
United Arab Emirates University
Scholarworks@UAEU

Theses Electronic Theses and Dissertations

11-2016

Early Packet Rejection Using Dynamic Binary
Decision Diagram
Vasiqullah Molvizadah

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/all_theses

Part of the Information Security Commons

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarworks@UAEU. It has been accepted for
inclusion in Theses by an authorized administrator of Scholarworks@UAEU. For more information, please contact fadl.musa@uaeu.ac.ae.

Recommended Citation
Molvizadah, Vasiqullah, "Early Packet Rejection Using Dynamic Binary Decision Diagram" (2016). Theses. 450.
https://scholarworks.uaeu.ac.ae/all_theses/450

https://scholarworks.uaeu.ac.ae?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_theses?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/etds?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_theses?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_theses/450?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fadl.musa@uaeu.ac.ae

wu:u olllo.J I i4.-1J.SU I u IJ La !J 1 ii.st.o b United Arab Emirates U�iversity

United Arab Emirates University

College oflnformation Technology

Department of Information Systems and Security

EARLY PACKET REJECTION USING DYNAMIC BINARY
DECISION DIAGRAM

Vasiqullah Molvizadah

This thesis is submitted in partial fulfilment of the requirements for the degree of

Master of Science in Information Security

Under the Supervision of Dr. Zouheir Trabelsi

November 2016

Copyright© 2016 Vasiqullah Molvizadah

All Rights Reserved

Ill

Advisory Committee

1) Advisor: Dr. Zou heir Trabelsi

Title: Associate Professor

Department of Information Systems & Secu rity

College of Information Technology

2) Member: Dr. Ezedin S. Baraka

Title: Associate P rofessor

Department of Information Systems & Secu rity

College of Information Technology

IV

v

Approval of the Master Thesis

This Master Thesis is approved by the following Examining Committee Members:

I) Advisor (Committee Chair): Dr. Zouheir Trabelsi

Title: Associate Professor

Department of Information Systems & Security

College of Information Technology

Signature �
2) Member: Dr. Ezedin S. Bm·aka

Title: Associate Professor

Department of Information Systems & Security

College of Information Technology

Signature� ��h
3) Member (External Examiner): Dr. Fatma Outay

Title: Assistant Professor

Department of Innovative Technology

Institution: Zayed University

_r}p!t;t � Signature __ .,-'!!-�� ����=======--

Date /.C /Jg /�/£
� I

Date I /2. f I)- { Sl� [._

Date .A.Q..;\ X.? l �AJ.

This Master Thesis is accepted by:

Dean of the Colleg e ofl nformation Technology: Professor Omar El-G ayar

Signature Date

Dean of the Colleg e of the Gradu ate Stu dies: ProfessorNagi T. Wakim

Signature�

Copy _7_ of _z_

Date l q \ I Z I Zo 1 &:,

Vl

 ii

Declaration of Original Work

I, Vasiqullah Molvizadah, the undersigned, a graduate student at the United Arab

Emirates University (UAEU), and the author of this thesis entitled “Early Packet

Rejection using Dynamic Binary Decision Diagram”, hereby, solemnly declare that

this thesis is my own original research work that has been done and prepared by me

under the supervision of Dr. Zouheir Trabelsi, in the College of Information

Technology at UAEU. This work has not previously been presented or published,

or formed the basis for the award of any academic degree, diploma or a similar title

at this or any other university. Any materials borrowed from other sources

(whether published or unpublished) and relied upon or included in my thesis have

been properly cited and acknowledged in accordance with appropriate academic

conventions. I further declare that there is no potential conflict of interest with

respect to the research, data collection, authorship, presentation and/or publication

of this thesis.

Student’s Signature: Date: ________________

 vii

Abstract

A firewall is a hardware or software device that performs inspection on a given

incoming/outgoing packets and decide whether to allow/deny the packet from

entering/leaving the system. Firewall filters the packets by using a set of rules called

firewall policies. The policies define what type of packets should be allowed or

discarded. These policies describe the field values that the packet header must

contain in order to match a policy in the firewall. The decision for any given packet

is made by finding the first matching firewall policy, if any.

In a traditional firewall, the packet filter goes through each and every policy in the

list until a matching rule is found, the same process is again repeated for every

packet that enters the firewall. The sequential lookup that the firewall uses to find the

matching rule is time consuming and the total time it takes to perform the lookup

increases as the policy in the list increases. Nowadays, a typical enterprise based

firewall will have 1000+ firewall policy in it, which is normal.

A major threat to network firewalls is specially crafted malicious packets that target

the bottom rules of the firewall’s entire set of filtering rules. This attack’s main

objective is to overload the firewall by processing a flood of network traffic that is

matched against almost all the filtering rules before it gets rejected by a bottom rule.

As a consequence of this malicious flooding network traffic, the firewall

performance will decrease and the processing time of network traffic may increase

significantly

The current research work is based on the observation that an alternative method for

the firewall policies can provide a faster lookup and hence a better filtering

performance. The method proposed in this research relies on a basic fact that the

policy can be represented as a simple Boolean expression. Thus, Binary Decision

Diagrams (BDDs), are used as a basis for the representation of access list in this

study.

 viii

The contribution of this research work is a proposed method for representing firewall

policies using BDDs to improve the performance of packet filtering. The proposed

mechanism is called Static Shuffling Binary Decision Diagram (SS-BDD), and is

based on restructuring of the Binary Decision Diagram (BDD) by using byte-wise

data structure instead of using Field-wise data structure. Real world traffic is used

during the simulation phase to prove the performance of packet filtering. The

numerical results obtained by the simulation shows that the proposed technique

improves the performance for packet filtering significantly on medium to long access

lists. Furthermore, using BDDs for representing the firewall policies provides other

useful characteristics that makes this a beneficial approach to in real world.

Keywords: Firewall, Packet Filter, Binary Decision Diagram, Early Rejection,

Packet Matching.

 ix

Title and Abstract (in Arabic)

 الرفض المبكّر لطرود البيانات باستخدام رسم القرار الثنائي

 صالملخ

والخارجة، ثم يقرر إما الجدار الناري هو جهاز أو برنامج يقوم بفحص طرود البيانات الواردة

يرشّح الجدار الناري طرود البيانات باستخدام قواعد تسمى . السماح لها أو منعها من العبور

تصف هذه السياسات قيم الحقول في بادئة طرد البيانات التي تماثل . سياسات الجدار الناري

 .السياسة، ويتخذ الجدار الناري القرار بناءً على أول سياسة متطابقة

ي الجدر النارية التقليدية، يمر طرد البيانات على كل السياسات، واحدة تلو الأخرى حتى ف

ويعتبر البحث . تتكرر هذه العملية لكل الطرود بلا استثناء. يصادف وجود سياسة مطابقة

المتسلسل عن سياسة متطابقة مستهلكاً للوقت، كما أن الوقت اللازم للمطابقة يزداد طرداً بالنسبة

وتحتوي الجدر النارية على أكثر من ألف سياسة مضبوطة في هذه . د السياسات المضبوطةلعد

 .الأيام

تشكل بعض الطرود خطراً على الجدر النارية، حيث تستهدف هذه الطرود الخبيثة آخر سياسة

مضبوطة لكي ترهق الجدار الناري، في حين يعالج الجدار الناري هذه الطرود ويحاول

وإنّ إرسال فيضٍ من هذه . ل السياسات المضبوطة حتى يصل إلى آخرهامطابقتها مع ك

 .الطرود الخبيثة يؤدي إلى نقص في أداء الجدار الناري وزيادة ملحوظة في وقت المعالجة

إنّ البحث الحالي مبني على ملاحظة أن استخدام طرق أسرع للبحث سوف يؤدي إلى أداء

ً على حقيقة أن ا Booleanلسياسات يمكن تمثيلها كتعبيرات منطقية أفضل، وهو مبني أيضا

expressions. وبناء على ذلك، تم استخدام رسم القرار الثنائيBDD في هذه الدراسة.

ويتجلىّ الإسهام في هذا العمل عبر طريقة مقترحة لتمثيل سياسات الجدار الناري باستخدام رسم

وتسمّى الطريقة المقدمة رسم القرار . لتحسين أداء ترشيح طرود البيانات BDDالقرار الثنائي

وتستخدم هذه الطريقة إعادة ترتيب رسم القرار الثنائي .SS-BDDالثنائي المُخلطّ بسكون

وقد تم استخدام طرود بيانات . بدلاً من الحقل byteباستخدام تكوين بيانات مبني على البايت

ثبات فعالية الطريقة، كما أن القياسات المستخرجة تظهر أن هذه الطريقة حقيقية في المحاكاة لإ

 .تحسن الأداء بشكل ملحوظ في السياسات متوسطة الطول والطويلة

 x

الجدار الناري، ترشيح طرود البيانات، رسم القرار الثنائي، الرفض :مفاهيم البحث الرئيسية

 .المبكّر، مطابقة طرود البيانات

 xi

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Dr. Zouheir

Trabelsi for the continuous support of my study and related research, for his

patience, motivation, and immense knowledge. His guidance helped me in all the

time of research and writing of this thesis. I could not have imagined having a better

advisor and mentor for my Master’s study.

I would like to thank the chair and all members of the Department of Information

Systems & Security at the United Arab Emirates University for assisting me all over

my studies and research. My special thanks are extended to Dr. Mehedy Masud for

providing me with the relevant reference material.

Special thanks go to my family: my parents and to my brothers for supporting me

throughout writing this thesis and my life in general.

 xii

Dedication

To my beloved parents and family

 xiii

Table of Contents

Title .. i

Declaration of Original Work ... ii

Copyright ... iii

Advisory Committee .. iv

Approval of the Master Thesis .. v

Abstract ... vii

Title and Abstract (in Arabic) .. ix

Acknowledgements .. xi

Dedication ... xii

Table of Contents ... xiii

List of Tables.. xvi

List of Figures ... xvii

Chapter 1: Introduction ... 1

1.2 Firewall Basic Approaches .. 2

1.2.1 Circuit level firewall .. 3

1.2.2 Application-level firewall .. 3

1.2.3 Packet filtering firewall .. 3

1.3 Firewall Policy ... 4

1.4 Problem Statement ... 5

Chapter 2: Related Work ... 7

Chapter 3: Using Binary Decision Diagram for Packet Filtering ... 8

3.1 Binary Decision Diagram ... 8

3.2 Ordering and Reducing .. 9

3.3 The Variable Ordering Effect... 10

3.4 Binary Decision Diagram Packet Filter ... 11

3.4.1 Boolean Variables .. 12

3.5 Example of Firewall Policy list conversion ... 12

3.6 Performing a Lookup ... 15

 xiv

3.7 Issues Field-wise lookup .. 15

Chapter 4: Static Shuffling Binary Decision Diagram (SSBDD) ... 18

4.1.1 Policy Representation Phase ... 20

4.1.2 Packet Filtering Phase ... 21

4.2 Field Ordering .. 22

4.2.1 Field Count Distribution .. 24

4.2.2 Rule Reordering vs Field Reordering ... 25

Chapter 5: Implementation .. 26

5.1 Policy Representation using SSBDD ... 26

5.1.1 Input the Firewall Rules ... 26

5.1.2 Rule to Binary Format .. 28

5.1.3 SSBDD Generation .. 30

5.2 SSBDD Packet Filtering .. 31

5.3 BDD Packet Filter vs SSBDD Packet Filter .. 33

5.3.1 BDD Packet Filter .. 34

5.3.2 SSBDD Packet Filter ... 35

Chapter 6: Analytical Discussion of the SSBDD .. 37

6.1 SSBDD Representation of Access List .. 37

6.1.1 The Effect of Rule Structure .. 39

6.1.2 The Effect of Variable Ordering .. 39

6.2 Performing Lookup on a SSBDD .. 40

6.2.1 Worst Case Analysis .. 40

6.2.2 Best Case Analysis ... 41

6.3 Memory Usage of SSBDD ... 42

Chapter 7: Architecture and Simulation .. 43

7.1 System Implementation .. 43

7.1.1 Packet Filter Specification ... 43

7.2 Coding and Modules .. 44

7.2.1 RunMe.py ... 45

7.2.2 Formula.py ... 46

7.2.3 MatchRule.py ... 47

7.3 Other coding modules .. 47

 xv

7.4 Simulation Environment .. 48

7.5 Simulation Dataset ... 49

7.6 Simulation Framework ... 49

Chapter 8: Statistics .. 51

8.1 Simulation Results ... 51

8.1.1 Experiment A ... 52

8.1.2 Experiment B ... 52

8.1.3 Experiment C ... 53

8.1.4 Experiment D ... 53

8.1.5 Experiment E .. 54

Chapter 9: Conclusion and Future Work .. 55

9.1 Future Work ... 55

9.1.1 Variable Ordering and Reordering Prediction ... 55

9.1.2 Updating the SSBDD ... 56

9.1.3 Considering more Parameters for Performance ... 56

9.2 Conclusion ... 56

References ... 57

 xvi

List of Tables

Table 1: The Boolean variable required for BDD representation 12

Table 2: Sample Firewall Policy List ... 13

Table 3: Rules .. 16

Table 4: A Sample Policy List ... 20

Table 5: Variable Ordering .. 22

Table 6: Binary equivalent of a rule ... 34

Table 7: Sample Access List .. 38

Table 8: Specification .. 49

 xvii

List of Figures

Figure 1: Binary Decision Diagram ... 9

Figure 2: Two BDDs for the function x1y1 V x2y2 V ... V xnyn for n=3 11

Figure 3: BDD Lookup .. 15

Figure 4: BDD Tree of Table 3 .. 16

Figure 5: SSBDD Architecture .. 19

Figure 6: BDD Representation ... 21

Figure 7: BDD Packet Filter .. 34

Figure 8: SSBDD Packet Filter .. 35

Figure 9: Modules of SSBDD implementation .. 45

Figure 10: Other Coding Modules. .. 48

Figure 11: Simulation Framework Overview .. 50

Figure 12: Experiment A Result .. 52

Figure 13: Experiment B Result ... 52

Figure 14: Experiment C Result ... 53

Figure 15: Experiment D Result .. 53

Figure 16: Experiment E Result ... 54

 1

Chapter 1: Introduction

1.1 Overview

The Internet has come a long way since its inception, the accomplishment in terms of

data accessibility and availability has been growing exponentially over the couple of

decades (Cheswick, 2003). Today every other business is now reorganizing itself to

utilize the power of the Internet to connect to its users. The type of services and

application available on the Internet have become more powerful – starting from a

simple static webpage in the 1990s to online banking, shopping. The fact of

increasing number of users using the Internet implies an increasing number of

malicious attacks, which means that systems and their networks require protection

from unintentional incidents as well as malicious acts (Nikolaidis, 2000).

The increasing complexity of the Internet makes the solution of computer network

security more complex, which is why organization does not use just one solution

instead they apply layers of security to protect themselves. The best way of ensuring

security is by using a network firewall. A firewall is a computer, router, or other

communication device that filters access to the protected network (Nikolaidis, 2000).

Cheswick and Bellovin (Cheswick, 2003) (Ballew, 1997) define a firewall as a

collection of components or a system that is placed between two networks and

possesses the following properties:

 All traffic from inside to outside, and vice-versa, must pass through it.

 Only authorized traffic, as defined by the local security policy, is allowed to

pass through it.

 The firewall itself is immune to penetration.

 2

Firewalling is the easiest method of all used by the network administrator to control

the access between networks (Ballew, 1997). The idea to use firewall to protect the

network, is that controlling access to the network and its resources by protecting each

host is difficult and does not scale (Oppliger, 1998). Firewall solves this issue by

creating a single connection point for multiple network and providing a single

security checkpoint. This single checkpoint will have a security policy that defines

what type of connection is allowed or rejected. It can be assumed that the firewall

itself is immune to penetration.

One of the main criticism of firewalls is that they often create bottlenecks

(Nikolaidis, 2000). The reason of this bottleneck is mainly how the firewall policies

are constructed. If the policies are not constructed properly then it may cause loss of

network performance. This motivates the need for faster firewall technologies,

keeping in mind that there is a tradeoff between performance and security.

1.2 Firewall Basic Approaches

Firewall is usually installed at the edge of the network where the private or the

Intranet connects to the public network, making it easier for the firewall to monitor

all the traffic at once. Although firewall may also be placed between departmental

networks within a company. The level of security and behavior exhibited by the

firewall depends on the type of firewall used but for this research is focused on the

Packet Filter Firewall. There are three basic approaches that a firewall uses to protect

the network: packet filtering, circuit level firewall, and application level firewall

(Cheswick, 2003)

 3

1.2.1 Circuit level firewall

Circuit level firewall is a type of firewall that works at the session layer of the OSI

model, between the application layer and the transport layer of the TCP/IP stack.

They monitor the handshaking between two systems and decided whether a request

session is legitimate or not. It filters the packet, by relying on the data contained in

the packet headers for the TCP session-layer protocol. These type of firewalls

usually operates two layers higher than a packet-filtering firewall does. It determines

if the requested session is legitimate or not by checking the SYN flags, ACK flags,

and the sequence numbers are involved in the TCP handshaking or not. The issue

with circuit-level proxy is that it has no understanding of the application protocols

they support. They cannot scan application data for dangerous commands or

executable contents.

1.2.2 Application-level firewall

Application-level proxy operates at the application layer of the firewall. An

application-level runs a proxy server for each application that it supports. The proxy

request on behalf of the user to the destination host. Proxy server has some

understanding of the application it is supporting and can be configured to reject

malicious content packets. Application level firewall are not easy to scale.

1.2.3 Packet filtering firewall

Packet filtering firewall operates at the network layer and is the simplest type of

firewall. Since, the firewall operates at the network layer so it has no idea of the

content of the packets like the other type of firewall mentioned above. The packet

filtering firewall works on the concept of policies. The policies use the information –

 4

source port, destination port, source ip, destination ip, and protocol – to filter

malicious traffic from the network.

Security is provided by comparing the packets against the list of the firewall rules

and deciding whether to allow or deny the packets based on the action defined in the

matched rule. Packet filtering firewall is widely used as a first line of defense in any

enterprise. There are numerous reason for it (Cheswick, 2003) (Oppliger, 1998)

 Faster than other firewall technologies

 It is a low-cost technology. Many commercial routers have the packet

filtering capabilities in it. There is various free open-source packet filtering

firewall available.

 It is normally transparent to applications and users.

1.3 Firewall Policy

The packet filter firewall is usually specified by a set of rules. The rules are a simple

if-then-else structure with each rule defining the action that should be taken, if any

packet matches. A set of rules in the firewall is known as access control list, policy

list or rules (Ballew, 1997). The firewall traverses the rules sequentially to find the

matching rule for any given packet.

Defining the firewall policy is simple for any user but it has its own disadvantages if

they are not defined properly. The order of how the rules are inserted and represented

in the firewall is of high importance which can affect the overall performance of the

firewall. For this reason, the packet filtering implementation represents the list of

policies in the firewall in a linear fashion. The decision making process called lookup

 5

goes through each rule one at a time in a linear fashion and decided whether the

packet should be accepted or rejected until a matching rule is found. The time taken

to perform the lookup is clearly proportional to the number of rules in the firewall.

1.4 Problem Statement

The main aim of this research is to propose a new representation technique called

Static Shuffling Binary Decision Diagram or SSBDD for the access list of the

firewall. The reason to propose a new representation technique is because the

firewall rules are consulted more frequently and they are modified less frequently.

There are many representation techniques for the firewall policies which are

discussed briefly in the Related Work Section but for this research, Binary Decision

Diagram or BDD is chosen as the base for the representation of the access list.

SSBDD is a modified version of the regular BDD. Using BDD as the representation

technique has its own advantages such as: -

 Each of the rule in the firewall is simply a logical expression that is based on

the values in the rule. If any packet satisfies the condition in the rule, then the

packet is either accepted or rejected based on the action in the rule.

 The entire firewall access list is represented as a single Boolean expression

that describes (Gupta, 2001) (Trabelsi, 2014) what condition each packet

must meet. BDD is a very well-known data structure for storing and

manipulating Boolean expressions compactly and efficiently.

This research addresses the following question:

How to perform an early packet rejection using Binary Decision Diagram as its data

structure?

 6

 7

Chapter 2: Related Work

Packet filtering consists into performing a sequential lookup for each network packet

against the rule list until a matching rule is found. Due to the sequential lookup

nature of the firewall, the performance of the firewall will degrade over the time if

the size of the rule list of the firewall increases. Different approaches have been

proposed to improve firewall performance, using mainly, specialized data structure

(Srinivasan, 1999) or heuristics solutions (Gupta, 2001).

The idea of firewall optimization using data mining is discussed in (Trabelsi, 2014).

The proposed technique uses classifier for packet filtering. At first, the technique

tries to get the matching classifiers. If it is unable to get any classifier, then it will use

the firewalls sequential lookup to find the matching rule.

Another approach is discussed in (Boutaba, 2009), which uses BDD to generate a

relaxed version of the firewall rules that can be evaluated more quickly. After

processing a packet, the proposed technique will conclude to one of the three

following options: accept, reject, or more filtering is required. In case of more

filtering, the original policy will be used to look for a matching rule in the list, if any.

In (Zeidan, 2012), Splay Tree based technique (Statistical Splay Filtering with

Binary Search on Prefix Length) is used to improve the firewall performance. The

optimization technique allowed the firewall to perform an early packet rejection

through multilevel filtering process including field and intersection filtering modules.

 8

Chapter 3: Using Binary Decision Diagram for Packet Filtering

The original idea of BDD packet filter was developed by (Hazelhurst, 1998) (Bryant,

1992). BDD provides a powerful and flexible way to represent the policies of the

firewall. Each policy of the firewall can be represented using BDD via a simple

Boolean expression. Boolean expression is simply consisting of a number of

predicates, where each predicate shows what path to follow in the BDD.

Since, in BDD each policy of the firewall is represented as a Boolean expression and

as the number of policy increases the size of the BDD will increase as well.

However, BDDs are well-known for its compact representation of Boolean

expression. So using BDD as a packet filtering approach can provide an advantage in

terms of performance, which is the most important factor for any firewall. This

chapter is devoted to describing the BDD approach to packet filtering in detail.

3.1 Binary Decision Diagram

Binary Decision Diagram represent Boolean functions as rooted, directed acyclic

graphs (Bryant, 1992). In a non-technical term, a BDD can look like a decision tree,

as shown in Figure. 1. Each non-terminal node in a BDD represents a value to a

particular variable, and each non-terminal node has two children representing the

possible value for the non-terminal node (0 or 1). The dashed edge corresponds to

the case where the variable is assigned 0 and the solid edge corresponds to the case

where the variable is assigned 1. A BDD has two terminal nodes which are Boolean

constants and has a value of 0 and 1.

 9

Figure 1: Binary Decision Diagram

3.2 Ordering and Reducing

The issue with BDD representation is, as the number of policy increases in the

firewall the size of the BDD also increases as it will increase the Boolean

expressions. To overcome this problem, (Bryant, 1992) introduced the concept of

reduced, ordered binary decision diagrams (ROBDDs) that potentially provide a

much more compact representation for many Boolean expressions. ROBDDs are

basically a compact version of a BDDs due to the following restrictions on it

(Bryant, 1992).

 The variables of a ROBDD must obey a total ordering, so that for any vertex

labelled u and any of its children labelled v, u appears before v along any path

from the root of the graph to a leaf.

 A ROBDD may not contain duplicate terminals. This leaves a ROBDD with

a two terminal vertices (one labelled 0 and the other labelled 1).

 A ROBDD may not contain duplicate non-terminals. Duplicate non-terminals

are those that represent the same variable where the corresponding branches

lead to the same place.

P1

P2

P4

P2

P5

1

P3

 10

 A ROBDD may not contain redundant tests. If, at a particular vertex in the

graph, both possible values lead to the same place, then this test is

unnecessary.

These restrictions result in ROBDDs possessing some useful properties. Firstly, they

provide compact representations of Boolean functions. Although in the worst case,

their graph size can be exponentials in the number of variables, many non-trivial

Boolean functions have a polynomial size ROBDD (Bryant, 1992). Since ROBDDs

offers so many advantages over unrestricted BDDs, most applications that use BDDs

actually use ROBDDs, so it is very common to simple refer ROBDDs as BDDs

(Andersen, 1997).

3.3 The Variable Ordering Effect

The variable ordering chosen for a BDD has a strong impact on its shape and size

(Bryant, 1992). If the variable order is not chosen correctly, then it can make the

BDD for the same Boolean function from a linearly sized to an exponentially sized

BDD as show in Figure 2.

 11

Figure 2: Two BDDs for the function x1y1 V x2y2 V ... V xnyn for n=3

For a function that cannot be represented in a compact format, it is best to choose an

optimal variable ordering for it. However, finding an optimal variable ordering for a

BDD is a NP-complete problem (Bollig, 1996). As a result, variable order are often

chosen manually or using some heuristics.

3.4 Binary Decision Diagram Packet Filter

In a BDD as a packet filter, a BDD is used to represent the firewall’s entire policy

list, and the same BDD is then used to perform lookup on the incoming packets. The

representation of the BDD is stored in the memory and whenever a new policy is

added to the list the BDD is then regenerated again. The BDD is a representation of

the Boolean expression that describes exactly what packets must be accepted or

rejected. In simple words, all paths through the BDD that lead to the terminal

labelled 1 represent the types of packets that are accepted, and the opposite is true for

 12

all paths leading to the terminal labelled 0. Each node or variable in the BDD refers

to a specific bit in the packet header.

3.4.1 Boolean Variables

To represent a firewall policy as a BDD it is important to know what variable in the

BDD refers to which field in the packet header, as each variable in the BDD

corresponds to a specific bit in the packet header itself. A BDD’s Boolean expression

will consist of multiple variable; in a normal case each policy is represented by at

least 104 Boolean variables. Below is the table that describes the variable naming

that will be used throughout this work.

Header Field Boolean Variables Total

Number

Source IP address s_ip1 ... s_ip32 32

Destination IP address d_ip1 … d_ip32 32

Protocol type p1 … p8 8

Source port s_p1 … s_p16 16

Destination Port d_p1 … d_p16 16

Total 104

Table 1: The Boolean variable required for BDD representation

3.5 Example of Firewall Policy list conversion

The example below demonstrates how a firewall policy list can be converted into a

Boolean expression. The policy list to be used for the conversion process is shown in

the Table 2. This BDD has its protocol variables ordered first, followed by the

variables corresponding to destination information, followed by the variables

corresponding to the source information. The default policy of the firewall is to deny

all packets.

Rule Proto Source IP Source

Port

Destination

IP

Destination

Port

Action

 13

1 TCP 172.21.1.89 9070 10.2.12.98 80 Permit

2 TCP 172.25.12.1 7788 81.23.1.87 443 Permit

Default Policy.

Table 2: Sample Firewall Policy List

 Step 1: Defining the Boolean Variables

The following 5 fields - source address, destination address, source port, destination

port, and protocol – are used by the packet filter on the incoming packets. By

summing up all the field sizes of the header gives a total of 104 bits, so a total of 104

variables are required to represent the BDD of this access list. The variable naming

to be used for the BDD representation is shown in Table 1.

 14

 Step 2: Converting Individual Rules

This step involves in converting the give policy into a Boolean expression. This is

accomplished by forming a conjunction of each predicate. Let Ri denote the Boolean

representation of Rule I. To convert the first rule:

Let p = Protocol = TCP

 = p8’ p7’ p6’ p5’ p4’ p3 p2 p1’

Let s_p = Source Port = 9070

 = s_p16’ s_p15’ s_p14 s_p13’ s_p12’ s_p11’ s_p10 s_p9 s_p8’ s_p7 s_p6

s_p5’ s_p4 s_p3 s_p2 s_p1’

Let d_p = Destination Port = 80

 = d_p16’ d_p15’ d_p14’ d_p13’ d_p12’ d_p11’ d_p10’ d_p9’ d_p8’ d_p7

d_p6’ d_p5 d_p4’ d_p3’ d_p2’ d_p1’

Let s_ip = Source IP = 172.21.1.89

 = s_ip32 s_ip31’ s_ip30 s_ip29’ s_ip28 s_ip27 s_ip26’ s_ip25’ s_ip24’

s_ip23’ s_ip22’ s_ip21 s_ip20’ s_ip19 s_ip18’ s_ip17 s_ip16’ s_ip15’ s_ip14’

s_ip13’ s_ip12’ s_ip11’ s_ip10’ s_ip9 s_ip8’ s_ip7 s_ip6’ s_ip5 s_ip4 s_ip3’

s_ip2’ s_ip1

Let d_ip = Destination IP = 10.2.12.98

 = d_ip32’ d_ip31’ d_ip30’ d_ip29’ d_ip28 d_ip27’ d_ip26 d_ip25’ d_ip24’

d_ip23’ d_ip22’ d_ip21’ d_ip20’ d_ip19’ d_ip18 d_ip17’ d_ip16’ d_ip15’

d_ip14’ d_ip13’ d_ip12 d_ip11 d_ip10’ d_ip9’ d_ip8’ d_ip7 d_ip6 d_ip5’

d_ip4’ d_ip3’ d_ip2 d_ip1’

Then R1 = p s_p d_p s_ip d_ip

The expression is constructed similarly for the other rules.

 Step 3: Combining all the rules

Using the steps shown above the expression can be generated for all the rules in the

same way and once it is done, the next step is generating a single expression for all

the rules. The expression is generated as follows:

 Final expression = (R1 R2)

The final expression says that the incoming packets are either accepted by Rule R1

or Rule R2.

 15

3.6 Performing a Lookup

In a linear or classic BDD, once generated, performing a lookup on the given

incoming packet is simply a comparison. The comparison starts from the top node or

root node of the BDD and continues till it reaches a terminal node either 0 or 1. In

case if it reaches terminal node 0, then the given packet is rejected. However, if it

reaches the terminal node 1, then the given packet is accepted.

Figure 3 shows how a regular BDD performs a lookup upon receiving an incoming

packet. In this paper, this search will be referred as Field-wise search since it checks

one entire field at a time.

Figure 3: BDD Lookup

3.7 Issues Field-wise lookup

Field-wise lookup gives acceptable performance when the ratio of the accepted traffic

is higher than the ratio of the rejected traffic. But, if the ratio of accepted traffic is

very less, compared to the rejected traffic’s ratio, the field-wise search performance

will degrade. This is because in attacks, like DoS, the traffic usually gets rejected at

the bottom rules of the firewall.

 16

To understand the issues of field-wise BDD lookup, let’s take an example of two

filtering rules with a protocol field, as shown in Table 3, whose BDD is shown in

Figure 4.

Protocol Decimal Binary

TCP 6 0110 0000

ICMP 1 1000 0000

Table 3: Rules

Figure 4: BDD Tree of Table 3

Considering DoS – it mainly targets the firewall by sending malicious traffic

targeting the bottom rules of the firewall – the higher the rejection ratio the more

likely the BDD performance is going to degrade. This is due to the fact, the entire

BDD will be traversed to reach the final decision.

The issue of the Field-wise lookup can be solved by simply shuffling the field-order.

For example, instead of checking the IP fields of the packet, it’s much better to check

the protocol field of the incoming packets. As the field-size is of 8-bit, and a high

P1

P2

P4

P2

P5

P6P7P8

1

P3

 17

amount of packet rejection occurs at this field. This solution won’t help the firewall

to maintain it’s performance for a long period. The traffic received by the firewall

are random in nature, so relying on one field for early rejection won’t work.

The solution is interesting but in-order to maintain the performance, the firewall

needs more information, but not about the firewall rules, it needs information about

the traffic. The traffic always gives you more information about why and how the

firewall is not performing well. The type of characteristics that can help the BDD to

perform well, are the high rejection nodes. Rejection nodes are the nodes in the

firewall, that keeps track of all the nodes in the BDD tree that has the highest number

of rejection. This rejection could be either due incoming packet not matching any

specific field in the firewall or incoming packet not matching any rules at all in the

firewall.

In a linear-based BDD, the rejection nodes won’t be of much use, as the BDD is

generated only once, the regeneration only happens when a new rule is either added

or deleted from the firewall. To overcome this problem, two new approach is

proposed and explained in detail in the following section. The approach is basically

based on using the traffic characteristics of the firewall and then generating a new

BDD from time-to-time.

 18

Chapter 4: Static Shuffling Binary Decision Diagram (SSBDD)

In this chapter a new method is proposed and it is called Static Shuffling Binary

Decision Diagram or SSBDD. SSBDD is an improvement over a regular Binary

Decision Diagram Packet Filter. The proposed method improves the performance of

the firewall specially when the traffic it is receiving has a high rate of rejection

packets. SSBDD uses the BDD as its base.

It also adds two more properties on top of regular BDD to improve the performance;

the Field Ordering and the Split size as shown in Figure 5, both of them will be

discussed extensively in the coming chapters. Together with these two properties an

efficient and optimized BDD is generated. The name Static Shuffling comes from the

idea of the way it generates and parse the packet headers; instead of following the

traditional way of reading the entire field, it reads n bits from each field. One of the

advantage of this method, it is not affected by the dependency of rules in the firewall

because it relies on traffic log instead of rule analysis

There have been various studies conducted on the improvement of the firewall’s

packet filter. Most of the research focused on the rule analysis of the firewall or

rejection traffic of the firewall. In our case, SSBDD is focused on rejection traffic

because in any BDD, the acceptance traffic will always traverse the entire BDD,

which is not the case in rejection traffic.

 19

Figure 5: SSBDD Architecture

4.1 Split Size

Split size in the context of BDD defines how many bits the BDD should traverse in

each field before moving on to the next field. In the previous chapter, the importance

of the traffic characteristics was discussed. For e.g. the Protocol Distribution section

showed that checking 4 bits of protocol field will give the result more quickly than

checking the 8 bits of the field. Split size property is defined at the beginning of the

BDD generation. It is not only used at the parsing phase but it also used during the

policy representation phase of the BDD. The use of the split size in the two different

context of BDD is explained in the coming sections. The only downside of the split

size, is it cannot be an odd number and the value cannot be more than 8, this is not

due to a performance issue but it is merely due to programming limitations.

The idea of split size is not the first time it is used in firewall packet filtering; the

same technique is described (Boutaba, 2009). There’s no need for the BDD packet

filter to go through an entire field before moving on the next field. Separating them

into a non-contiguous block can be useful too. For example, the protocol numbers

might be best represented if it’s bits be mapped from P0-P4 then P5-P8. So instead of

Binary Decision
Diagram

Split size Field ordering

 20

checking the entire 8 bits’ fields from P0-P8, it is a good idea to check the first 4 bits

and then the rest of the bits later.

4.1.1 Policy Representation Phase

Choosing the right split size for the BDD generation is as same as choosing a right

variable ordering for a BDD, which is an NP-complete problem. But based on the

analysis, it is possible to decide the split size to be used for the BDD. For e.g. based

on the Protocol Distribution section, it is shown that high number of traffic were

related to the TCP protocol. The split size can then be changed easily by analyzing

the traffic characteristics but it can only be changed once during the BDD generation

phase.

For example, assume having a simple packet header that consist of only source and

destination fields each is just 4-bits long with all the rule’s decision is Allow. Table 4

shows the demo packet header converted into Binary equivalent. Assuming the split

size is set to 2. The Fig 6 shows how the Rule 1 will be represented.

Rule # Source Destination

R1 1011 1100

R2 1001 1110

R3 1010 1101

Table 4: A Sample Policy List

The left figure in Figure 6 shows the BDD representation of the firewall when the

split size is considered and the figure on the right in Figure 6 shows the BDD

representation of the firewall when the split size is not considered.

 21

Figure 6: BDD Representation

4.1.2 Packet Filtering Phase

In the BDD packet filtering phase the split size defines the number of bits that must

be checked by the packet filter before moving on to the next field in the firewall. So

instead of considering the entire field of the firewall as one contiguous block, it is

better to consider them as a non-contiguous block. For e.g. if a split size of 8 is

chosen then the bits of the fields will be represented as shown in Table 5.

 22

Field

Field bits

BDD variable

Proto

(0,7)

0,7

Source IP

(0,7)

8,15

Destination IP

(0,7)

16, 23

Source

Port

(0,7)

24, 31

Destination

Port

(0,7)

32,39

Source IP

(8,16)

40, 47

Destination IP

(8,16)

48, 55

Source

Port

(8,16)

56,63

Destination

Port

(8,16)

64, 71

Source IP

(16,24)

72, 79

Destination IP

(16, 24)

80, 87

Source IP

(24, 32)

88, 95

Destination IP

(24, 32)

96, 103

Table 5: Variable Ordering

4.2 Field Ordering

Majority of the packet filtering devices like firewalls do not give specific

consideration for optimizing packet rejection. If a packet does not match any of the

rules in the policy, then it is discarded because the default rule (last rule) is assumed

to be deny (Hamed, Discovery of policy anomalies in distributed firewalls, 2004). It

is highly crucial for any firewall to implement a successful packet filtering.

However, most of the packet filtering research done by authors focuses on exploiting

the characteristics of filtering rules and ignores to consider the traffic behavior as

another factor for optimization (Al-Shaer, 2006) schemes.

Optimization of the firewall packet filtering can be done at various stages during

packet filtering process. Since, our work focuses only on BDD, so only the

optimization technique related to BDD is discussed in this research. One of the most

important optimization technique is field order, field order plays a very important

role in the firewall. During network attacks such as DOS, the traffic is created in

 23

such a way, that packets will always get rejected by the bottom rules or the last field

of the bottom rules. If the fields are ordered in an optimal way, then the chance of

packets being rejected at early stage increases which will then improve the

performance of the firewall. But in a traditional firewall packet filter, the field order

is fixed, which causes the performance to degrade during such network attacks.

As the networking speed increases, it is very important for the firewall to improve its

packet filtering performance. Time is an important factor when considering the

performance of the packet filter. To improve the performance, it is much more

important to focus on the rejection packets of the firewall because if the rejection

packets are rejected by the deny-all rule then it can cause more harm to the

performance. Thus, it is more important to focus on early packet rejection.

There is an extensive amount of research work done on packet classification. The

basic approach is to search the rules sequentially till a match is found. This approach

is not time efficient because as the rule list increases the search time increases as

well. So the performance of the basic approach is proportional to the length of the

rule list in the firewall. Research on improving the search time for packet filtering

uses one or more of the following approach: hardware-based solutions, specialized

data structures, geometric algorithms, and heuristics (Al-Shaer, 2006).

Our study of the network traffic collected from (CADA, n.d.) shows that the major

portion of the traffic flows gets rejected at a field in the firewall rules. It is also

observed that this distribution is likely to stay for a time interval, if this distribution

property is considered then it is highly likely that it can improve the performance of

the packet filter. Therefore, a new method is proposed in this research, that uses the

field distribution as one of the factor to improve the performance of the packet filter.

 24

The proposed method called, Static Shuffling BDD [SSBDD] uses a typical Binary

Decision Diagram as its base. The tree is mainly focused to reject the traffic as early

as possible because a rejected packet might traverse long decision path of rule

matching before getting rejected by the default-to-deny rule in the firewall. As the

number of rejection packets increases the performance degrades as it causes

significant overhead on the firewall. The implementation of SSBDD does not require

any sort of special support from the firewall.

The SSBDD relies on field ordering for its optimization. Early rejection is possible in

firewall if the field order is chosen efficiently. But choosing an optimal field order is

an NP complete problem as the traffic is always random in nature. Predicting the

type of traffic is not possible but a few assumptions can be made for any traffic based

on the traffic characteristics.

4.2.1 Field Count Distribution

Another study conducted on the traffics to see the distribution of field counts. This

study provides much more detailed overview into at which bit or node level of the

field the packet got rejected. This data at first seems not useful but when collected

from time to time can provide an overview into which fields is more important and

can help to prioritize one field over other. It can also provide information to BDD,

whether the BDD should start reading the packet headers from MSB to LSB or the

other way around.

For e.g. given any network traffic that is received from the router to the firewall, it is

safe to assume that all the traffic reaching the firewall will belong to the network.

Since, the organization has LAN network, so they’ll be having Private Address

space. In that case, it is always best to start the search from MSB to LSB instead of

 25

LSB to MSB. So it is suggested that depending on the traffic specifications the less

important fields should be checked later in order to speed up the performance of the

packet filter.

4.2.2 Rule Reordering vs Field Reordering

Rule reordering is the most focused area in the field of packet filtering. There has

been various research work done on it. Based on the analysis shown above in Rule

hit distribution, it is visible that reordering of the rule can have an impact on the

packet filtering performance. But the success of rule reordering is mainly dependent

on the how interconnected the rules are in the firewall rule list. If the majority of the

rules are dependent, then rule reordering will not improve the firewall performance.

On the other hand, field reordering seems like a good alternate solution. The main

advantage of field reordering, it is not affected by the rule dependency. Because the

field ordering happens at the search time. If given enough information about the

traffic log, then an optimal field reordering can be achieved which can improve the

performance of the firewall overall.

 26

Chapter 5: Implementation

In this chapter we will discuss about the implementation part of our proposed

method. The implementation is applied once during the packet generation phase and

then during the packet filtering phase, both of them are explained in detail. At last we

check out the lookup comparison between the two of them.

5.1 Policy Representation using SSBDD

To generate an SSBDD for a given set of firewall rules, it has to go through 4 stages

which starts from the taking the rule set as an input and onto the final stage that

converts the rules into the final SSBDD. The chart below gives you the overview of

what happens at each and every stage of the SSBDD generation.

The final SSBDD which is generated is in a graphical format i.e. DOT format, the

DOT format is only the user but the generation of the DOT format file is disabled as

it increases the CPU processing time. The another format which is generated is a

tuple set for each node in the BDD, this format is used for the parsing.

5.1.1 Input the Firewall Rules

The input file used by the program which contains the rule set or the traffic is in CSV

format. The packets were collected from CAIDA. The metadata contains more

information than it is needed so only the necessary information is collected from the

Input the
Firewall
Rules

Rules to
Binary
format

Binary to
Formula
format

SSBDD
generation

 27

file; source ip, source port, destination ip, destination port, and protocol. The format

of the file for both the traffic and the firewall rule set is given below.

<ip.proto,ip.len,ip.src,ip.dst,tcp.srcport,tcp.dstport,tcp.flags,udp.srcport,udp.dstport,

icmp.type,icmp.code>

The above is the algorithm for reading the rules from the CSV file is given below.

The file is opened in a reading mode and the code goes through the file line-by-line

as each line contains one firewall rule in it. For every firewall rule that is read from

the file is converted into first binary equivalent and then it is converted into the

formula format. Once the above code is executed, the code will have the entire rule

set converted into the formula format which is then written to the CSV file.

with open(ruleFile, "rb") as csvfile:

 pkt_reader = csv.reader(csvfile)
 del dyn_order_var[:] # Resetting the dyn_order_var now ...
 read_config_file()

 for pkts in pkt_reader:

 newPkt = {}
 for order in ruleConf.order:
 if order == 'p':
 newPkt['p'] = pkts[field_pos['p']]
 elif order == 's_ip':
 newPkt['s_ip'] = pkts[field_pos['s_ip']]
 elif order == 's_p':
 newPkt['s_p'] = pkts[field_pos['s_p']]
 elif order == 'd_ip':
 newPkt['d_ip'] = pkts[field_pos['d_ip']]
 elif order == 'd_p':
 newPkt['d_p'] = pkts[field_pos['d_p']]

 ruleListBin.append(dyn_ruleFormula(ruleToBin(newPkt)))

 28

5.1.2 Rule to Binary Format

In order for the BDD to be generated the values must be in binary format, so it is

necessary to convert each and every rule or packet header into the equivalent binary

format. The discussion on Binary conversion is also discussed in more detail in the

Chapter BDD. This step is basically a conversion of the decimal values to the binary

format. The algorithm for the binary conversion is shown below.

def ruleToBin(pktRule):
 """
 Takes the entire rule and then
 convert the rule into a binary
 format given below
 [src-ip] = 00011100
 """

 ruleBin = {}
 for key, value in pktRule.iteritems():

 if int(key == "s_ip") | int(key == "d_ip"):
 tmp = value.split('.')
 ruleBin[key] = ""
 for x in tmp:
 ruleBin[key] += padding(((bin(int(x))).replace('b','')), 8)

 elif int(key == "s_p") | int(key == "d_p"):
 if len(value) > 0:
 ruleBin[key] = (padding(((bin(int(value))).replace('b','')),16))
 else:
 print "\tEither the Source or Destination Port is not given, skipping
this rule ..."
 return False

 elif key == "p":
 if (value.isdigit()):
 ruleBin[key] = padding(((bin(int(value))).replace('b','')[::-1]),8)
 else:
 ruleBin[key] = padding(((bin(protocol[value])).replace('b','')[::-1]),8)

 return ruleBin

 29

A. Binary to Formula Format

This is an important stage in the SSBDD generation process, once the rules are

converted into its binary equivalent the next stage is to convert the rule into a

formula format. The formula format shows what does each and every node in the

BDD contains. Below is the algorithm that shows how the binary equivalent rules

are converted into the formula format.

def dyn_ruleFormula(ruleBin):

 # Convert the Binary rule format into a formula

 s_ip_len = 33
 d_ip_len = 33
 s_p_len = 17
 d_p_len = 17
 p_len = 9

 s_ip_tracker = 1
 d_ip_tracker = 1
 s_p_tracker = 1
 d_p_tracker = 1
 p_tracker = 1

 tmp_s_ip = {}
 tmp_d_ip = {}
 tmp_s_p = {}
 tmp_d_p = {}
 tmp_p = {}

 for j in ruleBin['s_ip']:
 if s_ip_len != s_ip_tracker:
 tmp_s_ip['s_ip'+str(s_ip_tracker)] = j
 s_ip_tracker += 1

 for k in ruleBin['d_ip']:
 if d_ip_len != d_ip_tracker:
 tmp_d_ip['d_ip'+str(d_ip_tracker)] = k
 d_ip_tracker += 1
……

 30

5.1.3 SSBDD Generation

The final phase of the SSBDD generation is simple writing the formula generated

above into a formula file. This formula file is then used to generate the graphical

BDD, which is disabled in this stage as it increases the CPU processing time. Below

is an example f what exactly does the formula file contains.

 for m in ruleBin['d_p']:
 if d_p_len != d_p_tracker:
 tmp_d_p['d_p'+str(d_p_tracker)] = m
 d_p_tracker += 1

 for n in ruleBin['p']:
 if p_len != p_tracker:
 tmp_p['p'+str(p_tracker)] = n
 p_tracker += 1

 s_ip_tracker = 1
 d_ip_tracker = 1
 s_p_tracker = 1
 d_p_tracker = 1
 p_tracker = 1

 ruleFormula = collections.OrderedDict()

 for tmp in dyn_order_var:
 tmp_field = tmp['og']
 if tmp['field_name'] == 's_ip':
 ruleFormula[tmp_field] = tmp_s_ip[tmp_field]
 elif tmp['field_name'] == 'd_ip':
 ruleFormula[tmp_field] = tmp_d_ip[tmp_field]
 elif tmp['field_name'] == 's_p':
 ruleFormula[tmp_field] = tmp_s_p[tmp_field]
 elif tmp['field_name'] == 'd_p':
 ruleFormula[tmp_field] = tmp_d_p[tmp_field]
 elif tmp['field_name'] == 'p':
 ruleFormula[tmp_field] = tmp_p[tmp_field]

 return ruleFormula

 31

Let p = Protocol = TCP

 = (p1 & p2 & p3 & p4 & p5 & ~p6 & ~p7 & p8)

The above example shows how the binary equivalent of the TCP protocol will be

written in the formula file in the end.

5.2 SSBDD Packet Filtering

Packet filtering is the next stage of SSBDD, at this stage the packet is received by the

packet filter which is then used to traverse the SSBDD to determine whether or not

to accept or reject the packet. The step-by-step flow diagram is given below; it is

same as the one described in the SSBDD generation phase. The only difference is in

the last stage, instead of generating the BDD it will traverse the BDD. The final stage

is merely a comparison stage where each node value is compared to see if it matches

or not. The earlier stages of the SSBDD Packet Filter has been explained before.

Below is the implementation of SSBDD traversal that traverses the SSBDD tree once

it receives a packet.

Input the
Firewall
Rules

Rules to
Binary
format

Binary to
Formula
format

Find
matching
rule

 32

def pktMatcher(pktBin, ruleBDD):

 global nextNode
 global matchHit
 global tmpRuleBDD
 tmpRuleBDD = ruleBDD

 tmp_h_table = {}

 for data in ruleBDD['h_table'].items():
 tmp_h_table[data[1]] = data[0]

 for pktData in pktBin.items():
 if str(nextNode) == "1":
 log_data = "\tPacket has been accepted now ... and the hit count is
"+str(matchHit) + "\n"
 writeLog(log_data)
 matchHit = 0
 return

 elif str(nextNode) != "-1":
 if (db._get_var_name(ruleBDD, nextNode)) == pktData[0]:

 if str(pktData[1]) == "0":
 indice = int(pktData[1])+1
 elif str(pktData[1]) == "1":
 indice = 2

 if not is_matching(tmp_h_table[nextNode][indice]):
 return
 else:
 nextNode = nextNode - 1
 while True:
 if (db._get_var_name(ruleBDD, nextNode)) == pktData[0]:
 break;
 else:
 nextNode = nextNode - 1

 if str(pktData[1]) == "0":
 indice = int(pktData[1])+1
 elif str(pktData[1]) == "1":
 indice = 2

 if not is_matching(tmp_h_table[nextNode][indice]):
 return

 33

5.3 BDD Packet Filter vs SSBDD Packet Filter

The explanation of SSBDD generation and traversal is done in the previous section

in detail. To see the practical approach of SSBDD, a single rule is provided to both

the BDD’s – BDD packet filter and SSBDD packet filter. This provides a clear

overview of how the packet filter works at the filtering level. Since the BDD requires

the rule to be converted into binary format so the binary equivalent of the rule is

written instead of it’s decimal format. The Table 6 contains the Binary equivalent of

the rule.

if not is_matching(tmp_h_table[nextNode][indice]):
 return

 elif str(nextNode) == "-1":
 nextNode = len(tmp_h_table)+1
 if (db._get_var_name(ruleBDD, nextNode)) == pktData[0]:

 if str(pktData[1]) == "0":
 indice = int(pktData[1])+1
 elif str(pktData[1]) == "1":
 indice = 2

 if not is_matching(tmp_h_table[nextNode][indice]):
 return
 else:
 nextNode = nextNode - 1
 while True:
 if (db._get_var_name(ruleBDD, nextNode)) == pktData[0]:
 break;
 else:
 nextNode = nextNode - 1
 if str(pktData[1]) == "0":
 indice = int(pktData[1])+1
 elif str(pktData[1]) == "1":
 indice = 2
 if not is_matching(tmp_h_table[nextNode][indice]):
 return

 34

Protocol 0000 0110

Source IP 11000000 10101000 00100001 11110111

Destination IP 11000000 10101000 00100000 01111101

Source Port 00000100 00011010

Destination Port 00001101 00111101

Table 6: Binary equivalent of a rule

5.3.1 BDD Packet Filter

In a regular BDD packet filter, the traversal is done by going from one field to the

another field like a regular firewall. Below is a single packet converted into its binary

equivalent. Once converted it starts from the first field and takes the entire field and

starts the traversal. In a regular BDD packet filter, the field order is fixed so they

cannot be changed. This is the limitation of this BDD because several traffic can be

rejected earlier or may be some bits are not needed to be checked in order to get the

decision.

Figure 7: BDD Packet Filter

 35

5.3.2 SSBDD Packet Filter

In SSBDD filter since the field order can be changed based on the traffic analysis

which shows what fields are more important than the other. Another important factor

which was discussed in detail in Chapter Split Size, deciding how many bits to check

from each field before moving on to the another field.

Since at the beginning there’s no traffic log to analyze so SSBDD will go with a

default option of setting the property to the following values

<field order = protocol, source ip, destination ip, source port, destination port>

<split size = 8>

Figure 8: SSBDD Packet Filter

In Figure 8 it is visible that instead of checking the entire field at a time, SSBDD

takes 8 bits from each field and then goes to another field. The advantage here over

the BDD packet filter is the necessary bits are not checked at the first stage instead

they are delayed for the next stage. This gives a performance improvement to

SSBDD which can be very useful when there’s a high amount of rejection traffic.

An interesting question about the BDD approach is with regard to how robust the

BDDs are to the access list rule structure. Techniques such as RFC, cross-production

 36

and the tuple space search rely heavily on structured access lists for good

performance – some even become unusable in extreme conditions. This question is

tackled in Chapter 6 once the experimental evidence has been presented.

 37

Chapter 6: Analytical Discussion of the SSBDD

The previous chapter provides a framework for the construction of SSBDD,

representations of access lists and using them to perform lookup in packet filters.

This chapter presents an analytical discussion into SSBDD approach to packet

filtering. The main reason behind this chapter is to discuss the computing aspects of

the SSBDD packet filter and get an overview of the lookup time.

The discussion begins into what SSBDD representations of access lists look like and

what determines the structure of these SSBDDs, since the shape and size of a

SSBDD directly affects its time and space performance. Then the discussion goes

into the bounds for, as well as factors affecting, the lookup time of the BDD packet

filter, while the next section discusses factors affecting memory usage.

6.1 SSBDD Representation of Access List

The SSBDD representation of an access list is a regular BDD and it describes at a

lowest level of what packets are accepted or rejected by the packet filter. SSBDD

contains two nodes 1 or 0 which are the terminal nodes, where 1 means the packet is

Accepted and 0 means the packet is Rejected. Every node in the SSBDD refers to a

particular bit in the packet header. Reaching to the terminal node 0 – rejection node –

has more than one path and the same applies to the acceptance traffic as well, so

these complete set of paths for rejection and acceptance is the entire search space of

the SSBDD.

To understand the concept of the access list in SSBDD let’s consider a demo access

list shown below in Table 7. This list accepts only TCP and UDP type traffic and

from the certain IP address as mentioned in the access list itself. Although this is a

somewhat an unlikely access list in a real world scenario, it does share some

properties with real access lists which is important to understand the sections to be

 38

discussed ahead. This access list is going to be used in the rest of this chapter to

explain the sections ahead.

Rule

Source Addr Destination Addr Source

Port

Destination

Port

Protocol

1 192.168.1.10 10.23.12.43.2 9000 80 TCP

2 172.16.2.12 80.75.45.3.12 10234 80 TCP

3 192.168.3.10 98.3.12.5 8769 878 UDP

Table 7: Sample Access List

There are many factors that can affect the structure of the SSBDD, not all the factors

can be controlled but there are few factors which can be controlled. Those factors

were discussed in detailed in the Chapter Packet filter optimization and Chapter Split

size. Field ordering is one factor that can improve the performance of the firewall’s

packet filtering. If the field order is chosen correctly, then it can improve the

performance of the packet filter. In a regular BDD based packet filter the field order

is fixed and cannot be changed so the factor of field ordering is not considered. The

shape and size of a BDD representing an access list are affected by various factors

such as the number of nodes, number of variables and BDD depth, which in turn

affects the performance of the SSBDD packet filter.

Of the factors affecting the structure of the BDD, some can be controlled and others

cannot. The two main factors involved are the access list itself and the variable

ordering of the BDD. The variable ordering of the BDD can be manipulated to

improve the performance of the packet filter, whereas the access list is generally

fixed. Variable orderings can also often be chosen to take advantage of the rule

structure in the access list. The next two sections discuss how these factors affect the

structure of the BDD.

 39

6.1.1 The Effect of Rule Structure

SSBDD consist of number of variables and these variables are reference to the

packet header bits of the access list. This illustrates two points. Firstly, during the

SSBDD construction the variables that are not needed are automatically excluded in

the construction process. This optimization is very useful as it can affect the

performance of the SSBDD overall. Second point, the number of variable in SSBDD

is completely dependent on the complexity of the access list. The more specific the

rule is the more variables an SSBDD will need.

Common values in the field is also another factor that can affect the SSBDD of the

access list. Rule that share common values with another rule can often help the

SSBDD to generate less variable. For example, Rule # 1 and Rule # 2 shares the

same destination port i.e. 80, so during the SSBDD generation time both the rule will

share the variables but will have different exit points. This aggregation of similar

values greatly affects the size of the BDD, since the degree to which expression in

the BDD can be shared determines the number of nodes required for the BDD. In a

simple statement, the more data the rules share the less variables the SSBDD will

need.

6.1.2 The Effect of Variable Ordering

The variable ordering chosen for the example has the source address first followed

by the source port then destination address then destination port and then protocol at

the end. During the lookup the source address will always be checked first but what

if the packet that is coming is not a TCP or a UDP protocol. Even though if the

addresses the packet will still have to go through the first field and then get rejected

at the end. If a different variable ordering is used – for example having the protocol

 40

field appearing as the first testing for every packet, then the packet filter may be able

to reject packets early. Since the protocol has the smallest field size so less number

of bits will be checked.

Changing the field ordering does not change the semantics of the SSBDD for any

given access list as they are semantically equivalent. The only change in the SSBDD

will be its structure. The number of nodes, the path lengths, and the order in which

the variables appear from root node will be different.

Different field ordering will have a different affect on the overall SSBDD structure.

It is very common to see that on ordering can reduce the path lengths or vice versa.

The memory usage of SSBDD is completely dependent on how long is the SSBDD.

The bigger the SSBDD the more memory it will take which will in turn take more

time to traverse the SSBDD. So it is safe to make this assumption that different

variable ordering creates different space-time tradeoffs.

6.2 Performing Lookup on a SSBDD

The SSBDD algorithm starts from the first node – root node, checks the value and

follows the appropriate edge of the node. This process will continue until the the

terminal nodes is reached. If the the terminal node is 0 then the packet is rejected or

accepted if the terminal node is 1. So, the time taken by the SSBDD to reach a

specific decision is equivalent to the length of the path traversal the SSBDD follows.

6.2.1 Worst Case Analysis

The worst case in SSBDD occurs only when the SSBDD traverses the longest path to

reach the terminal node. In other words, it can be assumed that, the worst case occurs

when the SSBDD traverses most of the nodes in the SSBDD.

 41

 The upper bound of the SSBDD structure defines how many nodes the

SSBDD will traverse in its worst case scenario. Since the variable needed to

create the SSBDD is based on the rule structure so the worst case scenario of

the SSBDD will never exceed the maximum number of nodes used in the

SSBDD.

 In the worst case scenario, the SSBDD is meant to traverse majority of the

nodes. But to represent any given rule in SSBDD it needs n variable. So the

SSBDD will never exceed more than n variable to reach a decision. The

lower bound of the SSBDD will always be either exactly the n variable

needed to represent the SSBDD or less than the n variable.

6.2.2 Best Case Analysis

The best case of the lookup algorithm depends on the variable ordering of the

SSBDD, so different SSBDD will lead into a different result. Best case in SSBDD

occurs only when the SSBDD choses the shortest path from the tree to reach a

terminal node. In majority of the SSBDD the best case can occur during the

matching of the protocol field since it requires maximum of 8 nodes.

It also worth noticing that the best case of SSBDD can also be reduced from 8 nodes

to 4 nodes comparison. For example, if taking the protocol field, it requires 8 bits to

represent in the SSBDD but the maximum number of protocol used in Internet traffic

is either TCP, UDP, or ICMP, which can be represented easily on SSBDD from the

first 4 bits. So the best case of the SSBDD can also be 4 nodes if the SSBDD

considers checking the first 4 bits first instead of checking all the 8 bits.

The best case scenario has little value because in real world it is unlikely to occur in

practice. If the firewall is receiving more accepted traffic, then the rejection traffic so

 42

the best case scenario will not occur as the best case scenario usually means the

packet is getting rejected.

6.3 Memory Usage of SSBDD

The memory usage of SSBDD is based on the number of nodes that are needed to

represent the access list. As shown in the Section 1 (a) and 1 (b) discusses the factors

that can affect the overall structure of the SSBDD. The same factors are discussed in

detail as a separate chapter – Split Size and Field Ordering.

In real world, the access list usually has lots of similarity between rules, this is due to

the fact that the firewall is filtering between multiple networks internally. So with

this assumption, it can be said, that the possibility of rules sharing nodes in SSBDD

is very high which in the end can reduce the overall count of the nodes in the

SSBDD. For example, if the source address in the Rule #1 and Rule #3 shares the

same first two bytes which means the nodes will be shared for the first byte in the

SSBDD. These little factors can greatly contribute to the structure of the access list

in the SSBDD.

Predicting the number of nodes that the SSBDD will take is not possible as it is

shown earlier that it can vary based on the field ordering. But having the knowledge

of the access list can help to understand the right field order for the SSBDD in order

to create a better and compact structure.

 43

Chapter 7: Architecture and Simulation

Experimental evaluation is the predominant technique used in this research for

evaluating the SSBDD packet filter and fulfilling the research objectives. Evaluation

is achieved by comparing the SSBDD packet filter to a packet filter that evaluates its

rules sequentially. Two sequential packet filters are used for comparison and details

regarding these are given later.

In order to achieve meaningful and generalizable results, it is important for the

experimental methodology to provide an experimental environment that is as realistic

as possible. This chapter is devoted to discussing how this is achieved, starting with

the overall experimental setup and then investigating its components separately.

First the implementation part of the system is discussed in detail with all of it’s

module involved in it. This is followed by an explanation of the simulation

environment, which discusses the technical specs of the system used to evaluate the

performance of both the BDDs. The next section discusses the Simulation Data that

is used by the system to evaluate the performance of the BDDs. At end the Timing

section will discuss how the performance is evaluated for the BDDs.

7.1 System Implementation

This section discusses the specifications of the packet filters in this research, as well

as some important factors affecting their design and implementation. It then presents

the implementations of the SSBDD and list-based or field-based packet filters.

7.1.1 Packet Filter Specification

The key requirement of the proposed packet filters used in this research is that they

be stateless, meaning that the decision of whether to accept or reject a packet is

based on each packet individually, independently from what happened in the past.

 44

This forces each filter to invoke its lookup algorithm for every packet. The proposed

packet filters are not required to handle fragmented packets since fragmentation can

be resolved with caching, which is not the part of the research focus.

Furthermore, each packet filter must allow filtering of IP packets on the following

fields:

o Source and destination address(es): Single IP addresses are accepted the current

research work does not support the use of masking in the IP address.

o Source and destination port numbers: Single numbers only are accepted. 

o Protocol type: This refers to the transport protocol type. Accepted values are

TCP, and UDP

If any field is omitted from a rule, it is skipped from and the packet filter moves to

the next packet. For example, if the protocol field is ICMP then the packet is not

considered since there won’t be any source and destination port number given for it.

Finally, each packet filter must support the two actions PERMIT and DENY.

7.2 Coding and Modules

The programming language used to implement the SSBDD packet filter is Python.

The code to implement the regular Binary Decision Diagram is already implemented

in [1]. The SSBDD’s coding work is basically an extension to the Tyler’s [1] work.

The regular BDD implementation shown in [1] is based on the research work

conducted in [2].

 45

Figure 9: Modules of SSBDD implementation

Figure 9 shows the name of the 3 important modules for the SSBDD implementation.

The above are not the only modules of the system, there are many more modules

used behind the system but explaining that is not necessary. The main working of

these implementation are as follows:

7.2.1 RunMe.py

This is the main module of SSBDD. The simulation starts by executing this file

which then calls the rest of the other files. In order, to execute the module there are

certain prerequisite that should be met.

The following are the pre-requisite that is needed to execute the module RunMe.py

 The config.py file must be present, this file defines the two parameters

that were discussed in the earlier chapters – field ordering and split size.

Formula.py

MatchRule.py

RunMe.py

 46

 CSV file that contains all the rules needed for the given simulation. The

rules must be in CSV format and the structure of the rules should follow

the structure give below:

<ip.proto,ip.len,ip.src,ip.dst,tcp.srcport,tcp.dstport,tcp.flags,udp.srcport,udp.dstp

ort,icmp.type,icmp.code>

 CSV file that contains all the packets needed for the simulation. The

packets must be in CSV format again and also the structure must follow

the same structure as mentioned for the rule file.

This module at the end will provide the following outcome.

 Calling the other necessary modules to generate the BDD and SSBDD.

 Performing the packet filter.

 Displaying the CPU Performance Time for both the BDDs.

 Displaying the count of Accepted, Rejected, and Total Traffic received by

the packet filter.

7.2.2 Formula.py

In order to generate a BDD, the rules first must be converted into a Binary equivalent

and then the binary formatted rule is then converted into a Boolean expression or a

formula. All that conversion process is taken care by this module.

This module is not called independently, instead it is called by the RunMe.py

module, and it only asks for a file name that has the rules in it. The following are the

task that this module will perform in order to generate a single binary expression or a

formula which is then written into a file.

o Reading the CSV rule file line-by-line.

o Converting the rule into a binary format.

 47

o Converting the binary formatted rule into a formula or boolean expression.

o Writing the generated formula into a file.

Once this module is executed, the program will generate a single binary expression

for the entire rule set given to it. And also, if the user asks, a graphical BDD and

SSBDD. The option of generating the graphical BDD and SSBDD is usually

disabled as it consumes lot of CPU Processing Time which is not necessary.

7.2.3 MatchRule.py

This is the final module and it is called when the BDD and SSBDD have been

generated for the provided rule set. It is not executed independently; it is called by

the RunMe.py module. The following are the pre-requisite of this module: -

 Needs the reference to the generated BDD and SSBDD for the given rule set.

 CSV file that contains all the packets needed for the simulation. The packets

must be in CSV format again and also the structure must follow the same

structure as mentioned for the rule file.

The outcome of this module is to go through each packet one at a time and then

perform a matching by traversing the BDD. At the end, the result of accepted and

rejected traffic is given to the main module.

7.3 Other coding modules

The above were the only coding modules that were implemented from the scratch.

There are other modules too that are called in the background in to generate the BDD

and SSBDD. The packet filtering or traversing BDD and SSBDD module is a part of

MatchRule.py which is explained in the previous section.

 48

Figure 10: Other Coding Modules.

The above are the rest of the two modules which are implemented by Tyler’s, the

code is open-source and it can be downloaded from (Tyler). The two modules are

dependent on each other and with these two modules none of the above modules

would run.

7.4 Simulation Environment

In order to simulate real packet filtering scenarios, an Amazon Web Server was used

to run the system. Running the system on a regular machine takes days to execute

even with a lowest traffic volume. The simulation environment uses just one server

and the same server traverses the rules file first and converts it into a BDD and

SSBDD. Then the packet file is read and it is passed against the rule.

To evaluate the performance of the system, CPU Processing Time is considered and

it is started right when the rule is read by the system and stops when all the packets

have been parsed by it. The specification of the server on the AWS are as follows: -

PBL

[Python
Boolean
algebra
Library]

PLY

[Python
binding to Lex
and Yacc]

 49

Processor Type Intel Xeon E5-2666 v3 (Haswell processor)

Processor Speed 2.9 GHz

CPU Count 2

RAM 3.75 GiB

Hard Disk Drive 40 GB SSD

Table 8: Specification

7.5 Simulation Dataset

In this section we describe the data used in the experimental study. The data set used

in the experimental study is obtained from a CAIDA. The data provided by them

consist of around 17 million packet header information.

The demo of the packet header is shown below. Not all the data mentioned in the

dataset is used. For e.g. for the simulation purpose of our system only source ip,

destination ip, source port, destination port, and protocol field is used rest all the

other fields are skipped.

<ip.proto,ip.len,ip.src,ip.dst,tcp.srcport,tcp.dstport,tcp.flags,udp.srcport,udp.dstport,

icmp.type,icmp.code>

7.6 Simulation Framework

The framework used for the simulation purpose act like any regular firewall and

requires a set of rules and packets to process. The dataset that is been used for the

evaluation purpose does not contain any firewall rules. So randomly packets were

chosen from dataset and were used as a firewall rule. By default, all the firewall

rule’s action property was set to Allow. Since the packets whose rule exist in the

firewall and whose Actions is either Allow or Deny will traverse the entire BDD. But

the main focus of this research work is for early packet rejections.

 50

The simulation performed on the system were different each time with a different set

of firewall rules, different amount of traffic, and mostly different set of acceptance vs

rejection ratio. Since, the research work is mostly focused on early rejection, so the

amount of traffic that were passed against the firewall rules had a high rejection

ratio.

Figure 11: Simulation Framework Overview

Figure 11 gives an overview of what does the simulation framework contains. For

every simulation the three parameters as shown in the Figure 3 were changed. The

simulation was performed on both the BDD’s regular BDD and SSBDD.

Packet Filter

Rejection
Ratio

Firewall
Rule

Traffic

 51

Chapter 8: Statistics

This chapter covers the result of the experimental evaluation of the SSBDD packet

filter. In the experimental evaluation, the efficacy of the SSBDD approach to packet

filtering is evaluated in terms of lookup. For the experiments performed, two sets of

data were collected – Linear BDD and Static Shuffling BDD. The CPU Timing

functionality was implemented by inserting the code to keep track of the overall

execution time.

In each and every experiment different set of Acceptance and Rejection Ratio were

used, to see the performance of the SSBDD during different rejection ratio. This

provides a better randomness in terms of simulation and at the same time will

provide a better result to verify the performance of BDD vs SSBDD. Each

experiment has 4 sets of simulation in them, where each simulation is run twice –

once on BDD and another one on SSBDD. The statistics that are shown in the graphs

below are based on the CPU timing.

8.1 Simulation Results

This section shows the performance of the various simulations that was performed on

the BDD based packet filter and SSBDD based packet filter. Each simulation has

been performed 4 times for BDD and SSBDD based packet filter, where each

simulation has varying sets of traffic passed to it with a varying set of firewall rules

for it.

 52

8.1.1 Experiment A

Acceptance Ratio = 10% & Rejection Ratio = 90%

Figure 12: Experiment A Result

8.1.2 Experiment B

Acceptance Ratio = 5% & Rejection Ratio = 95%

Figure 13: Experiment B Result

Gain 15.31%

Gain 19.78%

Gain 15.62%

Gain 17.63%

0

500

1000

1500

2000

2500

3000

3500

4000

100,000 pkts 300,000 pkts 600,000 pkts 1 million pkts

100 rules

Linear BDD Static Shuffling BDD

Gain 17.3%

Gain 15.60%

Gain 16.70%

Gain 15.90%

0

500

1000

1500

2000

2500

3000

3500

4000

100,000 pkts 300,000 pkts 600,000 pkts 1 million pkts

100 rules

Linear BDD Static Shuffling BDD

 53

8.1.3 Experiment C

Acceptance Ratio = 95% & Rejection Ratio = 5%

8.1.4 Experiment D

Acceptance Ratio = 50% & Rejection Ratio = 50%

Gain 16.9%

Gain 16.59%

Gain 13.59%

Gain 15.54%

0

500

1000

1500

2000

2500

3000

3500

4000

100,000 pkts 300,000 pkts 600,000 pkts 1 million pkts

100 rules

Linear BDD Static Shuffling BDD

Gain 14.2%

Gain 14.78%

Gain 16.47%

Gain 16.45%

0

500

1000

1500

2000

2500

3000

3500

4000

100,000 pkts 300,000 pkts 600,000 pkts 1 million pkts

100 rules

Linear BDD Static Shuffling BDD

Figure 14: Experiment C Result

Figure 15: Experiment D Result

 54

8.1.5 Experiment E

Acceptance Ratio = 70% & Rejection Ratio = 30%

Gain 17.09%

Gain 14.59%

Gain 16.95%

Gain 14.19%

0

500

1000

1500

2000

2500

3000

3500

4000

100,000 pkts 300,000 pkts 600,000 pkts 1 million pkts

100 rules

Linear BDD Static Shuffling BDD

Figure 16: Experiment E Result

 55

Chapter 9: Conclusion and Future Work

The contribution of this research was to find an efficient way to represent the access

filters of the packet filtering firewall. Packet filtering is the mechanism that is being

implemented in every hardware or software firewall. The issue with a traditional

packet filtering firewall, they perform rule matching sequentially. So, the latency

issued by this lookup process is equal to the size of the list.

The representation technique used in this research work is based on BDD. This

follows from the fact that BDDs is capable of providing a compact representation for

complex Boolean functions. The aim of this research was for two fold, in the first

fold, a new method was proposed to provide an efficient way to represent the access

list. The second fold was to evaluate the performance of the BDD in terms of their

lookup and also memory requirements.

9.1 Future Work

This section discusses the improvement areas of the SSBDD that can improve the

performance of it. These ideas, as well as others, are discussed in this section in

detail. Some ideas require more extensive research, while others are simple enough

to be implemented easily.

9.1.1 Variable Ordering and Reordering Prediction

Variable ordering is the major factor for performance improvement. Currently in this

research, SSBDD analyzes the access list to come up with a better variable ordering

at first, since there’s no traffic to analyze. Later on after several million packets the

SSBDD then uses the traffic characteristics to choose an optimal variable ordering.

Choosing good variable orderings for lookup is most effective when traffic is taken

 56

into consideration, so an algorithm that can continuously monitor the traffic and

update the variable ordering instead of checking after every several million packets

would maximize the potential of SSBDD packet filter.

9.1.2 Updating the SSBDD

Any change in the split size or variable ordering or in the access list requires the

SSBDD to be regenerated again. SSBDD regeneration is a time consuming process,

but if the SSBDD is able to update itself incrementally then it can save a lot of CPU

processing time and improve the performance overall.

9.1.3 Considering more Parameters for Performance

As the scope of the thesis, CPU time was considered as a performance factor. But

more factors can be considered, such as – memory utilization, CPU utilization etc.

CPU utilization can give a better overview of the proposed method, in terms of how

much load it is putting on the CPU.

9.2 Conclusion

The aim of this research was to propose a new method for the purpose of

representing the access list of the firewall. This aim was achieved in two ways.

Firstly, the proposed method SSBDD was discussed in detail. Secondly, the

simulation was performed to prove that SSBDD performs efficiently. The advantages

of this approach extend beyond performance as it helps to understand other problems

with traditional packet filter.

 57

References

Cheswick, W. R. (2003). Firewalls and Internet Security: Repelling the Wily Hacker

(2 ed.). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Nikolaidis, I. (2000). Firewalls: a complete guide. IEEE Network , 14 (4), 6-6.

Ballew, S. M. (1997). Managing IP Networks With Cisco Routers (1st ed.).

Sebastopol, CA, USA: O'Reilly & Associates, Inc.

Oppliger, R. (1998). Internet and Intranet Security. Norwood, MA, USA: Artech

House, Inc.

Srinivasan, V. a. (1999). Packet Classification Using Tuple Space Search. ACM ,

135-146.

Gupta, P. a. (2001). Algorithms for Packet Classification. Netwrk. Mag. of Global

Internetwkg. , 24-32.

Trabelsi, M. M. (2014, March). A data driven firewall for faster packet filtering.

Communications and Networking (ComNet), 2014 International Conference o , pp.

1-5.

Boutaba, A. E.-A.-S. (2009, April). Adaptive Early Packet Filtering for Defending

Firewalls Against DoS Attacks. pp. 2437-2445.

Zeidan, Z. T. (2012, June). Multilevel early packet filtering technique based on

traffic statistics and splay trees for firewall performance improvement. pp. 1074-

1078.

Hazelhurst, S. a. (1998). Binary decision diagram representations of firewall and

router access lists. Department of Computer Science, University of the

Witwatersrand, Tech. Rep .

Bryant, R. E. (1992). Symbolic Boolean manipulation with ordered binary-decision

diagrams. ACM Computing Surveys (CSUR) , 293--318.

diagrams, A. i. (1997). Andersen, Henrik Reif. Lecture notes, available online, IT

University of Copenhagen .

Andersen, H. R. (1997). An introduction to binary decision diagrams. Lecture notes,

available online, IT University of Copenhagen .

Bollig, B. a. (1996). Improving the variable ordering of OBDDs is NP-complete.

Computers, IEEE Transactions , 993-1002.

Hamed, E. S.-S. (2004). Discovery of policy anomalies in distributed firewalls. pp.

2605-2616.

Al-Shaer, H. H.-A. (2006). Adaptive Statistical Optimization Techniques for

Firewall Packet Filtering. pp. 1-12.

 58

CADA. (n.d.). Retrieved March 25, 2016, from www.caida.org

Acharya, S. a. (2006). Simulation Study of Firewalls to Aid Improved Performance.

(pp. 18--26). IEEE Computer Society.

Greenberg, S. A. (2006). Traffic-Aware Firewall Optimization Strategies.

Communications, 2006. ICC '06. IEEE International Conference on, (pp. 2225-

2230).

Hamed, E. S.-S. (2004). Modeling and Management of Firewall Policies. IEEE

Transactions on Network and Service Management , 2-10.

Tyler. (n.d.). Retrieved March 27, 2016, from https://github.com/tyler-utah

Ben-Neji, Nizar, and Adel Bouhoula. "Dynamic scheme for packet classification

using splay trees." Proceedings of the International Workshop on Computational

Intelligence in Security for Information Systems CISIS’08. Springer Berlin

Heidelberg, 2009.

 Cherian, Mimi Mariam, and Madhumita Chatterjee. "Firewall Optimization with

Traffic Awareness Using Binary Decision Diagram."

Cherian, Mimi, and Madhumita Chatterjee. "Optimized Firewall with Traffic

Awareness."

Choudhari, Pragati M. "Efficient Packet Matching for Packet Filtering Firewall."

Khummanee, Suchart, and Kitt Tientanopajai. "The Policy Mapping Algorithm for

High-speed Firewall Policy Verifying." International Journal of Network Security

18.3 (2016): 433-444.

Winter, Christian. "Firewall Best Practices." Future Internet (FI) and Innovative

Internet Technologies and Mobile Communications (IITM) 1 (2016).

Hager, Sven, et al. "Minflate: Combining Rule Set Minimization with Jump-based

Expansion for Fast Packet Classification." Proceedings of the 2016 Symposium on

Architectures for Networking and Communications Systems. ACM, 2016.

Tongaonkar, Alok, and R. Sekar. "Condition Factorization: A Technique for

Building Fast and Compact Packet Matching Automata." IEEE Transactions on

Information Forensics and Security 11.3 (2016): 468-483.

Shaikh, Riaz Ahmed, Kamel Adi, and Luigi Logrippo. "A Data Classification

Method for Inconsistency and Incompleteness Detection in Access Control Policy

Sets." International Journal of Information Security (2016): 1-23.

	United Arab Emirates University
	Scholarworks@UAEU
	11-2016

	Early Packet Rejection Using Dynamic Binary Decision Diagram
	Vasiqullah Molvizadah
	Recommended Citation

	tmp.1485261670.pdf.8ANja

		2017-01-24T15:26:15+0400
	Shrieen

