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ABSTRACT 

Combined microscopic, heavy-minera� X-ray diffraction and chemical analyses 

have been carried out on the Jurassic limestones, the Upper Cretaceous Hawasina cherts 

and the coastal and inland sand dunes in several localities in the Ras AI Khaimah 

Emirate. The obtained results revealed that cherts are represented by a number of 

subfacies; namely: ferruginous radiolarian ribbon chert, carbonaceous radiolarian ribbon 

chert, col1oform ribbon chert, calcareous chert and siliceous mudstone. These rocks 

consist of (in order of decreasing abundance): quartz, calcite, dolomite and hematite. 

The carbonate rocks are made up of lime mudstone, wackestone, packstone and, rarely, 

crystalline limestone. Various types of wackestone and packstone were recorded. 

Mineral1ogically, these limestones consist of calcite and much lesser proportions of 

quartz and dolomite. Diagenesis greatly modified the original textural and 

compositional characteristics of the rocks especially the limestones. On the other hand, 

the light fractions of the coastal sand dunes contain higher concentrations of carbonate 

litho clasts and skeletal grains and lower proportions of quartz and chert than those of 

the inland dunes. Also, the heavy fractions of the former sediments are slightly more 

enriched in opaques, pyroxenes, epidotes and hornblende while depleted in rutile, 

tourmaline, garnet and monazite. 

The obtained geochemical data confirm the presence of the main chert types; 

namely: (i) radiolarites (R), (ii)calcareous cherts (CC), and (iii) siliceous mudstones 

(SM). Each type has a homogeneous and characteristics major and trace element 

compositions. Silica values are highest (90%-98%) in radiolarites and lowest (49%-

72%) in calcareous cherts. The relatively high AlI(Al+Fe+Mn) ratios in most cherts, 

reflects the importance of the terrigenous sources in their genesis. This is further 
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confirmed by the increase of Ti02, AhO), MgO, Fe20) and HFSE (High Field Strength 

Elements). The cherts exhibit LREE (Light Rare Earth Elements) fractionated patterns 

with moderate negative Eu anomalies. R-mode cluster analysis shows three clusters. 

The first is for the carbonate minerals the second includes the terrigenous components 

and the third is the silica cluster. Factor analysis produced a two-factor model which 

accounts for 85.85% of the data variability. The first is the terrigenous factor (Ti02, 

AhO) FeO, K20, P20S Rb, Ga, Zr and REE), and the second is the carbonate factor. 

The majority of the studied limestones and a few of the chert rocks are 

compositionally similar to those presently used by the Ras Ai Khaimah Rock Company 

for cement production and, consequently can be considered for possible future needs. 

On the other hand, the compositional characteristics of the dune sands, especially the 

coastal dunes, do not permit their use as a possible source of silica. 
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C H A PTER I 

INTRODUCTION 

1 

The northern most part of the United Arab Emirates (U.AE.) is occupied by the 

Ras AI-Khaimah CR.AK) Emirate which has got a reputation for being the greenest of all 

the emirates. It has the highest amount of rainfall and the highest supplies of groundwater 

due to its proximity to the Rajar Mountains. Ras AI-Khairnah has enjoyed only a limited 

success in the oil industry, but it has sufficiently encouraged other industrial activities and 

investments. One of the Ras AI-Khaimah's major resources is represented by the industrial 

materials such as limestones from the Rajar Mountains (Northern part of Oman 

Mountains) at Musandam Peninsula and the siliceous rocks which are exposed in the 

Rawasina sequence (Northern part of Oman Mountains) at Dibba Zone and AI Rams area. 

These two types of material are essential for the cement industry. Presently, a limestone 

and siliceous rock quarries have been opened in the area by the Ras AI-Khairnah Rock 

Company, and a siliceous rock quarry at AI Rams area has been utilized by the Union 

Cement Company. 

1 . 1  Geomorphology 

The northern part of UAE, which comprises the study area including Khor Khowair, 

AI Rams, AI Gail and Idan, represents the northern extension of the Oman Mountains 

chain. The region displays the following geomorphic units (Fig. 1.1): 

1 . 1 . 1  The  Structu ral R idge of the M ou n ta in  Region 

The structural ridge of the mountain region occupies the eastern portion of the area 

and rises to more than 2000 m (a.s.l) in the northern tip close to Shaam. The major portion 



'" 
00 

"" 
,,' 

]Si 
"" 

2 • ... 

5!P1S' 

H 

A ARABIAN 
GULF 

10 20 JOkm 

UNITED ARAB 
EMIRATES 

LEGEND 
0 Mountains 
0 Gravel pia loS 

0 Sand dunes 
- Inland sabkha 

Coastal sabkha 

-.) 

SA U 0 I 
"It A B 1 A 

, .,. 00 

56<' 15' 

GULF 
OF 

OMAN 

OM A N 

" 

zso 00 

Fig.l.l Simplified geomorphologic map of the Northern United 

Arab Emirates showing the location of the study areas 

(simplified from the UAE National Atlas, 1993). 

2 



3 

of the ridge is underlain by carbonate rocks which are dominantly barren with regard to 

soils and vegetation. Wadi and morphotectonic depressions are filled with ample amounts 

of downwash deposits which constitute characteristic features of the landscape. 

In the area between Shaam and Burayrats, the edge of the ridge rises abruptly from a 

narrow coastal plain which is missing at Shaam. This edge is prominently dissected by the 

outlets of short and rather steep wadis which add more to the complex topography of the 

area. 

1 .1 .2 The Western Bajada of the Gravel Plain 

This geomorphic feature is composed of a complex set of alluvial fans along the base 

of the structural ridge. The surface of the Bajada is underlain either by flattened gravely 

deposits or mudflat deposits and is, in places, occupied by shifting sands. In the north, the 

plain is known as Jiri plain which separates the mountain range from the desert foreland. 

1 . 1 .3 The Sandy Desert or Structural Plain 

This area forms a triangle bounded by coastal sabkhas and the sea in the northern 

area The dunes are composed mainly of carbonate and quartz sand. In Ras Al Khaimah 

area, the sand dunes are generally elongated with a NE - SW orientation and the interdunal 

depressions have deflated bottoms. 

1 . 1 .4 The Coasta l Pla in  

This is the area of tidal flats and sabkhas bordering the Arabian Gulf. In the area near 

Ras Al Khaimah, littoral erosion may be observed, the coastal flats 
are generally absent 

and cliffs of dune sands form the shoreline. 
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The land exhibits typical features of arid zone geomorphology with degradation of 

the major portion of the surface. The area is also arid with regard to vegetation, soil, 

presence of sand dunes and development of salt encrustations (salinization) in the 

interdunal depressions locally known as "sabkha". The Wadi Al Bih area lies in the 

extension of the Oman Mountains chain, consisting of Ru'us Al Jibal mountain range or 

the structural ridge as defined by IW ACO (1986) (Fig. 1.2). The remaining areas can be 

classified as lowlands. The area shows indications of land features designating post wet 

climatic conditions which were prevailing during the Late Tertiary and, occasionally, the 

Quaternary. 

The structural setting of the carbonate rocks affects the shape of the landscape. Except 

in the west (thrust fault) and south (Hawasina contact), the dipping of beds generally does 

not exceed 20 degrees. This contributes to the formation of sub-vertical cuts of the deeply­

incised wadis in canyon-like valleys, and to the development of elevated flat areas on 

gently-sloping beds. Different levels can be distinguished in the flat area on gently-dipping 

slopes in the proximity of the two major wadis (AL Bih and Naqab) with the elevations: 

170-230 Ill, 500-550 m and 790 - 840 m. Sporadic small-scale agricultural activities exist 

on these high mountain flats. 

The lowlands, especially the alluvial fans, expenence an intensive agricultural 

development. Three distinct fans are present on the western edge of the mountain range, 

originating from Wadi Ai Naqab, Wadi Ai Bih and Wadi Galillah. The slope distribution is 

uniform and the surface gradient is about 0.011. Most of the cultivation is concentrated at 

the foot of the alluvial cone where the finer outwash materials predominate. Where the 

alluvial fan changes into gravel plain, the Wadi channel course disappears and the surface 

becomes irregular. These areas are used for larger-scale agricultural farms and only the 

lowest parts are left as barren boulder fields (original surface of the gravel plain). 
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Two levels having different stages of incision can be distinguished in the area; both 

supporting scattered cultivation. The first level is bound to the main wadi channels with 

direct outlets to the sea (Wadi Sh� Wadi AI Bih and Wadi AI Naqab). The elevations 

range between 50 m and 200 m (a.s.1.). The other type of landscape with scattered 

cultivation can be found on gently-sloping mountain faces, drained by minor wadis. 

Contributing to the main wadis, they form deep cloughs and steep cliffs separating these 

two levels. Tiny cultivations can be found as far as 850 m (a.s.L) (e.g. Ragil). 

1 .1 .5 M o u n ta ins  

The Oman Mountains comprise a number of different groups of rocks most of 

which can be broken down into many smaller units (Glennie et aI, 1974; Glennie, 1995). 

The present study, however, is concerned only with two major classes of rocks. The first is 

an autochthonous sequence (formed and remained in place) ranging in age from 

Precambrian to Cretaceous. The second class comprises two allochthonous sequences 

(rocks moved to their present position from elsewhere). The lower sequence is composed 

of sedimentary rocks and is known as the Hawasina Group. It is overlain by the Sernail 

suite which consists mainly of a slab of former oceanic crust. A brief description of these 

three fundamental units, the autochthonous sequence and the two allochthonous sequences, 

is given in the following. 

The upper part of the Autochthonous unit is the Rajar Supergroup, a sedimentary 

sequence that is exposed in parts of the Oman Mountains and continues beneath the desert 

to the south and west. The major part of this sedimentary sequence was deposited on the 

bottom of shallow seas on the continental shelf or platform that covered much of Arabia 

between the Mid-or Late Permian period and the Late Cretaceous time. 
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The allochthonous Hawasina sediments were deposited on the floor 
of an ancient 

ocean (the Neo-Tethys) which, between about 270 and 70 million years ago, covered the 

NE of the Arabia. During most of that time span, Arabia (then formed the NE comer of 

Africa) was moving slowly westwards as the ocean on its eastern margin grew wider. As 

will be explained shortly, this increase in ocean width resulted from the creation of a new 

oceanic crust in the middle of the Neo-Tethys (which actually consisted of two parts: Neo­

Tethys 1 and Neo-Tethys 2). 

Overlying the Hawasina is the other allochthonous unit, the Semail Ophiolite 

suite. This consists of a thick slab of a former oceanic crust that was created on the floor of 

Neo-Tethys 2 between about 70 and 105 million years ago. These three groups of rocks are 

used to lie side-by-side; the Arabian shelf to the west, the newly-created oceanic crust 

(Semail Ophiolite) to the east, with the Hawasina sediments overlying older oceanic crust 

in between. Presently, they exist as a thick pile of one stacked sequence on the top of the 

other. This stacking process began possibly 105 million years before the present, and took 

about 35 Ma to be completed. The stacking did not create a mountain range possibly 

because the autochthonous rocks were held down by the great weight of the overlying 

Semail ophiolitic sequence but rather formed a chain of essentially low-relief islands 

roughly along the site of the present mountains. It was not until 40 Ma later that the Oman 

Mountains began to be pushed up into a high mountain range. This was about the time 

when India started to collide with the southern edge of Eurasian (Europe plus Asia) plate to 

be followed by the creation of a new oceanic area beneath the Red Sea with the separation 

of Arabia from Africa. 
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1 . 1 . 6  Al luvial  Fa n 

Alluvial fans are significant landforms in the Wadi AI Bih area. They are 

widespread, having uniform slope distribution and the surface gradient is about 0.011. 

Where the alluvial fan changes into gravel plain, the course of wadi channel disappears and 

the surface becomes irregular. Near the wadi mouth, the high resistivities may indicate the 

presence of basement bedrock at shallow depths. 

1 .2 Geology and Structura l  Setting 

The Dibba Zone in the Northern Oman Mountains (Fig.I.3) represents a transition 

between a Late Paleozoic-Mesozoic continental margin and an oceanic basin. This critical 

area links a continent-ocean boundary to the southeast in the Gulf of Oman to a continent-

continent collision zone to the northwest in the Zagros area (Falcon, 1967� Stocklin, 1968 

and 1974� White and Ross, 1979). 

The Dibba Zone is an elongate, 10 km wide, NE-SW-trending topographic 

depression between the carbonate successions of the Musandam shelf to the northwest and 

the Semail Ophiolite to the southeast. The geology of the area of the Dibba Zone has been 

studied in detail by Robertson et af. ( 1990). Based on this study, the following is a brief 

description of the main geological characteristics: 

The study area of the Dibba Zone forms an oblique-rifted (transitional) segment of the 

Arabian passive margin (Fig.l .4). Five major thrust units are recognized: 

1- The Musandam shelf carbonates: a Late Paleozoic-Mesozoic allochthonous 

carbonate platform unit. 

2- The Sumeini Group: relatively large, intact thrust sheets of Mesozoic carbonate 

slope facies. 

3- The Hawasina Complex: a complicated stack of thrust sheets of Mesozoic deep-

water carbonate platform slope, continental rise and abyssal plain sediments. 
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4- The Haybi Complex: comprising sedimentary and tectonic melange, up to 

mountain-sized limestone units ('olistoliths' or Oman Exotics), alkaline and 

tholeiitic volcanics, and greenschist - and amphibolite - facies metamorphic rocks 

forming the sole of the Semail Ophiolite (Searle and Malpas, 1980 and 1982). 

5- The overriding Late Cretaceous Semail Ophiolite thrust sheet. The thrust stack is 

assumed to have been assembled by continentward-migrating thrusting, with 

originally more distal (outboard) units located at progressively higher structural 

levels. 

During the mid-Tertiary time, 3.5 km thick sheet of Musandam shelf carbonate was 

thrusted about 15 km westwards along the Hagab thrust giving rise to huge domal 

culminations (Searle et at. ,  1983; Searle, 1988 b) (Fig. 1.3). Along the southeastern edge of 

the Musandam Peninsula, a major culmination apparently collapsed southeastwards along 

an important normal fault, explaining the presence of a large Semail Ophiolite slice down 

in the structural stacking order in the north of the study area (Fig. 1.4). In the Dibba Zone, 

deformation of assumed mid Tertiary age gave rise to large, asymmetrical, west-facing 

'whaleback' folds, accompanied by reverse faulting and limited out-of-sequence thrusting 

(Searle et oZ., 1983) (Fig. 1.5). 

1 . 2 . 1  H ajar Su pergrou p: Mesozoic - Early Tertiary carbonate p latform 

The a. c. 3500 m thick Musandam shelf succession from Ras Al Khaimah and 

Oman is already well documented ( Lees, 1928; Hudson et oZ., 1954a,b; Hudson and 

Chatton, 1959; Hudson, 1960; Alle mann and Peters, 1972; Glennie et at., 1973, 1974; 

Biehler et oZ., 1975; Ricateau and Riche, 1980; Rabu et ai., 1990). Salient features can be 

briefly summarized as follows: 

The mainly dolomitic Permian and Triassic platform sediments (Bih, Hagil and 

Milaha Frns.) consist of shallowing upwards intertidal to supratidal cycles that pass 
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laterally towards the shelf edge into higher-energy facies. In the Late Triassic, fore-reef 

talus conglomerates were developed around Wadi Ausag and comprised boulders and 

blocks up to 40 m in diameter of coral, grainstone, oolite and wackestone. The end of the 

Triassic time was marked by the emergence of the platform, with ferruginous deposition 

and progradation of quartzose sands (Ghalilab Fill.) towards, but not as far as, the shelf 

edge. The controls were probably uplift related to final continental break-up of the 

Gondwana, combined with eustatic sea-level fall (Vail et al., 1977). 

Re-establishment of shallow-water conditions gave rise to the Jurassic Musandam 

Group 1, 2 and 3 carbonate platform cycles (Glennie et al., 1974; Richateau and Riche, 

1980) which pass into deep open-marine thin-bedded lime mudstones of Late Jurassic­

Early Cretaceous age (e.g. Miaolica facies). 

The upper platform slope is well exposed in the northwestern Dibba Zone, in Wadi 

Ausag and Batha Mabani (Figs. 1.4 and 1.5a). Shallow water platform carbonates, with 

Kornubia, are overlain by deeper water, well-bedded porcellaneous calpionellid 

limestones, radiolarian lime mudstones and red to pink marls, interbedded with slump beds 

and conglomerates with Tithonian-to Berriasian-aged clasts embedded in a muddy matrix 

(Allemann and Peters, 1972). 

Platform emergence and/or non-deposition were marked by a disconformity at the 

base of the Arabian Wasia Group (Musandam Cycle 4). Transgressive lithofacies initially 

comprised argillaceous carbonates (Nahr Urnr Fm.), followed by the finer-grained 

sediments (Mauddud Formation). Inferred shallowing-upwards then gave rise to mixed 

terrigenous and carbonate sequences of mid-Albian to Cenomanian age (Natih Formation) 

( Hughes Clarke, 1988). 

Flexural upwarping associated with the beginning of the Ophiolite obduction 

episode ( Robertson, 1987) resulted in the erosion of up to 600 m of the shelf edge and the 
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upper slope succession, down to the Albian horizons in the Batha Mahani and Wadi Ausag 

areas. As the Sernail ophiolite overthrusted the platfonn margin, inner-shelf areas further 

northwest were loaded and subsided giving rise to a foreland basin in which ophiolite­

derived sediments (Guweyza Fm.) accumulated rapidly (Glennie et aZ., 1974; Patton and 

O'Connor 1988). Final overthrusting of the Semail ophiolite took place in Late 

Campanian - Early Maastrichtian time. However, there is little evidence that the Ophiolite 

moved far over the Musandam shelf The most far traveled Hawasina sediments still , 

preserved, are exposed in the Hagil window and as two very small klippen in the central 

M usandam Mountains (Biehler et al., 1975). 

Following emplacement of the Semail ophiolite, a carbonate shelf was re-

established, as the Paleocene-Eocene Pabdeh Group and the Oligocene Asmari Formation 

(Fig. 1.6). Regional compression during the Late Oligocene - Miocene time was related to 

collision in the Zagros area (Searle 1988b) and the Musandam platfonn underwent large-

scale folding, while the higher levels of the succession were thrusted at least 15 km to the 

west along the Hagab thrust, associated with the development of a foreland basin 

succession (pabdeh basin) to the west. 

1 .2 .2 Su m ein i Grou p :  carbonate slope deposit ion 

Jurassic and Cretaceous carbonate slope facies (Sumeini Group) are well exposed 

in the Dibba Zone (Figs. 1.3 to 1.6). The Jurassic succession in the north (Wadi Khabb) is 

dominated by about 700 m of dark gray to black, decimeter-bedded, unburrowed lime 

mudstone and minor grainstone that contain calcified radiolarians, rare crinoids and small 

shell fragments, but are otherwise mainly unfossiliferous (a Member of Mayhah Fro.; 

Glennie et aZ., 1974). Slump scars are common. They are up to 30 m long to 5 m deep. 

Submarine slopes were for a long period steep and unstable. The Jurassic-mid Cretaceous 
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l ime tones represent Bahama-type periplatfonn ooze. The succession in the Dibba Zone 

then passes upwards into 100-300 m of limestone-conglomerates and slumps, followed in 

turn by shale and thin-bedded limestone of the Qumayrah unit (Muti Formation). Further 

south, s imilar limestone debris flows are exposed in the Jabal Agah window (Figs.1.34 and 

l .5b). Platform lime mudstones of Jurassic - Early Cretaceous age there are transgressively 

overlain by t hin-bedded micritic limestone, with planktonic foraminifers of Early Albian to 

Early Cenomanian age (Allemann and Peters, 1972). Overlying thin-bedded deep-water 

limestones, marls and conglomerates are dated as Santonian-Coniacian (Allemann and 

Peters, 1972) to probably Early Campanian. The succession records collapse and mass­

wasting of the upper parts of the carbonate slope in early Late Cretaceous time, and is 

equivalent to the C Member of the Mayhah Formation in the Sumeini area (Watts and 

Garrison, 1986). Similar fault-bounded conglomerates of Aptian-Albian age e xist below 

the Hagab thrust in the Hagil Window (Lakshaifa Fm. of Hudson et aI. , 1945b). Other 

smaller bodies of Sumeini Group, like the carbonates south of Wadi Al  Khurush (Figs. 1.4 

& l .5b) are interbedded with Upper Cretaceous syntectonic radiolarian facies, and are 

equivalent to the Riyarnah unit of the Muti Formation. The stratigraphically highest 

redeposited carbonates (slumps and debris flows) of the Upper Cretaceous part of the 

Sumeini Group are disconfonnably overlain by up to 300 m of sheared imbricated, non­

calcareous brown mudstone and shale , thin-bedded calciturbidites and minor rudites, that 

are collectively assigned to the Upper Cretaceous Qumayrah unit of the Muti Formation 

(Glennie et aI. , 1974; Robertson, 1987; Watts, 1990) (Fig. 1.5). The Qumayrah unit is 

folded around thrust culminations cored by the Sumeini Group (e.g. north of Tawiyayn and 

southwest of Jabal Agah) and is also sandwitched between these thrust sheets and the 

overlying carbonates of the Musandam shelf (e.g. Wadi Ausag - Wadi Khabb) (Figs. 1.4 & 

l.5a). The Qurnayrah units are attributed to flexural downward and collapse of the edge of 
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the carbonate platform to form a foredeep that was developed prior to overthrusting 

( Robertson, 19 87). 

1 .2 .3 Hawasina  Com plex: deep-water passive margin sediments 

Mesozoic deep-water successions of the Hawasina Complex are exposed in 

generally structurally higher thrust sheets. The sedimentary structures in all the successions 

are consistent with deposition from high - to low - density turbidity currents (cf. Bouma, 

19 62' Hiscott and Middleton, 1979 ; Lowe, 19 8 2), superimposed on a 'background' input 

of hemipelagic mud, fine-grained carbonate and true pelagic sediments that are mainly 

radiolarian. In the tectonostratigraphic scheme of Glennie et al. ( 1973, 1974), only a small 

outcrop of the Hamrat Dura Group was identified in Batha Mahani (Fig. 1 .5). Other 

successions were assigned by Glennie et ai. ( 1974) to the structurally lower and coarser­

grained Dibba Formation, and to the higher and more distal calcareous Dhera Formation 

and the siliceous Sharnal Formation. Cooper ( 19 8 6, 19 87) made the minimum necessary 

changes to bring the stratigraphy into line with international usage (Hedberg, 1976; 

Holland et ai. , 1978 ) (Fig. l .6) and the terms Dhera, Dibba and Shamal Formations are now 

abandoned. In the Dibba Zone, deep-water platform-derived sediments are placed in the 

Hamrat Dura Group and comprise the Late Pennian to Late Triassic Zulla Formation 

(mainly shale and limestone), the Late Triassic to mid Jurassic Guweyza Limestone 

(revised name) (mainly redeposited limestone), the Late Jurassic - Early Cretaceous 

(Tithonian - Barremian) Sid'r Formation (mainly chert) and the Albian - Cenomanian 

Nayid Formation (mainly redeposited limestone). The Guweyza Sandstone (Late Triassic) 

is not recognized in this area. 
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1 .2 .4 Trias ic Zu lla Format ion: starved base of slope 

In the central and northern Oman Mountains, the Zulla Formation is widely 

exposed and comprises mostly shale and muddy limestone (e.g. in the Hawasina window; 

Glennie et al. , 1974; Graham, 1980; Cooper , 1990). In the Dibba Zone, local recognition of 

the Zulla Formation (Figs.1.5 and 1.6) is based on limited age data and l ithological 

correlation. 

In the southwest at Batha Mahani, a succession of shale passes upward into thin ­

to medium-bedded calcilutite, silicified limestone and oolitic calcarenite containing 

curved thin-shelled pelagic bivalve fragments. Nodular silicification is ubiquitous. 

Radiolarians from red cherts immediately indicate Late Norian to Hettangian age. Three 

kilometers north of the village of Idan, a poorly-exposed succession comprises 'exotic ' 

limestone conglomerates, weathered volcanics, shale and thin calcarenite (Hawasina unit 2 

of Searle et al., 1980). 

The Zulla Formation comprises shallow water carbonate sediments derived from 

the Musandam shelf, particularly oolitic that were redeposited down a steep escarpment 

marg in and accumulated as small clastic wedges. Slope areas (e.g. Yamahah) were largely 

by-passed. The newly-rifted slope was unstable and repeatedly slumped, giving rise to 

intraformational platy-limestone breccias. Widespread tectonic instability during the Late 

Triassic triggered the development of lenticular conglomerates composed of reef edge­

derived materials. Fine-gra ined terrigenous background sediments accumulated under 

oxid izing conditions. Base of slope areas remained volcanically active . Slope like unit was 

covered by a wedge of finer-grained sediments, s imilar to those of the Hamrat Dura Group 

in the Hatta Zone; c .  60 km to the south ( Robertson et al., 1990). 

1 .2 .5 Late Triassic - Ju rassic G uweyza Formation: redeposited deep-sea carbonate 

Time - equivalent sed iments of the Early Jurassic Guweyza Formation that are 
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expo ed elsewhere in the Oman Mountains are represented m the Dibba Zone by 

redeposited oolitic limestones. 

In Batha Mahani, a small outcrop, previously mapped as the Hamrat Dura Group 

(Glennie et ai. , 1 974), comprises decimeter-to metre-bedded oolitic calcarenite that is 

inter-bedded with red shale, mainly low in the succession. There, the ZuUa Formation is 

locally conformably overlain by intact sequences comprising 25 m of silicified limestone, 

chert and shale, that pass upwards into 1 0  m of decimeter-bedded oolitic limestone, with 

inter-bedded green shale. 

At I dan, the Guweyza Formation compnses 33 m of centimeter-bedded, fine­

grained, rippled cacarenite. Each bed passes into structureless, chalky weather wackestones 

in which chert nodules are preferentially concentrated in the finer-grained fractions. 

Throughout the Dibba Zone, the Guweyza Formation is capped by a conglomeratic 

horizon, except locally in the north in the Yamahah section where there is a rapid transition 

to silicified limestone and cherts of the Sid'r Formation. The dominance of green shale and 

cherts in deeper water, basinal areas (e.g. Batha Mahani) suggests that diagenetic 

conditions were mainly reducing; more o xidizing settings were more apparent in rise 

continental areas. 

The conglomerates record extensional faulting, collapse of the platfonn edge and 

erosion of the submerged basement outcrops. The abundance of conglomerates contrasts 

with equivalent stratigraphic levels further south in the central mountains, as in the 

Hawasina window and the Hamrat Dura (Cooper, 1 990). This indicates that the Dibba 

Zone was particularly tectonically active throughout most of the Mesozoic t ime. 

1 .2 .6 Late Ju rassic - Early Cretaceous S id' r Formation: si liceous deposition 

The Sid'r Formation is dominated by distinctive red radiolarites of Late Jurassic 

(Tithonian) to Early Cretaceous (Late Valanginian) age. In  the northern Oman Mountains, 
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the formation is subdivided into a lower calcareous unit and an upper shale unit (Cooper 

1 986 1 990). 

uccessions at Jabal W amm and Jabal Dhera start with silicified radiolarian 

wackestone and interbedded shale. Tithonian radiolarian cherts and lenticular pebbly 

conglo merates are augmented at Jabal Wamm by pink slump-folded radiolarian 

wackestone. Five measurements of fold facing direction indicate south-directed transport . 

A massive, up to 8 m thick limestone conglomerate is also regionally developed towards 

the middle of the formation, and defines a gradational boundary with more shale-rich 

successions in the upper part of the Sid'r Formation. In this part, the abundance of coarse­

and fine-grained carbonate and radiolarian chert is reduced. 

I n  Batha Mahani, the base of the Sid'r Formation (Unit 2 of Searle et at., 1 983) 

comprises a 1 -2 m thick interval of recessive-weathering shales, silic ified marls and red 

and green radiolarian cherts, passing upwards into 35 m of variably silicified radiolarian 

wackestones and marls, with thin laminae of red chert. Pebbly conglomerates, 5- 1 0  em 

thick, are distinctly lenticular over 1 0-30 m laterally. Upwards, white- weathering, c liff -

forming, medium-bedded silic ified limestones contain abundant replacement dolomite. 

They are then overlain by 3 m of relatively unsilicified, coarse-grained, 30 cm thick beds 

of graded calcarenites, with granule-grade bases. The succession finally passes into a 5- 1 5  

m thick interval o f  recessive-weathering, brick red radiolarian cherts and shale. Near Idan, 

the Sid'r Formation is composed almost entirely of 2- 1 0  em-bedded, variably silicified, 

graded radiolarian wackestones (Fig. 1 .6). Parallel- laminated and/or rippled-bed bases are 

common. Replacement chert accounts for 50-90 % of the bed thickness. Shale is almost 

completely absent or restricted to thin laminae 

The Sid'r Formation records a combination of enhanced radiolarian productivity, 

raised sea-level (Vail et at., 1 977; Ager, 1 98 1 )  and/or a raised CCD. Associated tectonic 
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subsidence and faulting gave nse to the numerous platform-derived rudaceous 

intercalations. Drawing of the platform in the Late Jurassic - Early Cretaceous t ime then 

greatly reduced carbonate input to the basin. 

Conglomerates at the top of the lower unit record increased subsidence of the 

margin· carbonate largely ceased to be transported into the basin and fine-grained 

turbidities were restricted to the base of the slope. 'Background' shale deposition then 

dominated and red cherts accumulated from radiolarian fall-out (upper unit) in areas 

shielded from shale accumulation. Much of the chert was formed diagenetically through 

the dissolution of radiolarian tests and the replacement of the fine-grained and thin -

bedded calcareous sediments by silica 

1 .2 .7 Stru ctu ra l ly h igher H awasin a u n its 

Several large slices of Hawasina sedimentary rocks are located high ill the 

structural stack between outcrops of the Haybi Complex to the west and the Sernail 

Ophiolite and its metamorphic sole to the east (Figs. 1 .4 and I . 5b) .  Proximal base of slope 

facies includes shelf-derived conglomerate and reef limestone blocks up to 1 0 m in size. 

These are unlikely to be distal units formed far from the Arabian continent, but probably 

came to be in their present high structural position as a result of complex out-of-sequence' 

thrusting ( i.e .  with proximal over distal units) (Searle, 1 985;  Bernoulli and Weissert, 1 987;  

Cooper, 1 988 ;  Barrette and Calon, 1 987). Alternatively, these units were initially emplaced 

' in sequence', but were later downthrown by normal faults located along the northwestern 

side of the Musandam shelf succession (Searle, 1 988a) (Fig. 1 . 5a). 

In t he Jabal Dhaba area, the inferred out-of-sequence unit is sandwiched between 

outcrops of melange (Kub Melange, see below) and the Semail nappe and its metamorphic 

sole (Fig. 1 .3 ) .  Lithofacies are shared and disrupted (i .e. as broken formation) (Fig. 1 .6), and 
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comprised of shale, radiolarites, thin-bedded lime mudstone, turbiditic c 1carenite, 

channelized calcirudite and scattered, meter-sized detached blocks of reefal limestone. The 

lithologies can be correlated with all four formations of the Hamrat Dura Group (Zulla, 

Guweyza Limestone, Sid r and Nayid) .  Diabase sills are quite numerous. At the extreme 

southern end of this thrust-bounded unit (Fig. 1 .6), extensively-deformed successions of 

calciturbidites in beds up to 0.25 m thick are interbedded with ribbon chert that contains 

radiolarians of mid-Triassic (Late Ladinian) to Late Triassic (Carnian) age. 

Northeast of Wadi Kub (Figs. l .4 to 1 .6), another major duplex is mainly composed 

of radiolarian chert of the Sid'r Formation (Shamal Chert of Glennie et aI. , 1 974). This is 

sandwiched between volcanics of the Haybi Complex, sheared serpentinite below, and 

broken formation of the Hawasina Complex above. In detail, this unit comprises tightly­

imbricate ribbon radiolarian chert, subordinate shale and relatively rare, thin-to medium­

bedded silicified calciturbidites, with Calpionellids (Glennie et al. , 1 974). In  the north near 

Wadi al Khurush (Fig. 1 .4 and 1 . 5b), the Sharnal Chert locally passes into redeposited 

limestone typical of the Nayid Formation elsewhere. 

The Sid'r Formation as exposed north of Wadi Kub (Shamal Chert) is structurally 

overlain by an elongate, a bout 500- 1 000 rn, thrust-bounded outcrop comprising a broken 

formation. This includes a part of the 'sedimentary melange' outcrop mapped by Lippard 

et al. ( 1 982). I t  is made up of lenticular slices of Hawasina rocks up to 3 krn long by 0.5 

km wide. These are often bounded by thin stands of steeply-inclined, sheared serpentinite 

that increase in number and thickness northwards. Local sedimentary successions up to 60 

m thick comprise bioclast-rich calciturbidites, with rare calcirudite beds up to 0.3 m thick, 

containing clasts up to 0 .3  m in size, and short intervals of ribbon radiolarites. 
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1 .2 .8 Haybi Com plex: more outboa rd u n its 

Throughout the Oman Mountains, the Haybi Complex as a whole is very 

heterogeneous in age, structure and lithology (cf. Searle and Malpas, 1 980, 1 982; Searle et 

aZ. ,  1 980· Searle and Graham, 1 982; Lippard and Rex, 1 982; Bechennec et aZ. , 1 990). 

In the Dibba Zone (Fig. 1 .6), however, notable differences exist. First, in some 

places, extrusives of the Haybi Complex are thrusted between deep - sea sediments of the 

Hawasina Complex and the metamorphic sale of the Semail Ophiolite. Elsewhere, the 

Haybi Complex is generally located at the highest structural level below the metamorphic 

sale. Second, available dates on the extrusives are all Late Cretaceous, rather than Permian 

or Late Triassic, as in most other areas. Third, the Permian and Late Triassic limestones of 

the Oman Exotics in the Dibba Zone (at Jabal Qamar) are underlain by Ordovician to 

Pennian successions; e lsewhere Late Triassic extrusives are exposed. Fourthly, the Oman 

Exotics are assoc iated with a distinctively sheared sedimentary melange that has not so far 

been reported from other areas and is here termed the Khabb Melange. 

1 .2.9 Ayam Format ion : condensed shelf deposit ion 

The base of the conformably overlying Ayam Formation is a 0 . 1 5  m thick, Fe, Mn­

rich phosphatic pavement comprised of bone material, fish teeth, broken fish scales, 

preferentially-orientated Orthocones and well-rounded, honey-colored quartz grains in a 

siltstone matrix. Scattered, well-rounded phosphatic lumps contain terrigenous silt . The 

pavement is overlain by up to 5 m of finely-laminated, thinly-bedded brown shale, 

argillaceous calcilutite and calcareous siltstone. 

The succession passes upwards into rubbly, stylolitic concretionary limestone, with 

biocalstic limestone lenses up to 0 .25 m thick. There is then a 3 m thick distinctive 

horizon of fine-grained nodular limestone with manganese crusts and nodules up to 0.2 m 
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in diameter. The manganese occurs in an argillaceous lime-mud matrix, with numerous 

large burrows, that are mainly orientated parallel to bedding. The formation tenninates 

with up to 3 .5  m of brick-red argillaceous micritic limestone and hematitic shale with 

numerous randomly-orientated Orthocones. The Ayam Formation presently can be 

constrained only between the Ordovician and Early Permian. A Devonian age is possible 

as the formation, particularly the pelagic limestone and manganese nodules, resembles the 

Devonian Griotte and Cephalopodenkalk of the Western European Vatican (Tucker, 1 974) . 

1 .3 A im of the  Study 

The present study deals with the Jurassic to Upper Cretaceous limestones and 

siliceous rocks exposed in the northern part of the Unite Arab Emirates at Ras AI Khaimah 

Emirate .  I t  aims at : (i) determining the petrographic and mineral characteristics of these 

rocks; ( ii) investigating their geochemical attributes; and ( iii) assessing their suitability as 

raw materials for the cement industry in the Emirate. 



CHAPTER II 

MATERIALS AND METHODS 

OF STUDY 
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C H A PTER II 

M ATERIALS A N D  M ETHODS OF STUDY 

2 . 1  M aterials 

The materials used in the present study include 2 1  chert samples collected from the 

Hawasina succession in the silica quarries at Idan of the Ras AI-Khaimah Rock Company 

(RRC) and at AI Rams of the Union Cement Company (DCC), together with the exposures 

at AI Gail and Saram (Fig.2 . 1 ) . In addition, 1 5  limestone samples were collected from the 

different stratigraphic levels in the Khor Khowair limestone quarry of the Ras AI-Khairnah 

Rock Company. 

In order to evaluate the economic potential of dune sands as a source of silica in the 

cement industry, samples have been collected from the inland and coastal dunes at AI Gail 

and AI Helailah; respectively. Also, a diabase sheet structurally interbedded with the chert 

in the Hawasina succession has been sampled. 

2.2  Methods of study 

A total of 3 7  thin sections were prepared from the variOUS lithologies were 

microscopically examined. Out of these, 36 thin sections represent the chert and carbonate 

rocks and one was prepared form a sample collected from the diabase sheet. In addition, 

three grain-mounts were prepared from the dune sands, one represents the dunes which lie 

c lose to ophiolite exposures and two from those close to carbonate exposures. 

Powder samples have been prepared for the X-Ray diffraction analysis. The 

original sample was first crushed using a jaw crusher. The sample was then ground using 
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osci l latory mill. X-Ray diffractometry has been conducted on all the 37 samples 

representing the various rock types. A Phillips X-Ray diffractometer model PW/ 1 840 with 

Ni-filter, Cu - Ka radiation was used. Instrument settings were 40 kV, 30 rnA and scanning 

sp ed of  0.05°/sec. The diffraction peaks between 28 = 2° - 60 ° were recorded. Their d­

spacings and relative intensities (III 0 ) were determined and compared with the published 

ASTM data to identify the existing minerals. In  addition samples collected from the coastal 

and inland sand dunes were subjected to heavy-mineral analysis using bromoform (sp.g. = 

2 .87). The obtained light and heavy fractions were examined microscopically and their 

mineral constituents were quantitatively determined by point-counting of about 300 grains 

in each slide. Chemical analyses were conducted on the 36 samples representing the 

various sedimentary lithologies. Chert samples were prepared for the analysis by grinding 

weighting 250 grams of the clean, non-veined, non-stained, fresh sample in a tungsten 

carbide mill to pass the 200 mesh screen. The powder was homogenized and split. The 

obtained samples were analyzed for the major oxides by LiBO fusion using the ICP-ES 

technique and for the trace and rare earth elements (REEs) using ICP-MS. 



CHAPTER III 

PETROGRAPHY 



C H APTER l lI 

PETROGRA P H Y  

28 

Petrographic examination of thin sections and grain mounts prepared from the 

sedimentary rocks and dune sands in the study area permitted the recognition of two main 

facies; namely: the chert facies and the carbonate fac ies. Based on their composition, each 

of these facies could be subdivided into a number of subfacies. 

3. 1 The Chert Facies:  

The chert facies exists in almost all the exposures of the study area (Al Rams, A l 

Gail, Sararn, and Idan) except for Khor Khowair. Based on composition and physical 

appearance of the rocks, the following subfacies could be delineated: 

3. 1 . 1  Ferrugineous Radiolarian Ribbon Chert:  

This subfacies was recognized at A I  Rams, Idan and Al Gail, while was not 

recorded in Saram. The rock is composed of well-sorted, closely-packed radiolarian 

tests which are filled or replaced with chalcedonic silica that occasionally obliterated 

their morphological features (Fig.3 . 1 ) . The radiolarian tests are embedded in a 

microquartz groundmass that is impregnated with iron oxides (mostly hematite). The 

latter also fill hair-like fractures (Fig.3 .2), whereas larger fractures are partially or 

completely plugged with meso-to coarse-crystalline interlocked quartz and minor 

calcite crystals (Fig.3 .3) .  

3. 1 .2 Carbonaceous Radiola rian Ribbon  Chert: 

This subfacies was recorded in the localities: Idan, AI Gail and Saram while is 

absent at AI Rams . The rock is composed of a micro quartz groundmass in which are 

embedded closely-packed, poorly-preserved radiolarian tests and minor diatoms and 



Fig.3 . 1  A photomicrograph of ferruginous radiolarian ribbon chert. C losely­
packed radiolarian tests are embedded in a ferruginous micro quartz 
groundmass. (Sample I, Cross Polars, X I O) .  

Fig.3 .2 A closeup Vlew of the ferruginous radiolarian ribbon chert. 
Chalcedonic silica replaces the radiolarian skeletons or fills their 
cavities.( Sample 1 ,  Plain Po lars, X2S) 
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siliceous spicules. The groundmass is grayish black in color due to the presence of 

carbonaceous matter (Fig.3 .4). Moreover scattered, euhedral dolomite rhombs are 

recorded. Fractures are common and are filled by: dolomite and/or silica. (Fig .3 . 5) .  

3. 1 .3 Col loform Ribbon Chert: 

This subfacies was recognized only at Idan and AI Gail. Remarkably, it lacks 

radiolaria. The rock contains well-developed colloform quartz banding with distinct 

gradation in crystal size from micro-to coarse-crystalline (Fig.3 .6). Occasionally, the 

rock is highly brecciated (e.g. at Idan) (Fig.3 .7) .  The fractures are filled with two 

generations of cements: calcite and a subsequent silica cement. Traces of iron oxides are 

present either as stains or scattered spots. 

3. 1 .4 Calcareous Chert:  

It occurs in the Sararn, Idan and AI Gail areas while is  missing at AI Rams. The 

rock, which lacks radiolaria, is composed of a mosaic of authigenic micro quartz which, 

most probably, replaced a pre-existing carbonate. The latter seems to have been initially 

a pelagic limestone (abundant pelagic foraminifers) (Fig.3 .8). Scattered euhedral, 

medium-sized dolomite rhombs suggesting an earlier phase of dolomitization. Fractures 

are commonly filled with coarse-crystalline silica and subsequent calcite cements. The 

latter consists of eubedral, bladed interlocking crystals occupying the centers of the 

fractures. Minor amounts of hematitic materials are recorded (Fig.3 .9). 

3. 1 .5 S i liceous  C laystone:  

This subfacies was recorded at AI Gail, A I  Rams and Saram. The rock is 

characterized by a distinct fissility. It consists of an argillaceous groundrnass that was 

subjected to extensive silicification and contains calcite crystals and silt-sized quartz 

grains (Fig.3 . 1  0, 3 . 1 1 ) . Scattered pelagic foraminifers are recorded. Their chambers are 



Fig.3 . 3  A photomicrograph of the ferruginous radiolarian ribbon chert. A 
large fracture is filled with micro to macro crystalline quartz. (Sample 
1 ,  Crossed Polars, X25) .  

Fig .3 .4 A photomicrograph of the carbonaceous radiolarian chert . Abundant 
poorly-preserved radiolarian test are embedded in a carbonaceous 
micro quartz groundmass. (Sample 4, Crossed Polars, X l  0). 
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Fig.3 . 5  A photomicrograph of the carbonaceous radiolarian chert. The 
fractures are filled with chalcedoruc silica. (Sample 4 Crossed 
Polars, X l  0) .  

Fig.3 .6. A photomicrograph of the colloform ribbon chert . A well­

developed colloform texture displays a distinct gradation in crystal 

size. (Sample 1 7, Crossed Po lars, X25) .  
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Fig.3 . 7  A photomicrograph of the colloform ribbon chert .The rock is 
extensively brecciated and the developed fractures are filled with 
silica and calcite. (Sample 1 7  Crossed Po lars, X25) .  

Fig.3 . 8  A photomicrograph of the calcareous chert. Scattered pelagic 
foraminifers and poorly-preserved radiolarian tests are embedded in 
a matrix of calcareous, silt-sized quartz. (Sample 1 4, Crossed Polars, 
X I O).  
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Fig.3 .9. A photomicrograph of the calcareous chert. Relics and patches of 
dolomite rhombs constitute a part of the groundmass. (Sample 20, 
Crossed Po lars X25) .  

Fig.3 . 1 0  A photomicrograph of the siliceous claystone. The rock is 
composed of a silicified c layey groundmass in which are scattered 
pelagic forrnas and silt sized quartz grains. (Sample 1 9, Crossed 
Polars X I O). 

34 



35  

filled either by calcite crystals or  iron oxides. The latter also fill most of the existing 

hair-like fractures. 

In addition to the above-mentioned chert facies types, the sequence at Saram 

contains a thin lamina of conglomerate. The rock is polymict ic and composed mainly of 

c losely-packed coarse pebbles consisting (Fig. 3 . 1 2) predominantly of fossiliferous and 

siliceous limestones. Grains of ophiolitic origin (serpentinite and gabbros) and quartz 

sand are also present. The lithoclastics are cemented by coarse-crystalline calcite, minor 

silica and iron oxides. 

3.2 The  Ca rbonate Facies: 

The carbonate facies types were recorded in all the localities of the study area 

(ldan, Al Gail, Al Rams, Sararn, and Khor Khowair).  Based on the textural scheme of 

limestone c lassification proposed by Dunham ( 1 962), four subfacies types were 

reco gnized. 

3.2 . 1 L ime  M udstone: 

I t  is recognized only at Idan, Al Rams and Saram while is absent at Al Ghail and Khor 

Khowair. The rock is composed of a groundmass formed of argillaceous lime mud 

(Fig. 3 . 1 3 ) .  Scattered moldic pores, produced by dissolution of pelagic foraminiferal 

tests, are present and some are filled with calcite crystals. Fractures are commonly 

plugged with medium-to coarse-crystalline calcite and, occasionally, silica crystals and 

minor organic matter. 

3.2.2 Wackestone: 

This subfacies is recorded only in Khor Khowair area where it constitutes about 

43% of the carbonate succession. Based on the dominating carbonate allochems, two 

wackestone types were recognized : 



Fig.3 . 1 l A photomicrograph of the siliceous claystone, . The rock is 
composed of a siliceous c layey groundmass in which are scattered 
pelagic formas and siltsized quartz grains. (Sample 3 1 ,  Crossed 
Polars X25) .  

Fig. 3 . 1 2  A photomicrograph of the conglomerate subfacies. Coarse pebbles 

of various lithologies are c losely-packed and cemented by calcite 

and silica. (Sample 27, Crossed Po lars, X25).  
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( i )  Peloida l bioc la t ic wackestone:  

The rock is composed of an argillaceous lime mud groundmass conta ining much 

peloides of varying sizes. (Fig.3. 14). Skeletal grains are represented by crino ida I 

debris, algal and pelecypod shell fragments and scattered foraminiferal tests 

(Fig.3.1S). Calcite cement is present in the form of drusy growths inside some 

skeletal cavities. 

( i i )  Orbitoli n a  b ioclastic wackestone.:. 

The framework of this rock is composed of skeletal gra ins including tests of large 

foraminiferas ( Orbitolina sp. and Orbiopsella primaeva), small foraminiferas 

(Globotruncana sp. )  (Fig.3.16), algal grains, crinoidal debris, pelecypod shell 

fragments, large ostracodal carapaces, calcareous sponges and worm tubes. These 

gra ms are embedded in an arg illaceous lime mud matrix. Calcite cement occurs 

in the form of ve inlets and drusy growths inside many of the skeletal cavities. 

Aggrad ing neomorphism is also recognizable whereby neoformed calcite had 

destroyed many of the orig inal structural features of the skeletal grains. 

3.2.3 Packstone: 

This subfacies is recorded in Idan, AI  Ghail and Khor Khowair while is m iss ing at 

AI Rams and Saram. Based on the dominant carbonate grains, three subfacies could 

be delineated: 

( i )  Alga l bioclastic packstone.:. 

It is recognized in ldan and AI Gail areas. The calcareous algae (Codiaceans and 

lithotharnnium) constitute the majority of the carbonate grains (Fig3.17) and 

occasionally form a stromatolitic structure. Other skeletal gra ins consist of (in 

decreasing order of abundance) bryozoa (Leiosoecia), corals (colonial sc1eract ines) 



Fig. 3 . 1 3  A photomicrograph of the lime mudstone facies. A dense, 
homogeneous lime mud groundmass is dissected by calcite 
veinlets. (Sample 3, Crossed Polars, X2S). 

Fig . 3 . 1 4 A photomicrograph of the pelo idal bioclastic wackestone. 
Peloidal grains, foraminiferal tests and echinoid fragments are 
embeded in an argillacous lime mud groundmass. (Sample 32, 
Crossed Po lars, X2S) .  
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Fig. 3 . l S  A photomicrograph of the peloidal bioclastic wackestone. A large 
recrystallized crinoidal plate is embedded in a groundmass which 
is extentively affected by aggrading neomorphism. (Sample 32,  
Crossed Polars, X25). 

Fig .3 . 1 6  A photomicrograph of the Orbitolina bioclastic wackestone. 
Abundant well-preserved Orbitolinids tests are set in a 
groundmass of argillaceous lime mud. (Sample 36, Crossed 
Polars, X2S).  
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crinoidal debris ostracodal tests and pelecypod shell fragments, together with other 

unidentified bioclasts. These skeletal grains are cemented by rnicrosparry calcite 

(Fig. 3 . 1 8), which later had undergone partial recrystallization. Calcite cements 

filling many of the fractures and minor silica replacement are also clearly observed. 

The rock shows extensive aggrading neomorphism. Also, micritic envelopes are 

frequently recorded encrusting some of the carbonate grains. 

( i i )  PelecypodaJ b ioclastic packstone: 

This subfacies is recognized only in Khor Khowair. The framework of the rock is 

formed essentially of pelecypod shells (mainly Exogyra sp) and other unidentifiable 

fossil debris. (Fig. 3 . 1 9) .  I n  addition, crinoidal fragments, foraminiferal tests 

( Gaudyrina sp. and Textularia sp. ) and ostracodal carapaces are occasionally 

recorded. The cement consists mainly of intergranular microsparry calcite, which 

exists also as drsuy growths filling many of the skeletal cavities. Aggrading 

neomorphism extensively affected this rock type (Fig.3 .20) and resulted in partial 

obliteration of the initial structures of some skeletal grains. Wispy styloilites are also 

observed. 

( i i i) Orb itol ina  peloidal b ioclastic packstone: 

Well-sorted pellets composed of  dense lime mud form the mam non-skeletal 

carbonate grains in this rock. The skeletal grains, on the other hand, are dominantly 

foraminiferal tests (Fig. 3 .2 1 )  including large forams (Orbitolina sp. )  and small 

forams ( Textularia sp. ,  Nodosaria sp. ,  Spiroplectammina sp. and Bolivinoides sp.) .  In 

addition, scattered algal grains, crinoidal debris and pelecypod shell fragments are 

recorded. The cement consists of intergranular micro-to meso crystalline calcite 

which exists also as syntaxial overgrowths around crinoidal debris. Drusy calcite fills 

many skeletal cavities. Most of the carbonate grains are encrusted by micritic 



Fig. 3 . 1 7  A photomicrograph of the algal bioclastic packstone. Different 
Codiaceaus cemented by microsparitic calcite. (Sample 1 3 , Crossed 
Polars, X25) .  

F ig .3  . 1 8  A photomicrograph of algal bio�lastic packsto�e. 

codiaceaus are cemented by rrucrosparry calcIte. 

Crossed Polars, X25) .  

Various 
(Sample 1 3 ,  

4 1  



A photomicrograph of pelecypodal biocalstic packstone. 
Pelecypod shells are cemented by rnicrosparry calcite. (Sample 

3 3 ,  Crossed Polars, X25) .  

F ig. 3 .20 A photomicrograph of pelecypodal biocalstic packetone. 
Recrystallized pelecypod shells and pellets are cemented by 
microsparry calcite. (Sarnple 34, Crossed Po lars, X25) .  
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envelopes. Aggrading neomorphism is frequently recorded obliterating many of the 

original skeletal fabrics. The rock contains also wispy stylolites. 

3.2 .4 Crystal l ine Limestone.:. 

This facies type is rare whereby its occurrence is restricted to Idan area. The rock is 

composed of  a mosaic of interlocked, coarse crystalline, occasionally zoned calcite 

crystals (Fig. 3 .22).  This zoning pattern might reflect crystal growth through 3 to 4 

stages. Authigenic silica had been deposited in the intercrystal spaces and / or 

replaced the calcite crystals. 

3.3 Sand D u n es 

M icroscopic examination of samples collected from the inland and coastal dunes in 

the study area revealed the presence of two main types: 

3.3. 1 Carbonate Dune  Sands: 

This type of sands is composed essentially of well-sorted and well-rounded 

carbonate grains (Fig.3 .23) .  Some of these grains are made up entirely of lime mud 

while others have nuclei of foraminiferal tests encrusted by microcrystalline calcite. 

Some grains show typical oolitic structures. The sediment contains also detrital quartz 

grains, pelecypod shell debris and limestone lithoc1asts. 

3.3.2 Non Carbonate Dune Sands: 

These sands consist mainly of olivine, pyroxene and quartz grains that are generally 

well-sorted and well-rounded ( Fig.3 .24).  The calcareous sand-sized grains are rather 

mmor. 



Fig. 3 .2 1 A photomicrograph of Orbitalina biocalstic packetone. Orbitalina 
and small foraminiferal tests and pellets are cemented by 
microsparry calcite . (Sample 35 ,  P lain Polars, X25) .  

Fig.3 .22 A photomicrograph of the crystalline limestone. The rock 
consists predomineraly of coarse, zoned and interlocked calcite 
crystals.(Sarnple 9, Crossed Po lars, X25) .  
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Fig.3 .23 A photomicrograph of the carbonate dune sand. The predominantly 
carbonate grains are mainly well-sorted and well-rounded. 
(Sample 39,Crossed Polars, X25) .  

Fig .3 .24 A photomicrograph of the lithic dune sand. The grains are mainly 

monornineralic (predominantly olivine, pyroxene and quartz) 

well-sorted and well-rounded. (Sample 38 ,  Crossed Po lars, X25) .  
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3.4 The  Dia basic Sheet:  

The rock is fine-grained and dark green in color. The dominant mineral 

component include calcic plagioclase feldspar and pyroxene. Amphiboles are less 

abundant. and iron oxide are the main accessory minerals. Feldspars exist as lath- like 

interlocking crystals. Pyroxene is present in the fonn of subhedral to euhedral prismatic 

cry tal forming with the feldspar laths a typical diabasic texture ( Fig. 3 .25) .  

Fig.3 .25 A photomicrograph of the diabase. The rock is fine-grained dar:k 

green in color. The dominant mineral componants are calcIC 

plagioclase feldspar and pyroxene. ( Sample 7, Crossed Polars, 

X25).  
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X-ray diffraction analysis was utilized to throw more light on the mineral 

composition of the various rock types and sand dunes in the study area. The obtained X-ray 

data were used for the semiquantitative determination of the existing minerals based on the 

intensities of their strongest diffraction peaks. The results obtained are given in Tables 

(4. 1 )  to (4.4) and illustrated in Figs. (4. 1 )  to (4.9). These results are in accordance with 

those obtained from the microscopic examination of thin sections (Chapter I I I ) .  

4.1  M i nera logy of Cherts 

Table (4. 1 )  presents the mineral composition of the various chert types in the study 

localities. I t  shows that these rocks consist of ( in order of decreasing abundance): quartz, 

calcite, dolomite and hematite .  Quartz is the only major component in all localities except 

for some exposures in Saram where calcite also represents a major constituent. The latter 

mineral is a subordinate or minor component in some other calcareous cherts in Al Gail 

and Saram The presence of dolomite is restricted to the calcareous cherts of Idan in which 

it represents a subordinate or minor component. Hematite, on the other hand, was detected 

in only one sample representing the ferruginous radiolarian chert of Idan. 

4.2 M in era logy of Carbonate Rocks 

Table (4.2) presents the mineral composition of the various carbonate rocks in the 

study area. I t  shows that these rocks are made up of ( in order of decreasing abundance) : 

calcite, quartz and dolomite. Calcite is the sole major component in all the carbonates. 

Quartz exists as a subordinate constituent in some of the lime mudstones and wackestones 

of Saram. The presence of dolomite is limited to the packstones of Idan in which the 

mineral represents a minor constituent. 
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Table (4. 1 )  Mineral composition of the chert facies as revealed by X-ray diffractometry 

Locality ample Facies Type M lDeral Composition 

0 
Major Subordmate M lDor 

I Ferrugenous radlolanan chert Quartz Hematite 2 Radiolarian chert Quartz 
I dan 3 Radiolanan chert Quartz 

4 Calcareous chert Quartz Dolomite 5 Calcareous chert Quartz Dolomite 
6 Siliceous mudstone Quartz 
1 3  Sil iceous mudstone Quartz 
1 4  Calcareous chert Quartz Calcite AI Gail 1 5  Calcareous chert Quartz Calcite 1 6  Radiolarian chert Quartz 
1 7  Radiolarian chert Quartz 
1 9  Calcareous chert Quartz Calcite 
20 Calcareous chert Quartz, Calcite 
2 1  Radiolarian chert Quartz 

aram 22 Radiolarian chert Quartz 
23 Calcareous chert Quartz Calcite 
24 Calcareous chert Quartz Calcite 
25 Radiolarian chert Quartz 
26 Calcareous chert Quartz, Calcite 

AI Rams 30 Ferrugenous radiolarian chert Quartz 
3 1  Radiolarian chert Quartz 

Table (4.2) Mineral composition of the carbonate facies as revealed by X-ray diffractometry 

Locahty 
Sample 

Facies Type 
M ineral Composition 

No. Major Subordinate Minor 

8 Packstone Calcite Dolomite 

9 Crystallme limestone Calcite 
(dan 1 0  Packstone Magnesium/Calcite Dolomite 

I I  C rystallme l imestone Calcite Quartz 

1 2  Lime mudstone Calcite 

AI Gail 1 8  Packstone Calcite 

27 Wackestone Calcite Quartz 
Saram 28 Lime mudstone Calcite Quartz 

29 Lime mudstone Calcite Quartz 

32 Wackestone Calcite 

33 Wackestone Calcite 

Khor Khowarr 34 Wackestone Calcite 

35 Lime mudstone Calcite 

36 WackestonelPackstone Calcite 

37 WackestonelPackstone Calcite 
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4.3 M inera logy of the and D u n es 

Tables (4.3) presents the mineral composition of the light and heavy mineral 

fractions of two samples collected from the coastal and inland sand dunes in the study area. 

This table shows that the light fraction of the Al Helailah coastal dune sands consists of 

carbonate c lasts and quartz grains together with minor proportions of skeletal grains and 

traces of feldspars and chert. Their heavy fractions are made up of pyroxenes and opaques 

in addit ion to traces of hornblende, garnets, rutile, tourmaline and epidotes. The light 

fractions of Al Gail inland dunes compositionally resemble those of AI Helailah except for 

the absence of the skeletal grains. Their heavy fractions are also similar with the exception 

of the presence of traces of monazite. 

Quantitative comparison of the mineralogy of the two types of sand dunes reveals 

that the light fractions of Al Helailah coastal dunes contain higher concentrations of 

carbonate lithoclasts and skeletal grains and lower proportions of quartz and chert. Also, 

the heavy fractions of AI Helailah coastal dunes are slightly more enriched in opaques, 

p)TOXenes, epidote and hornblende whereas depleted in rutile, tourmaline, garnet and 

monazite. 

Table (4. 3 )  Mineral composit ion of the coastal and in land Sand dunes 

(A) L· ght F 1 rae IOns 

M ineral Composition % 
Locality 

Quartz Carbonate l ithoclasts Feldspars Chert Skeletal grains 

A1 Helai lah 32.7 55.7 1 .6 1 .6 8.4 
(Coastal Dune) 

Al  Gai l 48.3 46.5 1 .6 3 .6 -
(In land Dune) 

( B) Heavy Fractions 

Locality Opaques Pyroxene Epidote Ruti l e  Tourmal ine Hornblende Garnets Staurolite Monazite 

AI Helai lah 0.8 1 .0 1 .0 1 .8 1 .8 - -iCoastal Dune) 36. 1 57.5 

AI Gai l  56.0 0.4 1 .3 2.3 1 . 5 4.0 - 0.2 (Inland Dune) 34.3 
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4.4 M inera logy of D iaba e Sheet 

Table (4.4) presents the mineral composition of a sample representing the diabase 

rock at I dan. It shows that this sample is composed of quartz and plagioclase together with 

les er concentrations of magnetite and clay minerals. 

Table (4.4) M ineral compositIon of the diabase sheet as revealed by X-ray difIractometry 

Local ity 
Sample 

Facies Type 
Mineral Composition 

No. Major I Subordinate 1 M inor 

[dan 7 Diabase Quartz, Plagioclase I Magnetite. clay M ineral I -
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Fig. 4 .1 :  X-ray diffraction patterns of Idan chert samples 

VI 



1 1  

1 6  +Ad ;'t 1�' ,,--,,,,,-,,---,,---, , � , 

1 5  

1 4  ,II 1'-"" -,--, 

1 3  

o 1 0  20 30 

28° 
40 

Fig. 4.2 :  X-ray diffraction patterns of AI Gail chert samples 

50 60 

VI tv 



25 

24 J' 1 

23 

21 IL ��-''-______ �� __ � __ � __ J 

1 9  A ,I \m "'''' , 

o 1 0  20 30 

29° 
40 

Fig. 4.3 : X-ray diffraction patterns of Sa ram chert samples 

50 60 

VI W 



26 

20 

o 1 0  20 30 

28° 
40 

Fig. 4.3 (Cont.) :  X-ray diffraction patterns of Saram chert samples 
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The geochemical data obtained for the studied rocks are given in Tables (5 . 1 )  and 

(5 .2) .  These data are in accordance with those obtained from petrographic investigation 

and XRD analysis and indicate that the studied chert can be classified into three lithologic 

groups' namely: i) red ribbon radiolarian cherts (or radiolarites, R), ii) calcareous chert 

(CC), and iii) siliceous mudstones (SM). These lithologic groups constitute alternating 

beds of different relative abundances and thicknesses within the studied chert sequences. 

For example, S M  and R are markedly abundant, whereas CC is rare in Idan exposures. The 

exposures at Wadi Saram are characterized by the common occurrence of alternating beds 

of CC and R; the abundance of the latter lithology increases upwards in the section. On the 

other hand, AI Rams sections are characterized by the dominance of SM. It is worthy to 

mention that the chert sequences at Idan and AI Rams are highly dismembered and 

tectonized and hence, it was difficult to sample a complete sequence. However, a weU­

de eloped chert sequence is exposed at Wadi Saram and, therefore, was used as the main 

site of  sampling in order to assess the vertical variat ion in element concentrations within 

this sequence. 

5. 1 Distribution of Elements 
5. 1 . 1  Major E lements 

The concentrations of the major elements in the studied rocks (Table 5 . 1 )  show 

marked variations from one area to the other. This could be attributed largely to differences 

in the relative abundances of the various rock lithologies among these areas taking into 

consideration the fact that comparable rock lithologies in the three areas show closely 



Table (5 . 1 )  Major and Minor elements composition of the various rock types and sand dunes. 

Chert Samples 

Area Idan AI Gail Saram AI Rams 

SM R CC R CC SM SM CC R R CC CC R R SM SM 

Vi 1 2 3 4 5 6 1 3  1 4  1 5  1 6  1 7  20 21 22 30 31 

Si02 77. 1 0  93.34 48.52 89.89 63.60 87.00 78.51 73.62 96.38 96.44 70.29 71 .80 98.00 92.93 85.49 71 .24 

AI203 7.75 2.01 3.33 1 .81  2.91 4.02 8.09 2 . 16 0.38 0.39 2.39 1 .03 0.32 0.88 5.02 1 1 . 1 0  

FEl203 5.65 1 .80 1 .74 1 .40 1 .35 3. 1 6  4 . 12  1 .39 0.89 0.90 1 .44 1 .39 0.72 1 . 1 3  3.09 4.05 

FEl203 (H)* 3.39 - - - - 1 .90 2.48 - - - - - - - 1 .86 2.43 

MgO 1 .50 0.45 0.99 1 .35 6.32 1 .21  1 .43 0.81 0.09 0.09 1 .55 0.31 0.05 0.38 1 . 1 8  2.41 

CaO 0.45 0.22 22.98 1 .37 9.25 0.48 0.50 1 1 .32 0.79 0.80 1 1 .47 1 3.07 0.26 2 . 13  0.33 0.47 

N�O 0. 1 9  0.09 0.05 0.30 0.39 0. 1 0  0.78 0.08 0.07 0.07 0. 1 0  0.05 0.03 0.03 0.42 0.70 

K20 1 .99 0.40 0.58 0.37 0.63 0.43 2. 1 0  0.34 0.05 0.05 0.37 0.09 0.07 0. 1 0  0.75 2.39 

Ti02 0.57 0.1 1 0. 1 8  0.09 0. 1 8  0.24 0.46 0. 1 2  0.05 0.05 0. 1 6  0.05 0.02 0.06 0.28 0.78 

P205 0. 1 1  0.01 0.02 0.06 0.08 0.02 0. 1 6  0. 1 4  0.04 0.06 0.07 0.02 0.02 0 05 0.06 0. 1 1  

MnO 0.39 0.29 0 . 14 0.01 0.09 0.01 0.09 0 07 0.02 0.02 0. 1 2  0 . 1 8  0.01 0.04 0.04 0.08 

L.O. I  4.20 1 .30 21 .40 3.30 1 5.20 3. 1 0  3.60 1 0.20 1 . 1 0  1 .00 1 2. 1 0  1 2.00 0.50 2.30 3.30 6.80 

Totlc 0.01 0.04 5.60 0.49 3.62 0.07 0.05 2.57 0.21 0.20 2.93 3.35 0.06 0.51 0.05 0.08 

Totls 0.01 0.01 0.01 0.01 0. 1 6  0.01 0.01 0.01 0.01 0.01 0.03 0. 1 1  0.02 0.01 0.01 0.01 

Sum 99.94 1 00.07 99.94 1 00.03 1 00.04 99.82 99.88 1 00.30 99.69 99.97 1 00. 1 3  1 00.05 1 00. 1 1 00. 1 1  1 00.0 1 00. 1 7  

* Calculated Hematite 
SM = Siliceous mudstone 
R = Radio larite 
CC = Calcareous chert 

---- ----------- - ---------

Limestone Samples 

Idan Khor Khowair AI Gail Saram 

8 32 33 36 1 8  28 29 

0.02 0.04 0.06 0.33 0.02 7.45 1 4.45 

0.64 0.76 0.61 0.70 0.68 2.09 5.58 

0.04 0. 1 3  0.04 0.20 0.09 0.72 0.99 

- - - - - - -

1 .53 0.58 0.23 0.50 0.27 1 . 1 4  0.96 

54.24 54.53 55.47 54.38 55.22 47.93 43.07 

0.01 0.01 0.01 0.01 0.01 0.21 0.59 

0.04 0.05 0.04 0.04 0.04 0.04 0. 1 1  

0.01 0.01 0.01 0.01 0.02 0.07 0. 1 5  

0.01 0.02 0.02 0.01 0.01 0.07 0.02 

0.02 0.01 0.01 0.01 0.01 0.16 0.30 

43.40 43.60 43.40 43.70 43.60 40.00 36.80 

1 2.23 1 2. 1 3  1 2. 1 3  1 2.32 1 2.23 1 1 . 1 2  1 0.48 

0.02 0.02 0.01 0.02 0.02 0.04 0.04 

99.89 99.73 99.83 99.86 99.93 99.88 1 00.04 

AI Gail 

38 

57.81 

3. 1 2  

2.01 

-

4.28 

1 5.35 

0.46 

0.75 

1 7.00 

0.01 

0.03 

1 5.70 

3.70 

0. 10  

99.89 

Sand Dunes 

AI Helailah 

39 

34. 1 7  

1 .58 

0.89 

-

1 .69 

31 .48 

0.29 

0.34 

0. 1 5  

0.06 

0.02 

28.5 

7.60 

0.07 

99.0 

AI Jazeerah 

40 

48.97 

4.41 

1 .82 

-

2.42 

21 . 14  

0.53 

0.82 

0.23 

0.01 

0.04 

20.50 

5. 1 5  

0.01 

1 00.8 

0'1 tv 
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similar compositions. Silica concentration is quite constant throughout most of the sections 

in the three areas. R beds contain 90 - 98 % Si02, and SM beds have 7 1 -87% Si02. 

However, CC beds show much lower Si02 content (49% to 72%) which may reflect the 

dilution effect of carbonates and, to a lesser extents, the contributions from detrital clay 

ources. It has often been suggested that cherts overlying ophiolites might contain a direct 

component of volcanic-hydrothermal silica (Barrett, 1 98 1 ). However, the lack of silica 

enrichment in cherts near the ophiolitic basement precludes a significant contribution from 

a hydrothermal source. 

The relatively high abundance of Fe particularly in SM samples from Idan and Ai 

Rams, can be attributed to proximity to the ophiolitic outcrops. Iron is dominantly present 

as hematite and also in detrital clays. The contribution of iron from detrital clays can be 

estimated using the average Fe203 / Ai203 ratio which is about 0.4 : 1  for pelagic clays 

(average for Pacific Clays is 0.4 1 : 1 ;  Conan, 1 976; and average for SM beds in Apennines, 

Italy is 0.38 : 1 ;  Barrett, 1 98 1 ) . This ratio is multiplied by the total iron content and the 

obtained value is substracted from total Fe203 to give the Fe203 present as hematite. As 

shown in Table (5 . 1 ), the calculated hematite is relatively high in the majority of SM 

samples from the three studied areas. This Fe enrichment can be attributed to the discharge 

of hydrothermal solutions at the spreading axis which results in the precipitation of Fe­

hydroxides (cf Bostrom, 1 973;  Dymond et aI, 1 973) .  Hematite is formed in a later phase 

by dehydration of Fe-hydroxides during dragenesis ( Bischoff, 1 969). 

Major element variations within the Wadi Saram sequence show regular and 

consistent trends. Ai203 and Ti02 decrease regularly upwards in the section (Table 5 . 1 ) . 

Most of the previous workers on chert sequences from various Mesozoic orogenic belts 

elsewhere in the world have found that Ai can be attributed almost entirely to a detrital 

source (cf Bostrom and Peterson, 1 969; Steinberg and Marin, 1 978;  Kar� 1 984). They 
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emphasized that aluminum to metal ratios are useful in discriminating sediment sources. 

Moreover, due to the immobility and the low solubility of Ti with respect to the 

hydrothermal elements, it has not been considered significant in hydrothennal, biogenic, 

authigenic, or residual sediments (Bostrom et ai, 1 97 1 ) . Thus, as in the case of AI, Ti is 

considered to represent a terrigenous source component ( including volcanic ash) (Karl, 

1 984). The terrigenous source for both Al and Ti could be confirmed by the significant 

posit ive correlation between the two elements in the studied cherts (Fig. 5 . 1 ) . Bostrom and 

Peterson ( 1 969) showed that a value of less than 0.4 for the ratio Al I (Al+Fe+Mn) is 

indicative of transition metal enrichment by hydrothermal processes. The majority of the 

studied cherts have Al l (Al+Fe+Mn) ratios >0.4. The plot of this ratio versus Ti (Fig. 5 .2) 

reveals that all the R, SM and CC samples from both I dan and Al Rams have important 

contributions from terrigenous sources in their genesis. However, the R samples from 

Wadi Saram., which are exposed in the upper part of the section occurring up-section, have 

Al I (Al+Fe+Mn) ratios < 0.4 reflecting a pelagic domain during sedimentation. Thus, 

there is a change up-section in Wadi Saram, from a setting with predominantly terrigenous 

influence to a setting of pelagic deposition. Bostrom ( 1 973) developed a diagram for 

representing the relative contributions of terrigenous (Al, Fe, Ti) and hydrothermal (Fe, 

Mn) components in pelagic sedimentation based on the relation between Al l (Al+Fe+Mn) 

vs Fe/Ti .  Fig. 5 .3  shows that most of the SM samples from the studied areas fall close to 

the ideal mixing curve between hydrothermal metalliferous sediments (as defined on the 

East Pacific Rise) and average terrigenous matter. The SM and CC samples overlap and 

cluster around the composition of typical pelagic clays and siliceous ooze. On the other 

hand, the R samples plot further to the left roughly parallel to the curve, and c lose to the 

biogenic matter composition (non-biogenic fraction is 20-50% hydrothennal). On the Ti -
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Fig. 5 . 1 A binary rel ationship o f  AI versus T i  for the studied cherts. 
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Zr - Y diagram proposed by Pearce and Cann ( 1 973) (Fig. 5 .4), which is used to identify 

th tectonic setting of the basaltic levels. Most of the SM and CC samples plot very close 

or in the field of arc basalts. This may be attributed to the presence of fine-grained 

volcanogenic detritus inherited from the mafic crust. Also, MgO content increases 

downwards, which may have resulted from the weathering of the basement rocks and the 

fonnation of chlorite. Again, Fe shows the same trend which reflects the increasing rate of 

accumulation of Fe in the form of hematite. The increase of K20 at the base also signifies 

contribution from detrital materials, particularly clays. On the contrary, S i02 contents 

increase remarkably up-section which reflects the decreased role of terrigenous source 

components. 

5. 1 .2 T race elements 

Table 5 . 2  presents the average trace-element compositions for the studied cherts. 

The concentration of HFS ( High Field Strength) elements (e.g. Zr, Ga) and LIL (Large Ion 

L ithophile) elements (e.g. Rb Th) are highest in the SM samples relative to the CC and R 

samples. However, the CC samples are still more enriched in these elements relative to the 

R samples. This again reflects the important role played by a detrital source component in 

the genesis of the S M  samples since most of these elements are dominantly concentrated in 

the detrital heavy minerals ( such as zircon and hematite) and c lay minerals. Moreover, the 

concentrations of these e lements show a gradual upwards decrease in Wadi Saram section 

in which the pelagic R cherts exist . A dominantly terrigenous source for elements such as 

Nb, Zr, Y, Ga and Rb in the studied cherts could be indicated by the significant positive 

correlations between all these elements and Ah03, Fe203 and Ti02 (Tables 5 .3  and 5 .4) .  
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Fig. 5 .4  Plot of TiJ 1 00, Zr & Yx3 for the studied cherts (diagram adopted 

by Pearce & Cann, 1 973 ). 
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The concentration of Sr shows the highest levels in the CC samples. This can be 

attributed to the substitution of Sr for Ca in calcite as indicated by the significant positive 

correlation between the two elements as will be shown later (Table 5 .5) .  

5. 1 .3 Rare Ea rth E lements (REE) 

Chondrite-normalized REE patterns for the studied chert samples are presented in 

Figs. (5 .5)  to (5 .7).  The different types of cherts exhibit LREE (Light Rare Earth Elements) 

fractionated patterns with moderate Eu anomalies. However, the SM samples show the 

highest overall enrichment in REE followed by the CC whereas R samples have the lowest 

REE abundances. (Fig .5 .  7).  The patterns of the SM and CC samples are c losely similar to 

other SM and pelagic c lays worldwide, such as the SM of the Jurassic bedded chert from 

North Apennines, I taly (Barrett, 1 98 1 )  and the pelagic clays (Haskin et aI, 1 968) .  

The high REE abundances in the SM samples are c learly related to the dominance 

of intermixed c lays and hematite. The dependence of the REE contents in these samples on 

the terrigenous materials is manifested by the significant positive correlation between all 

REE and Ah03. Fe203, K20 and P20S.  Again, this posit ive correlation is depicted in the 

binary variation plots between the Total REE (�REE) and the major oxides that signifY a 

terrigenous source component such as Ah03, Fe203, Ti02, and K20 (Figs. 5 . 8  to 5 . 1 1 ), 

together with some trace elements that are mainly concentrated in detrital minerals such as 

Zr (Fig. 5 . 1 2) .  On the other hand, the relationships between the �REE and each of Si02 

and CaO show no obvious correlation (Figs. 5 . 1 3  and 5 . 1 4) .  
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5.2. M ul tiva riate Statistics 

5.2. 1 Correla tion Coefficien ts 

The statistica program was used for the calculation of the Pearson's product­

moment coefficient of linear correlation (r) between the variables of each set of data. The 

correlation matrics for major oxides, trace elements and the whole set of elements are 

shown in Tables (5 .3)  to (5 .5) .  The tables show that real positive correlations exist between 

the following element associations: Ti02, Ah03, Fe02, MgO, Na20, K20, P20S, Rb, Ga, 

Nb Zr Y, and REEs. All these elements are mainly concentrated in the detrital or 

terrigenous materials such as clay minerals, micas, hematite, zircon and apatite . Moreover, 

CaO is only positively correlated with Sr, reflecting their association in carbonate minerals 

due to similarities in ionic radii and charges. On the other hand, Si02 does not show 

positive correlation with any of the other elements. This indicates the independence of 

silica deposition to the other sources such as the terrigenous or the carbonate materials. 

The significant negative correlation between Si02 and each of CaO and Sr may be 

attributed to difference in depositional conditions, the diagenetic cementation with 

carbonate or replacement of silica by calcite. 

5.2.2 C luster Ana lyses 

Cluster analysis 15 a multivariate technique extensively used by numerical 

taxonomists (Sokal and Sneath, 1 963). It depends on sample being defined by a number of 

attributes or  variables. A data matrix is obtained cOflSist ing of a number of samples with 

their corresponding set of coded or quantified characters. S imilarly, coefficients are 

calculated between each pair of samples or variables depending on whether samples (Q­

mode) or variables (R-Mode) are being clustered. Most clustering methods consist of 

grouping the samples or variables on the basis of the computed similarity coefficient and 
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Table (5 .3)  The correlation matrix of major oxides data in the studied cherts. 

Variables Si� Ti02 Ah03 F&.!03 MnO MgO caO N�O KzO P20S 
Si� 1 .00* -0.30 -0.32 -0. 1 6  -0. 1 7  -0.48* -0.81 *  -0.1 7  -0.29 -0.24 
n� -0.30 1 .00* 0.99* 0.89* 0.24 0.30 -0.27 0.74* 0.97* 0.60* 

Ah� -0.32 0.99* 1 .00* 0.89* 0.20 0.31 -0.25 0.79* 0.97* 0.62* 
F&.!03 -0. 1 6  0.89* 0.89* 1 .00* 0.40 0. 1 4  -0.35 0.58* 0.88* 0.52* 

MnO -0. 1 7  0.24 0.20 0.40 1 .00* -0.02 0.05 -0. 1 2  0.28 -0.01 

MgO -0.48* 0.30 0.31 0. 1 4  -0.02 1 .00" 0. 1 2  0.46* 0.30 0.32 

caO -0.8 1 *  -0.27 -0.25 -0.35 0.05* 0. 1 2  1 .00* -0.33 -0.27 -0.1 2  

N�O -0. 1 7  0.74" 0.79" 0.58* -0. 1 2  0.46* -0.33 1 00* 0.80* 0.66* 

KzO -0.29 0.97* 0.97* 0.88" 0.28 0.30 -0.27 0.80* 1 .00" 0.69* 

P20S -0.24 0.60" 0.62* 0.52* -0.01 0.32 -0. 1 2  0.66* 0.69" 1 .00* 
* Slgmficant at 95% level 

Table (5 .4) The correlation matrix of m inor elements data in the studied cherts 

Variables Rb Sr Ga Nb Zr Y Th U TREE 

Rb 1 .00* 0. 1 4  0.98* 0.94* 0.96* 0.80* 0.97* OAO 0. 9 1 *  

S r  0. 1 4  1 .00* 0. 1 1  0. 1 5  0. 1 2  0.25 0. 1 3  -0.32 0.20 

Ga 0.98" 0 . 1 1 1 .00* 0.97" 0.99* 0.80* 0.98* OA7" 0.9 1 *  

N b  0.94* 0. 1 5  0.97* 1 .00* 0.98* 0.74" 0.95" OA8* 0.85* 

Zr 0.96* 0. 1 2  0.99* 0.98* 1 .00* 0.78* 0.97* 0.50* 0.89* 

Y 0 .80* 0.25 0.80* 0.74* 0.78* 1 .00" 0.87" 0.09 0.95* 

Th 0.97* 0. 1 3  0.98* 0.95* 0.97" 0.87* 1 .00* OA1 0.96* 

U OAO -0.32 OA7" 0.48* 0.50* 0.09 0.41 1 .00* 0.22 

TREE 0.91 * 0.20 0.91 * 0.85* 0. 89* 0.95* 0.96* 0.22 1 .00* 

* Slgmficant at 95% level 



Table (5 .5)  The correlation matrix of major oxides and trace elements in the chert samples from the studied area. 

Variable SiO, TiO, AL,O) FC,03 MoO MgO CaO Na,O K,O P,Os R b  Cs Sr Ga Nb Zr Th U T R E E  

SiO, 1 .00 -0.30 -0.32 -0. 1 6  -0. 1 7  -0048 -0.81 * -0, 1 7  -0,29 -0,24 -0,34 -0,36 -0,85* -0,27 -0,37 -0.31 -0.28 0,37 -0,30 

TiO, -0,30 1 ,00 0.99' 0,89' 0.24 0.30 -0.27 0.74' 0.97* 0,60' 0.98' 0.80' 0. 1 2  0.99* 0.94* 0.97* 0.95* 0049 0.87' 

ALz03 -0,32 0,99' 1 ,00 0,89' 0.20 0,31 -0.25 0,79' 0,97* 0,62' 0.98' 0.82' 0, 1 5  0,99' 0,95' 0.98* 0.98' 0040 0.93' 

Fe,OJ -0, 1 6  0, 89' 0,89' 1 .00 0040 0. 1 4  -0,35 0,58' 0.88* 0,52' 0.86' 0,67* 0. 1 0  0.87' 0.73* 0,80* 0.84' 0.28 0.85' 

M o O  -0. 1 7  0,24 0,20 0040 1 .00 -0.02 0.05 -0. 1 2  0.28 -0,01 0,20 0,02 0,33 0. 1 7  0,03 0,09 0.08 -0.08 0 , 12  

MgO -0.48 0,30 0,31 0, 14  -0,02 1 ,00 0, 1 2  0.46 0.30 0,32 0,39 0,58" -0.01 0.30 0.37 0,31 0.27 -0, 1 9  0,24 

CaO -0,81'  -0,27 -0.25 -0,35 0,05 0 , 12  1 ,00 -0,33 -0.27 -0, 1 2  -0,24 -0, 1 7  0,85' -0,29 -0. 1 7  -0,25 -0.27 -0,56* -0.21 

Na,O -0, 1 7  0.74' 0,79' 0.58" -0, 1 2  0.46 -0,33 1 ,00 0,80' 0.66' 0,81' 0,73' -0.09 0.79' 0,81 '  0.81 ' 0.85' 0,30 0,81 " 

K,O -0.29 0,97' 0.97' 0,88' 0.28 0,30 -0,27 0,80' 1 ,00 0,69' 0,98' 0.80' 0. 1 3  0,95' 0,89' 0,93* 0,95* 0,39 0,91 '  

P,Os -0.24 0,60' 0,62' 0,52' -0,01 0,32 -0, 1 2  0,66' 0.69' 1 ,00 0,68' 0,73' 0,09 0.60" 0,56* 0.60' 0.68* 0. 1 3  0,75' 

R b  -0,34 0,98' 0,98* 0,86' 0,20 0.39 -0,24 0,81 ' 0,98' 0.68' 1 .00 0,87" 0. 1 4  0,98' 0,94' 0,96* 0.97' 0040 0,91 ' 

Cs -0.36 0,80' 0,82' 0,67* 0,02 0,58' -0. 1 7  0,73' 0,80' 0,73' 0,87* 1 .00 0,08 0.83' 0.83* 0,81 ' 0.83' 0,27 0.82' 

Sr -0.85* 0, 1 2  0. 1 5  0, 1 0  0.33 -0,01 0,85' -0,09 0. 1 3  0.09 0, 14  0,08 1 .00 0.1 1 0, 1 5  0. 1 2  0. 1 3  -0.32 0.20 

Ga -0,27 0.99' 0.99' 0,87* 0. 1 7  0.30 -0.29 0.79* 0.95' 0.60' 0.98' 0.83' 0. 1 1  1 .00 0,97* 0.99* 0.98' 0047 0.91 ' ' 

N b  -0.37 0.94* 0.95' 0.73' 0.03 0,37 -0, 1 7  0.81 ' 0.89* 0.56' 0.94* 0.83' 0. 1 5  0.97' 1 .00 0.98* 0.95" 0048 0.85' 

Zr -0.31 0.97' 0.98' 0 80' 0.09 0.31 -0.25 0,81 ' 0,93' 0,60' 0,96' 0.8 1 *  0. 1 2  0.99' 0.98* 1 .00 0,97* 0.50 0.89' 

Th -0.28 0.95* 0.98' 0,84' 0.08 0.27 -0.27 0,85' 0.95' 0,68* 0.97* 0.83' 0. 1 3  0,98' 0.95' 0,97' 1 .00 0041 0.96' 

U 0,37 0049 0040 0.28 -0.08 -0, 1 9  -0.56' 0.30 0.39 0. 1 3  DAD 0.27 -0.32 0047 0048 0.50 0041 1 .00 0,22 

T R E E  -0,30 0,87' 0.93' 0.85' 0. 1 2  0.24 -0.21 0.8 1 '  0.91 '  0.75' 0,91 '  0.82' 0,20 0.91 ' 0.85' 0.89' 0,96' 0.22 1 .00 

* Significant at 95% level. 
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gradually admitting more as the similarity coefficient is lowered. Other clusters are 

eventually initiated until, finally, all the samples are linked. Various clustering methods 

exist depending on the criterion of entry of a sample into a cluster e.g. weighted and 

unweighted pair-group average linkage, and single-linkage methods (Sokal and Sneath, 

1 963) .  The end product of the clustering procedure can be represented as two-dimensional 

hierarchical diagrams called "dendrograms". 

Three methods of cluster analysis were carried out during the course of the present 

work' namely: ( i) Weighted Pair Group average Method (wpGM); (ii) Unweighted Pair 

Group average Method (upGM); and ( iii) Single-Linkage Method (SLM). Generally, it 

has been found that the pair-group methods UPGM and WPGM have the highest 

cophenetic correlat ion coefficients, and that the Single Linkage has the lowest. Therefore, 

the Single Linkage method is least used by numerical taxonomists. Gower ( 1 967) 

recommended WPGM for general purpose classification, whereas Farris ( 1 969) found that 

the cophenetic correlation coefficient is maximized by UPGM. This latter method (upGM) 

has found a wide acceptance among numerical taxonomists and, therefore, it has been 

utilized in the work. Also, a wide variety of similarity coefficients exists. In the present 

study, two similarity coefficients were used: correlation (r) and distance coefficients. 

However, the correlation coefficients usually produce a better-classification dendrogram 

and are, therefore, more reliable than taxonomic distance as a measure of similarity of 

geochrnical entities. 

( 1 )  R-mode c luster ana lysis 

Twenty-eight major and trace elements in the studied chert samples were 

considered for R-mode cluster analysis. The obtained dendrogram (Fig. 5 . 1 5 ) shows that at 

linkage distance of one, three distinct clusters are apparent : ( i) CaO and Sr; ( ii) MgO, P205, 
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L u.. Yb, Tm, Ce, Ell, Tb, Gd, Sm, Nd, Pr, Er, Ho, Dy Y, FeO, Zr, Nb, Rb, K20, Ga, Ah03 

and Ti02; ( iii) Si02. The first cluster comprises an association of elements of the carbonate 

minerals. It is well known that Sr is closeJy associated with Ca in the carbonate minerals 

due to their similarities in both ionic radii and charges. Therefore, Ca is readily replaced by 

Sr  in the mineral structure. The second cluster includes an association of most of the 

elements. This association is clearly related to the terrigenous source component and 

hematite. This cluster is also subdivided into several sub-clusters (A, B, C, D, E, F and G). 

Sub-cluster (A) includes only MgO and may be related to the alteration of the oceanic crust 

and the formation of the mineral chlorite. Sub-cluster (B) contains only P20S, which may 

be related to some phosphatic components such as the mineral apatite. The sub-cluster (C) 

represents the rare earth elements together with Y. This association is mainly related to 

detrital minerals that concentrate REEs. The sub-cluster ( D) includes FeO which is clearly 

related to the mineral hematite. The sub-cluster (E) is mainly related to the mineral zircon 

since it contains only Zr and Nb' elements that are known to concentrate in this mineral. 

The sub-cluster (F) includes K20 and Rb that are mainly concentrated in micas and clay 

minerals. The sub-cluster (G) contains Ga, Ah03 and Ti02, a typical association of detrital 

c lays and volcanogenic detritus. Ga is known to replace and closely associates AI due to 

similarity in ionic radii and charges. The third cluster includes only Si02, which indicates 

the independence of the silica contents of the chert samples to terrigenous and carbonate 

materials. This is further confirmed by the lack of significant correlations between silica 

and each of the other elements (Table 5 .5) .  

A similar dendrogram (Fig. 5 . 1 6) was produced by considering only fourteen 

elements and total of all REEs (TREE). The dendrogram is more simple, however, it gives 

the same cluster result of the three groups of elements at ( 1 . 1 )  r. except for the fact that the 

sub-cluster (C) in cluster I I  becomes more simple and is represented only by TREE and Y. 
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(2 )  Q-mode cluster ana lysi 

Q-mode analysis endeavors to compare and classify samples on the basis of their 

different contents. The level of similarity at which clusters or groups of clusters are taken 

is only a subjective aspect of  the cluster analysis. It must be mentioned that the prime 

purpose of  multivariate analysis is simplification; that is expressing the large number of 

variables in terms of  a few interpretable ones. 
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Fig (5 . 1 7) illustrates Q-mode analysis for the studied different chert types by using 

of  UPGM for selected twelve major and trace elements (Si02, Ti02, Ah03, FeO, MgO, 

CaO Rb, Sr Ga, Nb, Zr, and Y) together with the TREE. The dendrogram in Fig 5 . 1 7  

summarizes the groups of  clusters obtained. At a similarity level of 0 .85 r, three main 

groups of  c lusters are shown. The first group includes mainly the SM samples, the second 

group is restricted to the CC samples, whereas the third group contains only the R samples. 

The important feature revealed by applying this analysis is the close conformity between 

the obtained c lassification and that based on both the petrographic observations and the 

geochemical data 

I t  is worthy to mention that the use of either the major oxides or the trace elements 

separately does not give a clear clustering of the different groups of samples (Figs. 5 . 1 8  

and 5 . 1 9) .  

(3) Factor Ana lysis 

Factor analysis is now widely used in exploration geochemistry. The intention 

underlying its use is the attempt to reduce the dimensionality of the geochemical data by 

constructing a set of new variables termed factors, which are fewer in number than the 

original variables .  These factors are hypothetical and represent linear combinations of the 

original variables. The methodology of factor analysis is quite complex. Details have been 

given by various workers (e.g. Harman, 1 976; Joreskog et al, 1 976; Davis, 1 973).  The first 
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e sential step in any factor analysis is to obtain a correlation matrix. Correlation may either 

be between variables (R-mode) or between objects (Q-mode). In this study, Q-mode factor 

analysis was applied to deduce geological information from geochemical data. (cf Saager 

and Esselaar, 1 969; Saager and S inclair, 1 974; Hesp and Rigby, 1 975; Tripathi, 1 979; 

Ajayi, 1 98 1 ;  Buttener and Saager 1 983 ;  and Vogt and Kollenberg, 1 987). 

Variables which are lognorrnally distributed as revealed from their probability plots 

were logarithmically transformed. On the other hand, variables that are approximated by 

normal distributions were not transformed. The correlation matrix was used for direct input 

into the SPSS subprogram FACTOR The following factor-analytical techniques were 

tried: principal component method (PA 1 ), wherein t leading diagonal values of unity in 

the correlation matrix remain unchanged, and principal factoring method (P A 2), in which 

at the t ime of factoring 1 ' s  are replaced by communalities in the main diagonal of the 

correlation matrix. It is worth-mentioning that the two methods gave very similar results 

after varirnax rotation. Therefore, the results of the first method will be discussed in the 

present study. 

The second step in factor analysis is to transform the original set of variables into a 

new set of composite variables that are orthogonal to each other. So, the first principal 

component accounts for as much as possible of the total variability of the data, the second 

for the most residual variance after the effect of the first component is removed and this 

cont inues until the total variability is completely exhausted. The process can be simply 

visualized as insertion of a new group of factors which really are at right angles 

(uncorrelated) into another group that are not, and the relation between the two groups are 

defined by mathematical transform equations. The cosine of the angles between the 

original variables and the factors are a measure of the loadings of the former on the latter. 

The immediate result of the initial factoring is the extraction of an unrotated factor matrix. 
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The urn of squared loadings of any element (row) is termed the communality. It expresses 

the amount of total variability of each element explained in a given factor solution. On the 

other hand, the sum of squares for each of the columns the eigen values and represent the 

amount of  variance accounted for by each factor. They are commonly re-expressed as 

percentage total to explain the proportion of the total variability accounted for by this new 

set of variables. Usually, the first few components explain most of the variance in the data. 

For factor analytical purposes, these components are commonly retained for further 

rotation. This arises a question about the correct number of factors to be extracted in the 

final solution. Actually, there are no statist ically based tests and the final choice is only a 

subjective assessment based either on a single or many criteria. Subprogram FACTOR 

automatically deletes all factors with an associated eigen value of less than 1 .0. Four 

rotational methods are available in the subprogram and the user has the choice to apply 

either orthogonal or oblique rotation. The rotation process tends to rotate the initial factors 

in order to maximize the contrast of the element loadings, so high loadings tend to ± 1 .0 

and low ones to 0.0.  Consequently, rotation is advantageously applied to get a simpler and 

a more interpretable factor pattern. The most common by used Kaiser's varimax 

orthogonal rotation method is followed in the present study. 

The obtained rotated factor matrix is used to calculate the exact factor-score 

coefficients ( in case of PAl ). The latter are subsequently used to get the factor scores for 

every individual case and are written on a raw-output-data file. I t  must be noted that the 

scores of each factor are standardized, i .e. they have zero mean and unit variance. Factor 

scores reflect the strength and importance of each factor in every individual case. So, factor 

analysis introduces additional advantage in geochemical data reduction and interpretation 

by producing a fewer number of factor score maps instead of the large number of the 
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original ariable maps which are difficult to grasp and interpret all the information 

included in them 

The R-mode factor analysis of the studied chert samples produced 2 factors model 

accounting for 85 .85% of the data variability. This is considered an appropriate solution in 

terms of the geochemical data and geological observations (Table 5 .6). 

Table (5 .6) R-Mode Varimax rotated Factor matrix for the studied chert samples. 

Variable Factor 1 Factor 2 Communality 

SiC:! -0.21 3433 -0.961 1 89 0.999833 

TiC:! 0.977398· 0.075989 0.998186 

Al203 0.986440· 0. 101 748 0.999334 

F&.!03 0.906029· -0.079492 0.986251 

MgO 0.293610 0.549491 0.997235 

CaO -0.356572 0.875847* 0.999802 

K20 0.97835' 0.07891 5  0.996644 

P205 0.689251 0.1 65587 0.947743 

Rb 0.982056· 0. 1 4 1 071 0.997663 

Ga 0.9831 33' 0.053403 0.998509 

Zr 0.961 1 64* 0. 1 01 480 0.994343 

TREE 0.937724* 0.096765 0.991 795 

Variance % 68.1 2  1 7.43 

The communalities show that all the elements are reasonably well accounted for by 

this model. 

Factor 1 (terrigenous source) : explained most of the geochemical data variat ions. It 

accounts for 68. 1 2% of the variability model. The association (Ti02, Ah03, FeO, K20, 

P20S, Rb, Ga, Zr & TREE) represents the terrigenous source component. These elements 

refer to the various varieties of detrital materials such as clay minerals and micas (Ah03, 

K20, Rb, Ga), hematite and iron oxides (FeO, Ti02), and detrital zircon (Zr, TREE). 

Factor 2 (carbonate minerals):  accounts for additional 1 7 .43% of data variability. It 

is a bipo lar factor where CaO is posit ively loading and Si02 is negatively loading on this 

factor. The high positive loading of CaO indicates the role played by cementation and 
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other digenetic processes by carbonate minerals. On the other hand, the negative loading of 

Si02 indicate that the secondary carbonate replacement occurred at the expense of silica in 

the chert samples. The loading of the different elements on both factor 1 and factor 2 is 

illustrated in Fig (5 .20) .  
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Fig. 5 .20 The loading of the representative maj or and trace elements in the chert 
samples on both factor 1 and factor 2. 
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The world as we know it today would be inconceivable without the use of cement. 

Cement is one of the most important building materials because of its versatility, 

durability ease of working and last, but not the least, low price. 

Cement is a hydraulic binder. It consists mainly of compounds of calcium oxide, 

silica, alumina and iron ore. The main raw materials used in the cement manufacturing are: 

limestone shale, clay, silica, bauxite, laterite, iron ore and gypsum. Except gypsum, the 

other raw materials are used for making clinker which is an intermediate product for 

making cement. Gypsum is added in order to adjust the properties of cement like setting 

t ime and strength. 

Limestone is the major source for making cement. Calcium carbonates of all 

geological formations satisfy the requirements for the production of Portland cement . 

Limestone usually contains admixtures of clay substances or iron oxides, which influences 

its colour. The purest grades of limestone are calcspar (calcite) and aragonite. 

A limestone with a minimum of 45% - 50% CaO , maximum 3% - 3 .5 % MgO , 

0.6 % alkalis , 0.25 % P20S ,0. 5  % Mn203, l . 3 % Ti02 and 0.0 1 5  - 0.02 % chloride is 

regarded as cement grade limestone. This is suited for the production of clinker with good 

burnability, which results in higher production of clinker. 

The melting po int of limestone is about 2200 DC which has to be lowered to 1 350° 

_ 1 450 DC for excellent burnability in order to give good clinker. This is possible through 

the use o f  iron ore, laterite or hematite . Sometimes even bauxite is required to compensate 

alumina requirement. 
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Material rich in silica such as sandstone, clay, shale or dune sand are used for the 

preparation of the ground raw meal to make clinker. The usage of silica as a raw material 

depends on the chemical composition of limestone available for use. Generally, before 

selecting the silica source, its reactivity should be checked for using as a potential raw 

material for cement industry. Silica enriched in quartz is not preferable in the cement 

industry because of its poor reactivity. Also, alkalis and chloride contents present in the 

silica play a major role in selecting the silica source. Moreover, silica with higher alkali 

and chloride contents is not suitable as a raw material since it causes operational problems 

in the pyro-processing and also affects the quality of cement. 

Bauxite and iron ore are rich in Ah03 and Fe203; respectively. They are used in 

the cement manufacturing process as a flux to reduce the clinkering temperature. The use 

of these raw materials depends on composition of the limestone and siliceous additives. 

Gypsum (CaS04.2H20) is ground along with clinker to make cement. It is used to 

modify the setting property of cement. It is also one of the essential raw materials for 

producing any type of cement. The sources of gypsum are marine rocks and industrial 

byproducts. 

6.2 Ras AI-K ha imah  Cement H istory 

Ras Al-Khaimah is the northernmost Emirate of the United Arab Emirates. It is 

famous for its mountains, farms, beaches and archaelogical sites. In 1 972, Ras Al-Khaimah 

wittnessed the emergence of a new era in the industrial sector of the United Arab Emirates. 

The cement industry, which is the second largest industry after Oil, commenced in that 

year with the establishment of the first cement factory in the country. The Union Cement 

C (U C C) Of Ras Al-Khaimah was the first plant to start operation and is still one 
ompany . .  

of the largest companies. The production in 1 974 was 500,000 tons. Today, there are ten 
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cement factories (four of them in Ras AI Khaimah, 3 produce gray cement, and 1 for white 

cern nt) spread over the UAE to meet the growing demand for cement in the field of 

de eloping activities. 

The annual production capacity of Ras AI-Khairnah cement companies as in today is 

over than three and half million tons per year. The plants are located about one kilometer 

from the excellent port of Mina Saqar, and about the same distance from the Ras AI 

Khairnah mountains that provide abundant supply of high and consistent quality limestone. 

These factories produce the following types of cement : 

Ordinary Portland Cement type 1 (OPC l ) : produced by the Union Cement 

Company (UCC) , the Gulf Cement Company (GCC), and the Ras AI Khaimah 
Cement Company (RAKCC) .  

Moderate Sulfate Resistant Cement (MSRC) : produced by the Union Cement 

Company (UCC) , the Gulf Cement Company (GCC), and the Ras Al Khaimah 

Cement Company (RAKCC). 

High Sulfate Resistant Cement (HSRC):  produced by the Union Cement Company 

(UCC) and the Gulf Cement Company (GCC).  

Oil  well Cement (OC):  produced by the Union Cement Company (UCC).  

White Cement (WC):  produced by the Ras AI-Khaimah White Cement Company 

(RAKWCC). 

6.3 The Cemen t  Prod uction Process 

The essential raw materials used for the production of cement are : limestone, silica, 

iron ore, gypsum and bauxite. Several processes are conducted to produce cement from 

these raw materials. The process used by the Ras AI-Khaimah Cement Company is 

summarized in the fo llowing: 
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First pha e: Extracting (Quarrying) and crushing the raw materials: 

Raw Materials ( limestone and silica rocks) are extracted from the mountains in the 

Ras Al-Khairnah Emirate. The crushed raw materials are transported to the companies 

using trucks and conveyor belts (Fig. 6. 1 ). 

Second phase: Grinding and storage of raw materials: 

The crushed raw materials ( limestone, silica, iron ore and bauxite) are transported 

to the Raw Mil l  (tube grinding machine) .  After grinding, a mixed powder component 

(the kiln feed or raw meal) is obtained. 

T h i rd phase: Clinker production: 

From the storage silo, the kiln feed enters the kiln which burns the materials up to 

1 0000 - 1 400 °c to get the clinker product. Then, by the conveyor belt, it is transported 

to the c linker yards or silos for storage. 

Fou rth phase: Cement grinding and storage: 

After getting c linker products, the cranes or the conveyors shift the clinker from the 

yards to the cement mill hopper. The cement mill grinds the c linker with a little amount 

of gypsum to get the finished cement product. This latter product is transported throgh 

the production pipeline to the cement storage silo . 

Fina l  ph ase: Cement packing and loading. 

I n  the packing plant, cement is packed in two ways: either in small bags (50 kg), or 

big bags ( 1 .5 ton). Also, it can be loaded directly to the bulk trucks. 

A flowchart illustrating sample points throughout the production lines for raw 

materials, semi finished products and finished products is shown in Fig. (6.2).  



Fig.6 . 1 A panorama ( looking North) of the l imestone quarry in Khor Khowair (A), the 
limestone crushers ( B), the cement companies (C)  and the port of Min a Saqr ( D) .  
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Fig.6 .2  A flow chart showing the various stages of cement 

preparation in the cement plant. 
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6.4 Raw Materia ls Ava i lable in  the Ras AI-K ha imah E m i rate 

( i )  L imestones 

The Ras AI-Khaimah limestone quarry is situated at the foot slopes of a 

steep mountain adjacent to Wadi Ghalilah (Fig.6 .3) .  The slope of the mountain face is 

variable and it is locally very steep-Sharp gullies of up to 20 meters depth and 50 meters 

width lead into the present top bench back faces. Primary extractions from the quarry 

began in 1 968 by HeIde and Franke and continued to July 1 97 1 ,  with a direct sales of run 

of quarry material averaging 20,000 tons per year and total aggregate sales approximately 

200,000 tons per year. I n  the same year, the Ras AI Khaimah Rock Company (RRC) was 

established by the order of His Highness Sheikh Saqr bin Mohammed AI Qasimi, Ruler of 

the Ras AI Khaimah Emirate. This company is located in the Ras AI Khaimah industrial 

area ( Khor Khowair) (Figs.6.4 & 6.5), about 3 5km north of Ras AI Khaimah town. Its 

activity is to produce high quality aggregates for concrete and road construction projects, 

rocks for breakwater and other marine works, as well as high grade limestone which is 

supplied to the nearby cement plants and also to the steel plants in India and Australia. The 

present production capacity exceeds 1 5,000,000 million tons of crushed hard limestone 

material and "armour" rock. The location of the quarry and crushing plants, next to Port 

Saqr deepwater harbor has assisted RRC to export its products throughout the whole Gulf 

region (mainly to Bahrain and Kuwait), as well as to load the bulk carriers and various 

other types of vessels destined for India, Australia and Hong Kong. 

In 1 975,  a new company was established for the same business (Stevin Rock 

Company; S RC). It is a European owned and managed quarry and rock contractor that has 

been operating both within the UAE and internationally. The company is finnJy 

established as the leading quarry in the Gulf region for the production and commercial 
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Fig. 6.4 A photograph ( looking north) of the RRC l imestone 

quarry in Khor Khowair. 

Fig. 6 . 5  A c lose up view ( looking east) of the l imestone 
quarry in Khor Khowair showing the extensive 

thickness ( average about 1 500 m) of the l imestone 

succeSSlOn. 
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supply of rock materials used in coastal protection projects (Fig. 6.6). 

The SRC quarry at Khor Khowair produces and sells high-grade limestone 

materials to the construction companies throughout the Gulf region. It was constructed 

near the Ras Al Khaimah Rock Company (RRC) limestone quarry. The quarry equipment 

Ie els access roads, selection yards and stockpiling areas were all constructed in such a 

way to ensure a production level capability of 1 50,000 tones per week (8  million tones per 

year) of coastal protection rocks. In order to complement the supply of rock materials, SRC 

has the facility to produce high quality concrete aggregates, with a production capacity of 

some 1 . 8 million tones per year. Hence, it can be ensured that the Khor Khowair limestone 

rock quarry supplies the market with more than 23 million tones of limestone per year. The 

Ras Al-Khairnah cement plants consume more than 4 million tons of limestone per year of 

the total rock quarry production. 

The limestones available in the Ras Al Khairnah belt (Khor Khowair) represent one 

of the best deposits in the world in term of quality and consistency. These high quality 

limestones can be used for producing all types of Portland cement including white 

cement. They constitute huge reserves and are presently used as the sole source for the 

cement industry in Ras Al Khairnah. 

The limestones studied in the present work comprise those of Khor Khowair and 

the rocks exposed at Idan, A1 Gail and Sararn. Table (5. 1 )  shows a comparison between 

their chemical compositions and the data provided by the Ras A1 Khairnah Cement 

Company (RAKCC) laboratories for Khor Khowair limestones. This table reveals the 

following: 

(a) The data obtained in the present study for the Khor Khowair limestones are 

closely similar to those provided by the RAKCC laboratories. However, the 



Fig. 6 .6  A photograph ( looking East) of the l imestone quarry of the Steven 
Rock Company ( SRC) .  Which is located very c lose to the Port of 
M ina Saqr. ...... 
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studied limestones contain slightly higher concentrations of CaO and lower 

(b) The limestones of Idan and AI Gail are, to a great extent, compositionally 

similar to those of Khor Khowair which are used by RAKCC. Differences are 

represented only by the presence of s lightly higher concentrations of MgO in 

Idan limestones and CaO in those of AI Gail. This permits the consideration of 

limestone exposures in those two localities for possible future demands. 

(c) The Sararn limestones are markedly compositionally different from those of 

Khor Khowair. They are remarkably more depleted in CaO and enriched in 

Table (6. 1 )  Comparison between the chemical compositions of the studied limestones and 
those used in RAKCC 

E lement 
Present Study 

Oxide Saram I Idan I Al Gail I Khor RAKCC* 
Khowair 

CaOo o 43 . 1 - 47.9 54.20 55 .22 54.4 - 55 .5  5 1 .0 - 54.0 
Si01o,o 7.4 - 1 4 .4 0.02 0.02 0.04 - 0.33 1 . 5 - 3.5 
Ah030� 2 . 1 - 5 .6  0.60 0.68 0.6 1 - 0.76 0.4 - 1 .2 
Fe03% 0.7 - 1 .0 0.04 0.09 0.04 - 0.2 0. 1 - 0.4 
MgO% 1 .0 - 1 . 1  1 . 53 0.27 0.23 - 0.58 0.6 - 0. 8  

, * RAKCC: data supplied by the Ras Al Khalmah Cement Company Laboratones 
* *  : not specified in standard 

( l )Si lica 

Standards for Portland Cement 

British I American 

-

N.S.**  N.S .**  
N.S .  Max. 6.0 
N.S .  Max. 6 .0  
Max. 5 .0 Max. 6.0 

Silica, either in the form of rock or dune sands, is available in abundance in UAE. 

However, there are no big reserves for silica in the surroundings of Ras AI-Khaimah 

Emirate. The main source of silica which is used by many cement companies in Ras AI-

Khaimah is represented by a few chert exposures (Fig. 6.7) as those in AI Rams and Idan 

(present study area). However, the use of chert as a source of silica in the cement 

production is not bighly recommended. This is attributed to the high hardness of chert 



Fig. 6 .7  A photograph showing the red banded ribbon 
c herts in the Idan s i l ica rock quarry of the Ras 

Al Khaimah Rock Company. 

1 03 
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material which leadings to high abrasive effects on the crushing machines and also high 

consumption of energy. Therefore, other alternatives sources for silica are required, 

part icularly for the future planning 

Dune sands, which can be used as a potential source of silica, are abundant in the 

United Arab Emirates. Most of these dunes consist of loose sediments that can be easily 

quarried and grinded. Also, these dune sands consist of fine and well-sorted grains 

properties that are recommended during the mill operation. 

Earlier attempts have been made by the cement companies at Ras AI Khaimah to 

assess the cement production. It was found that these dune sands have very homogenous 

chemical compositions. However, the averages of Si02, AI203 and Fe203 contents in 

these sands are relatively lower than those in the silica source rocks. This requires the 

addition of imported materials to the raw meal. Therefore, the overall costs upon using 

dune sands as silica source will be increase and consequently the sands were not 

economically recommended. 

An attempt has been made in the present study to test the suitability of sand dunes 

in the surroundings of Ras AI Khaimah as a silica source. The chemical compositions of 

two samples representing the coastal and inland dunes at AI Gail and AI Helailah, 

respectively have been determined (Chapter V). The obtained chemical data were 

compared with those of cherts and dune sands previously analyzed by Ras AI Khaimah 

Cement Company (RAKCC) Table (6.2) .  The result obtained reveal the following: 

(a) The studied I dan cherts have lower S i02 and Higher CaO concentrations when 

compared with those used by RAKCC. This may by attributed to the fact t hat 

the studied rocks comprise several samples that represent the calcareous cherts. 

On the other hand, the studied AI Rams cherts are more enriched in AI203, 
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MgO and Na20 and depleted in CaO relative to the RAKCC cherts. This may 

be attributed to the presence of siliceous mudstones. 

(b) The chemical compositions of the studied Al Gail cherts is c losely similar to 

those presently used by RAKCC and, hence, can be considered as a source of 

silica in future planning. On the other hand, Saram cherts have higher CaO and 

Lower A l203 and Fe203 contents when compared with the RAKCC cherts. 

(c) The studied dune sands have lower S i02, Ah03 and Fe203 concentration than 

those in cherts. This finding is in accordance with that previously reached by 

RAKCC. 

(d) Sand dunes of Ai Gail are compositionally similar to those tested by RAKCC; 

except for their s light relative enrichment in Fe203, CaO and MgO at the 

expense of Si02, Ai203 and K20. On the other hand, the Ai Helailah dune 

sands are compositionally different from those tested by RAKCC. The former 

sands have much higher proportions of CaO and lower concentrations of the 

other major elements and, hence, cannot be considered as silica source. 

Table (6.2) Comparison between the chemical composit ions of the obtained cherts, dune 
sands and those used by RAKCC. 

Chert Dune Sand 

Element 

OlUde Present tudy 
Present Study 

RAKCC RAKCC 

AL Gail I Saram I Idan' I AJ Rams' Al GaiJ I Al HelaiJah 

S i02% 73.62 - 96.44 70.29 -98.00 48 .52 93.34 7 1 .24 85.49 8 1 .72 57.8 1  34.82 68.37 
Al2O)% 0.38 - 8.09 0.32 - 2.39 1 8 1 - 7.75 5.02 - 1 1 . 1  4.72 3. 1 2  1 .58 3.78 
FeO)% 0.89 - 4 . 1 2  0.74 - 1 .44 1 .35 - 5.65 3.09 - 4.05 3. 16  2.0 1 0.89 1 .77 
CaO% 0.5 - 1 1 .32 0.26 - 1 3 .07 0.22 - 22.98 0.33 - 0.47 1 .84 1 5 .35 32.00 1 1 .42 
MgO% 0 09 - 1 .43 0.05 - 1 .55 0.45 - 6.32 1 . 1 8 - 2.4 1 1 .22 4.28 1 .69 2.22 
K2O% 0.05 - 2. 1 0  0.Q7 - 0.37 0.37 - 1 .99 0.75 - 2.39 1 .07 0.75 0.34 LI t  

Ma20% 0.07 0 78 0.03 0. 1 0  0.05 - 0.39 0.42 - 0.70 0.3 1 0.46 0.29 0.26 
• cherts are presently used by cement companies In Ras AJ Khalmah 
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The present study deals with the Jurassic limestones and Upper Cretaceous 

siliceou rocks exposed at Ras AI Khaimah Emirate. The objectives of the study are three­

fold: (i) to determine the petrographic and mineral c haracteristics of the rocks; ( ii) to 

in estigate their geochemical attributes; and (iii) to assess their suitability as raw materials 

for the cement industry in the E mirate. 

The materials used in the present study comprise samples representing the cherts, 

limestones and dune sands. Twenty-one chert samples were collected from the Hawasina 

succession in two quarries in addition to some exposures at AI Gail and Saram. Fifteen 

limestone samples were collected from the Khor Khowair quarry. The coastal and inland 

sand dunes at AI Helailah and AI Gail; respectively are represented by three samples. One 

sample was collected from a diabase sheet structurally interbedded with the cherts in the 

Hawasina succession. 

Microscopic examination has been carried out on a total of 37 thin sections and 

three grains mounts prepared from the various rock types and the loose dune sands. X-ray 

diffractometry has been utilized to investigate the mineral composition of the various 

rocks. Samples collected from the sand dunes were subjected to heavy mineral separation. 

The obtained light and heavy fractions were examined microscopically and their 

constituents were quantitatively determined by counting of about 300 grains in each slide. 

In addition, chemical analyses were conducted on all samples to determine the 

concentrations of the major oxides and some trace and rare earth elements. 

Microscopic examination of thin sections prepared from the various sedimentary 

lithologies revealed the presence of two main facies: the chert facies and the carbonate 
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facies. Based on their composition, each of these two facies could be subdivided into a 

number of subfacies. 

The chert facie was recorded in aU the studied localities except Khor Khowair. The 

delineated subfacies include: ferruginous radiolarian ribbon chert, carbonaceous 

radiolarian ribbon chert co 110 form ribbon chert, calcareous chert and siliceous mudstone. 

These subfacies are variably recorded in the different localities. They show several 

evidences of d iagenetic effects including: cementation, dissolution, replacement and 

neomorphism. 

The carbonate facies was recorded in aU the studied localities. Based on the textural 

c lassification o f  Dunham ( 1 962), these carbonates comprise lime mudstone, wackestone, 

packstone and c rystalline limestone. The wackestones are represented by two types: 

peloidal bioclastic wackestone and Orbitolina bioclastic wackestone. The packstones, on 

the other hand, consist of algal bioclastic packstone, pelecypodel bioclastic packstone or 

Orbitolina peloidal bioclastic packstone. The crystalline limestones are rare and their 

presence is restricted to Idan area. All the carbonate rocks display evidences of extensive 

diagenesis including: dissolution, cementation, compaction, replacement and 

neomorphism. 

The studied sand dunes are of two types: carbonate and noncarbonate. The former 

type is represented by the coastal dunes whereas the latter type constitutes the inland 

dunes. 

The detailed mineral compositions of the studied rocks have been further assessed 

utilizing X-ray d iffractometery. The results obtained revealed that the cherts consist of ( in 

order of  decreasing abundance):  quartz, calcite, dolomite and hematite. Quartz is the only 

major component in the rocks of aU localities except for some exposures in Saram where 

c alcite also represents a major constituent . The latter mineral is a subordinate or minor 
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component ill some other calcareous cherts in Al Gail and Saram. The presence of 

dolomite is limited to the calcareous cherts of Idan in which it represents a subord inate or 

minor component. Hematite was detected in the forruginous radiolarian chert of Idan. The 

limestones, on the other hand, are made up of (in order of decreasing abundance): calcite, 

quartz sand dolomite. Calcite is the sole major component in all the studied carbonates. 

Quartz exists as a subordinate constituent in some lime mudstones and wackestones of 

Saram. The presence of dolomite is limited to the packstones of ldan in which the mineral 

represents a minor component . 

The light fract ions of the AI Helailah coastal sand dunes consist of carbonate 

lithoclasts and quartz together with minor proportions of skeletal grains and traces of 

feldspars and chert. Their heavy fractions are made up of pyroxenes and opaques in 

addition to t races of hornblende, gamet, rut ile, tourmaline and epidotes. The light and 

heavy fractions of Al Gail inland dunes are compositionally s imilar to those of Al Hela ilah 

except for the absence of skeletal grains and the presence of traces of monazite. 

Quantitative comparison between the two types of dune sands reveled that the light 

fract ions of Al  Helailah coastal dunes contain higher concentrations of carbonate 

lithoclasts and skeletal grains and lower proportions of quartz and chert. Also, the heavy 

fract ions of AI Helailah dunes are slightly more enriched in opaques, pyroxenes, epidote 

and hornblende and dep leted in rut ile, tourmaline, garnet and monazite. 

The obtained geochemical data are in accordance with the results of petrographic 

studies and XRD analysis. These data confinn the c lassification of the studied cherts into 

three types; namely: (i) red ribbon radiolarian cherts or radiolarites ( R)' (ii) calcareous 

cherts (CC), and (iii) s iliceous mudstones (SM). 

Comparable rock l ithologies in the studied areas show closely s imilar major 

element compositions. S ilica concentrations do not show marked variations throughout 
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most of the stratigraphic sections. They are 90%-98% for R beds, 7 1  % - 87% for SM beds 

and 49% - 72% for CC beds. 

The high values of AI / (Al+Fe+Mn) ratio in the R, SM and CC samples from both 

Idan and AI Rams indicate a major role played by terrigenous sources in their genesis. The 

decrease in this ratio upwards in the chert section of Wadi Saram reflects a change up­

section from a setting with predominantly terrigenous influence to a setting of pelagic 

deposition. Again, the increase in Ti02, AI20), MgO, Fe20) and K20 contents downwards 

in the section an increase in proportions of reflects detrital materials inherited from the 

underlying ophiolitic section. 

The relative enrichment of the studied cherts, particularly SM samples, in the HFS 

(High Field Strength) elements is mostly attributed to the important role played by a 

detrital source component in their genesis. This is because most of the HFS elements are 

concentrated in detrital heavy minerals such as zircon, hematite and clay minerals. 

The cherts exhibit LRE E  (Light Rare Earth E lements) fractionated patterns with 

moderate Eu anomalies. The SM samples have the highest REEs abundances. The positive 

correlations between the total REE and the detrital indicators such as AhO), Fe20). Ti02, 

and K20 signifY contributions from terrigenous sources in the origin ofthese cherts. 

R-mode cluster analysis for major and trace elements exhibits three main element 

associations or clusters. The first cluster is for carbonate minerals (Ca & Sr), the second 

c luster includes the terrigenous source components (REE, MgO, P20S, FeO, Zr, Nb, Rb, 

K20, Ga, AhO) and Si02), whereas the third cluster is only devoted for silica. On the other 

hand, Q-mode cluster analysis proved to be successful in discriminating between the three 

major chert lithologies including R, SM and CC types. 

R-mode factor analysis produced 2 factor model accounting for 85 .85% of the data 

variability. Factor 1 (terrigenous source) accounts for 68. 1 2% of the variability model and 
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includes the association Ti02, Ah03, FeO, K20 P20S, Rb, Ga, Zr and REE. Factor 2 

(carbonate minerals) accounts for 1 7 .43% of data variability and is a bipolar factor where 

CaO is positively loaded and Si02 is negatively loaded on it . This indicates the carbonate 

replacement in the cherts at the expense of silica. 

In the present work an attempt has been made to assess the suitability of the studied 

limestones and cherts as raw materials for cement production. A comparison has been 

made between the chemical compositions of the studied limestones and those of Khor 

Khowair presently used by the Ras Al Khaimah Rock Company. This comparison revealed 

the following: 

( i) The studied Khor Khowair limestones contain slightly higher 

concentrations of CaO and lower proportions of Si02, MgO and Fe203. 

( ii) The limestones of I dan and Al Gail are, to great extent, compositionally 

similar to those of Khor Khowair. Differences are represented only by 

the slight relative enrichment of Idan limestones in MgO and those of Al 

Gail in CaO. This permits the consideration of the limestone exposures 

in these two localities for possible future needs. 

( i ii) The Saram limestones are markedly compositionally different from 

those of Khor Khowair; be ing depleted in CaO and enriched in Si02, 

Al203 and Fe203. 

( iv) The studied I dan cherts have lower Si02 and higher CaO concentrations 

when compared with those presently used by RAKCC. Al Rams cherts 

are more enriched in Al203, MgO and Na20 and depleted in CaO. Saram 

cherts have higher CaO and lower Al203 and Fe203 contents. On the 

other hand, Al Gail cherts are closely similar to those exploited by 

RAKCC and, hence, can be considered as a source of silica in future 

p lanning. 

The suitability of sand dunes in the surroundings of Ras Al Khairnah as a source of 

silica bas been also tested. The chemical data of the sands collected from the coastal and 
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inland dunes at AI Gail and AI HeLailah; respectively were compared with those of cherts 

and dune sands analyzed earlier by the RAKCC. This comparison revealed the following: 

( i) The studied dune sands have lower Si02, AhO) and Fe203 concentrations 

than those reported for cherts. 

( i i) Sand dunes of AI Gail are compositionally similar to those tested earlier by 

RAKCC; except for their slight relative enrichment in Fe203, Cao and 

MgO at the expense of Si02, AI203 and K20. On the other hand, AI 

Helailah dune sands are relatively more enriched in CaO and depleted in 

other major elements and, hence, cannot be considered as a possible silica 

source for cement productions. 
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