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ABSTRACT 

Stable crack growth behaviour emanating from a sharp notch is investigated. Material 

chosen for tests was E 34NiCrM06 low alloy steel (akin to 4340/4330). Tests were 

carried out on CT specimens for various loading angles and ai/W ratios to obtain load vs. 

load-l ine displacement, P-tJLL, curves. Experimental results were analysed. A 

normal isation approach of P-,JLL curves has been attempted and al l  experimental curves 

were represented as a single characteristic curve . Such approach has been also applied on 

experimental data available from other experimental investigations and results were 

encouraging, as it may address transferabil ity Issue. Fracture surfaces were also 

examined' crack-front tunnell ing was obtained usmg dye penetrant technique to 

determine extent of stable crack growth. Tests on various notch sizes were also carried 

out and show that despite more than ten folds increase in notch radius, the maximum load 

increase recorded for CT was not more than 1 5%. 
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C hapter 1: I ntroduct ion 

CHAPTER 1 

INTRODUCTION 

1 . 1 MOTIVATIO N  

Long gone the days when design engineers relied on magic safety factors to account for 

the devil's work when assessing strengths of components and structures. Safety factors 

were often employed to account for uncertainties that may lead to unexpected failures in 

service. Today, engineers are more enlightened and understand that cracks are the silent 

and hidden devils that, in numerous cases, have caused fatalities and not just material 

cost. 

Modem fracture mechanics has evolved to allow the understanding of how cracks affect 

the integrity and strength of a structure. It has allowed for what is now known as damage 

tolerant design, where engineers can reliably predict strength and life of a component or 

structure despite the presence of cracks. 

Notches are common features in a component or structure that is known for being sources 

of initiation and growth of cracks. This is so because notches are stress concentrators, 

increasing stresses within their vicinity. Moreover, when servicing structures or 

components, it has become common practice for technicians and repairmen deal with 

sharp cracks when detected. One of the ways a cracked structure may be repaired is by 

1 



C h apter 1: I ntroduction 

blunting the crack-tips, usually by drilling off the tips. This is very so the case especially 

if material was tough such as steels or aluminium alloys. In effect, the sharp crack has 

become a sharp notch. 

Traditional notch design is based on notch-tip yielding. A classical yielding criterion 

would be usually used with a geometric concentration factor. This may be suitable for 

blunt notches, but for sharply notched bodies, the loading capacity is much larger than 

that load that causes yielding at the crack tip. When notch-tip "fails", a crack is formed 

at the tip, and thus one can apply fracture mechanics tools for strength assessment, by 

predicting the material response to the presence of a crack. Classical fracture mechanics 

. assumes instant failure if for a given load, a critical size is reached, or if a critical load is 

exceeded for a given crack size. 

Plastic yielding that occurs at the crack-tip complicates material response by causing 

stable crack growth, even though it does add to material toughness. Evaluating a critical 

crack size for a given load, or a critical load for a given crack size in the classical sense is 

not straightforward. Numerous researches have been carried out to understand material 

response under stable crack growth, but straightforward resistance assessment is yet 

pending. 

Therefore the motivation in this current investigation is to investigate the stable crack 

growth behaviour of specimens with sharp notches with various notch sizes and loading 

angles. Material chosen was low-alloy steel, EN 34NiCrM06, which is a typically 

"tough" material common to numerous engineering applications. 

2 
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C h apter 1: Introduction 

1.2 OUTLINE 

This thesis is presented in 3 parts. The first part, in chapter 2, would present a literature 

review on stable crack growth behaviour and recent attempts at characterisation and 

modelling. The second part would present the material and experimental set-up usecl in 

chapter 3, and then will present results with discussion in chapter 4 .  In the final part, an 

interesting finding during experimentation, regarding the effect of machining on stable 

crack growth, would be presented in chapter 5, followed by a summary of the findings 

and recommendations for future work, in chapter 6. 

3 



C h apter 2 :  Literature Survey 

CHAPTER 2 

LITERATURE SURVEY 

2.1 CLASS I CAL L I N EAR E LASTIC F RACTURE M EC HAN ICS 

The basis of Linear Elastic Fracture Mechanics (LEFM) is  stress-field characterisation 

within a cracked elastic body in terms of a stress field intensity parameter, K. The 

material's toughness is then evaluated as the limit of stress-field strengths that it can 

withstand. Using traditional linear elasticity theory, the approach was developed during 

the late half of the 20th century. LEFM approach forms the foundations of modem 

fracture mechanics, although there are problems with the theory and thus its application is 

limited as would be seen later. 

2 . 1 . 1  Stress I ntens ity, K, a n d  Crack-T i p  S tress Fields 

The overall stress field of a cracked elastic body can be determined by summmg 

contributions from three idealised modes of crack loading: opening tensile mode (mode 

I), in-plane shear mode (mode II) and out-of plane shear mode (mode III) as shown in 

Fig. 2.1. Using linear elasticity, solutions to the resulting boundary value problem can be 

obtained, depending on geometry and crack-loading mode. 

4 



C h a pter 2: Literature Survey 

Various researchers ha e indeed derived solutions for the crack-vicinity stress fields. The 

general fonn of the stress field in a cracked elastic body, can be expressed as an 

asymptotic expansion series [ 1 ] :  

(2. 1 ) 

where r, and e are defined as in Fig 2.2, Ao. AI, A2 . .  are constants, Ji.,(t?J. gij (J)(t?J, 

glj (2)(t?J, gij (3)(t?J are known functions of e, and k is a stress-field intensity parameter, 

more commonly defined as K, such that: 

(2.2) 

ow taking the limit of the stress field to near the crack-tip ( i .e .  crack-tip vicinity), the 

stress field becomes dominated by the first "singular" tenn and hence higher order tenns 

become insignificant, i .e .  [ 1 -4 ) :  

For mode I :  

For mode I I :  

For mode I I I :  

1· . .  (1)- �f. (I) (e) 1m O"y - r;;- ij 
r40 ...; 2w 

I· (11) - � f. (/1) (e) ImO"y - � IJ 
r40 ,,2w 

l· (flf) - K 1If f. (Ill) (e) 1m O"'j - r;;- IJ 
r40 ,,2w 

(2.3 .a) 

(2 .3 .b) 

(2 .3 .c)  

where K" Kn and Km are the stress intensities for mode-I, mode-I I  and mode-III  

respectively. 

Now, considering pure Mode-I loading of crack, the nonnal stress, cryy, at e = 0°, 

Eq(2.3.a) becomes simply: 

5 



Chapter 2 :  Literature Survey 

(2 .4) 

Various solutions for K can be found in stress intensity handbooks such as Murakami's 

Stress Intensity Factors Handbook 1 5 ] .  Generally, K for mode-I loading, K/, has the form: 

(2 .5) 

where Y is a configuration factor, 0" ""  is  far-field stress and a is  crack size. 

Fracture behaviour, in the context of LEFM, presumes that a crack would grow unstably 

to cause catastrophic failure once a critical value of stress intensity, Kc, is reached. Such 

Kc can be corresponded to a critical load value, PQ, which can be determined 

experimenta l ly.  When critical load is applied, it causes the formation of finite crack 

growth. The initiation of such finite crack growth causes release of stored potential 

elastic-strain energy, which in tum causes formation of additional crack growth with 

additional release of potential strain energy; in effect causing a positive-feedback loop 

leading to unstable state of crack growth. The critical stress intensity factor, Kc (KJC for 

mode-I) ,  is therefore regarded as the fracture toughness of the component or structure in 

question. 

2 . 1 .2 L im itat ions of L i near E lastic Fractu re Mecha n ics 

Generally, the various stress fields presented in Eq(2.3.a-c) are inversely proportional to 

the square root of distance from crack-tip, r: i .e .  

0" .  oc j; IJ 
r 

(2 .6) 

This implies that, as r gets closer to the crack tip, the stresses would be unrealistically 

high; i .e .  stresses would be much beyond any material's ultimate strength. Indeed 
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C h apter 2 :  Li terature Survey 

theoretical ly, the stTess is singular (tentatively infinite) at crack-tip (when r = 0). If the 

material is ductile, yielding is supposed to occur at much lower stresses, and as a result, 

associated load rel ief, and stress redistribution occur within the vic inity of the crack-tip. 

Real stresses are therefore far from the proportionality presented at Eq.( 2.6) and puts the 

applicability of K into question. The extent of yielding at the crack-tip, known as crack-

tip plasticity, is strongly related to the material's abi lity to deform at that region. 

2 . 1 . 3  Effect of S tress State at C rack Ti p :  Stress Triaxial i ty and Co nstra i nt 

One fundamental factor affecting plasticity at the crack tip is state of stress (stress 

triaxiality). The state of stress at the vicinity of a crack tip in ductile materials affect 

significantly its plasticity· plane-stress tends to promote crack-tip plasticity while plane-

strain inhibits (constrains) such process. Specimen geometry, and more specifically the 

thickness, has the strongest influence on the state of stress, which is also known in the 

trade as "constraint". Generally, speci men thickness affects out-of plane constraint while 

specimen width (planar size) affects in-plane constraint [ 6 ] .  Constraint is quantified in 

terms of the stress triaxiality ratio, h,  defined as the ratio of hydrostatic stress, O"h, to 

effective (Von-Mises) stress, O"e [ 7 ] : 

h= O"h = 0") +0"2 +0") 
O"e 3�0")2 + 0"/ + 0")0"2 

(2 .7) 

Plane-strain state of stress has highest triaxiality ratio (constraint) while plane-stress has 

lowest triaxial ity ratio (constraint). This  is i l lustrated in Fig. 2.3 where thickness effect on 

mode-I fracture toughness (KI) is shown. Other common factors that affect stress 

triaxiality are shown in Fig. 2.4.  
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2.1 .4 P l astic Zone S izes 

Various researchers have carried out analyses to evaluate the extent of yielding ahead of a 

crack-tip, also known as plastic zone size. As reported in refs. [ 1 -4 ] Barenblatt and 

Dugdale conducted a simple elastic analysis for plane stress condition and their analysis 

suggested that plastic zone size, rp can be expressed in terms of stress intensity, KJ and 

yield strength, O-ys: 

7r K, 
r <- --

( )2 
P -

S o-YS 
(2.S.a) 

while I rwin, as reported in ref. [ 1 ] , a lso conducted a similar analyses and suggested that 

for plane stress: 

This is relatively bigger than rp for the case of plane strain, where : ( )2 
1 K, 

r < -p 
- 37r 0-YS 

(2.S.b) 

(2.S.c) 

Note that Eq.(2.8.a) and Eq.( 2.8.b) differ by about 20%, which shows the approximate 

nature of analyses used. More other detailed (and more accurate) analyses were 

conducted by other researchers and can be found in [ 1 , 2, 4 ] . 

2.1 .5  Smal l S cale Yiel d i n g  

Complexities of crack tip plasticity and associated stress fields and the dependence on 

constraint have prompted early research to consider the case of least yielding, i .e .  plane
,
-

strain fracture, as a material property characterising the materia l ' s  resistance to crack 

growth. In plane-strain fracture behaviour, high constraint condition implies l imited 

S 
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crack-tip yielding. rack-tip stress fields, derived with the use of Linear Elastic Fracture 

Mechanics (LEFM) analyses, can be applied provided that crack-tip yielding is very 

limited. Such condition of limited crack tip yielding is known as small scale yielding 

condition, i .e .  the size of plastic defom1ation or plastic zone at the crack tip is limited to 

al low linear elasticity assumption (and hence LEFM) to be valid. Note that in Fig. 2.3 ,  

the K, value becomes minimum and insensitive to thickness dimension, B, at  plane-strain 

. 

fracture. This has been experimentally shown to occur when the following condition is 

satisfied [ 1 -4, 8 ] :  

(2.9) 

Eq.( 2.9) describes the geometry restriction in ASTM E399 [8] for plane-strain fracture 

toughness. Other restrictions related to small scale yielding conditions also exist for Krc 

measurement: most noteworthy is ratio of c ritical load, PQ (95% secant), to maximum 

load, Pma.x, [1,8], which can be written as: 

(2. 10) 

As mentioned before, PQ is regarded as critical load causing initiation of unstable crack 

growth and is therefore used to determine K/c. 

2.2 TH E P H E N O M ENON O F  STABLE C RACK GROWTH 

Many tough materials do not exhibit unstable crack growth and catastrophic failure once 

crack growth has initiated, rather they exhibit an apparent increase in toughness, i .e .  

stable crack growth behaviour. In stable crack growth, the critical load required to 

produce a finite crack extension increases with crack growth. 

9 
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table crack growth is attributed to irreversible processes, like plastic deformation, 

viscoelastic flow, martensitic transformation, microcracking etc . ,  that have accrued 

within the vicinity of the crack-tip. The very high stresses that exist at the vicinity of a 

crack-tIp have promoted such irreversible processes. Fig. 2 . 5  shows examples of various 

irreversible processes for different types of materials. For metals, the main irreversible 

process leading to stable crack growth is plastic dltformation (yielding). Such irreversible 

processes have been dissipating some (released) potential strain energy during crack 

growth and hence any further crack growth would require reimbursement of this "spent" 

potential strain energy which requires load on the cracked member/component to be 

. increased. 

Stable crack growth behaviour can be observed through mechanical response of a fracture 

specimen in a fracture test. Typical fracture specimens are shown in Fig. 2 .6. Preparation 

of fracture specimen usually involves fatigue pre-cracking to obtain a relatively sharp and 

a straight-through crack front. In most fracture tests, load (P) vs. load-line displacement 

(Ltu) (or crack-mouth opening LteMo) and/or load vs. crack growth (Lta) data are recorded. 

Figs. 2 .7  and 2 .8 show typical plots of stable crack growth behaviour. 

Typical load response of a cracked specimen may be characterised into three distinct 

behaviours, as shown in Fig. 2 .7 :  linear elastic response, initiation Istable crack growth 

and unstable crack growth/failure. 

In the first phase of linear elastic response, no crack initiation/growth is observed and the 

P-Lt of the cracked specimen can be predicted using the constitutive linear elasticity laws. 
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Although no macroscopIc crack initiation/growth has been observed at this phase, 

irrever ible proce se have been occurring within the vicinity of the crack tip, though 

limited and negl igible - as these processes have not accrued enough to affect behaviour. 

If loading-unloading cycles were to occur in this linear elastic region, accumulation of 

such processes wou ld eventually lead to fatigue crack initiation, fatigue crack growth and 

eventual failure. However, for quasi-static loading, one can fairly claim that nearly all of 

the work done on the specimen, in deforming the specimen at this linear elastic phase, is 

stored as potential elastic-strain energy that is recoverable upon unloading. 

In the second phase, these irreversible processes have accrued enough to cause crack 

growth initiation, at initiation load, Pi, and stable crack growth. Note that prior initiation, 

the specimen has departed from a l inear elastic response and, provided the material can 

yield, the crack-tip would blunt. In this phase, the crack would grow intermittently (in 

spurts) with increased loading until a maximum load, P max, is reached. During this phase 

stored potential strain energy is released. This released strain energy is insufficient for a 

sustained crack growth due to the irreversibilities mentioned earlier - and hence leading 

to finite and intermittent growth behaviour. At maximum load, the potential strain 

energy released in a crack growth increment would just suffice the formation of new 

crack surfaces as wel l as the associated irreversibil ities. 

Further crack growth increments would weaken the specimen and lead to the third phase, 

where excess potential strain energy is released and maximum load can no longer be 

supported. In the case of load-controlled loading, uninterruptible (unstable) crack growth 

and catastrophic failure would occur at maximum load. In the case of displacement

control led loading, further crack growth is accompanied by load shedding (load relief). 

1 1  
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2 .2.1 Sources of Stab le C rack G rowth 

Generally, stable crack growth behaviour can be attributed to two main sources that affect 

yielding process' state of stress and material yielding (plastic) behaviour: i .e .  constraint 

and material plasticity. 

Issues regarding constraint, and its characterisation by a triaxiality ratio, have been 

discussed earlier, but worth to mention here is that many materials that do exhibit small 

scale yielding under plane-strain (i .e. full constraint) conditions can and do show stable 

crack growth at lower constraint conditions, when plastic yielding is more significant. 

. A material that shows high plastic ity can exhibit stable crack growth behaviour at plane-

strain (high constraint) conditions. This is the case in metals exhibiting high 

ductility/toughness, where small scale yielding would only be satisfied at prohibitively 

thick specimens. However, such materials may not necessarily exhibit stable crack 

behaviour at plane-stress condition. In such cases continuous crack blunting and global 

yielding may dominate with very limited crack growth occurs. 

2.2.2 Theories of P l astic Behaviour 

The plastic stress-strain behaviour of a material can be described in terms of Ramberg-

Osgood Relationship [ 1 ]  where: 

(2 . 1 1  ) 

where co and (Yo are yield strain and strength, n is known as a plastic-hardening exponent 

and a is a constant. 
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It may be useful here to recall two general theories of plasticity :  deformation theory and 

incremental theory of plasticity. In deformation theory of plasticity, a unique (plastic) 

stress-strain relationship based on effective stresses and strain is presumed to exist, which 

is independent of the state of stress [9]: 

I 

I (Y I £ = - + £ 
E P 

(2. 1 2) 

where £' and (Y' are effective (Von-Mises) strain and strength, and £p' is effective plastic 

strain. 

Here, there is no indication of " incidence" of plastic strains, plastic strains would occur 

uniquely at a specific applied stress (beyond yielding): i .e .  no discrimination between 

loading and unloading behaviour. Therefore, deformation theory of plasticity is said to 

imply loading path independence. In incremental theory of plasticity, the differential of 

plastic strains and stresses are considered. Therefore, loading/unloading (stress 

differential) does affect the resulting plastic strains and loading path dependence does 

therefore exist [9]. 

2 . 2 . 3  Features of Stable C rack G rowth 

There are distinct features on a fractured specimen surface that do indicate stable crack 

growth behaviour. Generally, such features are related to plastic yielding in some form or 

other and are shown in Figs. 2.9-12 and are as fol lows 

1 - Stretched Zone, Fig. 2.9: When a fatigue pre-cracked specimen is loaded, crack-

tip blunts before any crack growth occurs. When crack growth does occur, the 
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history of the initial crack blunt can be seen on the fracture surface and is termed 

the stretch-zone width ( ZW). Usually stretched zone can be seen from Scanning 

Electron Microscope (SEM) fractographs. 

2- rack Front Tunnell ing, Fig. 2.10: As mentioned before, plastic yielding is 

dependent on state of stress, as well as yielding behaviour. The state of stress 

however is not constant throughout the thickness of specimen; at the surface 

exists a purely plane stress state of stress, while at the core (mid-thickness) higher 

triaxiality exists . This implies that plastic zone development is relatively limited 

at the core-thickness of the specimen and therefore crack growth would occur at 

the core prior to crack growth at the surface, leading to a progressively curved 

crack-front growth. 

3- Slant Fracture, Fig. 2.11: Slant fracture is typical for stable crack growth 

behaviour involving significant low constraint i .e .  dominance of plane stress 

condition. In such cases orientation of the plane of maximum shear, at 45° 

transverse to the crack front, causes the crack to progressively grow into that 

plane. Note that, as mentioned before, when the material exhibits high yield 

capacity, stable crack growth can occur even at plane strain (high constraint) 

conditions . However, in that case, crack slant does not occur and flat (but 

tunnelled) crack growth does occur. 

4- Microvoid Coalescence, Fig. 2.12: The micro-mechanics of yielding involves 

formation, growth and coalescence of voids around secondary phases and 

impurities. Macroscopically, this appears as a dimpled surface .  I f  a fractured 
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specimen examined under Scanning Electron Microscope (SEM), such features 

ould be visible indeed.  

2 . 3  CHARACTERISATION/MODELLIN G  OF STABLE CRACK 

G ROWTH BEHAVIOUR 

Characterisation and prediction o f  stable crack growth has been a topic that attracted 

numerous researchers in the past two decades. However, many of these attempts were 

successful only at geometry/configuration specific characterisation of stable crack 

growth. Others demanded extensive FE modell ing and analysis; a more general 

characterisation of a material's intrinsic behaviour is sti ll pending. 

Generally, there have been various methodologies to characterising stable crack growth 

behaviour: 

1 - Extension of LEFM (R -curve approach). 

2- Elastic-Plastic Fracture Mechanics (EPFM), which includes a varied 

mix of theoretical, experimental and heuristic approaches. 

3- Local Criterion Approach; basically micro-mechanical (damage) 

modelling of ductile fracture at crack-tip vicinity. 

2 . 3 . 1  R -cu rve C haracterisatio n, KR 

The R-curve method to characterise stable crack growth is an extension of classical 

LEFM. The rationale is that if critical stress intensity, Kc, were to increase with crack 

growth, then plotting toughness, K vs. crack growth, L1a, would be a reasonable analysis 
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of stable crack growth. The obtained plot is known as KR curve. R-curve testing has been 

standardised and covered by ASTM E56 1 [10]. The resistance curve can also be 

represented by energy release rate, G, vs. Lta: 

G = K,2 

E' 
(2. 13) 

where E is effective Young's modulus depending on state of stress; it is equal to uni-axial 

Young's modulus, E, for the case of plane stress and equal to EI(l-v1). 

Typical R-curve is shown in Fig. 2.13. There is no specific geometry restriction for E56 1. 

However, there is requirement for geometry with dominantly elastic response (contained 

. yielding). Moreover, KR curves can be size/geometry dependent and generally does 

characterise the perfonnance of specific thickness rather than material perfonnance. 

There are also issues with measurements of effective crack size; should physical sizes be 

used or derived values? Derived values may involve indirect measurements, using 

unloading compliance, or using corrections to physical cracks based on plastic zone size. 

Generally, R-curve method, as per E56 1, is increasingly regarded as obsolete [11,12]. 

2 .3.2 E lastic-P lastic F ractu re Mechan i cs 

Limitations of classical LEFM have prompted researchers to look for ways to 

characterise and model crack growth and fracture behaviour for materials showing 

considerable yield capacity. The primary objective is prediction of onset (propagation) of 

crack growth. Two approaches have been developed: energy approach -via J-integral 

concept and its variants - and crack-tip deformation characterisation (crack-opening 

displacement/angle). Both approaches have been shown to be compatible [1]. 
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2.3 .2 .1  E nergy App roac h :  J-i ntegral (J,c and JR Curve) 

A conceptual path independent line-integral, termed J-integral, has been originally 

deri ed for a non-linear elast1c cracked body based on conservation of potential strain 

energy. The analogy was then proposed that since loading behaviour of a non-linear 

elastic material is identical to an elasto-plastic material (according to deformation 

plasticity theory) then the mechanical response at the vicinity of a crack in an elastic-

plastic material would be identical too. For a cracked l inearly elastic body, it was found 

that there is compatibility of J, in LEFM context, with energy release rate term, G, such 

that [ 1-4 ] :  

K2 
Jelaslic = G 

= E' (2. 1 4) 

J-integral has therefore evolved to indicate an energy-rate parameter for the case of 

elasto-plastic materials, rather than the original path-independent integral parameter [ 3 ] : 

J = _ a(UjB) 
aa 

(2. 1 5) 

J-integral has been used successfully to characterise initiation of stable crack growth, in 

terms of JIC. Recent updated testing standard exists as ASTM E - 1 73 7 [ 1 3 ]  and covers the 

measurement of several of J parameters; Jc for brittle fracture, JIC for initiation of stable 

crack growth, and Jm for J at maximum load for stable crack growth behaviour. 

Conventionally, J is measured from P-�LL plot of a fracture test. The net area-under a 

loading-unloading curve, ApI as shown in Fig. 2 . 1 4 , which represents dissipated potential 

energy, is used to measure J. 

where 

and 17pl is a geometry factor. 

J 
= Jelaslic + J pI 

J = 17plApl 
pI Bb 

(2. 1 6 .a) 

(2. 1 6 .b) 
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J has also been regarded as characterising stress fields within a cracked elastoplastic 

material, through Hutchinson Rice and Rosengren (HRR) singularity relationship ( 1 ] , 

which can be represented as:  

\ here 

and 

I 
()y _ (r)n+1 ( ) 
- - - S n B - Ij '  ()o 

r 

- () 
r =r._o 

J 

1 
= ---

and In is an integration constant and SiJ{n, B) are known functions of n and B. 

(2. 1 7.a) 

(2. 1 7 .b) 

(2. 1 7.c) 

However, issues regarding extending J to elastoplastic materials do exist due to 

fundamental difference between unloading behaviour of a non-linear elastic material and 

unloading of an elastoplastic material (according to incremental plastic ity theory) . This 

may not be applicable for a stationary (non-growing crack) but is especially true when 

crack growth occurs and unloading does result at the plastic wake. Therefore, validity of 

l-integral is limited and the notion of path independence is challenged; not to mention the 

ambiguity about what would J actually mean for the case of an elastoplastic material .  

I t  was generally accepted according to findings by Shih [ 1 4 ) that if  Lia is within 6% of 

l igament stable crack growth, J is regarded as path independent; i .e.!1a � 0.06 b . Brocks 

and Yuan [ 1 4 ] ,  however, conducted plane-stress and plane-strain studies and found that J 

is path dependent, even at crack growth amounts smal ler than that of 6% of b. This does 

place doubts on the validity of J when characterising stable crack growth. 
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To bypass the problem of effect of crack growth on validity of J, it has been common 

practice to plot J against crack extension, Lla, and in effect obtaining a crack-resistance 

curve termed of iR curve. iR curve has been indeed used commonly to characterise and 

model stable crack growth behaviour. Some researchers have extended the use of JR 

curves to define a tearing modulus, TR. 

(2. 18) 

Hence, unstable crack growth would occur if applied TR exceeds a measured critical TR 

[ 1 ) .  

One should note here that other issues, that have been a concern in KR testing, do sti l l  

remain. Neimitz et a1. [ 1 5 ) reports on the issues regarding JR testing as well as geometry 

dependence. According to Neimitz et a1. [ 1 5 ] ,  various equations that exist for iR, to 

account for crack growth, do give varying results. Also, experimental measurement of Lla 

may sti l l  differ depending on technique used; common techniques like opticaVvisual 

surface measurement, unloading compliance and electric-potential drop techniques do not 

necessarily give simi lar results. Also, one should not underestimate the complication of 

crack-tunnel ling common during stable crack growth behaviour. Neimitz et a1. have 

therefore adopted two techniques simultaneously for reliable Lla measurement [ 1 5, 1 6 ] .  

Size and geometry sensitivities d o  exist too with JR testing, especially when substantial 

deformation (plastic strains), termed large scale yielding, occurs at the crack-tip. This 

invalidates small strain assumption used in derivation of 1. Large scale yielding is very 

relevant for the case of testing specimens of relatively lower constraint; when crack-tip 
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plastic deforn1ations are comparable to thickness [ 1 ,  2 ] . Size limitations, according to 

A TM E 1 737 [ 1 3 ] ,  do e ist on specimen dimensions to ensure that values obtained are 

material specific, or in more accurate terms, insensitive to size provided limit is not 

exceeded: 

B,b ? 20 
J max 

O"y 
(2. 1 9) 

This has been obtained from extensive FE models on geometry dependence of 1. Even 

though E 1 737 allows testing of thinner specimens than that of E399 (for KId, it sti ll 

does form a limitation on size and is therefore restrictive for low constraint, when plane-

stress testing is concerned. 

Kolednik [ 1 7 ] has carried out an investigation on the effect of in-plane constraint 

(ligament size) on JR curves and found that such effects can be characterised into three 

distinct patterns: Wider-higher, wider lower and wider no-effect patterns. Wider higher 

pattern was attributed to the case of large scale yielding under plane-stress conditions. 

Wider no-effect pattern was attributed to also large scale yielding, but under plane-strain 

conditions. Wider-lower pattern was attributed to small scale yielding conditions. Shan 

et al .  [ 1 8 ]  has attempted to account for out-of plane constraint (effect of thickness) using 

a numerical "mixing" model . The fracture behaviour is arithmetically mixed via a plane-

stress fraction, /3, which is determined either heuristically or analytically for a particular 

section slenderness ration thickness, Bib. 

Recently, there have been trends to use a derivative of J, termed energy dissipation rate, 

D, to characterise resistance to stable crack growth. According to Sumpter [ 1 2, 19 ] : 
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I dAI'I b (Upl 
D =- - =- -B da '71'1 da 

(2.20.a) 

According to Brocks and Anushewski [ 20 ] ,  provide an alternative definition of D: 

( ) cUl'l D =  TV - a --

da 
(2.20.b) 

Sumpter [ 1 9 ) and, Brocks and Anushewski [ 20 )  have both provided data and results 

comparison to support their proposals, of a geometry independent characterisation. 

However, more experiments and analyses are needed. 

More successful and thorough modelling of constraint can be achieved by employing an 

additional constraint-related parameter to J. This will be discussed in the two-parameter 

approach. 

2 .3.2.2 C rack Tip O pe n i n g  D i s p l acement (CTOD) 

The CTOD, 8, has evolved from experimental observations on crack blunting [ 1 ) .  The 

exact defmition of CTOD may differ for different researchers but are generally similar as 

shO\vo in Fig. 1 5 . Indeed, it was found that CTOD was compatible with LEFM for small 

scale yielding cases. Moreover, it was found that CTOD can be related to J-integral 

through the relationship [ 1 ] :  

(2.2 1 )  

where m is a dimensionless constant that is dependent on stress state and is unity for 

plane stress. Li et a1. [ 2 1 ] examined the CTOD-J relationship through the m factor and 

found that m depends on toughness of material and crack size, alW, and much less on 

amount of stable crack growth, Lla. It was thus argued that CTOD can be a used as a 
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parameter haracterising stable crack growth behaviour. Even though CTOD is 

essentially similar to J, it has the advantage that it can be readily used in FE framework. 

Since It may be difficult to directly measure CTOD in an experiment, CTOD can be 

inferred from measuring crack opening at distance behind crack tip. Indeed various 

standards cover guidelines for CTOD testing such as ASTM E- 1 290 [ 22]. CTOD can be 

obtained at initiation of stable crack growth as 8i, or at maximum load as 8m. There are, 

however, restrictions on geometries. E- 1 290 specifies that section dimensions, for any 

specimen configuration, should be: 

B, b ? 30 5  (2.22) 

Any other dimensions would be thickness specific and not a general material 

characteristic. This is also due to issues with constraint. 

Schwalbe et al [ 23, 24] have proposed a modified CTOD definition, termed 85, measured 

not at the crack-tip, but over a gauge-length of 5 rnm behind the crack-tip. 85 has 

displayed robustness for characterising resistance to stable crack extension and has been 

proposed as part of an engineering design procedure, known as engineering treatment 

model (ETM), which has shown to be valid as other fracture-design codes, R6-3 [24]. 

Moreover, preparations are in progress to standardise measurement of 85 [11, 24) as 

parameter characterising stable crack extension. 
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2 . 3 .2 .3  C rack-tip open i n g Ang l e  (CTOA) 

A crack-tip parameter, TOA, If/, is defined in Fig. 1 6 . It is very similar to CTOD, and 

has been shown to be very useful in characterising and modell ing stable crack growth. 

CTOA can also be inferred from measured CTOD values: 

(2.23) 

CTOA as a fracture criterion has been known for some time, but problems arose with 

early research, when attempts to use 2D FE models, based on either plane-stress or plane

strain conditions, were not capable of matching experimental data, according to a review 

by Newman et a1. [ 25 ) . Experimental data shows that CTOA, at initiation, to be relatively 

high and non-constant. CTOA becomes fairly constant only after some finite crack 

extension, as shown in Fig. 2 . 1 7 . Newman et a1. [ 25 ]  attribute these modelling to the 

flawed assumption of a uniform state of stress at initiation as well as crack-tip blunting 

and tunnell ing at the crack front. Mahmoud and Lease [ 26] has investigated stable crack 

growth for an aluminium alloy at various thicknesses and has found that transition of 

CTOA values decreases with increasing thickness. James and Newman [27)  conducted a 

thorough investigation on crack tunnell ing and found that the CTOA also varied along 

the crack front. Crack tunnelling adds to complications with regard to modelling stable 

crack growth for 2D FE models. Some researchers have circumvented these problems by 

using a hybrid approach, worthy to note is plane-strain core method proposed by 

Newman et a1 .  [ 25, 28, 29]  and hybrid scheme method proposed by Shan et a1. [ 1 8 ] .  In 

the plane-strain core scheme, a finite region along the crack front is presumed to be fully 

constraint, i .e .  under plane-strain condition, while the rest of specimen is not constraint, 
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I .e  under plane-stress. Results have been shown to be compatible with experimental 

results. 

The scheme proposed by Shan et al . [30 ] is more intuitive. First, a combined state of 

stress is formulated, using a mixing factor determined from geometry, then two 

parameters were used to simulate stable crack growth:  81 for initiation of stable crack 

growth, and then CTOA for progression of crack growth. This method has been shown to 

emulate experimental results. Another FE modelling scheme, whereby crack growth is 

represented as an averaged with respect to thickness, was employed successfully by 

James and Newman [ 27 ] ,  in order to account for tunnelling. Hampton and Nelson [3 1 ]  

using 3 D  crack-front model, managed to get good predictions for failure loads for space 

module structure. 

I ssues regarding measurement of a constant CTOA have been covered by Schwalbe et al .  

[ 1 1 } . Application of CTOA in modelling of stable crack growth have been reviewed by 

Newman et al .  [ 25 ] . Newman et al .  asserts, through various experiments and simulations 

[ 1 1 ,  25, 28 ]  that CTOA can characterise stable crack growth, especially that stable crack 

growth affected by low constraint. Lam et al .  [ 32 ] ,  however, found such assertion to be 

rather optimistic and have instead used schemes that capture initial CTOA transition 

using a bi-linear approximation and found that this gives better predictions using 3D FE 

models. 

2.3.3 Two P arameter Ap proach: T -Stress, J -Q a n d  J -A2 Characterisation 

Limitations of JR curve to account for size/geometry sensitivity of stable crack growth 

behaviour has prompted researchers to look for additional parameters that can describe 
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constraint and associated stress-strain fields; most common are the T -stress, Q and A2 

constraint parameters. 

2 . 3 . 3 . 1  T -stress:  

When stress intensity parameter has been derived from the solution provJded in eq.(1 ) ,  

the first singular term was considered as dominating at  the vicinity of the crack-tip. 

However, several researchers have found that the second term, which is a constant, does 

have an influence on the development of plastic zones ahead of a crack-tip, and hence has 

potential to characterise constraint and stable crack growth [ 1 ] : 

T-stress is more conveniently described in terms of a biaxiality ratio, (3T [ 1 ] : 

fJ =
T);; r K I 

(2.24) 

(2.25) 

Generally, T-stress is considered an indicator for in-plane constraint ( ligament size effect) 

and is normally used with K to describe stress-fields. One should note that T-stress is 

independent of distance from crack-tip, r. Even though it was derived from a purely 

elastic analysis, it was found to be relevant even when significant plastic deformation 

occurs at the vicinity of crack-tip, provided that ifJr i > 0.4 [ 1 ] . 

Many researchers have found T-stress to be very useful as a constraint parameter. It has 

been included in recent European initiative, Structural Integrity Assessment Procedures 

(SINTAP) according to Ainsworth et al. [33 ] .  T-stress has also been found to be useful 

with elastic-plastic analyses. Thaulow et al. [35]  used T-stress values to derive constraint 

correction factors, in terms of TJpl factors for SENB specimens for a high strength steel 
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al loy. Moreover, Nyhus et al. [36 1  have successfully normalised experimental JR curves 

using T-stre s alues. Neimitz [ 1 6 1 has proposed a modified Dugdale model that 

accounted for T-stress contribution to geometric constraint. 

2.3.3.2 Q-parameter 

Q parameter has been proposed by O'Dowd et al .  [ 1 1 . Q-parameter, like T-stress, is 

another measure of constraint and is regarded as a triaxiality parameter. It is used in 

conjunction with J. It is, however, d ifferent from T-stress in two respects. First, it is  

derived from an HRR stress field analysis, which gives a better insight to plastic stress 

fields. Second, unlike T-stress, it is not a constant but is dependent mainly, among other 

factors, on applied load. Q is defined as fol lows [35] : 

(2.26) 

Q was initially derived using plane-strain analysis, but Ma et al .  [37] found that such 

assumption gives rise to inaccuracies. Neimitz et a l .  [ 1 6 ]  claimed, after a thorough 

investigation of stable crack growth of various specimen configurations, and using both 

plane-strain and plane-stress analyses, that Q-parameter can only qualitatively describe 

the effect of constraint on JR curves. Thaulow et al .  [35 ] ,  however, used an alternative 

definition of Q, based hydrostatic stress: 

(2.27) 

and was successful at deriving constraint corrections. Zhu and Jang [38] have also, in an 

earlier research, modified the definition of Q and successful ly normalised JR curves .  

Determination of Q, or any Q-related terms, requires extensive FE effort. Moreover, i f 2-
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o models are to be used a correct assumption of state of stress is needed; which may not 

be possible for the case of low-constraint stable crack growth. 

2 . 3 . 3.3 A2 P a rameter 

imilar to T-stress, A,? parameter is obtained through considering other "non-singular" 

terms of elastic-plastic asymptotic series expansion. Various researchers, according to 

Chao and Lam [39] , have indeed obtained asymptotic elastic-plastic solutions for the case 

of non-linear materials and have found that the first three terms of the expansion are 

needed to characterise the stress field. Generally, the three-term expansion, for mode-l 

loading can be expressed in terms of J ( i .e .  in terms of F ) and A2, according to 

ikishkov [40] : 

0"1j ( )-.!.... [-.t (I) ( )  -) (2) ( ) 2 - z (3) ( )] - = [" n+l r ,SIj n, e + A2 .r ,SIj n, e + A2 . r ,Sij n, e 
0"0 

where 
1 X = - --

1 + 11 

z = 2y - x  

and y is determined numerically. 

or alternatively, it  can better expressed as: 

I 

0" ij _ ( [" ) n+1 [S (I) (n e) + (A F(Y-X) \ S (2) (n e) + (A F(y-x» )2 S (3) (n e)] 
- _ ij '  2 ' } ij ' 2 '  . Ij , 

0"0 r 

(2.28.a) 

(2.28 .b) 

(2.28.c) 

(2.28.d) 
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A2 parameter is usually determined by numerically fitting FE results of stress fields into 

the above equation [401 . Chao and Lam [39]  developed a procedure to evaluate A2 

parameter experimentally, by equating and relating simulated 65 values to A2. However, 

Chao and Lam [39]  acknowledged that fitting was used to plane-strain FE analyses, 

which is incorrect. J-AJ method does sti ll more development. 

Generally, the several two-parameter approaches have shown their ability to characterise 

the influence of constraint and hence stable crack growth behaviour, which were 

promising. Nevertheless, one should note the F E  effort required, which were extensive 

indeed. A more straightforward method is yet to be developed. 

2.3.4 Local Approach 

Local approaches are in effect local fai lure criteria applied to a given stress field within a 

crack-tip vicinity, usually obtained from an FE model, to predict path and " instant" of 

crack growth. Traditionally, they were based on adaptations of common and various 

failure criteria. Modem local approaches are, however, based on modelling micro

mechanics (micro-damage) of ductile fracture. This is either done through modelling 

microvoid nucleation and coalescence mechanism or through a purely phenomenological 

approach called cohesive zone modelling (CZM).  

One of the most popular models developed to model micro void coalescence was that 

proposed by Gurson which was modified further by Tvergaard and Needleman [ 1 ] ; the 

[mal model is commonly known as the GTN model .  The model is a continuum model 

that assumes crack would grow when voids reach a critical size, i .e .  when void 
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coalescence occurs. The void growth is described in terms of the yield-surface function, 

(/J, \ hich is a function of hydrostatic and egui alent stresses, (Ym and (Ye, yield strength of 

the material, (Yrs. and effective void volume-fraction, ,t'. When void coalescence occurs, 

(/J =  0 [ 1 , 4 1 ] :  

• 

(2.29) 

ote that q I,q� are fitting parameters and can be determined along with f* from tensile 

tests on smooth and notched specimens. The model is then used as a local criterion for 

crack growth within an FE model . 

I n  CZM approach, a purely phenomenological model of ductile rupture is employed: 

fai lure is presumed to occur within a (cohesive) process zone - along traction interfaces 

of cohesive cells, where a constitutive relationship for traction stress vs. separation is 

assumed, e .g. l inear, bilinear or exponential . Method is very potent for a variety of 

appl ications such as interface fracture and heterogeneous materials.  For homogenous 

materials, fai lure occurs at interfaces of arbitrary cells akin to micro-structural grains. In  

a FEA framework, mesh is  used as geometrical interfaces for cohesive cells, and failure 

along interfaces forms the local criterion for macroscopic crack growth. Comec et a1 .  

[42] covered procedures for application of CZM. 

Various issues and improvisations do exist with local approaches in general and it is 

related to its application within FEA framework, most important is that of mesh 

sensitivities. Mesh sensitivities do arise due to the local nature (and hence mesh reliance) 
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of the model .  FE applications of local approaches have thus relied on "computational 

cells", rather than mesh elements, where the size of the computational cells have some 

physIcal significance, such as microstructure/grain size. Issues regarding computational 

cells and other modelling issues relating to a local approach modelling, especially when 

GTN scheme is employed has been covered by Gul lerud et al. [43 ) .  

Other issues are more particular to the methods used. Chabanet e t  a l .  [44) found that 

CZM could not account for varying triaxiality due to inherent weakness in the 

constitutive cohesive-separation laws used. Moreover, Li and Chandra [45)  found that 

various cohesive-separation Jaws give discrepancies in crack growth predictions . 
• 

GTN model ling also suffers from some particular drawbacks. The GTN model does 

accounts for microvoid coalescence but does not provide for initiation of void growth. 

Various adaptations have been proposed, e .g .  Zhang et a1 .  [46] . However, it was still 

found that high initial void volume fraction, I, and void shape do affect accuracy of crack 

growth predictions, according to Zhang et al .  [46 ) .  Moreover, Bernauer and Brocks [47] 

reported on a European round-robin that has been conducted and found discrepancies 

between predictions of various labs as well as discrepancies with experimental results. 

This has been attributed on determination of fitting parameters (e.g. j*, q I and q 2) which 

are not free from controversy and to software application of to simulate local failure 

development. Generally, GTN has been found to be very promising despite the 

discrepancies and drawbacks mentioned [46, 47 ] . Examples of successful numerical 

modelling of stable crack growth behaviour have been demonstrated by Negre et al. [4 1 ]  

and Rivalin et al .  [48 ] .  One however, should not underestimate the computational effort 

and cost of such approaches, especially when 3 D  model ling is used [44 ) .  
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2.4 MIXED-MODE STABL E  CRACK G ROWTH 

Cracks in real l i fe structures may be subj ected to more than one mode of crack-loading. 

An understanding of stable crack growth under mixed-mode loading would therefore be 

key to producing rel iable and efficient structural assessment procedures. The basic crack 

loading modes have been described earlier and are shown in Fig. 2. 1 .  The combination of 

mode-I and II loadings would be our primary interest due to its relative practical 

importance to other combinations. 

2 .4.1  M ixed-M ode Testing 

Experimental studies on stable crack growth under mixed-mode (I and I I )  loading are, 

however, not as extensive as Mode-I loading. This is mainly due to experimental 

complications associated with mixed-mode testing where one should consider the two

dimensional displacement field at the crack-tip. Also, no consistent behaviour could be 

concluded from the limited experimental results that are available to date in the literature 

as shown in  Fig 2.18 [ 50 ] .  Roy and Narasimhan [49]  and Laukkanen [50] have reviewed 

varies issues which can be summarised as fol lows: 

I -Instrumentation:  Measuring the tensile and shear displacement components directly 

poses practical insta llation problems of such systems to produce accurate readings [50 ] .  

2- Measurement o f  crack growth: There are problems with the various methods used to 

measure crack growth. The unloading compliance cannot be used, as it is a function of 

mode-mixity. Potential drop method is affected by shearing [ 50 ] .  

3 1  
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3- Crack face contact : This is espec ially true where a mode II loading is dominant. 

Contact between crack faceslflanks raises issues such as effect of friction. Although 

friction adds resistance to crack growth, it is not easily quantitatively separable from the 

material ' intrinsic resi tance to rack-growth [50]. 

4- Application of hear load :  Application of shear load generally leads to an increase in 

overall load requirement, which can be very large, especially when testing of steel alloys 

is involved. This may necessitate testing frames of relatively high loading capacities. 

Moreover, if 3 PB/4PB configurations are used, deformation of support rolls may 

contribute to the already existing measurement difficulties [50]. 

5- Range of mode-mixities: Mixed-Mode experiments involve investigating vanous 

fracture characteristics against a particular mode-mixity. Plane-strain FE studies show 

that some specimens may not be suited for a varied range of mode-mixity, i .e .  of limited 

mode-mixity [49]. 

6- J- Dominance: Maintaining plastic strains within small-strain assumption within 

crack-tip for varied mode-mixity is very desirable, mainly maintaining condition of J

dominance (i .e .  not large scale-yielding). However, some specimens may experience a 

large plastic deformation at the vicinity of the crack-tip, i .e .  large scale yielding, for 

differing mode-mixity, as shown by Roy and Narasimhan [49]. 

Various experimental arrangements that exist address part of these issues in different 

ways and have been used by researchers, although an established reliable method is yet to 

be formulated .  Fig. 2.19 summarises the various experimental configurations. 



Chapter 2 :  Li terature Survey 

Mahanty and avant [ 5 1 ] ,  and Maiti and Mourad [52 ] ,  for example, have used a 3PB 

configuration with an incl ined crack, which has been originally suggested by Ahmed et 

a1 .  [50 52) . This arrangement has difficulties in pre-cracking, where special 

arrangements and fixtures are needed to produce pre-cracks. Also, starter notches have to 

be machined into the specimen depending on the mode-mix required and thus have 

inherent limited flexibil ity. Tohgo, according to Li [53 ) ,  used a 3PB specimen with a 

straight crack, but with offset loading. A 4PB arrangement with offset loading has 

originally been suggested by Goa et a I . ,  and has been used by Laukkanen [50 ) .  3PB and 

4PB specimen configuration with offset arrangements have advantages of flexible mode

mix choice, ease of implementation to current experimental set-ups and no special fatigue 

pre-cracking equipment is needed .  However, they do suffer from the fundamental 

problems of non-rigidity, especially with increasing offset, and this can lead to errors 

with regard to measured displacements and assumed mode-mixity. 

Banks-Sills and Arcan, according to Laukkanen [50] , have suggested what is known now 

as Arcan fixture, which has the advantage of uniform mode-IT shear distribution, and is 

much more rigid arrangement. Arcan specimen has been used by Amstutz et aI . ,  and by 

Sutton et a1. [54, 55) . Aoki et a1. [56 ] ,  Roy et al. [57 )  and, Pirondi and Donne [58) have 

used a compact-tension shear (CTS) specimens, which are also rigid. Arcan and CTS 

arrangements do have the disadvantage of discrete (and thus inflexible) loading mixes, 

but their relative rigidity guarantees more reliable data . 

A modified compact tension (CT) speclillen IS similar to the conventional CT 

configuration but has an additional hole to give a varied loading angle. It is also rigid and 
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has much simpler loading configuration. Such configuration has been original ly 

suggested by akata et a1 .  according to Roy and Narasimhan (49 ] ,  and was used by 

Mahanty and Maiti [ 59 ] ,  Maiti and Mourad [60 ] ,  and recently by Mourad et a1 .  [6 1 ] . Roy 

and arasimhan [49 \ ,  however, claim that such configuration does suffer from very 

l imited mode-mixity range (close to Mode-I), even at high loading angles (45°) .  This may 

be true, but caution is needed as such claims were based 0.0 plane-strain analysis. A 

modified Compact Tension specimen wi l l  be used in this current study. 

2 .4.2 C haracterisation of mixed-mode crack g rowth 

Characterisation of mixed-mode crack growth behaviour involves three mam Issues; 

mode-mixity, criterion for onset of crack growth and direction (path) of such crack 

growth. 

2 .4.2.1  Mode M i xity 

Mode mixity defines the ratio between tensile (mode-I) and in-plane shear (mode-II)  

stress intensities. In LEFM context, if mode-I and mode-II stress intensities "vectors" are 

added, then an effective (resultant) stress intensity factor, Ke, can be defined : 

(2.30) 

Mode mixity can thus be defined as the adjacent angle to mode-I component, termed 

phase angle, '1/, [62 ] :  

(2.3 1 )  

• 
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Therefore, file = 90° for purely mode-II  loading and file = 0° for purely mode-I .  One 

should note that file is not to be confused with loading angle/ crack-inclination angle. 

Alternatively, it can be expressed in tenns of mode-mixity parameter. Me [63 1 :  

(2.32) 

So, Me = 1 for the case of pure mode-I I  loading and Me = 0 for pure mode-I  loading. 

One should note the Me and file are essentially the same since Me = (2/n) file. One should 

also note that some researchers do prefer an inverse definition, although with trivial 

difference, such that Me = 1 and file = 90° for pure mode-I loading. 

In EPFM, a local mode mixity can be defined as ratio of shear-to-tensile stress, which is a 

function of the distance from the crack-tip, r [53, 62, 64 ] :  

(0", 8 J fII(r) = arctan � 
8,8 8=0 

(2.33) 

In an EPFM context, Me and file are still relevant as far-field (or global) mode mixity [64 ] .  

Studies on elastic-plastic mode-mixity have been conducted by Bose and Castaneda [62]  

and Dhirendra and Narasimhan [64 ] .  Bose and Castaneda [62 ]  conducted an analytical 

study to detennine asymptotic stress field solutions for mixed mode stable crack growth 

in a l inear-hardening elastic-plastic material under plane strain conditions. They have 

found that stress field parameters at the crack-tip assume finite values pertaining to either 

mode-I (tensile) mode or mode-II (shear) mode. Dhirendra and Narasimhan [64] 

conducted FE studies for a power-hardening elastic-plastic material using a modified 
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small scale yielding model and incremental theory- of plasticity. 
'
They have analysed 

system \ ith arious values of n and various constraints in terms of T-stress. They have 

confirmed the notion that at the crack-tip, the stress-fields are very similar to that of 

mode-I for a wide range of remote mixity parameters, i .e. 0 < 'l/e < 60°. 

uch results regarding local mode-mixity can be correlated to experimental observations 

for crack formation (initiation) and growth under mixed-mode conditions. Pirondi and 

Donne [58 ]  reported in earlier studies that there exists a non-uniform damage field 

surrounding the crack-tip under mixed-mode conditions. This causes one side of the 

crack-tip to experience yielding and blunting under tensile stresses, while causing crack 

sharpening on the other side, under the action of shear stresses as shown in Fig_ 2 .20 .  

Mode mixity, strain-hardening exponent and microstructure are key factors that decide 

which of the competing mechanisms dominate. Usually tensile stresses dominate and 

hence a purely local mode-I type crack growth occurs. 

Generally for ductile materials, the resistance to stable crack growth increases with 

increasing 'l/e I .e .  critical load required to reach failure increases. However, there are 

cases, and specifically for some steel al loys, where increasing mode-mixity decreases the 

resistance to crack growth i . e .  the material is apparently weaker than in mode-I .  It has 

been observed that higher ductility causes this weaker mode-I I  toughness [58 ] .  

2 .4.2.2 C riteria for O nset o f  Stable C rack G rowth u n de r  M ixed Mode 

C o n d it ions 

Criteria for onset of stable crack growth are not that different from those of mode-I ,  

which have been mentioned earlier. Criteria that have been used successfully, some with 

36 



C h apter 2 :  Li terature Survey 

minor adaptations [or mixed-mode condition, like JR curve, CTOD/CTOA as well as 

local approach. Aoki et a1 .  [56] , for example, have used a J-integral variant, j as well as 

stretch zone width (SZW) measurements to characterise mixed mode stable crack growth 

in an Aluminium al loy using CTS specimen configuration. Mahanty and Savant [ 5 1 ] ,  

using 3 P B  with incl ined notch, attempted to use crack-mouth opening displacement 

(CMOD) as a characterising parameter, but their results were inconclusive. Mahanty and 

Maiti [59 )  attempted to use crack-opening angle (COA) using 3PB with inclined notch 

and modified CT specimen configurations and their resu1ts showed the COA can be used 

as a characterising parameter. Maiti and Mourad [52,  60)  have measured CTOA using 

replication technique, where crack surface details were imprinted on plasticine and have 

also used FE analyses. They also found that CTOA could be a viable criterion. Sutton et 

a1 .  [54, 65) as well as Pirondi and Donne [58) have used an adapted CTOD criterion. 

Pirondi and Donne [58) have also represented their findings using JR curve. Laukkanen 

[50 )  conducted investigations using 4PB specimen arrangement and also presented results 

using JR curve. 

I t  is worthy to mention that such characterisation attempts do still suffer from the same 

shortcomings that were faced for plain mode-I characterisation, mainly the issue of 

transferabil ity problem as well as needing a complimentary cri terion to specify crack 

growth direction. CTOD criterion as developed by Ma et a1 . [63, 65) is an exception and 

does show potential to overcoming such problems. The suggested CTOD criterion consist 

of two critical parameters, 81c and 8[[c, each correspond to 8(5) criterion in mode-I and 

mode-II fracture. Failure would occur when either components (tensile or shear) reaches 

cri tical value first. The criterion does also predict crack growth direction, according to 
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utton et al. [65 ] ,  and have shown how the criterion was used In a FE modell ing 

frame\', ork reproduced experimental data . 

2.4.2 .3  C riterion for D i rectio n  of Stable C rack u nder M ixed Mode C o n d it ions 

Under purely mode-I loading, crack is expected to grow, after initiation, in the planar 

direction perpendicular to loading. However, under mixed-mode loading (III I ), there is 

no guarantee that the crack would maintain its original orientation to loading angle. 

Indeed, the crack does bifurcate, i .e. change its original orientation. Traditional ly, several 

theories have been established for some time, mainly based on purely elastic solutions, 

which have been extended satisfactorily to mixed-mode ductile  crack growth but some do 

. incorporate elastic-plastic parameter J. Theories such as Maximum Tangential Stress 

(MTS) criterion, Maximum Circumferential Stress (MCS) criterion, Maximum Energy 

Release Rate criterion, Minimum Strain-Energy Density criterion are examples of known 

criterion in the trade. Generally such criteria are satisfactory when dominant mode-I 

loading is concerned [66 ] .  

However, observations b y  Amstutz e t  aI . ,  according to Sutton e t  al . [54, 66] ,  regarding 

mixed-mode ductile crack growth, have shown that direction sharply changes after a 

certain specific loading angle/mode mixity .  This was not captured in traditional direction 

theories. Such transition was attributed to competition between Tensile (T-type) and 

Shear (S-type) cracks, and found to be consistent with studies local mode mixity [53 ] .  

Sutton e t  al .  [65] found that proposals b y  Ma e t  al .  [63]  are very adequate; crack will 

grow in local mode-I direction if  O(5}-I reaches a critical value first; crack will grow in 

local mode-II direction if O(5)-n reaches its critical value first. Li et al. [ 53 ] ,  on the other 

hand used a combined J-Mp criterion that also captures such transition, in terms of a 
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critical local mixity, Mpc value. Howe er, such criterion was based on plane-strain 

solutions, in calculating Mpc. The method, therefore, does require further development. 

2 .5  STABLE CRACK G ROWTH EMANATI N G  FROM N OTCHES 

Most of investigations presented have addressed the issue of stable crack growth from the 

perspective that it does initiate from an existing sharp crack, usually obtained in test 

specimens via fatigue pre cracking. Stable crack growth emanating from (sharp) notches 

are limited. Indeed, only Giovanola et al .  [ 67 ] ,  Krompholz and Kalkhof [68J and recently 

Mourad et al .  [6 1 ]  have reported experimentation that have address fracture initiation 

from notches. Giovanola et al .  (67) and, Krompholz and Kalkhof [68] have both 

addressed stable crack growth of different steel alloys but for blunt notches, through 

various geometrically scaled 3PB specimens. Mourad et al .  [6 1 ]  have carried out an 

experimental investigation of stable crack growth in CT specimens using wire-EDM 

sharp notches. The investigation involved testing specimens with various loading angles. 

The relevance of stable crack growth from (sharp) notches cannot be underestimated. 

This is so from two perspectives. First, structures and components are usually designed 

according a yielding criterion at notch tip. This may correspond to initiation of damage 

(blunting / crack initiation) at the notch-tip. I f  the material does exhibit stable crack 

growth, then such design approach may be over conservative, since safety factors are also 

employed. The second perspective is that a real crack, in a ductile material, is in actuality 

a (very) sharp notch. Despite the fact that most theoretical postulations presume a sharp 

crack in a continuum, most of FE schemes in fact employ a finite but sharp semi-circular 
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notch rather than cracks. It may be fruitful, therefore to investigate stable crack growth 

behaviour emanating from notches. 

2 .6  CLOS U RE 

ariou issues regarding stable crack growth have been presented. The source of such 

behaviour has been attributed to the competing mechanisms of yielding (crack-tip 

blunting) and crack growth. The variations of state of stress, whether through section of 

material, or during crack growth is the main source of complication. Predicting onset of 

crack growth during stable crack growth is therefore not straightforward. Numerous 

. attempts at characterising stable crack growth have been presented. Most of these 

attempts either suffer some fonn of geometry dependence or require extensive FE effort. 

Mode-mixity adds complication when shear and tensile failure modes compete. 

Work on stable crack growth emanating from notches is lacking. An understanding of 

stable crack growth emanating from sharp notches may contribute to a better 

understanding of stable crack growth. 
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Fig. 2. 1 :  Modes of crack loading (Parker [4]) .  

Fig. 2.2:  Definition for coordinates system for crack-tip 3D stress element variables 

(Parker [4]) .  
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Fig. 2 .4 :  Effect of various parameters on near-crack-tip triaxiality (Schwalbe et al. [ 1 1 D· 
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Fig. 2 .5 :  Typical d issipative irreversible processes occurring a t  the vic inity of a crack tip 

(Li and Chandra [45] ) .  
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Fig. 2.6:  Typical fracture specimens (a) S ingle Edge Notched Bending (SENB); (b) 

Compact-Tension (Cn Specimens. 
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Fig. 2 .7 :  Typical load-displacement plot. 
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Fig. 2 .8 :  Typical load-crack growth plot. 
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sta.ble cra.ck growth 

Fig. 2. 9 :  Stretch zone width (adapted from Shan et. al [30]) .  

Fig. 2 . 1 0 : Crack front tune1ling. 

Fig. 2. 1 1 :  Slant fracture surface (adapted from James and Newman [27] ) .  
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Fig. 2 . 1 2 :  Microvoid coalescence. 

L1a 

Fig. 2 . 1 3 : Typical KR curve. 
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Fig. 2 . 1 4 : ApL for J calculation. 

Fig. 2 . 1 5 :  Various deftnitions for CTOD (Anderson [ 1 ]) .  
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Fig. 2 . 1 6 : Definition for CTOA (Mahmoud and Lease [26]). 
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Fig. 2. 1 8 : Scatter regarding the effect of mode mixity (Laukkanen [50)).  
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Fig. 2 . 1 9 : Various specimen configurations for mixed-mode testing; (a) 3PB with 

incl ined notch; (b) 4PB with offset loading; (c) Arcan configuration; (d) CTS 

configurat ion; (e) modified CT specimen. 
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Fig. 2.20: Effect of m ixed-mode loading on crack-tip defonnation and crack propagation 

in ductile materials (pirondi and Donne [58]) .  
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CHAPTER 3 

EXPERIMENTATION 

3 . 1  I NTRODUCTION 

Details regarding material used, spec Imen configurations, experimental set-up and 

procedures are described in this chapter. 

3 .2  MATERIAL 

Material chosen for current investigation is EN 34NiCrM06 low alloy steel, which is 

equivalent to AISI  4330/4340 alloy class. The steel was supplied in rod form, 1 80 mm 

diameter x 2 .8  m length. Composition for the alloy is given in Table 3.1. 

3 .3  TEN S I LE TEST 

A section of the rod, approx. 200 rom was sawed and round surfaces flattened using a 

shaper machine into 1 20 mm x 1 20 mm square sections and then sawed to approx. 1 5  

mm thick plates. One of the plates was used to manufacture tensile test specimens, in the 

R-C 1 C-R orientation (Fig. 3.1). similar to orientations of the modified CT specimens. 
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eometry of the tensile test specimen is shown in Fig. 3 .2 . The tensile test specimen is of 

pin-holed type . The dimensions used for tensile specimen are non-standard. Dimensions 

for standard pin-holed specimens could not be machined with current plate dimensions -

for the orientation of interest. Gripped-type specimens were discarded. This is due to in-

house problems experienced in the gripping system when testing such specimens. 

pecimen thickness was slightly reduced at the centre by grinding - this was employed to 

enforce deformation and necking at the centre of the specimen. 

Initial tests were conducted to measure Modulus of Elasticity, E and two more tests were 

conducted to obtain tensile and ultimate strengths, O'y and O'urs, and to obtain strain 

hardening constants a, and n. All tensile tests were conducted on an MTS universal 

testing machine with 1 00 kN rated load-cell .  The strain was measured using an 

extenso meter connected to an external strain-meter. This was so as technical problems 

were experienced regarding connection of extensometer to computerised data acquisition 

(DAQ) system of MTS machine. The strain measurements were manually logged during 

the test. 

Tests were conducted under displacement control, at a cross-head displacement rate of 

0. 1 mmlmin. ,  which is equivalent to a strain-rate of approx. 2 x 1 0.3 Imin. The stress-

strain curve is shown in Fig. 3.3.  The measured values are shown in Table 3.2. Average 

values for o'ys and O'UTS where 5 5 1  MPa and 779 MPa respectively. 

According to Ramberg-Osgood Relationship: 

c O' O' 
- - - + a -( In Co C/o 0'0 
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Logarithmic plot of (� -�J vs. (�J beyond yield limit was plotted (stress range 
Co 0"0 0"0 

600-750 MPa). The plot is shown in Fig. 3.4 .  A l inear fit was obtained and the plastic 

constants were determined and shown in Table 3 .2 .  

3.4 STABLE C RAC K G ROWTH TESTS 

3 . 4 . 1  Specimen P re parat ion 

Modified CT specimen configuration, as used by Mahanty and Maiti [59 ] ,  Maiti and 

Mourad [60] and Mourad et al [6 1 ] ,  was chosen for this investigation. The CT specimens 

were made from 1 20 mm x 1 20 mm plates of approx. 1 5  mm thick. These plates were 

obtained by flattening the round rod into 1 20 rom x 1 20 mm square section by milling the 

rounded edges. The section was sawed to approx. 1 5  mm - 20 rom sections using 

electrical-powered saw. These plates were then reduced to the required thickness (8 rom), 

and holes, knife-edges and pre-notches were machined. Some issues have arisen 

regarding effect of machining process on fracture behaviour, and this would be discussed 

in Chapter 5 .  

Various CT configurations were machined. Initially, two configurations; A l  and B1  were 

machined to produce a range of loading angle, ¢, values. Note that loading angle, ¢, 

would be defined as the angle between crack-plane and the load-line plane, as shown in 

schematic (Fig. 3.5). Configuration A l  is shown in Fig. 3.6 and allows for loading angles 



C h a pter 3 :  Experimentation 

(¢i) of 90° (hole # 1 ), 6So (hole #2) and SOO(hole #3) .  Configuration B I  is shown in Fig. 

3.7 and al lows for ¢ of 90° (hole # 1 )  70° (hole #2) and 60° (hole #3). It was found, 

through initial testing runs, that load required for ¢ value of SOO is nearing testing frame 

limits of 1 00 kN. Therefore, a modified configuration was then used, and they were A2, 

B2 and C2. Configuration A2 is shown in fig Fig. 3.8 and allows for ¢ of 90° (hole # 1 )  

and 70° (hole #2). Configuration B 2  i s  shown in Fig. 3.9 and allows for ¢ of 80° (hole # 1 )  

and 6So (hole #2). Configuration C2 is shown in Fig. 3.10 and allows for ¢ of 75° (hole 

# 1 )  and 60° (hole #2). 

3 .4.2 E D M  P re-n otch 

A notch was machined into the specimens using Electron Discharge Machining (EDM) 

wire-cutting technique. Notch depths were 5mm, 1 0mm and 1 5mm to give ao/W values of 

0.45,  0.50 and 0 .55 respectively. Two different wire diameters were used, 0 . 1 mm and 

0.25 mrn. These sizes gave notches of radii 0.08 rnm (approx.)  and 0 . 1 6  mrn (approx.) 

respectively. Other notch sizes of radii 0 .25 mrn, 0. 50 m m  and 1 .00 mrn were also 

machined into some CT specimens. 

3.4 .3  Test ing P rocedu res 

CT specimens were loaded on the 1 00 kN MTS universal testing machine, with load cell 

rated at 1 00 kN. Load-line displacement, LiLL, was measured using a c lip-gauge connected 

to an external strain-meter, which was previously calibrated. Readings were manual ly 

recorded during the test. All tests were conducted under displacement control . 
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Initial crosshead speed during testing was 0. 1 mm/min. However, this was found to give 

undesirable long test durations (approx. +40 mins. per test). A pilot test, with crosshead 

speed of 0.25 mm/min was conducted and results were compared with that conducted at 

0. 1 mm/min ross-head speed. Results, shown in Fig. 3. 1 1  were found to give 

comparable results \ lthin 5% difference.  Later tests were conducted at the larger loading 

rate of 0 .25 mm/min. 

The specimens were loaded up to maximum load value, Pmax• and beyond. Test was then 

stopped for most specimens when load decreased by not more than 3 leN. Some tests were 

extended for longer periods for more load decrease. Dye penetrant was then applied and 

·excess fluid soaked. Most specimens were unloaded slightly, by about 1 0  leN and 

reloaded until the specimen was broken into two halves. Fracture surfaces were then 

photographed and visually inspected. 
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Table 3 . 1 :  omposition of al loying elements (wt %) for EN 34NiCrMo6 Low Al loy Steel 

(Equi alent to AlSI 4330/4340). 

C Si Mn P S Cr I Ni Mo Al I Cu I 
0.332 0.2 1 1 0.650 0.02 1 0.033 1 .380 1 .450 0.209 0.034 0.050 

Table 3 .2 :  Measured mechanical properties. 

% 
E (GPa) (Jys (MPa) (JUTS (M Pa) Evs a Il 

elongation 

2 1 7  5 5 1  779 4.295 x l  0--' 7 .735  0.473 8 . 1 1 4 
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Fig. 3 . 1 :  ASTM notation for specimens extracted from disks [ 1 ] . 

C> 
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Fig. 3 .2 :  Tensile specimen dimension (in mm). 
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p 

Fig. 3 . 5 :  Schematic for modified CT specimen configuration used . 

I 1 20 I 20 
I 

-$ 
I 5x45' 
J u! t') 

0 <D  C � "  .A 11 2 20 II 40 
I 

-$ -$ � � 4  x Gl 1 2  
20 35.44 28.33 

Fig. 3 .6 :  Modified CT Specimen: Type A l .  
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Fig. 3 . 7 :  Modified CT Specimen: Type B l .  
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o Loading rate = 0.25 mm/min .  
Loading rate = 0 . 1 0  mm/min .  

--- Loading rate = 0 . 1 0  mm/min .  

3 .0  

6LL (mm) 
4 .0  5.0 6.0 

Fig.  3 . 1 1 :  Comparison between P-6LL curves of two different loading rates. 
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CHAPTER 4 

ANAL YSIS AND DISCUSSION 

4. 1  I NTRODUCTION 

In this chapter, pattern of stable crack growth behaviour is  examined in light of obtained 

experimental results and observations; through the obtained Load vs. Load-Line 

Displacement (P-tJu) curves, and through visual examination of fracture surfaces and 

crack-front tunneling. Analysis is carried out and compared with experimental findings of 

other investigations. This is done to determine if there exists any consistent pattern of 

behaviour that can contribute towards a better understanding of stable crack growth. 

4.2 LOAD LOAD-L IN E D ISPLAC E M E NT (P-L1Ld P LOTS 

The P-LJu plots are presented in Figs 4. 1 -4 .7 .  Such plots are useful to obtain data 

pertaining to damage (crack) initation loads, Pi and PQ. maximum loads, Pmax, and load

l ine displacements at maximum load, tJPmax. More detailed analysis on such data would 

be presented later. Figs. 4. 1 -4 .3 show P-tJu plots in terms of the various loading modes 

for each ao/W value. Plots show consistently a general trend of increasing maximum load, 

Pmax, with loading angle, ¢, . They also show an apparent increase in elastic stiffness of 

the specimens with ¢. Figs 4.4-4.7 show P-tJLL plots in terms of the aolW size for each 

loading angle, ¢. They also show that with increasing aolW, stiffness and Pmax diminishes. 



C hapter 4 :  Analysis and Discussion 

4.2 . 1  Effect of Load i n g  Angle,  ¢, on Pmax : 

ummary of various loads for notch radius of 0.08 mm is provided in Tab le 4. 1 .  To 

investigate the effect of loading angle ¢, on Pmax, the loads obtained have been 

nonnalised wi lh P max at ¢ = 90°, PI-max. Plots were then obtained for 
P 

mv. vs. ¢ and are 
PI-max 

shown in Fig. 4.8 .  It has been found that there is a strong inverse- l inear dependence of 

;max with ¢. Plots were then reconstructed for (;nux J-1 vs. ¢, and are shown in Fig. 
I-ma.� I - max 

4.9. Moreover, such findings have been compared with experimental data from a recent 

study of a similar steel a1 loy (AISI 4340) by Mourad et a l .  [6 1 ] .  Data from earlier 

experiments by Mahanty and Maiti [ 59 ]  on D 1 6AT aluminium alloy (equivalent to 2024-

T3) are also included. Al l  data are of experiments involving similar modified CT 

specimen configuration. Such comparisons have shown very similar relationships 

confinning the linear dependence of A",ox-I on ¢. Results are also shown in Fig. 4.9 for the 

various crack-sizes. 

Although individual slopes, in Fig. 4.9, indicate a weak dependence on aofW, where the 

slope becomes slightly steeper with increasing aolW, one however can assume that an 

average slope fits all  the data and therefore is  reflective of the mechanical behaviour for 

the range 0.45 � aofW � 0 .55 .  The slope was found to be equal to 0 .0 1 2  per deg. 

4.2.2 I n it iat ion Loads,  Pj And Po 

Two parameters were considered to indicate initiation of crack growth, Pi and PQ. Pi was 

taken as the l inear l imit of the P-iJLL curve, where local damage is assumed to have 

started to take place, and hence the start of stable crack growth. In many cases, crack may 
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initiate at the core, \ ith no indication of a presence of a crack at the surface. It is thus 

argued that any deviation from non-linearity is an indiaction of crack initation. There are 

two problems with such parameter; first, the exact position of the linear limit on P-/JLL 

curve is tentati e and cannot be accurately and consistenly determ ined; second, blunting 

but not crack growth initiation may have taken place (and hence the term damage 

initiation is more accurate). On the other hand, PQ is taken as the 95% secant slope to the 

linear portion of the P-/Ju curve. Even though no gaurantee that crack growth has 

mitiated, it does prove a better estimate and consistent with definitions of initiation of 

unstable crack growth in plane-strain LEFM context. 

P, lPmax and PQ IPmax ratios were plotted against loading angle, ¢, as shown in Figs. 4 .10 

and 4.11. Plots show interesting results. Pi IPmax and PQIP:ax i'dtios for ao/W of 0 .50 and 

0 .55  seem to be very consistent, the more so with PQ. They do indicate a weak linear 

dependence of both Pi IP max and P Q IP max ratios on ao/W, but there is no c lear pattern for 

the depencence of P" !Pmax and PQ IPmax ratios on ¢. P" !Pmax and PQ IPmax ratios for ao/W 

of 0.45, on the other hand, do not show any trend and most l ikely indicates a constant 

value. This suggests that P, IPmax and PQ IPmax ratios may not depend on loading angle 

after all, although more investigation on this issue may be needed. If that be the case, 

then one can determine an average ratio for all tests. Average Pi IP max was found to be 

0.430 (+1- 1 2% average deviation), while average PQIPmax was found to be 0. 546 (+1-6% 

average deviation). 

A recent study by Mourad et a!. [61] showed that P maxlPi remains fairly constant. This 

could not be conflrmed due to scatter in current results, even though data from Mourad et 

al [61] were for an even narrower range of ao/W, where 0.42 < ao/W < 0.45 . The notion 
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of a con tant Pi IPm(u or PQ IPmax ratios would not be refuted and indeed would be 

consolidated later, when nonnalisations of P-iJu are presented . 

4.2.3  Load -Line D isplacement At Pmax (l1P-max) 

P-max value were plotted against ¢ for the various ao/W ratios to investigate if there was 

any parameter dependence.  Graph plot, as shown in Fig. 4 . 1 2, shows scatter of data about 

an avergae value of 2 .3 1 mm (+1-5 .5% average deviation). This inidcates a constant 

iJpmax too, which will prove to be interesting, especially when noted with P-iJLL 

normalisation, which is presented later. 

4.2 .4 N ormal ised P-iJLL C u rves 

The various P-iJLL curves are useful to understand the general stable crack growth 

behaviour for the various ao/W ratios and loading angles tested. However, one needs to 

evaluate the intrinsic stable crack growth behaviour of the material. This is only possible 

if some form of normalisation is presented, where all the curves are normalised into a 

single material characteristic curve. This not only helps to characterise the intrinsic stable 

crack growth behaviour but also addresses transferability issue, where researchers have 

not yet found a straightforward method to related mechanical behaviour of specimens in 

experimentation to that of real- l ife structures and components. This is what was 

attempted, and results are presented. 
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4.2.5 Ananlysis for M od e-l M a x i m u m  Load, P,-max vs. L i m it Load, PL 

Works by Giovanola et al .  [ 67 ]  and, Krompholz and Kalkhof [68] on blunt notches have 

presented normalised P-LJu curves, where load, P, is normalised in terms of l imit load, 

PL, and load-line displacement, LJLL, in terms of specimen width, W. Solutions are 

pro ided in Anderson [ 1 ]  for reference (notional) limit load, PL , which corresponds to 

the load at \ hich the net section, for geometry of interest, yields. PL is obtained from [ 1 ] : 

(4. 1 )  

where 1], is a geomtery factor and is dependent on ao/W: 

(4.2) 

where B is  specimen thickness, a is crack length, b is l igamnet length (=W-a), and ar, is  

termed flow stress and is  defmed as average of ultimate and yield strengths: 

afJTS + ayS ay = 
2 

The solution presented is for a plane-stress condition. 

(4 . 3 )  

Calculated values for PL are shown in Table 4.2  and are compared with experimental 

results for PI-max. Results obtained for PI-max are consistent with PL to within 5% . 

This was not expected, since this could indicate that plastic yielding crierion may be valid 

for estimating fracture limit loads, for sharply notched structures despite stable crack 

growth behaviour. In order to confirm or refute such indication, a series of comparisons 

with of other experimental data were made. Results, for PL-Pmax values, of recent 

investigation on sharply notched CT specimens by Mourad et a l .  [6 1 ]  are listed in Table 
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4.3. Results show an average difference of 25% of PL. I t  does seem that difference is 

dependant on aolW. Other comparisons were also made with results of tests conducted on 

pre-cracked CT specimens by Mahmoud and Lease [ 26] and, Mahanty and Maiti [59], 

l isted in Table 4.4. Results show a much larger difference of more than 45% of PL, and 

also sho\ dependence on aolW. Reslts of Mahanty and Savant [51J on 3PB tests are also 

l isted. 

Therefore one cannot say that PL does direclty predict Pm(U for sharply notched 

specimens, but some form of empirical relationship may be possible. However, for 

purpose of normalisation, an alternative parameter was sought. 

4.2.6 N ormal isation with Pmax 

If all specimens share the same criterion that governs stable crack growth, then an 

obvious and straightforward normalisation parameter is P m(U .  If all curves where " forced" 

to coincide at the same maximum, one can then evaluate any difference in characteristic 

behaviour for a material .  P-L1u curves in Figs. 4.1-4.3, showing various loading angles 

for a single ao/W ratio, were normalised and presented as Figs. 4.13-4.15. The 

normalised curves do coincide, although one can see that higher loading angles in aolW = 

0.45 and 0 .50 seem rather shifted, but only minutely. P-L1u curves in Figs. 4.4-4.7, 

showing various aolW for each loading angle, where also normalised and presented as 

Figs. 4.16-4.19. They all also conincide, apart from minor discrepencies that can be seen 

for 1; = 65° (Fig. 4.19), where ao/W values seem minutely shifted. All the normalised 

curves where then assembled in one single chart and presented in Fig. 4.20. The plot 

exhibits a single trend, and indeed i t  does suggest that all P-L1LL curves can be represented 

as a sin Ie characteristic curve. Hence, validity of normalisation parameter, P max· 
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4.2 .7  Comparisons with a S i m i l a r  M ateria l  

To confinn that such nonnalisation is valid, more fittings are needed. Experimental 

results from Mourad et a! .  [6 1 )  where therefore nonnalised and presented in Fig. 4 .2 1 .  

Indeed once can see that all the results obtained can be presented as a single charactaristic 

curve. 

4.2 .8  C omparison of Different C o n fi g u rations 

I t  would be interesting to see if  such normalisation approach does work for specimens of 

different configurations (and constraints) and specifically with fatigue precracks. 

Experimental inverigation on stable crack growth on D 1 6A T (akin to 2024-T3 ) 

aluminium alloy was carried out using CT specimens by Mahanty and Maiti [ 59 ]  and 

using 3 PB by Maiti and Mourad [ 52 ] .  Earlier Experi:uents have also been conducted by 

Da.wicke et a1 .  [28]  using CT and MT specimens on 2024-T3 Aluminium Alloy . 
• 

Comparison between mechanical properties of both materials are shown in Table 4.5.  

Experimental data were normalised and are presented in Fig. 4.22.  I t  may worth to 

mention that all load-line displacements were normalised, with specimen width, W, 

except for MT specimens, where it  was found that WI2 gave the required normalisation. 

As can bee seen from Fig. 4 . 2 2 ,  all of the normalised P-.dLL curves show a general trend, 

which can be interpretd as a single characteristic curve. It may worth mentioning that the 

curves obtained by Mahanty and Maiti [59]  and Maiti and Mourad [52 ]  are more 

consitent with each other than with that of Dawicke et a1 .  [28 ]  -although the overal l  

general trend is very similar, indiating a common stable crack growth behaviour. This 

distinction between them can be explained in terms of various sources of discrepencies; 

mainly that materials are similar but not identical; and that errors may have risen from 

digitisation of experimental data. One should also bear in mind the varied range of 
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constraints and loading angles, expressesd in tem1S of biB, but, one can assert that indeed 

all curves share the same trend during stable crack growth. Also, normalised .0..Pmax values 

are very similar. One should also note that after maximum loads, the curves no longer 

share a common trend, but this is not of interest in this investigation since after maximum 

load, crack growth is no longer stable. 

4.2.9 C o m parison for D ifferent T h i cknesses 

Mahmoud and Lease [26] conducted an investigation on stable crack behaviour for an 

aluminium al loy (2024-T35 1 )  at four different thicknesses, B, of 2.3 mm, 6 .35  mm, 1 2 .7  

mm and 25 .4 mm thick. The various P-LJu charts were normalised and are presented in  

Fig. 4.23. With the exception of curve of B = 25 .4  mm, a l l  other curves were very similar 

upto normalised maximum, where they depart. This confirms the applicability of 

normalisation of various thickness (2.3 mm � B � 1 2 .7 mm). The disparity of curve 

corresponding to thickest of specimens (B = 25.4 mm) can be attributed to either or both 

of the fol lowing causes. 

First, the specimen was machined differently than other 3 specimens, since no thickness 

reduction was done. Investigation findings in this  thesis, to be presented in chapter 5 ,  

indicate a significant machining effect on stable crack growth behaviour in al loy steel 

under investigation. The aluminium alloy used by Mahmoud and Lease [26] may have 

also been affected by machining, even though this would require further invertigation for 

confirmation. 

Second, investigation of the fracture surface shows that the specimen did not develop a 

slant fracture, unl ike the other three. Later numerical and FE analyses by Mahmoud and 
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Lease [291 indicated that the constraint, quanti fied in terms of plastic constraint factor 

(p.c . t) was different (higher) in the case of B = 25 .4 mm. This therefore may suggest that 

the proposed normalisation scheme may only work for low constraint behaviour 

specImens - even though it was demonstrated in Fig 4 .22  that even proposed 

normalisation was valid for a range of biB ratios and as low as 2 .75 .  Also further 

inve tigation is need for this issue. 

4.3 CRACK GROWTH AN D TU N N E LING ANALYSIS 

Fracture specimens were inspected visually. Al l  specimens showed tunneling growth and, 

and when broken have shown slanted fracture surface. 

4.3.1  �a P-max Measureme nts 

Crack front tunneling profiles have been obtained for some specimens (notch radius of 

0.08 mm and 0. 1 6  mm) using dye-pentrant technique. Electronic photographs have been 

taken for the profiles and are shown in Figs. 4.24. Only values at the mid-thickness were 

reported as there was minimal crack growth at the surface (range approximately 1 -2 mm) 

and reasonable measurements were not possible (Fig. 4.25) .  Measurements of crack 

extensions at the mid-thickness (core) gave mean values of around 5 . 7 1  mm, 5.34 mm 

and 4 .74 mm for ao/W =0.45, ao/W = 0.50 and ao/W = 0 .55  respectively (Fig. 4.26) .  

However, the overall pattern is scattered. During testing, the loading drop beyond P max, 

though 1imited, was varied. This may have contributed to the scatter. The average values 

suggest that for crack ratios tested, there is fairly a narrow range of stable crack extension 

values, regardless of loading angle; and this would be further supported when normalised 
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data for other experimenta l investigations, of fatigue precracked specnunes, are 

presented. 

4.3.2 Normal ised P-,1a C u rves 

P-,1a plots are also used to charecterise stable crack behaviour. If  nonnalised PIP max is 

indeed a valid characterising parameter for precracked specimens, then one should also 

obtain a similar characteristic curve, when nonnalising P-,1a curves, similar to the 

normalised P-,1LL plots. Amstutz et al. [54]  and Sutton et a l .  [55]  have conducted 

investigations on mixed-mode behaviour of 2024-T3 (aluminium a lloy) using Arcan 

specimen configuration. The specimen size in [54]  is di fferent than in [55] (Table 4.6). 

Published P-,1a plots were digitised, nonnalised and presented in Fig. 4.27-4.28. The 

chart interstingly shows that indeed a general trend for all  specimens, despite loading 

angle and differing sizes, prior and after maximum nonnalised load (Fig. 4.29) .  Note 

however, that data points near intiation were rather scattered. ,1apmax/W values also lie 

within a narrow range. Nonnalisations of P-,1a from Mahmoud and Lease [26] were 

carried also out and do show similar observations and are presented in Fig. 4.30. Note 

that discrepancy that has been shown previously for B=25 .4 mm (Fig. 4.23) is not 

prominent. If constraint has been the cause for the observed discrepancy, then Fig 4.30 

suggests that llap_maxfW is relatively less sensitive to constraint. 

4.4 EFFECT O F  N OTCH RADI U S  ON STABLE C RACK GROWTH 

Initial tests with different notches have shown that there seems to be little difference in 

fracture behaviour, as shown in Fig. 4.3 1 and 4.32.  This prompted investigation into 

lar er notch radii .  P-,1 curves of specimens with varying notch radii are shown in Fig. 



C h apter 4: Analysis and D iscussion 

4.33.  Results show that, despite of the notch radius increase of twelve folds, maximum 

load, Pmo{, only increased by about 1 3%. A plot of Pmux vs. notch radii has been obtained 

and i shown in Fig. 4.34. The plot shows that there is a linear fit, but one should note 

that the slope is shallow. What is also noteworthy about Fig 4.34 is that it is possible to 

extend the trend to zero intercept, i .e .  case were radius is zero (sharp crack). This would 

predict Pmax for a fatigue-precracked specimen, which would be approximately 37.0 kN, 

and this will be verified experimentally. One can deduce from the plot that difference of 

P max between a sharp notch and a fatigue-precrack is expected to be minimal indeed. 

P-iJLL norrnalisations have also been obtained and are shown in Fig. 4.35.  Results show 

that, apart from the largest of tested radii (r = 1 .00 mm), all curves do coincide, 

indicating similar stable crack growth behaviour. 

Crack Growth measurements at the core have also been obtained through fracture surface 

examination and are l isted in Table 4.7 .  A noteworthy observation is that for largest of 

radii (r = 1 .00 mm) crack growth was observed to have grown, minutely and only at the 

core, as shown in Fig 4.34. 
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4.5 CONCLUSIONS 

Experimental Investigation was conducetd to investigate stable crack growth behaviour 

from notche in 34Cr iM06 alloy steel .  Findings were as follows: 

1 - Maximum Mode-I load, PI-max could be predicted using empirical relationships based 

on ela tic-plastic l imit load solutions, PL. Results were very consistent and comparable 

with PL alues. 

2- Maximum Load, Pma:c, was inversly related to loading angles, ¢. A linear dependence 

has been found to occur between the inverse of normalised P max with loading angle . 

3 - There is general indication that Lipmax and LiaPma:c were scatter within a narrow range of 

alues for the tests conducted. This indicated that such parameters can regarded as 

constants. Such assertion was reinforced in the l ight of normalisations used for P-LiLL 

plots and comparisons with fatigue-precracked specimens. 

4- Normalisation of P-LiLL results was possible using PIP max and LiLlIW. Such 

normalisation was able to represent all of current experimental into a single general trend. 

Further validations from various experimental data, for fatigue precracked specimens, 

were obtained, where various specimen configurations and sizes shared the same 

normalised trend. 

5- Tests on notches show that there a weak effect of notch radius on Pmax, and thus hints 

to the fact that stable crack growth behaviour for fatigue-precracked specimens and sharp 

notches are very similar. 

6- Overall, there are indications that normalised PIP m(U, Lipm(U and Liapma:c are candidate 

charecterising parameteres for stable crack growth behaviour for both, notched and 

cracked specimens. 
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Table 4. 1 anou Load . loading angles for notch radius = 0 08 mm. 

¢ (deg.)  P, PQ Pmax 

ao!W =O.45 

90 25 .0 ! 3 l .0 57 .5  

80 23 .0 25 .5  67 .5  

75 24.0 30.5 69.0 

70 28.0 35 . 5  74.0 

65 30.0 48 .5  8 l . 5 

aolW =0.50 

90 23 .0 27 .5 48 .0 

80 28.0 3 l .5 53 .5  

70 26.0 32.0 6 l .0 

65 3 1 .0 36.0 68.5 

60 27.0 37.0 74.2 

aolW = 0 .55  

90 20.0 23.0 37 .6  

80 22 .0  25 .5  43 .0  

75  2 1 .0 25 .0 46.0 

70 23 .0 27 .5 49. 1 

65 22.0 28.0 55 . 1 

60 24.0 30.0 60.5  
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Table 4 2 · Compari on for PL estimate \' ith PI.max 

ao/TV PL (kN) P I.max (kN) Difference 

0.45 57 .50 57 .50 -0.0% 

0 50 46.27 48.00 -4 ()% 

0 .55  36.50 37 .60 -3 .0% 

Table 4 .3 :  Comparison for PL estimates with PI-max for sharp-notched specimens. 

Material ao/W PL (kN) PI-max (kN) Difference 

4340 Low Alloys 0.4 1 5 8 .37  45 .47 22% 

teel 0.42 56. 1 1  44.00 22% 

(Mourad et a1. [61 ] )  0.43 53 .9 1 40.40 25% 

0.44 5 1 .76 39.00 25% 

0.45 49.67 36 .00 28% 
• 
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Table 4.4: omparison for PL estimates with PI-max for fatigue pre-cracked specimens by 

other researcher . 

Difference I 
Material aolW h-p.s (kN) PI-max (kN) 

(%) 

0.4 25 . 89 1 4 .20 45% 

2024 -T3 5 1  0.4 7 1 .48 37 .50 48% 

Aluminium Alloy 0 .4 1 42 .95 76.00 47% 

(Mahmoud and Lease [26 ] )  0 .4  285 . 9 1  1 27.80 55% 

1D 1 6AT - 2024-T3 
0.45 4 1 .53  1 9 .00 54% 

Aluminium Alloy 

(Mahanty and Maiti [59] ) 
0 . 55  26.37 1 0 . 35  6 1 %  

D 1 6AT - 2024-T3 

Aluminium Alloy 0 .50 8 .00 6 . 1 7  23% 

(Mahanty and Savant [5 1 ] )  

Table 4 .5 :  Comparison for mechanical properties for 2024-T3 . 

Source E (GPa) O"ys (MPa) O"UTS (MPa) 

Maiti and Mourad [52 ]  72.6 353 457 

Dawicke et al .  [28]  7 1 .4 345 490 
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Table 4 .6 :  Arcan Specimen izes comparison for Amstutz et al. [54] and Sutton et a l .  

[ 55 ] .  

Source W (mm) B (mm) biB 

Amstutz et al .  [54 ) 3 8 . 1  2 . 3  1 3 .75 

Sutton et al .  [551 1 52 .4 6.4 1 9. 84 

Table 4 .7 :  Notch radii and resulting KT and measured Llacore. 

Notch radius (mm) 0 .08 0 . 1 6  0 .25 0 .50 1 .00 

KT 27.22 1 9. 54 1 5 .83  1 1 .49 8.42 

Llacore 5 . 33  nJa 4 . 5 1 3 .74 2 .95 
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Fig. 4. 1 :P-iJu curves for aofW = 0.45 (notch radius = 0.08 mm). 
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Fig. 4 .3 :P-L1u curves for ao/W = 0.55 (notch radius = 0.08 mm). 
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Fig. 4.4 :P-L1u curves for ¢ = 9if (notch radius = 0.08 mm). 
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Fig. 4.7 :P-iJLL curves for ¢ = 65° (notch radius = 0.08 mm). 
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Fig. 4.8 :  Normalised maximum load variation with loading angle (Pmw/PI-max VS. ¢). 
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Fig. 4.9:  Linear fit for normalised maximum load variation with loading angle (Pma:!PI-max 

vs. ¢) and comparison with results of other investigations. 
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<> aONJ = 0.45 
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• aONJ = 0.55 

- - - linear trend for aONJ = 0 .50 and 0.55 
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Fig. 4. 1 0 : Normalised initiation load (P,) vs .  loading angle. (P;lP max vs. r/i). 
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Fig. 4 . 1 3 :  Nonnalised p-t1LL curves for at/W = 0 .45  (notch radius = 0.08). 
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Fig. 4 . 1 4 : Normalised p-t1LL curves for aolW = 0.50 (notch radius = 0.08). 



x co ct 
--

0... 
"D ro 0 
"D 
<l.> (/) 
ro 
E 
L-
0 

z 

C h apter 4 :  Analysis and D iscussion 

0.8 

0.6 

0.4 

aoNV = 0 .55 

b. � = 90° 

• � = 80° 

0.2 • � = 75° 

x � = 70° 

o � = 65
° 

° 
• � = 60 

o ----------------------------------------------� 
o 0.5 1 1.5 2 

Load-l i ne d i sp lacement, L1LL (mm) 

2.5 3 

Fig. 4. 1 5 : Nonnalised P-LJu curves for ao/W = 0.55 (notch radius = 0.08). 
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Fig. 4 . 1 6: Normalised P-iJLL curves for ¢ = 90° (notch radius = 0.08). 
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Fig. 4 . 1 8 : Normalised P-iJLL curves for ¢ = 70° (notch radius = 0.08).  
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o aONV = 0 .45 
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Fig.  4 . 1 9 :  Nonnalised P-LJLL curves for ¢ = 65° (notch radius = 0.08). 



x ro 
E 

CL -
CL 

1 

0 .8 

0 .6  

0 .4 

0 .2 

o 

o 

C h a pter 4 :  Analysis and Discussion 

0.5 1 1 .5 2 

Load-l i ne d isplacement, llLL (mm) 

2 . 5 

Fig. 4.20: All nonnalised P-L1LL curves (notch radius = 0 .08) .  
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Fig. 4.2 1 :  Normalised P-LJu curves for selected results by Mourad et at. [6 1 ]. 
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Fig. 4.22: Nonnalised P-iJu curves for selected results for 2024-T3 aluminium alloy. 
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Fig. 4 .24: Crack front photographs showing crack growth at mid-thickness for (a) aolW = 

0.45, (b) aolW = 0.50, and (c) aolW = 0 .55 .  
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SCG at mid-thickness crack tunnel l i ng (at Pmax) 

� 
" ". 

SCG at surface 

I n it ial straight front 

Fig. 4.25 : Schematic diagram showing crack surface features; ( 1 )  "starter" notch, (2) 

EDM pre-notch, (3) stable crack growth (SCG) region, and (4) unstable crack growth 

(and slanting) . 
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Fig. 4.27: Chart showing normal ise P-Lta curves by Amstutz et  al .  [54] on 2024-T3 . 
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x co 
E 

a.. -

a.. 
--0 ro 0 

-0 Q) CJ) 
ro 
E '-0 Z 

1 .00 

0.80 

I 
I 

0 .60 B 
I 
I 

� I 
I 

0 .40 0 
0 

.6. 
0.20 .; 

0 

o 

o 

o 

o 
fil o 

o 

C h apter 4 :  Analysis and Discussion 

o .6. 0  

\ 

o 
.6. 00 

\ 
, 

'\. 

thickness = 2.3 mm 

thickness = 6 .35 mm 

thickness = 1 2.7 mm 

thickness = 25.4 mm 

O . OO+-----�----�----��----�----�----------� 

o 0.05 0. 1 0. 1 5  0.2 0.25 0.3 0.35 

Normal ised Crack Growth I !J.aMJ 

Fig. 4 .30 :  Chart showing combined normalise P-Lta curves for works by Amstutz et a! .  

[54] and Sutton et a1 .  [55]  on 2024-T3 . 



C h apter 4: Analysis and Discussion 

90 .-----------------------------------------� 

80 

70 

60 

50 

Cl.. 

-g 40 
o -.J 

30 

20 

1 0  

+ . + +  + + 

¢ ¢ ¢ ¢ ¢ ¢ 

• • • • • • • • o 

¢ Notch Rad ius = 0 .08 m m  (aOMl = 0 .45) 

+ Notch Rad ius  = 0 . 1 6 mm (aOMl = 0 .45) 

A Notch Rad ius  = 0.08 mm (aOMl = 0 .50) 

... Notch Rad ius = 0 . 1 6  mm (aOMl = 0.50) 

o Notch Rad ius  = 0 .08 m m  (aOMl = 0.55) 

• Notch Rad ius  = 0 . 1 6 mm (aOMl = 0.55) 

o �-------------,------�------.------,----� 

o 0.5 1 1 .5 2 2 .5  3 

Load- l ine d isp lacement, � (mm)  

Fig. 4 . 3 1 :  Chart showing normalised P-L1LL curves for notch radii of 0.08 mm and 0. 1 6  

mm for ¢ = 90°. 



r-. 

Z 
.::.! 
---

Cl.. 
"0 ro 0 -.J 

80 

70 

60 

50 

40 

30 

20 

1 0  

C ha pter 4 :  Analysis and Discussion 

• 

o Notch Rad ius = 0.08 m m  (aOfW = 0.45) 

• Notch Radius = 0 . 1 6  m m  (aOfW = 0.45) 

A Notch Rad ius = 0 .08 mm (aOfW = 0.50) 

A Notch Rad ius = 0 . 1 6 mm (aOfW = 0.50) 

o Notch Rad ius  = 0 .08mm (aOfW = 0 .55) 

• Notch Radius  = 0 . 1 6  mm (aOfW = 0.55) 

o ------------------------------------------� 

o 0 .5  1 1 .5 2 2 .5  3 

Load-l ine d isplacement, � (mm) 

Fig. 4.32:  Chart showing nonnalised P-t1LL curves for notch radii of 0 .08 m m  and 0 . 1 6  

. .  



..-.. 
Z .::.::. .......... 
0.... 
"0 ro 
0 -.J 

C h a pter 4 :  Analysis and Discussion 

50.-------------------------------------------------� 

40 

30 

o 0 <Do 0 0 oo� �*f¢0� ��<tl :D.· .. • 
!J{. A  X 

"J{. D.  

� 

; 
()( 

e: 
e: 

• 
• 

• 
• 

.. 
.. 

3 
20 • 

(Q( 
• 
• 

.. 
.. 

.. 
• 

• 
� 

1 0  • 
• 

• 
• 

• 
• 

• 
• 

• 

o � 
0.0 0.5 1 .0 1 .5 

o Notch rad ius  = 1 .00 mm 

¢ Notch rad ius  = 0 .50 mm 

D. Notch rad ius  = 0.25 mm 

• Notch rad ius  = 0 . 1 6 mm 

x Notch rad ius  = 0.08 mm 

2.0 2.5 3.0 3.5 

Load- l ine d isp lacement ,  �LL (mm ) 

4.0 

Fig. 4.33 :  P-t1LL curves for various notch radii for ar/W = 0.55 and ¢ = 90°. 



C h apter 4 :  Analysis and Discussion 

45 

43 Y = 5 .42x + 36.99 

R2 = 1 .00 X ,.-,.-,.-,.-,.-,.-
41  

,.-
,...... ,.-
Z ,.-,.-
,:,£ ,.-.......- / 

)( / 
'" / 
E / 

0.. ...... ....... / )( I \ / 
39 / I X } / / 

\. - // K 
/ 

" " X- "  
37 

35 �--------------�--------------------------------� 

o 0 .2  0 .4  0 .6  0 .8  1 1 .2 

Notch rad ius,  r (mm)  

Fig. 4.34: Linear fit for Pmax for various notch radii , aofW = 0 . 55  and ¢=  90°. 



)( m E 
n... --
n... 
-0 co 0 
-0 Q) en 
co E ..... 0 

Z 

1 

0.8 

0.6 

0.4 

0.2 

C h a pter 4 :  Analysis and Discussion 

x notch rad ius = 0 .08 mm 

1:. notch rad ius  = 0 . 1 6  mm 

x notch rad ius  = 0.25 mm 

o notch rad ius  = 0.50 mm 

- notch rad ius = 1 .00 mm 

O.--------r------�--------._------._------_.------� 

o 0.5 1 1 .5 2 2 .5  3 

Load-l ine displacement, �LL (mm ) 

Fig. 4.35 :  Normalised P-ALL curves for specimens of various notch radii, ar/W = 0.55 



C h apter 5 :  Effect of Mach ining 

CHAPTER 5 

EFFECT OF MACHINING ON STABLE CRACK 

GROWTH 

5. 1 I NTRODUCTIO N  

This chapter presents experimental evidence of effect of machining process on stable 

crack growth behaviour of 4340 low alloy steel; causing tempered martensite 

embrittlement, common to low al loy steels. Brittle fracture behaviour had been 

discovered in a batch of CT specimens, unlike previous batches that had shown ductile 

(stable crack growth) behaviour. This was unexpected, and indeed, was anomalous. An 

investigation was thus carried out to understand what processes have affected the 

behaviour. 

Such anomalous brittle behaviour can be seen from P-iJu plots shown in Figs. 5.1 -5.3. 

One can see comparison between a " normal" specimen exhibiting stable crack growth 

and anomalous specimen. Note that the non-linear region, in the anomalous curve, is 

rather limited. This indicates very l imited, if any, stable crack growth. 
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5.2 POSS IBLE CAUSES TO ANOMALOU S  (BRITTLE) 

BEHAVIOUR 

Material used for mentioned batch was rather different than one used and mentioned in 

chapter 3 ,  wh; h is similar but not identical. Table 5.1 shows compo ition of low alloy 

steel used-that exhibited embrittled behaviour. CT specimens that exhibited this 

anomalous behaviour were only exposed to machining processes. As mentioned before, 

ra\ material was received as round rod, 1 80 mm diameter. The cross-section was then 

flattened by mill ing, i .e .  the round section was milled into a square-section of 1 20 mm x 

1 20 mm. Thick plates, of approx. 1 5-20 rom thickness, were then cut from squared rod, 

using automated electrical saw. The plates were then milled into required 8 mm thickness 

and, holes and notches were machined into plate. The CT specimen was then notched 

using EDM-wire cutting. 

Communications with workshop staff revealed that "normal" specimens were not 

machined similarly; the round section was flattened using a shaper machine, rather than 

milled. Moreover, the material had the longest exposure during flattening - in either 

method. Therefore, mill ing process during flattening became the focus of more attention. 

5.2 . 1  M i l l i ng P rocess:  Primary Cause 

Advances in materials technology with regard to end-bits used in machine tools has 

meant that machine operators can tolerate more aggressive machining than before. Such 

aggressive machining can save substantial production lead times. However, temperature 

rise resulting from such aggressive machining, or excessive strain rates, can affect some 

aspects of mechanical behaviour of materials being machined. 
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Therefore, two causes were initially suspected to have caused such change of behaviour; 

either excessive residual stresses (either from high machining strain rates, or cooling-rate 

differentials), or tempered martensite embrittlement (TME) common to low al loy steels. 

5.2.2 Res i d u a l  Stresses 

Formation of residual stresses is  not uncommon during machining. They can arise from 

the surface plastic deformation that has occurred leading to compressive residual stresses. 

Other residual stresses may arise from the different cool ing rates/cool ing gradients that 

cause hardness variations throughout the section, and such would lead to residual 

stresses. Residual stresses are often relieved using tempering. 

5.2.3 Martensit ic E mbritt l e ment 

Indeed several heat treatments (heat cycles) can cause degradation in the mechanical 

properties of low alloy steels  one of which is Tempered Martensite Embrittlement 

(TME), where tempering in the range of 250 - 400 DC [69 ] .  

TME can lead to trans granular fracture or  intergranular fracture depending on 

embrittlement mechanism. Transgranular fracture of TME results from either 

decomposition (thermal or mechanical) of interlath retained austenite into cementite or 

the coarsening of existing interlath cementite. There has been some controversy in the 

past on whether interlath cementite deposition and coarsening can be the cause of 

transgranular feature, or whether instabil ity and decomposition of retained austenite �as 

the real cause [70, 7 1 ,  73] - Intergranular fracture, on the other hand, arises from 
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formation of carbides at prior austenite grain boundaries that are already weakened by 

segregation of impurity elements [ 70, 7 2 ] .  

One of the serious problems with regard to TME, and specifically transgranular TME, is 

that its characterisation is very difficult .  Only through transmission electron microscopy 

(TEM) could interlath cementite be seen, which would give a confirmation of TME. 

Mecha�ical Testing, such as tensile testing, cannot characterise TME. Charpy Impact 

however, can give indication of TME [69 ] .  

5.3 EXPERIM ENTAL PROC E D U RE 

Fracture tests were carried out to characterise on CT specimens with different heat 

treatments to find the cause of this unexpected embrittlement. Micro-hardness 

measurements, tensile tests and microscopic (SEM) examination were also carried out 

and are reported. 

5 . 3 . 1 . Heat Treatments 

Various heat-treatment schemes were employed: tempering and austenitisation. In 

tempering, the specimen was put in an oven at about 200 DC for about 1 hr and the air

cooled (normalised). In austenitisation, the specimen was placed at about 800 DC and then 

left to cool slowly in the oven (annealed). Note that oven environments were not inert, 

and therefore after treatment, the surface was black indicating some decarburisation. 

The idea behind such schemes is that if the CT specimens were affected by residual 

stresses, then tempering would be sufficient in alleviating brittle behaviour. However, if  
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it were TME that caused brittle behaviour, then austenitisation followed by annealing 

would eliminate brittle behaviour. 

5.3.2.  Stable C rack Growth Tests 

CT specImens were loaded in Mode-I configuration. The specimens were loaded at a 

crosshead speed of 0.25 mmfmin. P-�LL Plots of the various tests are shown in Fig. 5.4. 

5.3 .3  M i crohardness Tests 

Samples were taken from the vanous CT specl men edges and were prepared for 

microhardness testing. The Vickers microhardness profile was measured at 0 .5  mm steps 

across the thickness of samples, using 300g-indentation mass for an indentation period of 

20s. Microhardness profiles are shown in Fig 5.5.  

5.3.4 Te n s i l e  Tests 

Tensile test specimens were manufactured from 8 mm thick (untested) CT plates. 

Dimensions of specimens are shown in Chapter 3. Tensile test results are shown in 

Table. 5.2 .  The tensile tests were conducted at a crosshead speed of 0 . 1 mm/min using a 

universal MTS testing machine. 

5.3.5 S E M  F ractography 

Fracture surfaces were prepared from a normal (ductile) specimen and an anomalous 

(brittle) one. They were then examined under scanning electron microscope (SEM). 

Fractography was taking at magnification of x l OOO. 
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5.4 RESU LTS AN D D ISCUSSION 

Fig 5.3 and Fig. 5.4 clearly indicates the difference i n  crack growth behaviour for 

specimens of aolW ratio of 0.44. Note that initial slope is essentially identical but the 

embrittlf'd spe irnf'n did not show extending non-linearity, i .e. it rlid not sho v any stable 

crack growth. This does correspond to the observed instant crack (and brittle) fracture 

behaviour and the absence of any prior blunting. Therefore maximum loads are different. 

For austinitised specimens, maximum load was recorded at 37.2 kN, i .e .  restored to 95% 

of normal specimen (Fig. 5.4). 

ote also the difference between the tempered and austinitised specimens. The tempered 

specimen, even though showing relatively more non-linearity than the anomalous (brittle) 

specimen, it  still does show limited stable crack growth. This does correspond to the 

observed behaviour of limited blunting prior unstable crack growth. The austinitised 

specimen, on the other hand, does show more stable crack growth, and indeed it is similar 

to the normal (ductile) specimen, indicating that ductile (stable crack growth) behaviour 

had been restored in the austenitising process. 

Microhardness profiling through specimen thickness shows lower microhardness levels 

for embrittled specimen sample. Moreover, the profile suffered scatter with a general 

trend to soften slightly at the core. This may indicate the machine heating and the 

surface-core temperature variations during thickness reduction (milling) process. Note the 

austenitisation did not restore original hardness of ductile specimen. 

SEM fractographs are shown in Figs. 5.6 and 5 .7 .  Fractographs of embrittled specimen 
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fractographs shown intergranular behaviour, then type of embrittlement mechanism 

would have been difficult to identify without further examination using spectroscopy. 

uch transgranular feature is interesting and can be explained in tenns of decomposition 

of retained interlath austenite promoted by combined effects of temperature and high 

strain rates during machining. 

5. 5 CONCLUSION 

Unexpected brittle behaviour of  4340 C T  specimens was explained a s  TME. Various 

mechanical and fractographic examinations have confinued such thesis. The only 

exposure the specimens had to heat was during machining and therefore it was presumed 

that heating to TME embrittlement temperatures during machining to be the likely source 

of embrittlement. 

Such detrimental effect of machining process may explain the various scatter in lab 

results obtained during various round robins on fracture behaviour of steel al loys where 

substantial scatter may prevent reasonable interpretation of test data. 

Therefore great attention is needed during machining to avoid accidental embrittlement to 

avoid heat treatment after machining may reverse some, but may not restore all of 

material 's  properties. Moreover, great attention to machining process is warranted when 

round-robin results, on steel alloys, are obtained and compared, in order to avoid 

misleading experimental results .  
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Table 5 1 :  Hoying elements composition for 4340 low alloy steel used. 

lement C Mn 1 P r 1 Mo V 

Wt. % 0 .40 0.633 0.254 0 .0 1 5  0 .004 1 .050 l . 3 1 0  0 .220 0.0 1 4  

Table 5 .  2 :  Results for mechanical testing. 

peclmen <JYS ( MPa) <JUTS (MPa) 

Ductile 487 662 

Embrittled 320 660 

Austini tised 386 680 

u AI 

0.2 1 4  0.0 1 2  
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Fig 5 .6 .  EM fractograph showing dimpled ruputre surface for unaffected specimens ( 

x l OOO). 

Fig. 5 .7 :  SEM fractograph showing trans granular cleavage for an embrittled specimen 

(x 1 000). 
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CHAPTER 6 

CONCLUSION 

Fracture tests were conducted on CT specimens made from 34NiCrM06 low alloy steel . 

Three aofTV ratios of 0.45, 0 .50 and 0 . 55  were used with loading angles of 90°, 80°, 70° 

and 65° for a notch radius of 0 .08 mm. Results have shown the Pmax increases with 

loading angle .  It was found that there exists a l inear fit for inverse of P ma./Pf-max ratio with 
. 

loading angle. It was also found that L1P-max and L1acore were scattered within a range of 

values and therefore taken as constants. Normalisation was done to all P-L1LL curves, and 

all curves were represented as a single characteristic curve; where the load was 

represented as ratio of P max, and L1u as a ratio of W. Such normalisation was found to be 

successful for P-L1a curves too. This indicates that normalised P-L1u and P-L1a curves can 

be characteristic material curves. 

Preliminary tests on specImens with notch radii of 0. 1 6  mm showed that the P-L1u 

behaviour was similar to notch radius of 0.08 mm. This prompted tests into larger notch 

radii and results have shown that despite of more than ten times increase in notch radii 

( 1 .00 mm), Pmax oruy changed by just below 1 5% and L1P-max by under 1 0%. A l inear fit 

was obtained for P max values against notch radii, though slope was shallow. This was 
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interesting, a this would suggest that notch behaviour is very similar to pre-cracked 

pec imens. 

Investigations on anomalous behaviour of unexpected embrittlement in 4340 T 

pecimens were attribute to tempered martensite embrittlement. It was found that material 

e 'hiblted ducti le stable crack growth when austinitised. 

FUTURE WORK 

Outcomes of this thesis are by no means decisive. Even though comparisons have been 

presented with results of other materials and specimen configurations, more testing is 

needed Comparison with results of fatigue-precracked specimens is warranted too. There 

has been an indication regarding non-suitability of normalisation when more constraint is 

involved This would be confirmed through testing thicker specimens. Moreover, no 

methods have been suggested for prediction of P max, which can only be possible through 

characterising the stress fields, possible by FE analyses. Loading angles also need be 

correlated with mode-mixity values. Work on initiation load of cracks from notches is 

also warranted. 
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