 

partition tasks are assigned to servers is also illustrated in this chapter. Then, an 

evaluation of the method is discussed in Section 4.2. Finally, the possible 

enhancements and strengths of the techniques are demonstrated in Section 4.3. 

4.1.  CDDLB Methodology 

 Here, I describe the collaborative dual-direction download approach. I have 

applied the technique DDFTP used in FTP file exchange to the cloud in order to allow 

collaborative servers to provide partitions of the files whenever a client requests that 

file. 

 The CDDLB idea originates from the same approach as DDFTP, which uses a 

dual-direction download technique in FTP servers [59][60]. The CDDLB is the dual-

direction file retrieval from the cloud servers. The algorithm works by splitting the file 

into partitions of data as shown in Figure 4-1 and assigning two cloud servers for each 

partition to download the data from opposite directions. Each of the cloud servers will 

handle a download of either forward or backward in the partition depending on its 

assignment. This way, the download process is parallelized across the available 

replicas, and the overall client download time is improved significantly. In addition, 

the approach provides an efficient load-balancing scheme with minimum coordination 
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and zero interaction among the servers being used. However, the CDDLB method 

works well with the existence of full replicas of the data set on each of the cloud server 

nodes in use. 

Partition 1 Partition 2 Partition 3

0 n 2n 3n

 

Figure 4-1: Partitioning a File in CDDLB. 

 

If I assume that each partition is of length n, then for each set of two cloud servers, 

the first one will provide the data starting from block index zero and increment its 

counter to move forward, while the second server will provide the data starting from 

block index n-1 and decrement its counter to move backwards, as shown in Figure 4-

2. 

0 n

Server 1 Server 2

Partition 1

 

Figure 4-2: Dual Servers Providing One Partition. 

 

Figure 4-3 shows a very simplified example of a download process for a file with 

four cloud servers in the cloud. When a client requests file X, the request will be 

forwarded to the load balancer in the cloud. There are several load balancers in the 

cloud structure; however, requests are generally forwarded to the closest load balancer 
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in terms of distance. The load balancer will then identify the available cloud nodes to 

process the task (server 1, 2, 4, and cluster 1); it will partition the file according to the 

number of available servers into two partitions and then will assign: 1) a forward 

download task starting from block zero to S1, 2) a backward download task starting 

from block n to S2, 3) a forward download task starting from block n+1 to C1, and 3) 

a backward download task starting from block 2n to node S4. The speed of each of the 

cloud nodes differs according to its performance, which is the benefit of the dual-

direction download process. If a certain server is slow when providing its task, the 

collaborating server can overcome this limitation by providing the blocks in its 

direction. 

 

Figure 4-3: Simple Example of CDDLB Mechanism. 
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Since any file X will be downloaded collaboratively between multiple servers and 

each set of two servers will collaborate to download one partition, the equation to 

calculate the number of partitions needed for any file X is by dividing the number of 

available servers over two. Moreover, a partition size is decided as shown in Equation 

1 by the number of blocks (N) and number of available servers (M). For example, if I 

have a file X with 100 blocks and four available servers, then the partition size for each 

set of two servers is (100/4)*2, which is 50 blocks per partition. 

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 = (
𝑁

𝑀
) × 2                           (1) 

While the number of blocks N in file X can be found by dividing the file X size (R) 

by the block size. The equation to find N is as below: 

𝑁 =
𝑅

𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒
 𝑏𝑙𝑜𝑐𝑘𝑠                                (2) 

It was proven in [61] that the performance of the dual-direction technique is 

enhanced since the number of control messages (communication) between the client 

and the cloud servers is decreased to the minimal in reality, using dynamic servers and 

network loads even when there is a reassignment of the task from one server to another. 

It is found that the number of start messages would be equal to 𝑘 +
𝑘

2
 ((𝑙𝑜𝑔4𝑛) − 1) 

where k is the number of servers, and n is the number of the last block in the file. 

4.2. Simulation and Analysis of CDDLB 

  To evaluate the proposed algorithm, I consider a data set initially replicated 

on two cloud servers at different locations that are working according to any 

normal single node selection algorithm (e.g., ant colony or INS). The size of the 

data set is 50MB. As this data is replicated on both servers, a total of 100MB are 
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used. The data set is divided into 5000 blocks of size 10,000 bytes each. I assume 

that the average download speed from the first server to different clients over the 

Internet is 20 blocks/second with a minimum speed of 15 blocks/second and a 

maximum speed of 20 blocks/second. The average download speed from the 

second server to different clients is 30 blocks/second with a minimum speed of 25 

blocks/second and a maximum speed of 30 blocks/second. The average download 

times using any node selection and assigning technique and CDDLB are shown 

Figure 4-4. As I can see from the figure, CDDLB provides a good download 

performance, as it utilizes both servers and provides efficient load balancing 

regardless of the load on the servers and the networks. 

 

Figure 4-4: Comparing CDDLB Performance to Normal Selection Methods. 

 

 

  In order to check the effect of the processing speed, I simulated the file 

download speed using various numbers of dual servers for a 100 MB file. I first 

conducted an experiment using only two servers. Then, I conducted more 

experiments by increasing the number of servers to four, six, eight, and up to ten 

servers. The time needed in order to process the request reduced each time I 

increased the number of servers. Figure 4-5 shows the finishing time of each 
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processing time done by the number of servers specified. As discussed earlier, in a 

real cloud the speed and load of cloud servers’ change every second.  

 

Figure 4-5: Effect of Number of Dual Servers on the Download Time. 

 

4.3.  CDDLB Benefits and Limitations 

 The CDDLB technique works well for file downloading and shows some good 

results as discussed earlier in this chapter. However, the data storage is still consuming 

a lot of space on each cloud server, and the same data files are saved on each server. 

Although some parts of these replicas never get used. This means that the storage 

consumption is more than needed and therefore, my target is to reduce server storage 

consumption by improving the CDDLB algorithm by applying the partial replication 

of the data files being saved on each cloud server. This means that I will not store the 

same data file on all cloud servers. I would store different parts of the data files on 

each cloud server according to the servers’ performances throughout the various times 

download requests were performed on each server. 

4.4.  Conclusion 

In this chapter, I discussed the collaborative dual-direction approach to download 

files from the cloud. The approach simply partitions files into several partitions 

depending on the number of available cloud servers and assigns each partition to two 
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servers so that they can provide it collaboratively. Each server will be providing 

partition blocks either forward or backward. The importance of this approach is to 

enhance the download speed of large files in the cloud. However, the limitation here 

is the need to replicate full files in the cloud. This could be enhanced using the partial 

replication methods discussed later in this thesis. 
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Chapter 5:  Static Partial Replication Technique Using 

Collaborative Dual Direction Download 

 

  In this chapter, I discuss my static partial replication technique (SPRT), 

which uses the collaborative dual-direction download in order to make decisions. 

First, I discuss the technique, its workflows, and needed procedures. Then, I 

evaluate the performance of this technique and how it proved to have a significant 

improvement over the other methods, including the CDDLB technique, in terms of 

storage. I finally conclude the chapter by discussing the limitations of the technique 

and how it can be enhanced further to provide better results. 

5.1.  SPRT Method 

To implement SPRT, I used the workflows shown in Figures 5-1 and 5-2. 

Figure 5-1 describes the workflow of downloading a file by the cloud client. To 

download a file, the client initiates a request to the cloud. The cloud controller then 

checks whether the file was downloaded before, and if so, there will be data regarding 

the file partitions that were downloaded and which cloud servers provided them. 

Having this history will help in selecting which cloud server must provide which 

partition. The controller finds the required data from the database and then assigns the 

servers, which already have the file partitions to the tasks. After the data is downloaded 

from all the servers, the client is updated by the required file. However, there must be 

a first-time download for each file to get its experience. Therefore, the alternative 

workflow is selected when the file is being downloaded for the first time. The file size 

in bytes is fetched; the block size is determined by factorizing the file size. Then, 

servers are assigned based on their availability and processing speeds. When the dual-
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direction download is processed from all servers for the first time, the client is updated 

as well as the database. A database must always be updated with what happens in the 

servers processing each partition so that the controller can decide later which partitions 

are to be kept in the cloud server and which are to be removed. 

 

Figure 5-1: SPRT File Download from the Cloud Workflow. 

 

 I allow the file partitioning process at the controller side when the controller has 

enough data to make its decisions. Figure 5-2 illustrates how the controller saves the 

required partitions on the servers and removes the redundant partitions based on their 

download rate. To do that, the controller first checks the available data in the database 

concerning the download from the previous servers’ experiences. Then, if blocks 

downloaded from server S (for example) were found, the controller creates a directory 

in server S where the directory name is the file X ID. Inside the server folder, the 

blocks that were downloaded from that server are copied. Each block will be a file by 
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itself and the name of the file will be the block ID. I tested splitting the original file 

into the blocks and combining them by the client. The original file was created at the 

client without any problems. Therefore, this could be the best way to keep partitions 

of the file in the server without the need for complicated calculations. The file sizes 

will match the block size in the original file.  

 

Figure 5-2:  SPRT Replicated Data Removal Process. 

 

 Moreover, the block size should be selected based on the original problem size 

(file X size). To do that, I factorize the original file X size and find the biggest factor 

that belongs to the interval from zero, which is the minimum file size to {(
𝑋

𝑁𝑂𝐶
) ×

𝑁𝑂𝑆} that refers to the file size divided by the maximum number of connections 

allowed by the database server (NOC) multiplied by the number of servers (NOS). This 

interval will prevent any “exceeding number of connections” errors for the users when 
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uploading their files to the cloud servers. Since I keep the metadata in the database, it 

is important to consider the database server’s ability to receive the updated 

connections. 

𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 =  𝑀𝑎𝑥(𝑓(𝑥)) ∶  𝑤ℎ𝑒𝑟𝑒 𝑓(𝑥) ∈ {0, ( 
𝑥

𝑁𝑂𝐶
) ∗ 𝑁𝑂𝑆}       (3) 

 Another problem that could be faced when transmitting a file, even through the 

cloud, is the maximum transmission unit (MTU). Even if I found a block size that will 

not face an "exceeding number of connections" error, I could face the MTU error for 

which a block can be transferred several times because it exceeds the MTU with even 

one byte. Having a file transferred through several networks will result in having 

different MTUs for each one. For example, Figure 5-3 shows a file being transferred 

though a cloud that has an MTU of 1500 bytes, and between the cloud and the client, 

which has an MTU of 1000 bytes. The 1500-size blocks that passed through the cloud 

will not be able to go through the cloud-client network because the MTU there is less. 

Therefore, each block of >1000 will be transferred as two blocks of 1000 and 500. This 

will consume time from the transfer process.  

 

Figure 5-3: MTU in the Cloud Network. 
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 When I say that an MTU is 500, it is really 512 bytes and 1000 is really a 1024 

bytes (which is double). The benefit here is that any factorial result from Equation 1 is 

actually divisible by any of the multiples of 512, 1024, or 1536. Therefore, when a 

block size of 51,200 of a certain file is defined, this block will be transferred through 

the network based on the MTU, as in the table. The table shows that after selecting the 

minimum MTU in a certain route of the file transfer, the block can be split into several 

packets without any remaining packets. 

Table 5-1: Example of Block Size Handling MTU. 

MTU Real pocket size Example Result 

500 512 51200/512 = 100 packets 

1000 1024 51200/1024 = 50 packets 

1500 1536 Note: Reduce packet size to 1280 

51200/1280 = 40 packets  

2000 2048 51200/2048=25 packets 

 

 The pseudo code in Algorithm 5-1 shows how the block size is determined 

based on Equation 3. The file size is first acknowledged. Then, the factorization 

method is applied, and when the largest number in the required interval is found, it is 

updated in the block size table in the controller. This is so that the block size is 

determined for all servers and all download times when the file is first uploaded to the 

cloud. The file is uploaded as a whole in the cloud without any additional procedures 

except determining its blocks size for download purposes. 
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During my experience, I found that the number of replicated blocks in more 

than one cloud node is associated with the number of coordinated nodes in the 

download process. It is also associated with the load assigned to each server and the 

speed of the cloud server. For example, if I had only two nodes downloading the file 

and both nodes have the same load and the same speed, then the number of replicated 

blocks on the two servers from the file will be two. While when the number of nodes 

downloading the file is four, the number of replicated blocks will be four, and if one 

of the dual servers was faster than the second server, then the number of replicated 

blocks could increase to six. This is because one server processes the request much 

faster than the other one, and for the other server to reach it, more blocks are replicated.  
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Therefore, if I have four replicas of a data file on four cloud servers, then I need 

to divide the file into 4/2 = 2 partitions. If the data file X has 3000 blocks for example, 

then each partition will be of size (3000/4)*2 = 1500 blocks. Assuming I have the 

cloud servers A, B, C, and D. The first time the request is initiated, the controller will 

look for the free servers and assign the partitions to them accordingly. In this example, 

partition 1 will be assigned to servers A and B. Server A will provide the forward 

download of partition 1, while server B will provide the backward download of the 

same partition. As the servers push the blocks, they also update their blocks’ download 

counters as in Tables 1 and 2, where the partition is of size P and server A downloads 

from zero onwards and server B downloads from P-1 downwards until they meet at 

blocks k and k+1. 

Similarly, the second partition is assigned to cloud servers C and D, and they 

both keep similar tables. These tables are updated every time a download request is 

assigned to the servers for the same file. This will allow the servers to know which 

blocks are being used and which are not. Over time and with the repetitions of the 

downloads, the servers can decide to remove the blocks that are never used from 

storage. This way if I examine servers A and B, after a while I may find that server A 

has pushed blocks zero to k at least once, while the remaining blocks in the partition 

were never used. In addition, server B has pushed blocks P-1 to block j at least once, 

while the others were never used. In this case, the controller may decide to instruct 

server A to delete blocks k+1 to P-1 and server B to delete blocks zero to j-1. Assuming 

varying performance and loads on the two servers, j will usually be smaller than k, thus 

there will be some overlap across the servers to ensure proper download in the 

upcoming requests. For this approach to work correctly, I must ensure that the 

downloads on particular servers are always done in the same direction. For example, 
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cloud server A will always be assigned to start from the beginning of a partition, while 

cloud server B will always start from the end of the partition. The same applies to all 

servers participating in the overall download process. 

As more requests are initiated for downloading a specific file, the controller 

will be able to remove some blocks from each partition on the cloud servers. 

Simultaneously, the download process will continue normally for future requests 

without noticing the partial replications. This will allow us to reduce the storage 

needed on the cloud servers, while achieving better levels of performance for the client. 

The partial replication of the load-balancing algorithm performs better as the number 

of downloads increases. This is because more information about the cloud servers 

becomes available for the evaluation of their ability to obtain which part of the file. 

Figures 5-4 and 5-5 demonstrate how the file blocks are stored as file structure in the 

cloud servers to simplify the search process of the partitions blocks for the client. 

Moreover, to secure the other files hosted by the cloud server from being accessed by 

the wrong clients. 

 

Figure 5-4: Cloud Node A File Structure. 

 

Figure 5-5: Cloud Node B File Structure. 

Algorithm 5-2 and 5-3 show the pseudo code of the partition removal at the 

server level in the cloud. The main idea involves copying the file blocks into other 
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smaller files based on the block IDs in each server node. After that the original file 

is removed. To save partitions of the file into the cloud servers, I first check the 

existing experience saved for that file. This experience is saved in a database that 

is available with the controller. All the rows saved for that specific file will be 

retrieved. Then, for each server that provided a partition of the file, a directory will 

be created in that specific server containing the file ID. This is so that it becomes 

easier for the server to find the data for that file. When the directory is created, the 

method will check the database for which blocks were downloaded from that 

server. As long as there are blocks downloaded from the server by checking the 

attribute ‘DownloadCounter’ in the controller table, a small file containing the 

block IDs will be created in the directory and the binary will be written to the file 

starting from the first position of the block till the last position. The new file size 

will match the block size. Therefore, I made sure that there is no additional storage 

needed when writing the partition of the original to the new small files. Moreover, 

when downloading a file, each block is read and appended to the resulting file on 

the client side, and its size is also matched to the original file size and the sum of 

the blocks sizes, which confirms that there is no additional storage needed when 

splitting the file into multiple blocks files. Moreover, when removing a block, I 

ensure that the file was downloaded several times before, while the block was not 

downloaded from that server at all.  
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  Figures 5-6 and 5-7 show an example XML of the data saved in the 

controller's database. I made sure that the data saved there is minimal so that it does 

not overload either the retrieval or the storage of the data center. When the file is 

first uploaded, I add its details, such as the identification number, name, file size, 

and block size identified based on Equation 3, and I initiate the number of 

downloads to zero. As there are more requests initiated for that file, the number of 

downloads will increase. I keep this attribute to compare the block downloads to 
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the file downloads when attempting to delete any blocks to avoid deleting a block 

from a file that wasn't downloaded before. As for the ‘filesblocksmap’ table, I keep 

the attributes that will help us in deciding whether or not to delete a certain block 

from a file. The first three attributes (node ID, file ID, and block ID) will help in 

determining which block is which and help map it to the cloud node that usually 

provides it and the file to which it belongs. Then, I add the download counter and 

the processing type, which is either forward or backward based on the dual-

direction approach. 

 

 
Figure 5-6: Example of File Details in Controller's Database. 
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Figure 5-7: Example of Experience Saved in Controller's Database of Each Block. 

 

The components of the solution are shown in Figure 5-8. The main 

components are 1) the clients who initiate the request and send it to the cloud, 2) 

the load balancer that checks the file download experience from the database and 

assigns tasks to the cloud servers, 3) the cloud servers that process the requests, 

and 4) the file controller that does the partitioning on the storage level at the cloud 

servers after checking the experience of the file downloads. 
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Figure 5-8: SPRT Solution Design. 

5.2.  Evaluation and Simulation of SPRT 

  Here, I show an evaluation of the storage enhancements of SPRT over CDDLB 

(discussed in Chapter 4). To evaluate my methods, I implemented my own Cloud 

simulation environment as shown in the class diagram in Figure 5-8. Servers’ speed, 

network speed, bandwidth, and round trip time are all attributes which I can 

manipulate to simulate a real cloud network. This simulator follows the same approach 

used by other models used for other related research [76][77][78].  

The first comparison in terms of storage is shown in Figure 5-9. Only 60 MB 

of space is needed after removing the blocks that have never been downloaded from 

both servers. The storage space needed by the new approach is reduced from 100 MB 

to 60 MB (i.e., 40% savings) without increasing the download time compared to 

DDFTP with full replication.  
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Figure 5-9: Storage Needed by SPRT Compared to CDDLB. 

 

Figure 5-10: Blocks Downloaded from Server 1. 

 

 

Figure 5-11: Blocks Downloaded from Server 2. 

 

  As displayed in Figures 5-10 and 5-11, the first server has never 

downloaded blocks higher than block number 2500, while the second server has 

never downloaded any blocks lower than block number 1500. The main reason for 
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obtaining these numbers is based on two cases. The first case is when the first 

server was downloading at its maximum speed, while the second server was 

downloading at its minimum speed. Thus, the maximum block number that the first 

server downloaded is block number 2500, as both servers will be downloading an 

average of 25 blocks/second. The second case is when the first server was 

downloading at its minimum speed, while the second server was downloading at 

its maximum speed. Thus, the minimum block number that the second server will 

download is block number 1500, as the speed of the first server is 15 blocks/second, 

while the speed of the second server is 35 blocks/second. Using the technique 

developed in this research, it possible to remove the last 2500 blocks from the first 

server and the first 1500 blocks from the second server without affecting the 

parallel download operations and without increasing the download time.   

Figure 5-12 compares the space used by SPRT (partial replication) and two 

of the most used algorithms in load balancing, which are the ant colony load-

balancing and map reduce algorithm using different file sizes. I noticed that when 

the file size increased, my partial replication algorithm improved the storage 

optimization of the cloud to a greater extent. This is because the difference of the 

file sizes between my algorithm and other load-balancing algorithms increased. 
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Figure 5-12: Storage Consumption in Two Cloud Servers 

 

 When testing the same algorithms using four cloud servers, the difference 

increased much more, even when the number of replicated blocks in the partial 

replication algorithm increased. However, the difference between it and the other 

algorithms was greater because they are based on a full replication of data. Figure 

5-13 shows a comparison between the three techniques in terms of storage 

optimization when using four servers. As more servers are used, I can achieve more 

savings. 

 

Figure 5-13: Storage Consumption in Four Cloud Servers. 

 

In addition to testing the performance of the algorithm while increasing the number 

of servers, I also simulated the storage consumed whenever the number of servers 

increased. To do that, I simulated a download for a 100 MB file using two, four, 
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six, and eight servers. Then, I ran my algorithm for optimizing the storage of the 

servers. Figure 5-14 shows the amount of storage consumed for each group of 

servers. I noticed from the results that the storage consumed increased whenever 

the number of cloud servers increased. This is because for each dual server working 

on a partition, there are blocks replicated, and those are the blocks where the two 

servers meet in the download process. The percentage of the replicated blocks is 

very low compared to other full replication techniques. The other full replication 

techniques double the storage consumed as the number of servers increase. 

 

Figure 5-14: Effect of Number of Servers on Blocks' Replication. 

 

  I simulated an experiment with a file containing 12,800 blocks using two 

servers. At the first upload, servers were storing all the file blocks as different files 

(see Figure 5-15). Then, I downloaded the file a few times using my collaborative 

dual-direction download approach. Then, I stored several files in both servers 1 

and 2 to crowd the storage space and leave little room for new uploads. Finally, I 

submitted a request by the client to upload a new file. After running SPRT to 

optimize the storage for the new file, blocks that were not previously provided by 

each server were removed. Figure 5-16 shows that blocks from 6500 were removed 

from the server because they were not previously used. Blocks starting from block 
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zero to 6460 were removed from server 2. There are some blocks that were used 

by the two servers for downloads and these blocks are left in both servers. 

 

Figure 5-15: Storage of All File Blocks After the Upload Process. 

 

 

Figure 5-16: Storage of the Same File Blocks After Running SPRT. 

 

When running the same experiment using four servers downloading the 

same file, the number of partitions increased (see Figure 5-17). If all servers had a 

full storage and all of them removed the unused blocks, then each server would 

only save the number of blocks from the original file. The importance of this 

approach is that although the file does not exist in its entirety on any one of the 

servers, all the blocks of the original file exist and can be found in the collaborative 

cloud servers and the file can be reconstructed easily. Moreover, the download 

process is faster, as there are a number of servers working together to provide the 

different partitions of the file simultaneously.  
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Figure 5-17: Partial Storage of Four Cloud Servers After Running SPRT. 

 

An important parameter to evaluate is the amount of additional storage consumed 

by the metadata of each file. I have checked this parameter and found it does not 

exceed one megabyte of storage for a one gigabyte file. This amount is minimal 

compared to the file size. Table 5-2 shows different file sizes that I tried and the 

amount of storage consumed by their metadata. 

Table 5-2: Metadata Size of Different Files 

File Size Metadata size 

1 GB 1.3 MB 

500 MB 700 KB 

100 MB 400 KB 

10 MB 200 KB 
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5.3.  Pros and Cons of SPRT  

  The SPRT method showed promising results in terms of enhancing the 

performance and storage consumption of the cloud. Therefore, using this technique 

will reduce the cost of cloud resources used by cloud providers without an effect 

on performance. The performance of using dual-direction techniques improves the 

speed and therefore performs better than a regular selection technique as discussed 

in Chapter 4. In addition, adding a storage enhancement to the dual-direction 

technique has very good effects on the efficiency of the original CDDLB. 

  However, using SPRT will result in the need to have manual control over 

the removal process of partitions; therefore, the basis cannot be determined. Even 

if the threshold of storage was determined and a removal process was conducted 

whenever the threshold was reached, it wouldn't be an optimal solution, since the 

storage resource is not fully utilized. Therefore, I considered the need for a manual 

control over the SPRT as a limitation of the technique and I have attempted to 

enhance it, as discussed in Chapter 6. 

5.4. Conclusion 

In this chapter, I introduced the static optimization technique of cloud storage using 

the dual-direction download experience. The SPRT saves the experience of each block 

when downloading the file using a dual-direction technique; therefore, there is a need 

to store this data in a database in the cloud itself. The technique resulted in a big 

enhancement of storage compared to the original CDDLB method. The SPRT has a 

partial replication feature on which there are few blocks that will be saved in multiple 

cloud servers. Therefore, even if there was a failure of any of the cloud servers, there 
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are backup blocks in another one. I only remove the previously unused blocks. By this 

method, I preserve the reliability of the technique and optimize the storage. This is 

while also enhancing the speed. 
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Chapter 6:  Self-Managed Partial Replication Technique Using 

Collaborative Dual Direction Download (ssCloud) 

 

  In this chapter I discuss the ssCloud (smart storage cloud) technique. The 

technique is an enhancement to the previously proposed methods. Here, I introduce 

the automation of the cloud storage concept and discuss the need to have such an 

automation. I then elaborate on the structure of the ssCloud technique and its 

implementation. I discuss simulation results, which proved the efficiency of this 

technique, and I compare it to other existing approaches in the research field and 

the industry. I finally conclude the chapter with a summary of the ssCloud 

technique, its benefits, and areas of enhancements. 

 

6.1.  Description of ssCloud 

Here, I discuss my proposed ssCloud methodology for the cloud. The main goal is 

to enhance the limitation of the SPRT technique, which is the need to have a manual 

control over partition removals. Here, I automate the process by controlling the file 

partitioning starting from the upload phase. For example, when the client needs to 

upload a new file to the cloud, and some cloud servers do not have sufficient storage 

to host this file. In this case, I look for the blocks that were not downloaded from that 

certain server for a certain amount of time and remove them so that I can clear 

sufficient storage for any new files. These blocks are usually replicated on other cloud 

servers and can be downloaded from those servers when requested. Therefore, the 

effect of removing these blocks will be minimal to the download time of the file from 

the cloud.  
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To download a file, the client initiates a request to the cloud as in the previous 

methods. The cloud load-balancing module then checks whether the file was 

downloaded before, and if so, then there will be data regarding the file partitions that 

were downloaded and which cloud servers provided them. Having this history will 

help in selecting which cloud server must provide which partition. The controller finds 

the required data from the database and then assigns the servers, which already have 

the file partitions to the tasks. After the data is downloaded from all the servers, the 

client is updated by the required file. However, there must be a first-time download 

for each file to get its experience. Therefore, an alternative workflow is selected if the 

file is being downloaded for the first time. The file size in bytes is fetched; the block 

size is determined by factorizing the file size. Then, servers are assigned based on their 

availability and processing speeds. The database is updated at the end of every 

download. 

To implement the storage enhancement technique, I structured my solution as 

described in Figure 6-1. The figure shows that there are two interfaces for each cloud. 

One is to manage the download requests from the clients. This includes the cloud load-

balancing module. The second interface manages the file uploads and blocking 

processes, which is the ‘FileController’ of the cloud. This means that the FileController 

will reduce the load of client requests on the cloud load-balancing module. This is 

because such requests go to a different interface rather than going to the cloud load-

balancing module at all. Blocking and partitioning will also be done at the 

FileController side. Both the cloud load-balancing module and the FileController have 

access to the database to make decisions. Moreover, both update the database with the 

results of their processes.  
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Server

User

Database

Cluster

FileController

Request File

Upload File

Check/Update

Check/Update

Update

Assign Tasks

 

Figure 6-1: Overall Solution Structure of ssCloud. 

 When the client initially uploads the file, the sequence diagram shown in 

Figure 6-2 is used. Client, FileController, cloud server, and database are the only 

entities needed for this process. The client submits an upload file request to the 

FileController. The FileController obtains the file size from the client. Then, the 

FileController communicates with the servers on the cloud to identify the current 

available storage and to compare it to the file size to determine whether it is sufficient 

to upload the file. If the storage is sufficient, the FileController determines the block 

size, creates a directory entry with the file name in the servers, and saves the file as 

blocks of the block size. Finally, the FileController updates the database with each 

block stored in each server. In the case that the storage was not enough in any of the 

cloud servers, the FileController will communicate with the database to obtain all non-

downloaded blocks that belong to previously downloaded files. Then, it will delete 

them from the server to clear storage space for the new file. 
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Client FileController DatabaseServer

Upload File

Get File size

Return File size

Check Available Storage

Return Available Storage

Compare FileSize to Available Storage

Determine block size

Upload blocks to 

server directory

Update Database

alt

FileController checks Database for blocks with download 

times = 0 from server X. FileController then deletes the 

queried blocks from server X and upload the new file blocks

Available Storage is less than file size

 

Figure 6-2: Sequence Diagram of File Upload Process. 

 

The dynamic file upload to the cloud pseudo code for the main method of 

ssCloud is shown in Algorithm 6-1. When receiving a file upload request from the 

client, the method attains the file name and the file size. Then, it runs a loop through 

each server in the cloud and checks whether the available free storage of that server 

is sufficient to upload the required file on that server. If the storage is sufficient, 

then the file is divided into blocks determined by the factorization of the file size. 

A directory in the targeted cloud server is created and all the blocks of that server 

are copied to the destination server. In the case when the available storage of a 
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certain server from the cloud is not sufficient to store the file, then the method 

determines the required space, and checks the database for all the files that were 

downloaded from the cloud but the blocks were not provided from the target server. 

The method then removes the blocks that were never downloaded from that server 

and recursively uploads the file as blocks into the server directory. 

This solution could be implemented in several other ways. For example, I could 

have implemented a batch process that runs periodically to check for non-

downloaded blocks and remove them. The problem with this approach is that if I 

needed to upload a file before the batch process is executed, the storage may not 

be sufficient in the targeted server. Another method is to run the batch process after 

each download process by the load-balancing module. This approach will increase 

the load on the load-balancing module, which will have a negative effect on the 

download process. Therefore, I held that the most effective method is to remove 

blocks when an upload is requested. This allows for finding the unused blocks and 

removing some only when necessary for more storage. Moreover, all the additional 

work of storage checking, file splitting, determining block size, and saving will be 

done by the FileController without the need to include the load-balancing module 

in the process. 
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The file structure after uploading the file to the targeted server is shown in Figure 

6-3. The figure shows that the directory of the file in the server contains the file ID 

that was saved in the main database. Then each block is stored as a separate file 

using its block ID. This will make it easier for the client and the load balancer to 

find the blocks of the file even if the history of the file was lost or deleted by 

mistake. With blocks stored by their incremental ID in the file, if the database was 

not available, the load balancer can simply calculate the block size using the file 

size and look for the blocks in the cloud servers to provide them to the client. 

 

 

Figure 6-3: File Structure in the Cloud Servers After Initial Upload. 

 

After more file downloads, if there was a request to upload a new file to the 

cloud server and the server does not have enough storage space, the non-

downloaded blocks will be removed from that server. If there were blocks that were 

downloaded previously, the directory will remain and the previously downloaded 

blocks will remain in the same directory. Figure 6-4 shows the file structure in case 

of removing the unused blocks in order to provide more storage. In this case, server 

S has a full storage space in which it will not provide blocks 1, 2,3…100. 

Therefore, they were removed from its storage, and its storage space was used for 

the new file C, while server SS has enough storage space for file C therefore, no 

blocks were removed from server SS. 
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Figure 6-4:  File Structure in the Cloud Servers After Unused Blocks Removal. 

 

6.2.  Example of ssCloud 

  In this section, I show the life cycle of a file in ssCloud to clarify how it is 

handled. I chose a 100 MB file in order to illustrate this example. The life cycle is 

as follows: 

1. The 100 MB file is uploaded to the cloud using the dynamic upload file 

algorithm discussed in Section 6.1. Since I had eight operating servers, the 

number of connections allowed by my database server is 16,300 and 

therefore the block size of this file was found as the below. 

𝑀𝑎𝑥(𝑓(104,857,600)): 𝑤ℎ𝑒𝑟𝑒 𝑓(104,857,600) ∈ {0, ( 
104,857,600

16,300
) ∗ 8}

= 51,200 𝑏𝑦𝑡𝑒𝑠 

The number of blocks for that file will be 
104,857,600

51,200
= 2,048 blocks each of 

size 51,200. Each of these blocks is saved into the controller's database 

separately as shown in the second row from below Figure 6-5. The tables are 

exported from the database. 
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Moreover, the time taken to upload this file was 20 seconds into all the servers. 

However, when running this example, I were not using the Internet and 

therefore, the time might change accordingly. 

2. Each block is also saved as a separate file in a folder directory with the 

same name as in the database. Figures 6-7 and 6-8 below show how the 

blocks were saved. 

Figure 6-5: Uploaded File Details in Controller's 

Database. 

Figure 6-6: Uploaded Blocks Details in Controller's 

Database. 
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3. When running the download, the requested file was divided into four 

partitions; each partition has (2048/4) = 512 blocks. Each set of two servers 

worked on their partition forward and backward till they met at certain 

block, and depending on the server speed, the partition was received, and 

they were able to help the other two servers if the other partitions were not 

finished. Figure 6-9 shows how the file is divided into partitions and which 

server is assigned to which task. An important note to mention here is that 

when two servers of a certain partition were very fast and finished their task 

before any other pair, they can join the pair in downloading their partition. 

 

Figure 6-7: Uploaded Files Structure in Cloud 

Servers. 

Figure 6-8: Blocks of the Uploaded File Saved 

as Separate Files in the Servers. 
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4. After running the download several times, each of the eight servers usually 

provided some of the blocks, although there were blocks with a download 

counter of zero. I stored many files on the servers so that when uploading 

any new file, I could see the blocks that had ‘DCounter’ of zero removed. I 

changed the network speed and server speed each time I ran the download 

in order to simulate a real Internet download and so that the change would 

affect which blocks were saved in which server. The download time 

whenever I ran the ssCloud changed since I changed the server speed; 

therefore, the number of replicated blocks changed. For example, Table 6-

1 shows the each server speed and how many blocks it was provided based 

on its download speed. 

 

 

 

 

 

Figure 6-9: File Download Splitting and Assignment Process. 
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Table 6-1: Effect of Different Speeds of Servers in Three Runs. 
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5. If all servers had storage issues and needed to remove the unused blocks, 

Table 6-2 shows how many blocks each server would carry. There are 

replicated blocks on multiple servers. However, the file is not fully 

replicated on the server if it removed the unused blocks based on storage 

needs. I noticed that of all the remaining blocks, 3107 out of 16384, there 
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were only 18.9%, which meant that the storage consumption was enhanced 

by at least 75%. Moreover, since each block was of size 51200, the entire 

amount of storage saved was 13,277*51,200 = 679,782,400 bytes, which is 

equal to almost 679 MB of storage. More of the storage saving analysis will 

be discussed in Chapter 7. 

Table 6-2: Number of Remaining Blocks Per Server After Removing Unused Blocks. 

Server Number of Blocks 

S1  328 

S2 433 

S3 741 

S4 361 

S5 418 

S6 303 

S7 261 

S8 262 

Total Number 

removed blocks 

(8 × 2048) –  3107 

=  13277 blocks 

 

6.3.  Analysis and Simulation Results of ssCloud 

In this section I analyze the differences between ssCloud and other storage 

optimization approaches for the cloud. I also discuss the evaluation of ssCloud. 

 When comparing ssCloud to RRNS (discussed in Chapter 3), RRNS retains 

the file fragmentation details on the client side. This is beneficial as a security 

measure allowing for higher safety controls for the client. However, if the client 

loses the file information, a serious issue would occur because no one else has the 

same information. This is not an issue with ssCloud since there are backups of the 

database. Even if there is an issue with the database, the blocks and files are stored 
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in each server by a sequence ID. This means that they are reachable, but the load-

balancing module will have to expend more effort to obtain the information. 

BerryStore, on the other hand, does not take security as a priority. Its target is to 

provide a fast method to download small files by storing multiple small files as one 

large file. The problem here is that it cannot be applied to larger files, while ssCloud 

and RRNS both can handle files of any size. Table 6-3 shows the comparison 

between the three approaches. 

 

 Table 6-3: Comparison of Storage Optimization Techniques. 

 SOF Security File 

Types 

Replication Client 

effort 

RRNS Yes High All Partial High 

Berry-

Store 

No Moderate <10 

MB 

Full Moderate 

ssCloud No Moderate All Partial Low 

 

To know the probability of deleting a certain block from a given server, I use 

a conditional probability because there are three events that must happen before 

deleting a block from a server. First, a file upload request must be initiated. Then, the 

server storage must be insufficient. Finally, the block must not have been previously 

downloaded from the server for a previous download request. Figure 6-10 illustrates 

the probability of deleting a block from a server. In the figure, P(A) is the probability 

of uploading a new file; P(B) is the probability of insufficient storage in server X, and 

P(C) is the probability that block z was never downloaded before, while file R 

containing that block was downloaded several times. The highlighted intersection 
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between P(A), P(B), and P(C) signifies having all these events occurring 

simultaneously. That is, if P(A&B&C) then the block will be deleted. Notice that the 

probability of removing a certain block using ssCloud is low compared to the normal 

flow. This means that in most cases, there will be a file upload request but cloud servers 

will have sufficient storage available or the block will be downloaded previously from 

the server, and it will not be removed.  

 

P{A ∩ B ∩ C} =  𝑃{𝐴} . 𝑃{𝐵|𝐴} . 𝑃{𝐶|𝐴 ∩ 𝐵} 

𝑂𝑅 =  
1

𝑛!
  =

1

3!
               (4) 

 

 

On the other hand, the probability that a partition is downloaded from a 

certain server is a dependent probability. If I have a file of two partitions and four 

servers will be working on providing these partitions, then the probability that 

server 1 provides a forward download from the file is as follows: 

P(𝑆𝑖 downloads 𝑃𝑗  ) =  
1

𝑆
𝑃

     ,         (5) 

Figure 6-10: Probability of Removing a Block. 
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Where S is the number of available servers and P is the number of partitions. 

This means that the probability that server 1 provides partition 1 forward is 1/(4/2))  

= 1/2. When trying to determine the probability that server 1 provides the download 

of partition 2, then it will be 1/(3/1)) = 1/3 as the number of servers will decrease 

because server 1 will be busy providing partition 1, and there is only one partition 

remaining. This analysis is important to know which blocks will be downloaded 

by which server. If a block is regularly provided by a server, then it will not be 

removed. 

Storing the file for the first time in my static storage optimization was done by 

saving the full file then taking copies of the blocks and deleting the original file. 

However, splitting the file from the beginning as blocks when the file is transmitted 

from the client to the cloud servers enhances this. This will also be of minimal 

effect to the client download process. This is because the client will be 

downloading the blocks within a file (as shown in Figure 6-11). When simulating 

both cases, I noticed that the download time difference between the two is 

negligible. Downloading different blocks will increase the download time because 

databases must be checked for previous experience for that file. Moreover, each 

block file must be opened and downloaded. I noticed that the maximum difference 

between downloading the full file without database access and downloading 

partitions with database access was 8 seconds when the file size was 2 GB. The 

average overhead of the download process is about 3%. However, using multiple 

dual-direction servers still improves the performance compared to regular 

approaches. Furthermore, when optimizing the storage space of the cloud servers, 

this is a very minimal difference. 
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Figure 6-11: Time Difference in Download for Different File Sizes. 

  Moreover, there is an effect to the need to connect to the database in the 

upload process too. This is since all the upload requests must go through the 

controller and be partitioned into blocks as in equation 3, chapter 5. This process 

increases the time of upload for the files. However, since the file is uploaded once 

and downloaded several times, my concern was to minimize the database 

connection effect on the download process. Figure 6 -12 shows a comparison of 

uploading a file using ssCloud to uploading a full file without partitioning and 

database connection. I noticed that as the file size increases the difference between 

the two methods decreases. This is because the number of blocks is determined 

based on the number of servers, number of database connections and file size. By 

using equation 3, the number of blocks will decrease as the file size increases and 

therefore the number of connection requests to the database will decrease too. As 

a result, this decreases the difference between the process of uploading a file 

without the need to a database connection and the process used in ssCloud. 

 

0 200 400 600 800

100

500

1000

2000

TIME (SECONDS)
B

LO
C

K
 S

IZ
E 

(M
B

)

Block files Full File



75 
 

 
 
 

 

Figure 6 -12: Comparison of Full File Upload and Blocks Upload in Terms of 

Time Taken 

 

  A hypothesis was made that the storage consumption in the server when 

storing a full file would be less than storing multiple distributed blocks of the same 

file. That is because most of the researchers assumed that each block of the file 

would require additional space to store headers and file types. Therefore, I 

simulated the difference between the two options using my approach and found 

that the overall size of the original file and the folder containing all the split blocks 

of the file are exactly the same as shown in Figure 6-13. The result was the same 

because I stored the file as a number of binary files and the resulting downloaded 

file is of the same format as the original file. 

 

Figure 6-13: Consumed Storage Difference in MB. 
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Figure 6-14 demonstrates a comparison between ssCloud, RRNS, Dropbox, 

and Google Drive in terms of the download time for files of different sizes. The 

sizes of files used for the comparison ranged from 10 MB to 1000 MB (1 GB). I 

set the download speed as the Internet speed in my network which was 1 Gbps. 

The figure shows that the 10 MB file was downloaded by RRNS in 30 seconds 

while the ssCloud downloaded the same file in 11 seconds, Dropbox took 20 

seconds, and finally Google Drive took almost one minute. Moreover, a 400 MB 

file was downloaded by RRNS in 640 seconds, while the ssCloud downloaded it 

in 525 seconds. This is mainly a result of multiple servers working collaboratively 

on each partition of the download. Dropbox provided the file in 750 seconds and 

Google Drive in 660 seconds. The results demonstrate that Google Drive performs 

better with medium file sizes (100-500); however, when the file size reaches 1 GB 

both Google Drive and Dropbox need more than 20 minutes to download. The 

RRNS performs better than Dropbox and Google Drive because it assigns tasks to 

multiple servers; however, each cloud server is solely responsible for providing its 

partition; therefore, the delay in any of the servers' performances will affect the 

entire download process. Although, RRNS performs better than many of the 

existing load-balancing strategies that assign the full download to one server. 

However, its performance can be enhanced by the dual-direction approach used by 

ssCloud.  
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Figure 6-14: Download Performance Comparison. 

 

  Dropbox, Google Drive, RRNS, and ssCloud all have an upload phase 

where the file is uploaded into the cloud [78]. The number of partitions and replicas 

are then determined. I compared the upload of files of the same sizes using RRNS 

and ssCloud and compared them to Google Drive and Dropbox using an Internet 

speed of 1 Gbps for each.  

  Figure 6-15 illustrates the difference between the approaches. The figure 

shows that RRNS performed better when the file size was relatively small (10 MB). 

The file was uploaded in 30 seconds using RRNS, while it was uploaded in 50 

seconds using ssCloud. However, as the file size increases, the performance of 

ssCloud improves and outperforms RRNS in all trials. A file of size 400 MB was 

uploaded in 120 seconds using RRNS and in 79 seconds using ssCloud. Dropbox 

usually redirects many of its tasks to Amazon EC2 for processing, and that takes 

more time to process tasks compared to the other approaches in both he upload and 

download processes [79]. 
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Figure 6-15: Upload Performance Comparison. 
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number of available database server connections (NOC) when calculating the 

block size of the target file. 

 
Figure 6-16: Error Rate Caused by the Database Server in the Case of an Exceeding 

Number of Connections. 

 

 When applying my approach for creating a number of blocks that are 

associated with the DB server connections and the number of hosting servers, I 

have noticed that as the number of servers increased, the block size also increased 

and the number of blocks decreased. This is because I want to reduce the number 

of blocks saved in the database every time there is an upload request. Therefore, 

clients will not face any failure in the cloud DB server. Table 6-4 displays the 

results obtained when applying my approach, knowing that when applying this 
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Table 6-4: Experimental Relationship Between NOS, NOC, Block Size, and NOB. 

File Size NOS NOC Block Size NOB 

524,288,000 4 16,384 128,000 4096 

209,715,200 4 16,384 51,200 4096 

52,428,800 4 16,384 12,800 4096 

524,288,000 6 16,384 256,000 2048 

629,145,600 6 16,384 307,200 2048 

524,288,000 6 10,000 409,600 1280 

629,145,600 6 10,000 491,520 1280 

 

Moreover, I have tested the effect of block size over the download time in 

the case where the block size was not restricted by the number of connections 

available with the database server. I have changed the block size among values by 

1 KB, which is the minimum size of a block to file size divided by two. As I are 

using a dual-direction download, the maximum block size without replication 

should be half of the file size. Results shown in Figures 6-17, 6-18, 6-19, and 6-20 

demonstrate that there is an optimal block size for each file, and this optimal block 

size depends on the file size itself and the number of collaborated servers providing 

this file. Usually the optimal block size starts from 100 KB–1000 KB for a file 

provided by two servers, and as the file size increases, the optimal block size 

changes accordingly. The difference between the optimal block size and any other 

block size (as I increase) is minimal for small files (10 MB), but as the file size 

increases, the difference in the performance increases. Therefore, the effect is clear. 

This emphasizes the importance of choosing the optimal block size when 

uploading the file to the cloud. 
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Figure 6-17: Block Size Effect on Download Time for 10 MB File Using Two 

Servers. 

 

 

Figure 6-18: Block Size Effect on Download Time for 100 MB File Using Two 

Servers. 

 

Figure 6-19: Block Size Effect on Download Time for 400 MB File Using Two 

Servers. 
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Figure 6-20: Block Size Effect on Download Time for 400 MB File Using Four 

Servers. 

6.4.  Enhancements and Limitations of ssCloud 

 The main importance of ssCloud is the combination of the dual-direction 

download approach and the autonomic management of the storage resources in the 

cloud. There is a clear benefit that the download time is tremendously decreased as 

well as the cost of storing the file whenever necessary. The ssCloud is safe to 

remove the unused blocks, as this will not affect the download time and therefore 

will not negatively affect the end users (cloud clients). Moreover, the ssCloud 

overcomes most of the challenges facing load balancing and storage optimization 

in the cloud, such as server failure. In the case of a server failure, another 

contributing server can replace the failing server. As long as this server provides 

blocks even minimally, then the blocks will not be removed from that server, which 

confirms the reliability of this method. I think that more analytics on the optimum 
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ssCloud. 
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6.5. Conclusion 

  The design of the ssCloud aims to improve the download time from the 

cloud and optimize the storage allocation techniques to enhance the cloud DaaS. 

Load balancing is improved using a collaborative dual-direction download method 

to partition files and assign partitions to multiple cloud servers. Smart storage 

allocation is accomplished by automating the file upload process to check for 

available storage on each server and remove non-downloaded blocks based on 

previous experiences. The technique’s analysis shows that my algorithm has a 

better opportunity of optimizing cloud storage. In addition, I calculated the 

probability of removing unused blocks and found it to be very low. However, the 

choice of deletion is available when needed. Using the ssCloud helps reduce the 

time needed to download a file and the storage cost needed to host millions of files 

in the cloud. 
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Chapter 7:  Performance Analysis 

 

  In this chapter I develop an analytical model in order to estimate storage 

saved using my partial replication approach and the amount of time needed to 

download the files using this technique. I validate the estimations by simulation 

and provide the results. I then discuss my observations and provide methods of 

enhancing the ssCloud even more. Finally, I discuss the conclusions. 

7.1. Expected Storage Saved Estimation 

  In this section, I develop an analytical model to estimate the storage saved 

through a mathematical analysis. In order to explain the storage saved by ssCloud, 

I investigate an example of two collaborative servers working on a 1000-blocks 

file. I review the case where the maximum number of blocks downloaded by server 

1 was 700 blocks, as shown in Figure 7-1, and the maximum number of blocks 

downloaded by server 2 was 500 blocks. This means that server 1 (even at its best 

performance) never downloaded the 300 remaining blocks. Moreover, server 2 

never downloaded the 500 remaining blocks. These blocks will be removed by my 

approach. On the other hand, there are 200 blocks that are commonly downloaded 

by one of the two servers at different download times. These blocks are the only 

blocks that will be replicated in both servers at the end. 

  In order to estimate the number of replicated blocks, I summed the 

maximum blocks downloaded by both servers and took the file total number of 

blocks out.  

𝐸𝑠𝑡(𝑅𝑒𝑝) = (700 + 500) − 1000 
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𝐸𝑠𝑡(𝑅𝑒𝑝) = 200 𝐵𝑙𝑜𝑐𝑘𝑠 

This indicates that the total number of saved blocks is 1200 blocks with a partial 

replication. However, a full replication technique would need to store 1000 blocks 

on both of the servers, which would be 2000 blocks. By removing the unused 

blocks, I saved 800 blocks of storage. 

 

Figure 7-1: Number of Replicated Blocks in Two Servers for 1000 Block File. 

 

 

 In the same way, I can find the replicated blocks among four servers. An 

example of the case where the same file of 1000 blocks were downloaded by four 

servers and the maximum number of blocks for each server is below: 

 Server 1: 300 blocks 

 Server 2: 300 blocks 

 Server 3: 400 blocks 

 Server 4: 200 blocks 

  Figure 7-2 shows the replication among the four servers. I can see that there 

are 100 blocks replicated between server 1 and 2, and 100 other blocks replicated 

between server 3 and 4. The sum of all the replicated blocks among all partitions 

is as follows: 

𝐸𝑠𝑡(𝑅𝑒𝑝) = (300 + 300 + 400 + 200) − 1000 
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𝐸𝑠𝑡(𝑅𝑒𝑝) = 200 Blocks 

 

 

Figure 7-2: Number of Replicated Blocks in Four Servers for 1000 Blocks File. 

 

  Therefore, the equation to calculate the number of replicated blocks of file 

i in any collaborative servers S after an experience is as in Equation 6. 

𝐸𝑥𝑝(Rep)𝑖 = {∑ 𝑀𝑎𝑥(𝐵𝑙𝑜𝑐𝑘𝑠𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑)𝑗

𝑆

𝑗=1

 } − 𝑇𝑜𝑡𝑎𝑙𝐵𝑙𝑜𝑐𝑘𝑠𝑖                      (6) 

Where ∑ 𝑀𝑎𝑥(𝐵𝑙𝑜𝑐𝑘𝑠𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑)𝑗

𝑆

𝑗=1
 is the sum of all the maximum number of 

blocks provided by each server of the collaborative servers and 𝑇𝑜𝑡𝑎𝑙𝐵𝑙𝑜𝑐𝑘𝑠𝑖 is 

the total number of blocks in file i.  

In order to know the maximum number of blocks that will be provided by 

a certain server, I need to know the maximum and minimum speeds of each of the 

collaborative severs. For this example I have four servers of minimum and 

maximum speeds as follows below: 

 Server 1: Min = 15 blocks/s, Max: 20 blocks/s 

 Server 2: Min = 5 blocks/s, Max: 12 blocks/s 

 Server 3: Min = 6 blocks/s, Max: 10 blocks/s 
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 Server 4: Min = 8 blocks/s, Max: 15 blocks/s 

  To estimate the maximum number of blocks that will be downloaded by 

server 1, I allow it to download at its maximum speed (20 blocks/second) by setting 

all the other servers' speed to the minimum speeds (five, six, and eight 

blocks/second). By doing this, server 1 will have to download most of the blocks 

in the file, which is the maximum number of blocks it can provide. Equation 7 is 

used for the estimation. 

 

𝑀𝑎𝑥𝐵𝑙𝑜𝑐𝑘𝑠(𝑆𝑖)

=
𝑀𝑎𝑥(𝜆(𝑆𝑖))

𝑀𝑎𝑥(𝜆(𝑆𝑖)) + ∑ 𝑀𝑖𝑛(𝜆(𝑆𝑗))𝑋
𝑗=2  

 × 𝑇𝑜𝑡𝑎𝑙𝐵𝑙𝑜𝑐𝑘𝑠(𝐹𝑖𝑙𝑒)      (7) 

 

Where 𝑀𝑎𝑥𝐵𝑙𝑜𝑐𝑘𝑠(𝑆𝑖) is the maximum number of blocks provided by Server i, 

𝑀𝑎𝑥(𝜆(𝑆𝑖)) is the maximum speed of Server i. and ∑ 𝑀𝑖𝑛(𝜆(𝑆𝑗))𝑋
𝑗=2  is the 

minimum speed of all other collaborative servers downloading the file.  

When applying Equation 7 to my example, the maximum number of blocks 

provided by server 1 is 
20

20+(5+6+8)
× 1000 = 512 blocks. It is important to 

mention here that I either use speed units of bytes/ms or blocks/s since each block 

in my approach is found by Equation 3 in terms of bytes. Therefore, any of the two 

units can be used to estimate the maximum number of blocks provided and the 

number of replicated blocks. Equation 8 is used to convert the speed from bytes/ms 

unit to blocks/s unit. 

𝜆(𝑏𝑙𝑜𝑐𝑘𝑠
𝑠⁄ )   ≈    

𝜆 (
𝑏𝑦𝑡𝑒𝑠

𝑚𝑠⁄ )

𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒𝑖
 × 1000                                 (8) 
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  Where 𝜆(𝑏𝑙𝑜𝑐𝑘𝑠
𝑠⁄ )the speed in blocks/second is, 𝜆 (

𝑏𝑦𝑡𝑒𝑠
𝑚𝑠⁄ ) is the 

speed in terms of bytes/milliseconds and 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒𝑖 is the block size of file i. 

The below experience demonstrates how Equations 6 and 7 are useful for 

estimating the number of replicated blocks and the saved storage. In order to 

validate this, I used a file of size 20 MB, and two servers to download it. The file 

has 2048 blocks of size 10,240 bytes each. Below are the minimum and maximum 

speeds of both servers. 

 Server 1: Min = 600 bytes/ms, Max= 1500 bytes/ms (Min = 58 blocks/s, 

Max = 146 blocks/s). 

 Server 2: Min: 100 bytes/ms, Max = 1000 bytes/ms (Min = 10 blocks/s, 

Max = 97 blocks/s). 

  I ran the download for the 20 MB file using the above two servers after 

setting the speed for server 2 to nine blocks/s. Server 1 automatically performed at 

its max speed (146 blocks/s). Using Equation 10, 𝑀𝑎𝑥𝐵𝑙𝑜𝑐𝑘𝑠(𝑆𝑒𝑟𝑣𝑒𝑟1) =

146

146+10 
 × 2048 =   1917 blocks. The result I obtained from running the 

experience was that server 1 provided 1921 blocks and server 2 provided 128 

blocks, which is very close to the estimated number by using Equation 10. 

  I conducted another experiment by setting the speed of server 1 to 48 

blocks/s so that server 2 was forced to download the maximum number of blocks 

it could afford. Using Equation 7 𝑀𝑎𝑥𝐵𝑙𝑜𝑐𝑘𝑠(𝑆𝑒𝑟𝑣𝑒𝑟2) =
97

97+58 
 × 2048 =

  1281 blocks. The results I obtained from running my method was that server 1 

provided 768 blocks and server 2 provided 1281 blocks which confirms that the 

equation is correct when using two servers to provide one file.  



89 
 

 
 
 

  Moreover, when using Equation 6, the expected number of replications for 

this run is found by the following equation: 

𝐸𝑠𝑡(𝑅𝑒𝑝) = (1921 + 1281) − 2048 

𝐸𝑠𝑡(𝑅𝑒𝑝) = 1154 𝐵𝑙𝑜𝑐𝑘𝑠 

  When testing this using my approach, it is exactly equal to the result above. 

The replicated blocks IDs belonged to the real numbers in ∈ {767, 768, , ,1921}.  

  I applied this equation to a situation of four servers too. The servers' speed 

were are follows: 

 Server 1: Min = 59 blocks/s, Max = 146 blocks/s. 

 Server 2: Min = 10 blocks/s, Max = 97 blocks/s. 

 Server 3: Min = 20 blocks/s, Max = 100 blocks/s 

 Server 4: Min = 10 blocks/s, Max = 80 blocks/s. 

  I ran my method using the four above servers four times so that each server 

could perform at its maximum for one iteration. The results of the maximum blocks 

for each server against the one expected using Equation 7 are found in Table 7-1. 

The equation was at least 98.7% correct, and the difference between the expected 

and actual was at most only 19 blocks, which is the server 1 result. 
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Table 7-1:  Evaluation of the Accuracy Equation 7. 

 Expected Max blocks Real Max 

blocks 

Correctness 

Server 1 
=  

146

146 + (10 + 20 + 10)
× 2048

= 1607 

1595 99.2% 

Server 2 
=  

97

97 + (59 + 20 + 10)
× 2048

= 1068 

1061  99.3% 

Server 3 
=  

100

100 + (59 + 10 + 10)
× 2048

= 1144 

1130  98.7% 

Server 4 
=  

80

80 + (59 + 10 + 20)
× 2048

= 969 

969 100% 

 

  As for the number of replicated blocks over the four servers for the 20 MB 

file tested above, it is equal to (1588 + 1061 + 1130 + 969) − 2048 =

2700 blocks. 

 

7.2. Expected Download Time Estimation 

 In order to estimate the expected download time (Exp(DT)) of block i using 

the ssCloud, I must know the attributes, such as the percentage that block i was 

downloaded from each server and the time taken by each server in order to 

download that block. Then, the expected download time of block i is the sum of 

the percentage that block i was downloaded from server k multiplied by the time 

taken by server k to provide block i. A simple example to explain this equation is 
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the time taken to travel from one place to another several times. If a person, who 

usually uses two methods of travel between two cities, such as by car and plane, 

would like to estimate the expected travel time between cities, and it previously 

took one hmy to travel by plane (percentage of using plane is 90%) and three hours 

to travel by car (percentage of using the car is 10%), then the estimated travel time 

is (0.10*3 + 0.90*1). The same applies to ssCloud since there are different 

possibilities that a block could be download from any server. 

𝐸𝑥𝑝(𝐷𝑇𝑖) = ∑(𝑃𝑖
𝑘

𝑆

𝑘=1

 ×  𝜆𝑖
𝑘)                       (9) 

  Where 𝐸𝑥𝑝(𝐷𝑇𝑖) is the expected download time spent to provide block i 

using ssCloud. S is the number of Servers providing block i, 𝑃𝑖
𝑘 is the percentage 

server k provides block i, and 𝜆𝑖
𝑘 is the speed by which server k provided block i.  

The total download time of file F is equal to the sum of the expected 

download time of all the blocks b in File F as shown in Equation 10.  

𝐸𝑥𝑝(DT) = ∑ 𝐸𝑥𝑝(𝐷𝑇𝑖

𝑏

𝑖=1

)                        (10) 

  Where 𝐸𝑥𝑝(DT) is the overall expected download time, and b is the number 

of blocks in the file. 

This will also result in summing all the download time for each block (sum 

of percentage a block was downloaded from a certain server multiplied by the 

download time of that server) as in Equation 11. 

𝐸𝑥𝑝(DT) = ∑ ∑(𝑃𝑖
𝑘

𝑆

𝑘=1

 ×  𝜆𝑖
𝑘)                              (11)

𝑏

𝑖=1
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  When using my partial replication dual-direction technique to verify the 

above-mentioned equations, first, I set a very simple experiment to begin. I 

uploaded a 20 MB file size, with 2048 blocks, each of size 10,240 bytes. I set this 

download test to operate using only two servers. I ran the experiment ten iterations 

and changed the servers' speed each time so that the download percentage of the 

block from a server is affected (as shown in Table 7-2). For the eleventh time, the 

speed of server 1 was at 50 blocks/s and the speed of server 2 was 70 blocks/s. I 

estimated the download time for each block by Equation 6 and Table 7-3 depicts 

the estimated download time versus the actual download time. I selected blocks 1, 

2048, 1024, 500 and 1500 to be the blocks on which I compare the accuracy of 

Equation 8 because they represent the edges and elements of the groups. For 

example, block 1 will always be downloaded from server 1 and block 2048 will 

always be downloaded from server 2. Therefore, it is easy to predict the expected 

download time for such blocks, and it will be accurate, as they have the same 

experience every time a download is completed. However, this is not the case for 

blocks similar to block 500 and block 1500. This is because there is a small 

percentage of time that they will be provided by a different server than the regular 

server that usually provides them. For example, server 1 usually provides block 

500, but there are two times when server 1 was slow or loaded when server 2 had 

to provide this block. The Equation 6 prediction in these cases was very efficient 

since the accuracy percentage was not below 90. The worst case is the point where 

the two servers usually meet. An example of this case is block 1024. When 

downloading block 1024, it could be downloaded by any of the servers each time. 

This will have the least accuracy in my case, but the error rate was 12%. I consider 

a maximum difference of 12% to be within the acceptable rate because the 
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download times of each server differs according to the network speed, and this is 

very unpredictable behavior.  

Table 7-2: Dual Server Experience in Ten Runs. 

Run S1 Speed 

(blocks/s) 

S2 Speed 

(blocks/s) 

S1 

blocks 

S2 blocks 

 

1 100  100  1-1026 2048-1024 

2 100  20  1-1709 2048-1708 

3 20  100  1-340 2048-339 

4 120  100  1-1118 2048-1116 

5 80  10  1-1823 2048-1822 

6 10  80  1-227 2048-225 

7 40  120  1-512 2048-511 

8 90  70  1-1153 2048-1150 

9 60  50  1-1118 2048-1117 

10 120  130  1-984 2048-982 

 

Table 7-3: Equation 9 Accuracy Evaluation. 

 𝑬𝒙𝒑(𝐃𝐓) in Seconds 𝑨𝒄𝒕𝒖𝒂𝒍(𝐃𝐓) in 

Seconds 

Correctness 

Block 1 = {(100% ×
1

50
) + (0% ×

1

70
)} =

 0.02   

0.02  100% 

Block 

2048 

= {(0% ×
1

50
) + (100% ×

1

70
)} =

0.014   

0.014  100% 

Block 

1024 

= {(54.54% ×
1

50
) + (45.45% ×

1

70
)} =  0.016  

0.014  88% 

Block 

500 

= {(80% ×
1

50
) + (20% ×

1

70
)} =

0.018   

0.02  90% 

Block 

1500 

= {(30% ×
1

50
) + (70% ×

1

70
)} =

0.015   

0.014  93% 
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7.3. Discussion and Observations 

  In this section, I discuss different performance and storage observations 

obtained during the evaluation of my approach. One observation I made was that 

as the sum of speeds of the dual servers increases, the overall performance 

increases as well and therefore the download time decreases. Table 7-4 shows the 

experiment I ran to validate this assumption. I carried 5 runs each with different 

speeds of each servers and different sums of speeds. The best performance of this 

run was 8 seconds download when both servers were fast and the sum of speeds 

was 3000 bytes per second. The difference between the speeds of the servers does 

not have much effect to the download time because the dual servers work in 

opposite directions and they meet at a certain point.  

Table 7-4: Speed Difference Between the Dual Servers, Affecting Download Time. 

 S1 Speed 

(bytes/ms) 

S2 Speed 

(bytes/ms) 

Download 

time (S) 

Speed 

Difference 

(bytes/ms) 

Sum of 

speeds 

(bytes/ms) 

1 500 500 21 s 0  1000  

2 500  600 19 s 100 1100  

3 500  1000  17 s 500 1500  

4 1000  2000  8 s 1000 3000  

5 1000  1000  11 s 0 2000  

 

 Another observation was also the effect of the difference between the 

minimum and maximum speeds of any server on the number of replicated blocks 

between the two servers. This depends on the file size. Therefore, I tried a file of 
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size 400 MB to validate this assumption. For example, if I have two servers as 

follows: 

 Server 1: Min = 20 blocks/s, Max= 100 blocks/s. The difference between 

the Min and Max is 80 blocks/s. 

 Server 2: Min: 50 blocks/s, Max = 150 blocks/s. The difference between 

the Min and Max is 100 blocks/s. 

  When I use Equation 7 to discover the maximum number of blocks that can 

be provided by any of the above-mentioned servers, I found the results below: 

 Server 1 Maximum blocks = (
100

100+50
) × 4098 = 2732 𝑏𝑙𝑜𝑐𝑘𝑠 

 Server 1 Maximum blocks = (
150

150+20
) × 4098 = 3615 𝑏𝑙𝑜𝑐𝑘𝑠 

  From these results, the maximum number of replicated blocks would be 

(2732 + 3615) − 4098 = 2249. If using the other two servers, there would be 

less difference between the minimum and maximum speeds and the results would 

change, for example: 

 Server 1: Min = 50 blocks/s, Max= 70 blocks/s. The difference between the 

Min and Max is 20 blocks/s. 

 Server 2: Min: 60 blocks/s, Max = 80 blocks/s. The difference between the 

Min and Max is 20 blocks/s. 

The maximum number of blocks that could be provided by any of the two servers 

is shown below. 

 Server 1 maximum blocks = (
70

70+60
) × 4098 = 2026 blocks. 

 Server 1 maximum blocks = (
80

80+50
) × 4098 = 2185 blocks. 

  The number of replicated blocks would be only equal to (2026 + 2185) −

4098 = 113 blocks. This means that, as the difference between the maximum and 
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minimum of the dual servers decreases, the number of replicated blocks will also 

decrease. This would be very useful in terms of saving the storage used for the 

replicated blocks, since this storage can be used for other large files.  

  Figure 7-3 shows relationship between the maximum number of replicated 

blocks with the min-max gap in servers' performances tested in my validation of 

the previously mentioned observation. The validation was completed for a 400 MB 

file size of 4098 blocks. The relationship is extrusive, as the gap increases, the 

number of replicated blocks also increases. 

 

Figure 7-3: Experimental Relationship Between Min-Max Speed Gap and Maximum 

Number of Replicated Blocks for 100 MB File Size. 

 

  To evaluate the storage enhancement of ssCloud compared to the original 

CDDLB technique [80][81][82], I estimate the storage enhancement of a 

524,288,000 bytes (524 MB) file replicated on 4 servers. If I use the original 

CDDLB technique, then a full replication of the file is needed across the 4 servers 

despite the maximum and minimum number of blocks that can be provided by any 

of the servers. Therefore, the final storage consumption of the file would be as 

equation 12. 

1 2 3 4

S1 Gap 80 60 40 20

S2 Gap 150 80 50 20

Max Replicated Blocks 2250 1736 1161 546
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𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝐷𝐷𝐿𝐵 = 𝑀 × 𝑅        (12)  

Where M is the number of servers and R is the file size. This means that the storage 

required by CDDLB for the above example would be 4*524,288,000 = 

2,097,152,000 bytes (around 2 GB). On the other hand, if I use the ssCloud 

technique, and servers maximum and minimum blocks were as follows: 

 Server 1: Min = 59 blocks/s, Max = 146 blocks/s. 

 Server 2: Min = 10 blocks/s, Max = 97 blocks/s. 

 Server 3: Min = 20 blocks/s, Max = 100 blocks/s 

 Server 4: Min = 10 blocks/s, Max = 80 blocks/s. 

If I have NOC of 16,300 then the block size would be 128,656 bytes and number 

of blocks would be 4096 according to equations 1, 2 and 3. The maximum number 

of blocks for each server according to equation 7 would be as follows: 

  Server 1: (
146

146+(10+20+10)
) × 4096 =  3215 𝑏𝑙𝑜𝑐𝑘𝑠 

 Server 2: (
97

97+(59+20+10)
) × 4096 =  2135 𝑏𝑙𝑜𝑐𝑘𝑠 

 Server 3: (
100

100+(59+10+10)
) × 4096 =  2288 𝑏𝑙𝑜𝑐𝑘𝑠 

 Server 4: (
80

80+(59+10+20)
) × 4096 =  1938 𝑏𝑙𝑜𝑐𝑘𝑠 

Now, the overall storage used by ssCloud would be the sum of all the maximum 

blocks of the above four servers which is 9576 blocks each of size 128,656 bytes. 

This means that the overall storage consumed would be 1,232,009,856 bytes 

(around 1.2 GB). This means that the least saved storage if I only removed the zero 

downloaded blocks would be 865,142,144 bytes compared to the original CDDLB 

or DDFTP. 
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7.4. Chapter Conclusion 

  In this chapter, I have discussed the mathematics behind my partial 

replication load-balancing approach for providing DaaS in the cloud. I provided an 

estimation of the storage that could be saved using the ssCloud and the estimated 

download time after removing the redundant data from storage. I validated the 

estimates by running the experiments and found a satisfying percentage of 

accuracy. Finally, I noted some observations and best service optimization 

methods and validated those as well.  
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Chapter 8:  Conclusion and Future Work 

   

  In this chapter, I conclude this dissertation by summarizing the research 

contributions and goals of this work in Section 8.1. Then, I summarize the possible 

future work that could be of a significance to the areas of load balancing and 

storage optimization in the cloud.  

8.1. Summary of Research Contribution 

  Combining an efficient load balancing and storage consumption utilization 

in the cloud provides the ability to offer better services and less cost for the cloud 

providers. My solution focuses on enhancing both aspects, as it improves load 

balancing by collaborative server downloads and improves storage by reducing the 

amount of replicated blocks among the cloud servers. 

The research contributions of this dissertation follow. 

8.1.1. Static Removal of Replicated Blocks 

  I enhanced the collaborative dual-direction download method by removing 

the previously unused blocks. The first enhancement was to manually have a static 

removal of unused blocks from each cloud server. I have implemented this 

technique on top of the previous dual-direction method. The benefit was to reduce 

the amount of storage consumed. However, the process had to be done manually 

on occasion. The problem was that the storage consumption could reach its peak 

before any removal could be conducted. 
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8.1.2. Autonomic Removal of Replicated Blocks 

  In this contribution, I have added steps to the cloud environment where 

uploading files will go through a workflow of 1) determining the block size, 2) 

splitting the file into blocks according to the block size, 3) and uploading the file 

onto each server of the cloud environment. When there is a need to remove blocks, 

the controller will complete an analysis of the unused blocks, and those blocks will 

be removed. The process is automated through the upload process and the use of 

controller.   

8.1.3. Analytical Model of Performance 

  My final contribution in this dissertation was to provide an analytical model 

of how to estimate the amount of storage saved depending on the collaborative 

server speeds. Moreover, I validated my expected equations against experiments 

conducted using the simulator. I found a high percentage of accuracy through 

running the experiments.  

8.2. Future Work 

  As a future addition to this research, I considered some enhancements that 

could be of significant contribution to the area of load balancing and storage 

optimization. Below are some of the possible future works of this dissertation. 

8.2.1. Auto-Recovery of Blocks 

   In case there was a need to restore the removed blocks, the process is easy 

because all blocks exist in the cloud with their unique identifier. An analysis of the 
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need to restore any block into server X could be a useful enhancement to the current 

approach.   

8.2.2. Partial Editing of the File 

  Moreover, I discussed throughout this thesis the uploading and 

downloading of data in the cloud, which is the scope of my research. However, 

when there is a need to edit or modify a portion of a large file, there should be an 

improvement to the partial replication load-balancing technique that I provided. 

This by itself is a huge research effort, which could provide a significant 

contribution to the topic. 

8.2.3. Fault Tolerance Handling 

 As the cloud is known for its elasticity and cloud servers can join and leave 

the cloud at different times, an analysis of how the ssCloud can handle fault 

tolerance in the case when a server fails or leaves the cloud would be needed. The 

backup of the removed blocks and the amount of replication needed in such cases 

would be very useful. 

8.2.4. Enhancing the Security of ssCloud 

  Another future work is enhancing the security of the partial files. I 

mentioned previously that security is an important research area in distributed 

DaaS. There are many research studies conducted on enhancing the security of the 

data exchanged in the cloud, as I have seen earlier in this thesis. Using a partial 

replication could be a solution used by ssCloud as well as other approaches like 
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RRNS. Therefore, enhancing the security of the ssCloud by adding new features to 

the partial replication would be an interesting solution. 

 

8.2.5. Implementation and Evaluation of a Compression Method 

Since file compression is a popular solution for reducing the storage used, 

I think that it could further enhance the storage consumption of ssCloud. This could 

be done by compressing the never downloaded blocks instead of removing them 

permanently. This may create additional tradeoffs between download speed, 

storage saving, and reliability. As a result, I plan to evaluate the effects of 

compressing files at the servers' side in terms of storage and performance to verify 

that it will not significantly increase the overall download time. 

8.2.6. Implementation of the Full Idea on Top of Simulation 

To better evaluate the full idea of the compression and additional other 

features that could be added in the future to the main idea, I need to implement a 

simulation environment where the full cloud is simulated and different attributes 

could be changed on large scale environment. This would help in evaluating most 

of the points in the future work. 
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