
United Arab Emirates University
Scholarworks@UAEU

Dissertations Electronic Theses and Dissertations

Summer 5-1-2015

A PARTIAL REPLICATION LOAD
BALANCING TECHNIQUE FOR
DISTRIBUTED DATA AS A SERVICE ON THE
CLOUD
Klaithem Saeed Al Nuaimi

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/all_dissertations

Part of the Medicine and Health Sciences Commons

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarworks@UAEU. It has been accepted
for inclusion in Dissertations by an authorized administrator of Scholarworks@UAEU. For more information, please contact fadl.musa@uaeu.ac.ae.

Recommended Citation
Al Nuaimi, Klaithem Saeed, "A PARTIAL REPLICATION LOAD BALANCING TECHNIQUE FOR DISTRIBUTED DATA AS A
SERVICE ON THE CLOUD" (2015). Dissertations. 6.
https://scholarworks.uaeu.ac.ae/all_dissertations/6

https://scholarworks.uaeu.ac.ae?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_dissertations?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/etds?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_dissertations?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_dissertations/6?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fadl.musa@uaeu.ac.ae

I nl � u College of Information
U� Technology

' a.ul.a..ll � JSLII 1..::..11J La� I iist.a J..;l =

United Arab Emirates University

United Arab Emirates University

College of Information Technology

A PARTIAL REPLICATION LOAD BALANCING TECHNIQUE

FOR DISTRIBUTED DATA AS A SERVICE ON THE CLOUD

Klaithem Saeed Al Nuaimi

This dissertation is submitted in partial fulfilment of the requirements for the

degree of Doctor of Philosophy

Under the Supervision of Dr. Nader Mohamed

May 2015

ii

Declaration of Original Work

I, Klaithem Saeed Al Nuaimi, the undersigned, a graduate student at the United

Arab Emirates University (UAEU), and the author of this dissertation entitled “A

Partial Replication Load Balancing Technique for Distributed Data as a Service

on the Cloud”, hereby, solemnly declare that this dissertation is an original research

work that has been done and prepared by me under the supervision of Dr. Nader

Mohamed, in the College of Information Technology at UAEU. This work has not

been previously formed as the basis for the award of any academic degree, diploma,

or a similar title at this or any other university. The materials borrowed from other

sources and included in my dissertation have been properly cited and

acknowledged.

Student’s Signature Date__________________

iii

Copyright

Copyright © 2015 Klaithem Saeed Al Nuaimi

All Rights Reserved

iv

Approval of the Doctorate Dissertation (Paper is signed!)

This Doctorate Dissertation is approved by the following Examining Committee

Members:

1) Advisor (Committee Chair): <advisor’s name>

Title: …

Department of …

College of …

 Signature Date

2) Member:

Title:

Department of …

College of …

 Signature Date

3) Member:

Title:

Department of …

College of …

 Signature Date

 4) Member (External Examiner):

Title:

Department of …

Institution:

Signature Date

v

This Doctorate Dissertation is accepted by:

Dean of the College of Information Technology: Dr. Shayma AlKobaisi

Signature Date

Dean of the College of the Graduate Studies: Professor Nagi T. Wakim

Signature Date

Copy ____ of ____

vi

Abstract

Data as a service (DaaS) is an important model on the Cloud, as DaaS provides

clients with different types of large files and data sets in fields like finance, science,

health, geography, astronomy, and many others. This includes all types of files

with varying sizes from a few kilobytes to hundreds of terabytes. DaaS can be

implemented and provided using multiple data centers located at different locations

and usually connected via the Internet. When data is provided using multiple data

centers it is referred to as distributed DaaS. DaaS providers must ensure that their

services are fast, reliable, and efficient. However, ensuring these requirements

needs to be done while considering the cost associated and will be carried by the

DaaS provider and most likely by the users as well. One traditional approach to

support a large number of clients is to replicate the services on different servers.

However, this requires full replication of all stored data sets, which requires a huge

amount of storage. The huge storage consumption will result in increased costs.

Therefore, the aim of this research is to provide a fast, efficient distributed DaaS

for the clients, while reducing the storage consumption on the Cloud servers used

by the DaaS providers. The method I utilize in this research for fast distributed

DaaS is the collaborative dual-direction download of a file or dataset partitions

from multiple servers to the client, which will enhance the speed of the download

process significantly. Moreover, I partially replicate the file partitions among

Cloud servers using the previous download experiences I obtain for each partition.

As a result, I generate partial sections of the data sets that will collectively be

smaller than the total size needed if full replicas are stored on each server. My

method is self-managed; and operates only when more storage is needed. I

evaluated my approach against other existing approaches and demonstrated that it

provides an important enhancement to current approaches in both download

performance and storage consumption. I also developed and analyzed the

mathematical model supporting my approach and validated its accuracy.

Keywords: Cloud Computing, Data-as-a-Service (DaaS), load balancing, storage

optimization.

vii

Title and Abstract (in Arabic)

تقنية التكرار الجزئي للملفات وتوزيع المهام لخدمة توفير البيانات الموزعة على مسافات كبيرة العنوان:

 في السحب الالكترونية.

 الملخص:

عملاء مع أنواع مختلفة من الملفات الكبيرة توفر هذه الخدمةالبيانات كخدمة هو نموذج هام على السحابة، توفير

جالات مثل التمويل، والعلوم، والصحة، والجغرافيا، والفلك، وغيرها الكثير. وهذا يشمل جميع ومجموعات البيانات في م

استخدام مركز ب هذه البيانات إلى مئات تيرابايت. يمكن وتوفير بايتمن بضعة كيلو ها التي تتفاوتأحجامبأنواع الملفات

سمى وت نتالإنتر تتصل عادة عبر تقع في مواقع مختلفةأو استخدام مراكز البيانات متعددة في موقع جغرافي واحدبيانات

ن اضم الخدمةالموزعة. وبما أن هناك الملايين من المستخدمين ومليارات من الملفات، يجب على مقدمي البياناتخدمة

سيتم لتي ا في التكلفة المرتبطة بها و أيضا النظرب. وضمان هذه المتطلبات يجب القيام به سرعة وجودة وفعالية خدماتهم

من لدعم عدد كبيرالمستخدم عادة وعلى الأرجح من قبل المستخدمين أيضا. النهج التقليدي الخدمة من قبل مزود هاتنفيذ

لجميع مجموعات البيانات كاملاا العملاء هو تكرار الخدمات على ملقمات مختلفة في مواقع مختلفة. وهذا يتطلب تكرار

استهلاك التخزين الضخم يؤدي إلى زيادة التكاليف، التي وعليه فإن كبيرة من التخزين. المخزنة، الأمر الذي يتطلب كمية

زيادة تكاليف هناك أيضا يمكن أن تمنع إدخال مزيد من التحسينات من قبل مقدمي الخدمات. وبالإضافة إلى ذلك، فإن

 للعملاء، مع تعزيز استهلاك التخزين فعالةة وسريع طريقة الاستخدام للعملاء. ولذلك، فإن الهدف من هذا البحث هو تقديم

هذا البحث هو تعاوني ثنائي الاتجاه النهج الذي نقدمه في. خدمات البياناتعلى خوادم السحابة المستخدمة من قبل مقدمي

. رأقسام من جانب العميل، والتي من شأنها تعزيز سرعة عملية التحميل بشكل كبيكأو مجموعة البيانات اتملفالتحميل ل

ي نحصل عليها التوعلاوة على ذلك، فإننا تكرار جزئيا الأقسام ملف بين الخوادم السحابية باستخدام تحميل التجارب السابقة

لكل قسم. ونتيجة لذلك، فإننا توليد أقسام جزئية من مجموعات البيانات سيكون أصغر من الحجم الإجمالي المطلوب إذا تم

. وتعمل فقط عندما تكون هناك حاجة مزيد من يعمل بشكل تلقائيعلى كل خادم. أسلوبنا تخزين النسخ المتماثلة الكاملة

تت أنه . قمنا بتقييم نهجنا ضد النهج القائمة الأخرى وأثبللنسخة فقط عند الضرورةالتخزين. لذلك، يتم تنفيذ عمليات الإزالة

قق من دعم نهجنا والتحيتطوير وتحليل نموذج رياضي بكما قمنا كل من الأداء تحميل واستهلاك التخزين. ليوفر تعزيزا

على نات خدمات البيادقته. ولذلك، فإننا نعتقد أنه يوفر نتائج واعدة في مجال موازنة التحميل والتخزين الأمثل ل و صحته

 السحابة.

 خادم البيانات. السحب الإلكترونية، خدمة توفير البيانات، جودة الخدمات، تززيع المهام، الكلمات ذات الأهمية:

viii

Acknowledgements

First, all thanks be to Allah for providing me with the determination to complete this

dissertation. Then, I would like to express my sincere appreciation to my advisor Dr.

Nader Mohamed, you have been a great mentor and a very patient person. I would like

to thank you for being positive even at hardship. I would like to thank my committee

members Dr. Imad Jawhar, Dr. Ahmed Al Faresi, Dr. Nazar Zaki and Dr. Qing Yang

for being in this committee, thank you for your bright comments and suggestions

which improved my dissertation tremendously. Special thanks to Dr. Jameela Al-

Jaroodi for her constant reviews.

I would like to thank UAEU for providing me with the opportunity to join this research

and encouraging me to complete it.

A special thanks to my family. Words cannot express how grateful I am to you for all

the support and love you provided.

ix

Dedication

To my beloved parents and family

x

Table of Contents

Title ... i

Declaration of Original Work .. ii

Copyright .. iii

Approval of the Doctorate Dissertation .. iv

Abstract ... vi

Title and Abstract (in Arabic) .. vii

Acknowledgements ... viii

Dedication ... ix

Table of Contents ... x

List of Tables.. xii

List of Figures ... xiii

List of Abbreviations.. xv

Chapter 1: Introduction .. 1

1.1 Background on Cloud Services .. 1

1.2 How can the download speed be improved and better utilize cloud

resources? ... 3

1.3 Dissertation Structure ... 4

Chapter 2: Problem Statement, Contribution, and Research Scope 7

2.1 Problem Statement and Motivation .. 7

2.2 Research Contribution and Scope .. 9

Chapter 3: Literature Review ... 12

3.1 Literature Classification ... 12

3.2 Research Challenges .. 13

3.2.1 Spatial Distribution of the Cloud Nodes .. 13

3.2.2 Storage/ Replication ... 14

3.2.3 Network Overhead ... 14

3.2.4 Point of Failure ... 14

3.3 Load Balancing Approaches .. 15

3.3.1 Static Load Balancing Algorithms ... 15

3.3.2 Dynamic Load Balancing Algorithms .. 17

3.4 Storage Optimization Work ... 20

3.4.1 Full Replication Storage Work ... 20

3.4.2 Partial Replication Storage Work ... 21

3.5 Discussion of Current Approaches... 23

3.6 Chapter Conclusion .. 28

Chapter 4: Collaborative Dual Direction Load Balancing Approach 30

xi

4.1 CDDLB Methodology .. 30

4.2 Simulation and Analysis of CDDLB ... 33

4.3 CDDLB Benefit and Limitations ... 35

4.4 Conclusion ... 35

Chapter 5: Static Partial Replication Technique Using Collaborative Dual Direction

Download ... 37

5.1 SPRT Method ... 37

5.2 Evaluation and Simulation of SPRT .. 49

5.3 Pros and Cons of SPRT .. 56

5.4 Conclusion ... 56

Chapter 6: Self-Managed Partial Replication Technique Using Collaborative Dual

Direction Download (ssCloud) .. 58

6.1 Description of ssCloud ... 58

6.2 Example of ssCloud ... 65

6.3 Analysis and Simulation Results of ssCloud ... 70

6.4 Enhancements and Limitation of ssCloud.. 82

6.5 Conclusion ... 83

Chapter 7: Performance Analysis... 84

7.1 Expected Storage Saved Estimation .. 84

7.2 Expected Download Time Estimation ... 90

7.3 Discussion and Observations ... 94

7.4 Chapter Conclusion .. 98

Chapter 8: Conclusion and Future work .. 99

8.1 Summary of Research Contribution ... 99

8.2 Future Work ... 100

Bibliography ... 103

List of Publications .. 112

xii

List of Tables

Table 2-1: Comparison of Current Industry DaaS Providers in 2015 8

Table 3-1: Load Balancing Algorithms, their Pros and Cons 26

Table 3-2: Comparison of Load Balancing Algorithms in Terms of Challenges 27

Table 3-3: Comparison of Storage Optimization Techniques in Terms of

Challenges .. 28

Table 5-1: Example of Block Size Handling MTU ... 41

Table 5-2: Metadata Size of Different File Sizes ... 55

Table 6-1: Effect of Different Speed of Servers in Three Runs 69

Table 6-2: Number of Remaining Blocks Per Server After Removing Unused

Blocks ... 70

Table 6-3: Comparison of Storage Optimization Techniques 71

Table 6-4: Experimental Relationship Between NOS, NOC, Block Size and NOB . 80

Table 7-1: Evaluation of the Accuracy of Equation 7.. 90

Table 7-2: Dual Servers Experience in Ten Runs .. 93

Table 7-3: Equation 9 Accuracy Evaluation .. 93

Table 7-4: Speed Difference Between the Dual Servers, Affecting Download Time 94

xiii

List of Figures

Figure 1-1: Cloud Computing Services Architecture .. 1

Figure 1-2: DaaS Architecture in the Cloud .. 2

Figure 2-1: Dissertation Scope... 11

Figure 3-1: Literature Classification .. 13

Figure 4-1: Partitioning a File in CDDLB ... 31

Figure 4-2: Dual Servers Providing One Partition ... 31

Figure 4-3: Simple Example of CDDLB Mechanism.. 32

Figure 4-4: Comparing CDDLB Performance to Normal Selection Methods 34

Figure 4-5: Effect of Number of Dual Servers on the Download Time 35

Figure 5-1: SPRT File Download from the Cloud Workflow 38

Figure 5-2: SPRT Replicated Data Removal Process .. 39

Figure 5-3: MTU in the Cloud Network .. 40

Figure 5-4: Cloud Node A File Structure .. 44

Figure 5-5: Cloud Node B File Structure ... 44

Figure 5-6: Example of File Details in Controller's Database 47

Figure 5-7: Example of Experience Saved in Controller's Database of Each Block . 48

Figure 5-8: SPRT Solution Design .. 49

Figure 5-9: Storage Needed by SPRT Compared to CDDLB 50

Figure 5-10: Blocks Downloaded from Server 1 ... 50

Figure 5-11: Blocks Downloaded from Server 2 ... 50

Figure 5-12: Storage Consumption in Two Cloud Servers .. 52

Figure 5-13: Storage Consumption in Four Cloud Servers 52

Figure 5-14: Effect of Number of Servers on the Blocks' Replication 53

Figure 5-15: Storage of All Blocks After Upload Process .. 54

Figure 5-16: Storage of the Same Blocks After Running SPRT 54

Figure 5-17: Partial Storage of Four Cloud Servers After Running SPRT................ 55

Figure 6-1: Overall Solution Structure of ssCloud .. 60

Figure 6-2: Sequence Diagram of File Upload Process ... 61

Figure 6-3: File Structure in the Cloud Servers After Initial Upload 64

Figure 6-4: File Structure in the Cloud Servers After Unused Blocks Removal 65

Figure 6-5: Uploaded File Details in Controller's Database 66

xiv

Figure 6-6: Uploaded Blocks Details in Controller's Database 66

Figure 6-7: Uploaded Files Structure in Cloud Servers ... 67

Figure 6-8: Blocks of the Uploaded File Saved as Separate Files in the Servers 67

Figure 6-9: File Download Splitting and Assignment Process 68

Figure 6-10: Probability of Removing a Block.. 72

Figure 6-11: Time Difference in Download for Different File Sizes 74

Figure 6-12: Comparison of Full File Upload and Blocks Upload in Terms of Time

Taken .. 75

Figure 6-13: Consumed Storage Difference in MB ... 75

Figure 6-14: Download Performance Comparison .. 77

Figure 6-15: Upload Performance Comparison ... 78

Figure 6-16: Error Rate Caused by the Database Server in the Case of an Exceeding

Number of Connections ... 79

Figure 6-17: Block Size Effect on Download Time for 10 MB File Using Two

Servers .. 81

Figure 6-18: Block Size Effect on Download Time for 100 MB File Using Two

Servers .. 81

Figure 6-19: Block Size Effect on Download Time for 400 MB File Using Two

Servers .. 81

Figure 6-20: Block Size Effect on Download Time for 400 MB File Using Four

Servers .. 82

Figure 7-1: Number of Replicated Blocks in Two Servers for 1000 Block File 85

Figure 7-2: Number of Replicated Blocks in Four Servers for 1000 Blocks File 86

Figure 7-3: Experimental Relationship Between Min-Max Speed Gap and Maximum

Number of Replicated Blocks for 100 MB File Size ... 96

xv

List of Abbreviations

CLBDM Central Load-Balancing Decision Model

CDDLB Collaborative Dual-Direction Load-Balancing

DaaS Data as a Service

DDFTP Dual-Direction File Transfer Protocol

ESFWLC Exponential Smooth Forecast based on Weighted Least Connection

F(R) Factorization method of R

IDE Intgrated Development Environment

INS Index Name Server

LBMM Load-Balancing Min-Min

M Number of cloud Nodes

MTU Maximum Transfer Unit

N Number of blocks

NOC Number of Connections

NOS Number of Servers

OLB Opportunistic Load Balancing

R Original File size in bytes

RRNS Redundant Residue Number System

SPRT Static Partial Replication Technique

SOF Single Point of Failure

ssCloud Smart Storage Cloud

VM Virtual Machine

WLC Weigted Least Connection

X Original File

1

Chapter 1: Introduction

 In this chapter, I provide a background of the cloud structure and services,

focusing on data as a service in Section 1.1 then I discuss my research question and

a brief summary of the current solutions in Section 1.2. I finally show the

dissertation structure in Section 1.3.

1.1. Background on Cloud services

 Systems, such as grid, clusters, and cloud computing have been a trend for

many users in the last few years. Especially cloud computing which became even

of more interest to the users and researchers [1][2][3][4]. One of the main features

on the cloud is that it provides flexible and easy methods to store and retrieve data

[5][6][7], especially for large data sets and files, such as videos, scientific research,

and bioinformatics files [8][9][10] that could be used by an increasing number of

users around the world. Since cloud computing has great potential for data storage

and data retrieval, it opens the opportunity to conduct research in optimizing the

techniques for storing data in the cloud. That is the area of providing data as a

service (DaaS) on the cloud, as shown in Figure 1-1.

Cloud Application (Software As A Service: SaaS)

Cloud Service Environment (PaaS)

Cloud Service Infrastructure

Computational
Resources (IaaS)

Storage (DaaS)

Cloud Service Hardware (HaaS)

Figure 1-1: Cloud Computing Services Architecture.

2

 Data as a Service provides the capability to deliver specific and valuable

data on demand [11][12]. This data can be business, scientific, medical, or any

other useful data required by multiple users. This large data can be replicated on

multiple servers located at different sites on the Internet to provide a scalable

capability to support a large number of requests. The DaaS is also reviewed in [13]

as providing data in different formats for different resources in various

geographical locations. The clients would be able to upload, download, and edit the

data on the cloud based on their reassigned privileges. Usually, the cloud will have

multiple distributed servers, which are able to access the data centers to fetch the

required data and provide it to the cloud user. Figure 1-2 shows how the cloud DaaS

is usually structured. Distributed DaaS mainly has spatially distributed resources

of the cloud and provides the user with access to the data independently from their

location. For example, there could be a cluster in one country, some servers in

another country, and other clusters in other continent [14].

Figure 1-2: DaaS Architecture in the Cloud

3

1.2. How can the download speed be improved and better utilize cloud

resources?

 The main focus of this research is to optimize the load balancing and storage

interface for cloud computing. The cloud uses multiple servers (usually referred to

as cloud nodes) and each node has different performances and load characteristics

as well as dynamically varying states of the network links between these servers

and the requesting clients; therefore, balancing the load to improve data download

is not a trivial task [15][16][17]. There have been some solutions proposed by

researchers in cloud DaaS and other distributed systems, such as dual-direction

FTP which is concerned with file download among FTP servers, the ‘Ant Colony’,

which assigns an ‘ant’ to go through a route to pick a free cloud server to perform

the task, and many other approaches. However, most of these approaches either

focus on improving only the load balancing or improving only the storage

consumption. In addition, the mere issue of creating multiple replicas of big data

creates another problem of storage. This is because there are huge amounts of

storage wasted by saving the same data on multiple cloud nodes [18][19].

 In this research, I present an algorithm to reduce the load on each server

node of the DaaS and reduce the storage needed for the replicated data sets. This is

done using the dual-direction downloading algorithm and based on the experience

with each cloud node of those containing data replicas. As a result, I reduced the

size of the data files I retain on each node. The main attributes I consider in this

research are the number of times each block has been downloaded in earlier

requests and the speed of the download. With this information, my smart controller

will be able to make all the decisions. Another benefit of this algorithm is that the

4

client will not have to deal with any complex calculations, which could increase

the download time. Therefore, I believe my algorithms speed up the data download

process and simultaneously reduce the total amount of storage needed for

replications on the cloud servers. I use a special simulator that I built to evaluate

the performance of the algorithm and compare it to the other existing ones.

1.3. Dissertation Structure

 In the rest of this dissertation, I will introduce the research by reviewing the

current problems of load balancing and storage optimization in providing Data as

a Service in the cloud in Chapter 2. In addition, the problem statements are

presented in Chapter 2.

 In Chapter 3, I provide a thorough review of the research area of providing

DaaS in the cloud. I classify the research area into multiple levels and review the

work done by researchers in the last few years accordingly. I then introduce the

challenges faced in this area and the importance of overcoming them in order to

provide an efficient method. I also compare the various methods reviewed in the

literature according to the challenges and find the limitations of each method. I

show that a common limitation between most of the methods used in literature is

not being able to provide a method that has a high-speed load-balancing strategy

that optimizes the storage used by the cloud provider. I show the importance of

having such an approach in order to provide an efficient quality of service for the

clients and reduce the cost to providers.

 Chapter 4 describes the base approach of using a collaborative dual-

direction download method in the cloud. In chapter 4, I describe the advantages of

5

the dual- direction technique which enhances the speed of the download process in

the cloud using collaborative dual cloud nodes in order to provide different

partitions of the files. Then, I show the simulation results of using this method in

the cloud and how it has better speed compared to the regular method used for file

download in the cloud.

 In Chapter 5, I demonstrate my first contribution, which is the static storage

optimization technique. I show how I improved the collaborative dual direction by

partially replicating the storage using download experience. I then discuss the

results of optimizing the storage of the cloud servers and compare the

enhancements to the previous approaches. In addition, the limitations and possible

enhancements of the static storage optimization are discussed.

 Chapter 6 elaborates on how a self-managed method of storage

optimization can be added to the collaborative dual-direction download technique.

Chapter 6 illustrates how the file can go through different stages in the cloud,

starting from the upload stage on which the technique splits the file into multiple

blocks and saves them each as a separate file in each cloud node to the download

stage in which the dual-direction technique is applied and experience is saved.

Finally, a discussion of when and in which cases the file blocks can be removed

from a certain cloud node is provided. I display the results I obtained when

simulating this method and comparing it to the similar approaches reviewed earlier

in the literature.

 In Chapter 7, I develop analytical models of the partial replication dual-

direction download. I demonstrate the effects of the technique on the time spent

downloading the file and the amount of storage that can be saved when using this

6

approach. I then provide some discussion of the results I attained when validating

these models.

 Finally, Chapter 8 concludes this dissertation by summarizing the

contributions and benefits of this research and the possible future works that can

be conducted in order to enhance the current results.

7

Chapter 2: Problem Statement, Contribution, and Research

Scope

In this chapter, I discuss the problem and motivation behind this research

and the main contribution of this research. I also clarify the scope of my

contribution and the areas in which it is important.

2.1. Problem Statement and Motivation

 Cloud services have become a trend in the last decade because of their

agility, location independence, and cost effectiveness [20]. There are many

organizations and cloud providers that offer DaaS [21][22]. These are very

common services among users and are very reliable solutions to keep large files

and share them. Examples of the most well-known industry applications are

Dropbox, Google Drive, Apple iCloud, Microsoft OneDrive, and Amazon EC2

[23][24]. The services provided by each of the mentioned applications vary from

providing the ability to upload and share files to the amount of storage provided to

the client. Table 2-1 shows a comparison of the most well-known applications in

the industry [25]. It was found that free storage provided to normal users ranges

from 2 GB to 15 GB. However, premium storage can reach up to 200 GB. This is

why the Dropbox application is the dominant application in the market by 47.9%.

Dropbox announced recently that the number of their users reached 270 million

users [23]. Imagine having at least 2 GB for 270 Million users. The problem here

is that storage consumes most of the cost spent to provide the cloud services. As

stated by Greenberg [26] in his analysis of cloud costs, data centers consume 45%

of the total costs, infrastructure consumes 25% while network and power draw

consume 15% each. Therefore, there is a strong need to reduce the cost of data

8

centers by optimizing the way data is stored. The storage utilization however, must

not negatively affect the download speed at the client side or the reliability of the

storage and retrieval [27][28][29]. The main focus of this research is to use an

effective load-balancing technique to enhance the download performance and

optimize storage usage when providing DaaS in the cloud.

Table 2-1: Comparison of Current Industry DaaS Providers in 2015.

Application Free

Storage

Premium

Storage

Market

Share

Dropbox 2 GB Unlimited 47.9%

Google

Drive

7 GB 200 GB 16.5%

iCloud 15 GB 50 GB 10.5%

One Drive 5 GB 200 GB 9.3%

Cloud resources in the current systems consume a great deal of cost and time from

cloud providers [30]. I noticed that there are two main scenarios usually used when

providing DaaS on the Cloud for load balancing and storage optimizing. The scenario

for load balancing is to look for one server in the cloud and assign the task to that

server. This is of course while taking certain attributes into consideration. For example,

considering the number of connections that are created with that server or the speed of

the server. The problem with this scenario is that the server will be a bottle-nick if I

only consider its speed. Moreover, if I consider only the number of connections, the

server might be slow but free which will result in a slow download. Regarding storage

of DaaS, the scenario is to replicate full files on all servers. The benefit of full

replication is having the ability to distribute the load among the cloud servers if needed.

However, to do that I need huge storage space which will result in very high costs,

imagine the need to replicate a terabytes files among several servers. Here, comes a

9

question of how I can decrease the cost of storage in the cloud while still using

replication and providing a fast download service? My algorithm has the following

benefits to other load balancing and storage optimization techniques:

 It does not incur a high overhead, as less communication is needed to

finalize a file download from a cloud service.

 It has a better handling of the resources in terms of saving more storage

space in the cloud nodes. This is because only parts of the files are saved

and each part is referred to with an ID so that the controller will know

which cloud node has which partition of the file. Usually, all download

algorithms from the cloud focus only on how to improve the speed of

the download process and how to specify which node has the file.

However, they do not focus on the storage consumption on the cloud

nodes and its effect on speeding up the process of assigning the task to

the node. In my algorithm, I treat all cloud nodes as parts of a team. This

means that all cloud nodes will be busy downloading partitions of the

file.

2.2. Research Contribution and Scope

 Based on the studies that were conducted and the various possibilities of load

balancing in DaaS, I have defined the scope of this dissertation research to address the

storage optimization, load-balancing, performance, and efficiency. The main

contributions possible to this area are shown in Figure 2-1. There are three main

research areas in enhancing DaaS in the distributed cloud; this includes enhancing the

speed of exchanging data through the cloud and its efficiency [31][32][33], optimizing

the amount of storage needed to host the files on the cloud, and securing the exchange

10

process. Both storage optimization and task allocation are also considered under cloud

resources management research [34]. The cloud resources management is called green

cloud computing by many researchers [28]. A green cloud usually aims to enhance the

use of cloud resources and reduce the effort and energy spent to accomplish tasks.

 The following are the specific contributions of this dissertation:

1. A static optimization of the storage using the dual direction download

technique. This contribution allows the cloud providers to improve the

download speed using a dual direction download technique and optimize

the storage by removing the redundant replicas manually. The benefit of

this contribution over the normal dual direction technique is the storage

optimization feature. However, the limitation is the need to perform the task

manually at a certain stage. A file and block experience are all saved in a

database where decisions about block removal can be made.

2. My second contribution is autonomizing the process of storage

optimization. This is done by an analysis carried at the upload phase of the

file life-time in the cloud. I propose a technique in which uploading any file

requires an analysis of the file size and the collaborative servers' available

as well as the previous experiences of the download of each block for the

registered files. A block would be removed automatically only if there is a

need to do so. That is, if there is not enough space available in one server,

and there exists previous blocks with download counter equal to zero while

the file was downloaded several times from the cloud. The dual direction

has also a minor modification as the files will be stored in the cloud as

11

multiple blocks. Therefore, instead of downloading from one file only, the

process will loop through a number of block files in a folder.

3. My final contribution is an analytical model of the amount of storage used

when using my ssCloud technique. I analyzed the expected minimum

amount of storage that could be saved by the cloud when using ssCloud, I

evaluated the expected results and verified the accuracy of my model.

Furthermore, I analyze the expected download time when using ssCloud

and evaluated the expected results. I found a high percentage of accuracy

in my analytical model.

 It is important to note here that I only focus on large file sizes. I do not consider

any file size below 1 MB as one server can provide such files in a timely manner.

Moreover, files with sizes ranging from 1 MB to 10 MB are also convenient to be

provided by 1 server without going through the process of assigning tasks to multiple

servers. In this approach my main focus is large files with sizes greater than 10 MB.

Figure 2-1: Dissertation Scope.

Data exchange
security

[35][36][37]

Data
encryption

User
authentication

Mobile
webservices

[38] [39]

Service
discovery

Outsourcing

Task scheduling
and load balancing

of massive data

Speed

Efficiency [42]

Fault
Tolerance

Storage
optimization

Replication

Reliability
[40][41]

12

Chapter 3: Literature Review

 In this chapter, I provide an analysis of the load balancing and storage

optimization research area in Section 3.1. Then, I show the challenges that face

most of the techniques reviewed in the literature in Section 3.2. In Section 3.3 I

review the load-balancing techniques, while in Section 3.4 I review the storage

optimization technique. Then I provide an analysis of the current approaches in

Section 3.5. The chapter is finally concluded with Section 3.6.

3.1. Literature Classification

 To analyze the state of the art research in DaaS, I thoroughly studied the current

approaches in load balancing and storage optimization in the cloud. I noticed some

approaches focused on enhancing the load balancing of the file downloads from the

cloud [33], while others focused on optimizing storage in the cloud [43][44][45].

Therefore, I classified DaaS research as in Figure 3-1 into two categories: research on

load balancing and research on storage optimization. Each category has a sub category

based on the common solution provided in the literature. For example, load balancing

is categorized into static and dynamic load balancing because some solutions focused

on assigning tasks to cloud nodes based on their ability to receive new tasks (static)

while dynamic assigns tasks to cloud nodes by taking into consideration the node

speed, capacity, and network load. Moreover, the storage optimization is categorized

into full and partial replication. This is because some approaches save the same full

file on multiple cloud nodes, while others partition the file based on certain

characteristics and save different partitions on different servers.

13

Figure 3-1: Literature Classification.

3.2. Research Challenges

 Before I could review the current load-balancing approaches for cloud computing,

I must identify the main challenges involved and that could affect how the algorithm

would perform. Here I discuss the challenges to be addressed when attempting to

propose an optimal solution to the issue of load balancing in cloud computing. These

challenges are summarized in the following points.

3.2.1. Spatial Distribution of the Cloud Nodes

 Some algorithms are designed to be efficient only for an intranet or closely located

nodes where communication delays are negligible. However, it is a challenge to design

a load-balancing algorithm that can work for spatially distributed nodes. This is

because other factors must be taken into account, such as the speed of the network

links among the nodes, the distance between the client and the task processing nodes,

and the distances between the nodes involved in providing the service. There is a need

to develop a method to control the load-balancing mechanism among all the spatial

distributed nodes, while being able to effectively tolerate high delays [46].

14

3.2.2. Storage/ Replication

 A full replication algorithm does not take efficient storage utilization into account.

This is because the same data will be stored in all replication nodes. Full replication

algorithms impose higher costs since more storage is needed. However, partial

replication algorithms could save parts of the data sets in each node (with a certain

level of overlap) based on each node’s capabilities, such as processing power and

capacity [47]. This could lead to better utilization, yet it increases the complexity of

the load-balancing algorithms as they attempt to take into account the availability of

the data set’s parts across the different cloud nodes.

3.2.3. Network Overhead

 A network overhead is usually known as straining the network with several

connections and messages. Sending and receiving messages through the cloud should

be reduced as much as possible so that the network is free to do the tasks assigned

more efficiently. Therefore, load-balancing algorithms are preferred have less network

overhead [48].

3.2.4. Point of Failure

 Controlling the load balancing and data collecting about the different nodes must

be designed in a way that avoids having a single point of failure in the algorithm. Some

algorithms (centralized algorithms) can provide efficient and effective mechanisms for

solving the load balancing in a certain pattern. However, they have the issue of one

controller for the whole system. In such cases, if the controller fails, then the whole

system fails. Any load-balancing algorithm must be designed in order to overcome this

challenge [49]. Distributed load-balancing algorithms seem to provide a better

15

approach, yet they are much more complex and require more coordination and control

to function correctly.

3.3. Load Balancing Approaches

 In this section, I discuss the most well-known contributions in the literature

of load balancing in cloud computing. I classify the load-balancing algorithms into

two types: static algorithms and dynamic algorithms. I first discuss the static load-

balancing algorithms that developed for cloud computing. Then, I will discuss the

dynamic load-balancing algorithms.

3.3.1. Static Load Balancing Algorithms

 Static load-balancing algorithms assign the tasks to the nodes based only

on ability of the node to process new requests. Static algorithms do not consider

attributes, such as network traffic, nodes CPU speed, node memory size, and other

node capabilities.

 Radojevic suggested an algorithm called the central load-balancing

decision model (CLBDM)[15], which is an improvement of the round robin

algorithm, which is based on session switching at the application layer. Round

robin [50] is a very famous load-balancing algorithm. However, it sends the

requests to the node with the least number of connections. The improvement in

CLBDM is that the connection time between the client and the node in the cloud

is calculated, and if that connection time exceeds a threshold, then there is an issue.

If an issue is found, the connection will be terminated and the task will be

forwarded to another node using the regular round robin rules. The CLBDM acts

16

as an automated administrator. The idea was obtained from a human

administrator’s point of view.

 The proposed algorithm by Nishant [51] is an improvement of the algorithm

presented in [52]. Both algorithms use ‘ants’ behavior to gather information about

the cloud nodes in order to assign the task to a specific node. However, the

algorithm in [52] has an ant synchronization issue, and this paper is attempting to

solve this by adding the feature ‘suicide’ to the ants. Both algorithms work in the

following way, once a request is initiated, the ants and pheromones are initiated

and the ants start a forward path from the ‘head’ node. A forward movement means

that the ant is moving from one overloaded node looking to the next node to check

if it is overloaded or under-loaded. Moreover, if the ant finds an under-loaded node,

it will continue its forward path to check the next node. If the next node is an

overloaded node, the ant will use the backward movement to get to the previous

node. The addition in algorithm proposed in [51] is that the ant will commit suicide

once it finds the target node.

 The algorithm proposed in [53] is an addition to the map reduce algorithm

[54]. The map reduce algorithm is a model that has two main tasks, map tasks and

reduce tasks. Moreover, there are three methods in this model. The three methods

are part, comp, and group. The map reduce algorithm first conducts the method by

map tasks. At this step, the request entity is partitioned into parts using the map

tasks. Then, the key of each part is saved into a hash key table, and the comp

method completes a comparison between the parts. After that, the group method

groups the parts of similar entities into groups using reduce tasks. Since several

map tasks can read entities in parallel and process them, this will cause the reduce

tasks to be overloaded. Therefore, it is proposed in this paper to add one more load

17

balancing between the map task and the reduce task to reduce the overload on these

tasks. The load balancing in the middle divides the large blocks into smaller blocks,

and then the smaller blocks are sent to the reduce tasks based on their availability.

 Ni proposed a load-balancing algorithm [55] for private cloud using virtual

machine (VM) mapping to a physical machine. The architecture of the algorithm

contains a central scheduling controller and a resource monitor. The scheduling

controller does all the work for calculating which resource is able to take the task

and assigning it to a specific resource. However, the resource monitor does the job

of collecting the details regarding the resources availability. The process of

mapping goes through four main phases, which are accepting the VM request,

obtaining the resource details using the resource monitor, calculating the resources’

ability to handle tasks (the resource with the highest score is the one receiving the

task), and accessing the application.

3.3.2. Dynamic Load Balancing Algorithms

 Dynamic load-balancing algorithms take into account different attributes of

nodes capabilities and network bandwidth. These algorithms assign the tasks

dynamically to the nodes based on the attributes calculated. Such algorithms are

usually harder to implement but are more efficient.

 In [56], they proposed an algorithm to minimize data duplication and

redundancy. The algorithm proposed is called an INS (index name server), and it

integrates de-duplication and access point selection optimization. There are many

parameters involved in the process of calculating the optimum selection point.

Some these parameters are hash code of the block of data to be downloaded, the

position of the server that has the target block of data, the transition quality, which

18

is calculated based on the node performance and a weight judgment chart, the

maximum bandwidth of downloading from the target server and the path

parameter. Another calculation is used to specify whether the connection can

handle additional nodes or not (busy level). The authors classified the busy levels

into three main categories B(a), B(b), and B(c). The B(a) category means that the

connection is very busy, and I cannot add any more connections. The B(c) category

means that the connection is not busy, and additional connections can be added.

However, B(c) means that the connection is limited, and there is further study

needed. The B(b) category is also classified into three further categories; B(b1)

means that INS must analyze and establish a backup, B(b2) means the INS must

send the requests to the backup nodes, and B(b3), which is the highest level

efficiency required, means that INS must reanalyze and establish new backups.

 Ren [57] presented a dynamic load-balancing algorithm for cloud

computing based on an existing algorithm called weighted least connection (WLC_

[58]. The Weighted Least Connections algorithm assigns tasks to the node based

on the number of connections that exist for that node. This is done based on a

comparison of the sum of connections of each node in the cloud and then the task

is assigned to the node with least connections. However, WLC does not take into

consideration the capabilities of each node, such as processing speed, storage

capacity, and bandwidth. The proposed algorithm is called exponential smooth

forecast based on weighted least connection (ESWLC). The ESWLC improves the

WLC by taking into account the time series and trials. The ESWLC builds the

decision based on an experience of a node’s CPU, memory, number of connections,

and load of disk occupation. The ESWLC then predicts which node is to be selected

based on exponential smoothing.

19

 The algorithm proposed in [59][60][61] is a dual-direction downloading

algorithm from FTP servers (DDFTP). The algorithm presented can be also

implemented in cloud computing load balancing. The DDFTP works by splitting

an m-long file into m/2 partitions. Then, each server node starts processing the

assigned task based on a certain pattern. For example, one server will start from

block zero and keep downloading incrementally, while another server starts from

block m and keeps downloading decrement. Finally, when the two servers

download two consecutive blocks, the tasks are considered finished, and other

tasks can be assigned to the servers. The algorithm reduces the network

communication needed between the client and nodes and therefore reduces the

network overhead. Moreover, attributes, such as network load, node load, and

network speed, are taken into consideration.

 The paper in [62] proposes an algorithm called load balancing min-min

(LBMM). The LBMM algorithm has a three-level load-balancing framework. It

uses an opportunistic load-balancing algorithm (OLB) [63]. The OLB algorithm is

a static load-balancing algorithm that has the goal of keeping each node in the cloud

busy. However, the OLB algorithm does not consider the execution time of the

node. This might cause the tasks to be processed in a slower manner and could

cause some bottlenecks since requests might be pending while waiting for the

nodes to be free. The LBMM algorithm improves the OLB algorithm by adding

three-layered architecture to the algorithm. The first level of the LBMM

architecture is the request manager, which is responsible for receiving the task and

assigning it to one service manager in the second level of the LBMM. When the

service manager receives the request, it divides it into subtasks in order to speed

up processing that request. A service manager would also assign the subtask to a

20

service node, which is responsible for executing the task. The service manager

assigns the tasks to the service node based on different attributes, such as the

remaining CPU space (freeness of the node), remaining memory, and the

transmission rate.

3.4. Storage Optimization Work

 There has been some interesting work on storage optimization in the cloud.

I noticed that some of these works focused on either dealing with large file sizes

or small size files. Moreover, most of the approaches dealing with small file sizes

replicated the full file over all the cloud resources. However, the approaches

dealing with large file sizes usually split the file onto multiple cloud servers and

had a partial replication only. Here, I show the storage optimization related works.

3.4.1. Full Replication Storage Work

 Zhang [64] proposed a full replication solution that targets the download of

small files from the cloud. The solution is referred to as BerryStore. The targeted

file size is a maximum of 10 MB. The advantage of this solution is to group many

small files into one large file for which there is only one directory in the cloud

nodes. This will result in minimizing the search and queries of the small files where

there will be only one query method for all small files. The main structure of the

solution is the client, NameServer, and DataServer. The client requests the file, the

NameServer attains the location of that file (in which large file it is located), and

the DataServer contains the real file data from which the client can download the

actual file. The solution is good, yet not practical for large files. Moreover, the

21

solution replicates the grouped large files on multiple cloud nodes, which can be

enhanced by reducing the replication time.

3.4.2. Partial Replication Storage Work

 Srivastava [65] proposed another solution that works for multi-cloud

storage and within each cloud. It reduces the migration effort of the client data from

one cloud to another. Each cloud contains multiple clusters, Vitual Machines

(VMs) and physical servers. Therefore, for each cloud there will be a

CloudInterface and for each cluster, there will be a ClusterInterface. The purpose

of having interfaces is to organize the interactions between each client and each

cluster within the cloud. Moreover, there is a broker that obtains the client’s request

and processes it to the multi-clouds. The client submits requests to the broker to

either upload or download. For an upload request, the client specifies the security

level. The ‘SecurityLevel’ is a parameter used by the ‘FileSplittingFunction’ to

split the file into multiple files based on the percentage of security level provided

by the client. For example, if the client specifies the security level to be 50%, then

the file will be split into two sub files each saved in a different location. For each

cloud, the number of sub files is equal to the number of free VMs. The limitation

of this approach is its complexity. Especially when the files are saved in different

clouds, the operation will be more complex.

 Villari et al. [66][67][68] proposed the redundant residue number system

(RRNS). Their main concern was the security of the client files hosted in the cloud.

It is similar to Srivastava’s solution. However, it is different in terms of keeping

the metadata of each partition and its location in the cloud at the client side as an

XML file. This is to increase the security of the files because the only one who can

22

collect all the partitions and create the original file will be the client. The number

of file partitions is specified by the client. The solution is also useful for clients

dealing with multi-cloud providers. Another parameter specified by the client is

the redundancy degree (RD), which refers to the number of replicas of the

partitions in each cloud node. The solution has four phases, splitting,

dissemination, retrieval, and reconstruction. The problem is that if the client has

lost the metadata of the partitions’ locations, the client will not be able to download

the file. Moreover, each file chunk is saved on the cloud nodes as XML files.

Therefore, more processing is needed to convert them to their original formats.

There are approaches to enhance the storage consumption in the cloud of

clouds. These approaches consider avoiding vendor lock-in, enhancing the security

and privacy, and enhancing the cost of replicating full data across multiple

providers in the cloud. These approaches include some popular work such as

RACS [69], DEPSKY [70], SafeStore [71], and Hybris [72]. These solutions deal

with the service provider architecture as a black box, they integrate their solutions

with the storage provider so that there is data gathering by a local server at the

client side by requesting data existing in each service provider. The service

provider’s storage architecture and load balancing technique is not touched and

therefore, there is a latency to the download time of the file eventually. The

approaches are very useful for avoiding vendor (service provider) lock in issue.

This means that the client will suffer minimal effects if the vendor goes out of

business or did not provide sufficient service to satisfy the client. Although

replicating even partitions of the data across multiple vendors will increase the cost

for the client as discussed in [69][70][71] and have a small latency to the download

time, it offers a very suitable solution to prevent the service provider from having

23

access to the full data of the client and it would help the client to be somehow

independent from the service provider.

3.5. Discussion of Current Approaches

 As discussed earlier, the different approaches offer specific solutions for

load balancing that suit some situations but not others. The static algorithms are

usually very efficient in terms of overhead, as they do not need to monitor the

resources during run-time. Therefore, they would work very well in a stable

environment where operational properties do not change over time and loads are

generally uniform and constant [73][74]. The dynamic algorithms, on the other

hand, offer a much better solution that could adjust the load dynamically at run-

time based on the observed properties of the resources at run-time. However, this

feature leads to high overhead on the system, as constant monitoring and control

will add more traffic and may cause more delays [75]. Some newly proposed

dynamic load-balancing algorithms try to avoid this overhead by utilizing novel

task distribution models [76][77].

 Table 3-1 shows a comparison among the reviewed algorithms. The

comparison shows the positive and negative points of each algorithm. For example,

the INS algorithm is able to handle the load balancing dynamically. However, the

provided algorithm is complicated, which could cause high implementation

complexity. I foresee that a close examination of the algorithm and changing the

overall structure may result in a less complex algorithm. Furthermore, the

CLDBM algorithm solves the problem of requiring a human administrator to

control the system all the time. Therefore, it provides a centralized controller.

However, if the centralized controller fails at any time, the whole system will not

24

be able to operate, which will cause a system failure. Having a backup of the central

controller could solve the issue for CLDBM in cases of failure.

 As for the ant colony approach, I can see that the decentralized approach

provides a good solution to the single point of failure issue. However, it could

easily cause a network overload due to the large number of dispatched ‘ants’. In

addition, several operational factors are not being considered, which may result in

poor performance. This algorithm can be further improved by introducing better

evaluation mechanisms that take into consideration the status of the node and its

current available resources. In addition, it may also be possible to limit the number

of ants used in the discovery process by introducing search controls that could

reduce the branching levels required in the search.

 In DDFTP, the control is kept to a minimum and no run-time monitoring is

needed to keep up with environment changes, while keeping a very efficient load

balancing. As a result, it provides a good approach, yet it still needs some

improvements for better utilization of the available resources. One possibility is to

find a good model that will reduce the level of replication needed, while

maintaining the same level of performance. This may be possible with the

consideration of partial replications with a certain level of overlap that will enable

more efficient resource utilization and maintain minimum overhead for load

balancing.

 Table 3-2 illustrates a comparison between the reviewed algorithms in

terms of the challenges discussed in Section II. For example, the only algorithm

that avoids data redundancy and storage replication is the INS algorithm. However,

INS is a centralized algorithm and therefore has a single point of failure. Moreover,

it is a complex algorithm.

25

 On the other hand, DDFTP relies on replicated resources and does not

reduce the storage size required, but it has a dynamic decentralized approach to

balance the loads. It is also a much simpler algorithm to download stored data. By

applying partial replication, DDFTP can be improved to use less storage.

Generally, each algorithm satisfies a partial set of these challenges, which makes

it suitable for specific situations that match the addressed challenges. For example

INS, CLBDM, and VM mapping all have a single point of failure, thus they would

function very well in a very stable environment where the resource reliability is

very high. Moreover, all algorithms except for ant colony and VM mapping can

handle a highly distributed environment. Therefore, they are more suitable for the

public cloud than the other two. In addition, all but DDFTP introduce high

overhead on the network. As a result, if the network conditions worsen, they would

all suffer significantly as more delays will be involved, which will delay the overall

load-balancing process. However, DDFTP would be more capable in handling

such delays, as it does not need to rely on run-time monitoring and controls.

26

Table 3-1: Load Balancing Algorithms, their Pros and Cons.

Algorithm Pros Cons

INS Initially proven to

handle certain sorts of

dynamic balancing.

Does not have a forecasting

algorithm to identify how the

behavior of the nodes will be in the

future.

Only certain parameters are taken

into consideration, such as distance

and time.

ESWLC Reduces the server

load issue which

exists the original

WLC

Complicated.

Prediction algorithm requires

existing data and takes a lot of time

for processing.

CLDBM Solves the issues of

the round robin

algorithm.

Automated task

forwarding eliminates

the need for a human

administrator at all

times.

Inherits round robin issues, such as

not taking into consideration node

capabilities.

Single point of failure (if CLBDM

fails, then the whole process would

fail).

The threshold might not be applied to

all cases.

ANT

COLONY

Best-case scenario is

that the under-loaded

node is found at the

beginning of the

search.

Decentralized, not a

single point of failure.

Ants can collect the

info in faster manner.

Network overhead because of the

number of ants.

Points of initiation of ants and

number of ants are not clear.

Node’s status change after ants visits

to them is not taken into account.

Only availability of node is being

considered, while there are other

factors that should be taken into

consideration.

Enhanced

Map

Reduce

Less overhead for the

reduce tasks.

More processing time.

Reduce tasks capabilities are not

taken into consideration.

VM

Mapping

Reliable calculation

method.

Single point of failure.

Does not take into account network

load and node capabilities.

DDFTP Fast.

Reliable

A full replication requires full

storage in all servers.

LBMM Reliable tasks

assignment to nodes.

Slower than other algorithms

because work must pass through

three layers to be processed.

27

Table 3-2: Comparison of Load Balancing Algorithms in Terms of Challenges.

As for the storage optimization techniques, since most of the technique

architecture rely on having the client containing the metadata of each partition on

the service providers, then if the client fails the whole process would fail. On the

other hand, most of them are more secure than other load balancing approaches

since cloud provider cannot have a full access to the whole data of the client. The

latency added to the load balancing download speed cannot be ignored since it is

added to the latency of the cloud provider and its architecture is not changed in

 Replication Single Point of

Failure (SOF)

Network

Overhead

Spatial

Dist.

Fault

Tolerance

INS, 2012 Partial Yes Yes Yes No

ESWLC,

2011

Full No Yes Yes Yes

CLBDM,

2011

Full Yes Yes Yes No

Ant-Colony,

2011

Full No Yes No Yes

Enhanced

Map Reduce,

2012

Full No Yes Yes Yes

VM

Mapping,

2011

Full Yes Yes No Yes

DDFTP,

2013

Full No No Yes Yes

LBMM, 2011 Full No No Yes Yes

28

all of the techniques. Most of the approaches deal with large file sizes except for

berrystore of which goal is collect all small files as one large file and replicate it

among several severs which is a full replication of the files. Moreover, CDDLB

has a high download speed but a full replication of files over the servers in the

cloud. The goals of the storage optimization techniques are different but some of

them can be integrated together in order to provide even better performance. For

example, since RACS treats the cloud provider architecture as a black box and it

solves the issues of security and vendor lock in, it can be integrated with CDDLB

in order to provide a faster download and less effects to the client data security.

Table 3-3: Comparison of Storage Optimization Techniques in Terms of Challenges

 SOF Security

Replication Client

overhead

RRNS , 2014 Yes High Partial High

Berry-Store,

2012

No Moderate Full Moderate

RACS, 2010 Yes High Partial High

Depsky, 2013 Yes High Partial High

Hybris, 2014 Yes High Partial High

SafeStore,

2007

Yes High Partial High

CDDLB, 2013 No Moderate Full Low

3.6. Chapter Conclusion

 In this chapter, I have reviewed the state of the art research of providing

DaaS in the cloud. From my analysis, I noticed that the current approaches lack the

29

ability to handle both efficient load balancing and an efficient technique to reduce

the storage consumption among the cloud servers. Both of these issues are

important in order to provide better services to the client and reduce the cost of

hosting millions of files in the cloud. Therefore, I aim in this dissertation to provide

a novel technique to solve the issue mentioned earlier.

30

Chapter 4: Collaborative Dual Direction Load-Balancing

Approach

 In this chapter, I demonstrate the collaborative dual-direction load-

balancing (CDDLB) technique. I show how the technique works in the cloud and

explain the basis of CDDLB. The technique by which files are partitioned and

partition tasks are assigned to servers is also illustrated in this chapter. Then, an

evaluation of the method is discussed in Section 4.2. Finally, the possible

enhancements and strengths of the techniques are demonstrated in Section 4.3.

4.1. CDDLB Methodology

 Here, I describe the collaborative dual-direction download approach. I have

applied the technique DDFTP used in FTP file exchange to the cloud in order to allow

collaborative servers to provide partitions of the files whenever a client requests that

file.

 The CDDLB idea originates from the same approach as DDFTP, which uses a

dual-direction download technique in FTP servers [59][60]. The CDDLB is the dual-

direction file retrieval from the cloud servers. The algorithm works by splitting the file

into partitions of data as shown in Figure 4-1 and assigning two cloud servers for each

partition to download the data from opposite directions. Each of the cloud servers will

handle a download of either forward or backward in the partition depending on its

assignment. This way, the download process is parallelized across the available

replicas, and the overall client download time is improved significantly. In addition,

the approach provides an efficient load-balancing scheme with minimum coordination

31

and zero interaction among the servers being used. However, the CDDLB method

works well with the existence of full replicas of the data set on each of the cloud server

nodes in use.

Partition 1 Partition 2 Partition 3

0 n 2n 3n

Figure 4-1: Partitioning a File in CDDLB.

If I assume that each partition is of length n, then for each set of two cloud servers,

the first one will provide the data starting from block index zero and increment its

counter to move forward, while the second server will provide the data starting from

block index n-1 and decrement its counter to move backwards, as shown in Figure 4-

2.

0 n

Server 1 Server 2

Partition 1

Figure 4-2: Dual Servers Providing One Partition.

Figure 4-3 shows a very simplified example of a download process for a file with

four cloud servers in the cloud. When a client requests file X, the request will be

forwarded to the load balancer in the cloud. There are several load balancers in the

cloud structure; however, requests are generally forwarded to the closest load balancer

32

in terms of distance. The load balancer will then identify the available cloud nodes to

process the task (server 1, 2, 4, and cluster 1); it will partition the file according to the

number of available servers into two partitions and then will assign: 1) a forward

download task starting from block zero to S1, 2) a backward download task starting

from block n to S2, 3) a forward download task starting from block n+1 to C1, and 3)

a backward download task starting from block 2n to node S4. The speed of each of the

cloud nodes differs according to its performance, which is the benefit of the dual-

direction download process. If a certain server is slow when providing its task, the

collaborating server can overcome this limitation by providing the blocks in its

direction.

Figure 4-3: Simple Example of CDDLB Mechanism.

33

Since any file X will be downloaded collaboratively between multiple servers and

each set of two servers will collaborate to download one partition, the equation to

calculate the number of partitions needed for any file X is by dividing the number of

available servers over two. Moreover, a partition size is decided as shown in Equation

1 by the number of blocks (N) and number of available servers (M). For example, if I

have a file X with 100 blocks and four available servers, then the partition size for each

set of two servers is (100/4)*2, which is 50 blocks per partition.

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 = (
𝑁

𝑀
) × 2 (1)

While the number of blocks N in file X can be found by dividing the file X size (R)

by the block size. The equation to find N is as below:

𝑁 =
𝑅

𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒
 𝑏𝑙𝑜𝑐𝑘𝑠 (2)

It was proven in [61] that the performance of the dual-direction technique is

enhanced since the number of control messages (communication) between the client

and the cloud servers is decreased to the minimal in reality, using dynamic servers and

network loads even when there is a reassignment of the task from one server to another.

It is found that the number of start messages would be equal to 𝑘 +
𝑘

2
 ((𝑙𝑜𝑔4𝑛) − 1)

where k is the number of servers, and n is the number of the last block in the file.

4.2. Simulation and Analysis of CDDLB

 To evaluate the proposed algorithm, I consider a data set initially replicated

on two cloud servers at different locations that are working according to any

normal single node selection algorithm (e.g., ant colony or INS). The size of the

data set is 50MB. As this data is replicated on both servers, a total of 100MB are

34

used. The data set is divided into 5000 blocks of size 10,000 bytes each. I assume

that the average download speed from the first server to different clients over the

Internet is 20 blocks/second with a minimum speed of 15 blocks/second and a

maximum speed of 20 blocks/second. The average download speed from the

second server to different clients is 30 blocks/second with a minimum speed of 25

blocks/second and a maximum speed of 30 blocks/second. The average download

times using any node selection and assigning technique and CDDLB are shown

Figure 4-4. As I can see from the figure, CDDLB provides a good download

performance, as it utilizes both servers and provides efficient load balancing

regardless of the load on the servers and the networks.

Figure 4-4: Comparing CDDLB Performance to Normal Selection Methods.

 In order to check the effect of the processing speed, I simulated the file

download speed using various numbers of dual servers for a 100 MB file. I first

conducted an experiment using only two servers. Then, I conducted more

experiments by increasing the number of servers to four, six, eight, and up to ten

servers. The time needed in order to process the request reduced each time I

increased the number of servers. Figure 4-5 shows the finishing time of each

0

100

200

300

Single Node
Selection

Technique

CDDLB

D
o

w
n

lo
ad

 T
im

e
(S

ec
o

n
d

s)

35

processing time done by the number of servers specified. As discussed earlier, in a

real cloud the speed and load of cloud servers’ change every second.

Figure 4-5: Effect of Number of Dual Servers on the Download Time.

4.3. CDDLB Benefits and Limitations

 The CDDLB technique works well for file downloading and shows some good

results as discussed earlier in this chapter. However, the data storage is still consuming

a lot of space on each cloud server, and the same data files are saved on each server.

Although some parts of these replicas never get used. This means that the storage

consumption is more than needed and therefore, my target is to reduce server storage

consumption by improving the CDDLB algorithm by applying the partial replication

of the data files being saved on each cloud server. This means that I will not store the

same data file on all cloud servers. I would store different parts of the data files on

each cloud server according to the servers’ performances throughout the various times

download requests were performed on each server.

4.4. Conclusion

In this chapter, I discussed the collaborative dual-direction approach to download

files from the cloud. The approach simply partitions files into several partitions

depending on the number of available cloud servers and assigns each partition to two

00:00

00:14

00:28

00:43

00:57

01:12

01:26

0 1 2 3 4 5 6

d
o

w
n

lo
ad

 t
im

e
 (

Se
co

n
d

s)

Number of dual servers

36

servers so that they can provide it collaboratively. Each server will be providing

partition blocks either forward or backward. The importance of this approach is to

enhance the download speed of large files in the cloud. However, the limitation here

is the need to replicate full files in the cloud. This could be enhanced using the partial

replication methods discussed later in this thesis.

37

Chapter 5: Static Partial Replication Technique Using

Collaborative Dual Direction Download

 In this chapter, I discuss my static partial replication technique (SPRT),

which uses the collaborative dual-direction download in order to make decisions.

First, I discuss the technique, its workflows, and needed procedures. Then, I

evaluate the performance of this technique and how it proved to have a significant

improvement over the other methods, including the CDDLB technique, in terms of

storage. I finally conclude the chapter by discussing the limitations of the technique

and how it can be enhanced further to provide better results.

5.1. SPRT Method

To implement SPRT, I used the workflows shown in Figures 5-1 and 5-2.

Figure 5-1 describes the workflow of downloading a file by the cloud client. To

download a file, the client initiates a request to the cloud. The cloud controller then

checks whether the file was downloaded before, and if so, there will be data regarding

the file partitions that were downloaded and which cloud servers provided them.

Having this history will help in selecting which cloud server must provide which

partition. The controller finds the required data from the database and then assigns the

servers, which already have the file partitions to the tasks. After the data is downloaded

from all the servers, the client is updated by the required file. However, there must be

a first-time download for each file to get its experience. Therefore, the alternative

workflow is selected when the file is being downloaded for the first time. The file size

in bytes is fetched; the block size is determined by factorizing the file size. Then,

servers are assigned based on their availability and processing speeds. When the dual-

38

direction download is processed from all servers for the first time, the client is updated

as well as the database. A database must always be updated with what happens in the

servers processing each partition so that the controller can decide later which partitions

are to be kept in the cloud server and which are to be removed.

Figure 5-1: SPRT File Download from the Cloud Workflow.

 I allow the file partitioning process at the controller side when the controller has

enough data to make its decisions. Figure 5-2 illustrates how the controller saves the

required partitions on the servers and removes the redundant partitions based on their

download rate. To do that, the controller first checks the available data in the database

concerning the download from the previous servers’ experiences. Then, if blocks

downloaded from server S (for example) were found, the controller creates a directory

in server S where the directory name is the file X ID. Inside the server folder, the

blocks that were downloaded from that server are copied. Each block will be a file by

39

itself and the name of the file will be the block ID. I tested splitting the original file

into the blocks and combining them by the client. The original file was created at the

client without any problems. Therefore, this could be the best way to keep partitions

of the file in the server without the need for complicated calculations. The file sizes

will match the block size in the original file.

Figure 5-2: SPRT Replicated Data Removal Process.

 Moreover, the block size should be selected based on the original problem size

(file X size). To do that, I factorize the original file X size and find the biggest factor

that belongs to the interval from zero, which is the minimum file size to {(
𝑋

𝑁𝑂𝐶
) ×

𝑁𝑂𝑆} that refers to the file size divided by the maximum number of connections

allowed by the database server (NOC) multiplied by the number of servers (NOS). This

interval will prevent any “exceeding number of connections” errors for the users when

40

uploading their files to the cloud servers. Since I keep the metadata in the database, it

is important to consider the database server’s ability to receive the updated

connections.

𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 = 𝑀𝑎𝑥(𝑓(𝑥)) ∶ 𝑤ℎ𝑒𝑟𝑒 𝑓(𝑥) ∈ {0, (
𝑥

𝑁𝑂𝐶
) ∗ 𝑁𝑂𝑆} (3)

 Another problem that could be faced when transmitting a file, even through the

cloud, is the maximum transmission unit (MTU). Even if I found a block size that will

not face an "exceeding number of connections" error, I could face the MTU error for

which a block can be transferred several times because it exceeds the MTU with even

one byte. Having a file transferred through several networks will result in having

different MTUs for each one. For example, Figure 5-3 shows a file being transferred

though a cloud that has an MTU of 1500 bytes, and between the cloud and the client,

which has an MTU of 1000 bytes. The 1500-size blocks that passed through the cloud

will not be able to go through the cloud-client network because the MTU there is less.

Therefore, each block of >1000 will be transferred as two blocks of 1000 and 500. This

will consume time from the transfer process.

Figure 5-3: MTU in the Cloud Network.

41

 When I say that an MTU is 500, it is really 512 bytes and 1000 is really a 1024

bytes (which is double). The benefit here is that any factorial result from Equation 1 is

actually divisible by any of the multiples of 512, 1024, or 1536. Therefore, when a

block size of 51,200 of a certain file is defined, this block will be transferred through

the network based on the MTU, as in the table. The table shows that after selecting the

minimum MTU in a certain route of the file transfer, the block can be split into several

packets without any remaining packets.

Table 5-1: Example of Block Size Handling MTU.

MTU Real pocket size Example Result

500 512 51200/512 = 100 packets

1000 1024 51200/1024 = 50 packets

1500 1536 Note: Reduce packet size to 1280

51200/1280 = 40 packets

2000 2048 51200/2048=25 packets

 The pseudo code in Algorithm 5-1 shows how the block size is determined

based on Equation 3. The file size is first acknowledged. Then, the factorization

method is applied, and when the largest number in the required interval is found, it is

updated in the block size table in the controller. This is so that the block size is

determined for all servers and all download times when the file is first uploaded to the

cloud. The file is uploaded as a whole in the cloud without any additional procedures

except determining its blocks size for download purposes.

42

During my experience, I found that the number of replicated blocks in more

than one cloud node is associated with the number of coordinated nodes in the

download process. It is also associated with the load assigned to each server and the

speed of the cloud server. For example, if I had only two nodes downloading the file

and both nodes have the same load and the same speed, then the number of replicated

blocks on the two servers from the file will be two. While when the number of nodes

downloading the file is four, the number of replicated blocks will be four, and if one

of the dual servers was faster than the second server, then the number of replicated

blocks could increase to six. This is because one server processes the request much

faster than the other one, and for the other server to reach it, more blocks are replicated.

43

Therefore, if I have four replicas of a data file on four cloud servers, then I need

to divide the file into 4/2 = 2 partitions. If the data file X has 3000 blocks for example,

then each partition will be of size (3000/4)*2 = 1500 blocks. Assuming I have the

cloud servers A, B, C, and D. The first time the request is initiated, the controller will

look for the free servers and assign the partitions to them accordingly. In this example,

partition 1 will be assigned to servers A and B. Server A will provide the forward

download of partition 1, while server B will provide the backward download of the

same partition. As the servers push the blocks, they also update their blocks’ download

counters as in Tables 1 and 2, where the partition is of size P and server A downloads

from zero onwards and server B downloads from P-1 downwards until they meet at

blocks k and k+1.

Similarly, the second partition is assigned to cloud servers C and D, and they

both keep similar tables. These tables are updated every time a download request is

assigned to the servers for the same file. This will allow the servers to know which

blocks are being used and which are not. Over time and with the repetitions of the

downloads, the servers can decide to remove the blocks that are never used from

storage. This way if I examine servers A and B, after a while I may find that server A

has pushed blocks zero to k at least once, while the remaining blocks in the partition

were never used. In addition, server B has pushed blocks P-1 to block j at least once,

while the others were never used. In this case, the controller may decide to instruct

server A to delete blocks k+1 to P-1 and server B to delete blocks zero to j-1. Assuming

varying performance and loads on the two servers, j will usually be smaller than k, thus

there will be some overlap across the servers to ensure proper download in the

upcoming requests. For this approach to work correctly, I must ensure that the

downloads on particular servers are always done in the same direction. For example,

44

cloud server A will always be assigned to start from the beginning of a partition, while

cloud server B will always start from the end of the partition. The same applies to all

servers participating in the overall download process.

As more requests are initiated for downloading a specific file, the controller

will be able to remove some blocks from each partition on the cloud servers.

Simultaneously, the download process will continue normally for future requests

without noticing the partial replications. This will allow us to reduce the storage

needed on the cloud servers, while achieving better levels of performance for the client.

The partial replication of the load-balancing algorithm performs better as the number

of downloads increases. This is because more information about the cloud servers

becomes available for the evaluation of their ability to obtain which part of the file.

Figures 5-4 and 5-5 demonstrate how the file blocks are stored as file structure in the

cloud servers to simplify the search process of the partitions blocks for the client.

Moreover, to secure the other files hosted by the cloud server from being accessed by

the wrong clients.

Figure 5-4: Cloud Node A File Structure.

Figure 5-5: Cloud Node B File Structure.

Algorithm 5-2 and 5-3 show the pseudo code of the partition removal at the

server level in the cloud. The main idea involves copying the file blocks into other

45

smaller files based on the block IDs in each server node. After that the original file

is removed. To save partitions of the file into the cloud servers, I first check the

existing experience saved for that file. This experience is saved in a database that

is available with the controller. All the rows saved for that specific file will be

retrieved. Then, for each server that provided a partition of the file, a directory will

be created in that specific server containing the file ID. This is so that it becomes

easier for the server to find the data for that file. When the directory is created, the

method will check the database for which blocks were downloaded from that

server. As long as there are blocks downloaded from the server by checking the

attribute ‘DownloadCounter’ in the controller table, a small file containing the

block IDs will be created in the directory and the binary will be written to the file

starting from the first position of the block till the last position. The new file size

will match the block size. Therefore, I made sure that there is no additional storage

needed when writing the partition of the original to the new small files. Moreover,

when downloading a file, each block is read and appended to the resulting file on

the client side, and its size is also matched to the original file size and the sum of

the blocks sizes, which confirms that there is no additional storage needed when

splitting the file into multiple blocks files. Moreover, when removing a block, I

ensure that the file was downloaded several times before, while the block was not

downloaded from that server at all.

46

 Figures 5-6 and 5-7 show an example XML of the data saved in the

controller's database. I made sure that the data saved there is minimal so that it does

not overload either the retrieval or the storage of the data center. When the file is

first uploaded, I add its details, such as the identification number, name, file size,

and block size identified based on Equation 3, and I initiate the number of

downloads to zero. As there are more requests initiated for that file, the number of

downloads will increase. I keep this attribute to compare the block downloads to

47

the file downloads when attempting to delete any blocks to avoid deleting a block

from a file that wasn't downloaded before. As for the ‘filesblocksmap’ table, I keep

the attributes that will help us in deciding whether or not to delete a certain block

from a file. The first three attributes (node ID, file ID, and block ID) will help in

determining which block is which and help map it to the cloud node that usually

provides it and the file to which it belongs. Then, I add the download counter and

the processing type, which is either forward or backward based on the dual-

direction approach.

Figure 5-6: Example of File Details in Controller's Database.

48

Figure 5-7: Example of Experience Saved in Controller's Database of Each Block.

The components of the solution are shown in Figure 5-8. The main

components are 1) the clients who initiate the request and send it to the cloud, 2)

the load balancer that checks the file download experience from the database and

assigns tasks to the cloud servers, 3) the cloud servers that process the requests,

and 4) the file controller that does the partitioning on the storage level at the cloud

servers after checking the experience of the file downloads.

49

Figure 5-8: SPRT Solution Design.

5.2. Evaluation and Simulation of SPRT

 Here, I show an evaluation of the storage enhancements of SPRT over CDDLB

(discussed in Chapter 4). To evaluate my methods, I implemented my own Cloud

simulation environment as shown in the class diagram in Figure 5-8. Servers’ speed,

network speed, bandwidth, and round trip time are all attributes which I can

manipulate to simulate a real cloud network. This simulator follows the same approach

used by other models used for other related research [76][77][78].

The first comparison in terms of storage is shown in Figure 5-9. Only 60 MB

of space is needed after removing the blocks that have never been downloaded from

both servers. The storage space needed by the new approach is reduced from 100 MB

to 60 MB (i.e., 40% savings) without increasing the download time compared to

DDFTP with full replication.

50

Figure 5-9: Storage Needed by SPRT Compared to CDDLB.

Figure 5-10: Blocks Downloaded from Server 1.

Figure 5-11: Blocks Downloaded from Server 2.

 As displayed in Figures 5-10 and 5-11, the first server has never

downloaded blocks higher than block number 2500, while the second server has

never downloaded any blocks lower than block number 1500. The main reason for

0

20

40

60

80

100

120

CDDLB SPRT
St

o
ra

ge
 S

p
ac

e
(M

B
)

Technique

51

obtaining these numbers is based on two cases. The first case is when the first

server was downloading at its maximum speed, while the second server was

downloading at its minimum speed. Thus, the maximum block number that the first

server downloaded is block number 2500, as both servers will be downloading an

average of 25 blocks/second. The second case is when the first server was

downloading at its minimum speed, while the second server was downloading at

its maximum speed. Thus, the minimum block number that the second server will

download is block number 1500, as the speed of the first server is 15 blocks/second,

while the speed of the second server is 35 blocks/second. Using the technique

developed in this research, it possible to remove the last 2500 blocks from the first

server and the first 1500 blocks from the second server without affecting the

parallel download operations and without increasing the download time.

Figure 5-12 compares the space used by SPRT (partial replication) and two

of the most used algorithms in load balancing, which are the ant colony load-

balancing and map reduce algorithm using different file sizes. I noticed that when

the file size increased, my partial replication algorithm improved the storage

optimization of the cloud to a greater extent. This is because the difference of the

file sizes between my algorithm and other load-balancing algorithms increased.

52

Figure 5-12: Storage Consumption in Two Cloud Servers

 When testing the same algorithms using four cloud servers, the difference

increased much more, even when the number of replicated blocks in the partial

replication algorithm increased. However, the difference between it and the other

algorithms was greater because they are based on a full replication of data. Figure

5-13 shows a comparison between the three techniques in terms of storage

optimization when using four servers. As more servers are used, I can achieve more

savings.

Figure 5-13: Storage Consumption in Four Cloud Servers.

In addition to testing the performance of the algorithm while increasing the number

of servers, I also simulated the storage consumed whenever the number of servers

increased. To do that, I simulated a download for a 100 MB file using two, four,

0

1,000

2,000

3,000

4,000

5,000

6,000

100
MB

500
MB

1 GB 2 GB 3 GB

S
to

ra
g

e
 C

o
n

s
u

m
e
d

 i
n

 t
h

e
 C

lo
u

d

(M
B

)

Original File Size

Partial
Replication

Ant Colony

Map Reduce

0

2,000

4,000

6,000

8,000

10,000

12,000

100
MB

500
MB

1 GB 2 GB 3 GBS
to

ra
g

e
 c

o
n

s
u

m
e
d

 i
n

 t
h

e
 c

lo
u

d

(M
B

)

Original File Size

Partial
Replication

Ant Colony

Map Reduce

53

six, and eight servers. Then, I ran my algorithm for optimizing the storage of the

servers. Figure 5-14 shows the amount of storage consumed for each group of

servers. I noticed from the results that the storage consumed increased whenever

the number of cloud servers increased. This is because for each dual server working

on a partition, there are blocks replicated, and those are the blocks where the two

servers meet in the download process. The percentage of the replicated blocks is

very low compared to other full replication techniques. The other full replication

techniques double the storage consumed as the number of servers increase.

Figure 5-14: Effect of Number of Servers on Blocks' Replication.

 I simulated an experiment with a file containing 12,800 blocks using two

servers. At the first upload, servers were storing all the file blocks as different files

(see Figure 5-15). Then, I downloaded the file a few times using my collaborative

dual-direction download approach. Then, I stored several files in both servers 1

and 2 to crowd the storage space and leave little room for new uploads. Finally, I

submitted a request by the client to upload a new file. After running SPRT to

optimize the storage for the new file, blocks that were not previously provided by

each server were removed. Figure 5-16 shows that blocks from 6500 were removed

from the server because they were not previously used. Blocks starting from block

0

5

10

15

20

25

30

0 2 4 6 8 10

R
e

p
lic

at
e

d
 B

lo
ck

s

Number of servers

54

zero to 6460 were removed from server 2. There are some blocks that were used

by the two servers for downloads and these blocks are left in both servers.

Figure 5-15: Storage of All File Blocks After the Upload Process.

Figure 5-16: Storage of the Same File Blocks After Running SPRT.

When running the same experiment using four servers downloading the

same file, the number of partitions increased (see Figure 5-17). If all servers had a

full storage and all of them removed the unused blocks, then each server would

only save the number of blocks from the original file. The importance of this

approach is that although the file does not exist in its entirety on any one of the

servers, all the blocks of the original file exist and can be found in the collaborative

cloud servers and the file can be reconstructed easily. Moreover, the download

process is faster, as there are a number of servers working together to provide the

different partitions of the file simultaneously.

55

Figure 5-17: Partial Storage of Four Cloud Servers After Running SPRT.

An important parameter to evaluate is the amount of additional storage consumed

by the metadata of each file. I have checked this parameter and found it does not

exceed one megabyte of storage for a one gigabyte file. This amount is minimal

compared to the file size. Table 5-2 shows different file sizes that I tried and the

amount of storage consumed by their metadata.

Table 5-2: Metadata Size of Different Files

File Size Metadata size

1 GB 1.3 MB

500 MB 700 KB

100 MB 400 KB

10 MB 200 KB

56

5.3. Pros and Cons of SPRT

 The SPRT method showed promising results in terms of enhancing the

performance and storage consumption of the cloud. Therefore, using this technique

will reduce the cost of cloud resources used by cloud providers without an effect

on performance. The performance of using dual-direction techniques improves the

speed and therefore performs better than a regular selection technique as discussed

in Chapter 4. In addition, adding a storage enhancement to the dual-direction

technique has very good effects on the efficiency of the original CDDLB.

 However, using SPRT will result in the need to have manual control over

the removal process of partitions; therefore, the basis cannot be determined. Even

if the threshold of storage was determined and a removal process was conducted

whenever the threshold was reached, it wouldn't be an optimal solution, since the

storage resource is not fully utilized. Therefore, I considered the need for a manual

control over the SPRT as a limitation of the technique and I have attempted to

enhance it, as discussed in Chapter 6.

5.4. Conclusion

In this chapter, I introduced the static optimization technique of cloud storage using

the dual-direction download experience. The SPRT saves the experience of each block

when downloading the file using a dual-direction technique; therefore, there is a need

to store this data in a database in the cloud itself. The technique resulted in a big

enhancement of storage compared to the original CDDLB method. The SPRT has a

partial replication feature on which there are few blocks that will be saved in multiple

cloud servers. Therefore, even if there was a failure of any of the cloud servers, there

57

are backup blocks in another one. I only remove the previously unused blocks. By this

method, I preserve the reliability of the technique and optimize the storage. This is

while also enhancing the speed.

58

Chapter 6: Self-Managed Partial Replication Technique Using

Collaborative Dual Direction Download (ssCloud)

 In this chapter I discuss the ssCloud (smart storage cloud) technique. The

technique is an enhancement to the previously proposed methods. Here, I introduce

the automation of the cloud storage concept and discuss the need to have such an

automation. I then elaborate on the structure of the ssCloud technique and its

implementation. I discuss simulation results, which proved the efficiency of this

technique, and I compare it to other existing approaches in the research field and

the industry. I finally conclude the chapter with a summary of the ssCloud

technique, its benefits, and areas of enhancements.

6.1. Description of ssCloud

Here, I discuss my proposed ssCloud methodology for the cloud. The main goal is

to enhance the limitation of the SPRT technique, which is the need to have a manual

control over partition removals. Here, I automate the process by controlling the file

partitioning starting from the upload phase. For example, when the client needs to

upload a new file to the cloud, and some cloud servers do not have sufficient storage

to host this file. In this case, I look for the blocks that were not downloaded from that

certain server for a certain amount of time and remove them so that I can clear

sufficient storage for any new files. These blocks are usually replicated on other cloud

servers and can be downloaded from those servers when requested. Therefore, the

effect of removing these blocks will be minimal to the download time of the file from

the cloud.

59

To download a file, the client initiates a request to the cloud as in the previous

methods. The cloud load-balancing module then checks whether the file was

downloaded before, and if so, then there will be data regarding the file partitions that

were downloaded and which cloud servers provided them. Having this history will

help in selecting which cloud server must provide which partition. The controller finds

the required data from the database and then assigns the servers, which already have

the file partitions to the tasks. After the data is downloaded from all the servers, the

client is updated by the required file. However, there must be a first-time download

for each file to get its experience. Therefore, an alternative workflow is selected if the

file is being downloaded for the first time. The file size in bytes is fetched; the block

size is determined by factorizing the file size. Then, servers are assigned based on their

availability and processing speeds. The database is updated at the end of every

download.

To implement the storage enhancement technique, I structured my solution as

described in Figure 6-1. The figure shows that there are two interfaces for each cloud.

One is to manage the download requests from the clients. This includes the cloud load-

balancing module. The second interface manages the file uploads and blocking

processes, which is the ‘FileController’ of the cloud. This means that the FileController

will reduce the load of client requests on the cloud load-balancing module. This is

because such requests go to a different interface rather than going to the cloud load-

balancing module at all. Blocking and partitioning will also be done at the

FileController side. Both the cloud load-balancing module and the FileController have

access to the database to make decisions. Moreover, both update the database with the

results of their processes.

60

Server

User

Database

Cluster

FileController

Request File

Upload File

Check/Update

Check/Update

Update

Assign Tasks

Figure 6-1: Overall Solution Structure of ssCloud.

 When the client initially uploads the file, the sequence diagram shown in

Figure 6-2 is used. Client, FileController, cloud server, and database are the only

entities needed for this process. The client submits an upload file request to the

FileController. The FileController obtains the file size from the client. Then, the

FileController communicates with the servers on the cloud to identify the current

available storage and to compare it to the file size to determine whether it is sufficient

to upload the file. If the storage is sufficient, the FileController determines the block

size, creates a directory entry with the file name in the servers, and saves the file as

blocks of the block size. Finally, the FileController updates the database with each

block stored in each server. In the case that the storage was not enough in any of the

cloud servers, the FileController will communicate with the database to obtain all non-

downloaded blocks that belong to previously downloaded files. Then, it will delete

them from the server to clear storage space for the new file.

61

Client FileController DatabaseServer

Upload File

Get File size

Return File size

Check Available Storage

Return Available Storage

Compare FileSize to Available Storage

Determine block size

Upload blocks to

server directory

Update Database

alt

FileController checks Database for blocks with download

times = 0 from server X. FileController then deletes the

queried blocks from server X and upload the new file blocks

Available Storage is less than file size

Figure 6-2: Sequence Diagram of File Upload Process.

The dynamic file upload to the cloud pseudo code for the main method of

ssCloud is shown in Algorithm 6-1. When receiving a file upload request from the

client, the method attains the file name and the file size. Then, it runs a loop through

each server in the cloud and checks whether the available free storage of that server

is sufficient to upload the required file on that server. If the storage is sufficient,

then the file is divided into blocks determined by the factorization of the file size.

A directory in the targeted cloud server is created and all the blocks of that server

are copied to the destination server. In the case when the available storage of a

62

certain server from the cloud is not sufficient to store the file, then the method

determines the required space, and checks the database for all the files that were

downloaded from the cloud but the blocks were not provided from the target server.

The method then removes the blocks that were never downloaded from that server

and recursively uploads the file as blocks into the server directory.

This solution could be implemented in several other ways. For example, I could

have implemented a batch process that runs periodically to check for non-

downloaded blocks and remove them. The problem with this approach is that if I

needed to upload a file before the batch process is executed, the storage may not

be sufficient in the targeted server. Another method is to run the batch process after

each download process by the load-balancing module. This approach will increase

the load on the load-balancing module, which will have a negative effect on the

download process. Therefore, I held that the most effective method is to remove

blocks when an upload is requested. This allows for finding the unused blocks and

removing some only when necessary for more storage. Moreover, all the additional

work of storage checking, file splitting, determining block size, and saving will be

done by the FileController without the need to include the load-balancing module

in the process.

63

64

The file structure after uploading the file to the targeted server is shown in Figure

6-3. The figure shows that the directory of the file in the server contains the file ID

that was saved in the main database. Then each block is stored as a separate file

using its block ID. This will make it easier for the client and the load balancer to

find the blocks of the file even if the history of the file was lost or deleted by

mistake. With blocks stored by their incremental ID in the file, if the database was

not available, the load balancer can simply calculate the block size using the file

size and look for the blocks in the cloud servers to provide them to the client.

Figure 6-3: File Structure in the Cloud Servers After Initial Upload.

After more file downloads, if there was a request to upload a new file to the

cloud server and the server does not have enough storage space, the non-

downloaded blocks will be removed from that server. If there were blocks that were

downloaded previously, the directory will remain and the previously downloaded

blocks will remain in the same directory. Figure 6-4 shows the file structure in case

of removing the unused blocks in order to provide more storage. In this case, server

S has a full storage space in which it will not provide blocks 1, 2,3…100.

Therefore, they were removed from its storage, and its storage space was used for

the new file C, while server SS has enough storage space for file C therefore, no

blocks were removed from server SS.

65

Figure 6-4: File Structure in the Cloud Servers After Unused Blocks Removal.

6.2. Example of ssCloud

 In this section, I show the life cycle of a file in ssCloud to clarify how it is

handled. I chose a 100 MB file in order to illustrate this example. The life cycle is

as follows:

1. The 100 MB file is uploaded to the cloud using the dynamic upload file

algorithm discussed in Section 6.1. Since I had eight operating servers, the

number of connections allowed by my database server is 16,300 and

therefore the block size of this file was found as the below.

𝑀𝑎𝑥(𝑓(104,857,600)): 𝑤ℎ𝑒𝑟𝑒 𝑓(104,857,600) ∈ {0, (
104,857,600

16,300
) ∗ 8}

= 51,200 𝑏𝑦𝑡𝑒𝑠

The number of blocks for that file will be
104,857,600

51,200
= 2,048 blocks each of

size 51,200. Each of these blocks is saved into the controller's database

separately as shown in the second row from below Figure 6-5. The tables are

exported from the database.

66

Moreover, the time taken to upload this file was 20 seconds into all the servers.

However, when running this example, I were not using the Internet and

therefore, the time might change accordingly.

2. Each block is also saved as a separate file in a folder directory with the

same name as in the database. Figures 6-7 and 6-8 below show how the

blocks were saved.

Figure 6-5: Uploaded File Details in Controller's

Database.

Figure 6-6: Uploaded Blocks Details in Controller's

Database.

67

3. When running the download, the requested file was divided into four

partitions; each partition has (2048/4) = 512 blocks. Each set of two servers

worked on their partition forward and backward till they met at certain

block, and depending on the server speed, the partition was received, and

they were able to help the other two servers if the other partitions were not

finished. Figure 6-9 shows how the file is divided into partitions and which

server is assigned to which task. An important note to mention here is that

when two servers of a certain partition were very fast and finished their task

before any other pair, they can join the pair in downloading their partition.

Figure 6-7: Uploaded Files Structure in Cloud

Servers.

Figure 6-8: Blocks of the Uploaded File Saved

as Separate Files in the Servers.

68

4. After running the download several times, each of the eight servers usually

provided some of the blocks, although there were blocks with a download

counter of zero. I stored many files on the servers so that when uploading

any new file, I could see the blocks that had ‘DCounter’ of zero removed. I

changed the network speed and server speed each time I ran the download

in order to simulate a real Internet download and so that the change would

affect which blocks were saved in which server. The download time

whenever I ran the ssCloud changed since I changed the server speed;

therefore, the number of replicated blocks changed. For example, Table 6-

1 shows the each server speed and how many blocks it was provided based

on its download speed.

Figure 6-9: File Download Splitting and Assignment Process.

69

Table 6-1: Effect of Different Speeds of Servers in Three Runs.

T
h

ir
d

 r
u

n

S
P

(1
5
0
0
)

 b
y
te

s/
m

s

2
7
9
 b

lo
ck

s

S
P

(9
0
0
)

 b
y
te

s/
m

s

2
7
6
 b

lo
ck

s

S
P

(9
0
0
)

 b
y
te

s/
m

s

2
6
0
 b

lo
ck

s

 S
P

(1
1
0
0
)

 b
y
te

s/
m

s

2
6
5
 b

lo
ck

s

S
P

(2
0
0
0
)

 b
y
te

s/
m

s

2
7
4
 b

lo
ck

s

S
P

(5
0
0
)

 b
y
te

s/
m

s

2
2
8
 b

lo
ck

s

S
P

(1
0
0
0
)

 b
y
te

s/
m

s

2
4
4
 b

lo
ck

s

S
P

(1
2
0
0
)

 b
y
te

s/
m

s

2
5
8
 b

lo
ck

s

S
ec

o
n

d
 r

u
n

S
P

(1
0
0
0
)

 b
y
te

s/
m

s

2
8
2
 b

lo
ck

s

S
P

(1
0
0
0
)

 b
y
te

s/
m

s

2
8
7
 b

lo
ck

s

 S
P

(1
0
0
0
)

 b
y
te

s/
m

s

2
6
9
 b

lo
ck

s

 S
P

(1
0
0
0
)

 b
y
te

s/
m

s

2
8
1
 b

lo
ck

s

 S
P

(1
0
0
0
)

 b
y
te

s/
m

s

2
8
8
 b

lo
ck

s

 S
P

(1
0
0
0
)

 b
y
te

s/
m

s

2
4
5
 b

lo
ck

s

 S
P

(1
0
0
0
)

 b
y
te

s/
m

s

2
6
0
 b

lo
ck

s

 S
P

(1
0
0
0
)

 b
y
te

s/
m

s

1
7
7
 b

lo
ck

s

F
ir

st
 r

u
n

S
P

(1
0
0
0
)

b
y
te

s/
m

s

3
8
 b

lo
ck

s

S
P

(1
0
0
0
)

b
y
te

s/
m

s

3
7
4
 b

lo
ck

s

S
P

(2
0
0
0
)

b
y
te

s/
m

s

7
3
0
 b

lo
ck

s

S
P

(5
0
0
)

b
y
te

s/
m

s

1
8
7
 b

lo
ck

s

S
P

(1
0
0
0
)

b
y
te

s/
m

s

3
7
4
 b

lo
ck

s

S
P

(2
0
0
0
)

b
y
te

s/
m

s

2
9
5
 b

lo
ck

s

S
P

(1
5
0
0
)

b
y
te

s/
m

s

7
7
 b

lo
ck

s

S
P

(1
0
0
)

8
 b

lo
ck

s

 S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

5. If all servers had storage issues and needed to remove the unused blocks,

Table 6-2 shows how many blocks each server would carry. There are

replicated blocks on multiple servers. However, the file is not fully

replicated on the server if it removed the unused blocks based on storage

needs. I noticed that of all the remaining blocks, 3107 out of 16384, there

70

were only 18.9%, which meant that the storage consumption was enhanced

by at least 75%. Moreover, since each block was of size 51200, the entire

amount of storage saved was 13,277*51,200 = 679,782,400 bytes, which is

equal to almost 679 MB of storage. More of the storage saving analysis will

be discussed in Chapter 7.

Table 6-2: Number of Remaining Blocks Per Server After Removing Unused Blocks.

Server Number of Blocks

S1 328

S2 433

S3 741

S4 361

S5 418

S6 303

S7 261

S8 262

Total Number

removed blocks

(8 × 2048) – 3107

= 13277 blocks

6.3. Analysis and Simulation Results of ssCloud

In this section I analyze the differences between ssCloud and other storage

optimization approaches for the cloud. I also discuss the evaluation of ssCloud.

 When comparing ssCloud to RRNS (discussed in Chapter 3), RRNS retains

the file fragmentation details on the client side. This is beneficial as a security

measure allowing for higher safety controls for the client. However, if the client

loses the file information, a serious issue would occur because no one else has the

same information. This is not an issue with ssCloud since there are backups of the

database. Even if there is an issue with the database, the blocks and files are stored

71

in each server by a sequence ID. This means that they are reachable, but the load-

balancing module will have to expend more effort to obtain the information.

BerryStore, on the other hand, does not take security as a priority. Its target is to

provide a fast method to download small files by storing multiple small files as one

large file. The problem here is that it cannot be applied to larger files, while ssCloud

and RRNS both can handle files of any size. Table 6-3 shows the comparison

between the three approaches.

 Table 6-3: Comparison of Storage Optimization Techniques.

 SOF Security File

Types

Replication Client

effort

RRNS Yes High All Partial High

Berry-

Store

No Moderate <10

MB

Full Moderate

ssCloud No Moderate All Partial Low

To know the probability of deleting a certain block from a given server, I use

a conditional probability because there are three events that must happen before

deleting a block from a server. First, a file upload request must be initiated. Then, the

server storage must be insufficient. Finally, the block must not have been previously

downloaded from the server for a previous download request. Figure 6-10 illustrates

the probability of deleting a block from a server. In the figure, P(A) is the probability

of uploading a new file; P(B) is the probability of insufficient storage in server X, and

P(C) is the probability that block z was never downloaded before, while file R

containing that block was downloaded several times. The highlighted intersection

72

between P(A), P(B), and P(C) signifies having all these events occurring

simultaneously. That is, if P(A&B&C) then the block will be deleted. Notice that the

probability of removing a certain block using ssCloud is low compared to the normal

flow. This means that in most cases, there will be a file upload request but cloud servers

will have sufficient storage available or the block will be downloaded previously from

the server, and it will not be removed.

P{A ∩ B ∩ C} = 𝑃{𝐴} . 𝑃{𝐵|𝐴} . 𝑃{𝐶|𝐴 ∩ 𝐵}

𝑂𝑅 =
1

𝑛!
 =

1

3!
 (4)

On the other hand, the probability that a partition is downloaded from a

certain server is a dependent probability. If I have a file of two partitions and four

servers will be working on providing these partitions, then the probability that

server 1 provides a forward download from the file is as follows:

P(𝑆𝑖 downloads 𝑃𝑗) =
1

𝑆
𝑃

 , (5)

Figure 6-10: Probability of Removing a Block.

73

Where S is the number of available servers and P is the number of partitions.

This means that the probability that server 1 provides partition 1 forward is 1/(4/2))

= 1/2. When trying to determine the probability that server 1 provides the download

of partition 2, then it will be 1/(3/1)) = 1/3 as the number of servers will decrease

because server 1 will be busy providing partition 1, and there is only one partition

remaining. This analysis is important to know which blocks will be downloaded

by which server. If a block is regularly provided by a server, then it will not be

removed.

Storing the file for the first time in my static storage optimization was done by

saving the full file then taking copies of the blocks and deleting the original file.

However, splitting the file from the beginning as blocks when the file is transmitted

from the client to the cloud servers enhances this. This will also be of minimal

effect to the client download process. This is because the client will be

downloading the blocks within a file (as shown in Figure 6-11). When simulating

both cases, I noticed that the download time difference between the two is

negligible. Downloading different blocks will increase the download time because

databases must be checked for previous experience for that file. Moreover, each

block file must be opened and downloaded. I noticed that the maximum difference

between downloading the full file without database access and downloading

partitions with database access was 8 seconds when the file size was 2 GB. The

average overhead of the download process is about 3%. However, using multiple

dual-direction servers still improves the performance compared to regular

approaches. Furthermore, when optimizing the storage space of the cloud servers,

this is a very minimal difference.

74

Figure 6-11: Time Difference in Download for Different File Sizes.

 Moreover, there is an effect to the need to connect to the database in the

upload process too. This is since all the upload requests must go through the

controller and be partitioned into blocks as in equation 3, chapter 5. This process

increases the time of upload for the files. However, since the file is uploaded once

and downloaded several times, my concern was to minimize the database

connection effect on the download process. Figure 6 -12 shows a comparison of

uploading a file using ssCloud to uploading a full file without partitioning and

database connection. I noticed that as the file size increases the difference between

the two methods decreases. This is because the number of blocks is determined

based on the number of servers, number of database connections and file size. By

using equation 3, the number of blocks will decrease as the file size increases and

therefore the number of connection requests to the database will decrease too. As

a result, this decreases the difference between the process of uploading a file

without the need to a database connection and the process used in ssCloud.

0 200 400 600 800

100

500

1000

2000

TIME (SECONDS)
B

LO
C

K
 S

IZ
E

(M
B

)

Block files Full File

75

Figure 6 -12: Comparison of Full File Upload and Blocks Upload in Terms of

Time Taken

 A hypothesis was made that the storage consumption in the server when

storing a full file would be less than storing multiple distributed blocks of the same

file. That is because most of the researchers assumed that each block of the file

would require additional space to store headers and file types. Therefore, I

simulated the difference between the two options using my approach and found

that the overall size of the original file and the folder containing all the split blocks

of the file are exactly the same as shown in Figure 6-13. The result was the same

because I stored the file as a number of binary files and the resulting downloaded

file is of the same format as the original file.

Figure 6-13: Consumed Storage Difference in MB.

0

20

40

60

80

100

120

140

160

180

200

100 500 1000 2000

Ti
m

e
ta

ke
n

 (
se

co
n

d
s)

File Size (MB)

full file blocks

76

Figure 6-14 demonstrates a comparison between ssCloud, RRNS, Dropbox,

and Google Drive in terms of the download time for files of different sizes. The

sizes of files used for the comparison ranged from 10 MB to 1000 MB (1 GB). I

set the download speed as the Internet speed in my network which was 1 Gbps.

The figure shows that the 10 MB file was downloaded by RRNS in 30 seconds

while the ssCloud downloaded the same file in 11 seconds, Dropbox took 20

seconds, and finally Google Drive took almost one minute. Moreover, a 400 MB

file was downloaded by RRNS in 640 seconds, while the ssCloud downloaded it

in 525 seconds. This is mainly a result of multiple servers working collaboratively

on each partition of the download. Dropbox provided the file in 750 seconds and

Google Drive in 660 seconds. The results demonstrate that Google Drive performs

better with medium file sizes (100-500); however, when the file size reaches 1 GB

both Google Drive and Dropbox need more than 20 minutes to download. The

RRNS performs better than Dropbox and Google Drive because it assigns tasks to

multiple servers; however, each cloud server is solely responsible for providing its

partition; therefore, the delay in any of the servers' performances will affect the

entire download process. Although, RRNS performs better than many of the

existing load-balancing strategies that assign the full download to one server.

However, its performance can be enhanced by the dual-direction approach used by

ssCloud.

77

Figure 6-14: Download Performance Comparison.

 Dropbox, Google Drive, RRNS, and ssCloud all have an upload phase

where the file is uploaded into the cloud [78]. The number of partitions and replicas

are then determined. I compared the upload of files of the same sizes using RRNS

and ssCloud and compared them to Google Drive and Dropbox using an Internet

speed of 1 Gbps for each.

 Figure 6-15 illustrates the difference between the approaches. The figure

shows that RRNS performed better when the file size was relatively small (10 MB).

The file was uploaded in 30 seconds using RRNS, while it was uploaded in 50

seconds using ssCloud. However, as the file size increases, the performance of

ssCloud improves and outperforms RRNS in all trials. A file of size 400 MB was

uploaded in 120 seconds using RRNS and in 79 seconds using ssCloud. Dropbox

usually redirects many of its tasks to Amazon EC2 for processing, and that takes

more time to process tasks compared to the other approaches in both he upload and

download processes [79].

10 100 200 300 400 1000

ssCloud 11 105 208 291 460 800

RRNS 30 170 320 440 620 1000

Dropbox 20 240 390 504 750 1270

Google Drive 60 220 360 495 680 1200

0

200

400

600

800

1000

1200

1400

D
o

w
n

lo
ad

 T
im

e
(S

ec
o

n
d

s)

File Size (MB)

78

Figure 6-15: Upload Performance Comparison.

 The issue of the number of connections will mostly appear at the database

server side. This is because a large number of connections could affect any

database server, which could result in inefficient performance. This is why I ensure

that the blocks are large enough to reduce the number of communications with the

database server whenever a block is added to the file. The approach is to split the

file into multiple blocks and then save them as separate files in the target folder on

the hosting server. It will also save each block record in the database in order to

target any action taken regarding the block, such as download or delete. Figure 6-

16 shows the error rate in a case where the number of connections of the database

server was not considered. In the case where the number of connections was not

considered, the database server will generally crash at some point. It usually

recovers and saves the rest of the blocks, but I noticed that it has not saved all the

correct rows. I also noticed that as the file size increases, the error rate between the

actual rows saved and the real value that should have been saved increases. To

solve this problem, I considered the number of hosting servers (NOS) and the

0

100

200

300

400

500

600

700

800

900

10 MB 100 MB 200 MB 300 MB 400 MB 1000 MB

U
p

lo
ad

 T
im

e
(S

ec
o

n
d

s)

File Size (MB)

ssCloud RRNS Dropbox Google Drive

79

number of available database server connections (NOC) when calculating the

block size of the target file.

Figure 6-16: Error Rate Caused by the Database Server in the Case of an Exceeding

Number of Connections.

 When applying my approach for creating a number of blocks that are

associated with the DB server connections and the number of hosting servers, I

have noticed that as the number of servers increased, the block size also increased

and the number of blocks decreased. This is because I want to reduce the number

of blocks saved in the database every time there is an upload request. Therefore,

clients will not face any failure in the cloud DB server. Table 6-4 displays the

results obtained when applying my approach, knowing that when applying this

approach the error rate was zero.

10 20 40 100 200 500

Actual 5120 10240 17430 42569 87438 209866

Target 5120 10240 20480 51200 102400 256000

0

50000

100000

150000

200000

250000

300000

N
u

m
b

er
 o

f
b

lo
ck

s

File Size (MB)

80

Table 6-4: Experimental Relationship Between NOS, NOC, Block Size, and NOB.

File Size NOS NOC Block Size NOB

524,288,000 4 16,384 128,000 4096

209,715,200 4 16,384 51,200 4096

52,428,800 4 16,384 12,800 4096

524,288,000 6 16,384 256,000 2048

629,145,600 6 16,384 307,200 2048

524,288,000 6 10,000 409,600 1280

629,145,600 6 10,000 491,520 1280

Moreover, I have tested the effect of block size over the download time in

the case where the block size was not restricted by the number of connections

available with the database server. I have changed the block size among values by

1 KB, which is the minimum size of a block to file size divided by two. As I are

using a dual-direction download, the maximum block size without replication

should be half of the file size. Results shown in Figures 6-17, 6-18, 6-19, and 6-20

demonstrate that there is an optimal block size for each file, and this optimal block

size depends on the file size itself and the number of collaborated servers providing

this file. Usually the optimal block size starts from 100 KB–1000 KB for a file

provided by two servers, and as the file size increases, the optimal block size

changes accordingly. The difference between the optimal block size and any other

block size (as I increase) is minimal for small files (10 MB), but as the file size

increases, the difference in the performance increases. Therefore, the effect is clear.

This emphasizes the importance of choosing the optimal block size when

uploading the file to the cloud.

81

Figure 6-17: Block Size Effect on Download Time for 10 MB File Using Two

Servers.

Figure 6-18: Block Size Effect on Download Time for 100 MB File Using Two

Servers.

Figure 6-19: Block Size Effect on Download Time for 400 MB File Using Two

Servers.

60

28

3 2 3 4

0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000
D

o
w

n
lo

ad
 T

im
e

(S
)

Block Size (bytes)

240

60

21 25 30 30 34

0

50

100

150

200

250

300

0 10000 20000 30000 40000 50000 60000

D
o

w
n

lo
ad

 T
im

e
(S

)

Block Size (bytes)

900

360

85 87 90 90 120 134

0

100

200

300

400

500

600

700

800

900

1000

0 20000 40000 60000 80000 100000

D
o

w
n

lo
ad

 T
im

e
(S

)

Block Size (bytes)

82

Figure 6-20: Block Size Effect on Download Time for 400 MB File Using Four

Servers.

6.4. Enhancements and Limitations of ssCloud

 The main importance of ssCloud is the combination of the dual-direction

download approach and the autonomic management of the storage resources in the

cloud. There is a clear benefit that the download time is tremendously decreased as

well as the cost of storing the file whenever necessary. The ssCloud is safe to

remove the unused blocks, as this will not affect the download time and therefore

will not negatively affect the end users (cloud clients). Moreover, the ssCloud

overcomes most of the challenges facing load balancing and storage optimization

in the cloud, such as server failure. In the case of a server failure, another

contributing server can replace the failing server. As long as this server provides

blocks even minimally, then the blocks will not be removed from that server, which

confirms the reliability of this method. I think that more analytics on the optimum

block size to further enhance the download speed could further improve the

ssCloud.

600

300

52 45 50 60 67
120

0

100

200

300

400

500

600

700

0 20000 40000 60000 80000 100000

D
o

w
n

lo
ad

 T
im

e
(S

)

Block Size (bytes)

83

6.5. Conclusion

 The design of the ssCloud aims to improve the download time from the

cloud and optimize the storage allocation techniques to enhance the cloud DaaS.

Load balancing is improved using a collaborative dual-direction download method

to partition files and assign partitions to multiple cloud servers. Smart storage

allocation is accomplished by automating the file upload process to check for

available storage on each server and remove non-downloaded blocks based on

previous experiences. The technique’s analysis shows that my algorithm has a

better opportunity of optimizing cloud storage. In addition, I calculated the

probability of removing unused blocks and found it to be very low. However, the

choice of deletion is available when needed. Using the ssCloud helps reduce the

time needed to download a file and the storage cost needed to host millions of files

in the cloud.

84

Chapter 7: Performance Analysis

 In this chapter I develop an analytical model in order to estimate storage

saved using my partial replication approach and the amount of time needed to

download the files using this technique. I validate the estimations by simulation

and provide the results. I then discuss my observations and provide methods of

enhancing the ssCloud even more. Finally, I discuss the conclusions.

7.1. Expected Storage Saved Estimation

 In this section, I develop an analytical model to estimate the storage saved

through a mathematical analysis. In order to explain the storage saved by ssCloud,

I investigate an example of two collaborative servers working on a 1000-blocks

file. I review the case where the maximum number of blocks downloaded by server

1 was 700 blocks, as shown in Figure 7-1, and the maximum number of blocks

downloaded by server 2 was 500 blocks. This means that server 1 (even at its best

performance) never downloaded the 300 remaining blocks. Moreover, server 2

never downloaded the 500 remaining blocks. These blocks will be removed by my

approach. On the other hand, there are 200 blocks that are commonly downloaded

by one of the two servers at different download times. These blocks are the only

blocks that will be replicated in both servers at the end.

 In order to estimate the number of replicated blocks, I summed the

maximum blocks downloaded by both servers and took the file total number of

blocks out.

𝐸𝑠𝑡(𝑅𝑒𝑝) = (700 + 500) − 1000

85

𝐸𝑠𝑡(𝑅𝑒𝑝) = 200 𝐵𝑙𝑜𝑐𝑘𝑠

This indicates that the total number of saved blocks is 1200 blocks with a partial

replication. However, a full replication technique would need to store 1000 blocks

on both of the servers, which would be 2000 blocks. By removing the unused

blocks, I saved 800 blocks of storage.

Figure 7-1: Number of Replicated Blocks in Two Servers for 1000 Block File.

 In the same way, I can find the replicated blocks among four servers. An

example of the case where the same file of 1000 blocks were downloaded by four

servers and the maximum number of blocks for each server is below:

 Server 1: 300 blocks

 Server 2: 300 blocks

 Server 3: 400 blocks

 Server 4: 200 blocks

 Figure 7-2 shows the replication among the four servers. I can see that there

are 100 blocks replicated between server 1 and 2, and 100 other blocks replicated

between server 3 and 4. The sum of all the replicated blocks among all partitions

is as follows:

𝐸𝑠𝑡(𝑅𝑒𝑝) = (300 + 300 + 400 + 200) − 1000

86

𝐸𝑠𝑡(𝑅𝑒𝑝) = 200 Blocks

Figure 7-2: Number of Replicated Blocks in Four Servers for 1000 Blocks File.

 Therefore, the equation to calculate the number of replicated blocks of file

i in any collaborative servers S after an experience is as in Equation 6.

𝐸𝑥𝑝(Rep)𝑖 = {∑ 𝑀𝑎𝑥(𝐵𝑙𝑜𝑐𝑘𝑠𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑)𝑗

𝑆

𝑗=1

 } − 𝑇𝑜𝑡𝑎𝑙𝐵𝑙𝑜𝑐𝑘𝑠𝑖 (6)

Where ∑ 𝑀𝑎𝑥(𝐵𝑙𝑜𝑐𝑘𝑠𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑)𝑗

𝑆

𝑗=1
 is the sum of all the maximum number of

blocks provided by each server of the collaborative servers and 𝑇𝑜𝑡𝑎𝑙𝐵𝑙𝑜𝑐𝑘𝑠𝑖 is

the total number of blocks in file i.

In order to know the maximum number of blocks that will be provided by

a certain server, I need to know the maximum and minimum speeds of each of the

collaborative severs. For this example I have four servers of minimum and

maximum speeds as follows below:

 Server 1: Min = 15 blocks/s, Max: 20 blocks/s

 Server 2: Min = 5 blocks/s, Max: 12 blocks/s

 Server 3: Min = 6 blocks/s, Max: 10 blocks/s

87

 Server 4: Min = 8 blocks/s, Max: 15 blocks/s

 To estimate the maximum number of blocks that will be downloaded by

server 1, I allow it to download at its maximum speed (20 blocks/second) by setting

all the other servers' speed to the minimum speeds (five, six, and eight

blocks/second). By doing this, server 1 will have to download most of the blocks

in the file, which is the maximum number of blocks it can provide. Equation 7 is

used for the estimation.

𝑀𝑎𝑥𝐵𝑙𝑜𝑐𝑘𝑠(𝑆𝑖)

=
𝑀𝑎𝑥(𝜆(𝑆𝑖))

𝑀𝑎𝑥(𝜆(𝑆𝑖)) + ∑ 𝑀𝑖𝑛(𝜆(𝑆𝑗))𝑋
𝑗=2

 × 𝑇𝑜𝑡𝑎𝑙𝐵𝑙𝑜𝑐𝑘𝑠(𝐹𝑖𝑙𝑒) (7)

Where 𝑀𝑎𝑥𝐵𝑙𝑜𝑐𝑘𝑠(𝑆𝑖) is the maximum number of blocks provided by Server i,

𝑀𝑎𝑥(𝜆(𝑆𝑖)) is the maximum speed of Server i. and ∑ 𝑀𝑖𝑛(𝜆(𝑆𝑗))𝑋
𝑗=2 is the

minimum speed of all other collaborative servers downloading the file.

When applying Equation 7 to my example, the maximum number of blocks

provided by server 1 is
20

20+(5+6+8)
× 1000 = 512 blocks. It is important to

mention here that I either use speed units of bytes/ms or blocks/s since each block

in my approach is found by Equation 3 in terms of bytes. Therefore, any of the two

units can be used to estimate the maximum number of blocks provided and the

number of replicated blocks. Equation 8 is used to convert the speed from bytes/ms

unit to blocks/s unit.

𝜆(𝑏𝑙𝑜𝑐𝑘𝑠
𝑠⁄) ≈

𝜆 (
𝑏𝑦𝑡𝑒𝑠

𝑚𝑠⁄)

𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒𝑖
 × 1000 (8)

88

 Where 𝜆(𝑏𝑙𝑜𝑐𝑘𝑠
𝑠⁄)the speed in blocks/second is, 𝜆 (

𝑏𝑦𝑡𝑒𝑠
𝑚𝑠⁄) is the

speed in terms of bytes/milliseconds and 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒𝑖 is the block size of file i.

The below experience demonstrates how Equations 6 and 7 are useful for

estimating the number of replicated blocks and the saved storage. In order to

validate this, I used a file of size 20 MB, and two servers to download it. The file

has 2048 blocks of size 10,240 bytes each. Below are the minimum and maximum

speeds of both servers.

 Server 1: Min = 600 bytes/ms, Max= 1500 bytes/ms (Min = 58 blocks/s,

Max = 146 blocks/s).

 Server 2: Min: 100 bytes/ms, Max = 1000 bytes/ms (Min = 10 blocks/s,

Max = 97 blocks/s).

 I ran the download for the 20 MB file using the above two servers after

setting the speed for server 2 to nine blocks/s. Server 1 automatically performed at

its max speed (146 blocks/s). Using Equation 10, 𝑀𝑎𝑥𝐵𝑙𝑜𝑐𝑘𝑠(𝑆𝑒𝑟𝑣𝑒𝑟1) =

146

146+10
 × 2048 = 1917 blocks. The result I obtained from running the

experience was that server 1 provided 1921 blocks and server 2 provided 128

blocks, which is very close to the estimated number by using Equation 10.

 I conducted another experiment by setting the speed of server 1 to 48

blocks/s so that server 2 was forced to download the maximum number of blocks

it could afford. Using Equation 7 𝑀𝑎𝑥𝐵𝑙𝑜𝑐𝑘𝑠(𝑆𝑒𝑟𝑣𝑒𝑟2) =
97

97+58
 × 2048 =

 1281 blocks. The results I obtained from running my method was that server 1

provided 768 blocks and server 2 provided 1281 blocks which confirms that the

equation is correct when using two servers to provide one file.

89

 Moreover, when using Equation 6, the expected number of replications for

this run is found by the following equation:

𝐸𝑠𝑡(𝑅𝑒𝑝) = (1921 + 1281) − 2048

𝐸𝑠𝑡(𝑅𝑒𝑝) = 1154 𝐵𝑙𝑜𝑐𝑘𝑠

 When testing this using my approach, it is exactly equal to the result above.

The replicated blocks IDs belonged to the real numbers in ∈ {767, 768, , ,1921}.

 I applied this equation to a situation of four servers too. The servers' speed

were are follows:

 Server 1: Min = 59 blocks/s, Max = 146 blocks/s.

 Server 2: Min = 10 blocks/s, Max = 97 blocks/s.

 Server 3: Min = 20 blocks/s, Max = 100 blocks/s

 Server 4: Min = 10 blocks/s, Max = 80 blocks/s.

 I ran my method using the four above servers four times so that each server

could perform at its maximum for one iteration. The results of the maximum blocks

for each server against the one expected using Equation 7 are found in Table 7-1.

The equation was at least 98.7% correct, and the difference between the expected

and actual was at most only 19 blocks, which is the server 1 result.

90

Table 7-1: Evaluation of the Accuracy Equation 7.

 Expected Max blocks Real Max

blocks

Correctness

Server 1
=

146

146 + (10 + 20 + 10)
× 2048

= 1607

1595 99.2%

Server 2
=

97

97 + (59 + 20 + 10)
× 2048

= 1068

1061 99.3%

Server 3
=

100

100 + (59 + 10 + 10)
× 2048

= 1144

1130 98.7%

Server 4
=

80

80 + (59 + 10 + 20)
× 2048

= 969

969 100%

 As for the number of replicated blocks over the four servers for the 20 MB

file tested above, it is equal to (1588 + 1061 + 1130 + 969) − 2048 =

2700 blocks.

7.2. Expected Download Time Estimation

 In order to estimate the expected download time (Exp(DT)) of block i using

the ssCloud, I must know the attributes, such as the percentage that block i was

downloaded from each server and the time taken by each server in order to

download that block. Then, the expected download time of block i is the sum of

the percentage that block i was downloaded from server k multiplied by the time

taken by server k to provide block i. A simple example to explain this equation is

91

the time taken to travel from one place to another several times. If a person, who

usually uses two methods of travel between two cities, such as by car and plane,

would like to estimate the expected travel time between cities, and it previously

took one hmy to travel by plane (percentage of using plane is 90%) and three hours

to travel by car (percentage of using the car is 10%), then the estimated travel time

is (0.10*3 + 0.90*1). The same applies to ssCloud since there are different

possibilities that a block could be download from any server.

𝐸𝑥𝑝(𝐷𝑇𝑖) = ∑(𝑃𝑖
𝑘

𝑆

𝑘=1

 × 𝜆𝑖
𝑘) (9)

 Where 𝐸𝑥𝑝(𝐷𝑇𝑖) is the expected download time spent to provide block i

using ssCloud. S is the number of Servers providing block i, 𝑃𝑖
𝑘 is the percentage

server k provides block i, and 𝜆𝑖
𝑘 is the speed by which server k provided block i.

The total download time of file F is equal to the sum of the expected

download time of all the blocks b in File F as shown in Equation 10.

𝐸𝑥𝑝(DT) = ∑ 𝐸𝑥𝑝(𝐷𝑇𝑖

𝑏

𝑖=1

) (10)

 Where 𝐸𝑥𝑝(DT) is the overall expected download time, and b is the number

of blocks in the file.

This will also result in summing all the download time for each block (sum

of percentage a block was downloaded from a certain server multiplied by the

download time of that server) as in Equation 11.

𝐸𝑥𝑝(DT) = ∑ ∑(𝑃𝑖
𝑘

𝑆

𝑘=1

 × 𝜆𝑖
𝑘) (11)

𝑏

𝑖=1

92

 When using my partial replication dual-direction technique to verify the

above-mentioned equations, first, I set a very simple experiment to begin. I

uploaded a 20 MB file size, with 2048 blocks, each of size 10,240 bytes. I set this

download test to operate using only two servers. I ran the experiment ten iterations

and changed the servers' speed each time so that the download percentage of the

block from a server is affected (as shown in Table 7-2). For the eleventh time, the

speed of server 1 was at 50 blocks/s and the speed of server 2 was 70 blocks/s. I

estimated the download time for each block by Equation 6 and Table 7-3 depicts

the estimated download time versus the actual download time. I selected blocks 1,

2048, 1024, 500 and 1500 to be the blocks on which I compare the accuracy of

Equation 8 because they represent the edges and elements of the groups. For

example, block 1 will always be downloaded from server 1 and block 2048 will

always be downloaded from server 2. Therefore, it is easy to predict the expected

download time for such blocks, and it will be accurate, as they have the same

experience every time a download is completed. However, this is not the case for

blocks similar to block 500 and block 1500. This is because there is a small

percentage of time that they will be provided by a different server than the regular

server that usually provides them. For example, server 1 usually provides block

500, but there are two times when server 1 was slow or loaded when server 2 had

to provide this block. The Equation 6 prediction in these cases was very efficient

since the accuracy percentage was not below 90. The worst case is the point where

the two servers usually meet. An example of this case is block 1024. When

downloading block 1024, it could be downloaded by any of the servers each time.

This will have the least accuracy in my case, but the error rate was 12%. I consider

a maximum difference of 12% to be within the acceptable rate because the

93

download times of each server differs according to the network speed, and this is

very unpredictable behavior.

Table 7-2: Dual Server Experience in Ten Runs.

Run S1 Speed

(blocks/s)

S2 Speed

(blocks/s)

S1

blocks

S2 blocks

1 100 100 1-1026 2048-1024

2 100 20 1-1709 2048-1708

3 20 100 1-340 2048-339

4 120 100 1-1118 2048-1116

5 80 10 1-1823 2048-1822

6 10 80 1-227 2048-225

7 40 120 1-512 2048-511

8 90 70 1-1153 2048-1150

9 60 50 1-1118 2048-1117

10 120 130 1-984 2048-982

Table 7-3: Equation 9 Accuracy Evaluation.

 𝑬𝒙𝒑(𝐃𝐓) in Seconds 𝑨𝒄𝒕𝒖𝒂𝒍(𝐃𝐓) in

Seconds

Correctness

Block 1 = {(100% ×
1

50
) + (0% ×

1

70
)} =

 0.02

0.02 100%

Block

2048

= {(0% ×
1

50
) + (100% ×

1

70
)} =

0.014

0.014 100%

Block

1024

= {(54.54% ×
1

50
) + (45.45% ×

1

70
)} = 0.016

0.014 88%

Block

500

= {(80% ×
1

50
) + (20% ×

1

70
)} =

0.018

0.02 90%

Block

1500

= {(30% ×
1

50
) + (70% ×

1

70
)} =

0.015

0.014 93%

94

7.3. Discussion and Observations

 In this section, I discuss different performance and storage observations

obtained during the evaluation of my approach. One observation I made was that

as the sum of speeds of the dual servers increases, the overall performance

increases as well and therefore the download time decreases. Table 7-4 shows the

experiment I ran to validate this assumption. I carried 5 runs each with different

speeds of each servers and different sums of speeds. The best performance of this

run was 8 seconds download when both servers were fast and the sum of speeds

was 3000 bytes per second. The difference between the speeds of the servers does

not have much effect to the download time because the dual servers work in

opposite directions and they meet at a certain point.

Table 7-4: Speed Difference Between the Dual Servers, Affecting Download Time.

 S1 Speed

(bytes/ms)

S2 Speed

(bytes/ms)

Download

time (S)

Speed

Difference

(bytes/ms)

Sum of

speeds

(bytes/ms)

1 500 500 21 s 0 1000

2 500 600 19 s 100 1100

3 500 1000 17 s 500 1500

4 1000 2000 8 s 1000 3000

5 1000 1000 11 s 0 2000

 Another observation was also the effect of the difference between the

minimum and maximum speeds of any server on the number of replicated blocks

between the two servers. This depends on the file size. Therefore, I tried a file of

95

size 400 MB to validate this assumption. For example, if I have two servers as

follows:

 Server 1: Min = 20 blocks/s, Max= 100 blocks/s. The difference between

the Min and Max is 80 blocks/s.

 Server 2: Min: 50 blocks/s, Max = 150 blocks/s. The difference between

the Min and Max is 100 blocks/s.

 When I use Equation 7 to discover the maximum number of blocks that can

be provided by any of the above-mentioned servers, I found the results below:

 Server 1 Maximum blocks = (
100

100+50
) × 4098 = 2732 𝑏𝑙𝑜𝑐𝑘𝑠

 Server 1 Maximum blocks = (
150

150+20
) × 4098 = 3615 𝑏𝑙𝑜𝑐𝑘𝑠

 From these results, the maximum number of replicated blocks would be

(2732 + 3615) − 4098 = 2249. If using the other two servers, there would be

less difference between the minimum and maximum speeds and the results would

change, for example:

 Server 1: Min = 50 blocks/s, Max= 70 blocks/s. The difference between the

Min and Max is 20 blocks/s.

 Server 2: Min: 60 blocks/s, Max = 80 blocks/s. The difference between the

Min and Max is 20 blocks/s.

The maximum number of blocks that could be provided by any of the two servers

is shown below.

 Server 1 maximum blocks = (
70

70+60
) × 4098 = 2026 blocks.

 Server 1 maximum blocks = (
80

80+50
) × 4098 = 2185 blocks.

 The number of replicated blocks would be only equal to (2026 + 2185) −

4098 = 113 blocks. This means that, as the difference between the maximum and

96

minimum of the dual servers decreases, the number of replicated blocks will also

decrease. This would be very useful in terms of saving the storage used for the

replicated blocks, since this storage can be used for other large files.

 Figure 7-3 shows relationship between the maximum number of replicated

blocks with the min-max gap in servers' performances tested in my validation of

the previously mentioned observation. The validation was completed for a 400 MB

file size of 4098 blocks. The relationship is extrusive, as the gap increases, the

number of replicated blocks also increases.

Figure 7-3: Experimental Relationship Between Min-Max Speed Gap and Maximum

Number of Replicated Blocks for 100 MB File Size.

 To evaluate the storage enhancement of ssCloud compared to the original

CDDLB technique [80][81][82], I estimate the storage enhancement of a

524,288,000 bytes (524 MB) file replicated on 4 servers. If I use the original

CDDLB technique, then a full replication of the file is needed across the 4 servers

despite the maximum and minimum number of blocks that can be provided by any

of the servers. Therefore, the final storage consumption of the file would be as

equation 12.

1 2 3 4

S1 Gap 80 60 40 20

S2 Gap 150 80 50 20

Max Replicated Blocks 2250 1736 1161 546

0

500

1000

1500

2000

2500

0
20
40
60
80

100
120
140
160

B
LO

C
K

S

G
A

P
S

(B
YT

ES
/M

S)

RUN NUMBER

S1 Gap S2 Gap Max Replicated Blocks

97

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝐷𝐷𝐿𝐵 = 𝑀 × 𝑅 (12)

Where M is the number of servers and R is the file size. This means that the storage

required by CDDLB for the above example would be 4*524,288,000 =

2,097,152,000 bytes (around 2 GB). On the other hand, if I use the ssCloud

technique, and servers maximum and minimum blocks were as follows:

 Server 1: Min = 59 blocks/s, Max = 146 blocks/s.

 Server 2: Min = 10 blocks/s, Max = 97 blocks/s.

 Server 3: Min = 20 blocks/s, Max = 100 blocks/s

 Server 4: Min = 10 blocks/s, Max = 80 blocks/s.

If I have NOC of 16,300 then the block size would be 128,656 bytes and number

of blocks would be 4096 according to equations 1, 2 and 3. The maximum number

of blocks for each server according to equation 7 would be as follows:

 Server 1: (
146

146+(10+20+10)
) × 4096 = 3215 𝑏𝑙𝑜𝑐𝑘𝑠

 Server 2: (
97

97+(59+20+10)
) × 4096 = 2135 𝑏𝑙𝑜𝑐𝑘𝑠

 Server 3: (
100

100+(59+10+10)
) × 4096 = 2288 𝑏𝑙𝑜𝑐𝑘𝑠

 Server 4: (
80

80+(59+10+20)
) × 4096 = 1938 𝑏𝑙𝑜𝑐𝑘𝑠

Now, the overall storage used by ssCloud would be the sum of all the maximum

blocks of the above four servers which is 9576 blocks each of size 128,656 bytes.

This means that the overall storage consumed would be 1,232,009,856 bytes

(around 1.2 GB). This means that the least saved storage if I only removed the zero

downloaded blocks would be 865,142,144 bytes compared to the original CDDLB

or DDFTP.

98

7.4. Chapter Conclusion

 In this chapter, I have discussed the mathematics behind my partial

replication load-balancing approach for providing DaaS in the cloud. I provided an

estimation of the storage that could be saved using the ssCloud and the estimated

download time after removing the redundant data from storage. I validated the

estimates by running the experiments and found a satisfying percentage of

accuracy. Finally, I noted some observations and best service optimization

methods and validated those as well.

99

Chapter 8: Conclusion and Future Work

 In this chapter, I conclude this dissertation by summarizing the research

contributions and goals of this work in Section 8.1. Then, I summarize the possible

future work that could be of a significance to the areas of load balancing and

storage optimization in the cloud.

8.1. Summary of Research Contribution

 Combining an efficient load balancing and storage consumption utilization

in the cloud provides the ability to offer better services and less cost for the cloud

providers. My solution focuses on enhancing both aspects, as it improves load

balancing by collaborative server downloads and improves storage by reducing the

amount of replicated blocks among the cloud servers.

The research contributions of this dissertation follow.

8.1.1. Static Removal of Replicated Blocks

 I enhanced the collaborative dual-direction download method by removing

the previously unused blocks. The first enhancement was to manually have a static

removal of unused blocks from each cloud server. I have implemented this

technique on top of the previous dual-direction method. The benefit was to reduce

the amount of storage consumed. However, the process had to be done manually

on occasion. The problem was that the storage consumption could reach its peak

before any removal could be conducted.

100

8.1.2. Autonomic Removal of Replicated Blocks

 In this contribution, I have added steps to the cloud environment where

uploading files will go through a workflow of 1) determining the block size, 2)

splitting the file into blocks according to the block size, 3) and uploading the file

onto each server of the cloud environment. When there is a need to remove blocks,

the controller will complete an analysis of the unused blocks, and those blocks will

be removed. The process is automated through the upload process and the use of

controller.

8.1.3. Analytical Model of Performance

 My final contribution in this dissertation was to provide an analytical model

of how to estimate the amount of storage saved depending on the collaborative

server speeds. Moreover, I validated my expected equations against experiments

conducted using the simulator. I found a high percentage of accuracy through

running the experiments.

8.2. Future Work

 As a future addition to this research, I considered some enhancements that

could be of significant contribution to the area of load balancing and storage

optimization. Below are some of the possible future works of this dissertation.

8.2.1. Auto-Recovery of Blocks

 In case there was a need to restore the removed blocks, the process is easy

because all blocks exist in the cloud with their unique identifier. An analysis of the

101

need to restore any block into server X could be a useful enhancement to the current

approach.

8.2.2. Partial Editing of the File

 Moreover, I discussed throughout this thesis the uploading and

downloading of data in the cloud, which is the scope of my research. However,

when there is a need to edit or modify a portion of a large file, there should be an

improvement to the partial replication load-balancing technique that I provided.

This by itself is a huge research effort, which could provide a significant

contribution to the topic.

8.2.3. Fault Tolerance Handling

 As the cloud is known for its elasticity and cloud servers can join and leave

the cloud at different times, an analysis of how the ssCloud can handle fault

tolerance in the case when a server fails or leaves the cloud would be needed. The

backup of the removed blocks and the amount of replication needed in such cases

would be very useful.

8.2.4. Enhancing the Security of ssCloud

 Another future work is enhancing the security of the partial files. I

mentioned previously that security is an important research area in distributed

DaaS. There are many research studies conducted on enhancing the security of the

data exchanged in the cloud, as I have seen earlier in this thesis. Using a partial

replication could be a solution used by ssCloud as well as other approaches like

102

RRNS. Therefore, enhancing the security of the ssCloud by adding new features to

the partial replication would be an interesting solution.

8.2.5. Implementation and Evaluation of a Compression Method

Since file compression is a popular solution for reducing the storage used,

I think that it could further enhance the storage consumption of ssCloud. This could

be done by compressing the never downloaded blocks instead of removing them

permanently. This may create additional tradeoffs between download speed,

storage saving, and reliability. As a result, I plan to evaluate the effects of

compressing files at the servers' side in terms of storage and performance to verify

that it will not significantly increase the overall download time.

8.2.6. Implementation of the Full Idea on Top of Simulation

To better evaluate the full idea of the compression and additional other

features that could be added in the future to the main idea, I need to implement a

simulation environment where the full cloud is simulated and different attributes

could be changed on large scale environment. This would help in evaluating most

of the points in the future work.

103

Bibliography

[1] Rimal, B.P., E. Choi, and I. Lumb, “A taxonomy and survey of cloud

computing systems,” In proc. 5th International Joint Conference on INC, IMS

and IDC, IEEE. 2009.

[2] Armbrust, M., Fox, O., Griffith, R., Joseph, A. D., Katz, Y., Konwinski, A.,

and Zaharia, M, "M.: Above the clouds: a Berkeley view of cloud computing"

in Citeseer. 2009.

[3] Muniswamy-Reddy, K. K., Macko, P., and Seltzer, M. I, "Provenance for the

Cloud", In FAST (Vol. 10, pp. 15-14). 2010.

[4] Goyal, A., and Dadizadeh, S., "A survey on cloud computing". University of

British Columbia Technical Report for CS, 508, 55-58. 2009.

[5] Buyya, R., Ranjan, R., and Calheiros, R. N., "Intercloud: Utility-oriented

federation of cloud computing environments for scaling of application

services", In Algorithms and architectures for parallel processing (pp. 13-31).

Springer Berlin Heidelberg. 2010.

[6] Sakr, S., Liu, A., Batista, D. M., and Alomari, M. "A survey of large scale data

management approaches in cloud environments", Communications Surveys &

Tutorials, IEEE, 13(3), 311-336. 2011.

[7] Schaffer, H. E., "X as a service, cloud computing, and the need for good

judgment", IT professional, 11(5), 4-5. 2009.

[8] Karlsson, J., et al., "Enabling large-scale bioinformatics data analysis with

cloud computing.", In Parallel and Distributed Processing with Applications

(ISPA), 2012 IEEE 10th International Symposium on. IEEE. 2012.

[9] Cuzzocrea, A., Song, I. Y., and Davis, K. C., "Analytics over large-scale

multidimensional data: the big data revolution!", In Proceedings of the ACM

14th international workshop on Data Warehousing and OLAP (pp. 101-104).

ACM. 2011.

[10] Wang, L., Kunze, M., Tao, J., and von Laszewski, G., "Towards building a

cloud for scientific applications", In Advances in Engineering software, 42(9),

714-722. 2011.

104

[11] Olson, J. A., "Data as a service: are I in the clouds?". Journal of Map &

Geography Libraries, 6(1), 76-78. 2009.

[12] Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis, G., and Vakali, A. "Cloud

computing: Distributed internet computing for IT and scientific research".

Internet Computing, IEEE, 13(5), 10-13. 2009.

[13] Youseff, L., M. Butrico, and D. Da Silva, “Toward a unified ontology of cloud

computing,” Grid Computing Environments Workshop, IEEE GCE'08., 2008.

[14] Agarwal, S., Dunagan, J., Jain, N., Saroiu, S., Wolman, A., and Bhogan, H.

(2010, April). Volley: Automated Data Placement for Geo-Distributed Cloud

Services. In NSDI (pp. 17-32).

[15] Radojevic, B., and Mario, Z. "Analysis of issues with load balancing

algorithms in hosted (cloud) environments." MIPRO, 2011 Proceedings of the

34th International Convention. IEEE. 2011.

[16] Letaifa, A. B., et al. "State of the Art and Research Challenges of new services

architecture technologies: Virtualization, SOA and Cloud

Computing."International Journal of Grid and Distributed Computing 3.4. 69-

88. 2010.

[17] Huang, Y., et al. "Cloud download: using cloud utilities to achieve high-quality

content distribution for unpopular videos." Proceedings of the 19th ACM

international conference on Multimedia. ACM. 2011.

[18] Reichman, A. "File storage costs less in the cloud than in-house."Forrester,

25th August, available at: http://www.forrester. com/FileStorage+ Costs+

Less+ In+ The+ Cloud+ Than+ InHouse/fulltext/-/E-RES57696. 2011.

[19] Dillon, T., Wu, C., and Chang, E. "Cloud computing: issues and challenges".

In Advanced Information Networking and Applications (AINA), 2010 24th

IEEE International Conference on (pp. 27-33). IEEE. 2010.

[20] Dinh, Hoang T., et al. "A survey of mobile cloud computing: architecture,

applications, and approaches." Wireless communications and mobile

computing 13.18: 1587-1611. 2013.

[21] de Oliveira, D., Baião, F. A., and Mattoso, M. "Towards a taxonomy for cloud

computing from an e-science perspective". In Cloud Computing (pp. 47-62).

Springer, London. 2010.

105

[22] Abadi, D. J. "Data Management in the Cloud: Limitations and Opportunities".

IEEE Data Eng. Bull., 32(1), 3-12. 2009.

[23] TechCrunch, “Dropbox Hits 275M Users And Launches New Business

Product To All” | TechCrunch." TechCrunch. N.p., n.d., Web. 30 Apr. 2014.

[24] Sevior, M., Fifield, T., and Katayama, N. "Belle Monte-Carlo production on

the Amazon EC2 cloud". In Journal of Physics: Conference Series (Vol. 219,

No. 1, p. 012003). IOP Publishing. 2010.

[25] Hamburger, Ellis. "Google Drive vs. Dropbox, SkyDrive, SugarSync, and

others: a cloud sync storage face-off." The Verge, 2012.

[26] Greenberg, Albert, et al. "The cost of a cloud: research problems in data center

networks." ACM SIGCOMM Computer Communication Review 39.1, 2008.

[27] Casas, P., Fischer, H. R., Suette, S., and Schatz, R. "A first look at quality of

experience in personal cloud storage services". In Communications Workshops

(ICC), 2013 IEEE International Conference on (pp. 733-737). IEEE. 2013.

[28] Baliga, J., Ayre, R. W., Hinton, K., and Tucker, R. "Green cloud computing:

Balancing energy in processing, storage, and transport".Proceedings of the

IEEE, 99(1), 149-167. 2011.

[29] Dory, T., Mejías, B., Van Roy, P., and Tran, N. L. "Measuring elasticity for

cloud databases". In CLOUD COMPUTING 2011, The Second International

Conference on Cloud Computing, GRIDs, and Virtualization (pp. 154-160).

2011.

[30] Benson, K., Dowsley, R., and Shacham, H. "Do you know where ymy cloud

files are?". In Proceedings of the 3rd ACM workshop on Cloud computing

security workshop (pp. 73-82). ACM. 2011

[31] Wee, S., and Liu, H. "Client-side load balancer using cloud". In Proceedings

of the 2010 ACM Symposium on Applied Computing (pp. 399-405). ACM.

2010.

[32] Zhang, C., De Sterck, H., Aboulnaga, A., Djambazian, H., and Sladek, R. "Case

study of scientific data processing on a cloud using hadoop". In High

performance computing systems and applications (pp. 400-415). Springer

Berlin Heidelberg. 2010.

106

[33] Wang, S. C., Yan, K. Q., Liao, W. P., and Wang, S. S. "Towards a load

balancing in a three-level cloud computing network". In Computer Science and

Information Technology (ICCSIT), 2010 3rd IEEE International Conference

on (Vol. 1, pp. 108-113). IEEE. 2010.

[34] Beloglazov, A., and Buyya, R. "Energy efficient resource management in

virtualized cloud data centers". In Proceedings of the 2010 10th IEEE/ACM

International Conference on Cluster, Cloud and Grid Computing (pp. 826-

831). IEEE Computer Society. 2010.

[35] Tseng, F. H., Chen, C. Y., Chou, L. D., and Chao, H. C. "Implement a reliable

and secure cloud distributed file system". In Intelligent Signal Processing and

Communications Systems (ISPACS), 2012 International Symposium on (pp.

227-232). IEEE. 2012.

[36] Modi, C., Patel, D., Borisaniya, B., Patel, A., and Rajarajan, M. "A survey on

security issues and solutions at different layers of Cloud computing". The

Journal of Supercomputing, 63(2), 561-592. 2013.

[37] Parekh, Disha H., and R. Sridaran. "An Analysis of Security Challenges in

Cloud Computing." IJACSA) International Journal of Advanced Computer

Science and Applications 4.1. 2013.

[38] Mao, H., Xiao, N., Shi, W., and Lu, Y. "Wukong: Toward a Cloud-Oriented

File Service for Mobile Devices". In Services Computing (SCC), 2010 IEEE

International Conference on (pp. 498-505). IEEE. 2010.

[39] Saranya, S. Mohana, and M. Vijayalakshmi. "Interactive mobile live video

learning system in cloud environment." Recent Trends in Information

Technology (ICRTIT), 2011 International Conference on. IEEE, 2011.

[40] Broberg, J., Buyya, R., and Tari, Z. "MetaCDN: Harnessing ‘Storage Clouds’

for high performance content delivery". Journal of Network and Computer

Applications, 32(5), 1012-1022. 2009.

[41] Grossman, R. L., Gu, Y., Sabala, M., and Zhang, W. "Compute and storage

clouds using wide area high performance networks". Future Generation

Computer Systems, 25(2), 179-183. 2009.

107

[42] Thakar, A., and Szalay, A. "Migrating a (large) science database to the cloud".

In Proceedings of the 19th ACM International Symposium on High

Performance Distributed Computing (pp. 430-434). ACM. 2010.

[43] Sun, Z., Shen, J., and Yong, J. "DeDu: Building a deduplication storage system

over cloud computing". In Computer Supported Cooperative Work in Design

(CSCWD), 2011 15th International Conference on (pp. 348-355). IEEE. 2011.

[44] Dong, B., Zheng, Q., Tian, F., Chao, K. M., Ma, R., and Anane, R. "An

optimized approach for storing and accessing small files on cloud storage".

Journal of Network and Computer Applications, 35(6), 1847-1862. 2012.

[45] Fesehaye, D., Malik, R., and Nahrstedt, K. "Scalable Distributed File System

for Cloud Computing". Technical report, University of Illinois at Urbana-

Champaign (UIUC), 2010.

[46] Randles, M., D. Lamb, D., and A. Taleb-Bendiab, “A Comparative Study into

Distributed Load Balancing Algorithms for Cloud Computing,” in Proc. IEEE

24th International Conference on Advanced Information Networking and

Applications Workshops (WAINA), Perth, Australia, 2010.

[47] Ananthanarayanan, R., Gupta, K., Pandey, P., Pucha, H., Sarkar, P., Shah, M.,

and Tewari, R. "Cloud analytics: Do I really need to reinvent the storage stack".

In Proceedings of the 2009 Workshop on Hot Topics in Cloud Computing

(HotCloud 09), San Diego, California. 2009.

[48] Biran, O., Corradi, A., Fanelli, M., Foschini, L., Nus, A., Raz, D., and Silvera,

E. "A stable network-aware vm placement for cloud systems". In Proceedings

of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (ccgrid 2012) (pp. 498-506). IEEE Computer Society. 2012.

[49] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., ...

and Zaharia, M. "A view of cloud computing". Communications of the ACM,

53(4), 50-58. 2010.

[50] Sotomayor, B., Montero, R. S., Llorente, I. M., and Foster, I. "Virtual

infrastructure management in private and hybrid clouds". Internet computing,

IEEE, 13(5), 14-22. 2009.

[51] Nishant, K., P. Sharma, V. Krishna, C. Gupta, KP. Singh, N. Nitin, and R.

Rastogi, “Load Balancing of Nodes in Cloud Using Ant Colony Optimization,”

108

In proc. 14th International Conference on Computer Modelling and Simulation

(UKSim), IEEE, pp: 3-8. 2012.

[52] Zhang, Z. and X. Zhang, “A load balancing mechanism based on ant colony

and complex network theory in open cloud computing federation,” In proc. 2nd

International Conference on. Industrial Mechatronics and Automation

(ICIMA), IEEE, Vol. 2, pp:240-243. 2010.

[53] Kolb, L., A. Thor, and E. Rahm, “Load Balancing for MapReduce based Entity

Resolution,” in proc. 28th International Conference on Data Engineering

(ICDE), IEEE, pp: 618-629, 2012.

[54] Gunarathne, T., T-L. Wu, J. Qiu, and G. Fox, “MapReduce in the Clouds for

Science,” in proc. 2nd International Conference on Cloud Computing

Technology and Science (CloudCom), IEEE, pp. 565-572,

November/December 2010.

[55] Ni, J., Y. Huang, Z. Luan, J. Zhang, and D. Qian, “Virtual machine mapping

policy based on load balancing in private cloud environment,” in proc.

International Conference on Cloud and Service Computing (CSC), IEEE, pp.

292-295, December 2011.

[56] T-Y., W-T. Lee, Y-S. Lin, Y-S. Lin, H-L. Chan, and J-S. Huang, “Dynamic

load balancing mechanism based on cloud storage” in proc. Computing,

Communications and Applications Conference (ComComAp), IEEE, pp. 102-

106, January 2012.

[57] Ren, X., R. Lin, and H. Zou, “A dynamic load balancing strategy for cloud

computing platform based on exponential smoothing forecast,” in proc.

International Conference on Cloud Computing and Intelligent Systems (CCIS),

IEEE, pp. 220-224, September 2011.

[58] Lee, R. and B. Jeng, “Load-balancing tactics in cloud,” in proc. International

Conference on Cyber-Enabled Distributed Computing and Knowledge

Discovery (CyberC), IEEE, pp. 447-454, October 2011.

[59] Al-Jaroodi, J. and N. Mohamed, “DDFTP: Dual-Direction FTP,” in proc. 11th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGrid), IEEE, pp. 504-503, May 2011.

109

[60] Mohamed, N. and J. Al-Jaroodi, “Delay-tolerant dynamic load balancing,” in

proc. 13th International Conference on High Performance Computing and

Communications (HPCC), pp:237-245, September, 2011.

[61] Mohamed, N., J. Al-Jaroodi, and A. Eid “A Dual-Direction Technique for Fast

File Downloads with Dynamic Load Balancing in the Cloud,” in The Journal

of Network and Computer Applications, Elsevier, Vol. 36, No. 4, pp. 1116-

1130, July 2013.

[62] Wang, S-C., K-Q. Yan, W-P. Liao, and S-S. Wang, “Towards a load balancing

in a three-level cloud computing network,” in proc. 3rd International

Conference on Computer Science and Information Technology (ICCSIT),

IEEE, Vol. 1, pp:108-113, July 2010.

[63] Sang, A., X. Wang, M. Madihian, and RD. Gitlin, “Coordinated load

balancing, handoff/cell site selection, and scheduling in multi-cell packet data

systems,” in Wireless Networks, Vol. 14, No. 1, pp: 103-120, January 2008.

[64] Zhang, Y., Liu, W., and Song, J. "A novel solution of distributed file storage

for cloud service". In Computer Software and Applications Conference

Workshops (COMPSACW), 2012 IEEE 36th Annual (pp. 26-31). IEEE. July

2012.

[65] Srivastava, S., Gupta, V., Yadav, R., and Kant, K. "Enhanced distributed

storage on the cloud". In Computer and Communication Technology (ICCCT),

2012 Third International Conference on (pp. 321-325). IEEE. November 2012.

[66] Celesti, A., Fazio, M., Villari, M., and Puliafito, A. "Adding long-term

availability, obfuscation, and encryption to multi-cloud storage systems".

Journal of Network and Computer Applications. 2014.

[67] Villari, M., Celesti, A., Tusa, F., and Puliafito, A. "Data reliability in multi-

provider cloud storage service with rrns". In Advances in Service-Oriented and

Cloud Computing (pp. 83-93). Springer Berlin Heidelberg. 2013.

[68] Villari, M., Celesti, A., Fazio, M., and Puliafito, A. "Evaluating a file

fragmentation system for multi-provider cloud storage". Scalable Computing:

Practice and Experience, 14(4). 2014.

110

[69] Abu-Libdeh, H., Princehouse, L., & Weatherspoon, H. “RACS: a case for

cloud storage diversity,” In Proceedings of the 1st ACM symposium on Cloud

computing, pp. 229-240. ACM. 2010.

[70] Bessani, A., Correia, M., Quaresma, B., André, F., & Sousa, P. "DepSky:

dependable and secure storage in a cloud-of-clouds". ACM Transactions on

Storage (TOS), 9(4), 12. 2013.

[71] Kotla, R., Alvisi, L., & Dahlin, M. SafeStore: a durable and practical storage

system. In USENIX Annual Technical Conference, pp. 129-142. 2007.

[72] Dobre, D., Viotti, P., & Vukolić, M. Hybris: Robust Hybrid Cloud Storage. In

Proceedings of the ACM Symposium on Cloud Computing, pp. 1-14. ACM.

2014.

[73] Grosu, D., A.T. Chronopoulos, and M. Leung, “Cooperative load balancing in

distributed systems,” in Concurrency and Computation: Practice and

Experience, Vol. 20, No. 16, pp. 1953-1976, 2008.

[74] Ranjan, R., L. Zhao, X. Wu, A. Liu, A. Quiroz, and M. Parashar, “Peerto- peer

cloud provisioning: Service discovery and load-balancing,” in Cloud

Computing - Principles, Systems and Applications, pp: 195-217, 2010.

[75] Al-Jaroodi, J., Mohamed, N., and Al Nuaimi, K. “An Efficient Fault-Tolerant

Algorithm for Distributed Cloud Services,” IEEE NCCA, December 2012.

[76] Wu, J., et al. “Cloud storage as the infrastructure of cloud computing,”

Intelligent Computing and Cognitive Informatics (ICICCI), 2010 International

Conference on. IEEE, 2010.

[77] Zeng, W., et al. “Research on cloud storage architecture and key technologies.”

Proceedings of the 2nd International Conference on Interaction Sciences:

Information Technology, Culture and Human, ACM, 2009.

[78] Li, Z., Wilson, C., Jiang, Z., Liu, Y., Zhao, B. Y., Jin, C., ... and Dai, Y.

"Efficient batched synchronization in dropbox-like cloud storage services". In

Middleware 2013 (pp. 307-327). Springer Berlin Heidelberg. 2013.

[79] Drago, I., Mellia, M., M Munafo, M., Sperotto, A., Sadre, R., and Pras, A.

"Inside dropbox: understanding personal cloud storage services". In

Proceedings of the 2012 ACM conference on Internet measurement conference

(pp. 481-494). ACM. November 2012.

111

[80] Mohamed, N. and J. Al-Jaroodi, “MidCloud: An Agent-Based Middleware for

Effective Utilization of Replicated Cloud Services,” in Software: Practice and

Experience, Wiley, 45(3): 343-363, March 2015.

[81] Mohamed, N., J. Al-Jaroodi, and H. Jiang, “DDOps: Dual-Direction

Operations for Load Balancing on Non-Dedicated Heterogeneous Distributed

Systems,” in Cluster Computing, Springer, Vol. 17, No. 2, pp. 503-528, June

2014. DOI: 10.1007/s10586-013-0294-3, 2014.

[82] Al-Jaroodi, J., N. Mohamed, and A. Eid “Dual Direction Big Data Download

and Analysis,” ACM SIGMETRICS Performance Evaluation Review (PER),

ACM, Vol. 41, Issue 4, pp. 98-101, March 2014.

112

List of Publications

[1] Al Nuaimi, Klaithem, et al. "A survey of load balancing in cloud computing:

Challenges and algorithms." Network Cloud Computing and Applications

(NCCA), 2012 Second Symposium on. IEEE, 2012.

[2] Al Nuaimi, Klaithem, et al. "A partial replication load balancing algorithm for

distributed Data as a Service (DaaS)." High Performance Computing and

Simulation (HPCS), 2013 International Conference on. IEEE, 2013. [ERA

Ranking: B]

[3] Al Nuaimi, Klaithem, et al. "A Novel Approach for Dual-Direction Load

Balancing and Storage Optimization in Cloud Services." Network Computing

and Applications (NCA), 2014 IEEE 13th International Symposium on. IEEE,

2014. [ERA Ranking: A]

[4] Al Nuaimi, Klaithem, et al. "Dual direction load balancing and partial

replication storage of cloud DaaS." Cloud Networking (CloudNet), 2014 IEEE

3rd International Conference on. IEEE, 2014.

[5] Al Nuaimi, Klaithem, et al. "Partial Storage Optimization and Load Control

Strategy of Cloud Data Centers." The Scientfic World Journal, communication

section, 2015. In Press. [Impact Factor: 1.219]

[6] Al Nuaimi, Klaithem, et al. "A Self-Optimized Storage for Distributed Data as

a Service", Convergence of Distributed Clouds, Grids and their Management

Track, The 24th IEEE International Conference on Enabling Technologies:

Infrastructure for Collaborative Enterprises. [ERA Ranking: B]

113

[7] Al Nuaimi, Klaithem, et al. " ssCloud: A Smart Storage for Distributed DaaS

on the Cloud". Cloud Computing (CLOUD), 2015 IEEE 8th International

Conference on IEEE, 2015. [ERA Ranking: B]

	United Arab Emirates University
	Scholarworks@UAEU
	Summer 5-1-2015

	A PARTIAL REPLICATION LOAD BALANCING TECHNIQUE FOR DISTRIBUTED DATA AS A SERVICE ON THE CLOUD
	Klaithem Saeed Al Nuaimi
	Recommended Citation

	Sample Doctorate Dissertation Template

		2017-09-25T14:17:35+0400
	Shrieen

