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ABSTRACT 

The goal f thi 'V ork is to xperimentally investigate the stable crack growth 

(S G) fracture behavior of AISI 4340 alloy steel. A series of mode I and mixed mode 

CG fracture test were carried out on 8 mm thick compact tension (CT) specimens 

subjected to quasistatic loading. The wire cutting technique was used to introduce a pre­

notch / pre-crack of 0.05 mm root radius to the specimen. Five different loading angles \II 

between the loading axis and the crack surface were employed; 90° (mode I), 75°, 65°, 

60° and 50°. Five different ratios of original crack length to specimen width aJw were 

also employed 0.41, 0.42, 0.43, 0.44 and 0.45. Different combinations of \II and aJw 

were used. Data concerned with direction of initial crack extension load-load line 

displacement (L-LLD) diagrams, initiation and maximum loads, range of stable crack 

growth., crack blunting crack front geometry, fracture surfaces, and scanning electron 

microscope fractographs were obtained. A noticeable blunting was observed prior the 

crack initiation. Although the crack commences its growth from a pre-notch / pre-crack 

of a straight front it has a considerable tunneling at each stage of stable crack growth. In 

mixed mode, the crack takes place along a straight-line path initially, inclined with the 

main crack at an angle equal to the direction of crack extension. The loading angle \II and 

the initial crack length to the specimen width aJw ratio affect the SCG fracture behavior 

significantly. The direction of initial stable crack extension was determined through an 

elastic finite element analysis. There was reasonably good agreement between the 

experimental and the predicted results. 
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HAPTER 1 

I NT RO D UCT I ON 

1.1. MOT IVAT I ON 

Engineering systems such as ships, aircrafts, vehicles, pressure vessels, and 

nuclear power plants are extremely complex with many thousands of components. I n  the 

construction of such systems it is i mpossible to completely avoid the presence of flaws 

such as crack s. A crack in a structural or a machine component can be due to initial 

defect in  a material or it can develop during machin ing or manufacturing. The presence 

of a crack in a component may weaken it so that it fai l s  by fracturing into two or more 

pieces. This can occur at stresses below the material's yield strength, where fai lure wou ld 

not normal ly be expected. 

I n  engineering design, materials and design details can be careful ly  chosen so that 

designs i s  relatively tolerant to the presence of cracks, and design can i nclude 

redundancy, so that fracture of one component does not cause catastrophic failure of the 

whole machine, vehicle or structure. In the classical approach, design is based on the 

assumption that the material is homogeneous and defect free. This  makes the material ,  

which may contain a smal l defect or flaws, useless. In  recent years i mprovement in 

design and safety assurance have been greatly influenced by advances in  the discipl ine of 

fracture mechanics, especial ly  l inear elastic fracture mechanics (LEFM). 



I f  the load appl ied to a member contai ning a crack i too high, the crack may 

uddenly grow and cau e the member to fai l  by fracturing in a brittle manner, that is, with 

l itt le pia t ic deformat ion. From the theory of fracture mechanic , a quantity cal led the 

tress intensity factor, K, can be defined to characterize the severity of the crack situation 

as affected by crack size, stress, and geometry. In defin ing k, the material is assumed to 

behave in  a l i near-elastic manner accordi ng to Hooke's law, so that the approach being 

used i cal l ed l inear-elastic fracture mechanics (LEFM).  Fracture of engineering materia l  

originating from a crack i s  wel l  understood provided the deformation i s  l inear elast ic. I n  

the case of brittle material, an unstable crack extension occurs most ly immediately upon 

in itiation. Such extension fal l s  within the scope of LEFM.  The direct ion of in it ial crack 

extension, the fracture load and the unstable crack path could be easi ly predicted to a 

reasonable degree of accuracy by applying any one of the predict ive criterion - the 

criteria of maximum tangential stress (MTS); strain energy density (SED), maximum 

tangential strain (MTSN) and maximum tangential principal stress (MTPS)- to the stress­

strain field existing at the onset of crack extension. 

In  duct i le  material s, such as many metals, l arge p lastic  deformations occur in the 

vicin ity of the crack tip. The region with in which the material yields i s  cal led the plastic 

zone. It is significant that the region of yielding, plastic zone must not be excessively 

l arge if  the LEFM theory i s  to be appl ied.  Most metals give ri se to plastic deformation at 

the t ip of a crack, t he extent of which is more than wnat could be accounted for by the 

LEFM. This has lead to development of elastic-plastic fracture mechanics (EPFM). I n  

many metals due to  the plastic zone formation, t he  crack grows stably before instab i l ity  

sets in .  The instab i l ity occurs a t  a load level h igher than the in i t iat ion load ( Pi) .  A design 
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ba ed on the initiation load ( PI) may lead to under-uti l ization of the material . To e ploit 

the fu l l  potential of the material it i s  neces ary to obtain data and characterize the stable 

crack growth ( G) 

crack in every tage of development wi l l  tum into a direction in which it 

experiences only mode I load ing, unless it is prevented from doing so by geometrical 

confinement . For this reason, fracture mechanics is general ly  confined to mode I. As a 

resu lt a con iderable amount of work has been directed to developing analytical and 

experimental methods to quantify the stress-crack relationships under this type of 

loading. Practical structures are not only subjected to tension but also experience shear 

and tor ion loading. Cracks therefore are exposed to tension and shear, which lead to 

mixed mode cracking. The combination of tension and shear gives a mixture of mode I 

and I I . General ly  i f  a crack surface i s  not normal to the appl ied stress, or if there i s  a 

complex state of stress, a combination of fracture modes I ,  I I ,  and I I I  may exi st, for 

example, a situation involving combined modes I and I I .  i s  complex because the crack 

may change direction so that it does not grow in its original p lane, and also because the 

involved fracture modes do not act independently, but rather i nteract. The direction of 

crack extension i s  then an unknown over and above the fracture load . In thi s  context, the 

mode I stable crack growth has received a considerable  attention, but not the mixed 

mode, which i s  a more general problem. Some investigators have considered the mixed 

mode stable crack growth (SCG) problems but a general accepted analysi s has not yet 

developed Both theoretical and experimental investigations on mixed mode SCG are 

lacking. 
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On of the mo t important mode of fai lure in  metal s is crack propagat ion ari sing 

at regl n of high tre s (stre s raiser) such as, notches, holes, fi l lets or any other 

di ont inuit ies Cra ks tend to grow under loadi ng and when reach a critical size they 

propagate in un table manner causing fai lure of the part i n  which they are located . The 

i ue of table growth of cracks ari sing from a stress rai ser is very scanty. The stable  

crack exten ion behavior through AlS I  4340 al loy steel i s  a l so lacking. These issues have 

provided a motivation for the present work. 

1 . 2 A IMS A N D  OBJECT IVES 

The pre ent invest igat ion i s  an  attempt to  obtain data on  stable crack growth 

through aircraft quality al loy steel AlS I  4340 or SAE 4340. The (SCG) fracture behavior 

was characterized through a series of fracture tests conducted on 8 mm thick compact 

ten ion (CT) speci men in mode I and mixed mode (I and I I ) . Data pertain ing to load -

load l ine displacement diagram, crack init iation load, maximum fracture load, crack 

blunt ing, crack front geometry (tunneling), fracture surface and scanning electron 

microscope fracto graphs is presented . 

Some work has a lso been carried out using the F in ite Element Method. This 

includes the computation of ini t ia l  stable crack d irection, equivalent stress and size of the 

p lastic zone a head of crack t ip  around in it i at ion load. The commercial finite element 

package" ANSYS" version 5 . 4  was used for the fi nite element analysis .  

Keeping these in  view the present study has been carried out with the fol lowing 

object ives 
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1- To carry out the ten i le  te t on r I 4340 steel al loy to get it mechanical 

properties 

2- To carry out e. peri mental tudie on mode 1 table crack arowth through compact 

ten ion speci mens 

3- To carry out experimental studies on mixed mode I and I I  stable crack growth 

through compact tension specimens. 

4- To carry out finite element analysi s to verify some of the experimental results .  

5- To tudy the stable crack growth characterist ics through A l S I  4340 al loy steel . 

1 .3 OUTLI N E  OF TH E D ISSE RTA T I ON . 

The d is  ertation is divided into six chapters, i n  chapter one, the present chapter, 

the motivation of study, aims and object ives and an out l ine of dissertat ion are presented. 

The relevant l iterature on the l i near elast ic fracture mechan ics (LEFM) and elast ic-plast ic  

fracture mechanics (EPFM) are reviewed in  chapter two. The l iterature on the use of 

F in ite E lement Method in predict ing of the crack direct ion i s  also reviewed in  th is  

chapter. In  chapter three the experimental procedure (material, speci mens' geometries 

and test procedure) is di scussed. Mode I and Mixed mode stable crack growth 

experimental studies are presented in chapter four and five respect ively. Chapter six 

presents a discussion of the results, general conclusion and suggestions for future study. 
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CHAPTER 2 

L IT E RATU R E  R EVI EW 

2.1. INTRODUCTION 

In thi  chapter l i terature relevant to l i near elast ic  fracture mechanics (LEFM), crack 

extension through brittle materials elast ic plast ic fracture mechanics (EPFM), and mode I 

and mixed mode ( I  and I I )  stable crack growth are reviewed . 

2.2. F RACTUR E  MECHANI CS 

Where cracks are d ifficult to avoid, a special methodology cal led fracture 

mechanics can be used to aid in selecting materia ls and designing components to 

min i mize the possibi l ity of fracture. 

Fracture mechanics is a subset of sol id  mechanics t hat deals with the behavior of 

sol id  systems contain ing one or more cracks. Fracture mechanics is a relatively new area 

of sol id  mechanics research, with its foundation l aid  in the early 20th century. AJready i t  

has broad appl ication in  systems ranging i n  s ize from m icrometer length  scales (th i n  

ftims, MEM S) up t o  kilometer length scales (earthquake fault  l ines). Some fracture 

mechanics problems may relate to configurat ion effects, such as cracks affected by weak 

bond l ines, material ani sotropy, or specimen i nhomogeneity. These experiments may be 

performed with "model" materia ls having properties idea l ized for the experiment . 

However, one important job for fracture mechanics is to evaluate the performance of 
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imperfect material for engineering u e. In this case the experimental models and methods 

mu t be e tended and tail red to uit the material, and not the other way around. 

The tud and use of fracture mechanics is of major engineering importance simply 

because cracks or crack-like flaws occur more frequent ly  than we might th ink . For 

e ample, the periodic inspect ions of large commercial aircraft frequently reveal cracks, 

some t ime numerous cracks that must be repai red . Cracks or crack-like flaws also 

commonl occur in  ship structure in  bridge structures, in pressure vessel s and piping, i n  

heavy machinery, and in  ground vehicles They are also a source of concern for various 

part of nuclear reactors. 

2.3. H I STOR I CAL REV I EW 

trength fai lu res of load bearing structures can be either of the yielding-dominant 

or fracture-dominant types. Defects are i mportant for both types of fai lure, but those of 

primary importance to fracture differ in  an extreme way from those influencing yield i ng 

and the resi stance to plastic flow. These d ifferences are i l lustrated schematical ly  i n  

Figu re 2.1 

For yielding-dominant fai lures the significant defects are those which tend to 

warp and i nterrupt the crystal l attice planes, thus i nterfering with d islocation gl ide and 

providi ng a resistance to plastic deformation that is essential to the strength of high 

strength metals. Examples of such defects are i nterstitia l  and out-of-size substitution 

atoms, grain boundaries, coherent precipitates and dislocation networks. Larger defects 

l ike i nclusions, porosity, surface scratches and smal l cracks may influence the effective 

net section bearing the load, but otherwise have l ittle effect on resi stance to yielding. 

7 



General plasticity 

igmficanl defects arc tho c 
controlling resistance 10 plastic 

flow, c.g.: 
o lnterslitials 

o Grain boundaries 
o Prccipitates 

o Dislocation networks 

FRACTURE - DOM lNANT 

Highly localized plasticity 

Significant defects are essentially 
macroscopic, e.g.: 

o Weld flaws 
o Porosity 
o Forging laps 

o Fatigue and stress 

corrosion cracks. 

Figure 2 . 1 .  Types of structural fai lure. 

For fracture-dominant fai lures, i .e. fracture before general yielding of the net 

sect ion, the size scale of the defects, which are of major significant, i s  essential ly  

macroscopi c, s ince general plasticity i s  not involved but only the  local stress strain fields 

associated with the defects. The m inute lattice-related defects, which control resi stance to 

plastic flow, are not of d irect concern. They are important insofar as the resi stance to 

plastic flow is related to the material ' s  susceptibi l ity to fracture. [ 1 ]  

Fracture mechanics, i s  concerned al most enti rely with fracture-dominant fai lure. 

The first commonly accepted successful analys is  of a fractu re-dominant problem was that 

of Giffith in  1 920, who considered the propagation of brittle cracks in  glass. Griffith 

formulated the now wel l -known concept that an exi st ing crack wi l l  propagate if  thereby 
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the total energy of the tern i lowered, and he a sumed that there i a s imple energy 

balance, con i t ing of a decrease in elast ic strain energy within the stressed body as the 

crack extend , counteracted by the energy needed to create the new crack urfaces. H i s  

theory al low the est imat ion of the theoret ical strength of brittle sol id and also gives the 

correct relat ionship between fracture trength and defect size. 

The Griffith concept was first related to brittle fracture of meta l l ic  materials by 

Z ner and Hol lomon in 1 994. oon after, Irwin pointed out that the Griffith-type energy 

balance mu t be between ( i )  the stored strain energy and ( i i )  the surface energy plus the 

work done in  plast ic  deformat ion. I rwin defined the 'energy release rate' or 'crack 

driv ing force',  G, as the total energy that i s  released dur i ng cracking per unit increase i n  

crack size. He a lso recognized that for relat i vely duct i le materials the energy required to 

form new crack surface is general ly i nsigni ficant compared to the work done in plast ic  

deformation. 

In  the middle 1 950s I rwin contributed another maj or advance by showing that the 

energy approach is equivalent to stress i ntensity (K) approach, according to which 

fracture occurs when a cri t ical  stress d istribution ahead of the crack tip is reached. The 

materia l  property governing fracture may therefore be stated as critical stress intensity, 

Kc, or i n  terms of energy as a critical value Gc. 

Demonst ration of the equ ivalence of G and K provided the basis for development 

of the d i sc ip l ine of Linear Elastic Fracture Mechanics (LEFM).  Thi s is because the form 

of the stress d ist ribution around and close to a crack t ip i s  a lways the same. Thus tests on 

suitably shaped and loaded specimens to determi ne Kc make i t  possible to determine if 

cracks or crack-l ike flaws are tolerable i n  an actual structure under given condit ions. 

9 



Furthermore, material can be compared a to their suitabi l i ty in situat ions where fracture 

is possible It has al 0 been found that the sensitivity of structure to subcrit ical cracking 

u h as fatigue crack growth and stre s corro ion can, to some extent, be predicted on the 

basi of te ts u ing the tress intensity approach. 

The beginnings of Elastic-Pia tic Fracture Mechanics ( EPFM) can be traced to fair ly 

early i n  the development of LEFM, notably Wel l ' s  work on Crack Opening Displacement 

( OD), which was publ ished in 1 96 1 .  In 1 968 Rice introduced an elast ic-plast ic  fracture 

parameter with a more theoretical basis :  the J i ntegral .  Although both COD and J are now 

wel l -estab l ished concepts, EPFM is st i l l  very much an evolving discipl ine .  The reason i s  

the greater complexity of  elast ic-plast ic analyses. I mportant topics are: 

The description of stable duct i le crack growth (tearing), which is the subject of 

this dissertation. 

The development of fai lure assessment methods that combine the affects of 

plasticity and fracture. 

As opposed to using the above-mentioned global fracture mechanics parameters, 

fractu re problems are a lso increasingly being tackled by means of local fracture criteria .  

In  studying material containing cracks, a whole h ierarchy of models, tools, and 

techniques exist with d iffering complexity and general ity. The simplest model with 

sufficient descript ive/predict ive power i s  obviously t he best model to use. For 

engineering materials, model choice should be made careful ly  and must be just ified. 

A brief descript ion of two relevant t ip model s and fai lure criteria fol lows. As these 

concepts  are elemental to fracture mechanics, a more complete description can be 

obtained from any good text on the subject, such as Anderson [2 ] .  
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2.4. LI EAR EL TIC FRA TURE MECHANICS (LEFlVl) 

When po ib le, fields around a single crack t ip are analyzed using Li near Elast ic 

Fracture Mechanic  (L FM) a this i s  the si mple t modeL Within LEFM any arbitrary 

crack t ip st re s state in a l i near elast ic  i sotropic homogeneous material can be 

decompo ed into the unique l i near combinat ion of the three mutually orthogonal modes: 

ymmetric i n  p lane (mode I), ant isymmetric in-p lane ( mode II), and out-of-plane ( mode 

III). In other words, the cracked body can be loaded in any one or a combinat ion of the 

three load ing (displacement) modes that are schematical ly depicted in  Figure 2.2. Mode I 

i cal led the opening or tensi le mode, where the crack wal l s, faces, move direct ly apart . 

Mode II, the sl id ing or in-plane shearing mode, where the crack faces s l ide over, and 

relat ive to, one another in a d irect ion perpendicular to the leading edge of the crack. 

Final ly, Mode IlL the tearing or ant iplane sheari ng mode, where the crack faces sl ide 

away from each other i n  a d irect ion paral lel to the leading edge of the crack [2] .  Mode I 

i s  caused by tension load ing, where as the other two are caused by shear loading i n  

different directions as shown i n  F igure 2 .2 .  I f  a crack surface i s  not normal to the app l ied 

stress, or if  there i s  a complex state of stress, a combination of fracture modes I, I I ,  and 

III may exi st .  Thus, combinat ions of loadi ng that i nvolve more than one crack-t ip  mode 

are referred to as m ixed mode. 
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Figure 2.2 The basis modes of loading (crack surface di splacement) that can be appl ied to 

a crack. [ 1 ]  

For each mode, stress-field sat i sfying the boundary condition of having stress-free 

crack faces are asymptotic with u nknown coefficient reflect ing u nspecified far-field 

boundary condit ions (Westergaard [ 3 ], Irwin [4] ,  Sneddon [ 5 ]  and Wi l l iams [6] ) are of 

the form: 

(2. 1 )  

where crij i s  the stress tensor, r and e coordinates with respect to the usual crack t ip 

coordi nate system fij and gij are functions of e, and K and Am are the coefficients of the 

singu lar and higher order terms respect ively. The term fij is a u niversal function and 

holds for all cracks propagating at speed much slower than the material ' s  shear wave 

speed, including stationary cracks. 
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For each mode the lead ing a mptotic term i s  singu lar and thus dominates near 

the crack t ip Becau e of this dominance, the leading term' coefficient (or magnitude) 

can erve a a single parameter de cription of the stress state at the crack t ip. The 

coefficient K for the lead ing singu lar term i cal led the stress intensity factor, which i s  

usual ly sub cripted to  pecify mode i . e . ,  K" KII, or  Kill. 

The LEFM deals  with the analysis of cracks growth through l i near elast ic 

mat rials .  Stress intensity factor (S IF ) K has a great signi ficance in LEFM.  It gives a 

measure of the i nten ity of stress and strain at crack t ip in  al l the three fundamental 

mode of fractu re. One can express stress, d i splacement and fracture criterion in term of 

'K'. In all the three modes, stress has a singu larity of order l /'Jr. The stress intensity 

factor determines the magnitude of local stresses and i t  gives a clear picture of stress­

strain environment at the crack t ip .  It has a critical value at the point of onset of unstable  

extension, and crack stress fie ld for a complex problem can be obtained easi ly through 

superposition. The crit ical value of stress intensity factor at which the crack extension 

begins is known as fracture toughness. The fracture toughness is a material parameter and 

it can be detennined experimental ly [7 ] .  The crack t ip severity can also be expressed in  

terms of energy release rate G,  J i ntegral, and COD (8) .  The fracture condition can be 

expressed in terms of t hree parameters. All criteria indicate that crack growth occurs 

when the basis parameter reaches a crit ical value. I t ' s  quite known that the parameters are 

related, e.g. G = J = (1- v2) K2 / E under plane strain and G = J = K2 / E under plane 

stress, where E i s  the elast ic modulus and v is the Poisson rat io .  [8] 

Real material cannot support the theoretical i nfin i ty stresses at the t ip of a sharp 

crack, so that upon loading the crack tip becomes blunted and a region of yielding, 
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crazing, or microcracking form . Due to yield ing within the plast ic zone, the stresses are 

lowel than the value from the elast ic stress field equations. LEFM can be used as long as 

the pIa t ic zone is small, which is the case when the stress is low with re pect to the yield 

tre (0 = 0 80y). When the tresses are higher the plastic zone wi l l  spread beyond the 

point at which it can be expressed uniquely as a function of K, so that K i s  no longer 

usefu l as a s im i l itude parameter. Such high stress occurs at the point of fracture if the 

toughness is very high [8 ] .  

2.5. U N STAB L E  PATH OF CRACK EXT E N S I ON 

The unstable crack extension takes place most ly immediately upon init iat ion through 

brittle materials .  Therefore, it is of importance to know the in it iat ion load, direction of 

in i t iat ion crack growth in i t iation and unstable crack path can be predicted. A number of 

crit ria are avai lable for the prediction of brittle fracture load (Pc) and direct ion of in it ia l  

crack i ni t iat ion (8). Al l  these are defined using some aspects of stress-strain field exi st ing 

prior to the start of propagation. The criteria that are widely u sed are: 

1 - The maximum tangentia l  stress ( MTS) criterion [9] 

2- The maxi mum tangent ial  principal stress (MTPS) criterion [ 1 0] 

3 - The maximum tangent ia l  strain (MTSN) criterion [ 1 1 ]  

4- The strain energy density (SED) criterion [ 1 2] 

Accord ing to the MTS criterion, the crack extended i n  a radial d irect ion perpendicu lar 

to the direct ion of maximum tangential stress, and the extension starts when the 

maximum tangent ial  stress reaches a crit ical value. The maxi mum tangential principal 

stress criterion states that the crack extends in a radial d i rection perpendicu lar to the 
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direction of rna i mum tangent ial stre s, or the direction of zero shear stress. The 

e. tension start when the maxi mum tangential stress reaches a critical value. Maximum 

tangent ial train criterion i s  identical to the MTS criterion except that the basis i s  strai n 

rather than stre s. ccording to the strain energy density the crack extended in a radial 

direct ion of minimum strain energy density. 

2.6. MA L L  SCALE YI E L D I NG 

A stress singu larity at the crack t ip as predicted by LEFM cannot exist 10 

materials with fin ite trength. I nstead the highly stressed material yields and p lastica l ly  

deforms.  To first order the size of the plastic zone for mode I i s: 

(2 .2)  

where (Jys i s  the material y ie ld stress. The actual shape of the p lastic zone depends on 

crack t ip triaxia l ity. L inear E lastic  fracture Mechanics (LEFM) can deal with only l im ited 

crack tip p last icity, i . e. the p last ic zone must remai n small compared to the crack size and 

the cracked body as a whole must sti l l  behave in an approximately elastic manner. If th is  

i s  not the case then the problem has to be treated elasto-plast ical ly .  However, if the size 

of the p lastic zone is sufficiently small as compared to the size of crack and any other 

geometrical d imensions (smal l scale  yielding), the elast ic s ingularities fields sti l l  give 

good approximation to the actual field in an annular region surrounding the crack tip 
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Figure 2 . 3  Basic of Linear Elastic Fracture Mechanics 

In materia ls  that are well modeled by LEFM, the p lastic zone is smal l  enough to 

be completely surrounded by an annu lus  in  which stresses are described by the K-field 

( lead ing term in  the asymptotic expansion Equat ion. 2 .1) .  The outer l imit of the K-field 

dominated annu lus  i s  due to the increasing relat ive contribut ions of higher order 

asymptotic  stress field terms. However since a K-dominated annulus  completely bounds 

the crack tip, K i s  sti l l  a s ingle parameter description of the crack t ip stress state in  that it  

describes the entire boundary conditions of the crack t ip .  Thi s concept that LEFM can 

sti l l  describe crack tip fields in such materia ls  despite crack t ip yielding i s  cal led smal l 

scale yield ing (S .S .Y . )  (Freund [ 1 3 ], Freund and Rosakis  [14] ) .  
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There are man material In which crack growth in i t i at i n and/or extension i s  

pre eded b p ia  t i c  deformat ion . trict ly speak ing the Gri fft h  theory appl ies where non­

l i near effect are ab ent on a continuum s ale. Thi s make the analysis u ele s for almost 

al l engineering material s . Often the crack t ip experience a p last ic zone and when crack 

e tension take place in the pre ence of deformations at the crack tip, certain amount of 

energy 1 expended in the creat ion of new surface over and above the elastic surface 

energy. 

In  order to extend the appl ication of Griffit h theory to materials which gives ri se 

to plastic deformation ahead of crack t ip Irwin [ 1 5 ] and Orwan [ 1 6] independent ly 

proposed a modification. According to them, when the crack extension occurs in the 

presence of the plasticity effects, a certai n amount of energy is expended in the 

i rreversible deformation process, for plastic deformat ion around the crack t ip over and 

above the elast ic  energy for creat ion of new surfaces. In fact, the elastic energy requi red 

.is  very negl igible compared with the plastic work. Later I rwin, Kies and Smith [ 1 7] 

proposed the first method of quantit ive accounting for the effect of the plastic zone at the 

crack tip. They proposed that the physical crack length can be amended by a correction 

factor, which depends on the extent of plastic deformation, and the problem can be 

t reated mathemat ical l y  as l inear elast ic. Gradual ly, efforts have been made to 

accommodate more plast icity effects than what is possible by their approaches. 

Thus, the early attempts to model the plastic deformation attending the crack t ip 

were based on extension of LEFM. However if the size of plast ic zone is  large then 

assu mption of smal l scale yielding no longer holds good. To include the influence of thi s 

significant plast ic deformation that may accompany crack in it iat ion and subsequent stable 
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crack growth one ha to go In  for elast ic-pia tic fracture mechan ics EPFM. The 

de el pment In the PFM, which deal with uch ca es, is rather slow One of the 

rea n for thi is that it is d ifficult to obtain precisely the st ress-strai n field in the 

pre ence of pIa t ic deformat ion. 

2.7. ELASTI C-PLA ST I C  FRACT UR E  MEC H A N I C S  

EPFM i used when the crack t i p  i s  not sharp and there is  some crack-t ip 

plast icity (b lunt ing). EPFM is  used to design materia ls  such as lower-strength, higher­

toughness steels .  For such more duct i le  material the assum ption of smal l  scale yielding 

may not be met d isal lowing LEFM analysis. The next level of fracture model ing is 

Elast ic-Plast ic Fracture Mechanics (EPFM). In  such cases the problem has to be treated 

elasto-plast ical ly. Due to its complexity the concepts of Elastic-Plast ic Fracture 

Mechanics (EPFM) are not so wel l developed as LEFM theory, a fact that is reflected in  

the approximat ion nature of the eventual solut ions. 

The Dugdale M odel 

Dugdale [ 1 8] analyzed the p last ic  zone s ize ahead of a mode I crack by t reating it 

as a strip of yielded materia ls and using the complex variable formulation of elast icity. 

For elastic-perfectly  p lastic material, Dugdale found very good agreement between 

predicted and experimental results; later Hahn and Rosenfield [ 1 9] confirmed the 

accuracy of Dugdale predict ions experi mental ly .  The plast i c  zone size given by Dugdale 

model ta l l ied with the results of Bi lby, Cottrel l and Swiden [20], who treated the crack as 

a cont inuous d istribution of d i slocat ions. The Dugdale approach has been later appl ied by 
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other invest igators [ 1 9, 2 1 ,  22] to determine the crack openi ng d isplacement (COD). In 

the presence of a smal \ -sca\e plasticity, crack growth can take place stably t i l \  the 

i n  tab i l ity; such phenomenon under plane stress condit ion has been somet imes studied by 

the concept of re istance (R) curves [ 8 ] .  

Crack Open i n g  Displaceme n t  Approac h .  

The approach of I rwin, Kies and Smith [ 1 7] was sui table where p last icity a t  the 

crack tip occurs on a smal l  scale. In 1 963 Wel l s  [23 ]  i nt roduced the crack opening 

d isplacement (COD) approach as an alternate approach which is useful, even in  the case 

of a l arge scale plast ic deformation. This approach focuses on the strains in the crack t ip 

region instead of the stresses, un l ike the stress i ntensity approach. I n  the presence of 

plasticity a crack t ip wi l l  b lunt when it i s  loaded in tension. Wel l s  proposed to use the 

crack flank displacement at the t ip of a blunt ing crack, the so-cal led crack t ip open ing 

displacement (CTOD )  as a fracture parameter F igure 2 .4  . 

--- BLUNTED CRACK 

- - - - - - - - - - - - _ _ _ _ _ _ _  t - - - - 1  
- - - - - - - - - - Jr - - - - - -

INfTlALL Y ---' 
SHARP CRACK 

Figure 2.4.  Cracked t ip opening d i sp lacement 
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Even for tougher material e hibit ing considerable pIa ticity critical CTOD 

value cou ld be defi ned corresponding to the onset of fracture. uch crit ical CTOD 

value could then be u ed to qual ify the materials concerned for a gjven appl ication 

Howe er, in itial ly it wa proved difficult to determine the required CTOD for a given 

load and geometry or alternat ively to calculate cri t ical crack lengths or loads for given 

materia l .  Burdekin and Stone [24] showed the validity of the criterion by conduct ing 

experiments with mi l led steel in tension and bending. This work provided the basi s for 

COD approach in design under contained yielding conditions. There are some difficu lt ies 

associated with the COD approach. I t  i s  a problem to define preci sely the point at which 

the COD should be measured . Turner [25J  noted that there are two values of COOs; one 

(bi)  associated with the in it iation of crack extensi on and the other (bm) corresponding to 

the maximum load. bi is more nearly independent of geometry than bm but the numerical 

values of bi at crack init iation are smal l .  

J I n tegra l A p p roach 

I n  1 968 Rice [26] proposed an alternat ive to the COD concept for defin ing 

fracture i n  elastic-plastic material, in the form of a path- independent l- integra1 . Rice 

considered the potential energy changes i nvolved i n  t he crack growth in  non-l inear elastic 

materia l .  Such non-l inear elast ic behavior is a rea l i stic approxi mation for plastic behavior 

provided no unloading occurs in any part of the material . Rice derived a fracture 

parameter called 1, a contour integral that can be evaluated along any arbitrary path 

enclosing the crack t ip, as i l lustrated in Figure 2 . 5 .  He showed 1 to be equal to the energy 

release rate for crack in nonl inear elast ic material, analogous to G for l inear elast ic  
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material With this key paper, R ice laid the groundwork for the bulk of the appl ications in  

e la  t ic-plastic fracture mechanics and for crack-t ip  characterization in  a variety of other 

appl ication . J i gi en by, 

J = r (Wd - T �dsJ Jr Y I ax (2 . 3 )  

where r i s  an  arbitrary path counter-clockwi se around the crack t ip, T j  are components of 

the traction vector perpendicular to r, Uj are displacement vector components, W i s  the 

strain energy density and the y direction is taken normal to crack l ine as shown in F igure 

2 .5  

y 
j,. 

======:::::r:=--�x 

r f r 8�-\ J = W n ·  - T -
�

- 'ds \. I I ex ) 
r 

F igure 2 . 5 .  J contour integral along arbitrary path r enclosing a crack t ip i n  non-l inear 

elastic material . W is stra in  energy density along, !l is outward-directed unit  vector 

normal to r, T is traction acti ng on and !! is the d isplacement along r. 

For a nonl inear elast ic material the J- integral was shown to be a parameter 

characterizing the crack-tip  mechanical environment . J is i nterpreted as the rate of change 
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of potential energy for nonlinear const itutive behavior and it can give the potential energy 

relea e a ociated with crack advance [ 8 ] . J is used to defi ne fracture in elastic-plast ic 

fra ture mechanics c lo ely paral lel to K, stre s inten i ty factor, in the LEFM. The role 

played b J in un ifying LEFM i s  xplai ned by Rice with aid of Barenblatt ' s  mode1. By 

taking r to be contour that just circumscribes the cohesive zone in Barenblatt ' s  model, 

Rice readi ly  found that 

(2 .4)  

where cr = cohe ive stress and 

& = separation di tance at crack-tip 

At the onset of fracture, & must be equal to be, the out-of-range interatomic separat ion 

distance. Then the right-hand side of equat ion (2 . 4 )  would be twice the surface energy. 

Thus for fracture Je= 2r. These relations strongly suggest equ ivalence in J and G for 

l inear elast ic condit ions. For the Dugdale model, Rice showed 

(2 .5 )  

where cr (b) i s  equal to cry and & i s  the  crack t ip  open ing d i sp lacement . From energy 

release rate i nterpretation of J, it can al so be shown that 

J _ a n = G  
a a  (2 .6) 

where 1t denotes potential energy of cracked body. Thus equat ions (2. 5 )  and (2 .6) show 

the equ ivalence of a l l  of the popular fracture mechanics parameter under l i near elast ic 

condit ions. 
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The characterizat ion of crack t ip tre s- train field and path independence of J 

was ba ed on the a umpt ion of a nonl inear elasticity Upto the onset of crack extension 

there i a imple monoton ic load ing of the body and no element of material unloads. Til l 

thi point both a non-l i near elastic material and an elast ic p last ic material obeying the 

deformat ion theory of plast icity are identical . For both, the stress-strain state depends on 

the final state and not on the path of loading. Based on th i s  argument J - integral i s  

considered useful for elastic-plast ic situat ions. The assumption of a deformation theory of 

p lasticity does not lead to a serious l im itation of the J- integral as shown by Budiansky 

[27] .  Thi is because, when nearly a proportional deformat ion occurs, the d ifference 

between the deformat ion theory of plast icity and the incremental theory of plasticity i s  

negl igib le. However this cannot be true for a growing crack i n  a real elastic-plastic 

materia l  as elastic un load ing and non-proportional loading occurs near the crack-tip and 

none of these processes is adequately represented by the deformation theory of plast icity. 

In th is  type of situation an analysis based on the i ncremental theory of p last icity is cal led 

for. 

Though J is considered to represent the energy release rate, i t  i s  not val id  under 

elast ic-plast ic  situations because of two reasons. F irst, loading and unloading curves are 

different. Second, there i s  some energy absorbed i n  the p lasti c  deformation. Inspite of al l 

these, J i s  used for the characterization of crack-t ip stress-strain field and crack extension 

is associated with a crit ical value of 1 .  

For simple geometries and load cases the J i ntegral can b e  evaluated analyt ical ly .  

However, i n  practice fi n ite element calcu lat ions are often required. I n  spite of th is  J has 

found widespread appl ication as a parameter to predict the onset of crack growth in 
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ela t ic-plast ic problems. Later it was found that J could a lso be used to describe a l imited 

amount of table era k growth. [ 1 ]  

2.8 RA C K  T I P F I ELD: 

2.S. 1 .  Crack Tip Field for a Stat ionary Cra c k  i n  D u ct ile Material 

The elast ic-plast ic stress-strain field around a stat ionary crack was first 

determ ined by Hult and McCl intock [28]  for a mode I I I  crack using the deformat ion 

theory of plasticity. They showed that there is a strain s ingu larity of order (I in  the case 

of elastic-perfect ly plast ic material . S im i l ar solution for mode I stationary crack was 

obtained by Hutchinson [29] and Rice and Rosengren [30] . They showed that the stresses 

and strain in the vic in ity of the crack t ip under both smal l scale yield i ng and ful ly  plastic 

conditions may be presented by 

where 

cr y  

J = Rice' s J i ntegral 

cry = yield stress 

E = elast icity modulus 

n = hardening exponent of Ramberg-Osgood relat ionship 

r, e = polar co-ordinates referred to the crack t ip 
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cr,; (e, ll} 5/; (e, n ) = Known di mensionle functions of 8 and hardening exponent 

n and, 

I n a con tant, hich is funct ion of n only. 

J i the ampl itude of the stre s and strain singularities i n  equation.2 . 7 

F r a ful l  pIa t ic material ( n=oo) ,  the strain fields exhibit a r- I s ingularity. I n  this case the 

equat ion ( 2  7) becomes 

(J'I/ = (J' y (J'1j ((), n = (0), and 
ab - ( 

[; = __ I [; Ij () n = (0) 
I) I 

11 '11 re J = aa r OI 

n r 

SI = Crack tip opening di p lacement (COD), and 

a = a parameters of order unity. 

(2 .8) 

Equation (2 .7 )  and (2 .8 )  are known as the Hutchinson, Rice and Rosengren 

(HRR) singularity fi led and 1 and () are field parameters. When HRR field encompasses 

the fracture process zone, the H RR parameters, J and () are l i kely to characterize the 

fracture process to the onset of the crack growth.  There is evidence that under both smal l 

and large scale yielding at the onset of crack growth init i at ion for certain crack 

configurations; the HRR zone embeds the fracture process zone. J or () can therefore be 

used to define fracture in EPFM closely paral lel  to K, the stress i ntensity factor in LEFM. 

The above crack t ip  fields are obtained using the 12-deformation theory of 

plasticity as opposed to the i ncremental theory, which is more val id  for metal l i c  material s 

and assuming that geometric changes are negl igib le  or smal l  deformation theory i s  val id .  

The obtained stress-strain state is  independent of loading path according to the 
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deformat i n theory but it i not 0 as per the i ncremental theory. The above 

characterizat ion of the crack-t ip field in terms of J and the path independence of J count 

on thi load-path independence. Up to the onset of crack extension there is s imple 

monotonic load ing of the body and no element of material unloads. More or less a 

proportional load ing e ists and d ifference between the two theories i s  negl igible [25-27 ] .  

Ba  ed  on  th i s  argument J is  considered suitable for material s obeying incremental theory 

of plast icity. The path independence of J for real elast ic-plastic materials i s  not yet 

establ i shed analyt ical ly .  This has been shown only by fin ite element computations [ 3 1 -

32 ]  

The crack t ip  fields have been analyzed by the  s l ip  l ine fie ld  theory by 

McCl i ntock [ 3 3 ]  and Rice and Johnson [34] In the strain hardening material s under smal l 

or large scale yielding, the HRR singularity dominates over a significant distance always  

greater than 4 to  6 t imes the crack opening displacement, a head of  the crack t ip when the 

uncracked l igament is subjected pri mari ly to bending [ 3 1 , 3 5-37 ] .  It is a lso reported [ 3 1 ,  

3 5-38 ]  that when the l igament i s  primari ly i n  tension, the HRR does not dominate over 

any region of appreciable di mensions. 

2.8.2 Crack-Tip Field for a Propaga t i n g  Cra c k  in D u c t ile Material 

After the onset of crack growth, further propagation, in an elast ic- plastic materia l  

takes p lace with an increasing load. For a growing crack both an elastic unloading and a 

non-proportional load ing occur near the t ip .  This i s  schemat ica l ly  shown i n  Figure 2 .6 .  

one of these processes i s  adequately representable  by the deformation theory of 
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pia t icity These make the detem1ination of crack t ip field a head of an extending crack 

d ifficult mathematical ly. 
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Figure 2 .6  Schematic for the field surround ing a growing crack 

A study of mode i l l  problem was first reported by McCl i ntock and Irwin  [4 1 ], 

and a fu l l  solutio� subjected to corrections by Rice [42] and Broberg [43 ] was given by 

Chitaley and McCl i ntock [44] . The general from of the solut ion for a p lane strain mode I 

crack extending through an elast ic-perfectly-pl astic  materia l  was first given by Rice [42] . 

He used the h defonnation theory of p lasticity. S i m i l ar results for rigid-plastic materia ls  

was given by McC l intock [33 , 45] ,  and Chitaley and McC l intock [44 ] .  At the t ip  of crack 

growing through an elastic-perfect ly-plastic material there i s  a logarithmic, In l lr, strain 

singu larity, which i s  much weaker than a (I s ingularity in the case of a stationary crack. 

This reduced strain singularity part ly explains the phenomenon of stable crack growth. 
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Rice' s analysi [ 42] ha been extended by Cherepanov [ 46 ]  for general non-steady 

growth, Amazigo and Hatchin on [47] for steady-state growth through an i sotropica l ly  

hardening ol id with flow trength increasing l inearly wi th  strain .  

The studies by Rice [42 ] based on h- flow theory for a fu l ly  plastic material ( n  = 

) showed that the incremental strains in the immediate vicin ity of crack t ip are given by 

2 .9  

where 

db = increase in COD 

da = i ncremental of crack extension, 

gij (8) = dimensionless function of order unity, 

fij (8) = a�'J (e, n = oo)l In '  { see equation. 2 . 8 }  and 

R (8) = a measure of the d istance from the crack t ip to the elast ic-plastic 

boundary. 

The first term i n  equation. (2 .9)  represents  the addit ional strains due to crack tip blunt i ng 

if  the crack t ip doesn't  advance during load/displacement i ncrements. The second term in  

equation. (2 .9 )  represents the  additional p last ic  strains  caused by  the advance of  stress 

field t hrough the materia l .  I n  many cases, the first term dominates over a significant 

interval compared to & (equation .2 . 7), except right at the crack tip where the ( 1 /r) In(RJr) 

singulari ty dominates [48] .  In another words, the strains at the crack tip are uniquel y 

characterized by the crack t ip opening angle 
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Hutchinson and Pari [49 ] ba ed on the h deformation theory of plasticity, for a 

ful l  p Ia  t ic materia l  (n=oo), obtained the incremental strains during the crack growth in  

the form 

1 dJ J da d£ , = - - I, (B ) +  - -2 /3, (B ) ) aCT y r � aCT y r 1j 

or 
d£1j = _

1
_ dJ � I, (B ) +  _1 _ � /3, (B ) do aCT y do r 1j aCT y r 1j 

2. 1 0  

where �iJ (8) i s  a d i mensionless quant ity of order unity This  relat ion indicates the ] 

un iquely characterizes the near field if  (dJ/da» > (J/r). 

The s imi larity in the structure of the two equat ions (2 .3  and 2 .4 ), derived 

d ist inct ly from the d ifferent approaches i s  notable. Their first terms represent 

proportional i ncrements i n  the strain field due to an i ncrease in the strength of the HRR 

singu larity, whi le the second terms show the non-proportional strain i ncrements due to an 

advance of the H RR field with an exceeding crack .  Therefore, if the HRR field increase 

i n  strength more rapid ly that it advances then t he crack t ip  opening angle, (d8/da) and 

dJ/da, describe the crack-tip environment . This means that when the fracture process zone 

is enclosed by the region dominated by (d8/da) or (dJ/da) equations (2 .9 and 2. 1 0) and 

together with restraints, d8 I da » (cry I E )  In  ( R  (8) I r) and (dJ Ida) » J/r provide the 

bas i s  for COD-based and J-based resistance approach to stable  crack growth .  

Basing on theses type of  characterist ics Paris e t  a I .  [50] . I ntroduced non-

dimensional parameter Tmc cal led tearing modulus defined by 
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T = (�J( dJ R J me 
(J )2 da (2. 1 1 )  

a material parameter, sign ifying the material ' s  resi stance to crack growth.  I n  

above relation hip h . a i s  a resistance curve and dh / da i s  its slope. The condition for 

in tabi l it i s  given by 

where Tm = ( � ](dJ ) ,  and is known as the crack driving force. 
<3y da 

(2. 1 2) 

ccordingly to Pari s et a l .  [ 50] duri ng the stable tearing extension, T m remains  

con tant and the value of Tmc i s  dependent on specimen geometry, loading, etc. The 

tearing modu lus can a lso be based on 8-resistance curve. 

Tmc (o) = (�)(dOR J 
O"y da (2. 1 3 ) 

Under a J control led growth T me and T me (8) are related [ 5 1 ]  by 

(2. 1 4) 

where dn i s  a constant in  J = (�n) <3; � . 
This relat ion indicates that, for an extension under a constant eOA, (d8/da), the J-

resist ance curve i s  straight-l ine. Further, the relation i s  val id  subjected to the two 

conditions First, ndJ/J » dalr. Second, the amount of crack extension �a is smal l 

compared with the size of the HRR singu larity dominated region. The first condit ion 

st ipulates the J-dominance around the crack-tip during the extension. This, in tum, 

ensures the dominance of proportional loading over the non-proport ional part due to 
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ela t ic unloading. When the proport ional load ing i s  sign ificant the difference between the 

deformation theory and the incremental theory is negl igib le. S ince the situations under 

con iderat ion i s  dominated by the proportional loadi ng, they can be analyzed using the 

deformation theory and they mu t i nvolve smal l  crack growth compared with the size of 

the HRR singularity zone, and hence the second cond ition. Sh ih  [ 5 1 ]  has corroborated the 

exi tence of a constant T m duri ng stable tearing and the val id ity of relation (2 . 1 4 ) based 

on the experi mental data of a number of invest igators [e.g. 52 ] .  

Recently, Ma et a l  [ 5 3 ]  have proposed a plane stra in m ixed mode crack-tip stress 

fields characterized by a triaxial stress parameter and a characteristic length based a 

plastic deformation extent . Based on physical observat ion from control led crack growth 

experi ments in duct i le  materia ls, they have performed a series of numerical and 

theoretical stud ies. The finite element models indicated that, for the full range of mode 

mixity and constraint conditions, the proposed, self-s imi lar fami ly of mixed mode crack­

t ip fields accurately represents the stress fields for a l l  fracture specimens considered. 

Chen et at [54]  have i nvestigated the plane-stress asymptotic field near a crack t ip 

for elast ic-plast ic  materia ls  with strain gradient effects .  They have estab l i shed that, at  a 

fixed d i stance r to the crack t ip, the maximum shear stress i s  more than three t imes it s 

counter part i n  the H RR field i n  mode I I ,  and i s  nearly doubled i n  mode 1 .  The i ncreases 

are cons istently l arger than those observed i n  p lane strain, namely 2. 5 t imes in mode I I  

and 1 . 7 t imes i n  mode 1 .  Though thi s i ncrease i n  stress l evel i s  not l arge enough to 

expla in  the atomist ic  fracture process in  duct i le  metals d i scussed in  [55 ] ,  i t  has shed some 

l ight that the strain gradient p lasticity theory based on rotation and stretch gradient of 
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deformation [ 1 8 ] may l ink macroscopic fracture behavior to atomist ic fracture proce ses 

in duct i le  metals 

In  order to impro e upon cont inuum model for understand the origins  of ducti le 

versu brittle respon e in materia ls, an accurate asse sment of the stress fields near a 

crack tip must be developed . Exist ing cont inuum models have considered the crack tip to 

be perfect ly sharp in order to use convenient analyt ical solutions for the crack tip. The 

physical reality of a blunted crack configurat ion has motivated l imited attempts at 

evaluat ing its effect and determin ing what to extent its stress field differ from the sharp 

crack stress fields [e.g. Schimz and co-workers [ 56,57] ,  Gumbsch and co-workers 

[ 58,59] and Thomson [60] ] .  F i sher and Beltz have [6 1 ]  reported, upon reviewing current 

models for quantifying duct i le  versus bright fracture behavior, that changes in the crack 

tip geometry wi l l  significant ly affect the stress fields around the crack tip, which can 

change the favorabi l ity of crack advancement or dislocation emission. They have 

presented a two-dimensional fin ite element model s  to evaluate the stress fields at a blunt 

crack t ip subj ected to loadi ng. Stress fields have been calculated for mode I loading as 

wel l  as  for self-stress due to the presence of d i slocation near a crack t ip .  They have 

compared these calculated stress fields with analytical solutions for appropriate l imit ing 

cases. Recently, F i sher and Belz [62] have used the avai lable closed form stress fields 

solut ion for a crack t ip of el l i ptical geometry to calculate the thresholds for dislocation 

nucleation and atomic decohesion. 

2.9. C R I TE R I A  FOR C RA C K  G ROWTH 
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There ha been a consideredable advances in the understanding of mode I crack 

growth in it iation, table crack growth and instabi l ity. The advances are founded on the 

olutions for crack tip field for stat ionary and growing cracks. A review of the criteria i s  

given in  [63 ] .  

2.9. 1 Crack G rowth I n it iat ion 

In the approach of Wel l s  [23 ] the condit ion for fracture i nit iation is given in  terms 

of a crack opening d i splacement (COD). This  has a lso been considered relevant for the 

post in it iation stage [ see 63 ] .  It is assumed that a characteristic displacement behind the 

crack tip triggers the crack extension at all stages starting from in it iation to col lapse. The 

foundat ion for the appl ication of the COD approach to fracture in design is most ly due to 

Burdekin  and Ston [24 ] .  There are two values of COD; one (8 i )  i s  associated with the 

i n it iat ion of crack extension and the other (8m) corresponds to the maximum load [25 ] .  A 

design calculation based on 8i does imply an unrea l i st ic degree of conservat ism i n  

relation t o  the final fracture, where as 8m might or rrlight not coincide with the onset of 

unstable crack growth.  

The use of J as a HRR field parameter has been confirmed by the experimental 

observations of d ifferent i nvestigators, e.g. [64,65] .  J does not represent the energy 

release rate with crack advance for a real elastic-plastic material because of two reasons. 

F irst, loadi ng and u nloading curves for a materia l  element are d ifferent. Second there i s  

some energy absorbed i n  p lastica l ly  deforming a n  element . In  spite of a l l  these, J i s  used 

for the characterizat ion of the crack t ip stress-strain field and the onset of crack 

extension. The onset of crack growth i s  given i n  terms of J reaching a critical value 

provided that certain l i m its  relat ing to specimen dimension are exceeded. Such l i rrlits  are 
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close, for example, to the ones for the plane train fracture toughness ( JIe) test ing. Thus 

characterizat ion of init iation of crack growth i s  po sible in  terms of J and COD. 

2.9.2. table rac k  G rowth 

McCl intock and Irwin [4 1 ]  first stated that a crack extends stably when strain a t  a 

characteri t ic d i stance ahead of crack t ip reaches a critical value. Anderson [66,67] ,  de 

Koning [68] ,  Lu moore et ai ,  [69],  Newman [70] ,  Kanninen et a l .  [ 7 1 ] ,  Wang [72] ,  etc . ,  

have hown that the condition for the cont i nu ing mode I stable crack extension can be 

pecified in terms of a COA behind the crack t ip .  There is a d i fficulty with such a 

parameter. The crack assumes a curv i l inear profi le proport ional to r In r. The profile has a 

vert ical tangent at the crack-tip and hence an ambiguous value of the COA. At a fin ite 

distance from crack-tip, however, there is  a fi nite slope and hence a meaningful defini t ion 

of the parameter is possible. Shih et al .  [ 3 5 ]  and Kanninen et a l .  [7 1 ]  have shown that 

COA at in i ti ation i s  h igher than the value at the later stage of stable  growth.  Some 

i nvestigators [e.g. 73 ] have shown that the mode I i ni t iation can be specified i n  term of Jc 

or be and the stable extension is governed by a constant COA 

Maiti and Mourad [74,75] ,  Mourad and Maiti [76-8 1 ]  and Mourad [82] work of 

Mourad definit ion used by Newman [70] is adopted. The COA is the ratio of COD and 

the d istance behind the crack tip at which the crack open ing is considered .  There is  a very 

good agreement between the predicted and the experimental  results .  S imi lar results were 

presented by Wang [72 ] .  In Koled ink [82] it was worked out clearly that two parameter 

are needed to describe a duct i le fracture process : the crack growth in i t iat ion toughness 

and the crack growth toughness. Shan et a l .  [ 83 ]  have ind icated that, the crit ical crack t ip 
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opening di placement, CTOD" for the crack growth in it iation and the critical crack tip 

opening angle, eTO c ,  for the table crack growth are applied as the input data for the 

numerical imulation of the fracture proce s. 

2.9.3 Finite E lement Analysis of Sta ble C rack G rowth 

I n  case of elast ic-plastic material a load increment beyond the  yield point wi l l  

g l  e r i  e to both elastic a s  wel l  as plastic strains . Thus, total strain increament can be 

written as 

( 2. 1 5 ) 

For the elastic part if  the material i s  i sotropic, stress-st rai n relationship i s  given by 

Hook' s  law as 

(2. 1 6) 

S imi lar relat ions can be written for the plastic strain but then [D]  P matri x  wi l l  no 

longer be matrix of constants. It wil l  have some strain dependent terms. 

Marca} and K ing [cited in 63 ] proposed a method in which mean sti ffness is used 

for the element, which yields in the next i ncrement of loading. This method doesn' t  have 

any restriction on increment of loadi ng and uses an iterat ive procedure for the 

determination of ' the partial st i ffness coefficients' or the stress-strain matrix .  Yamada et 

at [cited in 63] first gave expl icit ly the stress-strain matrix for an elast ic-plastic element. 

They also proposed an algorithm, which works with smal l load i ncrements. All the above 

schemes can be i nterpreted as the variants of Newton-Raphson scheme for the solut ion of 

non l inear equations. 
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The ewton-Raph on cherne required modification of the coefficient matrix at 

each iteration. The modified ewton-Raphson cherne can be adapted to avoid this 

problem and solution time can be reduced considerably. But this scheme may require a 

large number of iterat ion within a load tep. The general steps fol lowed in the finite 

element analysis of stable crack growth are reported in [63 ] 

2. 1 0. M I X E D  M ODE STU D I E S  

ery few studies [e.g. 74-8 1 ,  84-9 1 ]  invest igated the mixed mode problems; and 

most of them deal with the in it iation phase. Shih [ 86] has examined the direct ion of in it ial  

crack extension and critical load under very smal l -scale yielding and plane st rain 

condit ion. He showed that MTS criterion [9] can be used to predict the resu lts on metals 

[86 ] .  Ahmad, Barnes and Kanninen [84] have stud ied, theoretical ly  and experimental ly, 

the crack in it iation problem under both stat ic and dynamic loading and tried to specify 

the cond it ion for the onset of fracture in terms of j i ntegra l .  

Mourad and Mai t i  [75, 76] ,  Mourad and Mai t i  [e .g. , 77, 78] and recently Mourad 

[8 1 ]  have examined both experimental ly and theoretical ly  t he mode I and mixed mode 

stable crack growth t hrough d ifferent specimens' configuration. In these studies, TPB 

specimen with i nclined edge crack, TPB specimens with offset edge crack and CT 

specimens have been employed. They have a lso studied mode I I  stable crack growth 

through compact-shear specimen [79] . They have carried out both experimental and 

theoret ical i nvest igat ion considering doubly sti ffened and/or unst iffened, 8mm thick 

specimens of D 1 6AT aluminum al loy to examine the possibi l ity of characterizing the 

whole stable crack growth from init iation to maximum load under various modes of two 
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dimen ional loading in terms of eOA criterion. They have concluded mainly based on 

the agreement between theoret ical and experimental load-displacement diagrams that the 

whole crack growth from the in it iat ion to instab i l ity can be characterized in terms of a 

s ingle eo . Recent ly Maiti and his coworker [80] examined the SeG through thin sheet 

employ ing eOA criterion. Otsuka et a l .  [78]  peIfonned a mixed mode fracture test on a 

cracked tensi le  strip specimen of carbon sheet and measured COD and stretch zone width 

( ZW) of an angled crack . They observed a correlation between the eOD and SZW and 

proposed a eOD based criterion for mixed mode fracture init iation. Appl i cabi l ity of J and 

j i ntegrals to rrllxed mode fracture of duct i le  materials has al so been attempted by many 

in  estigators [e.g., 84, 85 ] .  Sakata et al. [85 ]  have done experiments and fin ite element 

analysis for an angled crack problem in a compact tension specimen. They have found 

that j i s  a global fracture parameter. Further, they have observed that j i s  related to SZW, 

which is a local parameter. And shown [85 ]  that experimental results for mixed mode 

testing coi ncide with those for mode I .  

Maccagno and Knott [88] ,  Hanback and N i l son [89] ,  Maiti and h i s  co-workers 

[ego 74-8 1 ], have looked i nto the possib i l i ty of unifying the fracture over the whole range, 

pure mode I to mode I I .  Knott and h i s  coworkers [e.g. 88] and Hal lback and N i lsson [89] 

have reported that a criterion based on the shear band local i zation can explain the 

i n it iation of fracture in  the whole range. Mourad and M ai t i  [78] / have shown the 

suitab i l ity of the eOA criterion in  the same context and the stable crack growth.  They 

have, a l so considered the pure mode I I  loading. 
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utton and hi Coworkers, [92, 93 ] have recent ly shown that flaws in  duct i le  

material under local mixed mode IIl l condition wi l l  change direct ion and undergo 

table crack growth along d irect ion that can be shown to be predominantly either mode I 

or mode n One model [92, 93 ]  that has been shown to adequately predict the direct ion 

and on et of crack exten ion is crack opening d i splacement (COD) .  This model predict s  

that (a) mode 1 crack growth wi l l  occur in  a d i rect ion that maximizes the opening 

component of crack opening d isplacement (COD I )  and (b) mode I I  crack growth wi l 1  

occur i n  the direction of maximum shear - type crack displacement (CODlI) .  Based on 

recent experi mental studies, they have shown [94] also that, a critical crack opening 

di p lacement (COD) has the potential to be a viab le  parameter for predict i ng the onset of 

crack growth i n  th in  sheet 2024-T3 aluminum under combined tension (mode I )  and in­

plane shear (mode I I) loading condit ions. 

There have been attempts to study the i n it iation and growth under mode I and 

mixed mode using the continuum damage mechanics approaches. It appears that the onset 

of i niti ation can be explained i n  terms of a crit ical  void volume fraction. The d irection of 

i n it ial crack extension can also be predicted through such methods [63 ] .  Reference may 

be made to for more l iterature detai l s  in thi s method of analysis .  

2. 1 1 . E FFECT O F  C RA C K  BLUN T I N G  O N  S UBSEQUENT CRACK 

G ROWTH 

The effects of crack b lunt ing on the brittle and duct i le crack behavior and 

subsequent crack growth have been studied by some i nvest igators [e.g., 56, 57, 6 1 and 

62].  When a sharp crack in  a material i s  loaded unt i l  it deforms plastica l ly  at the crack 
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tip, two fundamental ly d ifferent modes of deformat ion can occur: cleavage and 

di location eml Ion. The crack may propagate (possibly leading to cleavage of the 

peci men), or it ma emit a di  locat ion. In the first case the material i s  said to be 

intrinsical ly brittle, in the second it i intr insical ly duct i le .  Schiotz et al .  [ 56, 57]  studied 

the effect of blunt crack geometries on crack propagation. They have shown that blunt 

cracks have a t ronger tendency to emit di slocation than do sharp cracks. This may be 

important in intr insical ly  brittle materia ls, where the nature tendency for a sharp crack is  

to propagate by cleavage rather than to emit di slocations. In  these materials a dislocation 

may be b lunted by absorbing a dis locat ion from a near by source and thereby turned into 

an emitt ing crack prevent ing further cleavage. It i s  obvious ly a lso relevant to cracks in  

more duct i le  materia ls  where the crack i tself may emi t  di slocations. They have 

investigated the effect of crack blunting on the subsequent crack propagation and they 

have shown that as the crack i s  blunted, a smal l but noticeable increase in the crack 

loading needed to propagate the crack . Schimz. et al [ ] .  has a lso examined the behavior 

of b lunted cracks under mode I and mode I I  loading. The mode I results indicate a new 

mechani sm for enhanced duct i l ity in some materials .  They have found that blunting the 

crack increases the force required to propagate the crack, but only by a surpri singly 

modest amount . The relat ive modest magnitude of the effect can be attributed to the sharp 

comer of the blunt crack, where the stress singularity under mode I loading is almost as 

strong as for a sharp crack. Despite the smal l  effect on the cleavage criterion, for many 

force laws the b lunt ing causes the crack to change behavior and to start emitt ing 

dislocations instead of propagating. This has the consequence that if a crack i n  such a 

material absorbs a di slocat ion at the crack t ip, a segment of the crack wi l l  local ly be 
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arre ted, lead ing to an in rea e in  the microscopic crack t ip toughness, which further may 

lead to a much larger increase in the macroscopic toughnes of the materia l .  The blunt ing 

effect presented here may thu , in combinat ion with the effect of attract ing d is locat ions 

to the crack t ip, cau e an increase in the fracture toughness of materials by many orders 

of magnitude 

umerous experimental observat ions have ind icated that an atomical ly  

sharp crack i s  very rare and that crack t ip  blunting can proceeds or  accompany crack 

propagation. Several methods have been proposed to predict whether a sharp crack t ip  

wi l l  b lunt, possibly leading to duct i le  fai lure, or cont inue to clear in  a brittle fashion. 

Fi sher et aL [6 1 ]  di scussed the posit ive-dis location-emission behavior of a crack, in  an 

attempt to understand if  the nucleat ion of a single d islocation wi l l  always lead to a duct i le  

response or if  subsequent brittle propagat ion can occur, they have obtained elastic 

solutions of the stresses near the blunted crack t ip for two type of loading. 

The role  of crack blunt ing i n  duct i le  versus britt le response of crystal l ine materia l  

has been i nvest igated by Beltz et  aL [Cited in 62] . They have used cont i nuum concepts to 

evaluate the competit ions between crack advance and d i slocat ion nucleation at the t ip of 

the crack having a finite t ip curvature. Recently  F i scher and Beltz [62] have examined the 

effect of crack b lunt i ng on the competit ion between d is locat ion nucleation and cleavage. 

They have accompl i shed this by assuming that the crack geometry is el l i pt ical, which has 

the primary advantage that the stress field are avai lable i n  close forms these stress field 

solut ions are then used to calculate the threshold for d is locat ion nucleation and atomic 

decohesion. There calcu lat ions have been carried out for various crack t ip geometries to 

ascertain the effects of crack tip blunt ing. There calculat ions have been carried for 
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vanou crack t ip geometrie . From resu lts comparisons, four possible type of material 

fracture beha ior are identified ·  intrin ical ly britt le, quasi-britt le, intrinsical ly duct i le, and 

qua i-duct i le. F inal ly, they have d iscussed real material examples. Farkas [Cited in 62] 

have ugge ted that blunting of a sharp crack t ip can sign ificantly modify the stress field 

around the crack t ip, and/or change the favorabi l ity of crack advances or di slocation 

nucleation. 

2. 1 2  CRACK FRONT T UNN E L I NG 

From postmortem evaluation of the fracture spec imens it was clear that the crack growth 

proces wa somewhat different along the speci men centerl ine [75-8 1 ,  84] .  Mourad and 

Mait i  [76-8 1 ]  have examined the crack front tunnel ing through d ifferent specimens' 

configu ration of D 1 6AT aluminum al loy and due to various modes of two-dimensional 

stable crack growth.  There was a considerable  amount of tunneling at in i t iation and as 

stable growth progresses in the case of mode I and m ixed mode loading; however, the 

front is more or less straight at the end of both fat igue precracking and stable  crack 

growth i n  case of mode I T  loadi ng. It may be noted here that, i n  the case of mode I, the 

tunnel i ng was l inked to a non-uniform d i stribut ion of S IF along the crack front [95 ] .  

Ahmad, Barnes and Kanninen [84]  have reported that there i s  a considerable  amount of 

tunnel ing as stable  crack growth progresses; the extent of tunnel i ng i s  as high as 8 mm 

for steels. Shan e t  a1 . [83 ]  examined the stable crack growth i n  CT specimens made of 

high strength steel SAE 4340 and observed that in the tested specimens the crack grows 

main ly  in the center region of the specimens. In the invest igated crack extension range ( i n  

the specimen center t.a :::: 6mm) no  stable crack growth occurs i n  the surface region of  the 
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pecl men The l ight crack exten ion near the speci men surface is  cau ed by the blunting 

of the crack tip Therefore, a careful study of both the centerl ine and surface crack 

profile hould be undertaken to quant ify the amount of stab le  crack growth along the 

crack front as the crack proceeds as wi l l  as the direct ion during the early stage of growth. 

2.14 C LOSU R E  

The condition for crack in itiat ion i n  a mode I can b e  given in  terms o f  eOD or J 

i ntegral and the table crack growth can be characterized in  terms of eOA or test ing 

modulus.  When crack grows under J controlled cond it ions, the eOA and tearing modu lus  

are l i nearly related. The condition for the mixed mode stable  crack growth in itiation can 

be given in terms of J and j integra l .  It also appears that under a very contained yielding, 

the condition for the onset of crack extension can be given i n  terms of the MTS and 

MTPS criteria, which are very successful i n  l i near elastic fracture mechanics. 

M ixed mode problems are more genera l .  Though the elastic mixed mode 

problems have received some attention, the l iterature on the elast ic-p last ic case is very 

scanty. Few attempts have so far been made to measure the changes in in it iation and 

max imum loads with the loading angle and the i ncreased load bearing capacity with the 

crack growth. Thus there i s  need for more experimental as wel l as theoretical studies. 

Through properly designed eT specimens i t  is possible to get a variety of 

combinations of mode I and mode I T .  It may be difficult  to achieve a pure mode I T  unless 

a special fixture is u sed . 
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The tudy of stable crack growth in it iated from fi ne notches as per crack, the associated 

crack b lunt i ng and crack front tunnel ing are very lacking. It is therefore necessary to 

examine these i ue . 

I n  iew o f  al l  these , the pre ent study h a  been camed out with the objectives, which are 

indicated in  sect ion ] . 2 .  
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C HAPTER 3 

E X P E R I M E NTA L P ROC E D U R E  

3. 1 .  I N TRODUCTI ON 

This chapter reports on:  the selected material for the present investigat ion and its 

propert ies, the geometry of the speci mens used for both tensi le  test and fracture test as 

el l  a procedure of fabricat ion, and test ing. 

3.2 M AT E R I A L  

The material selected for the present investigation i s  a n  ai rcraft quality A lS I  4340 

steel al loy which is heat treatable, low alloy steel containing nickel, chromium and 

molybdenum .  I t  i s  known for its toughness and capabi l ity of developing high strength i n  

the heat-treated condition whi le  retaining good fatigue strength .  I t  also combines deep 

hardenab i l ity  with good duct i l ity as wel l as good toughness and strength. It has sufficient 

carbon and al loy content to necessitate the application of preheat if cracking is to be 

avoided i n  a weld and associated heat affected zone. The materia l  has numerous 

appl icat ions; typical  app l ications are for structural u se, such as aircraft landing gear, 

power transmjssion gears, shafts and other structural parts.  

The material was suppl ied by Hi l l foot Steel Group Ltd, UK. I t  was avai lable i n  

the form of round bar o f  1 80 mm diameter (forged and annealed). The chemical 
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compo ition detennined by micro prop i pre ented in Table 3 . 1 ,  along with reference 

alue a per TM A19/ A19M.l 1 992. 

3.3. P EC I M EN S  P R E PA RA T I ON 

3.3. 1 Tensile Spec i m en s  P repa rat ion 

The tensi l e  test specimen was made as per ASTM E81 1 990 (Test Methods for 

Tension Test ing of Metal l ic  Materials) recommendations. The geometry of the tensi le test 

peci men is shown in Figure 3 . 1 

3.3.2 Frac t u re Specimens P repa rations 

o far there i s  no standard specimen configuration and test procedure available for 

mode I and mixed mode stable crack growth studies. The different configurations 

employed are compact tension (CT) specimens, three point bend (TPB) specimens crack 

bend bar, etc. The compact tension (CT) specimen was employed by some workers [74-

79] for both mode I and mixed mode stable crack growth study. The specimen offers 

some advantages, e.g. ease of fabricat ion and pre-cracking. It has one l imitation that 

mode I loading always dominate and pure mode I I  can not be attained easi ly .  Thi s 

specimen has been u sed here for both experimental and theoretical i nvestigat ions in  mode 

I and mixed mode (I and I I ) .  

The specimens are prepared from a round bar of 1 80 mm in  diameter. The 

specimens were configured in T-T orientation. The T-T is defined by orienting the crack 

and the load perpendicular to the axi s  of the rod.  To min imize variation due to the 

material, al l specimens were taken from the same lot of AIS I  4340 steel al loy rod.  The 
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rod fir t l  wa cut i n  smal l segment of 250 mm in  length, and then i t  was machined and 

flattened to a bar of 1 20X 1 20 mm cro s- ect ion. The bar was then cut into sl ices (plates) 

of 1 0  mm thi knes , and ult i  mately the plate ' s  thickness was reduced to 8 mm by a 

m i l l i ng The peci mens were final ly made in  size of 1 20 m m  x 1 20 mm x 8 mm thick .  

For fixing the e d i mension and manufacture of the speci mens some of the ASTM E399 

( 1 990) guidel ines were fol lowed. Specimens were first made with 3 mm wide notch and 

40 mm length straight slot terminated as a V shape of 60° angle. Then a pre-crack pre­

notch with root radius of 0.05 mm using a wire-cutt ing machine was introduced. The 

extent of the pre-crack was from 1 mm up to 5 m m  to produce different in i t ial crack 

length (ao) to width (w), aJw, ratio (0 .4 1 ,  0 .42, 0 .43 ,  0.44, and 0. 45) .  The pre-cracking 

for a l l  speci mens was introduced us ing cutt i ng wire of 0 . 1 m m  diameter . The kn ife-edges 

were machined at the crack mouth of the specimen for c l ip  gauge instal lat ion purpose. 

The required holes for different modes of loading were also machined. Load i nc l inat ions, 

\jf = 75° 65°, 60°, and 50°, with the crack are considered for d ifferent combination of 

mode I and mode I I .  \jf = 90 correspondi ng to mode 1 .  The specimen configurat ion i s  

shown i n  F igure 3 .2 .  The notch and pre-cracking were done i n  Cosmoplast Industrial  

Co.W.L . L .  Al-Sharjah by wire cutti ng machine (F ANUC, Japan, Model : (w-2» . 

3.4. F I XTURE 

A fork-type fixture was designed and fabricated from AISI  4340 steel al loy material . 

The design based on the rigidity of the fixture. Thi s fixture was designed so that both 

mode I and mixed mode fracture tests can be accommodated. Figure 3 . 3  shows a 

photograph the fork type fixture. 
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3 . 5. TE T PROCEDURES 

3.5. 1 .  Tensi le Te t 

Tensi le te t were conducted on standard 6 mm wide rectangular tension 

peci men as hown in Figure 3 . 1 . pecimens were tested in  the longitudinal (L) and the 

transver e (T) direct ions. The tensi le  test was conducted according to ASTM E81 1 990 

tandard (Test Methods for tension test ing of metal l i c  materia l ) .  The mechanical test was 

performed in tension at room temperature on a 1 00 leN MTS machine (model), which i s  

d isplacement control led. The cross-head speed was 0 . 5  mm/min according to the ASTM 

procedure. Young's modulus and yield stress and ul t imate tensi Ie strength were 

determined from the resul t .  The measured mechanical properties are presented in Table 

.., ') J . .L. .  

3.5.2. F ract u re Test 

Al l  fracture tests were conducted on a fu l l  computerized 1 00 leN MTS machine 

under d isplacement controL Experimental setup is  shown in F igure 3 .4 .  The specimens 

were loaded quasi-statica l ly  (with over-head d isplacement range of 0. 1 mm/min) to the 

maximum load and beyond. The load l ine d i sp lacement was measured by a cl ip gauge 

(Figure 3 . 5 )  as the crack proceeds. The cl ip gauge must be attached careful ly to the sharp 

knife-edges. The cal ibration curve of the c l ip  gauge i s  shown i n  Figure 3 .6 .  The load and 

the load l ine d i sp lacement were recorded at suitable i nterval s  during the test. The load 

and the load l ine d isplacement were eventual ly p lotted to obtain the load- displacement 

diagrams. The load overhead d isplacement variation was a l so obtained directly from the 

test ing machine .  
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The fracture te ts were performed for d ifferent combinat ion of load ing angle \11 

and ajw rat io. F ive different angle of loading ( \11 = 50°, 60°, 65°, 70°, 75° )  and Five 

d ifferent a,.Jw ratio (a,Jw = 0 .4 1 ,  0 . 42, 0 .43 ,  0.44 and 0 .45 )  were tested . The loading 

angle represents the angle between the load ing direct ion and the centerl ine of the 

peci men ( Figure. 3 .2) .  Thus, the speci men is under Mode 1 condit ion when \jJ =90° . 

Mode I tests were performed for a l l  a,)w rat ios. However mixed mode tests were 

perfonned for a,)w rat io of 0 .42 and 0 .43 only.  At least 2 up to 5 specimens were tested 

for each case to ensure the repeatabi l ity of the resu lts .  
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Table 3 1 : Chemical composit ion of A I  1 4340 steel al loy. 

Elements Standard l im its as per Test results 
A TM A29! A29M 

(%) (%) 
Carbon ( c )  0 . 38  - 0.43 0 .40 

Manganese (Mn) 0.60 - 0. 80 0.608 
Phosphorus (p) max. 0 .03 5 max. 0.009 

Sulfur ( S ) max. 0.040 max. 0.029 
S i l icone (Si) 0. 1 5 - 0. 35  0.247 

Chromium ( Cr ) 0 .70 -0.90 1 . 1 69 
Nickel (N i )  1 . 65 - 2 .0 1 . 348 

Molybdenum (Mo) 0.20 - 0 .30 0 .2 1 7  
Copper ( Cu )  0 . 3 5  max. 0 .2 1 8  

I ron ( Fe )  Remai nder Remainder 

Table 3 .2 :  Mechanical  properties of AI S I  4340 steel al loy (at room temperature) 

Modulus of Tangential Yield Ult imate Percentage reduction in  
elasticity modulus  strength Strength elongat ion area 

GPa GPa MPa MPa % % 
1 98 1 0  487 662 20 50 
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Figure 3.3 Photograph showing the fork-type fixture 
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Figure 3 .4 Experimental setup. 

Figure 3 . 5  Photograph showing the clip gauge position. 
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HAPTER 4 

� I O D E  I STA B L E  C RA C K  G ROWT H 

4. 1 .  I N TRODUCTION 

I n  th is  chapter Mode I e peri mental measurement of init iation load, maxImum 

fracture load, load - load l ine d i splacement curves, range of stable crack growth, fracture 

surface, crack front tunnel i ng, and crack blunt ing are presented. F in ite element analyses 

were done to predict, at in it iat ion, the plastic zone and equivalent stress. 

4.2. E X P E R I M E NTAL STU D I ES 

The compact tension (CT) specimen for mode I stable crack growth i s  shown i n  

Figure 4 . 1 .  The test was conducted on  1 00 kN MTS machine under d i splacement 

control led conditions. The specimens were loaded quasi-stat ically to the maxi mum load 

and beyond. The loading was done with a head speed of 0. 1 mm/min .  The load Vs load 

l ine d isp lacements were recorded at suitab le  i ntervals  of load ing. The data were plotted to 

obtain the load-load l i ne d isplacement diagrams. The load ing was i nterrupted at suitable 

interval s, to faci l itate measurements. A spot l ight was focused on the instantaneous crack 

tip to augment vis ib i l ity through a magnifier of 1 0  t imes magnifications. A magnifier was 

used to detect the onset of crack in i t iat ion and the range of stable crack growth.  
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Load- Di place m e n t  Data  

Five d iffer nt value of aJw rat io were used (0 . 4 1 ,  0 . 42, 0 .43 ,  and 0 .44 ) .  Three 

pe i m  n at lea t were te ted for each aJw rat io to ensure the resu lts repeatabi l ity. 

Figure 4 2 present mode I speci men after fracture which shows that the direct ion of crack 

growth under mode I i perpendicular to the loading direct ion. At the poi nt of onset of 

crack exten ion, it was observed that the crack blunts  appreciab ly .  Some of the specimens 

were loaded unt i l  the load starts to decrease after maximum load, and the others were 

loaded unt i l  the ful l  separat ion of the speci men. Figures 4 . 3 through 4 .8  show the 

d ifferent load-load l ine d i splacement diagram . The load-over head d isplacement 

diagrams are shown in appendix 4 . A .  

I ni t ia l ly the load i s  varying l i nearly with the d i splacement t i l l  a certain point at 

which the curve deviates from its l i nearity. There was a change in the slope of the load­

load l ine d i sp lacement record around the commencement of the crack extension 

corresponding to the in it iation load Pi. As the crack proceeds the slope of the curve 

decreases t i l l  it reaches the maxi mum load Pmax. Crack blunt i ng was observed around the 

point at which the curve deviates from its l inearity, and then the crack was observed to 

i n it i ate and extended stably up to the i nstab i l ity point . The crack t ip locat ions 

corresponding to in i t iation and maximum load are marked on the surface of the specimen 

using a sharp t ipped pin .  The d i stance between the two i s  measured to obtain the space of 

the stab le  crack growth.  The range of stable crack growth was observed to be from 2 m m  

up to 4 m m .  The amount of stable crack growth (SCG) i s  reduces a s  the aJw rat io 

Increases. 
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The in i t iat ion load ( P, )  and the ma imum load ( Pma, )  of al l  adw rat ios are 

recorded and pre ented in Table 4 . 1 .  The maximum load i from 2 to 2 .5  ti mes the 

in it iat ion I ad A compari on of load di placement d iagram of d ifferent adW rat ios i s  

hown in  Figure 4 .8 .  F igure 4 9 shows the variation of  both the  maximum and ini t iat ion 

loads with adW rat io. Both Pma.x and Pi are decreasing as adw rat io increases. They are 

vary ing mo t ly i n  a l i near relat ionship with adw. 

Cra c k  F ro n t  Tu n n el ing 

mal l  quant ity of a red dye penetrate was appl ied, near the crack t ip, on the 

urface of a few specimen around the in i t iat ion and maximum load . These speci mens 

were broken up  as soon as the dye penetrate dried up.  Figures 4 . 1 0  through 4 . 1 2  show 

ample photographs of the fractured surfaces and the extents of the crack front tunnel i ng. 

There is a considerable curving of the crack front or tunnel ing. The extents of the 

tunnel ing around the in i t iat ion and maximum loads are approximately, 4 :6  and 8: 1 2  

respectively. The tunneling was reported by some i nvestigators (e.g. Newman [53 ]  and 

Ahmad et a l .  [84]) .  The later i nvestigators ind icated a magnitude of 5 to 8 mm ( for 

steels). This tunnel ing resul t s  in a l arge crack open ing d isp lacements. The tunnel i ng was 

a lso reported by Mait i  and Mourad [74, 75 ]  and Mourad and Mait i  [76-79] .  In fact they 

indicated d ifferent magnitudes for d ifferent spec imens and d ifferent modes of loadi ng 

(For D 1 6AT aircraft grade aluminum al loy). The effect of crack front tunnel ing on the 

fracture behavior was d i scussed by other i nvest igators [e.g. 96, 97] 
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E x a m i n a t io n  of fra c t u re su rfa ces 

The image in thi sect ion are of the ent ire fTacture surface of several 

repre entative pecimens. The images were taken with a digital camera of l O x opt ical 

zo m under l ight i ng uch that flat fTacture is  l ight gray, whi le  shear l ips  (if any) are 

angled away from the l ight when possible and appear darker. I n  al l  images the wire 

cutt ing notch / pre crack is on the left and appears smooth and general ly dark. Adjacent to 

the wire-cutti ng pre-crack the range of stable crack growth as the crack fTont tunnel ing i s  

V I  ib le .  

F igure 4. 1 3  shows a typical fracture surface. More photographs showing the fracture 

urfaces are also presented in  Figures 4. 1 0  - 4 . 1 2. The images show a mostly flat fracture 

surfaces .  Somet imes the material develops much smal ler shear l i ps at the region of stable 

crack growth but general ly the shear l ip is  nearly non-exi stent . Al l  fracture surfaces 

e hibit  a coarse granular appearance at the region of stab le  crack growth, which i s  

sl ight ly coarser than the rest o f  the surface; for specimens that were broken due t o  a 

higher head speed after the maximum load . The fracture surface i s  also rough and non­

reflective and a l l  these are characterist ics of the duct i le fractu re. 

SEM microscopy was performed on fracture surfaces of mode 1 .  the scanning 

electron m icrographs of stable  crack growth zone and the region of unstable crack growth 

are shown i n  F igures. 4 . 1 4  and 4. 1 5 . Both regions are rough and dominated by dimples. 

These observations are in agreement with other investigators [75-79, 89, 90] . Since the 

materia l  was put under mode I loading, equ ixed d imples i s  the characterist ic of the ent ire 

fracture surface. The two regions look simi l ar for specimen quasi-statica l ly  loaded up to 

full separation. However the fracture size from the unstable  crack growth region are 
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mai ler than the arne for the stable crack growth regIon when specimen was loaded 

qua I tatical l  up to unstabi l it and followed by a higher head speed for full  separat ion. 

4.3 - F I NITE ELEMENT ANALY S I S  

A two dimensional elast ic-plastic finite element model for mode 1 analysis has 

been constructed using the program ANSYS 5 . 4, a commercial general purpose finite 

element package. The mechanical properties of the materia l  are shown in  Table 3 .2 .  

Mode 1 stable crack growth in  i sotropic material shows symmetry along crack plane, as  a 

re ult onl hal f of the speci men was modeled .  The fin ite element has been done in  order 

to detenn ine the equivalent stress ahead of the crack tip, a long the crack l i ne, at the 

in it iat ion of stable crack extension. To faci l itate a 2-D elast ic-plast ic stress analyses the 

tensi le  stress-strain d iagram has been approximated as a b i l inear curve with elastic 

modulus E= 1 98 GPa, plast ic modu lus Et = 1 0  GPa, yield stress <Jy = 662 MPa and 

Poisson' s  rat io v = 0.3 .  A plane state of stress has been assumed in all 2-D stress analysis .  

The analys is  has been carried out to predict the equivalent stress a head of the crack t ip 

for aJw rat io = 0.4 1 ,  0 .42, 0 .43,  0 .44 and 0 .45 .  F igure 4 . 1 6  shows the finite element 

discritizat ion for mode I in a CT specimen of aJw = 0.43 . The d i scrit izat ion for all cases 

have 1 4995 elements and 1 5245 nodes. 8-nodded quadri l ateral elements of average side 

length of 0 .2 mm is used around and ahead of the crack t ip and elements of bigger size 

are used else i n  the d i scri t izat ion. 

F igure 4 . 1 7  presents the variation of the equivalent stress ahead of the crack tip 

and along the crack l ine at init iat ion load . The equivalent stress has maximum value at 
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the rack tip and reduces with d i stance from the crack t ip . The crack t ip experience more 

tre for mal l  aJw rat io The arne variat ion ha been ob erved [e.g. 74 ] through a CT 

peci men of D 1 6AT aluminum al loy 

The current ly act i e plastic zone at onset of stable crack growth and before for 

d ifferent aJw rat ios are shown in  Figure 4 . 1 8 . The spread along the crack extension l i ne 

and transver e to the crack are more for smal ler aJw ratio as a consequence of the higher 

in it iation load. The spreads along the crack extension are 2.6, 2 . 4, 2 .2, 1 . 9 and 1 . 55  mm 

for aJw ratio = 0.4 1 ,  0 .42, 0.43 ,  0 .44 and 0 .45  respectively .  However, the transverse 

preads are 1 . 55 ,  1 . 3 8, 1 . 20 and 1 . 04 respectively .  The same shape of plastic zones has 

been predicted by some inve t igators [e.g. 74-82] through d ifferent speci men 

configurat ions. 

The deformed shapes of the CT speci men in  mode I loading for different aJw 

rat ios at the onset of in i t iat ion i s  shown in  Figure 4 . 1 9. 
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Table 4 . 1 ummary of the experi mental resu lts 

adW P, Pmax P; / Pmax. 

rat io (kN)  (kN) rat io 
0 .4 1 22 45 . 473 2 . 1 
0 .42 20 44.0 2.2 
0.43 1 8  40.4 2 . 2  
0 44 1 6  39 .0 2 . 4  
0 .45 1 5  3 6  2 . 5  

= 42 

Tunnel ing Extent . 
( mm) around of SCG 

Pi Pmax (mm) 

4-6 8-2 2-4 

Figure 4 . 1 Compact tensions (CT) specimen for mode I stable crack growth specimen 
geometry ( all d imension are in m m )  
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Figure 4 .2  Sample photographs for Mode I fractured specimens for different aJw ratios. 
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Figure 4 . 1 0  Sample photograph of crack front around in it i ation and maximum load for 
aJw = 0.4 1 

Figure 4 . 1 1  Sample photograph of crack front around in it i ation and maximum load for 
aJw = 0.42 

Figure 4 . 1 2  Sample photograph of crack front around i ni ti at ion and maximum load for 
aJw = 0.43 
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Figure 4. 1 3  Sample photographs of fracture surfaces 
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Figure 4 . 1 4  Scanning electron micrographs samples for mod I stable crack growth 
regIOn 
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Figure 4 . 1 5  Scanning electron micrographs samples for mode I unstable crack growth 
reglon. 
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Figure 4. 1 6  Discret isation for mode I specimen, (aJw =0.43 ) .  Number of nodes 1 5245 
and number of element 4995 .  
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C H A PT E R S 

M I X E D  M O D E  STA B L E  C RACK G ROWTH 

5. 1 .  I NTRODUCTI O N  

The compact tension specimen was also adopted to examine the m ixed mode ( I  & 

I I )  stable crack growth for AIS I  4340 al loy steeL Both experimental and theoretical 

i nvestigat ions were cons idered . Comparisons between experimental and theoretical 

results are presented wherever possible .  

5.2. EXP E R I M E N T A L  STU D I E S  

Figure 5 . 1 shows the compact tension (CT) specimen configuration for mixed 

mode stable crack growth. Two different aJw ratios (0 .42 and 0 .43)  and four different 

loading angles 'l' (50°, 60°, 65°, and 75°) were employed. The d ifferent combinations of 

aJw rat io and \If that used for mixed mode stable crack growth tests  are presented i n  

Table 5 . 1 .  The spec imen of  load ing angles 50°, 60°, 65° and 75° were tested with aJw = 

0.43,  while the speci mens of loadi ng angles of 60°, 65° and 75° were tested with aJw = 

0 .42 .  Due to the l im ited load carrying capacity of the MTS testing machine a combination 

of aJw = 0 .42 and \If = 50° could not be tested. 

Two specimens at least were tested to ensure the results repeatab i l ity. Some of the 

speci mens were loaded quasi-statical ly to the maximum load and beyond and then broken 
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due to a higher head speed. Some of them were loaded quasi -statical ly unt i l  the fu l l  

eparat ion. The e peri mental results of  fracture tests are summarized in Table 5 . 1 .  

Load Displacement  Data 

The load- load l ine d i sp lacement ( LLLD) records obtained for \If = 60°,  65°  and 

75° with aJw ratio = 0.42 are shown in Figures 5 . 2, 5 . 3  and 5 .4 .  To faci l itate the 

comparison between the LLLD d iagrams for d ifferent loadi ng angles, a representative 

curve for each loading angle (60°, 65° ,  75°  and 90°) is plotted in Figure 5 . S .  Also 

representative load d isp lacement records obtained for loadi ng angle 50°, 60°, 65° ,  75°  and 

90° with aJw ratio = 0 .43 are presented in Figure 5 .6 .  

Figure S . 7  i l l ustrates the effect of  aJw rat io on the  LLLD records for a constant 

loading angle. The displacement 6 represents the opening between the two points lying 

on the mode I load l ine and the opposite crack flanks. 

In it ial ly  the load is varying l inearly with d i splacement t i l l  a certain point at which 

the curve deviates from its l i nearity this point i s  considered as the crack init iation point .  . 

As the crack proceeds the slope of the curve decreases t i l l  it i s  nearly flattened at the 

maxi mum load ( PmaxJ, and then the crack proceeds under approximately constant load. 

The maxi mum load ( Pmax.) i s  approxi mately 2 t imes the init iation load Pi and, both Pmax. 

and PI for mixed mode are higher than those for mode I . As was observed in the case of 

mode I, the crack under mixed mode condition blunted considerably  before the crack 

started to propagate. The effect of aJw ratio on the Load - Load l ine displacement 

diagrams are shown in F igure 5 . 7 .  
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Figures 5 .8  and 5 .9  present the effect of the loading angle \jI on both in it iat ion ( Pi)  

and maxi mum ( Pmax ) loads. Summary of the results of the experimental tests are also 

given in Table 5 . 1 .  Sample of the load-over head displacement curves that obtained from 

the MTS machine are presented in Appendix S A  

Ra nge o f  Stable Cra c k  G rowth 

The in i t iat ion of crack growth has been detected by monitori ng the crack t ip 

position through a magnifier cont inuously. These are marked by dots in  the L LLD 

curves. The extent of stable crack growth is  around 2 mm.  A remarkable  crack b lunt ing 

was observed before the onset of stable crack growth init iat ion, then the crack i s  observed 

to init iate and extended stab ly  up to the i nstabi l i ty point .  As was the case for mode I 

stable crack growth, it was a bit d ifficult to identify exact ly the onset of crack in i t iation 

due to the l im ited magnification of the magni fier. This i ssue needs more i nvest igations in 

order to adequately ident ify the onset of stable crack extension and in turns the 

correspondi ng point of Pj on the LLLD curves. 

Crack I n it ia t ion Direc t i o n  

Typical photographs of some fractured samples are presented in  Figures 5 . 1 0  and 

5 . 1 1  the crack grows in itial ly a lmost a long a straight l i ne, which is incl ined at an angle e 

with in it ial crack. The di rection of in it ial extension was measured direct ly  or after 

project ing the photograph of a speci men to a large magnification. Table 5 . 1 presents the 

angle of in it ial  crack for the d ifferent cases. F igure 5 . 1 2  shows the measured crack 

in it iat ion direct ion under mixed mode loading versus the loading angle ( WO). 
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rac k  Fro n t  T u n nel ing 

The crack front tunnel ing was measured uS ing a dye penetrate. A sample 

photograph howing the extent of tunnel ing at the in it iation and after maximum load is  

hown in Figure 5 . 1 3 .  I t  is observed that the crack curving is  of the order of 8 to 1 2  mm 

at the maxi mum load and 5 to 7 at in it iat ion. The tunnel ing size at the in i t iat ion is  

genera l ly  lower. Also the tunnel ing size in  the mixed mode i s  more than that of mode I .  

E x a m i n a t i o n  of Fractu re S u rfa ces 

The fracture surfaces of mixed mode stable  crack growth are presented i n  F igure 

5 . 1 4 .  Same procedures of the case of mode I were fol lowed whi le  obtaining the fracture 

surfaces for mixed mode. M ixed mode fracture surface have more or less of the same 

macroscopi cal l y features. 

F igures 5 . 1 5  and 5 . 1 6  show scanning electron fractographs of the stab le  crack 

growth and the unstable  crack growth regions. Both regions are s imi lar microscopica l ly  

as in  the case of mode I .  Unl ike mode 1 ,  equ iaxed dimples appear, which complete rims. 

The dimples are elongated due to the shear component and from an oval shape. Like 

mode 1 ,  for the specimen separated at a higher head velocity, the feature surface of 

unstable region has smal ler length scales and more irregular pattern than that for the 

stable crack growth region. 
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5.3. F I N I T E  ELE M E N T  ANALYSI S 

A 2-D fin ite element model us ing AN YS 5 .4, has been used to determine 

the d irect ions of in it ial stable crack extensions. All the analysis has been performed 

assuming a plane state of stress. Some invest igators [63 , 74-76] have shown that the 

d i rect ion of crack extension can be determined from the elast ic  stress analysis us ing the 

maximum tangent ial pri ncipal stress or the maximum principal stress criteria. This 

method has been adopted for al l  case studies. An elast ic fin ite element analysis In  

conjunction wi th  criterion of  maximum tangentia l  principal stress has  been used to 

predict the d i rect ion of i n it ial crack extension. The elast ic analysis has been carried out to 

predict the d irections of i n it i al crack growth for different combinations of adw ratio and 

load ing angle \If . Combinations of adw =0 .42 with \If = 75°, 65° and 60°, and adw = 0.43 

with \If = 75°, 65°, 60° and 50° have been studied .  

Figure 5 . 1 7  shows the fin ite element d i scret izat ions for d ifferent cases. The 

mesh is based on a s imple circular crack tip mesh.  The discret izat ion has 4365 elements 

and 1 3467 nodes. At the crack tip the quarter point singularity elements are used Each 

d iscretization consists of 3 2  square root s ingularities element around the crack t ip  with 

0 .025 mm side length .  All other elements are eight nodded quadrat ic elements.  Accordi ng 

to the maximum tangent ial  principal stress (MTPS) criterion a crack wi l l  grow in  a radial  

d irect ion perpendicu lar to the d irect ion of a maximum tangent ial principal stress. The 

extension starts when t he maximum tangent ial principal stress reaches a crit ical value. 

Thereby the angle of in i t ial crack extension is obtained . The stresses are obtai ned at the 

fol lowing rad i i  from the crack t ip ;  0 .025, 0.0375, 0 05, 0 .05797, 0.0668, 0.0768, etc. 
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compari on of the pred icted and experimental d irect ions of in it ia l  crack 

exten ion i given in table 5 . 1 . There is a good agreement between the predicted and 

e peri mental results ba ed on MTP criterion. These observat ions agree wel l with some 

other in e t igators for d ifferent material [74-8 1 ] . 
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Table 5 . 1 Summ ary of experimental and predicted results for mixed mode stable crack 
growth .  

aJw Loading In it iation Maximum Pmax / Pi Direct ion of i nit i al crack 
ratio angle load ( Pi) load ( Pmax) ratio extension (8t 

(\lit ( kN ) ( leN ) 
Experimental P redicted 

90 22 45 .473 2 . 1 0 .0° 0.0° 

0 .42 75 24 .480 5 1 .433  2 . 1 1 1 ° _ 1 2° 1 1 . 1  ° 
65 27 .836  58 . 526 2 . 1 1 9° - 1 9 . 5° 1 9 . 1 °  
60 30 . 5  65 .73 2 . 1 6  23° 22 .47° 
90 1 8 .0  40 .4  0° 0° 
75 23 .0  50.288 2 .0 1 1  ° - 1 2° 1 0 .82° 

0 .43 65 27 .0 57. 529 2 . 1 3  1 8° - 1 9. 5° 1 8 . 76° 
60 29. 50  63 .004 2 .06 22° - 22 .5° 22. 1 7° 
50  3 3 . 825 75 .430 2 .23 26° - 2r 26. 80° 
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Figure 5 . 1 .  Compact tension (CT) specimen geometry for mixed modes stable crack 
growth. 
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Figures 5 . 1 0 Sample photographs of fractured specimens for aJw = 0 .42.  
(a) \jJ = 60°. (b) \jJ = 65°. (c) \jJ =75°. 
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Figures 5 . 1 1  Sample photographs of fractured specimens for aJw = 0.43 ;  
(a) \jI = 50°, (b) \jI = 60°. (c) \jI =65°. (d) \jI = 75°. 
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Figure 5 . 1 3  Sample photograph of crack front tunneling after crack i nit iation and 
maximum load in mixed mode. 

Figure 5 . 1 4  Sample photograph of the fracture surfaces in m ixed mode specimen for 
different loadi ng angles. 
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Figure 5 . 1 5  Scanning electron micrographs samples for mixed mode 
(aJw =0 .43 ,  \jI = 50°) stable crack growth region. 



Figure 5 . 1 6  Scann ing electron micrographs samples for mixed mode 
(aJw =0.43 , \jJ = 50°) unstable crack growth region. 
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Figure 5 . 1 7  Discretisation for determin ing direct ion of init ial  stable  crack extension;  
number of element = 4365, number of nodes = 1 3467 . aJw = 0.42, \jJ = 75°, 
(b) aJw = 0 .43 ,  \jJ = 75°. (c) aJw = 0.43, \jJ = 65°. (d) aJw = 0 .43 ,  \jJ = 60°, 

(e) aJw = 0.43,  \jJ = 50°. 
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C H A PT E R  6 

D I SC U SS I ON A N D  CON C L U S I ON S  

6. 1 .  I NTRODUCT I ON 

This chapter i s  dedicated for the general d i scussion on resul ts, suggest ion of some 

direct ions for further i nvestigat ions and summary of the main conclusions. 

6.2. D I SCUSSI ON 

On The Experi m e n t a l  S t u d ies 

Experimental tests were performed in  mode I and mixed mode ( I  and I T) . 

Different combinat ions of aJw ratios and loading angles \jf were used. I n  case of mode I 

\)/= 90° stable crack growth (SCG) specimens of five different values of aJw rat ios (0 .4 1 ,  

0 .42, 0 .43, 0 .44 and 0 .45)  were tested. I n  case of mixed mode, stable crack growth 

specimens for four d ifferent loading angles values (75°, 65°, 60° and 50°) with two 

different values of aJw rat ios (0 .42 and 0 .43)  were tested. It was not possible to go in for 

load incl inations \jf , which result in a higher mode I I  contributions because of the l im ited 

capacity of the avai lable MTS machine, the d ifficulty in introducing fatigue pre-crack to 

CT specimen due to the unavai labi l ity of such faci l ity in the MTS machine and the 

l im itat ions involved in the CT speci men to accommodate for more mode I I  contribut ions. 

As a consequence, the combination of \jf = 50° with aJw = 0 .43 couldn' t  be tested . It is a 

good idea to study the stable crack growth ( SCG) behavior of 4340 steel al loy through 

another speci men configurat ion, e.g. TPB, and CTS speci mens. That faci l itates 



dominance of pure mode I I . table crack growth thorough other materials and specimens 

configuration were reported by some i nvest igators [e.g. 74-86] .  

The experimental ob  ervat ion on  mode I and mixed mode show that there i s  a 

con iderab le blunt ing preceding the crack in i t iat ions. This blunt ing m ight contribute in  

the earl ier non l i nearity i n  the load-load l i ne displacement (L-LLD) curve. The crack 

become l itt le sharper near the t ip  after extension. It may be worthwhi le  looki ng into how 

the init ia l  spurt of extension can be located adequately on the L-LLD curves. The 

e peri mental observat ions show also that the blunt ing in m ixed mode i s  more compared 

to mode I at onset of stable crack growth.  That remarkable b lunt i ng was a lso observed by 

some workers [e.g. 83 ] .  

There was a considerable  tunnel i ng during the courses of  the stable crack growth 

starting from in it iat ion up to the ful l  separation of the spec imen passing through the 

instabi l ity point . The tunnel i ng is more sever in the case of mixed mode and there are 

some evidences showing that the extent of tunnel i ng increases as the crack proceed. The 

ex1ent of the tunnel ing increases as the loading's  angles reduces from mode I case (\jf = 

90). The magnitude of tunnel i ng, as high as 1 3  mm, was observed for the mixed mode, 

around the maxi mum load . 

I n  mixed mode the crack extends in i t ia l ly  almost along a straight l ine. making an 

inc l i nat ion angle with the in it ia l  crack. The incl i nat ion angle increases as the load ing 

angle \jJo decreases from 90° (mode I ) .  



O n  F i n i t e  Elemen t S t u d ies 

The fin ite element resu lts agree reasonably with the experimental resul ts, i n  case 

of mi ed mode, regarding the direct ion of in it ial crack extension. Due to constarints of 

t ime the elastic plast ic fin ite element analysis couldn' t  be performed to characterize the 

whole stable crack growth and to predict the experi mental results involving t he load 

d isplacement diagrams, in i t iat ion and maximum loads, range of stable crack growth, and 

crack edge profi le. This i s  an i ssue of great importance to be considered for further 

i nvestigat ions. S ince the load-di sp lacement diagram are avai lable and the crack extends 

along a straight path init ia l l y, it i s  significant to investigate whether these curves could be 

predicted employing the COA criterion and fol lowing the same procedure reported in  

references [74-8 1 ] . 

6 . 3 . CONC L U S I O N  

Some of  the conclusions which can be  made are as fo l lows: -

1 - Both the in it iation and max imum loads increase as the loading angle \jJo decreases 

from mode I case ( i . e . ,  \jJ = 90°) 

2- The rat io of maximum to in i t iat ion loads varies in the range of 2 .0  to 2 2. For the 

whole range of loadi ng angles tested . 

3 - Both the init iation and maxi mum loads decrease as adw rat io increases in  both 

modes I and mixed mode. The in it ial spurt of extension is general ly moving in 

m ixed mode than i n  the mode I .  

4- There i s  a considerable  blunt ing i n  both mode I and m ixed mode before stable 

crack growth (SCG) ini t iation 

L D _ 



5 - The amount of stable crack growth increases as aJw ratio decreases and loading 

angle \jf reduces from 90°. The range of stable crack growth is more in case of 

mode 1 

6- There is  a considerable tunnel ing in both mode I and mixed mode. The tunnel ing 

is  genera l ly  more in the case of mixed mode. The extent of tunnel ing increases 

with crack extension. 

7- The crack extents a lmost along a straight course init ia l ly  in  m ixed mode load ing. 

The angle of direction from the i nit ial crack increases as the loadi ng angle reduces 

from mode I case (\jf = 90°). 

8- The di rect ions of in it ial crack extension predicted through an elast ic fin ite 

element analysi s in conjunction with the maximum tangential principal stress 

(MTPS) criteria agree wel l  with the experimental resu lts. 

9- The fracture surfaces show tension dominated dimpled fracture in mode I and 

mixed mode. 

1 0- The spread of the plastic zone, at i n itiation, along the l ine of cracks extension i s  

more than that in  the transverse d irection. 

----------------�--------____ �7 





R E F E RE N C E  

onnan E Dowl i ng, ' Mechanical Behavior of Materai ls : Engineering Methods for 

defonnatiofl .  Fracture, and Fat igue',  econd Edit ion, Prent ice Hall ,  I nc. ,  Upper 

add le New Jersey 07458, 1 999. 

2 .  T .L .  Anderson, Fracture Mechanics: Fundamentals and Appl ications, Second Edit ion, 

CRS Press LLC, Boca Raton London, New York, Washington, D .C . ,  1 995 .  

3 .  Westtergaard H .  M. ,  'on the stress d i st ribution at  the base of a stationary crack ', 

Journal of appl ied Mechanics, vol . ,  24 pp I 09- 1 1 4, 1 959 

4. Irwin G .R . ,  Analysis of stresses and strains near the end of a crack traversi ng a plate, 

Journal of Appl ied Mechanics, vol .  24, pp. 36 1 - 364, 1 959. 

5 .  Sneddon I .  N . ,  the d istribution of stress in  the neighborhood of a crack i n  a n  elastic 

sol id .  Proceedings, Royal Society of London, A- 1 87, pp. 229-260, 1 946. 

6. Wi l l iams M. L. ,  ' Bearing pressures and cracks ' ,  Journal of Appl ied Mechanics, Vo1 .6 

pp.49-53,  1 939 

7. ASTM E399 standard test method for plane strain fracture toughness for metal l i c  

materials, ASTM E339-8 1 ,  pp.592 - 622. 

8 Broek, David, Elementary fracture mechanics, pp. 1 22- 1 27, 3rd ed it ion, Noordhof, 

Groni ngen, 1 984 

9 Erdogan, F and S ib, G. C . , 'On crack extension in  plates under plane load ing and 

transverse shear', Trans. ASME, 1 .  Basic Engg. Vol . 85, pp. 5 1 9-527, 1 963 .  

--�----------------------------� __ J a  



1 0  Maiti, . K and Smit h, R. A, 'Theoret ical and experimental studies on the extensions 

of cracks ubjected to concentrated loading near their faces to compare the criteria for 

mixed mode brittle fracture' ,  1 .  Mech. Phys. Sol ids, Vol . 3 1 , pp. 3 89-403, 1 983 . 

1 1 . Wu, H c . ,  'Dual fracture cri terion for plane concrete', Proc. ASME, J .  Engg. Mech. 

Di . ,  voL 1 00, pp. l 1 67- 1 1 8 1  1 974. 

1 2 . S ih, G. c . ,  ' A  special t heory of crack propagation',  in ' Methods of Analysis and 

Solutions to Crack Problems' (ed. G. C. S ih) Mechanics of fracture, Vol 1 .  

Noordhoff l nt .  Pub. Leyden, pp.  xxi-xiv, 1 973 . 

D .  Freund L .  B . ,  Dynamics fracture mechanics, Combridge University press, New Yourk 

, New Yourk 1 00 1 1 ,  1 998. 

1 4 .  Freund L .  B.  and Rosaki s  A 1 .  the structure of the near t ip-field solut ion duri ng 

transient elastodynamic crack growth .  Journal of the Mechanics and P hysics of 

Solids VoL 40, pp.699-7 1 9, 1 992.  

1 5 . I rwin, G. R . ,  'Fracture' i n  ' Handbuch der Physik '  VoL VI,  (ed . S .  F lugge), Springer­

Verlag, Berl i n, pp. 5 5 1 -590, 1 958 .  

1 6 . Orwan, E ,  'Energy criteria of fracture' ,  Welding J . ,  Vol . 34, pp. 1 575- 1 605 ( 1 955) 

1 7  I rwin, G R. , Kies, 1 .  A and Smith, H . L . ,  ' Fracture strength relat ive to onset and 

arrest of crack propagation' ,  proceedings of the American Society for Test ing 

Materia ls, 85, pp.640-657, 1 958 .  

1 8 . Dugdal, D . S . ,  ' Yielding of steel sheets containing s l i ts ' ,  1 .  Mech.  Phys. Sol ids, VoL 8, 

pp. 1 00- 1 08, 1 960. 

1 9 . Han, G. T .  and Rosenfield, A R.,  ' Local yield ing and extension of a crack under 

plane stres ' Acta Metal lurgica, Vol . 1 3 , pp.293-306, 1 965 .  



20. B i lby, B . A , Cottrel l A H . and Swi nden, K .  H . ,  'The Spread of Plastic yield from a 

notch ' ,  Proceedings of the Royel Society, London, Vol . A272 pp. 304-3 1 4  1 963 . 

2 1 . Goodier J . and F ield, F .  A,  ' Fracture of Sol ids '  (ed. D. C .  Drucker and l l 

Gil man), Wi ley, New York, pp. 1 03- 1 1 8, 1 963 

22. Kanninen, M. 1 . ,  Mukherjee, A K . ,  Rosenfield, A R. and Hahn, G. P . , 'The speed of 

duct i le  crack propagation and the dynamics of flaw in metals ' ,  Mechanical Behavior 

of Materia ls  under Dynamic Loads, (ed . U. S. Lindholm), Springer-Verlag, New 

York, pp.96- 1 33,  1 969. 

23 . Wel l s  A . A. ,  ' Appl i cation of fracture mechanics at and beyond general yielding' ,  Brit .  

Weld.  l, Vol . 8, pp563-570, 1 963 . 

24. Burdekin, F .  M .  and Stone, D. E .  W .  ' The crack opening d i splacement approach to 

fracture mechanics i n  yield i ng materia ls ' ,  J .  Strain Anal . , Vol . 1 pp. 1 45- 1 63, 1 966. 

25 .  Turner, C. E . ,  ' Yielding fracture mechanics' ,  J .  Strain AnaL Vol . 1 0, pp .207-2 1 6, 

1 975 .  

26 .  Rice, l R. , 'A path i ndependent i ntegral and the approximate analysis of strain 

concentration by notches and cracks' ,  l App! . Mech. ,  vol .  3 5pp. 3 79-386, 1 968. 

27 .  Budiansky B . , 'A reassessment of deformat ion t heories of plastici ty' ,  Journal of 

Appl ied Mechanics, Vo1 . 26, pp.259-264, 1 959. 

28. Hu lt, l A. H. and McCl i ntock, F . A ,  'E last ic-pl astic st ress and strai n d i st ributions 

around sharp notches under repeated shear ' ,  Proc. 9th int . Congress for appl ied 

Mechanics, Vol . 8, University of Brussel s .  

29. Hutchinson, l W.,  ' S i ngular behavior at the end of a tens i le crack t o  hardening 

materia l ' ,  J Mech. Phys. Solids, Vol . 1 6, pp. 1 3 -3 1 , 1 968. 

------------------------------__ �l ] �, ________ � ________________________ ___ 



30.  Rice, 1 . R. and Ro engren, G . F . , ' plane strain  deformation near a crack t ip in  power 

law hardening material ' ,  J mech. Phys. Sol ids, Vol . 1 6, pp. 1 - 1 2, 1 968. 

3 1 .  McMeek ing, R. M ., ' F i nite deformation analys is  of crack-t ip  opening in  elastic­

plastic material and imp l ications for fracture, 1 .  Mech. Phys. Sol ids, Vol .25, pp .3 57-

3 8 1  , 1 977. 

32. Sumpter, 1 . D. and Turner, C. E. ,  ' Use of the J- integral in elastic - plastic Fracture 

studies by fin ite element method',  J .  Mech. Engg. Sci . ,  V01. l 8 , No.3 ,  pp.97- 1 1 2  1 976. 

3 3 .  McC l intock, F .  M. ,  Plasticity aspects of fracture', in ' fracture An Advanced 

Treaties' ,  (ed .  H .  Liebowitz), Vo1 . 3 ,  Academic P ress, N. Y . , pp .47-225, 1 97 1 .  

34 .  Rice, 1 . R  and Johnson, M .  A . ,  'The role of large crack t ip geometry changes i n  plane 

starin fracture, in inelast ic Behavior of Sol i s ' ,  (eds. M. P. Kanninen at al . )  McGraw 

H i l l  N. Y . ,  pp.64 1 -672, 1 970 

3 5 .  S i h,C .F . ,  de Lorenzi, H .G. and Andrews, W.R. ,  ' Studies on crack in i t iat ion and stable 

crack growth ' ,  ASTM-STP668, pp.65- 1 20, 1 979. 

36. McMeeking, R M and Parks, D.  M ., 'On criteria for J-Dominance of crack-tip fields 

in  large-scale yield ing' i n  'Elast ic-plast ic Fracture', ASTM STP 668, pp. 1 75-

1 94, 1 979. 

37 .  Hutch inson, J .  w., , A course on Nonl inear Fracture Mechanics' ,  Dept . of Sol id 

Mechanics, The Technical Univ .  of Denrnark, 1 979 

38 .  Shih, C .  F. and German, M. D. ,  ' Requ i rements for a one parameter Characterizat ion 

of crack-tip fields by the HRR singu larity ' ,  l nt .  1 .  Fract, VoL 1 7, pp.27-43, 1 98 1 .  



39. Ower, D. M ,  Zhuang, . ,  Rosakis, A. J . and Ravichandran, G. ' Experimental 

detenninat ion of dynamic crack i n i t iat ion and propagation fracture toughness in th in 

fi l m  aluminum sheets; Internat ional Journal of Fracture, Vol . 90, pp.  1 53 - 1 74, 1 998 

40. Anderson, D . D . ,  ' Experimental I nvestigation of Quasi stat ic and dynamic fracture 

properties of t itanium al loy s, Ph . D. Thesi s, Cal i fornia Institute of technology, 

Pasadena, Cal i fornia, 2002. 

4 1 .  McC l intock, F .  A. and I rwin, G. R. ,  ' Plast icity aspects of fracture mechanics' ,  i n  

Fracture Toughness Test i ng and i t s  app l icat ions' ,  ASTM STP 3 8 1 ,  pp .  84- 1 1 3 , 1 965 .  

42. Rice, J .  R.,  'E last ic-plast ic model s for stable  crack growth' i n  Mechanics and 

Mechanism of Crack Growth, (ed. M . J. Center Publ icat ion, pp. 1 4-39 ( 1 975) .  Proc. 

Of Conf. at Cambridge, England Apri I 1 973 . 

43 .  Broberg, K .  B . ,  ' On stable  crack growth' ,  J .  Mech . Phys. Sol ids, Vo1 . 23 ,  pp . 2 1 5-23 7, 

1 975 

44. Chitaley, A .  D. and McCl intock, F .  A . ,  ' Elastic-plastic mechan ics of steady crack 

growth under anti-plane shear' , J .  Mech. Phys. Solids, Vo1. l 9, pp. l 1 7- 1 63 ,  1 97 1 . 

45 McC l intock, F .A . ,  'Local criteria for duct i le  fracture' , l nt .  J .  Fract . Mech . ,  Vol .4,  

pp. l 0 1 - 1 30, 1 968.  

46. Cherepanov, G. P . , 'Mechanics of B ritt le Fracture', Gos. Izdat .  , Moscow, p .27 1 ,  1 974 

47. Amazigo, J .  C. and Hutchinson, J .  W . ,  'Crack-t ip fields in steady crack-growth with 

l inear strain-hardening' J. Mech. Phys. Sol ids, Vo1 . 25 ,  pp.8 1 -97, 1 977. 

48 .  Rice, J .  R. and Sorensen, E .  P . , 'Cont i nuing crack-t ip deformation and fracture for 

plane-strain crack growth in  elast ic-plastic sol id ' ,  J .  Mech . Phys. Sol ids, Vo1 . 26, 

pp 1 63- 1 68, 1 978 .  



49. Hutchin on, J W ,  and Paris, P. C,  The theory of stabi l ity analysis of J-control led 

crack growth' ,  in  'E last ic-plast ic fracture', ASTM STP 668, pp . 37-64, 1 979 

50 Pari , P .C,  Tada, R ,  Zahoor, Z and Ernst, H ' Instabi l i ty of the teari ng mode of 

ela t ic-plastic crack growth' ,  A TM STP 668, pp. 5-36, 1 979 

5 1  nih C F . ,  ' Relat ionships between the J- integral and the crack opening d i splacement 

for stationary and extending cracks ' ,  VoL29, pp. 305-326, 1 98 1 .  

52 .  Andrews, W. R and Sh ih, C F ,  ' Thickness and side-groove effects on J- and 8-

resi stance curves for steel at 93 degree C, in ' Elastic-Plast ic  F racture' , ASTM STP 

668, PP.426-450, 1 979. 

53 .  Ma Fashang, Sutton M. A, Deng x . ,  ' P lane strain mixed mode crack-tip stress fields 

characterized by a triaxial parameter and plast ic  deformat ion extent based 

characteristic length ' ,  Journal of the Mechanics and physics of sol ids, vol .  49, 

pp .292 1 -2953,  200 1 . 

54 Chen, 1 .  Y ,  Huang, Y ,  and Hwang, K .  L . ,  ' Mode I and Mode I I  plane-st ress near-ti p  

fields for crack in materials with strain-gradient effect ' ,  Key Engineering Materia l s, 

01 . 1 6 . 1 54- 1 49, pp. 1 9-28, 1 998. 

55 .  F leck, A and Hutchinson, 1 .  w. ,  In Advances in appl ied Mechanics, 1. W. 

Hutchinson and T Y .  Wu, eds . ,  Academic Press, New York, voU3,  pp. 295-36 1 ,  

1 996 

56 Schi0tz J, Carlsson A E, Canel L M and Thomson R, ' Effect of crack blunting on 

subsequent propagation' ,  Mater. Res. Soc. Symp. Proc. 409 95, 1 996. 



57. chi0tz 1 ,  Canel L M and Carls on A E, ' Effects of crack t ip geometry on d islocation 

emi ion and c1ea age: a po sible path to enhanced duct i l ity ' ,  Phy . Rev. B 55 

62 1 1 , 1 997. 

58 Gumb ch P and Beltz G E 'On the cont inuum versus atomist ic descriptions of 

di locat ion nucleat ion and cleavage in nickel Model i ng S i mulat ion ' ,  Mater. Sci. Eng. 

3 597, 1 995 

59. Gumbsch P, ' An atomist ic  study of britt le fracture: towards exp l icit fai lu re criteria 

from atomi st ic model ing' ,  1. Mater. Res. 1 0  2897, 1 996 

60. Thomson R ' I ntr insic duct i l ity criterion for i nterfaces i n  sol ids ' ,  Phys. Rev. B 52 

7 1 24 1 995 

6 1 . L i sa L Fi sher and Glenn E Beltz, , Continuum mechanics of crack blunt i ng on the 

atomic scale: elast ic solution ' ,  Model ing Simul . Mater. Sci . Eng., Vol 5 .  pp. 5 1 7-537, 

1 997 

62 L isa L F i sher and Glenn E .  Beltz, The effect of crack blunt ing on the competi t ion 

between d islocat ion nucleation and cleavage' 10urnal of the Mechanics and physics 

of sol ids, Vo1 .49, pp . 635-654, 200 1 

63 Mourad, A .  -H L ,  ' Experimental and fin ite element studies on various modes of two 

d imensional stable crack growth; PhD thes is, Mechanical Engineering Department, 

I TT, powai, Bombay, I nd ia  

64. Begley, 1 . A . ,  and Landes, 1 .  D. ,  'The l -integral as  a fracture criterion in  fracture 

toughness' ,  ASTM; STP 5 1 4, PP . I -20, 1 972. 

65. Green, G. and Knott, J . F., ' On effects of thickness on duct i le crack growth in mi ld  

steel ' ,  J Mech. Phys. ol ids, Vol . 23, pp. 1 67- 1 83, 1 975 .  



66 Andersson, H . ,  'A  fin ite-element representation of stable crack growth ' ,  J Mech. 

Phys Sol id , Vol . 2 ) ,  pp . 3 3 7-356, 1 973 . 

67 Andersson, H. ,  ' F ini te-element treatment of a uniformly moving elast ic-plastic crack­

t ip ' , l Mech.  Phys. Sol ids, Vol . 22, pp.285-308 ( 1 974) 

68 De Koning, A. 1 . ,  'A contribution to the analysi s of quasi stat ic crack growth in sheet 

material ' , i n  ' advances i n  Research on the strength and Fracture of Materials' ,  Prof. 

reF 4, 1 97, Waterloo, ( ed. D. M . R. Tapl in), Pergamon Press, N. Y. Vol . 3 A, pp.25-

32 1 978. 

69. Luxmoore, A . ,  Light, M. F. and Evans. ,  W. T . , 'A  compari son of energy release rates, 

t he J- integral and crack t ip  d i splacements ' ,  I nt .  1 .  Fract. ,  Vol .  1 3 , pp.257-259, 1 979. 

70. Newman, Jr . ,  1 .  c . , '  An elast ic -plast ic fi nite element analys is  of crack in it i at ion, 

stable crack growth and instabi l ity ' ,  ASTM-STP 883, PP.  93- 1 1 7, 1 984. 

7 1 .  kanninen, M. F. et a1 . ,  ' Elastic-plastic fracture mechanics for two-di mensional stable 

crack growth and instab i l ity problems , ASTM-STP 668, pp. 1 2 1 - 1 50, 1 979. 

72. Wang, G. S., ' An EPFM analys is  of crack in i t iation, stable growth and instab i l ity ' ,  

Engg. Fract . Mech. , Vol . 50, No. 2, pp .26 1 -282, 1 995 .  

73 Shan, G x . ,  Kolednik, O . and F ischer, F . D. , Anumerical invest igat ion on t he 

geometry depends of the crack growth resi stance in  CT specimens ' ,  Int . 1 .  Fract . 

Vo1 .66, pp. 1 73 - 1 87, 1 994. 

74 Maiti S. K.  and Mahanty, D.  K . ,  ' Experimental and finite element studies on mode I 

and m ixed mode ( I  and I I )  stable crack growth-I I . F i nite element analysis ' ,  Eng. 

Fract . Mechs . ,  Vol . 37, pp . 1 237- 1 250, 1 990. 



75 Mait i  S . K .  and A -H .  1 .  Mourad, 'Criterion for mixed mode stable crack growth-part 

I Three point bend geometry ' ,  Engineering Fracture Mechanics Vo1 . 52, pp. 3 2 1 -347, 

1 995.  

76 Mait i  . K and Mourad A -H .  1 . ,  'Criterion for mixed mode stable crack growth-part 

I I  Compact tension geometry with and without stiffener', Engineering Fracture 

Mechanics Vol . . 52, pp. 349-3 78, 1 995 .  

77. Mourad A -H .  I .  and Mait i  S .K,  ' Influence of state of stress on m ixed mode stable 

crack growth through D 1 6AT a luminum al loy ' ,  I nternational Journal of Fracture, 

Vol . 72, pp. 24 1 -258, 1 995 .  

78.  Mourad A -H.  I .  and Mait i S . K, ' Mode I and m ixed mode stable  crack extensions 

through stiffened TPB spec imens' ,  Fat igue and Fracture of Engineering M ateria ls  and 

Structures, Vol .  1 8 , pp. 648-652, 1 995 .  

79 .  Mourad A - H . - 1 .  and Mai t i  S . K, Mode I I  stable crack growth, Fatigue and Fracture 

of Engineering Material s and Structures, Vol . 1 9, pp. 75-84, 1 996. 

80. Mait i  S K . ,  Potdar Y. K. and Mourad A -H. 1 .  , Fracture of th in sheet under tension 

dominated loadi ng. Proceedings of the 5th International Conference on sheet Metal 

( he. Met .  97), University of Ulster at Jordanstown, Northern Ireland, United 

Kingdom, pp. 1 57- 1 56, 8- 1 0  Apri l  1 997.  

8 1 .  A -H 1 .  Mourad "Influence of st iffening on stable  crack extensions t hrough TPB 

speci men with offset edge crack", Scientific Bul let in, Faculty of Engineering, Ain 

Shams University, Vol . 35,  pp. 3 39-3 58, No. 4, 2000. 

82 Kolednik,  0. ,  'On the physical meaning of the J- �a- curves' Engineer ing Fracture 

Mechanics, VoL3 8, ppA03-4 1 2, 1 99 1 . 



83 .  han, G. X ,  Kolednik ,  0 and Fi cher, F. D. ' Numerical investigat ions of stable 

crack growth in  CT -speci mens of AE4340 steel ' ,  Computer Aided Assessment and 

control of local ized Damage. Proceeding of the 3rd I nternat ional conference on 

computer-Aided A sessment and control Local ized Dange, lun 2 1 -23, Udine, I taly, 

pp 3 99, 1 994 

84. Ahmad, l . ,  Barnes C. R. and Kanninen, M. F . , '  An elastoplast ic fin ite-element 

investigat ion of crack i nit iat ion under mixed-mode stat ic and dynamic loading' ,  i n  

Elastic-Plastic Fracture', ASTM STP 803, American Society for testi ng and 

Materia ls, Ph il adelphia., USA, pp. 1 -2 1 4-1-239, 1 983 . 

85 .  Sakata., M. ,  Aoki, S .  and Kishimoto, K . : 'Mixed-mode elast ic-plastic fracture of 2024-

T3 5 1  alum i num al loy i n  ' the Mechanism of fracture' ,Proc. I nt .  Conf. and Exposit ion 

on Ft igue, Corrosion Cracki ng, Fracture Mechanics and Fai lure Analysi s ' ,  2-6 

December 1 985,  Salt Lake City, Otah, USA, (Ed. V. S. Goel), American Society for 

metals, pp.97- 1 04, 1 986. 

86. Aoki, S. , Kishi moto, K . ,  Yoshide, T. and Sakata, M. 'A finite element study of the 

near crack t ip  deformation of a duct i le  material under mi xed mode loading' ,  1 .  Mech. 

Phys. Sol ids, Vo1 . 3 5, pp .43 1 -455, 1 987.  

87 .  Chow, C. L .  and Wang, 1 .  'On crack in it iat ion angle of mixed mode duct i le  fracture 

with cont inuum damage mechanics' ,  Engg. Fract . Mech . ,  Vo1 . 3 2, pp.60 1 -6 1 2, 1 989. 

88. Maccagno, T.  M. and Knott . 1 .  F .  'The mixed mode III l fracture behavior of l ight ly 

tempered HY 1 30 steel at  room temperature' , Engg. Fract . Mech. , Vol . 4 1 ,  No. 6, 

pp .805-820 ( 1 992).  



89 Hallback, . and i l s  on, F. ' M ixed-mode li l T fracture behavior of an aluminum 

al loy' ,  J .  Mech. Phys. ol ids Vo1 .42, 0.9, pp. 1 345- 1 374, 1 994 

90 Kamat, V. and Eswara Pra ad, N. 'Comparison of fracture toughness of a 7XXX 

aluminum al loy under mode T ,  mode I I  and mode I I I  loading' ,  l nt .  J . Fract . ,  Vol .  63, 

pp. R-7-R- 1 3  ( 1 993) .  

9 1 .  Maccagno T .  M. and Knott, J .  F .  ' The low temperature britt le fracture behavior of 

steel i n  mixed modes I and I I ' ,  Engg. Fract . Mech. ,  Vol . 3 8, No.2/3 , pp. 1 I 1 - 1 28, 

1 99 1 .  

92 . Ma, F . ,  Deng, x . ,  Sutton, M. A.  and Newman Jr . ,  J .  c . ,  ' A  CTOD based mixed mode 

fracture criterion, M ixed Mode Crack Behavior ASTM STP 1 3 59, PP. 86- 1 1 0, 1 999. 

93 . Sutton, M . ,  A . ,  Deng, x., Ma, F, Newman, J. C .  Jr, James, M. , ' Development and 

appl ication of crack t ip opening disp lacement - based mixed mode fracture criterion' ,  

Int 1 .  Sol ids  Struct. ,  Vol . 3 7, pp. 3 59 1 -36 1 8, 2000. 

94. Sutton, M . A . ,  Boone, M . L . ,  Ma, F ,  Heln, D . ,  ' A  combined model ing - experimental 

study of the crack opening d isplacement fracture criterion for characterizat ion of 

stable crack growth under mixed mode III I loading in  th in  sheet material s ' ,  

Engineeri ng Fracture Mechanics, Vo1 . 66, pp. 1 7 1 - 1 85, 2000. 

95.  Baker, A. :  'Three-dimensional constraint effects on stress intensity d i st ributions in  

plate geometries with through-thickness cracks' ,  Fat igue Fract . Engg. Mater. Struct . ,  

Vol .  1 5 , No.  1 1 , pp .  1 05 1 - 1 069, 1 992. 

96. Davies, P . H . ,  ' Predict i ng crack instabi l ity behaviour of burst tests from smal l 

speci mens for i rradiated Zr-2. 5Nb pressure tubes' , ASTM Special Technical  

Publ ication, Vol . 1 32 1 ,  1 997 



97. usumu, M. , 'Computer simulation of fast crack propagat ion and arrest in  steel plate 

with temperature gradient based on local fracture stress criterion ' ,  ASTM Special 

Technical Publ ication, Vol . 1 32 1 ,  1 997.  





APPE N D I X ES 

4A . ample of the load-over head d i splacement curves for mode I loading that obtained 

from the MTS machine 

4B.  F inite E lement Program used i n  Mode I Stable Crack Growth 

SA. Samples of the load-over head d i splacement curves for M i xed Mode loading that 

obtained from the MTS machine 

SB. F i nite E lement Program used i n  M ixed Mode Stable Crack Growth 



Append ix  4A 

Sa m ples of the load-over head d isplacem ent c u rves for mode I loa d i ng 

that o btai n ed fro m the M TS machine 

60.000 

48.000 

..-. 
Z 

36.000 :i 'U 

0 
cl 24.000 0 
-l 

1 2.000 

/J I 

0.000 V 
0.000 

60.000 

4.8.000 

..-. 
l. 

36.000 :i '-' 
0 
cl 24.000 0 
-l 

1 2.000 / / 
0.000 � 

0.000 

SCG24 Span It 1 

V 
/ J y 

/ V � '" /' bY' 
/ 

Mj 
/ 

1 .600 3.200 4.800 

EXTENSION (mm) 

aJw = 0 .4 1 

SCG25 Spcm It 1 

I 
I I 

-.& If --
/ I; ! � 

1 .600 3.200 4.800 

EXIENSION (mm) 

aJw = 0 .42 

6.4.00 8.000 

6.4.00 8.000 



SCG22 Spcm It 1 
45.000 

j 
36.000 

I 1--4_ 
I V 

V 
1 � 

r-. 
2 

27.000 :t '-' 

/ ./ 
VI 

0 
<l 1 8.000 0 
...J 

/;V IAI 
� 

9.000 I I 
0.000 I 

0.000 1 .400 2.800 4.200 5.600 7.000 

EXTENSION (mm) 

adW = 0 .43 

S C G  1 3  Span It 1 
50.000 

I 
40.000 I ............... I� ,./' ...... � 

r-. 
2 

30.000 :t '-' 

V d I 
0 V 
<l 20 000 0 
...J i' V 

1 0.000 / 
0.000 V 

0.000 2.000 4.000 6.000 8.000 1 0.000 

EXTENSION (mm) 

adW = 0.43 



SCG26 Spcm It 1 
60.000 

I 

I 

"8 000 
/ I 

I 
..-. II y 
Z 

36.000 :t '--' I V --

0 
<l 24 000 0 
...J 

f � 
1 2.000 / / 
0.000 � 

0.000 1 .600 3.200 -'.800 6.400 8.000 

EXTENSION (mm) 

aJw = 0 .4 1 



Append ix  4 B  

1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
1 * this fin ite element program was bui ld t o  carry out elast ic-plast ic for mode I 
1 * tab Ie crack growth 
! * Anal i for the purpose of master thesi s. 
! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

IGRA,POWER 
ICOM,ANSYS RELEASE 5 .4  UP 1 9970828 
IFILN AM, CMI 
!PREP 7 
* AFUN,DEG 
! * 
! * 
1 * ariables 

! Length of specimen L 
! one half of the specimen M=Ll2 
! Crack length 

1 6 :00 :07 03/0712002 

L= 1 20 
M=62 
a=4 1 
W= l OO 
B=W-a 
F= 1 . 5 

! distance from load l ine to the end of specimen. 

H=6 
C=20 
C2=2 
C l =a-C2 
Y=3 8 
RAD=6 
Thick=8 
E =  200 
Et= 1 0  

u= 0 .3  
Fy= 0 450 
T=22 
! * 
! * 
1 * 

! Young modulus 
I Tangent ial modulas ! !  * al l  units in GPa 

! poison rat io 
! yield Strength 

! Force appl ied 

1 * Define Keypoints 
K, 1 ,0,0,0 
K,2,4,0,0 
K,3 ,B,O,O 
K,4,B,M,0 
K,5,-a-c,M,0 
K,6,-a-c,F+H,0 
K,7,-a,F+H,0 



K, ,-a,F,O 
K,9,- 2-F/TAN( l S ),F,0 
K, 1 0, -c2,0,0 
K, 1 1 , - 2-F/T AN( I S ),4,0 
K, 1 2,4,4 ° 
K, 1 3 , -a, Y,O 
1 * 
L TR 1 ,  2 
L TR, 2, 3 
LSTR, 3 ,  4 
LSTR, 4, 5 
LSTR, S, 6 
LSTR, 6, 7 ! creat the l i nes which form the area of the modle 
LSTR, 7, 8 
LSTR, 8, 9 
LSTR, 9, 1 0  
LSTR, 1 0, 1 
LSTR, 2, 1 2  
LSTR, 1 2, 1 1  
LSTR, 1 1 , 9 
! * 
C IRCLE 1 3 , RAD 
! * 
! * 
! * D ivide Top Arcs 
LDIV, 1 4, , , 3 ,0 
LDIV, I S , , , 3 ,0 
1 * 
1 * 
FLST,2, 1 0,4 
FITEM,2, 1 0  
FlTEM,2, 1 
FITEM,2,2 
FITEM,2,3 
F ITEM,2,4 
FITEM,2,S 
FITEM,2,6 
FITEM,2,7 
F ITEM,2,8 
FITEM,2,9 
AL,PS I X  
1 * 

! Creat the area of the mod le 

AL, l S , 1 9, 1 8, 1 4,20,2 1 , 1 6, 1 7  ! creat a loading hole 
1 * 
AL,9, 1 0, 1 , 1 1 , 1 2, 1 3  
1 * 

1 * creat the area arround the crack t ip 



ASBA, I 2 
A BA,4,3 , , ,KEEP 
! * 
! * Defi ne Element Data 
ET, 1 , PLANE82 
KEYOPT, 1 , 3 ,3  
KEYOPT, 1 , 5  0 
KEYOPT, 1 ,6,0 
R., 1 Thick 
1 * 
1 *  
! * Define the Material P roperties 
UIMP, 1 ,EX, , ,E 
UIMP, 1 ,NUXY, , ,Nu 
TB,BKIN, l , l "  , 
TBMODIF,2, 1 Fy 
TBMODIF,3, l  Et 
1 *  
1 *  
! * Apply Boundary Condit ions 
DL, l ,  ,SYMM 
DL,2, ,SYMM 
DK,3,  ,0, O,UX 
1 * 
1 *  
1 *  Apply Loads 
FK 1 4,FY,T/6 
FK, 1 5,FY,T/6 
FK, 1 8,FY,T/6 
FK, 1 9,FY,T/6 
FK,20,FY,T/6 
FK,2 1 ,FY,T/6 
! * 
1 *  
LESIZE, 1 ,0.2""", 1 
LESIZE,9,0.2,, ,,,,, 1 
LESIZE, 1 0,0.2"",,, 1 
LESIZE, 1 1  ,0.2",,,,, 1 
LESIZE, 1 2,0.2,,,,,,, 1 
LESIZE, 1 3,0 .2",,,,, 1 

1 *  
LESIZE,3 ,4""", 1  
LESIZE,4,4""", 1  
LESIZE,5 ,4""", 1  
LES IZE,6,4""", 1 



LE lZE,7,4"", , , 1 
! * 
1 * 
LE 12E, 1 4  ,2", 1 "" 1 
LESl2E, 1 5,2", 1 " " I 
LE 12E, 1 6,2,,, 1 "" 1 
LE IZE, 1 7,2", l " ,, 1 
LESl2E, 1 8,2", 1 "" 1 
LE 12E, 1 9,2, , 1 ",, 1 
LESIZE,20,2,,, 1 '" 1 
LESIZE,2 1 ,2", I , , ,  1 
1 * 
LESIZE,8,0. 8, " . 2 " , 1 
LESIZE,2,0.8,  , ,5 ,  , , , 1  
! * 
! * 
! * 
! *Meshing 
IUI,.MESH, OFF 
MSHAPE,0,2D 
MSHKEY,O 
AMESH, 1 
AMESH,3 
! * 
! * 
/SOLU 
ANTYPE,O 
NLGEOM, O  
NROPT,FULL, ,OFF 
NEQIT, 1 0  
DOFSEL,S, ,FX.,FY 
FCUM,REPL, 1 ,  
DOFSEL,ALL 
1 * 
! * F irst load step (sub-step=0.05) 
AUTOTS, l 
TIME, 1 
DEL TIM,O.  05,0.0 1 ,0. 1 0  
OUTRES,ALL,ALL 
KBC,O 
SOLVE 
! * 
1 * 
SAVE 
FIN ISH 
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1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
1 * thi  fin ite element program was bu i ld  to carry out elastic analysis for mixed mode 
1 * table crack growth to detennine the crack in i t iation crack d irect ion. 
1 * Analy i for the purpose of master thesi s. 
1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

ICOM, ANSYS RELEASE 5 .4  UP 1 9970828 
* AFUN,DEG 

1 6 :00:07 03/0712002 

BTOL, l e-9 
! * 
1 * Variables 
* DIM, Theta,ARRA Y, 1 0 
Theta( 1 )=50 
Theta(2)=60 

! Define an array offside 4 for the parameter Theta 

Theta(3 )=65 
Theta(4)=75 
L= 1 20 
M=60 
a=42 
W= l OO 
B=W-a 
F= 1 . 5 
H=6 
C=20 
C2=2 
C l =a-C2 
Y=3 8 
RAD=6 
1 * 
1 * MATERIAL PROPERTIES 
Thick=8 
E=205 
Et=O 

u=O.3 
! Fy=0.470 
Fy= l e l O  
T=O.OO I 
1 * 
1 * 
* DO, I , I ,4 

IFIL  AM,CM1%Theta( i )% 
!PREP7 
1 * Define the Material Properties 

Length of speci men L 
one half of the specimen M=L/2 
Crack length 
distance from load l i ne to the end of specimen. 

! Thickness of material 
! Young modulus 
! Tangent ial modu las ! I * a l l  units in  GPa 
! poison rat io 
! yield Strength 
! No yield ing (Elastic) 
! Force appl ied 



UIMP, I ,EX" ,E 
UIMP, I ,NUXY, " u 
TB,BKIN, 1 1 " , 
TBMODIF,2, I ,Fy 
TBMODI F,3 , 1 ,Et 
1 *  
! * ELEMENT TYPE AND REAL CONSTANTS 
ET, I , PLANE82 ! For Elasto-Plastic Analysis 
KEYOPT, I , 3 ,3  
KEYOPT, I , S,O 
KEYOPT, I ,6,0 
R, 1 ,8, 
! * 
bc=2 *y IT AN(Theta(I)) 
! * Define Keypoints 
K, I ,O,O,O 
K,2,B,0,0 
K,3 ,B,M,0 
K,4,-a-c,M,0 
K,S ,-a-c,F+H,O 
K,6,-a.,F+H,0 
K,7,-a.,F,0 
K,8,-C2-FIT AN( I S),F,O 
K,9,-c2, .OS,0 
! * 
1 *  
LSTR, I ,2 ! Line L I  
LSTR,2,3 ! Line L2 
LSTR, 3,4 ! Line L3  
LSTR,4,S ! Line L4 
LSTR, S,6 ! Line LS 
LSTR,6,7 1 Line L6 
LSTR, 7,8 ! Line L7 
LSTR,8,9 ! Line L8 
LSTR,9, 1 1 L ine L9 
1 *  
1 *  
AL, I ,2,3 ,4,S,6,7,8,9 
CYL4,O,O,O.OS, , 1 . S 

! Create Area A l  (Upper hal f of the Model) 
! Create Area A2 (Annulus Rad l =O .OSmm, Rad2= 1 . Smm) 

1 * 
ASBA, I ,2 
! * 
LSTR, I S, 1 0  
LSTR, 1 8, 1 9  
1 * 
AL, I , l  0,23 ,9,20, 1 7  

! Subtract A2 from A l  

1 Add l ines for the annulus area 
! Add l i nes for the annu lus area 

1 Create the annulus area 



1 * 
ARSYM,Y,ALL" , ,0,0 ! Reflect the upper hal fof the model 
1 * 
NUMMRG, ALL, 0.000 1 ,0 .000 1 "LOW 
1 * 
CYL4,-a, Y, RAD 
CYL4,-�-Y, RAD 
CYL4, -a+bc,-Y, RAD 
! * 
! * 
ASBA,4 7 
ASBA,6,8 
ASBA,4,9 
! * 
KSCON, 1 ,0.025, 1 ,  1 6,0, 
! * 
LESIZ E, 1 5",8",, ,  1 
LESIZ E, 1 6",8"", 1 
LESIZE, 1 7",8"" 1 
LESIZE,20",8", ,, 1 
1 * 
MSHAPE,0,2D 
M SHKEY,O 
! * 
AMESH,3 
AMESH,5 
1 * 
LESIZE, 1 0,, ,8,, , , , 1 
LESIZE, 1 2,, , 8,,, , , 1 
LESIZE, 1 3 ",8",, ,  1 
LESIZE,23 ,, ,8,, ,  , 1 
1 * 
LESIZE, 1 ",28 20"" 1 
LE IZE,9",28,20"" 1 
LESIZE, 1 4",28,20,,,, 1 
1 * 
LCCAT, 1 7,20 
LCCAT, 1 5, 1 6  
LCCAT, 1 0,23 
LCCA T, 1 2, 1 3  
1 * 
MSHKEY, l 
1 * 
AMESH, l 
AME H,2 
1 * 

! Upper C ircu lar Hole 
! Lower Left Circular Hole 
1 Lower Right Circul ar Hole 

! Subtract Upper Hole 
! Subtract Lower Left Hole 
! Subtract Lower Right Hole 

! Mesh the smal l half circle 
! Mesh the smal l half circle 

1 Mesh the b ig half circle 
! Mesh the big half circle 



LE IZE 1 1 , , ,8, , , , ,  1 
LE IZE,26",8",,, 1 
LE IZE,3 5,, ,8, , , ,, I 
LE IZE,36",8" " I 
LES IZE,37,, , 8,,,, , 1 
LE IZE,3 8, , ,8,, , , , 1 
LE IZE,39",8", 1 
LE IZE,40, ,8",, ,  1 
LE IZE, 4 1 ,, ,  8", ,, 1 
LE IZE,42",8"", 1 
! * 
LESIZE,22,, ,5, ,,,, 1 
LESIZ E,34",5" ,,, 1 
LESIZE,8", 1 5,0.2" , 1 
LESIZ E,33", 1 5,0.2"" 1 
LESIZ E,2 1 ",40,0.05"" 1 
! * 
! * DIVIDE LINES 24 and 43 to al low for loaded keypoints 
LDIV,24,(90-Theta(I))/90, ,2,0 
LDIV,43,(90-Theta(I))/90, ,2,0 
! * 
LESIZE,24",4",,, 1 
LESIZE,48",5"", 1 
LESIZE,43",4",, ,  1 
LESIZE,49,,, 5,,,,, 1 
1 * 
ESIZE,4,O 
MSHKEY,O 
1 * 
AMESH,6 
AMESH, 1 0  
1 * 
! * BOUNDARY CO DITIONS 
DK,25,,0,,0,ALL 
DK,24,,0,,0,UY 
1 * 
1 * APPLY LOADS 
KP I =KP( -a-RAD*COS(Theta(I)), Y +RAD* S IN(Theta( I )), 0) 
KP2=KP( -a+bc+RAD*COS(Theta( I )), -Y -RAD* SIN(Theta( I )), 0) 
FK,KP l ,FX, -COS(Theta( I ) )  
FK, KP ] ,FY, S IN (Theta(I)) 
FK, KP2,FX,COS(Theta( I))  
FK, KP2,FY,-S IN(Theta( I )) 
1 * 
SAVE 
FINI SH 



! * 
/ OL 

OLVE 
1 * 
F IN1  H 
! * 
1 * DELETE EVERYTHING 
!PREP 7 
ACLEAR, ALL ! Delete al l  meshes 
ADELE,ALL, , , I  
LDELE,ALL" , I  
KDELE,ALL 
FINISH 

*ENDDO 
FINISH 
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