Bridgeless Step/Up Unity Power Factor Rectifier for High Voltage Applications

Aysha Kemadish Al-Kaabi

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/all_theses
Part of the Engineering Commons

Recommended Citation

Al-Kaabi, Aysha Kemadish, "Bridgeless Step/Up Unity Power Factor Rectifier for High Voltage Applications" (2012). Theses. 580.
https://scholarworks.uaeu.ac.ae/all_theses/580

Bridgeless Step/Up Unity Power Factor Rectifier for High Voltage Applications

By

Aysha Kemadish AL-Kaabi

4 thesis submitted to
United Arab Emirates University
In partial fulfillment of the requirements For the Degree of M.Sc. in
Electrical Engineering

Thesis Title
(Bridgeless Step/Up Unity Power Factor Rectifier for High
Voltage Applications)

Author
Aysha Kemadish AL-Kaabi

A thesis submitted to United Arab Emirates University In partial fulfillment of the requirements For the Degree of M.Sc. in

Electrical Engineering

Thesis Supervisor: Dr. Abbas Fardoun
External Examiner: Prof. Chris Bingham
Local Examiner: Dr. Hassan Hejase
Local Examiner: Dr. Ahmed Gaouda

DEPARTMENT OF ELECTRICAL ENGINEERING

 FACULTY OF ENGINEERINGUNIVERSITY OF UNITED ARAB EMIRATES, UAE
June, 2012

ABSTRACT

Power electronic devices with front- end rectifier are widely used in computer. communication and electric vehicle industries. These rectifiers are nonlinear in nature and generate current harmonics which pollute utility power. International harmonic standards (e.g., IEC 61000-3-2 and EN 61000-3-2) have been put in place to confine power pollution. These standards limit the current hammonics generated by loads to a specified threshold depending on load power and application. In other words, a high power factor is required.

Power supplies with active power factor correction (PFC) techniques are becoming necessary for many types of electronic equipment to meet the harmonic regulations and standards. However, classical PFC schemes have lower efficiency due to significant losses in the diode bridge. Several bridgeless topologies have been introduced to decrease diode bridge conduction losses. Most of the step-up PFC rectifiers utilize boost converter at their front end due to its natural PFC capability.
In this thesis, a new bridgeless PFC topology based on Cuk converter is presented. Similar to Cuk converter, the proposed topology offers several advantages in PFC applications, such as easy implementation of transformer isolation, inherent inrush current limitation during start-up and overload conditions, and lower electromagnetic interference (EMI). These advantages make the proposed topology a viable solution for high voltage DC loads such as electric vehicle battery charger.

Chapter III presents steady state analysis for the proposed rectifier. The rectifier is analyzed only during the positive half of the line frequency due to symmetry. Design procedure, simulation and measurements to verify the capability of the rectifier are presented in Chapter IV. Harmonics content and efficiency of the proposed rectifier versus conventional Cuk full bridge PFC rectifier are also presented.

Keywords: Full Bridge Rectifier, Bridgeless Rectifier, Passive and Active Power Factor Correction (PFC), Boost Rectifier. Buck Boost Rectifier, SEPIC Rectifier, CCM. DCM and EMI

LIST OF PUBLICATION

1. Aysha Kemadish AL-Kaabi, Abbas A. Fardoun and Esam H. Ismail, Bridgeless Step/Up Unity Power Factor Rectifier for High Voltage applications, The International Conference on Sustainable Systems and the Environment ISSE'1l, Sharjah, March 23-24, 2011.
2. Aysha Kemadish AL-Kaabi, Abbas A. Fardoun and Esam H. Ismail, Bridgeless Unity Power Factor Rectifier for High Voltage applications, The International Conference on renewable energy: Applications and Generation ICREGA'12, Al-Ain, March, 2012.
3. Aysha Kemadish AL-Kaabi, Abbas A. Fardoun and Esam H. Ismail, Bridgeless High-Voltage Battery-charger PFC Rectifier, Submitted to Elsevier Journal on Renewable Energy.

UNDERTAKING

I certify that research work titled "Bridgeless Step/Up Unity Power Factor Rectifier for High Voltage Applications" is my own work. The work has not been presented elsewhere for assessment. Where material has been used from other sources it has been properly acknowledged / referred.

ACKNOWLEDGEMENTS

First of all. I thank Allah who inspired me with health. power and patience to accomplish my thesis.

I would also like to express my deepest appreciation to my advisor. Dr. Abbas Fardoun, for his scientific guidance, wise counsel and sustained encouragement. I am grateful for his support, belief, patience, faimess and constructive feedback. Also, I want to express my sincere gratitude and admiration for Dr. Essam H. Ismail for his support and valuable feedback.

My special thanks go to all lab assistant engineers, whose support enabled me to reach my goal. particularly Eng. Ahmed and Eng. Adel.

Last but not least, my deepest gratitude and greatest admiration go to my friends and lovely family, including my parents, my children, my brothers and sisters, and all my relatives who have always motivated and encouraged me to reach my goal. I sincerely appreciate my special friend Elizabeth for her assistance. I especially want to express my gratitude for the invaluable support of my husband.

The financial support from the Emirates Foundation is deeply appreciated.

TABLE OF CONTENTS

Abstract ii
List of publication iii
Acknowledgement V
List of Figures ix
List of Tables xiii
Abbreviations xiv
Nomenclature XV
Chapter I: Introduction 1
1.1 Harmonic Standard Transitional Periods. 2
1.1.1: Standard Application 2
1.1.2: Classification and Limits 3
1.2 Power Factor Correction 5
1.2.1: Harmonics Line Current Reduction Techniques 6
1.2.1.1: Passive PFC 6
1.2.1.2: Active PFC 7
Chapter II: Literature Review 9
2.1 AC- DC Passive Rectifier 9
2.1.1: Full Bridge Rectifier without Filter 9
2.1.2: Full Bridge Rectifier with Filter 12
2.2 AC-DC Active PFC Rectifier 14
2.2.1: Full Bridge PFC Rectifier 14
2.2.2: \quad Bridgeless Rectifier 16
Chapter III: Modeling of Bridgeless DCM Cuk Rectifier 22
3.1 Principle of Operations 22
3.2 Analysis of the Proposed Cuk Converter 24
3.2.1: First Stage: $\left[\mathrm{t}_{\mathrm{o}}, \mathrm{t}_{1}\right]$ 25
3.2.2: Second Stage: $\left[t_{1}, t_{2}\right]$ 26
3.2.3: Third Stage: $\left[\mathrm{t}_{2}, \mathrm{t}_{3}\right]$ 28
3.2.4: Step 1: Steady State Analysis 30
3.2.4.1: Control Input Duty Cycle (D_{1}) 31
3.2.4.2: Inductor Currents Waveform 32
3.2.5: Step 2: Voltage Conversion Ratio M ($\mathrm{D}_{1} . \mathrm{K}$) and the Critical Conduction Parameter 35
3.2.5.1: Output Current 36
3.2.5.2: Input Current 37
3.2.5.3: \quad Voltage Conversion Ratio
$\mathrm{M}\left(\mathrm{D}_{1}, \mathrm{~K}\right)$ 38
3.2.5.4: Critical Conduction Parameter
(K $\mathrm{K}_{\text {crit }}$) 39
3.2.5.5: Large Signal Model 39
3.3 Stresses 40
Chapter IV: Design, Simulation and Measurements 42
4.1 Converter Parameters Selection 42
4.1.1: Inductors Design 43
4.1.2: Energy Transfer Capacitors Design 43
4.1.3: Output Capacitors Design 48
4.1.4: Proposed Rectifier Components 49
4.2 Simulations Results 50
4.3 Experimental Results 57
4.3.1: Experimental Results for the Capacitor
Voltages 59
4.3.2: Experimental Results for the Inductor Currents 60
4.4 Conventional Cuk Versus the Proposed Cuk Rectifier 62
Conclusion and Future work 64
References 65
Orcad Program 71

LIST OF FIGURES

Number Page
Fig 1.1 The effect of a nonlinear load on the AC line voltage 1
Fig 1.2 PFC effect on the input current: (a) Input current rectifier withoutfiltering. (b) Effect of the passive PFC on the input current rectifier,(c) Effect of the active PFC technique on the input current8
Fig 1.3 Schematic draw for the battery charger 8
Fig 2.1 Full bridge rectifier 10
Fig 2.2 Full bridge rectifier simulation results :(a) Input voltage and input current, (b) The output voltage, (c) Zoomed area of input current 10
Fig 2.3 Effect of the output capacitor on line current harmonics:
(a) Input current with reduction in the harmonics,
(b) Output voltage 11
Fig 2.4 IEC limits and simulated input current harmonics 11
Fig 2.5 Diode bridge rectifier with AC-side inductor 12
Fig 2.6 Diode bridge rectifier with AC-side inductor simulation results:
(a) Input voltage and input current, (b) The zoomed area of input
(b) current, (c) Output voltage 13
Fig 2.7 Simulated input current harmonics with respect to the IEC limits 13
Fig 2.8 (a) Conventional Cuk PFC rectifier, (b) On state, (c) Off state 16
Fig 2.9 Conventional Bridgeless Boost rectifier 18
Fig 2.10 Start-up in-rush current of Conventional Bridgeless Boost rectifier 18
Fig 211 Start-up in-rush current of Conventional Bridgeless Cuk Rectifier 19
Fig 2.12 Bridgeless Boost rectifier 19
Fig 2.13 Bridgeless Buck-Boost PFC rectifier 20
Fig 2.14 Bridgeless SEPIC rectifier 21
Fig 3.1 (a) Proposed bridgeless Cuk rectifier, (b) Positive half line
cycle. (c) Negative half line cycle. 23
Fig 3.2 First stage of operation 26
Fig 3.3 Second stage of operation 27
Fig 3.4 Third stage of operation 28
Fig 3.5 Inductor voltages waveform for proposed DCM Cuk rectifier 30
Fig 3.6 Inductors currents' waveform for proposed DCM Cuk rectifier 34
Fig 3.7 Connection of the output capacitor $C_{o 1}$ to adjacent components 36
Fig 3.8 Large signal model of the general averaged Equivalent circuit in a converter operating in the DCM 40
Fig 3.9 The semiconductor switch and the diode voltage stresses 41
Fig 4.1 Effect of the energy capacitors on the input current: (a) The inputcurrent is distorted, (b) The input current and input voltageare out of phase,(c) Input current and input voltage are in-phase46
Fig 4.2 Effect of the energy capacitors on their voltage: (a) V_{Cl} and$\mathrm{V}_{\mathrm{C} 2}$ with $600 \mathrm{~V}_{\text {peak, }}$ (b) $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathrm{C} 2}$ with $230 \mathrm{~V}_{\text {peak. }}$ (c) $\mathrm{V}_{\mathrm{C} 1}$ and$\mathrm{V}_{\mathrm{C} 2}$ with $250 \mathrm{~V}_{\text {peak }}$47
Fig 4.3 Influence of the output capacitors on the output voltage ripple:
(a) $\Delta \mathrm{V}_{0}=15 \mathrm{~V}$. (b) $\Delta \mathrm{V}_{\mathrm{o}}=5 \mathrm{~V}$, (c) $\Delta \mathrm{V}_{\mathrm{o}}=1.5 \mathrm{~V}$. 49
Fig 4.4 Simulation results for the proposed rectifier: (a) Input current and voltage, (b) Output current, (c) Output voltage 50
Fig 4.5 The switching signals over the line cycle: (a) Q_{1}, (b) $\mathrm{Q}_{2,}$ (c) D_{ol},
(d) $\mathrm{D}_{\mathrm{o} 2}$ 51
Fig 4.6 Q_{1} and Do_{1} over the switching cycle 52
Fig 4.7 The energy capacitors voltage over the line cycle: (a) V_{CI} and
$\mathrm{V}_{\mathrm{C} 2}$, (b) Input and output voltage 53
Fig 4.8 The output capacitor voltages ($\mathrm{V}_{\mathrm{Col}}$ and V_{CO}) over the line cycle. 53
Fig 4.9 Inductor currents over the line cycle: (a) $\mathrm{I}_{\mathrm{Lo} 1}$, (b) $\mathrm{I}_{\mathrm{Lo} 2}$ 54
Fig 4.10 Three inductor currents over the switching cycle 55
Fig 4.11 The energy capacitor $\left(C_{2}\right)$ current over the switching cycle:
(a) Gating and diode signal, (b) $\mathrm{I}_{\mathrm{C} 2}$ 56
Fig 4.12 Comparison between IEC limits and simulated input current harmonics of the proposed rectifier 56
Fig 4.13 Experimental results for the proposed rectifier: (a) Input
current and voltage, (b) Output and input voltage 57
Fig 4.14 The switch-gating signal and diodes voltage over the
line cycle: (a) V_{QI} and $\mathrm{V}_{\mathrm{Q} 2}$, (b) $\mathrm{V}_{\mathrm{Dol}}$ and $\mathrm{V}_{\mathrm{Do} 2}$ 58
Fig 4.15 Input voltage and Gating signal $\mathrm{V}_{\mathrm{Q} 1}$. 59

Fig 4.16 The energy capacitor voltages and output capacitor voltages over the line cycle: (a) $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathrm{C} 2}$, (b) $\mathrm{V}_{\mathrm{Col}}$ and $\mathrm{V}_{\mathrm{Co2}} \ldots \ldots60$

Fig 4.17 Inductor currents over the line cycle: (a) $\mathrm{I}_{\mathrm{LO} 1}$ and $\mathrm{I}_{\mathrm{LO} 2}$, and Inductor currents over the switching cycle: (b) $I_{L 1}$ and $I_{\text {LO2 . (c) }} I_{\text {LoI }}$ and $\mathrm{I}_{\text {Lo2 }}$. .61

Fig 4.18 Comparison between IEC limits and simulated input current harmonics of the conventional Cuk rectifier. .62

LIST OF TABLES

Number Page
Table 1.1 Harmonic classes with their respected applications. 3
Table 1.2 Limits for class A equipment 4
Table 1.3 Limits for class D equipment 5
Table 3.1 Current and voltage stresses 41
Table 4.1 Specifications of the prototype 42
Table 4.2 Effect of the resonant frequency on the energy transfer
capacitor values 44
Table 4.3 The relationship between the output capacitors and the Output voltage ripples 48
Table 4.4 List of the components used in the proposed rectifier 49
Table 4.5 Comparison between conventional and bridgeless Cuk rectifier in DCM mode 63

ABBREVIATIONS

AC: Alternating Current
BJT: Bipolar Junction Transistors
CCM: Contınuous Conduction Mode
[)CM: Discontinuous Conduction Mode
CENELEC: European Committee for Electro-technical Standardization
DC: Direct current
IEC: International Electro-technical Commission
IGBT: Insulated Gate Bipolar Transistor
LC: Inductive-Capacitive
MOSFET: Metal Oxide Semiconductor Field Effect Transistor
PFC: Power Factor Correction
SCRs: Silicon-Controlled Rectifiers
RMS: Root Mean Square
THD: Total Harmonics Distortion
PFP: Power Factor Pre-regulator
CMI: Common Mode

NOMENCLATURE

C_{o}	Output capacitance
D_{1}	Duty cycle of the switch in position 1
D_{2}	Duty cycle of the switch in position 2
D_{o}	Output diode
f_{L}	Line frequency
f_{r}	Resonant frequency
f_{s}	Switching frequency
i_{c}	Capacitor current
$\left\langle i_{C}(t)\right\rangle_{\text {T }}$	Capacitor charge balance
$I_{\text {D.Bridge_rms }}$	Diode bridge rins current
$\Delta I_{i n}$	Input current ripple
$i_{\text {in }}$	Rectified input current
i_{L}, I_{L}	Inductance current, peak of the inductance current
I_{0}	Output current
i_{Q}	Switch current
$I_{\text {Q ph }}$	Switch current peak
\boldsymbol{K}	Conduction parameter (unit-less)
$K_{\text {criil }}$	Critical Conduction Parameter
\boldsymbol{K}	Kilo
$L_{e q}$	Equivalent inductance
m	Milli

\boldsymbol{M}	Voltage conversion ratio
$\boldsymbol{P}_{\text {bridge }}$	Power dissipation in the bridge rectifier
$\boldsymbol{P}_{\text {out }}$	Output power
$\boldsymbol{P}_{\text {in }}$	Input power
\boldsymbol{R}	Resistive load
\boldsymbol{R}_{e}	Emulated input resistance
\boldsymbol{T}_{L}	Line voltage cycle
$\boldsymbol{T}_{\text {on }}$	On time duration of the switch
$\boldsymbol{T}_{\text {off }}$	Switching time cycle
\boldsymbol{T}_{s}	Rectified line voltage
$v_{a c}$	Forward voltage
V_{f}	Inductor volt-second balance of the switch
$\left\langle V_{L}(t)>_{T s}\right.$	Peak amplitude of the rectified line voltage
V_{m}	Output voltage
V_{o}	Output voltage ripple
ΔV_{o}	RMS value of the rectified line voltage
$V_{r m s}$	Micro
$\boldsymbol{\mu}$	

CHAPTER 1

Introduction

The dramatic growth of electronic equipment usage in recent years has resulted in a greater need to ensure that the line current harmonic content of any equipment connected to the AC mains meets regulatory standards .Nowadays, most electronic equipment, including laptops, televisions and cellular phones (nonlinear load), need a rectifier circuit. which produces a non-sinusoidal line current. As illustrated in Fig.1.I these nonlinear load currents have a lot of harmonics that pollute the AC line voltage by distorting the sinusoidal input voltage. Consequently, thermal stress of the equipment would increase due to greater losses caused by non-sinusoidal waveform. Therefore, the system efficiency and power factor are reduced, and the harmonic content in the AC line current is increased, which has adverse effects like the heating of transformer and induction motors, their life span reduction, the degradation of system voltage wave-form, and the malfunctioning of certain power system protection elements [1-3].

Fig. 1. I: The effect of a nonlinear load on the AC line voltage.

To address the above problem a lot of attention is paid to harmonics generated by rectifiers due to the wide spread use of electronic equipment that $u_{s} e$ front end rectifiers. Therefore, the need for a high efficient, high power factor and low harmonic rectifier is required to minimize harmonic levels. Standards have been put in place to limit input current harmonics. High quality rectifiers should comply with the harmonics intemational standard limit for power equipment. Power equipment would include industrial motor drives, electrical vehicle battery chargers. electronic ballasts` fluorescent lamps, and office equipment power supplies.

1.1 Harmonic Standard Transitional Periods

The EN 50006 was established in 1975 as the first harmonic standard by the European Committee for Electro-technical Standardization (CENELEC). Due to the decadence of its power quality the EN 50006 was adopted by fourteen European countries. In 1982 the International Electro-technical Commission (IEC) dictated IEC 555-2 as a European standard. Then in 1991 CENELEC approved IEC 555-2 to set the levels for harmonic currents injected by loads back on to the network. In April of 1995, the IEC 555-2 was replaced by IEC 1000-3-2 after its revision. The IEC 1000-3-2 has since been adopted as the EN 61000-3-2 European Standard, which defines the practical rules and provides a clearer definition of equipment classes. All older versions have expired since February 2009 besides EN 61000-3-2: 2006, which introduces minor changes and clarifications of the requirements for the measurement of harmonics and their limits[4-6].

1.1.1 Standard Application

All electrical and electronic equipment that is connected to the low-voltage AC public mains up to the 16 A maximum input current must comply with EN 61000-3-2 as of January 2001.

This standard does not apply to (and has no limits for):

- Non-public networks
- Non lighting equipment with rated power of 75 W or less
- Equipment for rated voltages less than 230 VAC (limit not yet been considered)
- Arc welding equipment intended for professional use
- Professional equipment (not intended for sale to the general public) with rated power greater than 1 kW
- Heating elements with symmetrical control methods and input power less than or equal to 200 W
- Independent dimmer for incandescent lamps with rated power less than or equal to 1 kW . [6]

1.1.2 Classification and Limits

There are four different classes in the EN 61000-3-2, which have different limit values:

Table 1.1: Harmonic classes with their respected applications [6].

Class	application
A	- 3-phase balanced equipment, - Household appliances except class D equipment, - Tools except portable tools, - Incandescent lamps dimmers, - Audio equipment, - All other equipment except that stated in class A, B, C or D.
B	- Portable tools, - Arc welding equipment.
C	- Lighting equipment.
D	- PC, - PC monitors, - Radio,

	- TV receivers,
	- Electrical vehicles battery charger,
	- Equipment with input power $\mathrm{P} \leq 600 \mathrm{~W}$.

The limits for class D equipment are shown in Table 1.3 as a power related current (mA / W) with a maximum permissible value given in Table 1.2.

Table 1.2: Limits for class A equipment [6].

Harmonic order n	Maximum permissible Harmonic current A	
Odd harmonics		
3	2.30	
5	1.14	
7	0.77	
9	0.40	
11	0.33	
13	0.21	
$15 \leq \mathrm{n} \leq 39$	$0.15 \cdot \frac{15}{n}$	
2	Even harmonics	
4		1.08
6	0.43	
$18 \leq n \leq 40$		0.30

Table 1.3: Limits for class D equipment [6].

Harmonic order	Maximum permissible harmonic current per watt mA / W	Maximum permissible harmonic current A
3	3.4	2.30
5	1.9	1.14
7	1.0	0.77
9	0.5	0.40
11	0.35	0.33
$18 \leq \mathrm{n} \leq 40$	$\frac{3.85}{n}$	As in Class A

Among the class D equipment is the electrical vehicles' battery charger, which like other nonlinear equipment, suffers from high harmonics. In order to reduce the harmonics and meet the class D limits, the power factor must be improved. The definition of the power factor and some related facts are explained below. Furthermore, the techniques used to improve the power factor and simultaneously reduce the line current harmonics are discussed in general.

1.2 Power Factor Correction

The power factor is defined as the ratio of the real power measured in watts to the apparent power, which is the product of the RMS voltage multiplied by the RMS current as shown in the following relation, [1]

$$
\text { powerfactor }=\frac{(\text { averagepower })}{(\text { rmsvoltage })(\text { rmscurrent })}(1.1)
$$

Ideally, with a linear resistive load, the power factor is unity regardless of the harmonic content of the fundamental voltage. On the other hand, the nonlinear loads draw more RMS current from the source because of their harmonic content, which increases the losses. However, historically it has been defined in terms of a phase-
shift between the voltage and current waveforms, where I_{1} is the peak of the fundamental current and the denominator is the total RMS value of the current:

$$
P F=\frac{P}{S}=\left(\frac{\frac{l_{1}}{\sqrt{2}}}{\sqrt{I_{0}^{2}+\sum_{n=1}^{\infty} \frac{l_{n}^{2}}{2}}}\right)\left(\cos \left(\varphi_{1}-\theta_{1}\right)\right) n=3,5,7 \ldots
$$

Furthermore, the difference in phases between the fundamental components of the line voltage and line current is described by $\left(\varphi_{1}-\theta_{1}\right)$, assuming that the line voltage is not distorted. As the losses increase, the reactive power increases and the power factor decreases, which increases the total harmonic distortion. The Total Harmonics Distortion (THD) measures the ratio of the total RMS value of the harmonic currents to the RMS value of the line frequency component.

$$
\begin{equation*}
T H D=\frac{\sqrt{\sum_{n=2}^{\infty} I_{n, r m s}^{2}}}{I_{1, r m s}} \quad n=3,5,7 \ldots \tag{1.3}
\end{equation*}
$$

The reactive power can be reduced by adding a filter to compensate for the low power factor. In the past a capacitor bank was used, but it cannot work with systems that have high harmonic content because the overheating increases stress that result in premature failure. Two methods can be used to improve the power factor in non-linear loads: passive or active filtering [1].

1.2.1 Harmonics Line Current Reduction Techniques

Different techniques can be used to improve the power factor and to conform to the international line harmonics' regulations. The most commonly used techniques are passive and active approach.

1.2.1.1 Passive PFC

Passive Power Factor Correction (PFC) is an expression used for harmonic line current reduction using passive components. It is considered to be a simple way to control the harmonic current where only passive components (inductor and capacitor)
filtenng is used. This filter reduces the hannonic current, which means that the nonlinear device becomes more linear. Fig. 1.2a shows the input rectifier current without a filter where the input current is only limited by the small input impedance. Fig. 1.2b shows that passive technique introduces high impedance for the harmonic, thus smoothing the input current for the electronic equipments. The input current with passive harmonic line current reduction shows a greater reduction in the input current and its harmonic content than the input current without harmonic line current reduction.

The disadvantages of this approach include high current and voltage stresses, high cost and bulky when using large-value, high-current inductors and capacitors. Furthermore, the input current still contains harmonics. [5-8]

1.2.1.2 Active PFC

An active Power Factor Correction (PFC) is a power electronic system that controls the amount of power drawn by a load in order to obtain a power factor as close as possible to unity by using active switching. Bipolar junction transistors (BJT), silicon-controlled rectifiers (SCRs), and Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) are examples of active devices. The active PFC controls the input current of the load such that the current waveform is proportional to the voltage waveform. In order to make the load appear purely resistive, meaning the apparent power equals the real power; the power factor must be as close to unity as possible. In other words, the voltage and current are in phase, and the reactive power consumption is zero as shown in Fig.1.2c. By comparing the three figures (1.2a, 1.2b and 1.2c). active PFC circuitry gives the best performance [6]. In addition, the active power factor correction (PFC) has several advantages. Active switching makes the load behave like a pure resistor or unity power factor, which means it reduces the harmonics in the input line current. The dominant loss in the active approach is the conduction losses of the bridge rectifier. Some types of active PFC include Boost, Buck, Buck-Boost, Single-Ended Primary Inductance Converter (SEPIC), and Cuk. It should be noted that the active power factor correctors can be single-stage or multistage [5-11].

Ultimately, the aim of PFC is to shape the input phase currents so that they are in phase with the input phase voltages.

Fig.1.2: PFC effect on the input current: (a)Input current rectifier without filtering, (b)Effect of the passive PFC on the input current rectifier,(c) Effect of the active PFC technique on the input current.

Aim of this Thesis:

The main goal of this thesis is to design a step-up high efficiency AC-DC rectifier (high voltage battery charger) with isolation capability for low power application, e.g., Electrical Vehicle. The rectifier is designed to meet EN 61000-3-2requirements. The new rectifier is based on conventional Cuk topology with higher efficiency, a low starting current and low EMI due to it is bridgeless configuration.

This work is intended for high voltage $(250-300 \mathrm{~V})$ electric cart. The battery will be charged from AC line. The line harmonic must meet EN 61000-3-2. Also this application requires low EMI emission. Typically, a switch is added in between the load and the AC line for safety reasons. Low inherent in-rush current is desired to minimize the switch size.

Fig. 1.3: Schematic draw for the battery charger.

CHAPTER 2

Literature Review

Generally, in most power electronics systems, the AC line voltage is rectified to convert $A C$ to $D C$ power as a first step. Then another DC-DC converter stage is used to regulate the output voltage in order to meet the load requirements. The major problem with a power rectifier is harmonic pollution. Therefore, PFC converters are used for AC-DC rectifiers to satisfy the Intemational Harmonic Standards, which require the harmonic content of the line current to stay below certain limits, as explained in chapter 1. In this chapter different types of rectifiers are discussed [5-11]. Above, the active PFC and passive PFC are introduced as methods used to improve the power factor, but because of their respective features, they can only improve the power factor with some drawbacks.

2.1 AC- DC Passive Rectifier

The passive PFC can achieve a high power factor without losses but places stress on the semiconductor components. Additionally, the volume of the rectification circuitry is greater so the system cost increases [5-8]. Next, the full bridge rectifier without and with a filter are introduced.

2.1.1 Full Bridge Rectifier without Filter

The full bridge rectifier or diode bridge rectifier, shown in Fig. 2.1, is the earliest rectifier used to compensate for the line current harmonics. It is used as a peak detection rectifier where, at the peak of the voltage waveform, short duration current pulses with considerable harmonics occur. This is caused by the short conduction interval of the rectifier diodes, as shown in Fig. 2.2(a). The output capacitor value has a considerable effect on the line current harmonics, as displayed in Fig. 2.3(a), which verifies that by reducing the capacity of the capacitor, the harmonic content in the line
current can be reduced without adding additional components. However, the output voltage ripple is increased as shown in Fig. 2.3(b), compared with the output voltage ripple in Fig. 2.2(a), where the diode conduction interval is wider than the Fig. 2.3(b).

Fig.2.1: Full bridge rectifier.

Fig.2.2: Full bridge rectifier simulation results:(a) Input voltage and input current, (b) The output voltage,(c) Zoomed area of input current.

Fig.2.3: Effect of the output capacitor on line current harmonics: (a) Input current with reduction in the harmonics, and (b) Output voltage.

Fig 2.4: IEC limits and simulated input current harmonics.
The drawbacks of the full bridge rectifier include high harmonic content in the line current, a low power factor and a high THD (149%). The comparison between the harmonic content of the full bridge rectifier and the IEC limits for class D is shown in Fig. 2.4. As a consequence of the full bridge rectifiers' low efficiency, the user should install high voltage device, which are both bulky and costly. However, with a rectifier
nearly having a unity power factor, the available DC load power is almost twice the available power of the peak detection rectifier. Nowadays, employing high quality rectifiers in commercial systems has high priority [1].

2.1.2 Full Bridge Rectifier with Filter

The harmonic content of the line current degrades the efficiency of the peak detection rectifier. Therefore, the full bridge rectifier with a filter is used to compensate for any distortion. One way is to add an inductor in series with the line voltage at the AC side of the diode bridge, as shown in Fig.2.5. By this method the power factor is slightly improved. The input current, input voltage and output voltage are each shown in Fig.2.6. The harmonics content in the line current is reduced, as shown in Fig.2.6 (b). The harmonic of the line current are slightly reduced, as shown in Fig.2.7, and the THD is 51.7%. However, the DC output voltage suffers from the ripple, which decreases the rectifier efficiency [1].

Fig.2.5: Diode bridge rectifier with AC-side inductor.

Fig.2.6: Diode bridge rectifier with AC-side inductor simulation results: (a) Input voltage and input current, (b) The zoomed area of input current, and (c) Output voltage.

Fig.2.7: Simulated input current harmonics with respect to the IEC limits.

One of the methods used to compensate for the drawbacks of the passive approach is to use an active PFC rectifier.

2.2 AC-DC Active PFC Rectifier

The active PFC employed in a low voltage application achieves a unity power factor. However, it produces high conduction and switching losses in heavy loads [8]. The bridge and bridgeless rectifiers with active PFC circuits are introduced in the following sections. They are used to enhance the overall performance of the rectifier circuit in contrast to the passive approach [12-15].

2.2.1 Full Bridge PFC Rectifier

Full Bridge rectifiers have relatively low efficiency due to the number of silicon components in the current path of each stage [16-25]. One well known bridge rectifier is the conventional Cuk rectifier, where the current flows through three power semiconductor switches during each switching cycle. During the switch on-time, the current flows through two rectifier bridge diodes and the power switch, as shown in Fig. 2.8(b). while it flows through two rectifier bridge diodes and the output diode (D_{0}) during the switch off-time, as shown in Fig.2.8(c). The forward voltage drop across the bridge diode causes significant conduction losses, resulting in more severe themal stresses. Therefore, it is suitable for a low power application. The RMS current flowing through each input diode during line period is

$$
\begin{equation*}
I_{D_{\text {Bridge_rms }}}=\frac{P_{\text {out }}}{\sqrt{2} \eta V_{\text {ac_rms }}} \tag{2.1}
\end{equation*}
$$

The power dissipation in the bridge rectifier is given by

$$
\begin{equation*}
P_{\text {bridge }}=4 V_{f} I_{D_{-} B r i d g e _r m s}=\frac{4 V_{f} P_{\text {out }}}{V_{\text {ac_rms }}}, \tag{2.2}
\end{equation*}
$$

where V_{f} is the forward voltage.

For example, if V_{f} is 1 V and $\mathrm{V}_{\mathrm{ac}}=80 \mathrm{~V}_{\mathrm{rms}}$, then the power dissipation in the bridge rectifier is

$$
\begin{equation*}
P_{\text {bridge }}=3.5 \% P_{i n} \tag{2.3}
\end{equation*}
$$

Eq. (2.3) shows that the power dissipation in the bridge rectifier consumes about 3.5% of the total input power.

(a)

(b)

Fig.2.8: (a) Conventional Cuk PFC rectifier: (b) On state, and (c) Off state.

Therefore, the bridgeless PFC circuit combines the rectifier circuit with the PFC circuit. This combination decreases the conduction losses by reducing the number of semiconductor components in the line current path. Moreover, it increases efficiency, reduces costs, and enables simplicity and high performance. As a result it has gained popularity as a high-efficiency $A C-D C$ rectifier compared to the conventional PFC with either half or full bridge rectifier [26-35].

2.2.2 Bridgeless Rectifier

Ideally, the bridgeless PFC rectifier is more efficient than the conventional bridge rectifier. Considerable research has been directed towards maximizing the efficiency of the bridgeless rectifier such as in [32]. The control technique is used to sense both the voltage and current on the AC side of the bridgeless PFC rectifier. Using this technique high efficiency is achieved, the power factor correction function is improved and the circuit noise is controlled. Furthermore, the THD is reduced by eliminating the current harmonics caused by the input voltage [38]. In addition, since the bridgeless PFC rectifier has fewer switching devices than the full bridge rectifier in the current path, it results in lower conduction losses, higher efficiency and cost savings. However, bridgeless rectifier emits high common mode (CM) electromagnetic interference (EMI) noise due to the pulsating of the output voltage in
the ground [35]. There are several bridgeless topologies that have been propo ${ }_{s}{ }_{s}{ }_{s}$ uch $\mathrm{a}^{\text {s }} \mathrm{Boo}^{\text {st }}$. Buck-Boost. Single-Ended Primary Inductance Converter (SEPIC), and conventional Cuk rectifier among others [36-58]. All of these rectifiers can be $u_{s} e d$ in either DiScontinuous Conduction Mode (DCM) or Continuous Conduction Mode (CCM). The rectifier can operate at a fixed duty cycle in the DCM to correct the input power factor. but in CCM it requires a control circuit [56].

The bridgeless PFC Boost rectifier is the dominant topology because of its low cost and high performance in terms of efficiency and simplicity [36-41]. That is why it is so widely used. The input current of the DCM Boost rectifier is discontinuous, which requires an extra passive filter to shape the input current toward a sinusoidal waveform. But in the case of SEPIC and Cuk rectifiers, the input current is continuous due to the existence of two inductors in each rectifier.

The DCM Boost rectifier has shown in Fig. 2.9 has a number of advantages, such as an inherent PFC function, simple controllability, soft turm-on of the main switch, and reduced diode reversed-recovery losses. However, the major drawbacks of the bridgeless Boost rectifier include a higher DC output voltage than the peak input voltage, a difficult implementation of input-output isolation, a lack of current limitation during the overload conditions, high switching losses and a high start-up in-rush current. The high start-up in-rush current is considered a serious drawback in the Boost rectifier, which requires a huge switch as shown in Fig. 2.10. In addition, a more robust input filter is required to control the high peak ripple currents and voltages. This increases the overall weight and cost of the rectifier. On the other hand, the Cuk rectifier reduces the in-rush current. This is because the input inductor is connected to the energy transfer capacitor instead of directly to the output bulk capacitor as in the boost converter [40]. The in-rush current during start-up for the Cuk rectifier is shown in Fig. 2.11[55].

The bridgeless Boost rectifier with coupled inductor technique and two additional diodes as shown in Fig. 2.12 reduces the conduction losses. It also alleviates the reverse-recovery problem. Furthermore, it achieves zero-current turnoff of the output diode and the reverse-recovery currents of the additional diodes are slowed down to reduce the diode reverse-recovery losses [41].

Fig.2.9: Conventional Bridgeless Boost rectifier.

Fig. 2.10: Start-up in-rush current of Conventional Bridgeless Boost rectifier.

Fig. 2.11: Start-up in-rush current of Conventional Bridgeless Cuk rectifier.

Fig. 2.12: Bridgeless Boost rectifier.

One of the possible solutions used to reduce the conduction losses is the bridgeless Buck-Boost PFC rectifier [42-43]. Bridgeless Buck-Boost PFC rectifier shown in Fig. 2.13 improves the efficiency and is suitable for use in the wide input voltage range. Also, the conduction semiconductor components are reduced but still higher than the Cuk rectifier, where there are three switching devices in the current
path during every T_{s} period. The maximum voltage stress is always lower than that of the Boost PFC rectifier. Furthermore, it avoids the in-rush current problem that occurs in the Boost PFC at start-up [43]. But it requires an isolated gate driver like Buck rectifier [44-45].

Fig.2.13: Bridgeless Buck-Boost PFC rectifier.

Two recent bridgeless PFC rectifiers, the SEPIC rectifier and the bridgeless PFC Cuk rectifier, are presented [46-58]. The two rectifiers are suitable for step-up / step-down application and reduce the conduction losses and thermal stresses. These improvements are shown in terms of higher circuit efficiency [52], lower cost, considerable size due to coupled inductors, and reduction in the power switch current stress. Furthermore, they offer several advantages unlike the Boost converter in the PFC applications. These advantages include easy implementation of transformer isolation, inherent in-rush current limitations during the startup and overload conditions. lower ripple on the input current and less electromagnetic interference (EMI). However, the SEPIC rectifier shown in Fig. 2.14 suffers from high output ripple because of the discontinuous output current similar to the Boost rectifier [35]. In addition, it requires an additional gate-drive transformer [8] and is intended for low voltage applications but the circuit in this paper is intended for high voltage
applications, so the Bridgeless Cuk step-up rectifier is used. It has a lower conduction loss than the conventional Cuk, which is shown in Fig. 2.8, due to the reduction of silicon switches in the current path. Also, the output current is continuous unlike the SEPIC rectifier due to replacing the diode $\left(\mathrm{D}_{1}\right)$ with an inductor $\left(\mathrm{L}_{01}\right)$ [51-57].

Fig.2.14: Bridgeless SEPIC rectifier.

CHAPTER 3

Modeling of Bridgeless DCM Cuk Rectifier

The proposed bridgeless PFC rectifier shown in Fig. 3.1 which is based on Cuk topology offers several advantages, such as inherent in-rush current limitation during start-up and overload condition because of its Cuk configuration. Other advantages include low EMI emission due to its input-output filter and higher efficiency as a result of the bridgeless design. In addition, the rectifier reduces the complexity of the controller so that one control signal is required. Also, it reduces the conduction loss as well as the thermal stress on the semiconductor device because there is one semiconductor in the current path.

3.1 Principle of Operations

The DCM bridgeless PFC Cuk rectifier in Fig. 3.1(a) is formed by connecting two DC-DC Cuk converters, one for each half-line cycle of the input voltage. During the positive half-line cycle, the elements $L_{1}, Q_{1}, C_{1}, C_{2}, L_{01}, L_{02}, C_{01}, C_{02}$ and D_{01} are conducting as shown in Fig. 3.1(b). On the other hand, the current flows through L_{1}, $\mathrm{Q}_{2}, \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{~L}_{01}, \mathrm{~L}_{02}, \mathrm{C}_{01}, \mathrm{C}_{02}$ and D_{02} during the negative half-line cycle as shown in Fig.3.1(c). The capacitor voltages over the positive and negative cycle are shown in Fig. 3.1 (b) \& (c) and given by:

$$
\begin{align*}
& V_{C 1}(t)=v_{a c}+V_{o 1} \rightarrow\left(0 \leq t \leq T_{L}\right) \tag{3.1}\\
& V_{C 2}(t)=-v_{a c}+V_{o 2} \rightarrow\left(0 \leq t \leq T_{L}\right)
\end{align*}
$$

where T_{L} represents the cycle of the line voltage.
Note that the capacitors are fully charged by input voltage and biased by half the output voltage. (Note: The capacitor voltages are always positive for gain >2).

Fig.3.1: (a) Proposed bridgeless Cuk rectifier. (b) Positive half-line cycle. and (c) Negative half-line cycle.

3.2 Analysis of the Proposed Cuk Converter

The same techniques and approximations for the steady-state analysis of the continuous conduction mode with a few modifications may be applied to the discontinuous conduction mode.

1. Inductor volt-second balance: The DC component of the voltage applied to an inductor must be zero.

$$
\begin{equation*}
<v_{L}>=\frac{1}{T_{s}} \int_{0}^{T_{s}} v_{L}(t) d t=0 \tag{3.2}
\end{equation*}
$$

2. Capacitor charge balance: The dc component of current applied to a capacitor must be zero.

$$
\begin{equation*}
\left.<i_{C}\right\rangle=\frac{1}{T_{s}} \int_{0}^{T_{s}} i_{C}(t) d t=0 \tag{3.3}
\end{equation*}
$$

These assumptions must be held for any circuit that operates in steady state, regardless of the operating mode.
3. Input voltage is sinusoidal.
4. The input voltage is considered constant over one switching cycle $\left(T_{s}\right)$ since the switching frequency $\left(f_{s}\right)$ is much higher than the line frequency $\left(f_{L}\right)$.
5. Output capacitors C_{01} and C_{02} are large enough such that the voltage across them is constant over the line cycle.
6. Energy transfer capacitors C_{1} and C_{2} voltages are constant over the switching cycle and follow the input voltage profile within a line cycle.
7. All components are ideal; thus, there are no losses.

Due to the symmetry of the operations, the positive half-line cycle is analyzed through the three distinct stages as shown in Fig. 3.2 to 3.4. Volt-second balance is applied for each inductor voltage and charge balance for each capacitor current in the
network. The switching ripple in the output capacitor voltages is ignored while the inductor current Switching ripple is considered.

3.2.1 First Stage: $\left|t_{0}, t_{1}\right|$

During the first subinterval. the transistor conducts for $0<t<D_{1} T_{s}$, and diode D_{01} is reversed-biased by the capacitor voltage $\left(\mathrm{V}_{\mathrm{CI}}\right)$. The output diode D_{02} is reversedbiased by capacitor voltage $\left(\mathrm{V}_{\mathrm{C} 2}\right)$.The converter circuit elements are connected as in Fig. 3.2. The inductor voltages are given by:

$$
\begin{align*}
& V_{L 1}=v_{a c} \\
& V_{L o 1}=V_{C 1}-V_{o 1} \tag{3.4}\\
& V_{L o 2}=V_{o 2}-V_{C 2}
\end{align*}
$$

It can be inferred from inductor voltage equation Eq. (3.4) that the inductor voltages are equal to the input voltage by substituting Eq. (3.1) in Eq. (3.4), yielding $\mathrm{V}_{\mathrm{Lol}}=\mathrm{Vac}$ and $\mathrm{V}_{\mathrm{Lo} 2}=\mathrm{vac}_{\mathrm{ac}}$. The capacitor and inductor currents are related by:

$$
\begin{align*}
& i_{C 1}(t)=-i_{L O 1}(t) \tag{3.5}\\
& i_{C 2}(t)=i_{L 02}(t)
\end{align*}
$$

The capacitors C_{01} and C_{02} supply the load current during the first stage, where the output capacitor currents equals the inductor current minus the load current.

$$
\begin{align*}
& i_{C o 1}(t)=i_{L O 1}(t)-\frac{V_{O}}{R} \tag{3.6}\\
& i_{C o 2}(t)=-i_{L O 2}(t)-\frac{V_{O}}{R}
\end{align*}
$$

Fig. 3.2: First stage of operation.

The current passing through node Q_{1} is the summation of the three inductor currents. and the voltage across the diode is the input voltage plus half of the output voltage as shown below.

$$
\begin{align*}
& I_{Q 1}=I_{L 01}+I_{L O 2}+I_{L 1} \\
& V_{D o 1}=-V_{C 1}=-v_{a c}-V_{O 1} \tag{3.7}
\end{align*}
$$

3.2.2 Second Stage: $\left|t_{1}, t_{2}\right|$

The second stage starts at the instant t_{1}, where switch Q_{1} turns off and diode D_{0}. conducts to find a path for the inductor currents during $D_{1} T_{s}<t<\left(D_{1}+D_{2}\right) T_{s}$ simultaneously. The circuit then reduces to Fig.3.3. During this stage the inductor currents supply the load and recharge the capacitors. The diode D_{02} is reversed-biased by the capacitance voltages $\left(\mathrm{V}_{\mathrm{C}_{1}}+\mathrm{V}_{\mathrm{C}_{2}}\right)$. The stage ends when the summation of the inductors current is zero and D_{01} becomes reverse biased. Hence, diode $D_{o l}$ is switched off at a zero current.

Fig.3.3: Second stage of operation.

The inductor voltages are given by:

$$
\begin{align*}
& V_{L 1}=V_{o c}-V_{C 1} \\
& V_{L o 1}=-V_{o 1} \tag{3.8}\\
& V_{L o 2}=V_{o 2}-V_{C 1}-V_{C 2}
\end{align*}
$$

The energy transfer capacitor currents are given below:

$$
\begin{align*}
& i_{C 1}(t)=i_{L 1}(t)+i_{L o 2}(t) \tag{3.9}\\
& i_{C 2}(t)=i_{L o 2}(t)
\end{align*}
$$

The output filter capacitor currents are:

$$
\begin{align*}
& i_{C o 1}(t)=i_{L o 1}(t)-\frac{V_{O}}{R} \tag{3.10}\\
& i_{C o 2}(t)=-i_{L o 2}(t)-\frac{V_{o}}{R}
\end{align*}
$$

The current and voltage stress over the switche ${ }_{S}$ are given by:

$$
\begin{align*}
& V_{Q 1}=V_{C 1}=v_{a c}+V_{o 1} \\
& I_{D O 1}=I_{L O 1}+I_{L O 2}+I_{L 1} \tag{3.11}
\end{align*}
$$

3.2.3 Third Stage: $|\mathrm{t} 2, \mathrm{t} 3|$

The diode $D_{o l}$ becomes reverse-biased at time $t=\left(D_{1}+D_{2}\right) T_{s}$, when the diode current becomes zero. Then the circuit is shown in Fig. 3.4 with both transistor and diode in the of f state.

Fig.3.4: Third stage of operation.

The capacitors C_{1} and C_{2} are being charged by the inductor currents $i_{\text {Lol }}$ and $\mathrm{i}_{\text {Lo2 }}$. The inductor behaves as a current source, which keeps the current constant during the third subinterval $\left(\mathrm{D}_{1}+\mathrm{D}_{2}\right) \mathrm{T}_{\mathrm{s}}<\mathrm{t}<\mathrm{T}_{\mathrm{s}}$, and therefore, the inductor voltage must also be zero in accordance with the relationship $V_{L}(t)=L d i_{L}(t) / d t$. As a result, the network equations for the third subinterval are:

$$
\begin{equation*}
V_{L 1}=V_{L o 1}=V_{L o 2}=V_{L 2}=0 \tag{3.12}
\end{equation*}
$$

The tranSfer energy capacitor currents are given by:

$$
\begin{align*}
& i_{C 1}(t)=-i_{L 01}(t) \Rightarrow i_{C 1}(t)=0 \\
& i_{C 2}(t)=i_{L o 2}(t) \tag{3.13}
\end{align*}
$$

and the output filter capacitor currents are:

$$
\begin{align*}
& i_{C o 1}(t)=i_{L o 1}(t)-\frac{V_{O}}{R} \\
& i_{C o 2}(t)=-i_{L o 2}(t)-\frac{V_{O}}{R} \tag{3.14}
\end{align*}
$$

The current and voltage stress over the switches become.

$$
\begin{align*}
& V_{Q 1}=V_{a c} \\
& V_{D o 1}=-V_{o 1} \tag{3.15}
\end{align*}
$$

The total volt-seconds applied over one switching cycle must be zero in the steady-state. In order to reach the steady-state, positive volt-seconds are applied to the inductors during the first stage, and negative volt-second must be applied during the second stage. Therefore, the inductor voltages are equal to the input voltage during the first stage but only equal to half of the output voltage during the second stage, which must be negative as shown in the inductor voltages waveform Fig. 3.5. Hence, V_{o} is greater than V_{ac}, or in other words, the DC output voltage is greater than the input voltage.

Fig.3.5: Inductor voltages waveform for the proposed DCM Cuk rectifier.

3.2.4 Step 1: Steady State Analysis

Applying total volt-seconds to the inductors over one switch cycle result in

$$
\begin{align*}
& \left.<V_{L 1}\right\rangle_{T_{s}}=v_{a c}-V_{C 1} D_{2}=0 \\
& <V_{L o 1}>_{T_{s}}=V_{C 1} D_{1}-V_{o 1}=0 \tag{3.16}\\
& <V_{L o 2}>_{T_{s}}=V_{o 2}-V_{C 1} D_{2}-V_{C 2}=0
\end{align*}
$$

Assuming $V_{o}=V_{o 1}+V_{o 2}$ and $V_{o 1}=V_{o 2}=\frac{1}{2} V_{o}$, the three equations are solved by averaging the inductor voltages over one switching cycle. This yields the expression for the output voltage $\left(\mathrm{V}_{\mathrm{o}}\right)$ as function of the duty cycle as shown in the equation:

$$
\begin{equation*}
V_{o}=\frac{2 D_{1}}{D_{2}} v_{a c} \tag{3.17}
\end{equation*}
$$

The input voltage is defined a_{s}.

$$
\begin{equation*}
v_{a c}=v_{m} \sin (\omega t) \tag{3.18}
\end{equation*}
$$

where V_{m} is the peak amplitude of the V_{ac} function and ω is the line angular frequency. The voltage conversion ratio M is the ratio of the output to the input voltage of a DC to DC converter. It follows from Eq. (3.17) that the voltage conversion ratio is will be

$$
\begin{equation*}
M=\frac{V_{o}^{\prime}}{V_{m}}=\frac{2 D_{1}}{D_{2}} \sin (\omega t) \tag{3.19}
\end{equation*}
$$

where D_{1} and D_{2} are defined as the duty cycle when the switch is in position 1 and position 2 , respectively, during one switching cycle. The duty cycle when the switch is in position 2 is given by

$$
\begin{equation*}
D_{2}=\frac{2 D_{1}}{M} \sin (\omega t) \tag{3.20}
\end{equation*}
$$

3.2.4.1 Control Input Duty Cycle (D_{1})

The following inequality is required to operate at DCM

$$
\begin{equation*}
D_{1}+D_{2}<1 \tag{3.21}
\end{equation*}
$$

The control input duty cycle D_{1} as a function of M can be found by eliminating the value of D_{2}, which is given in Eq. (3.20).

$$
\begin{equation*}
D_{1}+\frac{2 D_{1}}{M} \sin (\omega t)<1 \tag{3.22}
\end{equation*}
$$

Operating in the worst case, the following condition for DCM is

$$
\begin{equation*}
D_{1}<\frac{M}{M+2} \tag{3.23}
\end{equation*}
$$

3.2.4.2 Inductor Currents Waveform

In order to compute the dc component of the inductor currents, the inductor currents' waveform are sketched in Fig. 3.6. During the first stage, the three inductor currents increase linearly at a rate that is proportional to the input voltage v_{ac}. The rate of increase of the three inductor currents are given by,

$$
\begin{equation*}
\frac{d i_{L n}}{d t}=\frac{v_{o c}}{L_{n}}, \quad \text { where } L_{n}=L_{1}, L_{o 1}, L_{o z} \tag{3.24}
\end{equation*}
$$

During the second stage, the equivalent inductor current rate begins decreasing when the diode $D_{0!}$ conducts. The rate of decrease is equal to half of the output voltage as shown in Fig. 3.6 and given below.

$$
\begin{equation*}
\frac{d i_{L n}}{d t}=\frac{-\frac{1}{2} v_{o}}{L_{n}} \tag{3.25}
\end{equation*}
$$

The inductor current ripple magnitude Δ_{iL} varies with the applied voltages rather than the applied currents, as shown in Fig. 3.6. The ripple magnitude is the function of the applied voltage (V_{ac}) the inductance (L) and the transistor conduction time $\left(D_{1} T_{s}\right)$. but it is not a function of the load resistance (R),

$$
\begin{equation*}
\Delta i_{L n}=\frac{V_{a c}}{2 L_{n}} D_{1} T_{S} \tag{3.26}
\end{equation*}
$$

The equivalent inductor current ripple through the three inductors becomes,

$$
\begin{equation*}
\Delta i_{\text {Leq }}=\frac{v_{a c}}{2 L_{e q}} D_{1} T_{S} \tag{3.27}
\end{equation*}
$$

where $L_{e q}=L_{1} / / L_{o 1} / / L_{o 2}$ is an equivalent inductance of the three inductors. The converter operates in the discontinuous conduction mode when the sum of the input and output diode current becomes zero. Referring to the waveforms in Fig (3.6), the average input current over one switching cycle is

$$
\begin{equation*}
i_{i n}=i_{L 1}=\frac{v_{a c}}{2 L 1} D_{1} T_{S}\left[D_{1}+D_{2}\right]+I_{x} \tag{3.28}
\end{equation*}
$$

Furthermore, the average output currents over one switching cycle can be written as:

$$
\begin{align*}
& i_{L o 1}=\frac{v_{a c}}{2 L_{o 1}} D_{1} T_{S}\left[D_{1}+D_{2}\right] \tag{3.29}\\
& i_{L o 2}=\frac{v_{a c}}{2 L_{o 2}} D_{1} T_{S}\left[D_{1}+D_{2}\right]-I_{x}
\end{align*}
$$

where $i_{\text {Lol }}+i_{\text {Lo } 2}=2 i_{o}$

The sum of the three waveforms shown in Fig. 3.6 and expressed by Eqs. (3.28) and (3.29) result in the equivalent waveforms (iLeq (t)) shown in Fig. 3.6.

Fig.3.6: Inductor currents' waveform for proposed DCM Cuk rectifier.

The average of the equivalent inductor currents is found by integrating the $1_{\text {Leq }}(\mathrm{t})$ waveform over one switching cycle.

$$
\begin{align*}
& i_{L 1}+i_{L o 1}+i_{L o 2}=\frac{1}{T_{s}} \int_{0}^{T_{s}} i_{L e q}(t) d t \tag{3.30}\\
& =\frac{1}{2} i_{Q 1 p k}\left(D_{1}+D_{2}\right)
\end{align*}
$$

Referring to Fig. 3.2, the switch current (i_{Q}) is equal to the sum of the three inductor currents. Its waveform begins the switching stage at zero and then increases with a constant slope. which is given by the input voltage divided by the equivalent inductance as shown in Fig. 3.6. Thus, the switch current peak $\mathrm{I}_{\mathrm{QI} 1 \text {-pk }}$ is

$$
\begin{equation*}
I_{Q 1, p k}=\left(\frac{1}{L_{1}}+\frac{1}{L_{o 1}}+\frac{1}{L_{o 2}}\right) v_{a c} D_{1} T_{s}=\frac{v_{a c}}{L_{e q}} D_{1} T_{s} \tag{3.31}
\end{equation*}
$$

Substituting the value of $\mathrm{I}_{\mathrm{Q} \text { 1pk }}$, in Eq. (3.30), and taking D_{1} as common factor yields

$$
\begin{equation*}
i_{L 1}+i_{L o 1}+i_{L o 2}=\frac{D_{1} T_{s}}{2 L_{e q}} v_{a c} D_{1}\left(1+\frac{D_{2}}{D_{1}}\right) \tag{3.32}
\end{equation*}
$$

3.2.5 Step 2: Voltage Conversion Ratio $\mathbf{M}\left(\mathrm{D}_{1}, \mathrm{~K}\right)$ and the Critical Conduction Parameter

Considering 100% efficiency. $\mathrm{P}_{\text {in }}=\mathrm{P}_{\text {out }}$,

$$
\begin{equation*}
<v_{a c}><i_{i n}>=v_{o} i_{o} \tag{3.33}
\end{equation*}
$$

Solving for the current ratio by using Eq. (3.17) and Eq. (3.33) gives

$$
\begin{equation*}
\frac{i_{o}}{\left\langle i_{i n}\right\rangle}=\frac{D_{2}}{2 D_{1}} \tag{3.34}
\end{equation*}
$$

The input line current is defined by finding the value of the output current.

3.2.5.1 Output Current

The connection of the output resistor to its adjacent components is detailed in Fig.
3.7. The node equation of this network is

$$
\begin{equation*}
i_{\text {Lo1 }}(t)=i_{C o l}(t)+\frac{V_{O}}{R} \tag{3.35}
\end{equation*}
$$

Fig. 3.7: Connection of the output capacitor $C_{o l}$ to adjacent components.

By applying the charge balance on output capacitors C_{01} and C_{02}, the net change in capacitors charges is found. Therefore, the load current must be supplied by the direct inductors L_{ol} and $\mathrm{L}_{\mathrm{o} 2}$ connected to the load current as shown in Eq. (3.36). In particular, the DC component of the inductor current must equal the load current as given in Eq. (3.37).

$$
\begin{align*}
& \left\langle i_{C_{o 1}}(t)\right\rangle_{T_{s}}=i_{L o 1}(t)-\frac{V_{O}}{R}\left(D_{1}+D_{2}+D_{3}\right)=0 \Leftrightarrow I_{L o 1}=\frac{V_{O}}{R} \\
& \left\langle i_{C_{o 2}}(t)\right\rangle_{T_{s}}=i_{L o 2}(t)-\frac{V_{O}}{R}\left(D_{1}+D_{2}+D_{3}\right)=0 \Leftrightarrow I_{L o 2}=-\frac{V_{O}}{R} \tag{3.36}
\end{align*}
$$

As a result,

$$
\begin{equation*}
I_{\text {Lol }}=I_{\text {Lo2 }}=\left|\frac{V_{o}}{R_{L}}\right| \tag{3.37}
\end{equation*}
$$

3.2.5.2 Input Current

Substituting Eq. (3.30) in Eq. (3.32) yields

$$
\begin{equation*}
i_{i n}+2 i_{o}=\frac{D_{1} T_{s}}{2 L_{e q}} v_{a c} D_{1}\left(1+\frac{D_{2}}{D_{1}}\right) \tag{3.38}
\end{equation*}
$$

Then factoring $i_{\text {in }}$ result in

$$
\begin{equation*}
i_{i n}\left(1+\frac{2 i_{o}}{i_{i n}}\right)=\frac{D_{1} T_{s}}{2 L_{e q}} v_{a c} D_{1}\left(1+\frac{D_{2}}{D_{1}}\right) \tag{3.39}
\end{equation*}
$$

Furthermore, substituting Eq. (3.34) in Eq. (3.39) produces,

$$
\begin{equation*}
i_{i n}\left(1+\frac{D_{2}}{D_{1}}\right)=\frac{D_{1} T_{s}}{2 L_{e q}} v_{a c} D_{1}\left(1+\frac{D_{2}}{D_{1}}\right) \tag{3.40}
\end{equation*}
$$

Simplifying Eq. (3.40) gives

$$
\begin{equation*}
i_{i n}=\frac{D_{1} T_{s}}{2 L_{e q}} v_{a c} D_{1} \tag{3.41}
\end{equation*}
$$

The input current as a function of the emulated input resistance $\left(\mathrm{R}_{\mathrm{e}}\right)$ of the converter is

$$
\begin{equation*}
i_{i n}=\frac{v_{o c}}{R_{e}} \tag{3.42}
\end{equation*}
$$

where input current $i_{\text {In }}$ is equal to the inductor current $i_{L I}$, and the emulated input resistance equals

$$
\begin{equation*}
R_{e}=\frac{2 L_{e q}}{D_{1}{ }^{2} T_{S}} \tag{3.43}
\end{equation*}
$$

The input current $i_{\text {, }}$ is in-phase with input voltage $v_{a c}$ at any given operating point; thus the input current obeys Ohm's law as shown in Eq. (3.42).

3.2.5.3 Voltage Conversion Ratio $\mathbf{M}\left(\mathrm{D}_{1}, \mathrm{~K}\right)$

The voltage conversion ratio can be found by solving Eq. (3.33), where the input and output power are:

$$
\begin{align*}
& \left\langle P_{m}(t)\right\rangle T_{L}=\frac{1}{T_{L}} \int_{0}^{T_{L}} v_{a c}\left\langle i_{m(m}(t)\right\rangle_{T_{G}} d t \tag{3.44}\\
& \left\langle P_{i n}(t)\right\rangle_{T_{L}}=\frac{1}{T_{L}} \frac{D_{1} T_{s}}{2 L_{e q}} D_{1} \int_{0}^{T_{L}} v_{o c}{ }^{2} d t_{1} \\
& \left\langle P_{i n}(t)\right\rangle_{T_{L}}=\frac{D_{1} T_{s}}{2 L_{e q}} D_{1} \frac{V_{m}{ }^{2}}{2} \\
& P_{o}=\frac{V_{0}^{2}}{R} \tag{3.45}
\end{align*}
$$

. resulting in

$$
\begin{equation*}
\frac{V_{o}^{2}}{V_{m}^{2}}=\frac{R T_{s} D_{1}^{2}}{2\left(2 L_{e q}\right)} \tag{3.64}
\end{equation*}
$$

The voltage conversion ratio as a function of the conduction parameter K is given by.

$$
\begin{equation*}
M\left(D_{1}, K\right)=\frac{D_{1}}{\sqrt{2 K}} \tag{3.47}
\end{equation*}
$$

where K is a unit-less parameter and can be expressed as:

$$
\begin{equation*}
K=\frac{2 L_{c q}}{R T_{s}} \tag{3.48}
\end{equation*}
$$

Moreover, solving for D_{1} yields

$$
\begin{equation*}
D_{1}=M \sqrt{2 K} \tag{3.49}
\end{equation*}
$$

3.2.5.4 Critical Conduction Parameter ($\mathbf{K}_{\text {crit }}$)

Inserting Eq. (3.23) into Eq. (3.49) and simplifying results in the following condition for $\mathrm{K}_{\mathrm{crt}}$ as a function of M to operate in DCM:

$$
\begin{equation*}
K_{c r i t}<\frac{1}{2(2 \sin (c t)+M)^{2}} \tag{3.50}
\end{equation*}
$$

where $\mathrm{K}_{\mathrm{crt}}$ is the critical value of K operating at DCM , which is a unit-less parameter.

3.2.5.5 Large Signal Model

The switch network input port is designed by Eq. (3.42) shown in Fig. 3.8 and the switch network output port is modeled by Eq. (3.37). Otherwise, it could be designed by finding the output power, which is equal to the input power as shown in Eq. (3.51).

$$
\begin{equation*}
\left\langle i_{o}(t)\right\rangle_{T_{s}}\left\langle v_{o}(t)\right\rangle_{T_{s}}=\frac{\left\langle v_{a c}(t)\right\rangle_{T_{s}}^{2}}{R_{e}}=\langle p(t)\rangle_{T_{s}} \tag{3.51}
\end{equation*}
$$

In other words, the lossless power states that the input and output powers are equal:

$$
\begin{equation*}
P_{\text {out }}=\frac{V_{a c}^{2}}{R_{e}}=\frac{V_{o}^{2}}{R} \tag{3.52}
\end{equation*}
$$

By simplifying Eq. (3.52), the voltage conversion ratio M becomes,

$$
\begin{equation*}
M=\sqrt{\frac{R}{2 R_{e}}} \tag{3.53}
\end{equation*}
$$

Fig. 3.8: Large signal model of the general averaged Equivalent circuit in a converter operating in DCM.

3.3 Stresses

The current stresses on the Q_{1} and $\mathrm{D}_{\mathrm{o} \text { 1 }}$ equal the summation of the inductor currents as given in Eq. (3.7) and Eq. (3.11) and displayed in Fig. 3.6. The voltage stresses
over the switching are shown in Fig.3.9. The voltage and current stresses of the converter components are shown in Table 1. All stresses are normalized with respect to the output voltage and load current.

Fig.3.9: The semiconductor switch and the diode voltage stresses.

Table 3.1: Current and voltage stresses.

	Voltage	Current
$\mathrm{Q}_{1}, \mathrm{Q}_{2}$	$\frac{2+M}{2 M}$	M
$\mathrm{D}_{01}, \mathrm{D}_{02}$	$\frac{2+M}{2 M}$	M
$\mathrm{C}_{1}, \mathrm{C}_{2}$	$\frac{2+M}{2 M}$	$\pm 1 \frac{1}{2}$
$\mathrm{C}_{01}, \mathrm{C}_{02}$	$\frac{1}{2}$	$\frac{1}{2}$
$\mathrm{~L}_{1}$	$\frac{1}{2}$	M
$\mathrm{~L}_{01}, \mathrm{~L}_{02}$	$\frac{1}{2}$	$\pm 1 \frac{1}{2}$

CHAPTER 4

Design, Simulation and Measurements

4.1 Converter Parameters Selection

The Cuk rectifier is designed with the following characteristics:

Table 4.1: Specifications of the prototype.

Output power P_{o}	125 W
Output voltage V_{o}	250 V
Input voltage V_{ac}	$100 \sin (2 \pi 50 \mathrm{t}) \mathrm{V}$
Switching frequency f_{s}	50 kHz
Output Resistance, R	500Ω
Input Current ripple $\Delta \mathrm{I}_{\mathrm{in}}$	$10 \% \mathrm{I}_{\mathrm{m}}$
Output voltage ripple $\Delta \mathrm{V}_{\mathrm{o}}$	$0.6 \% \mathrm{~V}_{\mathrm{o}}$

The voltage conversion ratio is:

$$
\begin{equation*}
M(D)=\frac{250}{100}=2.5 \tag{4.1}
\end{equation*}
$$

The critical conduction parameter can be evaluated from Eq. (3.50)

$$
\begin{equation*}
K_{c r i i}=24.69 \times 10^{-3} \tag{4.2}
\end{equation*}
$$

To assure DCM operation, the $\mathrm{K}<\mathrm{K}_{\text {crit }}$ is chosen to be:

$$
\begin{equation*}
K=4.9 \times 10^{-3} \tag{4.3}
\end{equation*}
$$

The control input duty cycle D_{1} is found by Eq. (3.49):

$$
\begin{equation*}
D_{1}=M \sqrt{2 K}=0.248 \tag{4.4}
\end{equation*}
$$

The input current ripple as given in the specification shown in Table 4.1 is:

$$
\begin{equation*}
\Delta_{l m}=10 \% \frac{2 P}{V_{m}}=0.25 \tag{4.5}
\end{equation*}
$$

4.1.1 Inductors Design

The design of the input inductor is completed by using the desired ripple value of the input current. Therefore, L_{1} can be obtained considering the maximum current ripple as given by:

$$
\begin{equation*}
L_{1}=\frac{V_{m} D_{1} T_{s}}{\Delta_{L 1}}=2 \mathrm{mH} \tag{4.6}
\end{equation*}
$$

where $\Delta \mathrm{I}_{\mathrm{LI}}$ is the same as $\Delta \mathrm{L}_{\text {in }}$.
An equivalent inductance $L_{e q}$ is affected by the conduction parameter as shown in Eq. (3.48). Thus, evaluating this equation gives:

$$
\begin{equation*}
L_{e q}=\frac{K R T_{s}}{2}=24.5 \mu \mathrm{H} \tag{4.7}
\end{equation*}
$$

The output inductor L_{01} and L_{02} are equal and can be found using the following equation:

$$
\begin{equation*}
L_{o 1}=L_{o 2}=\frac{L_{1} L_{e q}}{L_{1}-L_{e q}}=50 \mu \mathrm{H} \tag{4.8}
\end{equation*}
$$

4.1.2 Energy Transfer Capacitors Design

The capacitors C_{1} and C_{2} are designed under two constraints in order to have the proposed topology operates as a true PFC converter. The voltage across C_{1} and C_{2} are
within a switching cycle and to follow the input voltage profile within a line cycle. They are very important elements in the proposed Cuk rectifier because their values have a significant influence on the input current waveform. The resonant frequency of $C_{1}, C_{2}, L_{1}, L_{01}$ and L_{02} must be much greater than the line frequency to avoid input current oscillations at every half-line cycle and lower than the switching frequency to assure an almost constant voltage in a switching period. The C_{1} and C_{2} designed equation is given by:

$$
\begin{equation*}
C_{1}=C_{2}=\frac{1}{\left(2 \pi f_{\mathrm{r}}\right)^{2}\left(L_{1}+L_{o 1}\right)} \tag{4.9}
\end{equation*}
$$

where $C_{1}=C_{2}$ and $f_{L}<f_{r}<f_{s}$
Different capacitance values are chosen as shown in Table 4.2 to study their effect on the input current and their capacitor voltages. The first capacitance value is selected to be close to line frequency, and the third one is selected to be close to switching frequency, while the second one is selected to be in between. The influence of the three capacitors' values on the input current and their voltages is shown in Fig. 4.1 and Fig.4.2. The input current signal is not in-phase with the input voltage when the resonant frequency is either near to the line frequency or switch frequency as shown in Fig. 4.1(a) and Fig. 4.1(b). Furthernore, the capacitor voltage has higher peak value than that shown in Fig. 4.2(c), which means the capacitor voltages cannot be considered constant in a switching cycle. In other words, the capacitor voltage in Fig. 4.2(a) is charging very quickly, but it is slowly charging in Fig. 4.2(b). As a result, the best value for the energy capacitors C_{1} and C_{2} are calculated based on Eq. (4.9) by applying a resonant frequency greater than the line frequency and less than the switching frequency with a value of $1 \mu F[46,57]$.

Table 4.2: Effect of the resonant frequency on the energy transfer capacitor values.

$\mathrm{f}_{\mathrm{r}}(\mathrm{Hz})$	$\mathrm{C} 1=\mathrm{C} 2(\mu \mathrm{~F})$
1000	12
3515	1

10,000	0.12

Considering a resonant frequency (f_{r}) of (3515 Hz), the energy transfer capacitors are given by

$$
\begin{equation*}
C_{1}=C_{2}=\frac{1}{(2 \pi 3515)^{2}\left(2 \times 10^{-3}+50 \times 10^{-6}\right)}=1 \eta \tag{4.10}
\end{equation*}
$$

Fig. 4.1: Effect of the energy capacitors on the input current: (a) Input current is distorted, (b) Input current and input voltage are out of phase, and(c) Input current and input voltage are in-phase.

(c) $\mathrm{C}_{1}=\mathrm{C}_{2}=1 \mu \mathrm{~F}$

Time \mid msec

Fig. 4.2: Effect of the energy capacitors on their voltage: (a) $V_{C 1}$ and $V_{C 2}$ with $600 \mathrm{~V}_{\text {peak }}$, (b) $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathrm{C} 2}$ with $230 \mathrm{~V}_{\text {peak, }}$, and (c) $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathrm{C} 2}$ with $250 \mathrm{~V}_{\text {peak }}$.

4.1.3 Output Capacitors Design

Output capacitors C_{01} and C_{02} are utilized to filter the load voltage. Thus, the output capacitors are inversely proportional to the output voltage ripple $\Delta \mathrm{V}_{0}$ as shown in Eq. (4.11) and verified by the simulation result shown in Fig. 4.3 [46].

The output capacitor C_{01} and C_{02} values, which are required to maintain a peak-peak output coltage ripple of 0.6° of V_{0}, is given by

$$
\begin{equation*}
C_{o 1}=C_{o 2}=\frac{1}{1}_{\Delta v_{o}} \int_{T_{L} / 8}^{3 T_{L} / 8}\left(i_{o}-I_{o}\right) \mathrm{dt} \tag{4.11}
\end{equation*}
$$

where I_{0} is given in Eq. (3.37) and i_{0} is found from Eq. (3.36) to be

$$
\begin{equation*}
i_{o}=\frac{2 V_{o}}{R_{e} M^{2}} \sin ^{2}(\omega t) \tag{4.12}
\end{equation*}
$$

Substituting the values of I_{0} and i_{0} and solving the integration will yield,

$$
\begin{equation*}
=\frac{T_{L} V_{o}}{2 \Delta v_{o}}\left[\frac{1}{R_{e} M^{2}}\left(\frac{1}{\pi}+\frac{1}{2}\right)-\frac{1}{R}\right] \tag{4.13}
\end{equation*}
$$

By evaluating Eq. (4.13), C_{01} and C_{02} are:

$$
\begin{equation*}
C_{o 1}=C_{o 2}=2200 \mu \mathrm{~F} \tag{4.14}
\end{equation*}
$$

Table 4.3: The relationship between the output capacitor and output voltage ripples.

$\mathrm{C}_{\mathrm{ol}}=\mathrm{C}_{\mathrm{o} 2}(\mathrm{uF})$	$\Delta \mathrm{v}_{\mathrm{o}}(\mathrm{V})$
220	14.46
636.5	5
2200	1.45

Fig. 4.3: Influence of the output capacitors on the output voltage ripple: (a) $\Delta V_{0}=15 \mathrm{~V}$, (b) $\Delta \mathrm{V}_{\mathrm{o}}=5 \mathrm{~V}$, and (c) $\Delta \mathrm{V}_{\mathrm{o}}=1.5 \mathrm{~V}$.

4.1.4 Proposed Rectifier Components

Table 4.4: List of the components used in the proposed rectifier.

Component	Value/Model
L_{1}	2 mH
L_{01}	$50 \mu \mathrm{H}$
L_{02}	$50 \mu \mathrm{H}$
C_{1}	$1 \mu \mathrm{~F}$
C_{2}	$1 \mu \mathrm{~F}$
C_{01}	$2200 \mu \mathrm{~F}$
C_{02}	$2200 \mu \mathrm{~F}$
Q_{1}	irfb 4332 pbf
Q_{2}	irfb 4332 pbf
D_{01}	D 1 N 5402
D_{02}	D 1 N 5402

The Cuk rectifier is designed for the following power stage specifications: peak input voltage of 100 V at 50 Hz , output voltage of 250 V , switching frequency of 50 kHz . and output power of 125 W .In addition, actual semiconductor devices are used in the simulation; DIN5402 are used for the diodes and irfb 4332 pbf for the power switches. The circuit components used in the simulation are chosen as follows: $\mathrm{L}_{1}=2 \mathrm{mH}, \mathrm{L}_{\mathrm{ol}}=$ $\mathrm{L}_{02}=50 \mu \mathrm{H}$ and $\mathrm{C}_{01}=\mathrm{C}_{02}=2200 \mu \mathrm{~F}$, which are shown in table 4.4. Moreover, an equivalent series resistor (ESR) of $10 \mathrm{~m} \Omega$ is placed in series with all the inductors.

4.2 Simulation Results

Simulation studies were performed using ORCAD software package, to verify the analysis results. As mentioned previously, the C_{1} and C_{2} values affect the input current. Thus through simulation, C_{1} and C_{2} are chosen to be $(1 \mu \mathrm{~F})$, which is wellmatched with the designing value. The input voltage and current are in-phase as shown in Fig. 4.4(a). The total harmonic distortion in the line current is 0.17% and the efficiency is 94%. The output voltage and the output current are shown in Fig. 4.4(b) and $4.4(c)$. The Q_{1} is conducting over the positive half-line cycle, while the Q_{2} conducts over the negative half-line cycle, as shown in Fig. 4.5(a) and (b). Also, it shows the voltages of D_{01} and D_{02} over the line cycle.

Time [msec]

Fig. 4.4: Simulation results for the proposed rectifier: (a) Input current and voltage,
(b) Output current, and (c) Output voltage.

Fig. 4.5: Switching signals over the line cycle: (a) Q_{1}, (b) Q_{2}, (c) D_{ol}, and (d) $\mathrm{D}_{\mathrm{o} 2}$.

Fig. 4.6 presents the diode D_{01} current and the gating signals over a switching cycle. It should be noted that the diode starts conducting after the switch is turned off and the current goes to zero before the end of the cycle which ensures DCM. Fig. 4.7 shows the capacitor voltages V_{Cl} and $\mathrm{V}_{\mathrm{C} 2}$. Both voltages are in accordance with Eq . (3.1). The voltages over the output capacitors C_{01} and C_{02}, which are equal to the half of the output voltage, are shown in Fig. 4.8. This proves the analysis given in Chapter 3.

Fig. 4.6: Q_{1} and Do_{1} over the switching cycle.

Fig. 4.7: The energy capacitor voltages over the line cycle: (a) $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathrm{C} 2}$, and (b) Input and output voltage.

Fig. 4.8: The output capacitor voltages ($\mathrm{V}_{\mathrm{Col}}$ and $\mathrm{V}_{\mathrm{Coz}}$) over the line cycle.

The currents of L_{01} and L_{02} over the line cycle are shown in Fig. 4.9, while Fig. 4.10 shows the three inductor currents over a switching cycle. It should be noted that the inductor currents have proportional slopes over the three different stages of a switching cycle. Thus, the three inductors can be coupled which leads to lower costs
and smaller size. In addition, the three inductors are being charged by the input voltage when Q_{1} is conducting, but when the diode $D_{o l}$ is conducting; the three inductors are discharging through the output capacitors. Thus, Fig. 3.6 is verified.

Fig. 4.9: Inductor currents over the line cycle: (a) $\mathrm{I}_{\mathrm{Lo1}}$, and (b) $\mathrm{I}_{\mathrm{Loz}}$.

Fig. 4.10: Three inductor currents over the switching cycle.

Fig. 4.11 shows that the capacitor C_{2} is discharging through the inductor L_{02} over the first stage when Q_{1} is conducting. However, it is charged by the inductor L_{0} 2 during the second stage and equals to zero over third stage which is compatible with analysis presented earlier in the chapter3. The proposed rectifier satisfies the EN 61000-3-2 regulations as shown in Fig. 4.12.

Fig. 4.11: The energy capacitor (C_{2}) current over the switching cycle: (a) Gating and diode signal, and (b) I I_{C}.

Fig.4.12: Comparison between IEC limits and simulated input current harmonics of the proposed rectifier.

4.3 Experimental Results

The bridgeless DCM Cuk rectifier prototype test is validating the analysis and the simulation result. The prototype is implemented depending on the following: $V_{a c}=$ $100 \sin (2 \pi 50 t) \mathrm{V}, f_{s}=50 \mathrm{kHz}, \quad P=125 \mathrm{~W}, I_{\text {ripl }} \leq 10 \% I_{1}$, where the components are chosen to be similar to the simulation one. Fig. 4.13(a) verified that the input current is in-phase with input voltage, where the output current and output voltage are shown in Fig. 4.13(b). The switching voltage waveforms for: $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{D}_{\mathrm{ol}}$ and D_{02} over the line cycle are shown in Fig. 4.14(a) and (b), which are consistent with the simulation results. In addition, the switch-gating signal $\mathrm{V}_{\mathrm{Q} 1}$ over the switching cycle, which conducts over the positive half line cycle, is shown in Fig. 15.

Fig. 4.13: Experimental results for the proposed rectifier: (a) Input current and voltage, (b) Output and input voltage.

Fig. 4.14: Switch-gating signal and diode voltages over the line cycle: (a) V_{Q} and $V_{\mathrm{Q} 2}$, (b) $\mathrm{V}_{\mathrm{Dol}}$ and $\mathrm{V}_{\mathrm{Do} 2}$.

Fig. 4.15: Input voltage and Gating signal $\mathrm{V}_{\mathrm{Q} 1}$.

4.3.1 Experimental Results for the Capacitor Voltages

The capacitor voltage waveforms are consistent with the simulation and analysis results as shown in Fig. 4.16. Hence, the energy capacitor voltages follow the input voltage and are shifted up by half of the output voltage. The output capacitor voltages are equal to half of the output voltage.

(b)

Fig. 4.16: The energy capacitor voltages and output capacitor voltages over the line cycle: (a) V_{Cl} and $\mathrm{V}_{\mathrm{C} 2,}$ (b) $\mathrm{V}_{\mathrm{Col}}$ and $\mathrm{V}_{\mathrm{Co2}}$

4.3.2 Experimental Results for the Inductor Currents

The inductor currentI $\mathrm{I}_{\mathrm{Lo} 1}$ and $\mathrm{I}_{\mathrm{L} 02}$ waveforms over the line cycle are shown in Fig. 4.17(a). The inductor currents $\mathrm{I}_{\mathrm{L} 1}$ and $\mathrm{I}_{\mathrm{Lo2}}$ over as witching cycle are shown in Fig. 4.17 (b), while Fig. 4.17(c) shows $\mathrm{I}_{\text {L01 }}$ and $\mathrm{I}_{\text {Lo2 }}$ waveforms.

(a)

5.0A/div
5.0 ms div
(b)

(C2 5.0 Adiv
(ct 5.0Adiv
(c)

Fig. 4.17: Inductor currents over the line cycle: (a) $\mathrm{I}_{\mathrm{Lol}}$ and $\mathrm{I}_{\mathrm{L} 02}$, Inductor currents over the switching cycle: (b) $\mathrm{I}_{\mathrm{L} 1}$ and $\mathrm{I}_{\mathrm{Lo} 2}$, (c) $\mathrm{I}_{\mathrm{Lo} 1}$ and $\mathrm{I}_{\mathrm{L} 02 \text {. }}$

4.4 Conventional Cuk Versus the Proposed Cuk Rectifier

The efficiency for the conventional Cuk is 88% while it is 94% for the proposed Cuk rectifier. Moreover, the THD is 10%, which is high comparing with THD for the proposed Cuk. The simulated input current harmonics of the Conventional Cuk is shown in Fig. 4.18.

Fig. 4.18: Comparison between IEC limits and simulated input current harmonics of the conventional Cuk rectifier.

The comparison between the conventional Cuk and the proposed Cuk rectifier is shown in Table 4.5. The proposed bridgeless topology has fewer semiconductors in the current conduction path. However, it has one additional switch compared with the conventional Cuk. Nonetheless, the switching losses are the same because only one switch is active over a switching cycle. Also, the proposed rectifier has a floating switch which requires additional gating circuitry.

Table 4.5: Comparison between conventional and bridgeless Cuk rectifier in DC.M
mode.

	Conventional Cuk	Proposed Cuk Rectifier
Diodes	4 slow and 1 fast	2 fast
Switch	1	2
Current conduction path in stage 1	2 slow diodes and 1 switch	1 body diode and 1 switch
Current conduction path in stage 2	3 diodes(2 slow and 1 fast)	1 fast diode
Current conduction path in stage 3	2 slow diodes	---------------
\# of components	10	11
Integrated magnetic	One core for 2 inductors	One core for 3 inductors
Deriver circuit complexity	1 nonfloating	1 floating and 1 nonfloating
Ground	Non-floating	Floating

CONCLUSION AND FUTURE WORK

In this thesis, a brief PFC correction review has been presented. The advantages and disadvantages of several bridgeless topologies have been discussed. The case for a low inrush current and a continuous input/output current AC-DC rectifier has been made.

A high step-up Cuk bridgeless AC-DC rectifier has been detailed. The proposed step-up DCM bridgeless Cuk rectifier has been analyzed in DCM mode. The current and voltage stresses of the proposed topology are presented. The gain of the converter as a function of the control signal has been derived. An example of the design procedure for the converter is shown step by step. A comparison study between the full-bridge PFC Cuk rectifier and the proposed bridgeless rectifier is presented. It has been verified that the studied rectifier has fewer silicon components in the current path versus the full bridge rectifier. Hence, there are less conduction losses as well as a higher efficiency. The proposed rectifier has an efficiency of 94% versus an efficiency of 88% for the conventional rectifier.

The converter has been simulated using an ORCAD software package. The simulation results matched the analysis. Real component models have been used in the simulation. The capability of the proposed topology has been built and tested in the lab for a 125 W output power. The experimental results supported the simulation results. The input current harmonics has been compared to the EN 61000-3-2 standard requirements. The efficiency of the proposed rectifier at 125 W and full load is 94% with THD being 0.17%. The input current THD is lower than the EN 61000-$3-2$. In addition, the rectifier is controlled by one signal. The proposed rectifier meets the requirements presented at the beginning of chapter 3 .

Future work

The propos ${ }_{5}$ ed objectives of this research were successfully accomplished. Design a feedback controller for load voltage regulation and confirm power factor under load conditions is recommended for future work.

REFERENCES

[1] Erickson, R. W. and D. Maksimovic. 2004. Fundamentals of Power Electronics. Kluwer Academic Publishers, New York, 2nd edition.
[2] Singh, B. Bhuvaneswari, G. and Garg. V. Dec. 2005 .Harmonic Current Injection for Varying Rectifier .IEEE Indicon 2005 Conference, India. P. 143 - 147.
[3] IEC 61000-3-2, 1998. International Electro technical Commission Geneve, Switzerland.
[4] Borloo. G., E. De Jaeger, M. Dussart and A. Robert. Oct 1998. Practical implementation of IEC publications 1000-3-6 and 1000-3-7. Experiences in Belgium. Harmonics And Quality of Powervol.1,p. 449-455.
[5] Maset, E., E. Sanchis, J. Sebastian and E. de la Cruz. Oct. 1996. Improved passive solutions to meet IEC 1000-3-2 regulation in low-cost power supplies. Telecommunications Energy Conference, p. 99-106.
[6] European power supply manufactures association "Harmonic Current Emissions guidelines to the standard EN 61000-3-2", Edition Nov 2010.
[7] Jovanovic. M.M. and Y. Jang. June 2005. State-of-the-art single-phase active power-factor-correction techniques for high-power applications - an overview. IEEE Transactions on Industrial Electronics vol. 52, no. 3, p. 701-708.
[8] Garcia, O., J.A. Cobos, R. Prieto, P. Alou and J. Uceda. Feb 2000. Simple AC/DC converters to meet IEC 1000-3-2. Applied Power Electronics Conference and Exposition vol.1, p. $487-493$.
[9] Zhao. Q. and F. C. Lee. Jan. 2003. High-efficiency high step-up dc-dc converters. IEEE Trans. Power Electron. vol. 18, no. 1, p. 65-73.
[10] Chen Jingquan; D. Maksimovic and R. Erickson. Mar. 2001. A new low-stress buck-boost converter for universal-input PPC applications, $16^{\text {th }}$ IEEE APEC Conference, vol. 1, p. 343-349.
[11] Jingquan, C.; D. Maksimovic and R.W. Erickson, Mar 2006. Analysis and design of a low-stress buck-boost converter in universal-input PFC applications, IEEE Trans. on Power Electron., vol. 21, no. 2.
[12] Xi-jun. Y.. W. Han.Y. Xing-hua, L. Huai-gang and G.Hongfei. Oct. 2008. Theoretic analysis and experimental study of a novel bridgeless partial active PFC. International Conference of Electrical Machines and Șystems. ICEMS, p. 1179-1184.
[13] Lim. J. W. and B. H. Kwon. Oct. 1999. A power factor controller for single phase PWM rectifiers, IEEE Trans. Ind. Electron., vol. 46. no. 5. p. 10351037.
[14] Lazar, J. and S. Cuk. Mar. 1996. Feedback loop analysis for AC/DC rectifiers operating in discontinuous conduction mode. Applied Power Electronics Conference and Exposition, vol.2, p. $797-806$.
[15] Abbas A. Fardoun \& Esam H. Ismail, 2010. Non-isolated Single Stage PFC Rectifier for Wide-Input Large Step-Down", International Journal on Power Electronics, vol. 2, no. 4, pp. 412-427.
[16] Dos Reis, F.S., Antunes, F., Sebastian, J. and Uceda, J. Nov 1997 .PFP Converters Size Evaluation. Industrial Electronics, Control and Instrumentation. IECON 97 conference. Vol. 2. P. 866-871.
[17] Kanaan. H.Y.; K. Al-Haddad. Nov. 2011. A unified approach for the analysis of single-phase Power Factor Correction converters. IECON 2011 37th Annual Conference on IEEE Industrial Electronics Society , p. 1167 1172.
[18] Kazerani, M., P. D. Ziogas, and G. Joos. Feb. 1991. A novel active current wave shaping technique for solid-state input power factor conditioners. IEEE Trans. Ind. Electron., vol. 38, no. 1, p. 72-78.
[19] Kazerani. M., P. D. Ziogas, and G. Joos. 1990. Programmable input powerfactor correction methods for single phase diode rectifier circuits. In Proc. IEEE PESC'90, p. 177-184.
[20] Sugawara, I., Y. Suzuki, A. Takeuchi and T. Teshima. Oct 1997. Experimental studies on active and passive PFC circuits. Telecommunications Energy Conference, INTLEC, p. 19-23.
[21] Prasad A. R.. P. D. Ziogas and S. Manias. Jan. 1991. An active power correction technique for three-phase diode rectifiers. IEEE Trans Power Electron., vol. 6, no. 1, p. 83-92.
[22] Itoh, R., K. Ishizaka, H. Oishi. and H. Okada. Nov. 1999. Single-phase buck rectifier employing voltage reversal circuit for sinusoidal input current wave shaping. IEE Proc. Electric Power Appl.. vol. 146, no. 6. pp. 707-712.
[23] Al-Saffar. M. A.. E. H. Ismail and A. J. Sabzali. 2009. Integrated buck boostquadratic buck PFC rectifier for universal input applications. IEEE Trans. on Power Electron., VOL. 24, NO. 12, p. 2886-2896.
[24] Itoh. R. Ishizaka, K. Fac. Nov 1991. Single-phase sinusoidal rectifier with step-up/down characteristics, Electric Power Applications, IEE Proceedings. vol. 138, no. 6, p. $338-344$.
[25] Garinto. D. June 2007.A New Zero-Ripple Boost Converter with Separate Inductors for Power Factor Correction. Power Electronics Specialists Conference, p. 1309-1313.
[26] Haghi, R.; M.R. Zolghadri and R. Beiranvand, R. 2011. A Novel Zero-Voltage-Transition Bridgeless PFC with Reduced Conduction Losses. Power Electronics, Drive Systems and Technologies Conference (PEDSTC), p. 587 592.
[27] Wei Huai, I. Batarseh, April 1998. Comparison of basic converter topologies for power factor correction, South eastcon '98. IEEE Proceedings, p. 348 -35324-26.
[28] Mahdavi, M., H. Farzanehfard. Jul. 2009.Zero-current-transition bridgeless PFC without extra voltage and current stress, IEEE Trans. on Ind. Electron, vol. 56, no. 7. p. 2540-2547.
[29] Mahdavi, M. H. Farzanehfard. Sep. 2008. A new soft switching bridgeless PFC without any extra switch. International Review of electrical engineering, Vol. 3, No. 5, p. 858-863.
[30] Mahdavi, M., H. Farzanehfard. 2009. A NEW zero voltage transition bridgeless PFC with reduced conduction losses. Journal of Power Electronics, Vol. 9. No. 5, p. 708-717.
[31] Tsai. H. T. Hsia, D. Chen. 2010. A Family of Zero-Voltage Transition Bridgeless Power Factor Correction Circuits with a Zero-Current-Switching Auxiliary Switch. IEEE Trans. on Ind. Electron.. vol. 58. p. 1848-1855.
[32] Lu. Hg. B., R. Brown, and M. Soldano. Mar. 2005. Bridgeless PFC implementation using one cycle control technique. IEEE Applied Power Electronics Conf. p. 812-817.
[33] KaraarSlan, A. and I. Iskender. Nov. 2009.Pure Sinusoidal Input Voltage Based Bridgeless PFC Converter Using TMS320F2812 Digital Signal Processor.p. I-234-I-238.
[34] Garinto. D.June 2008.A new family of single-stage ripple-free input current ac-dc converters. Power Electronics Specialists Conference, p. 1881-1886,
[35] Kong. P..S. Wang and F. C. Lee. Jan. 2008.Common mode EMI noise suppression for bridgeless PFC converter. IEEE Trans. Power Electron. vol. 23, no. 1. p. 291-297.
[36] Huber, L., Y. Jang and M. Jovanovic. May 2008. Performance Evaluation of Bridgeless PFC Boost Rectifiers. IEEE Transactions on Power Electronics, vol. 23, no 3, p.1381-1390.
[37] Woo-Young Choi, Wen-Song Yu, and Jih-Sheng (Jason) Lai. Feb. 2010.A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter. Applied Power Electronics Conference and Exposition (APEC), 2010 Twenty-Fifih Anmual IEEE, p. 42-46.
[38] Bin Su, and Zhengyu Lu. June 2010. An Interleaved Totem-Pole Boost Bridgeless Rectifier with Reduced Reverse-Recovery Problems For Power Factor Correction. IEEE Trans. Power Electron., vol.25, no.6, p. 1406-1415.
[39] Yungtaek Jang, M.M. Jovanovic. Jan. 2009. A Bridgeless PFC Boost Rectifier with Optimized Magnetic Utilization. IEEE Trans. Power Electron, vol.24, no. 1, pp.85-93.
[40] Martinez, R. and P. N. Enjeti. Mar. 1996.A high-performance single-phase rectifier with input power factor correction. IEEE Trans. Power Electron., vol. 11, no. 2, p. 311-317.
[41] Woo-Young Choi, Jung-Min Kwon. Eung-Ho Kim. Jong-Jae Lee, and BongHwan Kwon. April 2007. Bridgeless Boost Rectifier with Low Conduction Losses and Reduced Diode Reverse-Recovery Problems. IEEE Transactions on Industrial Electronics vol. 54, no. 2. p.769-780.
[42] Matsuo, H.: Tu. L.: Kurokawa. F.; Watanabe. H. May 1998. A novel softswitching buck-boost type AC-DC converter with high power efficiency, high power factor and low harmonic distortion, vol. 2, p. 1030-1035.
[43] Wei. W., L. Hongpeng, J. Shigong and X. Dianguo. June 2008. A novel bridgeless buck-boost PFC converter. IEEE Power Electronics Specialists Conference, p. 1304-1308.
[44] Jang,Y.and M. Jovanović. Feb. 2010.Bridgeless Buck PFC Rectifier. Applied Power Electronics Conference and Exposition (APEC).p. 23-29.
[45] Oruganti, R. and M. Palaniapan, Mar. 2000. Inductor voltage control of bucktype single-phase AC-DC converter, IEEE Trans. on Power Electron., vol. 15, no. 2, p. 411-417.
[46] Ismail, E. H. April 2009. Bridgeless SEPIC Rectifier with Unity Power Factor and Reduced Conduction Losses. IEEE Trans. on Ind. Electron. vol. 56, no. 4. p. 1147-1157.
[47] Petersen, L. June 2001. Input-current-shaper based on a modified SEPIC converter with low voltage stress, 32nd IEEE PESC Conference, vol. 2, p. 666-671.
[48] Scalia, P. May 1998. A double-switch single-stage PFC offline switcher operating in CCM with high efficiency and low cost, 29th IEEE PESC Conference, vol. 2, p. 1041-1047.
[49] De Melo, P. F.; R. Gules; E. F. R. Romaneli and R. C. Annunziato. 2009. A modified SEPIC converter for high power factor rectifier and universal-input voltage applications, IEEE Trans. Power Electron., Accepted for future publication.
[50] Sahid. M. R. and A. M. Yatim. September 2009 .Modeling and Simulation of A new Bridgeless SEPIC Power Factor Correction Circuit. Simulation Modeling Practices and Theorv.
[51] Mahdavi.M. and H. Farzanehfard. 2011. Bridgeless SEPIC PFC Rectifier with Reduced Components and Conduction Losses. IEEE Trans. Ind. Electron.. vol. 58, no. 9. p. 4153-4160.
[52] Fardoun. A.A., E.H. Ismail, A.J. Sabzali and M.A. Al-Saffar. Dec. 2010. A comparison between three proposed bridgeless Cuk rectifiers and conventional topology for power factor correction. International Conference of Sustainable Energ. Technologies (ICSET) 2010, pp. 1-6.
[53] Brkovic, M. and S. Cuk. 1992. Input current shaper using Cuk converter. in Proc. Int. Telecom. Energ' Conf., p. 532-539.
[54] Ranganathan, G. and L. Umanand, Mar 1999. Power Factor improvement using DCM Cuk converter with coupled inductor. Electric Power Applications. IEE Proceedings, vol. 146, no. 2, pp. 231-236.
[55] Fardoun, A.A., E.H. Ismail, A.J. Sabzali and M.A. Al-Saffar. 2012. New Efficient Bridgeless Cuk Rectifiers for PFC Applications. IEEE Trans. on Power Electron., vol. 27, no. 7, p. 3292-3301.
[56] Sabzali, A.J. E.H. Ismail, M.A. Al-Saffar and A.A. Fardoun.2011. New Bridgeless DCM Sepic and Cuk PFC Rectifiers With Low Conduction and Switching Losses, IEEE Trans. Ind. Electron., vol. 47, p. 873-881.
[57] Simonetti, D. S. L.; J. Sebastian and J. Uceda. Oct. 1997. The discontinuous conduction mode Sepic and Cuk power factor pre-regulators: Analysis and Design, IEEE Trans. on Ind. Electron., vol. 44, no. 5, p. 630-637.
[58] Sabzali, A.J.; Ismail, E.H.; Al-Saffar, M.A.; Fardoun, A.A. Nov. 2009. A new bridgeless PFC Sepic and Cuk rectifiers with low conduction and switching losses, Power Electronics and Drive Systems. PEDS 2009.p. 550 556.

APPENDIX A

ORCAD PROGRAM

Vac	10	$\sin (010050)$
LI	12	2 m
RLI	23	0.01
Cl	34	lu
XSI	31011	irfb 4332 pbf
Vph	150	PULSE $(0120 \ln \ln 5 . \mathrm{u} 20 \mathrm{u})$
vpl	160	pulse $010 \ln \ln 10 \mathrm{~m} 20 \mathrm{~m})$
vpn	170	pulse $0110 \mathrm{~m} \ln \ln 10 \mathrm{~m} 20 \mathrm{~m})$
Evsp	1011	VALUE $\left\{\mathrm{V}(15,0)^{*} \mathrm{~V}(16,0)\right\}$
XS2	01211	irfb 4332 pbf
Evs2	1211	VALUE $\left\{\mathrm{V}(15,0)^{*} \mathrm{~V}(17,0)\right\}$
C2	35	lu
Dol	04	DIN5402
Do2	50	DIN5402
L2	48	50 u
RL2	89	0.01
L3	56	50 u
RL3	67	0.01
Col	70	2200 u
R	79	500
Co2	90	2200 u

simulation
*Analysis directives:
.PRObe
.TRAN 0.1 u 900 m 500 m 0.1 u UIC
.MODEL DI_PDS3200 D (IS=51.7u RS=11.3m BV=200 IBV=10.0u
$+\mathrm{CJO}=630 \mathrm{p} \mathrm{M}=0.333 \mathrm{~N}=2.21 \mathrm{TT}=14.4 \mathrm{n}$)
MODEL Dmod D (IS=3.44523e-06 RS=0.01 N=1.99899 EG=0.965769 $X T I=4 B V=200 I B V=l e-05$
$+\mathrm{CJO}=1.12334 \mathrm{e}-10 \mathrm{VJ}=0.4 \mathrm{M}=0.291003 \mathrm{FC}=0.5 \mathrm{TT}=4.54449 \mathrm{e}-08 \mathrm{KF}=0$ $\mathrm{AF}=1$)

MODEL DSTTH5L06 D (IS=494.98E-9 $\mathrm{N}=2.2603 \quad \mathrm{RS}=14.292 \mathrm{E}-3$ $\mathrm{IKF}=.30782 \mathrm{CJO}=127.22 \mathrm{E}-12 \mathrm{M}=.42266$
$+\mathrm{VJ}=3905 \mathrm{ISR}=10.010 \mathrm{E}-21 \mathrm{NR}=4.9950 \mathrm{FC}=0.5 \mathrm{TT}=24.000 \mathrm{E}-9)$
.MODEL D1N5402 D(IS=2.68E-12)
*.MODEL DIN5402 $\mathrm{D}(\mathrm{IS}=2.68 \mathrm{E}-12 \quad \mathrm{RS}=0.00731 \quad \mathrm{~N}=1.17 \quad \mathrm{TT}=1.44 \mathrm{E}-5$ CJO $=1.24 \mathrm{E}-10$
*+ VJ=0.6 M=0.333 BV=266 IBV=1E-5)
*IXKK85N60C NMOS model $600 \mathrm{~V}, 85 \mathrm{~A}, 35 \mathrm{mohm}, \mathrm{Rg}=2.2 \mathrm{Ohm}$.MODEL IXKK85N60C NMOS (LEVEL=3 L=2.0000E-6 W=860 $K \mathrm{P}=1.0387 \mathrm{E}-6 \mathrm{RS}=10.000 \mathrm{E}-3$
$+\quad \mathrm{RD}=19.626 \mathrm{E}-3 \quad \mathrm{VTO}=3.4544 \quad \mathrm{RDS}=12.000 \mathrm{E} 6 \quad \mathrm{TOX}=2.0000 \mathrm{E}-6$ $\mathrm{CGSO}=11.628 \mathrm{E}-18 \mathrm{CGDO}=729.90 \mathrm{E}-15 \mathrm{CBD}=80.669 \mathrm{E}-9$
$+\mathrm{MJ}=1.1673 \mathrm{~PB}=3 \mathrm{RG}=10.000 \mathrm{E}-3 \mathrm{IS}=21.329 \mathrm{E}-6 \mathrm{~N}=2.3569 \mathrm{RB}=1.0000 \mathrm{E}-9$ GAMMA $=0$ KAPPA $=0$)

IRFB4332PBF
.SUBCKT irfb4332pbf 123

* SPICE3 MODEL WITH THERMAL RC NETWORK
* Model Generated by MODPEX
*
* Copyright(c) Symmetry Design Systems*
* All Rights Reserved
* UNPUBLISHED LICENSED SOFTWARE *
* Contains Proprietary Information *
* Which is The Property of
* SYMMETRY OR ITS LICENSORS
* Commercial Use or Resale Restricted *
* by Symmetry License Agreement
* MODEL FORMAT: SPICE3
* Symmetry POWER MOS Model (Version 1.0)
* External Node Designations
* Node 1 -> Drain
* Node 2 -> Gate
* Node 3 -> Source

M19788 MML=100u W=100u
.MODEL MM NMOS LEVEL=1 IS=1e-32
$+\mathrm{VTO}=5.2452 \mathrm{LAMBDA}=1.44034 \mathrm{KP}=495.593$

+ CGSO $=5.57997 \mathrm{e}-05 \mathrm{CGDO}=3.6051 \mathrm{e}-07$
RS 830.0118129
D1 31 MD
.MODEL MD D IS $=1.06456 \mathrm{e}-08 \mathrm{RS}=0.00128288 \mathrm{~N}=1.36378 \mathrm{BV}=250$
$+\mathrm{IBV}=0.00025 \mathrm{EG}=1 \mathrm{XTI}=2.31736 \mathrm{TT}=1 \mathrm{e}-07$
$+\mathrm{CJO}=7.7726 \mathrm{e}-09 \mathrm{VJ}=0.5 \mathrm{M}=0.776144 \mathrm{FC}=0.1$
RDS $311 \mathrm{e}+07$
RD 910.017856
RG 274.09017
D2 45 MDI
* Default values used in MD1:
* $\mathrm{RS}=0 \mathrm{EG}=1.11 \mathrm{XTI}=3.0 \mathrm{TT}=0$
* $B V=$ infinite $I B V=1 \mathrm{~mA}$
.MODEL MD1 D IS=1e-32 N=50
+ CJO $=3.36828 \mathrm{e}-09 \mathrm{VJ}=0.5 \mathrm{M}=0.9 \mathrm{FC}=1 \mathrm{e}-08$
D3 05 MD2
* Default values used in MD2:
* $\mathrm{EG}=1.11 \mathrm{XTI}=3.0 \mathrm{TT}=0 \mathrm{CJO}=0$
* $B V=$ infinite $I B V=1 \mathrm{~mA}$
.MODEL MD2 D IS=1e-10 N=0.400101 RS=3e-06
RL 5101
FI2 79 VFI2-1
VFI2 400
EV16 100971
CAP $11103.36828 \mathrm{e}-09$
FIl 79 VFIl-1
VFIl 1160
RCAP 6101
D4 06 MD3
* Default values used in MD3:
* $\mathrm{EG}=1.11 \mathrm{XTI}=3.0 \mathrm{TT}=0 \mathrm{CJO}=0$
* $\mathrm{RS}=0 \mathrm{BV}=$ infinite $\mathrm{IBV}=1 \mathrm{~mA}$
.MODEL MD3 D IS=1e-10 N=0.400101
.ENDS irfb4332pbf
.OPTIONS ITL5=0 ;*TOTAL ITERATION LIMIT
.OPTIONS LIMPTS=0;*MAXIMUM POINT ALLOWED
.OPTIONS ITL4=100;*ITERATION LIMIT PER POINT
**** Real Tolerance
.OPTIONS RELTOL=0.001
.OPTIONS VNTOL=1E-6
.OPTIONS NUMDGT=6
.OPTIONS ABSTOL=1E-6
four $50 \mathrm{I}(\mathrm{Vac})$
.END

الاطروحه في سطور

 ضروريا، لانو اع كثيره من الاجهز هالالكترونيِ لتلبيةَ اللو ائح و المعايِير الدوليه.

 قابلا للتطبيق في صناعة شاحن البطار ية للبيار ات الكهر بائِيه.

حيث ان الهزف الرنيسي من هذه الاطروحه الا وهو تصميم محول كهربائي ذو كفاءه عاليه يلبي

 المقار نه بين المحول المقتر ح والمحول المو جود، ان المحول المقتر ح يتمبز بكفاءه أعلى وخصـانص

وفي الختام، اسأل المولى عز وجل التوفيقَ والسداد ، وان يجعل من هذا العمل بدابية لمستقّبل افضل وبعم نفعه على المجنْمع.

بقلم: عائشه كميدش الكعبي

$$
\begin{aligned}
& \text { جـامعة الا مـارات العربـيـة التـحـدة } \\
& \text { كلـية الثـند سـة } \\
& \text { برنامـج هـاجستيـر الهـنـدسـة الككهربائـيةَ }
\end{aligned}
$$

محول كهربـائي "رفـع الجهلـ بكفاءه عاليـه لتطبيقات الجهلد العالي

رسالّة مقدمـة من الطالبـة
عائشة كميلش الكعبي
جامعة الا مـارات العربـية المتحـدة

استكمهالا لمتطلبـات الحصول على درجة الماجستير
وِن الهنـدسة الكهربائية

أشـراف
الدكتور عباس فردون
Shriee $\begin{aligned} & \text { Digitally signed by } \\ & \text { Shrieen } M \text { Wolieed }\end{aligned}$ DN: $\mathrm{Cn}=$ Shrieen M Wolieed, $\mathrm{o}=$ United

