United Arab Emirates University

Scholarworks @ UAEU

Theses Electronic Theses and Dissertations

11-2016

Early Packet Rejection Using Dynamic Binary
Decision Diagram

Vasiqullah Molvizadah

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/all theses

Part of the Information Security Commons

Recommended Citation

Molvizadah, Vasiqullah, "Early Packet Rejection Using Dynamic Binary Decision Diagram” (2016). Theses. 450.
https://scholarworks.uaeu.ac.ae/all_theses/450

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarworks@UAEU. It has been accepted for

inclusion in Theses by an authorized administrator of Scholarworks@UAEU. For more information, please contact fadl. musa@uaeu.ac.ae.

https://scholarworks.uaeu.ac.ae?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_theses?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/etds?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_theses?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_theses/450?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fadl.musa@uaeu.ac.ae

UAEU

) 6l?1nJl duy=ll Cljlali dsala
United Arab Emirates Universit}.l

United Arab Emirates University

College of Information Technology

Department of Information Systems and Security

EARLY PACKET REJECTION USING DYNAMIC BINARY
DECISION DIAGRAM

Vasiqullah Molvizadah

This thesis is submitted in partial fulfilment of the requirements for the degree of
Master of Science in Information Security

Under the Supervision of Dr. Zouheir Trabelsi

November 2016

Copyright © 2016 Vasiqullah Molvizadah
All Rights Reserved

i

Advisory Committee

1) Advisor: Dr. Zouheir Trabelsi
Title: Associate Professor
Department of Information Systems & Security

College of Information Technology

2) Member: Dr. Ezedin S. Baraka
Title: Associate Professor
Department of Information Systems & Security

College of Information Technology

v

Approval of the Master Thesis

This Master Thesis is approved by the following Examining Committee Members:
1) Advisor (Committee Chair): Dr. Zouheir Trabelsi
Title: Associate Professor

Department of Information Systems & Security

College of Information Technology

Signature - Date /’é, /2 Zo/é

2) Member: Dr. Ezedin S. Baraka

Title: Associate Professor
Department of Information Systems & Security

College of Information Technology

1 (A

Signature @ Y/] Date [R [1.AL {Qp .

3) Member (External Examiner): Dr. Fatma Outay
Title: Assistant Professor
Department of Innovative Technology

Institution: Zayed University

Signature % Date AQJ\ VAN Q&OM

This Master Thesis is accepted by:

vi

Dean of the College of Information Technology: Professor Omar El-Gayar

Signature /“/ S/

Date e . (€2, 2v ¢

Dean of the College of the Graduate Studies: Professor Nagi T. Wakim

Signature

Copy _/ of /

Date lcl\;lzl 20l &

Declaration of Original Work

I, Vasiqullah Molvizadah, the undersigned, a graduate student at the United Arab
Emirates University (UAEU), and the author of this thesis entitled “Early Packet
Rejection using Dynamic Binary Decision Diagram”, hereby, solemnly declare that
this thesis is my own original research work that has been done and prepared by me
under the supervision of Dr. Zouheir Trabelsi, in the College of Information
Technology at UAEU. This work has not previously been presented or published,
or formed the basis for the award of any academic degree, diploma or a similar title
at this or any other university. Any materials borrowed from other sources
(whether published or unpublished) and relied upon or included in my thesis have
been properly cited and acknowledged in accordance with appropriate academic
conventions. | further declare that there is no potential conflict of interest with
respect to the research, data collection, authorship, presentation and/or publication
of this thesis.

Student’s Signature: Date:

vii

Abstract

A firewall is a hardware or software device that performs inspection on a given
incoming/outgoing packets and decide whether to allow/deny the packet from
entering/leaving the system. Firewall filters the packets by using a set of rules called
firewall policies. The policies define what type of packets should be allowed or
discarded. These policies describe the field values that the packet header must
contain in order to match a policy in the firewall. The decision for any given packet

is made by finding the first matching firewall policy, if any.

In a traditional firewall, the packet filter goes through each and every policy in the
list until a matching rule is found, the same process is again repeated for every
packet that enters the firewall. The sequential lookup that the firewall uses to find the
matching rule is time consuming and the total time it takes to perform the lookup
increases as the policy in the list increases. Nowadays, a typical enterprise based

firewall will have 1000+ firewall policy in it, which is normal.

A major threat to network firewalls is specially crafted malicious packets that target
the bottom rules of the firewall’s entire set of filtering rules. This attack’s main
objective is to overload the firewall by processing a flood of network traffic that is
matched against almost all the filtering rules before it gets rejected by a bottom rule.
As a consequence of this malicious flooding network traffic, the firewall
performance will decrease and the processing time of network traffic may increase
significantly

The current research work is based on the observation that an alternative method for
the firewall policies can provide a faster lookup and hence a better filtering
performance. The method proposed in this research relies on a basic fact that the
policy can be represented as a simple Boolean expression. Thus, Binary Decision
Diagrams (BDDs), are used as a basis for the representation of access list in this
study.

viii
The contribution of this research work is a proposed method for representing firewall
policies using BDDs to improve the performance of packet filtering. The proposed
mechanism is called Static Shuffling Binary Decision Diagram (SS-BDD), and is
based on restructuring of the Binary Decision Diagram (BDD) by using byte-wise
data structure instead of using Field-wise data structure. Real world traffic is used
during the simulation phase to prove the performance of packet filtering. The
numerical results obtained by the simulation shows that the proposed technique
improves the performance for packet filtering significantly on medium to long access
lists. Furthermore, using BDDs for representing the firewall policies provides other

useful characteristics that makes this a beneficial approach to in real world.

Keywords: Firewall, Packet Filter, Binary Decision Diagram, Early Rejection,
Packet Matching.

Title and Abstract (in Arabic)

L 1A ey aladiuly cilil) 3yl Rl jzad)
pailalf

Lol i o s Jladl s 3305l bl 255k ands gl geai g ol Slea 58 ol laall
and 2] 8 aladiuly Ul a5k (Ul Jlaall o L seal) (e Leaia sl Ll laud)
JIL) ULl 3k 5l b il ad cluled) o3 Gt s U laal) cilulan

AgylUaie Asbans gl e 2L 1N (o lanll 38, 5 culpul)

S oAV b sl el S e il ok ey dpaal 4l sl
Gl diag g elifial S 2y kll JS 4leadl o S ASlas dubis 255 Caoliay
Aanailly T yda 31 3y AaiUaall o 53U) < gl (5 LS o sl TS0 e Aaia Al e Juduciall
o3 (b Ak gme Ay) (e ST e 4 Ul jaall (g giad g A guaall Cilubald) sas]

A

Adas AT AR 25kl 638 Cangud Cum Ul Jaal) e Toka 3l ey S
dslas 2okl ada Ul laadl ey s (A (gl laadl 38 i (S Ak suiae
o8 e g Ju)) Oy WAl) diay s Alasuadl Glulaadl S s gl

Aalladl g L33k pale 3ol 5 U laadl elal A (i) g3 Apall 5 bl

il () 2 s Gl g jul 35k aladiul of Aaade e e Jall dadl ()
Boolean Asilaic <l yueS Leliiad Sy il o dds e Lall ae 525 (Juadl
Al Hall s2a <2 BDD 64_:.;5\ BIBIPWINEER Y A3 ey e L sexpressions.

o 2R (5 laad) lules Qi da e 4k e Jeall 138 b slen) Jat
DIAN sy Aadiall 38y Hhall andiy il 39 ke mad yi s lal (sl BDD (AU)l
S Ay i sale] Akl o3 2333.53,8S-BDD. ¢sSes LlaA Sl
Clily 35k aladiu) o3 85 Jiall e Yo byte culdl Lo i clily opsS5 alasiuly
2yl o3 (o el Aayatial) Cilul@l) o LS ey jlall dallad cILEY slSLaall 3 ddda

ALy shall 5 Jshall Ao gie cluband) 8 5 sale <y ooV G

X

) 3 5 ke Ailaa ¢ Kudl

Xi

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Dr. Zouheir
Trabelsi for the continuous support of my study and related research, for his
patience, motivation, and immense knowledge. His guidance helped me in all the
time of research and writing of this thesis. | could not have imagined having a better

advisor and mentor for my Master’s study.

I would like to thank the chair and all members of the Department of Information
Systems & Security at the United Arab Emirates University for assisting me all over
my studies and research. My special thanks are extended to Dr. Mehedy Masud for
providing me with the relevant reference material.

Special thanks go to my family: my parents and to my brothers for supporting me

throughout writing this thesis and my life in general.

Xii

Dedication

To my beloved parents and family

Xiii

Table of Contents

LI L= RSO URPTPUPR TSR PRRP i
Declaration of Original WOTKcoviieiiiieiie ettt i
[O70])Y/ £ T 11 AU UROTOSSRSPR ii
AQVISOTY COMIMITIEEc.viiiiiiii e bbbttt v
Approval of the Master ThESIS.........cviiiiiice e v
N 0L - Uod ST OS S SRRSSN vii
Title and ABSEract (IiN ArabiC)ccuveiiiiiiiice e iX
ACKNOWIEAGEMENTS ...t b e Xi
D10 [o7 [o] o [OOSR TR PUPURPRPRIN Xii
TaDIE OF CONENTSeiieieceee e st r e be et e s sreeneeereenne e Xiii
LISt OF TADIES.....eeiieiciieeeee ettt sttt n et neas XVi
LISE OF FIQUIES ...ttt bbbttt e bbb XVii
Chapter L: INtrOQUCTIONoevieie ettt e raeaeeneesnae e 1

1.2 Firewall BasiC APPIOACNEScccoiiiiiiiiiieie st 2
1.2.1 Circuit [eVel FIFEWAILcveiieieee e 3
1.2.2 Application-level FIreWallcoo e 3
1.2.3 Packet filtering firewall.............ccoooiiiiii e 3

L3 FIreWall POLICY ...c.voiiiiiiciieieee s 4

1.4 Problem STatemMentooiiiie e 5
Chapter 2: Related WOTK..........ooiiiiiieeee bbb 7
Chapter 3: Using Binary Decision Diagram for Packet Filteringccccoceovvevieiiicie e, 8

3.1 Binary Decision DIiagram..........ccccoieiiiiieieiesie st 8

3.2.0rdering and REAUCINGeoiiiiieeiie ettt 9

3.3 The Variable Ordering EffeCt..........coooiiiiiiiiiiieee e 10

3.4 Binary Decision Diagram Packet Filtercccooeviiiiiiiiiiciec e, 11
3.4.1 B00IEan VariabIesScoouiiiiiiiie et 12

3.5 Example of Firewall Policy list CONVErSioNccccocevveveiieiieseee e 12

3.6 Performing @ LOOKUPoouviiiiiiice e s 15

3.7 1ssues Field-Wise I00KUPccviiiiecie e 15

Chapter 4: Static Shuffling Binary Decision Diagram (SSBDD)ccccceoeieneniienininene
4.1.1 Policy Representation PRASEcccovveieiieieeie e 20
4.1.2 Packet FIltering Phasecovoiiiiiie e 21
4.2 FIeld Orderingccvoieiieie ettt 22

4.2.1 Field Count DiStrDULIONovviiiiiiiiiiee e

4.2.2 Rule Reordering vs Field REOIderingccocvviriiieieieiescseise e 25

Chapter 5: IMplemeNntatioN..........ccooii i e
5.1 Policy Representation using SSBDDccccocuviiiiiiiineie e, 26
5.1.1 Input the FIreWall RUIESccooiiiiiiiiee e

5.1.2 Rule t0 BINArY FOMMAL.........ccoiiiiiiiieiiiiisiesieeee e
5.1.3 SSBDD GENEIALIONcuiiieiieiieiieie ettt sttt se e bbb eneas

5.2 SSBDD Packet FIltEriNgc.ccoveiieiieiieiree s 31
5.3 BDD Packet Filter vs SSBDD Packet FIEruuueeeeeeeeee e 33
5.3.1 BDD PACKEE FIIOI ...ttt seeseeeennnennnnnnn

5.3.2 SSBDD PaCKEE FIILET ...t

Chapter 6: Analytical Discussion of the SSBDD..........ccccooiiiiiieniiiiieee s
6.1 SSBDD Representation of ACCESS LiSt........ccccvveiiiiiiiiieiie e 37
6.1.1 The Effect of RUIE SIFUCTUIEocuiiieiiiicice e

6.1.2 The Effect of Variable Orderingccccooveiieiiiicieece e

6.2 Performing LOOKUP 0N @ SSBDDcccooiiiiiiiiiiiiiecee e 40
6.2.1 WOISE CaS ANAIYSIScueiiiiiieiieiiie ittt eneas

6.2.2 BESE CaSE ANAIYSISiiiiieiii ettt
6.3 Memory Usage OFf SSBDD.........cccouiiiiiiieniesiesiesie e 42

Chapter 7: Architecture and SIMUIALION..........cccvoiiiiiiicic e
7.1 System IMplemENntation...........ccoieiiiiieie e 43
7.1.1 Packet Filter SPECITICALIONoveiiiiiiiiiiciisieee e

7.2 Coding and MOAUIEScc.eeeiieiie et 44
A 2 (01011, (=T o)V

7. 2.2 FOMMUIBLPY -ttt bttt et re et
7.2.3 MAtChRUIE.PY ..ottt e esreenre e e
7.3 Other codiNg MOAUIEScc.eiiiieiiieie e 47

7.4 Simulation ENVIFONMENToiiiiiiiiieeeee e 48
7.5 SIMUIAtION DAASELccoveiiiiiiiciee et 49
7.6 SIMulation FrameworK ..o 49
ChapLer 8: STALISICSc.veviiiitiiii ettt 51
8.1 SIMUIAtION RESUILS ... 51
B.LL EXPEIIMENT A oottt ettt et e e e e e st e e steeseeabe e teaneesreenreenee e 52
8.L2 EXPEIIMENT B ..ottt sttt et e e raenneanee e 52
B L3 EXPEIIMENT C ..ottt ettt st e ste e be et e e s reenre e e e 53
8.LA EXPEIIMENT D ..ottt ettt et e e s e re e 53
8. L5 EXPEIIMENT E...cooveeieeeee ettt ettt re e re e 54
Chapter 9: Conclusion and FULUIE WOTKccoiiiiiiieie e 55
0.1 FULUIE WOTK ..ottt 55
9.1.1 Variable Ordering and Reordering PrediCtioncccovvvriiinicienencnesesieias 55
9.1.2 Updating the SSBDDccciiiiiieiieiiesie sttt 56
9.1.3 Considering more Parameters for Performancecccoccevevevevieseenvsie e 56
9.2 CONCIUSION ...ttt 56

RO I INICES ...ttt ettt e e e e ettt e e et et e et ettt nnn e nnnnnnnnnnnnnn 57

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:

XVi

List of Tables
The Boolean variable required for BDD representation.............cc.ccccevenenne. 12
Sample Firewall POIICY LiSt.........ccooiiiiiiiiiiieeeee e, 13
RUIES ..ttt bbbt 16
A SAMPIE POHCY LISt ... 20
Variable Orderingocoviieiieie e 22
Binary equivalent of @ rule...........ccooviiiiiiiii e 34
SAMPIE ACCESS LISt ...oovieieiiecieee e 38

SPECITICATION ..t ens 49

XVii

List of Figures
Figure 1: Binary DeciSion DIagramccccevueiiieiiiiieiiesie e seesie e sre e e esae e snees 9
Figure 2: Two BDDs for the function x1yl V x2y2 V ... V xnyn for n=3 11
FIgure 3: BDD LOOKUP «..uveivieiicieseeite ettt sta e ste e nee s ens 15
Figure 4: BDD Tree of Table 3.....ccooiie e 16
Figure 5: SSBDD AIChITECIUIEcceeviiieciee e 19
Figure 6: BDD RePreSentatioN..........cccoiiierieieiiiesiesie st 21
Figure 7: BDD PaCKet FIlterccoveiieiiiiiecc e 34
Figure 8: SSBDD Packet FIlter ... 35
Figure 9: Modules of SSBDD implementation..............ccccovvevevieiieie e, 45
Figure 10: Other Coding MOGUIES.ccoiiiiiiie e 48
Figure 11: Simulation Framework OVEIVIEWccccoceiveiieiieieese e 50
Figure 12: EXperiment A RESUITccooiiiiiiieee e 52
Figure 13: EXperiment B RESUIL........cc.ccviiieiiicceee e 52
Figure 14: Experiment C RESUIL..........cooiiiiiiiiee e 53
Figure 15: EXperiment D RESUILcc.ooviiiiicccce e 53

Figure 16: EXperiment E RESUIL..........coiiiiiiiiieee e 54

Chapter 1: Introduction

1.1 Overview

The Internet has come a long way since its inception, the accomplishment in terms of
data accessibility and availability has been growing exponentially over the couple of
decades (Cheswick, 2003). Today every other business is now reorganizing itself to
utilize the power of the Internet to connect to its users. The type of services and
application available on the Internet have become more powerful — starting from a
simple static webpage in the 1990s to online banking, shopping. The fact of
increasing number of users using the Internet implies an increasing number of
malicious attacks, which means that systems and their networks require protection

from unintentional incidents as well as malicious acts (Nikolaidis, 2000).

The increasing complexity of the Internet makes the solution of computer network
security more complex, which is why organization does not use just one solution
instead they apply layers of security to protect themselves. The best way of ensuring
security is by using a network firewall. A firewall is a computer, router, or other
communication device that filters access to the protected network (Nikolaidis, 2000).
Cheswick and Bellovin (Cheswick, 2003) (Ballew, 1997) define a firewall as a
collection of components or a system that is placed between two networks and

possesses the following properties:

o All traffic from inside to outside, and vice-versa, must pass through it.
e Only authorized traffic, as defined by the local security policy, is allowed to
pass through it.

e The firewall itself is immune to penetration.

2

Firewalling is the easiest method of all used by the network administrator to control
the access between networks (Ballew, 1997). The idea to use firewall to protect the
network, is that controlling access to the network and its resources by protecting each
host is difficult and does not scale (Oppliger, 1998). Firewall solves this issue by
creating a single connection point for multiple network and providing a single
security checkpoint. This single checkpoint will have a security policy that defines
what type of connection is allowed or rejected. It can be assumed that the firewall

itself is immune to penetration.

One of the main criticism of firewalls is that they often create bottlenecks
(Nikolaidis, 2000). The reason of this bottleneck is mainly how the firewall policies
are constructed. If the policies are not constructed properly then it may cause loss of
network performance. This motivates the need for faster firewall technologies,

keeping in mind that there is a tradeoff between performance and security.

1.2 Firewall Basic Approaches

Firewall is usually installed at the edge of the network where the private or the
Intranet connects to the public network, making it easier for the firewall to monitor
all the traffic at once. Although firewall may also be placed between departmental
networks within a company. The level of security and behavior exhibited by the
firewall depends on the type of firewall used but for this research is focused on the
Packet Filter Firewall. There are three basic approaches that a firewall uses to protect
the network: packet filtering, circuit level firewall, and application level firewall

(Cheswick, 2003)

1.2.1 Circuit level firewall

Circuit level firewall is a type of firewall that works at the session layer of the OSI
model, between the application layer and the transport layer of the TCP/IP stack.
They monitor the handshaking between two systems and decided whether a request
session is legitimate or not. It filters the packet, by relying on the data contained in
the packet headers for the TCP session-layer protocol. These type of firewalls
usually operates two layers higher than a packet-filtering firewall does. It determines
if the requested session is legitimate or not by checking the SYN flags, ACK flags,
and the sequence numbers are involved in the TCP handshaking or not. The issue
with circuit-level proxy is that it has no understanding of the application protocols
they support. They cannot scan application data for dangerous commands or

executable contents.

1.2.2 Application-level firewall

Application-level proxy operates at the application layer of the firewall. An
application-level runs a proxy server for each application that it supports. The proxy
request on behalf of the user to the destination host. Proxy server has some
understanding of the application it is supporting and can be configured to reject

malicious content packets. Application level firewall are not easy to scale.

1.2.3 Packet filtering firewall

Packet filtering firewall operates at the network layer and is the simplest type of
firewall. Since, the firewall operates at the network layer so it has no idea of the
content of the packets like the other type of firewall mentioned above. The packet

filtering firewall works on the concept of policies. The policies use the information —

4

source port, destination port, source ip, destination ip, and protocol — to filter

malicious traffic from the network.

Security is provided by comparing the packets against the list of the firewall rules
and deciding whether to allow or deny the packets based on the action defined in the
matched rule. Packet filtering firewall is widely used as a first line of defense in any

enterprise. There are numerous reason for it (Cheswick, 2003) (Oppliger, 1998)

e Faster than other firewall technologies

e It is a low-cost technology. Many commercial routers have the packet
filtering capabilities in it. There is various free open-source packet filtering

firewall available.

e Itis normally transparent to applications and users.

1.3 Firewall Policy

The packet filter firewall is usually specified by a set of rules. The rules are a simple
if-then-else structure with each rule defining the action that should be taken, if any
packet matches. A set of rules in the firewall is known as access control list, policy
list or rules (Ballew, 1997). The firewall traverses the rules sequentially to find the

matching rule for any given packet.

Defining the firewall policy is simple for any user but it has its own disadvantages if
they are not defined properly. The order of how the rules are inserted and represented
in the firewall is of high importance which can affect the overall performance of the
firewall. For this reason, the packet filtering implementation represents the list of

policies in the firewall in a linear fashion. The decision making process called lookup

5

goes through each rule one at a time in a linear fashion and decided whether the
packet should be accepted or rejected until a matching rule is found. The time taken

to perform the lookup is clearly proportional to the number of rules in the firewall.

1.4 Problem Statement

The main aim of this research is to propose a new representation technique called
Static Shuffling Binary Decision Diagram or SSBDD for the access list of the
firewall. The reason to propose a new representation technique is because the
firewall rules are consulted more frequently and they are modified less frequently.
There are many representation techniques for the firewall policies which are
discussed briefly in the Related Work Section but for this research, Binary Decision
Diagram or BDD is chosen as the base for the representation of the access list.
SSBDD is a modified version of the regular BDD. Using BDD as the representation
technique has its own advantages such as: -

e Each of the rule in the firewall is simply a logical expression that is based on
the values in the rule. If any packet satisfies the condition in the rule, then the
packet is either accepted or rejected based on the action in the rule.

e The entire firewall access list is represented as a single Boolean expression
that describes (Gupta, 2001) (Trabelsi, 2014) what condition each packet
must meet. BDD is a very well-known data structure for storing and
manipulating Boolean expressions compactly and efficiently.

This research addresses the following question:
How to perform an early packet rejection using Binary Decision Diagram as its data

structure?

Chapter 2: Related Work

Packet filtering consists into performing a sequential lookup for each network packet
against the rule list until a matching rule is found. Due to the sequential lookup
nature of the firewall, the performance of the firewall will degrade over the time if
the size of the rule list of the firewall increases. Different approaches have been
proposed to improve firewall performance, using mainly, specialized data structure
(Srinivasan, 1999) or heuristics solutions (Gupta, 2001).

The idea of firewall optimization using data mining is discussed in (Trabelsi, 2014).
The proposed technique uses classifier for packet filtering. At first, the technique
tries to get the matching classifiers. If it is unable to get any classifier, then it will use
the firewalls sequential lookup to find the matching rule.

Another approach is discussed in (Boutaba, 2009), which uses BDD to generate a
relaxed version of the firewall rules that can be evaluated more quickly. After
processing a packet, the proposed technique will conclude to one of the three
following options: accept, reject, or more filtering is required. In case of more
filtering, the original policy will be used to look for a matching rule in the list, if any.
In (Zeidan, 2012), Splay Tree based technique (Statistical Splay Filtering with
Binary Search on Prefix Length) is used to improve the firewall performance. The
optimization technique allowed the firewall to perform an early packet rejection

through multilevel filtering process including field and intersection filtering modules.

Chapter 3: Using Binary Decision Diagram for Packet Filtering

The original idea of BDD packet filter was developed by (Hazelhurst, 1998) (Bryant,
1992). BDD provides a powerful and flexible way to represent the policies of the
firewall. Each policy of the firewall can be represented using BDD via a simple
Boolean expression. Boolean expression is simply consisting of a number of
predicates, where each predicate shows what path to follow in the BDD.

Since, in BDD each policy of the firewall is represented as a Boolean expression and
as the number of policy increases the size of the BDD will increase as well.
However, BDDs are well-known for its compact representation of Boolean
expression. So using BDD as a packet filtering approach can provide an advantage in
terms of performance, which is the most important factor for any firewall. This

chapter is devoted to describing the BDD approach to packet filtering in detail.

3.1 Binary Decision Diagram

Binary Decision Diagram represent Boolean functions as rooted, directed acyclic
graphs (Bryant, 1992). In a non-technical term, a BDD can look like a decision tree,
as shown in Figure. 1. Each non-terminal node in a BDD represents a value to a
particular variable, and each non-terminal node has two children representing the
possible value for the non-terminal node (0 or 1). The dashed edge corresponds to
the case where the variable is assigned 0 and the solid edge corresponds to the case
where the variable is assigned 1. A BDD has two terminal nodes which are Boolean

constants and has a value of 0 and 1.

»a e

"
<—

v
Figure 1: Binary Decision Diagram

3.2 Ordering and Reducing

The issue with BDD representation is, as the number of policy increases in the
firewall the size of the BDD also increases as it will increase the Boolean
expressions. To overcome this problem, (Bryant, 1992) introduced the concept of
reduced, ordered binary decision diagrams (ROBDDs) that potentially provide a
much more compact representation for many Boolean expressions. ROBDDs are
basically a compact version of a BDDs due to the following restrictions on it

(Bryant, 1992).

e The variables of a ROBDD must obey a total ordering, so that for any vertex
labelled u and any of its children labelled v, u appears before v along any path
from the root of the graph to a leaf.

e A ROBDD may not contain duplicate terminals. This leaves a ROBDD with
a two terminal vertices (one labelled 0 and the other labelled 1).

e A ROBDD may not contain duplicate non-terminals. Duplicate non-terminals
are those that represent the same variable where the corresponding branches

lead to the same place.

10

e A ROBDD may not contain redundant tests. If, at a particular vertex in the
graph, both possible values lead to the same place, then this test is

unnecessary.

These restrictions result in ROBDDs possessing some useful properties. Firstly, they
provide compact representations of Boolean functions. Although in the worst case,
their graph size can be exponentials in the number of variables, many non-trivial
Boolean functions have a polynomial size ROBDD (Bryant, 1992). Since ROBDDs
offers so many advantages over unrestricted BDDs, most applications that use BDDs
actually use ROBDDs, so it is very common to simple refer ROBDDs as BDDs

(Andersen, 1997).

3.3 The Variable Ordering Effect

The variable ordering chosen for a BDD has a strong impact on its shape and size
(Bryant, 1992). If the variable order is not chosen correctly, then it can make the
BDD for the same Boolean function from a linearly sized to an exponentially sized

BDD as show in Figure 2.

11
) |:. X ,'JI
po. .
(Y1) 27) X
.Il .7 1| ’ ’
p L I| - o * . « .
/ \ " A 4 h! k'
.\‘chj\] ". (x{j. (x 3) | x?} ‘x 3
! \ y.? j I|I J' _J' J' ‘;
f K \t \
'y \ | 4
|\ P \\ I'| f
< xj\ \\ II'
. \.\ |II
i \ |
i g \ |
! LA yj)

Figure 2: Two BDDs for the function x1yl V x2y2 V ... V xnyn for n=3

For a function that cannot be represented in a compact format, it is best to choose an

optimal variable ordering for it. However, finding an optimal variable ordering for a
BDD is a NP-complete problem (Bollig, 1996). As a result, variable order are often

chosen manually or using some heuristics.

3.4 Binary Decision Diagram Packet Filter

In a BDD as a packet filter, a BDD is used to represent the firewall’s entire policy
list, and the same BDD is then used to perform lookup on the incoming packets. The
representation of the BDD is stored in the memory and whenever a new policy is
added to the list the BDD is then regenerated again. The BDD is a representation of
the Boolean expression that describes exactly what packets must be accepted or
rejected. In simple words, all paths through the BDD that lead to the terminal

labelled 1 represent the types of packets that are accepted, and the opposite is true for

12

all paths leading to the terminal labelled 0. Each node or variable in the BDD refers

to a specific bit in the packet header.

3.4.1 Boolean Variables

To represent a firewall policy as a BDD it is important to know what variable in the
BDD refers to which field in the packet header, as each variable in the BDD
corresponds to a specific bit in the packet header itself. A BDD’s Boolean expression
will consist of multiple variable; in a normal case each policy is represented by at
least 104 Boolean variables. Below is the table that describes the variable naming

that will be used throughout this work.

Header Field Boolean Variables Total
Number
Source IP address s ipl..s ip32 32
Destination IP address | d ipl ... d ip32 32
Protocol type pl ... p8 8
Source port s pl...s pl6 16
Destination Port d pl...d pl6 16
Total 104

Table 1: The Boolean variable required for BDD representation

3.5 Example of Firewall Policy list conversion

The example below demonstrates how a firewall policy list can be converted into a
Boolean expression. The policy list to be used for the conversion process is shown in
the Table 2. This BDD has its protocol variables ordered first, followed by the
variables corresponding to destination information, followed by the variables
corresponding to the source information. The default policy of the firewall is to deny

all packets.

Rule | Proto | Source IP Source Destination | Destination Action
Port IP Port

13

1 TCP 172.21.1.89 | 9070 10.2.12.98 | 80 Permit

2 TCP 172.25.12.1 | 7788 81.23.1.87 | 443 Permit

Default Policy.

Table 2: Sample Firewall Policy List

Step 1: Defining the Boolean Variables
The following 5 fields - source address, destination address, source port, destination
port, and protocol — are used by the packet filter on the incoming packets. By
summing up all the field sizes of the header gives a total of 104 bits, so a total of 104
variables are required to represent the BDD of this access list. The variable naming

to be used for the BDD representation is shown in Table 1.

14

Step 2: Converting Individual Rules
This step involves in converting the give policy into a Boolean expression. This is
accomplished by forming a conjunction of each predicate. Let Ri denote the Boolean

representation of Rule I. To convert the first rule:

Let p = Protocol = TCP
=p8’ p7’ p6’ pS’ p4’ p3 p2 pl’

Lets_p = Source Port = 9070
=s pl6’ s pl5° s pld s pl3° s pl2° s pl1’ s plO s p9 s p8 s p7 s pb
s pS’s p4 s p3s p2s pl’

Let d_p = Destination Port = 80
=d pl6> d p15° d pl4> d p13° d pl12° d pl1° d pl0’ d p9’ d p8 d p7
dp6’dp5 dp4dp3dp2’dpl’

Lets ip = Source IP =172.21.1.89
= s 1p32 s ip31’ s ip30 s 1ip29’ s ip28 s ip27 s ip26’ s ip25° s ip24’

s 1p23° s ip22’ s ip21 s ip20° s_ip19 s ipl8’ s ipl7 s ipl6’ s ipl5° s ipl4’
s ipl3°s ipl2’s ipll’ s ipl0° s 1ip9 s ip8’ s ip7 s ip6’ s ipS s ip4 s ip3’
s ip2’ s ipl

Let d_ip = Destination IP = 10.2.12.98

=d ip32° d_ip31° d_ip30° d_ip29’ d_ip28 d_ip27’ d_ip26 d_ip25° d_ip24’
d ip23’ d ip22’° d ip21° d_ip20° d_ipl19’ d ipl18 d ipl7’ d_ipl6’ d ipl5’
d ipl4’d ipl3’ d ipl12 d_ipll d_ ipl0’ d_ip9” d ip8 d_ip7 d ip6 d_ip5’
d ip4’d ip3°d ip2 d_ipl’
ThenRl=pAs padpasipad.p
The expression is constructed similarly for the other rules.

Step 3: Combining all the rules
Using the steps shown above the expression can be generated for all the rules in the
same way and once it is done, the next step is generating a single expression for all
the rules. The expression is generated as follows:

Final expression = (R1 v R2)

The final expression says that the incoming packets are either accepted by Rule R1

or Rule R2.

15

3.6 Performing a Lookup

In a linear or classic BDD, once generated, performing a lookup on the given
incoming packet is simply a comparison. The comparison starts from the top node or
root node of the BDD and continues till it reaches a terminal node either 0 or 1. In
case if it reaches terminal node 0, then the given packet is rejected. However, if it
reaches the terminal node 1, then the given packet is accepted.

Figure 3 shows how a regular BDD performs a lookup upon receiving an incoming
packet. In this paper, this search will be referred as Field-wise search since it checks

one entire field at a time.

Source IP . (’ 192.168.33.24;? Rule #1
*192.168.22.8QA Rule #2

sourcePort ¢

Destination IP_ 92.168.32.125 "\Rule #1
0.11.43.21 _#Rule #2

Destination Port '@m
\443_f Rule #2
Protocol . (”I'CP‘\ Rule #1
TCP Rule #2

_J Rule

Figure 3: BDD Lookup

3.7 Issues Field-wise lookup

Field-wise lookup gives acceptable performance when the ratio of the accepted traffic
is higher than the ratio of the rejected traffic. But, if the ratio of accepted traffic is
very less, compared to the rejected traffic’s ratio, the field-wise search performance
will degrade. This is because in attacks, like DoS, the traffic usually gets rejected at

the bottom rules of the firewall.

16

To understand the issues of field-wise BDD lookup, let’s take an example of two

filtering rules with a protocol field, as shown in Table 3, whose BDD is shown in

Figure 4.

Protocol | Decimal | Binary

TCP 6 0110 0000

ICMP 1 1000 0000
Table 3: Rules

’

R0

Figure 4: BDD Tree of Table 3

Considering DoS — it mainly targets the firewall by sending malicious traffic

targeting the bottom rules of the firewall — the higher the rejection ratio the more

likely the BDD performance is going to degrade. This is due to the fact, the entire

BDD will be traversed to reach the final decision.

The issue of the Field-wise lookup can be solved by simply shuffling the field-order.

For example, instead of checking the IP fields of the packet, it’s much better to check

the protocol field of the incoming packets. As the field-size is of 8-bit, and a high

17

amount of packet rejection occurs at this field. This solution won’t help the firewall
to maintain it’s performance for a long period. The traffic received by the firewall

are random in nature, so relying on one field for early rejection won’t work.

The solution is interesting but in-order to maintain the performance, the firewall
needs more information, but not about the firewall rules, it needs information about
the traffic. The traffic always gives you more information about why and how the
firewall is not performing well. The type of characteristics that can help the BDD to
perform well, are the high rejection nodes. Rejection nodes are the nodes in the
firewall, that keeps track of all the nodes in the BDD tree that has the highest number
of rejection. This rejection could be either due incoming packet not matching any
specific field in the firewall or incoming packet not matching any rules at all in the

firewall.

In a linear-based BDD, the rejection nodes won’t be of much use, as the BDD is
generated only once, the regeneration only happens when a new rule is either added
or deleted from the firewall. To overcome this problem, two new approach is
proposed and explained in detail in the following section. The approach is basically
based on using the traffic characteristics of the firewall and then generating a new

BDD from time-to-time.

18
Chapter 4: Static Shuffling Binary Decision Diagram (SSBDD)

In this chapter a new method is proposed and it is called Static Shuffling Binary
Decision Diagram or SSBDD. SSBDD is an improvement over a regular Binary
Decision Diagram Packet Filter. The proposed method improves the performance of
the firewall specially when the traffic it is receiving has a high rate of rejection

packets. SSBDD uses the BDD as its base.

It also adds two more properties on top of regular BDD to improve the performance;
the Field Ordering and the Split size as shown in Figure 5, both of them will be
discussed extensively in the coming chapters. Together with these two properties an
efficient and optimized BDD is generated. The name Static Shuffling comes from the
idea of the way it generates and parse the packet headers; instead of following the
traditional way of reading the entire field, it reads n bits from each field. One of the
advantage of this method, it is not affected by the dependency of rules in the firewall

because it relies on traffic log instead of rule analysis

There have been various studies conducted on the improvement of the firewall’s
packet filter. Most of the research focused on the rule analysis of the firewall or
rejection traffic of the firewall. In our case, SSBDD is focused on rejection traffic
because in any BDD, the acceptance traffic will always traverse the entire BDD,

which is not the case in rejection traffic.

19

Field ordering & ~ _

Figure 5: SSBDD Architecture

4.1 Split Size

Split size in the context of BDD defines how many bits the BDD should traverse in
each field before moving on to the next field. In the previous chapter, the importance
of the traffic characteristics was discussed. For e.g. the Protocol Distribution section
showed that checking 4 bits of protocol field will give the result more quickly than
checking the 8 bits of the field. Split size property is defined at the beginning of the
BDD generation. It is not only used at the parsing phase but it also used during the
policy representation phase of the BDD. The use of the split size in the two different
context of BDD is explained in the coming sections. The only downside of the split
size, is it cannot be an odd number and the value cannot be more than 8, this is not

due to a performance issue but it is merely due to programming limitations.

The idea of split size is not the first time it is used in firewall packet filtering; the
same technique is described (Boutaba, 2009). There’s no need for the BDD packet
filter to go through an entire field before moving on the next field. Separating them
into a non-contiguous block can be useful too. For example, the protocol numbers

might be best represented if it’s bits be mapped from P0-P4 then P5-P8. So instead of

20
checking the entire 8 bits’ fields from P0-P8, it is a good idea to check the first 4 bits

and then the rest of the bits later.

4.1.1 Policy Representation Phase

Choosing the right split size for the BDD generation is as same as choosing a right
variable ordering for a BDD, which is an NP-complete problem. But based on the
analysis, it is possible to decide the split size to be used for the BDD. For e.g. based
on the Protocol Distribution section, it is shown that high number of traffic were
related to the TCP protocol. The split size can then be changed easily by analyzing
the traffic characteristics but it can only be changed once during the BDD generation

phase.

For example, assume having a simple packet header that consist of only source and
destination fields each is just 4-bits long with all the rule’s decision is Allow. Table 4
shows the demo packet header converted into Binary equivalent. Assuming the split

size is set to 2. The Fig 6 shows how the Rule 1 will be represented.

Rule # | Source Destination
R1 1011 1100
R2 1001 1110
R3 1010 1101

Table 4: A Sample Policy List

The left figure in Figure 6 shows the BDD representation of the firewall when the
split size is considered and the figure on the right in Figure 6 shows the BDD

representation of the firewall when the split size is not considered.

21

.

Figure 6: BDD Representation

4.1.2 Packet Filtering Phase

In the BDD packet filtering phase the split size defines the number of bits that must
be checked by the packet filter before moving on to the next field in the firewall. So
instead of considering the entire field of the firewall as one contiguous block, it is
better to consider them as a non-contiguous block. For e.g. if a split size of 8 is

chosen then the bits of the fields will be represented as shown in Table 5.

22

Field Proto Source IP Destination IP | Source
Field bits (0,7) 0,7) 0,7 Port
BDD variable | 0,7 8,15 16, 23 0,7)
24, 31
Destination Source IP Destination IP | Source
Port (8,16) (8,16) Port
(0,7) 40, 47 48, 55 (8,16)
32,39 56,63
Destination Source IP Destination IP | Source IP
Port (16,24) (16, 24) (24, 32)
(8,16) 72,79 80, 87 88, 95
64, 71
Destination IP
(24, 32)
96, 103

Table 5: Variable Ordering

4.2 Field Ordering

Majority of the packet filtering devices like firewalls do not give specific
consideration for optimizing packet rejection. If a packet does not match any of the
rules in the policy, then it is discarded because the default rule (last rule) is assumed
to be deny (Hamed, Discovery of policy anomalies in distributed firewalls, 2004). It
is highly crucial for any firewall to implement a successful packet filtering.
However, most of the packet filtering research done by authors focuses on exploiting
the characteristics of filtering rules and ignores to consider the traffic behavior as

another factor for optimization (Al-Shaer, 2006) schemes.

Optimization of the firewall packet filtering can be done at various stages during
packet filtering process. Since, our work focuses only on BDD, so only the
optimization technique related to BDD is discussed in this research. One of the most
important optimization technique is field order, field order plays a very important

role in the firewall. During network attacks such as DOS, the traffic is created in

23

such a way, that packets will always get rejected by the bottom rules or the last field
of the bottom rules. If the fields are ordered in an optimal way, then the chance of
packets being rejected at early stage increases which will then improve the
performance of the firewall. But in a traditional firewall packet filter, the field order

is fixed, which causes the performance to degrade during such network attacks.

As the networking speed increases, it is very important for the firewall to improve its
packet filtering performance. Time is an important factor when considering the
performance of the packet filter. To improve the performance, it is much more
important to focus on the rejection packets of the firewall because if the rejection
packets are rejected by the deny-all rule then it can cause more harm to the

performance. Thus, it is more important to focus on early packet rejection.

There is an extensive amount of research work done on packet classification. The
basic approach is to search the rules sequentially till a match is found. This approach
Is not time efficient because as the rule list increases the search time increases as
well. So the performance of the basic approach is proportional to the length of the
rule list in the firewall. Research on improving the search time for packet filtering
uses one or more of the following approach: hardware-based solutions, specialized

data structures, geometric algorithms, and heuristics (Al-Shaer, 2006).

Our study of the network traffic collected from (CADA, n.d.) shows that the major
portion of the traffic flows gets rejected at a field in the firewall rules. It is also
observed that this distribution is likely to stay for a time interval, if this distribution
property is considered then it is highly likely that it can improve the performance of
the packet filter. Therefore, a new method is proposed in this research, that uses the

field distribution as one of the factor to improve the performance of the packet filter.

24
The proposed method called, Static Shuffling BDD [SSBDD] uses a typical Binary

Decision Diagram as its base. The tree is mainly focused to reject the traffic as early
as possible because a rejected packet might traverse long decision path of rule
matching before getting rejected by the default-to-deny rule in the firewall. As the
number of rejection packets increases the performance degrades as it causes
significant overhead on the firewall. The implementation of SSBDD does not require

any sort of special support from the firewall.

The SSBDD relies on field ordering for its optimization. Early rejection is possible in
firewall if the field order is chosen efficiently. But choosing an optimal field order is
an NP complete problem as the traffic is always random in nature. Predicting the
type of traffic is not possible but a few assumptions can be made for any traffic based

on the traffic characteristics.

4.2.1 Field Count Distribution

Another study conducted on the traffics to see the distribution of field counts. This
study provides much more detailed overview into at which bit or node level of the
field the packet got rejected. This data at first seems not useful but when collected
from time to time can provide an overview into which fields is more important and
can help to prioritize one field over other. It can also provide information to BDD,
whether the BDD should start reading the packet headers from MSB to LSB or the

other way around.

For e.g. given any network traffic that is received from the router to the firewall, it is
safe to assume that all the traffic reaching the firewall will belong to the network.
Since, the organization has LAN network, so they’ll be having Private Address

space. In that case, it is always best to start the search from MSB to LSB instead of

25
LSB to MSB. So it is suggested that depending on the traffic specifications the less

important fields should be checked later in order to speed up the performance of the

packet filter.

4.2.2 Rule Reordering vs Field Reordering

Rule reordering is the most focused area in the field of packet filtering. There has
been various research work done on it. Based on the analysis shown above in Rule
hit distribution, it is visible that reordering of the rule can have an impact on the
packet filtering performance. But the success of rule reordering is mainly dependent
on the how interconnected the rules are in the firewall rule list. If the majority of the

rules are dependent, then rule reordering will not improve the firewall performance.

On the other hand, field reordering seems like a good alternate solution. The main
advantage of field reordering, it is not affected by the rule dependency. Because the
field ordering happens at the search time. If given enough information about the
traffic log, then an optimal field reordering can be achieved which can improve the

performance of the firewall overall.

26

Chapter 5: Implementation
In this chapter we will discuss about the implementation part of our proposed
method. The implementation is applied once during the packet generation phase and
then during the packet filtering phase, both of them are explained in detail. At last we

check out the lookup comparison between the two of them.

5.1 Policy Representation using SSBDD

To generate an SSBDD for a given set of firewall rules, it has to go through 4 stages
which starts from the taking the rule set as an input and onto the final stage that
converts the rules into the final SSBDD. The chart below gives you the overview of

what happens at each and every stage of the SSBDD generation.

SSBDD
y)
Binary to I generation

Rules to Formula

Binary format
Input the
. format
Firewall
Rules

The final SSBDD which is generated is in a graphical format i.e. DOT format, the
DOT format is only the user but the generation of the DOT format file is disabled as
it increases the CPU processing time. The another format which is generated is a

tuple set for each node in the BDD, this format is used for the parsing.

5.1.1 Input the Firewall Rules
The input file used by the program which contains the rule set or the traffic is in CSV
format. The packets were collected from CAIDA. The metadata contains more

information than it is needed so only the necessary information is collected from the

27

file; source ip, source port, destination ip, destination port, and protocol. The format
of the file for both the traffic and the firewall rule set is given below.

<ip.proto,ip.len,ip.src,ip.dst,tcp.srcport,tcp.dstport,tcp.flags,udp.srcport,udp.dstport,
icmp.type,icmp.code>

with open(ruleFile, "rb") as csvfile:

pkt_reader = csv.reader(csvfile)
del dyn_order_var[:] # Resetting the dyn_order_var now ...

read_config_file()
for pkts in pkt_reader:

newpPkt = {}
for order in ruleConf.order:
iforder =="p':
newPkt['p'] = pkts[field_pos['p']]
elif order =="'s_ip":
newPkt['s_ip'] = pkts[field_pos['s_ip']]
eliforder=="s_p'
newPkt['s_p'l = pkts[field_pos['s_p'l]
elif order =='d_ip':
newPkt['d_ip'] = pkts[field_pos['d_ip']]
eliforder =="'d_p":
newPkt['d p'] = pkts[field _pos['d p']]

ruleListBin.append(dyn_ruleFormula(ruleToBin(newPkt)))

The above is the algorithm for reading the rules from the CSV file is given below.
The file is opened in a reading mode and the code goes through the file line-by-line
as each line contains one firewall rule in it. For every firewall rule that is read from
the file is converted into first binary equivalent and then it is converted into the
formula format. Once the above code is executed, the code will have the entire rule

set converted into the formula format which is then written to the CSV file.

28

5.1.2 Rule to Binary Format

In order for the BDD to be generated the values must be in binary format, so it is
necessary to convert each and every rule or packet header into the equivalent binary
format. The discussion on Binary conversion is also discussed in more detail in the
Chapter BDD. This step is basically a conversion of the decimal values to the binary

format. The algorithm for the binary conversion is shown below.

def ruleToBin(pktRule):
Takes the entire rule and then
convert the rule into a binary
format given below
[src-ip] = 00011100

mmn

ruleBin = {}
for key, value in pktRule.iteritems():

ifint(key =="s_ip") | int(key == "d_ip"):
tmp = value.split(".')
ruleBin[key] = ""
for xin tmp:
ruleBin[key] += padding(((bin(int(x))).replace('b’")), 8)

elif int(key =="s_p") | int(key =="d_p"):
if len(value) > 0:
ruleBin[key] = (padding(((bin(int(value))).replace('b’,")),16))
else:
print "\tEither the Source or Destination Port is not given, skipping
this rule ..."
return False

elif key == "p":
if (value.isdigit()):
ruleBin[key] = padding(((bin(int(value))).replace('b’,")[::-1]),8)
else:
ruleBin[key] = padding(((bin(protocol[value])).replace('b’,")[::-1]),8)

return ruleBin

29

A. Binary to Formula Format
This is an important stage in the SSBDD generation process, once the rules are
converted into its binary equivalent the next stage is to convert the rule into a
formula format. The formula format shows what does each and every node in the
BDD contains. Below is the algorithm that shows how the binary equivalent rules

are converted into the formula format.

def dyn_ruleFormula(ruleBin):
Convert the Binary rule format into a formula

s_ip_len =33
d_ip_len =33
s p len=17
dp len=17
p_len=9

s_ip_tracker =1
d_ip_tracker =1
s _p tracker=1

d_p tracker=1

p_tracker =1

tmp_s_ip = {}
tmp_d_ip = {}
tmp_s_p = {}

tmp_d_p ={}
tmp_p = {}

forjinruleBin['s_ip']:
ifs_ip_len I=s_ip_tracker:
tmp_s_ip['s_ip'+str(s_ip_tracker)] = j
s_ip_tracker +=1

for kin ruleBin['d_ip']:
ifd_ip_len !=d _ip_tracker:
tmp_d_ip['d_ip'+str(d_ip_tracker)] = k
d_ip_tracker += 1

for min ruleBin['d_p']:
ifd p len!=d p tracker:
tmp_d_p['d_p'+str(d_p_tracker)] =m
d_p_tracker += 1

fornin ruleBin['p']:
if p_len I= p_tracker:
tmp_p['p'+str(p_tracker)] = n
p_tracker +=1

s_ip_tracker =1
d_ip_tracker =1
S_p_tracker =1

d_p tracker =1

p_tracker =1

ruleFormula = collections.OrderedDict()

for tmp in dyn_order _var:
tmp_field = tmp['og']
if tmp['field_name'] =="'s_ip":
ruleFormula[tmp_field] =tmp_s_ip[tmp_field]
elif tmp['field_name']l =='d_ip":
ruleFormula[tmp_field] =tmp_d_ip[tmp_field]
elif tmp['field_ name'l =="'s p":
ruleFormula[tmp_field] =tmp_s_p[tmp_field]
elif tmp['field_name']l =='d_p':
ruleFormula[tmp_field] =tmp_d_p[tmp_field]
elif tmp['field_name'] =="'p":
ruleFormula[tmp_field] = tmp_p[tmp_field]

return ruleFormula

5.1.3 SSBDD Generation

30

The final phase of the SSBDD generation is simple writing the formula generated

above into a formula file. This formula file is then used to generate the graphical

BDD, which is disabled in this stage as it increases the CPU processing time. Below

is an example f what exactly does the formula file contains.

31

Let p = Protocol = TCP
= (P1 & P2 &Ps &Ps &Ps & -Ps & -P7 &Ps)

The above example shows how the binary equivalent of the TCP protocol will be

written in the formula file in the end.

5.2 SSBDD Packet Filtering

Packet filtering is the next stage of SSBDD, at this stage the packet is received by the
packet filter which is then used to traverse the SSBDD to determine whether or not
to accept or reject the packet. The step-by-step flow diagram is given below; it is
same as the one described in the SSBDD generation phase. The only difference is in
the last stage, instead of generating the BDD it will traverse the BDD. The final stage
is merely a comparison stage where each node value is compared to see if it matches

or not. The earlier stages of the SSBDD Packet Filter has been explained before.

Find
y)
Binary to matching
rule
Formula
Rules to
Binary format
Input the
) format
Firewall
Rules

Below is the implementation of SSBDD traversal that traverses the SSBDD tree once

it receives a packet.

def pktMatcher(pktBin, ruleBDD):

global nextNode

global matchHit

global tmpRuleBDD
tmpRuleBDD = ruleBDD

tmp_h_table = {}

for data in ruleBDD['h_table'].items():
tmp_h_table[data[1]] = data[0]

for pktData in pktBin.items():
if str(nextNode) =="1":
log_data = "\tPacket has been accepted now ... and the hit count is
"+str(matchHit) + "\n"
writeLog(log_data)
matchHit =0
return

elif str(nextNode) !="-1":
if (db._get_var_name(ruleBDD, nextNode)) == pktData[0]:

if str(pktData[1]) == "0":
indice = int(pktData[1])+1

elif str(pktData[1]) == "1":
indice =2

if not is_matching(tmp_h_table[nextNode][indice]):
return
else:
nextNode = nextNode - 1
while True:
if (db._get_var_name(ruleBDD, nextNode)) == pktData[0]:
break;
else:
nextNode = nextNode - 1

if str(pktData[1]) == "0":
indice = int(pktData[1])+1

elif str(pktData[1]) == "1":
indice =2

32

if not is_matching(tmp_h_table[nextNode][indice]):
return

elif str(nextNode) =="-1":
nextNode = len(tmp_h_table)+1
if (db._get_var_name(ruleBDD, nextNode)) == pktData[0]:

if str(pktData[1]) == "0":
indice = int(pktData[1])+1

elif str(pktData[1]) == "1":
indice =2

if not is_matching(tmp_h_table[nextNode][indice]):
return
else:
nextNode = nextNode - 1
while True:

break;
else:
nextNode = nextNode - 1
if str(pktData[1]) == "0":
indice = int(pktData[1])+1
elif str(pktData[1]) == "1":
indice =2
if not is_matching(tmp_h_table[nextNode][indice]):
return

if (db._get_var_name(ruleBDD, nextNode)) == pktData[0]:

5.3 BDD Packet Filter vs SSBDD Packet Filter

33

The explanation of SSBDD generation and traversal is done in the previous section

in detail. To see the practical approach of SSBDD, a single rule is provided to both

the BDD’s — BDD packet filter and SSBDD packet filter. This provides a clear

overview of how the packet filter works at the filtering level. Since the BDD requires

the rule to be converted into binary format so the binary equivalent of the rule is

written instead of it’s decimal format. The Table 6 contains the Binary equivalent of

the rule.

34

Protocol 0000 0110

Source IP 11000000 10101000 00100001 11110111
Destination IP 11000000 10101000 00100000 01111101
Source Port 00000100 00011010

Destination Port 00001101 00111101

Table 6: Binary equivalent of a rule

5.3.1 BDD Packet Filter

In a regular BDD packet filter, the traversal is done by going from one field to the
another field like a regular firewall. Below is a single packet converted into its binary
equivalent. Once converted it starts from the first field and takes the entire field and
starts the traversal. In a regular BDD packet filter, the field order is fixed so they
cannot be changed. This is the limitation of this BDD because several traffic can be
rejected earlier or may be some bits are not needed to be checked in order to get the

decision.

Protocol 0000 0110

Source IP 11000000 10101000 00100001 11110111

Destination IP 11000000 10101000 00100000 01111101

Source Port 00000100 00011010

Destination Port 00001101 00111101

Figure 7: BDD Packet Filter

35

5.3.2 SSBDD Packet Filter

In SSBDD filter since the field order can be changed based on the traffic analysis
which shows what fields are more important than the other. Another important factor
which was discussed in detail in Chapter Split Size, deciding how many bits to check
from each field before moving on to the another field.

Since at the beginning there’s no traffic log to analyze so SSBDD will go with a
default option of setting the property to the following values

<field order = protocol, source ip, destination ip, source port, destination port>
<split size = 8>

Protocol 0000 0110

2 3 4

Source IP 11000000|10101000/00100001j11110111

Destination IP 11000000(10101000/00100000/01111101

Source Port 00000100(00011010

Destination Port | 00001101|00111101
1

Figure 8: SSBDD Packet Filter

In Figure 8 it is visible that instead of checking the entire field at a time, SSBDD
takes 8 bits from each field and then goes to another field. The advantage here over
the BDD packet filter is the necessary bits are not checked at the first stage instead
they are delayed for the next stage. This gives a performance improvement to
SSBDD which can be very useful when there’s a high amount of rejection traffic.

An interesting question about the BDD approach is with regard to how robust the

BDDs are to the access list rule structure. Techniques such as RFC, cross-production

36

and the tuple space search rely heavily on structured access lists for good
performance — some even become unusable in extreme conditions. This question is

tackled in Chapter 6 once the experimental evidence has been presented.

37
Chapter 6: Analytical Discussion of the SSBDD

The previous chapter provides a framework for the construction of SSBDD,
representations of access lists and using them to perform lookup in packet filters.
This chapter presents an analytical discussion into SSBDD approach to packet
filtering. The main reason behind this chapter is to discuss the computing aspects of
the SSBDD packet filter and get an overview of the lookup time.

The discussion begins into what SSBDD representations of access lists look like and
what determines the structure of these SSBDDs, since the shape and size of a
SSBDD directly affects its time and space performance. Then the discussion goes
into the bounds for, as well as factors affecting, the lookup time of the BDD packet

filter, while the next section discusses factors affecting memory usage.

6.1 SSBDD Representation of Access List

The SSBDD representation of an access list is a regular BDD and it describes at a
lowest level of what packets are accepted or rejected by the packet filter. SSBDD
contains two nodes 1 or 0 which are the terminal nodes, where 1 means the packet is
Accepted and 0 means the packet is Rejected. Every node in the SSBDD refers to a
particular bit in the packet header. Reaching to the terminal node 0 — rejection node —
has more than one path and the same applies to the acceptance traffic as well, so
these complete set of paths for rejection and acceptance is the entire search space of
the SSBDD.

To understand the concept of the access list in SSBDD let’s consider a demo access
list shown below in Table 7. This list accepts only TCP and UDP type traffic and
from the certain IP address as mentioned in the access list itself. Although this is a
somewhat an unlikely access list in a real world scenario, it does share some

properties with real access lists which is important to understand the sections to be

38

discussed ahead. This access list is going to be used in the rest of this chapter to

explain the sections ahead.

Rule | Source Addr | Destination Addr | Source Destination | Protocol
Port Port

1 192.168.1.10 | 10.23.12.43.2 9000 80 TCP

2 172.16.2.12 80.75.45.3.12 10234 80 TCP

3 192.168.3.10 | 98.3.12.5 8769 878 UDP

Table 7: Sample Access List

There are many factors that can affect the structure of the SSBDD, not all the factors
can be controlled but there are few factors which can be controlled. Those factors
were discussed in detailed in the Chapter Packet filter optimization and Chapter Split
size. Field ordering is one factor that can improve the performance of the firewall’s
packet filtering. If the field order is chosen correctly, then it can improve the
performance of the packet filter. In a regular BDD based packet filter the field order
is fixed and cannot be changed so the factor of field ordering is not considered. The
shape and size of a BDD representing an access list are affected by various factors
such as the number of nodes, number of variables and BDD depth, which in turn
affects the performance of the SSBDD packet filter.

Of the factors affecting the structure of the BDD, some can be controlled and others
cannot. The two main factors involved are the access list itself and the variable
ordering of the BDD. The variable ordering of the BDD can be manipulated to
improve the performance of the packet filter, whereas the access list is generally
fixed. Variable orderings can also often be chosen to take advantage of the rule
structure in the access list. The next two sections discuss how these factors affect the

structure of the BDD.

39

6.1.1 The Effect of Rule Structure

SSBDD consist of number of variables and these variables are reference to the
packet header bits of the access list. This illustrates two points. Firstly, during the
SSBDD construction the variables that are not needed are automatically excluded in
the construction process. This optimization is very useful as it can affect the
performance of the SSBDD overall. Second point, the number of variable in SSBDD
is completely dependent on the complexity of the access list. The more specific the
rule is the more variables an SSBDD will need.

Common values in the field is also another factor that can affect the SSBDD of the
access list. Rule that share common values with another rule can often help the
SSBDD to generate less variable. For example, Rule # 1 and Rule # 2 shares the
same destination port i.e. 80, so during the SSBDD generation time both the rule will
share the variables but will have different exit points. This aggregation of similar
values greatly affects the size of the BDD, since the degree to which expression in
the BDD can be shared determines the number of nodes required for the BDD. In a
simple statement, the more data the rules share the less variables the SSBDD will

need.

6.1.2 The Effect of VVariable Ordering

The variable ordering chosen for the example has the source address first followed
by the source port then destination address then destination port and then protocol at
the end. During the lookup the source address will always be checked first but what
if the packet that is coming is not a TCP or a UDP protocol. Even though if the
addresses the packet will still have to go through the first field and then get rejected

at the end. If a different variable ordering is used — for example having the protocol

40

field appearing as the first testing for every packet, then the packet filter may be able
to reject packets early. Since the protocol has the smallest field size so less number
of bits will be checked.

Changing the field ordering does not change the semantics of the SSBDD for any
given access list as they are semantically equivalent. The only change in the SSBDD
will be its structure. The number of nodes, the path lengths, and the order in which
the variables appear from root node will be different.

Different field ordering will have a different affect on the overall SSBDD structure.
It is very common to see that on ordering can reduce the path lengths or vice versa.
The memory usage of SSBDD is completely dependent on how long is the SSBDD.
The bigger the SSBDD the more memory it will take which will in turn take more
time to traverse the SSBDD. So it is safe to make this assumption that different

variable ordering creates different space-time tradeoffs.

6.2 Performing Lookup on a SSBDD

The SSBDD algorithm starts from the first node — root node, checks the value and
follows the appropriate edge of the node. This process will continue until the the
terminal nodes is reached. If the the terminal node is 0 then the packet is rejected or
accepted if the terminal node is 1. So, the time taken by the SSBDD to reach a

specific decision is equivalent to the length of the path traversal the SSBDD follows.

6.2.1 Worst Case Analysis
The worst case in SSBDD occurs only when the SSBDD traverses the longest path to
reach the terminal node. In other words, it can be assumed that, the worst case occurs

when the SSBDD traverses most of the nodes in the SSBDD.

41

e The upper bound of the SSBDD structure defines how many nodes the
SSBDD will traverse in its worst case scenario. Since the variable needed to
create the SSBDD is based on the rule structure so the worst case scenario of
the SSBDD will never exceed the maximum number of nodes used in the
SSBDD.

e In the worst case scenario, the SSBDD is meant to traverse majority of the
nodes. But to represent any given rule in SSBDD it needs n variable. So the
SSBDD will never exceed more than n variable to reach a decision. The
lower bound of the SSBDD will always be either exactly the n variable

needed to represent the SSBDD or less than the n variable.

6.2.2 Best Case Analysis

The best case of the lookup algorithm depends on the variable ordering of the
SSBDD, so different SSBDD will lead into a different result. Best case in SSBDD
occurs only when the SSBDD choses the shortest path from the tree to reach a
terminal node. In majority of the SSBDD the best case can occur during the
matching of the protocol field since it requires maximum of 8 nodes.

It also worth noticing that the best case of SSBDD can also be reduced from 8 nodes
to 4 nodes comparison. For example, if taking the protocol field, it requires 8 bits to
represent in the SSBDD but the maximum number of protocol used in Internet traffic
is either TCP, UDP, or ICMP, which can be represented easily on SSBDD from the
first 4 bits. So the best case of the SSBDD can also be 4 nodes if the SSBDD
considers checking the first 4 bits first instead of checking all the 8 bits.

The best case scenario has little value because in real world it is unlikely to occur in

practice. If the firewall is receiving more accepted traffic, then the rejection traffic so

42

the best case scenario will not occur as the best case scenario usually means the

packet is getting rejected.

6.3 Memory Usage of SSBDD

The memory usage of SSBDD is based on the number of nodes that are needed to
represent the access list. As shown in the Section 1 (a) and 1 (b) discusses the factors
that can affect the overall structure of the SSBDD. The same factors are discussed in
detail as a separate chapter — Split Size and Field Ordering.

In real world, the access list usually has lots of similarity between rules, this is due to
the fact that the firewall is filtering between multiple networks internally. So with
this assumption, it can be said, that the possibility of rules sharing nodes in SSBDD
is very high which in the end can reduce the overall count of the nodes in the
SSBDD. For example, if the source address in the Rule #1 and Rule #3 shares the
same first two bytes which means the nodes will be shared for the first byte in the
SSBDD. These little factors can greatly contribute to the structure of the access list
in the SSBDD.

Predicting the number of nodes that the SSBDD will take is not possible as it is
shown earlier that it can vary based on the field ordering. But having the knowledge
of the access list can help to understand the right field order for the SSBDD in order

to create a better and compact structure.

43

Chapter 7: Architecture and Simulation

Experimental evaluation is the predominant technique used in this research for
evaluating the SSBDD packet filter and fulfilling the research objectives. Evaluation
is achieved by comparing the SSBDD packet filter to a packet filter that evaluates its
rules sequentially. Two sequential packet filters are used for comparison and details
regarding these are given later.

In order to achieve meaningful and generalizable results, it is important for the
experimental methodology to provide an experimental environment that is as realistic
as possible. This chapter is devoted to discussing how this is achieved, starting with
the overall experimental setup and then investigating its components separately.

First the implementation part of the system is discussed in detail with all of it’s
module involved in it. This is followed by an explanation of the simulation
environment, which discusses the technical specs of the system used to evaluate the
performance of both the BDDs. The next section discusses the Simulation Data that
is used by the system to evaluate the performance of the BDDs. At end the Timing

section will discuss how the performance is evaluated for the BDDs.

7.1 System Implementation

This section discusses the specifications of the packet filters in this research, as well
as some important factors affecting their design and implementation. It then presents

the implementations of the SSBDD and list-based or field-based packet filters.

7.1.1 Packet Filter Specification
The key requirement of the proposed packet filters used in this research is that they
be stateless, meaning that the decision of whether to accept or reject a packet is

based on each packet individually, independently from what happened in the past.

44

This forces each filter to invoke its lookup algorithm for every packet. The proposed

packet filters are not required to handle fragmented packets since fragmentation can

be resolved with caching, which is not the part of the research focus.

Furthermore, each packet filter must allow filtering of IP packets on the following

fields:

o Source and destination address(es): Single IP addresses are accepted the current
research work does not support the use of masking in the IP address.

o Source and destination port numbers: Single numbers only are accepted.

o Protocol type: This refers to the transport protocol type. Accepted values are
TCP, and UDP

If any field is omitted from a rule, it is skipped from and the packet filter moves to

the next packet. For example, if the protocol field is ICMP then the packet is not

considered since there won’t be any source and destination port number given for it.

Finally, each packet filter must support the two actions PERMIT and DENY.

7.2 Coding and Modules

The programming language used to implement the SSBDD packet filter is Python.
The code to implement the regular Binary Decision Diagram is already implemented
in [1]. The SSBDD’s coding work is basically an extension to the Tyler’s [1] work.
The regular BDD implementation shown in [1] is based on the research work

conducted in [2].

45

MatchRule.py

Figure 9: Modules of SSBDD implementation

Figure 9 shows the name of the 3 important modules for the SSBDD implementation.
The above are not the only modules of the system, there are many more modules
used behind the system but explaining that is not necessary. The main working of

these implementation are as follows:

7.2.1 RunMe.py
This is the main module of SSBDD. The simulation starts by executing this file
which then calls the rest of the other files. In order, to execute the module there are
certain prerequisite that should be met.
The following are the pre-requisite that is needed to execute the module RunMe.py

e The config.py file must be present, this file defines the two parameters

that were discussed in the earlier chapters — field ordering and split size.

46

e CSV file that contains all the rules needed for the given simulation. The
rules must be in CSV format and the structure of the rules should follow
the structure give below:

<ip.proto,ip.len,ip.src,ip.dst,tcp.srcport,tcp.dstport,tcp.flags,udp.srcport,udp.dstp
ort,icmp.type,icmp.code>

e CSV file that contains all the packets needed for the simulation. The
packets must be in CSV format again and also the structure must follow
the same structure as mentioned for the rule file.

This module at the end will provide the following outcome.

e Calling the other necessary modules to generate the BDD and SSBDD.

e Performing the packet filter.

e Displaying the CPU Performance Time for both the BDDs.

e Displaying the count of Accepted, Rejected, and Total Traffic received by

the packet filter.

7.2.2 Formula.py
In order to generate a BDD, the rules first must be converted into a Binary equivalent
and then the binary formatted rule is then converted into a Boolean expression or a
formula. All that conversion process is taken care by this module.
This module is not called independently, instead it is called by the RunMe.py
module, and it only asks for a file name that has the rules in it. The following are the
task that this module will perform in order to generate a single binary expression or a
formula which is then written into a file.

o Reading the CSV rule file line-by-line.

o Converting the rule into a binary format.

47

o Converting the binary formatted rule into a formula or boolean expression.

o Writing the generated formula into a file.

Once this module is executed, the program will generate a single binary expression
for the entire rule set given to it. And also, if the user asks, a graphical BDD and
SSBDD. The option of generating the graphical BDD and SSBDD is usually

disabled as it consumes lot of CPU Processing Time which is not necessary.

7.2.3 MatchRule.py
This is the final module and it is called when the BDD and SSBDD have been
generated for the provided rule set. It is not executed independently; it is called by

the RunMe.py module. The following are the pre-requisite of this module: -

e Needs the reference to the generated BDD and SSBDD for the given rule set.
e CSV file that contains all the packets needed for the simulation. The packets
must be in CSV format again and also the structure must follow the same

structure as mentioned for the rule file.

The outcome of this module is to go through each packet one at a time and then
perform a matching by traversing the BDD. At the end, the result of accepted and

rejected traffic is given to the main module.

7.3 Other coding modules

The above were the only coding modules that were implemented from the scratch.
There are other modules too that are called in the background in to generate the BDD
and SSBDD. The packet filtering or traversing BDD and SSBDD module is a part of

MatchRule.py which is explained in the previous section.

48

f£ v

PB

[Python [Python
Boolean binding to Lex
algebra and Yacc]
Library]

e

Figure 10: Other Coding Modules.

The above are the rest of the two modules which are implemented by Tyler’s, the
code is open-source and it can be downloaded from (Tyler). The two modules are
dependent on each other and with these two modules none of the above modules

would run.

7.4 Simulation Environment

In order to simulate real packet filtering scenarios, an Amazon Web Server was used
to run the system. Running the system on a regular machine takes days to execute
even with a lowest traffic volume. The simulation environment uses just one server
and the same server traverses the rules file first and converts it into a BDD and

SSBDD. Then the packet file is read and it is passed against the rule.

To evaluate the performance of the system, CPU Processing Time is considered and
it is started right when the rule is read by the system and stops when all the packets

have been parsed by it. The specification of the server on the AWS are as follows: -

49

Processor Type Intel Xeon E5-2666 v3 (Haswell processor)
Processor Speed | 2.9 GHz

CPU Count 2

RAM 3.75 GiB

Hard Disk Drive | 40 GB SSD

Table 8: Specification

7.5 Simulation Dataset
In this section we describe the data used in the experimental study. The data set used
in the experimental study is obtained from a CAIDA. The data provided by them

consist of around 17 million packet header information.

The demo of the packet header is shown below. Not all the data mentioned in the
dataset is used. For e.g. for the simulation purpose of our system only source ip,
destination ip, source port, destination port, and protocol field is used rest all the
other fields are skipped.

<ip.proto,ip.len,ip.src,ip.dst,tcp.srcport,tcp.dstport,tcp.flags,udp.srcport,udp.dstport,
icmp.type,icmp.code>

7.6 Simulation Framework

The framework used for the simulation purpose act like any regular firewall and
requires a set of rules and packets to process. The dataset that is been used for the
evaluation purpose does not contain any firewall rules. So randomly packets were
chosen from dataset and were used as a firewall rule. By default, all the firewall
rule’s action property was set to Allow. Since the packets whose rule exist in the
firewall and whose Actions is either Allow or Deny will traverse the entire BDD. But

the main focus of this research work is for early packet rejections.

50

The simulation performed on the system were different each time with a different set
of firewall rules, different amount of traffic, and mostly different set of acceptance vs
rejection ratio. Since, the research work is mostly focused on early rejection, so the

amount of traffic that were passed against the firewall rules had a high rejection

ratio.

Traffic

Firewall
Diile

Packet Filter

Figure 11: Simulation Framework Overview

Figure 11 gives an overview of what does the simulation framework contains. For
every simulation the three parameters as shown in the Figure 3 were changed. The

simulation was performed on both the BDD’s regular BDD and SSBDD.

51
Chapter 8: Statistics

This chapter covers the result of the experimental evaluation of the SSBDD packet
filter. In the experimental evaluation, the efficacy of the SSBDD approach to packet
filtering is evaluated in terms of lookup. For the experiments performed, two sets of
data were collected — Linear BDD and Static Shuffling BDD. The CPU Timing
functionality was implemented by inserting the code to keep track of the overall
execution time.

In each and every experiment different set of Acceptance and Rejection Ratio were
used, to see the performance of the SSBDD during different rejection ratio. This
provides a better randomness in terms of simulation and at the same time will
provide a better result to verify the performance of BDD vs SSBDD. Each
experiment has 4 sets of simulation in them, where each simulation is run twice —
once on BDD and another one on SSBDD. The statistics that are shown in the graphs

below are based on the CPU timing.

8.1 Simulation Results

This section shows the performance of the various simulations that was performed on
the BDD based packet filter and SSBDD based packet filter. Each simulation has
been performed 4 times for BDD and SSBDD based packet filter, where each
simulation has varying sets of traffic passed to it with a varying set of firewall rules

for it.

8.1.1 Experiment A

Acceptance Ratio = 10% & Rejection Ratio = 90%

100 rules
4000
3500
Gain 17.63%
3000
2500
2000 Gain 15.62%
1500
1000 Gain 19.78%
500 Gain 15.31% I I
, Hm
100,000 pkts 300,000 pkts 600,000 pkts 1 million pkts
M Linear BDD W Static Shuffling BDD
Figure 12: Experiment A Result
8.1.2 Experiment B

Acceptance Ratio = 5% & Rejection Ratio = 95%
100 rules
4000
3500
3000

2500

Gain 16.70%

Gain 15.90%
2000
1500

1000
500 Gain 17.3%
—

100,000 pkts 300,000 pkts 600,000 pkts 1 million pkts

Gain 15.60%

M Linear BDD m Static Shuffling BDD

Figure 13: Experiment B Result

52

8.1.3 Experiment C

Acceptance Ratio = 95% & Rejection Ratio = 5%

100 rules
4000
3500
Gain 15.54%
3000
2500
5000 Gain 13.59%
1500
1000 Gain 16.59%
500 Gain 16.9% I l
, Hm
100,000 pkts 300,000 pkts 600,000 pkts 1 million pkts
M Linear BDD m Static Shuffling BDD
Figure 14: Experiment C Result
8.1.4 Experiment D

Acceptance Ratio = 50% & Rejection Ratio = 50%

4000

3500

3000

2500

2000

1500

1000

500

100 rules

Gain 16.45%

Gain 16.47%

Gain 14.78%
Gain 14.2% ' l
I s

Figure 15: Experiment D Result

53

8.1.5 Experiment E

Acceptance Ratio = 70% & Rejection Ratio = 30%

100 rules

4000

3500
Gain 14.19%

3000

2500

Gain 16.95%

2000

1500

1000 Gain 14.59%
500 Gain 17.09% l I
, Hm

100,000 pkts 300,000 pkts 600,000 pkts 1 million pkts

M Linear BDD m Static Shuffling BDD

Figure 16: Experiment E Result

54

55

Chapter 9: Conclusion and Future Work

The contribution of this research was to find an efficient way to represent the access
filters of the packet filtering firewall. Packet filtering is the mechanism that is being
implemented in every hardware or software firewall. The issue with a traditional
packet filtering firewall, they perform rule matching sequentially. So, the latency
issued by this lookup process is equal to the size of the list.

The representation technique used in this research work is based on BDD. This
follows from the fact that BDDs is capable of providing a compact representation for
complex Boolean functions. The aim of this research was for two fold, in the first
fold, a new method was proposed to provide an efficient way to represent the access
list. The second fold was to evaluate the performance of the BDD in terms of their

lookup and also memory requirements.

9.1 Future Work

This section discusses the improvement areas of the SSBDD that can improve the
performance of it. These ideas, as well as others, are discussed in this section in
detail. Some ideas require more extensive research, while others are simple enough

to be implemented easily.

9.1.1 Variable Ordering and Reordering Prediction

Variable ordering is the major factor for performance improvement. Currently in this
research, SSBDD analyzes the access list to come up with a better variable ordering
at first, since there’s no traffic to analyze. Later on after several million packets the
SSBDD then uses the traffic characteristics to choose an optimal variable ordering.

Choosing good variable orderings for lookup is most effective when traffic is taken

56

into consideration, so an algorithm that can continuously monitor the traffic and
update the variable ordering instead of checking after every several million packets

would maximize the potential of SSBDD packet filter.

9.1.2 Updating the SSBDD

Any change in the split size or variable ordering or in the access list requires the
SSBDD to be regenerated again. SSBDD regeneration is a time consuming process,
but if the SSBDD is able to update itself incrementally then it can save a lot of CPU

processing time and improve the performance overall.

9.1.3 Considering more Parameters for Performance

As the scope of the thesis, CPU time was considered as a performance factor. But
more factors can be considered, such as — memory utilization, CPU utilization etc.
CPU utilization can give a better overview of the proposed method, in terms of how

much load it is putting on the CPU.

9.2 Conclusion

The aim of this research was to propose a new method for the purpose of
representing the access list of the firewall. This aim was achieved in two ways.
Firstly, the proposed method SSBDD was discussed in detail. Secondly, the
simulation was performed to prove that SSBDD performs efficiently. The advantages
of this approach extend beyond performance as it helps to understand other problems

with traditional packet filter.

57

References

Cheswick, W. R. (2003). Firewalls and Internet Security: Repelling the Wily Hacker
(2 ed.). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Nikolaidis, 1. (2000). Firewalls: a complete guide. IEEE Network , 14 (4), 6-6.

Ballew, S. M. (1997). Managing IP Networks With Cisco Routers (1st ed.).
Sebastopol, CA, USA: O'Reilly & Associates, Inc.

Oppliger, R. (1998). Internet and Intranet Security. Norwood, MA, USA: Artech
House, Inc.

Srinivasan, V. a. (1999). Packet Classification Using Tuple Space Search. ACM ,
135-146.

Gupta, P. a. (2001). Algorithms for Packet Classification. Netwrk. Mag. of Global
Internetwkg. , 24-32.

Trabelsi, M. M. (2014, March). A data driven firewall for faster packet filtering.
Communications and Networking (ComNet), 2014 International Conference o, pp.
1-5.

Boutaba, A. E.-A.-S. (2009, April). Adaptive Early Packet Filtering for Defending
Firewalls Against DoS Attacks. pp. 2437-2445.

Zeidan, Z. T. (2012, June). Multilevel early packet filtering technique based on
traffic statistics and splay trees for firewall performance improvement. pp. 1074-
1078.

Hazelhurst, S. a. (1998). Binary decision diagram representations of firewall and
router access lists. Department of Computer Science, University of the
Witwatersrand, Tech. Rep .

Bryant, R. E. (1992). Symbolic Boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys (CSUR) , 293--318.

diagrams, A. i. (1997). Andersen, Henrik Reif. Lecture notes, available online, IT
University of Copenhagen .

Andersen, H. R. (1997). An introduction to binary decision diagrams. Lecture notes,
available online, IT University of Copenhagen .

Bollig, B. a. (1996). Improving the variable ordering of OBDDs is NP-complete.
Computers, IEEE Transactions , 993-1002.

Hamed, E. S.-S. (2004). Discovery of policy anomalies in distributed firewalls. pp.
2605-2616.

Al-Shaer, H. H.-A. (2006). Adaptive Statistical Optimization Techniques for
Firewall Packet Filtering. pp. 1-12.

58

CADA. (n.d.). Retrieved March 25, 2016, from www.caida.org

Acharya, S. a. (2006). Simulation Study of Firewalls to Aid Improved Performance.
(pp. 18--26). IEEE Computer Society.

Greenberg, S. A. (2006). Traffic-Aware Firewall Optimization Strategies.
Communications, 2006. ICC '06. IEEE International Conference on, (pp. 2225-
2230).

Hamed, E. S.-S. (2004). Modeling and Management of Firewall Policies. IEEE
Transactions on Network and Service Management , 2-10.

Tyler. (n.d.). Retrieved March 27, 2016, from https://github.com/tyler-utah

Ben-Negji, Nizar, and Adel Bouhoula. "Dynamic scheme for packet classification
using splay trees." Proceedings of the International Workshop on Computational
Intelligence in Security for Information Systems CISIS’08. Springer Berlin
Heidelberg, 2009.

Cherian, Mimi Mariam, and Madhumita Chatterjee. "Firewall Optimization with
Traffic Awareness Using Binary Decision Diagram.”

Cherian, Mimi, and Madhumita Chatterjee. "Optimized Firewall with Traffic
Awareness."

Choudhari, Pragati M. "Efficient Packet Matching for Packet Filtering Firewall."

Khummanee, Suchart, and Kitt Tientanopajai. "The Policy Mapping Algorithm for
High-speed Firewall Policy Verifying." International Journal of Network Security
18.3 (2016): 433-444.

Winter, Christian. "Firewall Best Practices.” Future Internet (FI) and Innovative
Internet Technologies and Mobile Communications (1ITM) 1 (2016).

Hager, Sven, et al. "Minflate: Combining Rule Set Minimization with Jump-based
Expansion for Fast Packet Classification." Proceedings of the 2016 Symposium on
Architectures for Networking and Communications Systems. ACM, 2016.

Tongaonkar, Alok, and R. Sekar. "Condition Factorization: A Technique for
Building Fast and Compact Packet Matching Automata.” IEEE Transactions on
Information Forensics and Security 11.3 (2016): 468-483.

Shaikh, Riaz Ahmed, Kamel Adi, and Luigi Logrippo. "A Data Classification
Method for Inconsistency and Incompleteness Detection in Access Control Policy
Sets." International Journal of Information Security (2016): 1-23.

	United Arab Emirates University
	Scholarworks@UAEU
	11-2016

	Early Packet Rejection Using Dynamic Binary Decision Diagram
	Vasiqullah Molvizadah
	Recommended Citation

	tmp.1485261670.pdf.8ANja

		2017-01-24T15:26:15+0400
	Shrieen

