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Abstract iii

Abstract

Superconductor materials that have no resistance to the flow of electricity are one of the last
great frontiers of scientific discovery.

Superconductivity in these materials occurs particularly in the copper-oxide (CuQ,) planes.
However, since these materials are type-ll superconductors, magnetic fields can penetrate
these materials in quantized amounts of flux called vortices without completely destroying
superconductivity, but producing some resistance, due to vortex motion. In order to overcome
the resistance problem, vortices must be pinned to prevent their motion and hence eliminate
the resistance.

In this work study we have performed extensive numerical simulations to study the effect of
the size of pinning centres on the critical current density of driven vortex lattices interacting
with square periodic arrays of pinning sites. This has been carried out at different
temperatures and for several values of pinning strengths. We have solved the over damped
equation of vortex motion taking into account the vortex-vortex repulsion interaction, the
attractive vortex-pinning interaction, the thermal force, and the driving Lorentz force.

We have found that, while the critical current density increases with pinning size at high
temperatures, it is almost independent of pinning size at low temperatures. We have also
found that increasing the size of the pinning centres suppresses the rate at which the critical

current density decreases with temperature.



Acknowledgments v

Acknowledgments

[ owe great thanks to the United Arab Emirates University that offered me this opportunity to
enrol in the Master Program. | also would like to thank my supervisors Dr. Maamar
Benkraouda, Dr. [hab Obaidat and Dr. Osama Al Khawaja for their patient and understanding

and for the great help they provided me in my thesis.

Special appreciation is expressed to my colleagues and friends in the UAE University,

especially my dear friends Bakhita and Hessa for their great help and support.

Special acknowledgement to my parents, sisters and brothers who provided me with their
continuous encouragement and support, especially my sister Shamma, for her great help
especially in designing the presentation, my mother and sister Yammna for taking care of my

sons during my work on this thesis.



Table of Contents v

Table of Contents

R DR DRI .« o 5755105« v o S S 2 Bt s S i G5 i TR e it 2y e R S AR B me iii
VT T T T R S e e R LN iv
Chapter Page
7 0 T s R PO PR & w1 P L T e SR S e

Chapter 1: Introduction to superconductivity

i, DMEOEIISKRON . ... . o« oo TS o b AR AR 205 AT ST A £y 5 O P05 50 2
2a-The basiequantites Fu Hlyamd S et Jdcsmt £0alt A lusnammac. 5 t8ien . ns 2
% Tyve kind ol SURSREINIBCRIRS .. oo apmps e smss oo smsg s svms o s s os s o 4
4. Flins quantization and Josephisom BAIRGT « wov s vaiss tummmsaiaed o 2t somm trasm 10 4
9. Theoties of MPCICOIOHYIET . x4 esm ot e B REREIT Y Fob sty BT EEE §oh Fowianees « S
] R (157 [ T T g R A e 5
D - GG IR o own s o7 s et f e v sk PO manil o g 78 PR v s o w92 6
Nidg - GinZbane L AIGSNEOUY oy« by -prissmige: Do i b bbb i acmsrs g v 7
6. Typo [l SupehooRAdBBIRALY <.« ovsstmimiis st sk e sk e 58 s se g yas e s 08 58+ org 9
6.1.  The electromagnetic region ( A ) and core region (£ ) of a single Abrikosov
I .2 i e o O e e R 5 i i S e 3, ey s nf o 4.4 2 0 552 10
6.2.  The lower critical magnetic field ....................... 12
6.3.  The upper critical magnetic field ... 13
"~ IR NN . s o - v sk R it o 1109 ST Pt s s e s et 13
6.5. The resistive state of type I superconductor ............................ 15
Tpkizgh toniperatute. SUPerORUNGHIVILY Woi-digeitin Lbde o Lo farnak o fon. suohn s i 16
7.1.  Features of High-temperature superconductors ........................ 17
Chapter 2: Numerical Method
B DOEGCREUETUAR . ... i i oo i e T N P SR P 2005 B SR ARG SRR A oo 20
2 TERBYRNE .- ... oo S e PR AT S mnrese 88 o cmsmsnie w o8 Lo S e m o 5 22
3. The equation Of MOtION ........ouiiuiiit i e e, 23
S PR e (g T R T P U R S 23
3.2, e VeRiOX DI SORE0 &, 3L T i s o e sanigis iy ag et 4 5 24
3. s, TSSO ne TOBCen b . by a7 1hs 1o St s bose'e v § LT i e 24
3.4. Effectofthetemperature..................ooiiiii i 25
A TRE DTN IARLOW |+ -5 o vait i i ¥ 8 aar s W 3151510 57 10 S . A P s 543 25
Chapter 3: Results and discussion
O N G T T S e el e 0 S P T T I, il . . 29
2. The vortex average velocity v, versus the driving force fg .................... 30
3. The dependence of the critical depinning force I on temperature ......... 38
4. The effect of the pinning size on the critical depinning force Fj ............ 4]
Conclusions ... 45

| [ | T o R 46



List of Figures vi

List of Figures

Figure title Page
Figure 1.1: The temperature dependence of the critical field //.. 3
Figure 1.2: The phase diagram of a typical type Il superconductor. 10

Figure 1.3: A schematic diagram of the distributions of the order parameter ¥{p), the
magnetic field H(p) and the current density J(p) near a single Abrikosov vortex. 11
Figure 2.1: (a) Schematic plot of square pinning sites represented by circles and vortices
represented by dots.(b) Vortex-vortex and vortex pin forces. 22

Figure 2.2: The average velocity v_vs. the driving force f; at different temperatures. 27
Figure 3.1: The average velocity v, vs. the driving force f, at two different temperatures. 31

Figure 3.2: The average velocity v_ vs. the driving force f; for f,=1, for different r, and
different temperatures. 33

Figure 3.3: The average velocity ¥, vs. the driving force f4 for f,=3, for ditferent r, and
different temperatures. 34

Figure 3.4: The average velocity v vs. the driving force f; for f,=35, for different r, and
different temperatures. 35

Figure 3.5: Calculation of F; from the v_ vs. f, curve 37

Figure 3.6: The critical depinning force F; as a function of temperature for several values of
the radius of the pinning center r, and pinning strength f,. 40

Figure 3.7: The critical depinning force F; as a function of the radius of the pinning center r,,.
'he pinning strength f, is fixed for all curves in the sub figures. 43

“igure 3.8: The critical depinning force F; as a function of the radius of the pinning center r,.
temperature is fixed for all curves in the sub figures. 44



Chapter 1: Introduction to superconductivity

Chapter 1

Introduction to superconductivity



Chapter 1: Introduction to superconductivity 2

1- Introduction

Superconducting is a new state of matter, it was known by Kammerlingh Onnes in 1911 [1].
In 1908 Kammerlingh Onnes liquefied helium, after three years; in 1911 he found that the
resistance of mercury, Hg, dropped to zero at temperature below 4.19 K. The most important
thing was that the resistance drop was discontinuous, which means that a phase transition to
new state with zero resistance took place. The temperature of this phase transition was called
the critical temperature 7. [.ead (Pb) and Tin (Sn) also give the same transitions. The highest
T. was 23.2 K for Nb3Ge until the discovery of a new class of so-called high-temperature

superconductors in 1986.

The superconductivity was found to be destroyed by heating the sample above its critical
temperature and by applying a magnetic field above a value called the critical magnetic field.
The behaviour of a superconductor in a magnetic field has become the subject of systematic

study, especially after the discovery of type Il superconductors in 1960.

2- The basic quantities 7, H,. and J,

The thermodynamic critical field H. is an important magnetic characteristic of a
superconductor. In 1933 Meissner and Ochsenfeld found that when a superconductor is
cooled below T, in a weak magnetic filed / < H,, the field is expelled from the sample. This
perfect diamagnetism is called the Meissner effect |2]). The physical explanation is that
screening supercurrents flow in a thin surface layer of sample, producing a magnetic field
which exactly cancels the external field. As a result, the magnetic field inside a

superconductor is zero. At /{ > H, the superconducting state is unstable and a transition to
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normal state with finite resistance occurs. Figure 1.1 shows the relation between H. and

temperature.

a H(T)

H(0)

Figure 1.1: The temperature dependence of the critical field H..

(S is the superconducting state, and N is the normal state)

Another important characteristic of a superconductor is the maximum possible transport
current density J., which can flow without dissipation. According to Silsbee's criterion, a
superconductor loses its zero resistance when at any point on the surface the total magnetic
field strength, due to the transport current and applied magnetic field, exceeds the critical field
strength f.. This quantity J. is called the thermodynamic critical current density or the

depairing current and depends on the external magnetic field and temperature.

Because of the penetration of magnetic flux into the superconductor at magnetic field lower
than H,, J. for most practical superconductor is much smaller than the thermodynamic critical
current density. In this respect, according to Abrikosov (1952), superconductors are classified

into two kinds: type [ and type 1l superconductors
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3- Two types of superconductors

In type I superconductors the magnetic field H < H, is completely screened due to Meissner
effect and zero resistance is preserved in the field up to H,. Most type | superconductors are
pure elements like Al, Hg, Sn, etc.

Type 11 superconductors are characterized by incomplete flux expulsion, even in a small
magnetic field, which is a fundamental property of these materials. Magnetic field penetrates
type Il superconductors in form of superconducting vortices. Each vortex carries a magnetic
flux equal to a superconducting flux quantum @,

o =" 207x10"Wh (1.1)

0
2e

where A is plank's constant 6.6262 x 10°* J s and e is the charge of an electron 1.60219 x 10°"°
es

These vortices move under external current generating an electric field. Therefore, zero
resistance state does not occur in the sample because of the motion of the magnetic vortices.
For practical applications it is important to have zero resistance superconductor materials.

This 1s attained if the vortices are prevented from moving. This effect is called vortex pinning.

4- Flux quantization and Josephson effect

The first quantum nature of Superconductivity is the flux quantization. If a superconducting
ring carries a supercurrent, magnetic flux inside the ring can have only values which are
integer multiples of a superconducting flux quantum @,. Thus @, is the unit of magnetic flux

distributing within a superconductor [3].
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Another quantum nature of superconductivity is the Josephson Effect. If two superconductorg
are brought into weak electrical contact then nondissipative superconducting current can flow

through such contact with zero voltage drops [4].
S- Theories of superconductivity

Since the discovery of superconductivity, great efforts have been devoted to explain the
remarkable properties of superconductors. The most important theories are London, the BCS

and Ginzburg-Landau theories.
5.1 London theory

In 1935, after the discovery of Meissner effect, London brothers developed a
phenomenological theory of superconductivity, which is referred to as London theory [5, 6, 7,
8. 9. and 10]. London theory which deals with the electrodynamics behaviour of
superconductors on macroscopic scale was capable of describing a large number of

observations. The two basic equation of the London theory are:
pd, Mg
—(Nj) =E, 1.2
g (A)) (1.2)
curl(/\]’) = —h, (1.3)

is the screening length and m, ng, and e are the mass, the number per unit

where A = -
ne

s

volume, and charge of carriers of the super current, respectively. Equation (1.2) means that

the change of the current density with time is proportional to the electric field E[7], and

equation (1.3) describes the Meissner eftect in quantitative way |5, 7]. The most important
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conclusions of [.ondon theory are: I. The decay of the external field of order 4, in the surface
layer of the superconductor. II. The magnetic flux quantization, which was experimentally
confirmed in 1961. In spite of the importance of the observation of London theory, it could

not give any explanations about the origin of superconductivity on the microscopic scale.

5.2 The BCS theory

The understanding of the theory of superconductivity was advanced in 1957 by three
American physicists; John Bardeen, Leon Cooper, and John Schrieffer through their famous
theory of superconductivity which is known as the BCS theory [8, 11, 12]. A key conceptual
element in the BCS theory is the pairing of electrons (Cooper pair) [S]. This Cooper-pairing
results from the slight attraction between the electrons mediated by lattice vibrations (phonon

interaction).

Pairing of electrons can behave very differently from single electrons, they do not obey the
Pauli Exclusion Principle, but they can condense into the same energy level. The electron
pairs have a slightly lower energy and leave an energy gap above them of order of 0.001 eV
which inhibits the kind of collision interactions which lead to ordinary resistivity. For
temperatures such that the thermal energy is less than the band gap, the material exhibits zero

resistivity.

Bardeen, Cooper, and Schrieffer received the Nobel Prize in 1972 for the development of

theory of superconductivity.
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5.3 Ginzburg-Landau theory

Ginzburg-L.andau theory is a mathematical theory used to model superconductivity. This
theory was published by Ginzburg and Landau in 1950 and was extended in a subsequent
microscopic theory by Gor'kov during 1950-1960, based on BCS theory.

Ginzburg and Landau argued that the free energy F of a superconductor near the
superconducting transition can be expressed in terms of a complex order parameter  [5, 8],
which describes how deep into the superconducting phase the system is. The free energy has
the form:

_— 2 /3 i 1 ; » 2 IHIZ .
F=F, +aly| + 5"’/, + E|(—zhv ~2eA)y| + e (1.4)

where F, is the free energy density of the normal phase, @ and f are phenomenological
parameters depending on the temperature and the material, A is the electromagnetic vector
potential, m and e are the mass and charge of the electron respectively and H is the external
magnetic field. Integrating equation (1.4) over the sample volume gives the free energy. By
minimizing the free energy with respect to fluctuations in the order parameter and the vector

potential, we get the two Ginzburg-Landau equations:

2 1
ay + fly| y +—(-ihV - 2eA)’y =0 (1.5)
m

J:k(u/'(—ihV—2eA)u/) (1.6)
m

where J is the electrical current density. The first equation determines
based on the applied magnetic field. The second equation provides the superconducting

current [8].
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The Ginzburg-Landau equations provide many important results. The most important result is
its prediction of the existence of two characteristic lengths in a superconductor.

The first is the coherence length &, given by

hl
— 1.7
* =\ 2md] ot

which describes the size of thermodynamic fluctuations in the superconducting phase. §

characterizes the distance over which  decreases to zero . The second is the penetration

depth A, given by

A= ZLZ (1.8)
ey,

where y, is the equilibrium value of the order parameter in the absence of an electromagnetic
field. The penetration depth describes the depth to which an external magnetic field can

penetrate the superconductor [ 10, 13, 14].

The ratio A = A/£is known as the Ginzburg-I.andau parameter. For type | superconductors x

< ]/¥2. and for type Il superconductors x> //v2. For type Il superconductors, the phase
transition from the normal state is of second order, for type I superconductors it is of first
order in an applied magnetic field. The most important tinding from Ginzburg-Landau theory
was made by Alexei Abrikosov in 1957. In a type Il superconductor in a relatively high
magnetic field- the field penetrates in quantized tubes of flux, which form a hexagonal

arrangement in clean sample.
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6- Type 1l superconductivity

The value of the Ginzburg-Landau (GL) parameter x > I/V2, characterizes type II
superconductors. Another characteristic is that if a specimen is placed in magnetic field, it
does not exhibit total flux expulsion except for very low fields [15]. The penetration field is
called the lower critical magnetic field H.; and it is smaller than the thermodynamic critical

field H,. H.; can be small as 10-100 G, whereas H, is of order of 10° G.

Figure 1.2 shows a typical H-T phase diagram for type Il superconductor of an ideal
cylindrical shape. For H < H,; there i1s complete flux expulsion (Meissner phase). For H, ;<
H< H. magnetic flux penetrates a superconductor but the penetration is incomplete.
Complete penetration of a flux takes place at a much higher field H., which is called the
upper critical magnetic field. In the field range H.;< H< H,; the superconductor is described
to be in the mixed state. According to Abrikosov's theory, the mixed state results from the
penetration of magnetic vortices into a superconductor. Each magnetic vortex carries the flux
quantum ®,. A superconductor in this region contains finite amount of vortex lines. In
equilibrium conditions and in clean samples the vortices form regular vortex lattice. The

existence of the vortex lattice was first confirmed by Trauble and Essman in 1967 [ 16].
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Normal state

Hci(0)

\ 4

0 f & T.

Figure 1.2: The phase diagram of a typical type 11 superconductor.

6.1 The electromagnetic region ( A ) and core region (§ ) of a single

Abrikosov vortex

The structure of a single Abrikosov vortex in a homogeneous bulk type Il superconductors is
shown in Figure 1.3. The magnetic field is maximum near the center of the line and
exponentially decays with distance from the center over the characteristic length A (the
penetration depth). The order parameter y/(p) is reduced in a small core region of radius of the
order of the coherence length £; therefore the vortex core can be qualitatively represented as a
region of normal phase of cross sectional area ~ E2. Physically, the reduction of the order

parameter in the vortex core is due to large depairing currents flowing near the centre of the

vortex line.
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Heo
[ Ty i
Pa &M X
A
S 5

Figure 1.3: A schematic diagram of the distributions of the order parameter ¥{p), the

magnetic field H(p) and the current density J(p) near a single Abrikosov vortex.

Mathematically the magnetic field distribution near the vortex line H can be written in the

form

H + AcurlculrH = ®,6(p)e, (1.9)

where e, i1s a unit vector directed along the vortex line, &Xx) is the delta-function and p is the
distance from the core. and the normalization factor @, reflects the fact that the vortex carries

exactly one magnetic flux quantum. The solution of equation (1.9) is:

AL Y. K,,(EJ (1.10)

where K, is the zero-order Bessel function of an imaginary argument.
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The vortex line energy per unit length £ can be calculated using the free energy functional of

the LLondon theory and is given by:

o, \’
gz(m) nx. | (1.11)

This quantity is a vortex line tension and is important for many estimates regarding energy
scale in type Il superconductors. The above formula includes contributions of magnetic field
and electric currents to the total energy of vortex. An additional contribution is the core
energy which is given by the superconducting condensation energy within the vortex. Exact

numerical integration of GL equations leads to the following expression for the total energy

2
gz(:b/l) (Inx +a) (1.12)

/9

where a~0.5 represents the core contribution to the vortex energy [17].

6.2 The lower critical magnetic field

The lower critical magnetic field H;; 1s the magnetic field strength where the Meissner effect
is destroyed and vortices of cylindrical shape start to penetrate into the bulk of a type Il
superconductor. It is given by

®
e, °_Inx (1.13)
D A7A

o

where the core contribution is neglected. For 7 = 0 the relation between H.; and H. has the

form H.,/H, = Ink/ V2k.
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6.3 The upper critical magnetic field

The high magnetic field strength up to which the mixed state can persist is called the upper
critical magnetic field H,,. H.; can be estimated trom using GL theory [18] as:

[4)]
H (T)=~2xkH (T)=—2— .14
(1) = 2kH (T) e (1.14)

This suggests that materials with a high value of £ remain in the mixed state until quite strong
magnetic fields are applied. Physically fi.; corresponds to the onset of the overlap between
the vortex cores. The upper critical field was found to grow with T¢ of a superconductor and

can be of the order of 20 - 40 T for commercially available superconductors.

For H > H.; a macroscopic sample does not show flux expulsion; however a superconducting
phase still remains in thin surface layer of the order of &T). This surface superconductivity
exists in an interval H., < H < H.3, where the so-called surface nucleation field H.; ~ [.69H,

[19].

6.4 Vortex pinning

There are two types of pinning forces; the elementary pinning force and the bulk pinning
force density. An example of elementary pinning force is the interaction between a flux line
and a void which may be present due to the manufacturing process of type Il material. When a
vortex passes through the void, its energy is lowered by roughly the product of the

condensation energy density and the void dimensions. In practical superconductors, defects
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which act as pinning centers include various lattice defects, nonsuperconducting precipitates,
grain boundaries, dislocations, etc.

The bulk pinning force density F, is the pinning force per unit volume of a pinning centre,
given as a product of the critical current density and the corresponding magnetic flux density:

F,=JB.

The pinning becomes most eftective when the thickness of the sample, d becomes of the order
of A. For d<<A the pinning force vanishes. A successful theory for the description of random
pinning is the collective pinning theory [20], which assume that the long-range order of the
vortex lattice is destroyed by the presence of the disorder, leaving a short range order over
some correlation length L. which depends on the elasticity of the lattice determined by the
vortex — vortex interaction and on the disorder. Each correlated volume is assumed to be
pinned independently by a total pinning force. The critical current can then be estimated from
the equilibrium condition between the driving Lorentz force and the total pinning force acting
on this volume. The disorder strength is parameterized by y = f,, n& where I 15 ke
elementary pinning force for a single defect and n, is the concentration of defects. The

collective pinning length L. is given by:

L =[8"'g’] (1.15)
y

where &, is related to the energy of a vortex line per unit length

(D 2
8"{4;21] (1.16)

For weak disorder (small » the collective pinning length L. is typically much larger than the

coherence length & L.>>¢& For L.~ & the pinning should be considered as strong.
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In the collective pinning theory the critical current density J, is determined by equating the

172

total effective pinning force (y1..)"“ with the lorentz force J.@,L/c and is given by

172
J, zJo(_f_] (1.17)

The regime of weak collective pinning (large L.>>¢) is characterized by a large reduction of
the critical current density J. with respect to the depairing value J,. On the other hand, in the
strong pinning regime, with L, ~ &, the critical current density J. achieves its maximum
possible value of the depairing current J,. This is the situation one needs for practical

purposes in hard type Il superconductors.

At high magnetic fields, the condensation energy decreases which leads to a corresponding

decrease of J..
6.5 The resistive state of type Il superconductor

As mentioned above. the flow of magnetic vortices under an extermal current leads to the
generation of an electric field. This state of type I1 superconductor is called the reisistive state.
The corresponding resistivity is called the flux-flow resistivity pr and is given by the

following simple expression

O, B
c’n

Where 7 1s the viscous drag coefticient and it is given by:

® H,
§) = —2 22 (1.19)
p.c

Where p, is the normal-state resistiviy of a material [21].
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7. High temperature superconductivity

Since the discovery of superconductivity in 1911, the search for superconductivity with high
transition temperature, above the liquid nitrogen temperature of 77K, has been one of the

most challenging tasks to physicists and material scientists.

In 1986 Bednorz and Muller made a remarkable discovery, they achieved superconductivity
at around 30 K in the Ba-L.a-Cu-O system |22]. The material they used was [.a;CuQy, in
which Ba, Sr or Ca was introduced to replace some of the LLa atoms. Several months after the
discovery of the Ba-l.a-Cu-O system, groups at the universities of Alabama and Houston
jointly announced the discovery of superconductivity above 77 K in the Y-Ba-Cu-O (YBCO)
system [23]. With the exact stoichiometry and the general structure of the superconducting
phase determined. Attempts were made to replace Y by the rare-earth elements to examine
their role in high-temperature superconductivity. It was found that nearly all of the rare-earth
elements. including magnetic rare earths like Gd, could be substituted for Y without having a
significant effect on the transition temperature. Thus a new class of superconductors,
ABa;Cu3;055 with A=Y, La, Nd, Sm, Eu, Gd, Ho, Er or Lu, with T, above 90 K was
discovered. There are two exceptions, the rare earth Ce and Pr. In 1988, many new
compounds and classes of compound were discovered. Notable among these with the Bi-Sr-
Cu-O and the Bi-Sr-Ca-Cu-O (BSCCO) compound with transition temperature up to 115 K

and the T1-Ba-Ca-Cu-O (TBCCO) compounds with transition temperature up to 125 K [24].

The family of high-T. superconductors is very large. Despites the high T, compounds having
many difterent structures

presence of the cooper oxide layers.
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For large-scale applications, large currents in superconducting wires and cables are required
in environments where the magnetic field is strong. The advantage of high-T,
superconductors is that superconductivity is achieved above 77 K which means that they can
be cooled using liquid nitrogen. High-T. superconductors should be type Il materials with
extremely high H, values. Currents applications for high-T. superconductors include wires

and superconducting magnets, magnetic levitated trains, etc.

For practical applications the flux-flow regime must be avoided. Specific quantum properties
of superconductors generally valid at 77 K can be used for electronic applications. Very
promising is the use of high-T. superconductors in passive microwave devices such as
transmission lines and high quality resonators. The best known examples for the active
devices are the Superconducting Quantum Interference Device SQUIDs and detectors based

on Josephson and quasiparticle tunnelling.

High temperature superconductivity is now evolving from a research area to a commercial
industry. However, the practical use of high-T. superconductors is more difficult than was
expected, and to take full advantage of superconductivity at 77 K many fundamental and

technological problems remain to be solved.

7.1 Features of High-temperature superconductors

High-T. superconductors (HTSC) are extreme type-II superconductors containing Abrikosov
flux lines in a large range of applied fields between H¢; = 0.01 T and H¢; = 100 T. Apart from

their high transition temperatures (T, = 90 - 125 K), HTSC differ from conventional
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superconductors by their short coherence length £, large magnetic penetration depth A, and

pronounced material anisotropy and layered structure.

These four properties drastically enhance the thermally activated depinning of flux lines.
Small & reduces the pinning energy. Large A softens the flux-lines lattice (FLL) and thus
reduces the size of the correlated volume in which the FLL is pinned collectively. Thermal
depinning means that the resistivity of a HTSC in a magnetic field does not completely vanish
even at low current densities. The layered structure of HTSC causes two fascinating novel
phenomenon: I: A flux line is now a string of two-dimensional pancake vortices in the
superconducting CuO layers. These 2D vortices interact magnetically over a distance A and
by Josephson coupling between neighbouring layers. Strong coupling means that this stack of
2D vortices behaves as a usual 3D flux line. Weak coupling means (large anisotropy) means
the flux line is very flexible and can evaporate into independent 2D pancake vortices.
Furthermore, uncorrelated 2D vortex lattices can occur in the CuO layers, and in zero
magnetic field values, spontaneous nucleation of vortex-anti-vortex pairs can cause a
Kosterliz-Thouless phase transition. II: flux lines parallel to the CuO layers are “Josephson
vortices” which have their core in between layers where the superconducting order is reduced
or zero. In oblique applied field the vortices form kinks consisting of pancake vortices
connected by Josephson vortices. All these features strongly influence the resistivity of HTSC

(25].
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In this chapter we describe our system of superconducting material with square vortex
array. We present the equation of motion governing the motion of vortices. we end the

chapter by discussing the numerical method used to solve the equations of motion.

1- Introduction:

In high-T. superconductors (HTSCs), there is a total expulsion of magnetic flux up to a lower
critical field H,,, at fields greater than the upper critical field H; there is complete penetration
of magnetic flux and the material becomes normal, and at field between H.; and H,; the
magnetic field penetrates the HTSC in the form of quantized magnetic flux lines (vortices).
The total magnetic flux that each vortex contains is exactly one quantum of magnetic flux @
= he/2e = 2.07 x 10"'° Wb, where 4 is Plank's constant that equals 6.62629 x 10™* J s, and e is
the charge of electron that equals 1.60219 x 10™'® C. The vortices repel each other and spread
out over the entire superconductor volume forming a regular array, known as the Abrikosov

vortex lattice.

In order to use the HTSCs in technology, vortices must be pined in there places. When the
pinning force is equal to the maximum deriving Lorentz force the vortices will be stationary.
In addition spacial inhomogeneity of the superconducting material will contribute to a finite

pinning force.

At high temperature, the pinning of vortices in HTSCs was found to be fairly weak [26, 27].
Hence there have been many efforts to enhance the pinning properties in HTSCs by creating

structural defects in them using energetic radiations. Irradiation by neutrons [28-32], protons
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[33]. electrons [34, 35], x-rays [36], and heavy ions [37—42] has been very successful in this
respect.

General interest in lithographically-created well-defined nanostructure periodic arrays of
pinning centres has now increased such that it is possible to construct samples with well
defined periodic pinning structures in which the microscopic pinning parameters, such as size,

depth, periodicity, and density, can be carefully controlled [26, 43-48].

Periodic pinning arrays are also of technological importance since the arrays can produce
higher critical current density than in the case of an equal number of randomly placed pins
[49, 50]. This enhancement of critical current density using periodic arrays has recently been

demonstrated for high critical temperature (high-7c) systems [51, 52].

Recent simulations of vortices interacting with periodic pinning arrays [52-55] or random
pinning distributions [56] did not focus on the effect of size of pinning centres on the
behaviour of the critical current density as function of temperature. Instead those studies have
focused on the ordering states of vortex lattice at integer matching fields [53], at fractional
submatching fields [54], on the multivortex states [55], and on the melting transition in a
random disorder and at a fixed temperature [S6]. Owing to its large impact on technological
development of HTSCs, the temperature dependence of the critical current density is one of

the most important aspects being studied in experimental research on HTSCs.

We have recently performed numerical calculations on the effect of pinning density and
pinning strength on the critical current density as a function of temperature [56, 57]. In the
present work, we extend our previous calculations to investigate the effect of the size of

pinning centres on the behaviour of the critical current density in square periodic arrays of
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pinning sites as the pinning strength is varied. We relate our results to theoretical, numerical,

and experimental data published in several articles. [ 59]

2- The system:

We consider a 2[) transverse slice (in the xy-plane) of an infinite 3D slab containing rigid
vortices and columnar defects, all parallel to both the sample edge and the applied
field H = Hz . These vortices attain a uniform density »,, allowing us to define the external
field H = n,@. This model is most relevant to superconductors with periodic arrays of
columnar defects or thin-film superconductors where the vortices can be approximated by 2D
objects.

Figure 2.1 is a schematic plot of square pinning sites and vortices and the forces between
them.

free vortex pinned vortex pinning site

R
® oW/,
© © © ©
©© 6 e

@@@@

(a) (b)

Figure 2.1: (a) Schematic plot of square pinning sites represented by circles and vortices

represented by dots.(b) Vortex-vortex and vortex pin forces.
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3- The equation of motion:

The over-damped equation of motion for each vortex is given by [58, 56, 57]:

£ =" +f% +f7 +f, =qv,, (1)
where f'* is the total force on vortex i, f is the vortex-vortex force, f” is the vortex-pin
force, fy is the driving force in the x-direction corresponding to the Lorentz force, and f/ is the

effective force resulting from thermal noise. The difference forces appearing in equation (1)

are described in details in the following subsections:

3.1The vortex-vortex force

The force due to the interaction of vortex i with other vortices f, is given by [53]:

Ir—rl

(2)

Zfo(

where /N, is the number of vortices, EU =(r, - rj)/ |r, — r, |, (shown in figure 2.1), K\ (r/A) is

the modified Bessel function of the first kind, A is the penetration depth, and

@,

Sade 3
8z A )

fo

Is to be considered as our unit of force.
The Bessel function decays exponentially for |r| greater than A, so for computational

efficiency we found that the interaction can be safely cut off at 6A | 47].

In thin-film superconductors the long range vortex-vortex interaction decays as I/r unlike in

3D bulk superconductors; however, the excellent agreement between calculated results and
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experiments in thin films [31, 53] indicates that the calculated results are valid for both slabs
and thin films and are general enough to be applicable to other system with repulsive particles

on a periodic substrate (e.g., colloids).

3.2The vortex-pin force

The vortex-pin force f'?, itis given by:

Mo f r—|r,-r" ).
fiVP — Z A | rl _ r’fl’) |® Az ’l r’S(P) , (4)
k=1 T

P

where O is the Heaviside step function, f, is the maximum pinning force, N, is the number of
pirning sites, 7, is the radius of the pinning sites, ry is the position of the K" pinning site, and
I‘.‘ip) =(r, - r:p) )/ | T, - r:ﬂ) |

vortex-pin force can be also taken as parabolic function. but we didn't take as a parabolic

function we take only the Heaviside step function ©.

3.3 The driving force

If an external current density J is applied to a superconductor in the mixed state it will cause
the flux lines to move under the action of Lorentz force F|, = J x B/c, where B = n¢y and n is

the vortex density per unit area [26,60].

This motion of vortices produce a finite electric field E = -B x v/c along J, where v is the
vortex velocity. These motions cause power dissipation in the superconductor. To prevent this

dissipation, the vortices have to be pinned such that v = 0. In this case the driving Lorentz



Chapter 2: Numerncal Method 25

force is counter acted by the pinning force f,. Fortunately, special inhomogeneity of the
superconducting material will contribute to a finite pinning force. The vortices will be
stationary when the pinning force is equal to the maximum driving Lorentz force and the
critical current density is thus given by J. = ¢f/B (for J perpendicular to B). This critical
current density leads to the depinning of the vortices and hence to reappearance of dissipation.
Dissipation-free flow is thus a matter of optimizing the pinning force f, to give the largest J,

possible.

3.4 Effect of the temperature

The thermal fluctuations are accounted for by a stochastic term that has the properties
< f7>=0 and < f,r(l)fjr(t') >=2kgTS(t —1')8, , where fis given by f, = Af,, and 4
is the number we tune to vary 7. In this manner the temperature is given by T =

112 kg)(Afo)*At, where At is the time step used in the numerical simulation [47].

4- The numerical method:

Our system has a size of 364 x 36A4. The pinning sites are distributed over this area in a square
array with a density n, = 2.0/A*. We measure all forces in units of fo = ¢% /874>, fields in
units of ¢(//12, lengths in units of A, temperature in units of ,fy/kg, and the velocity in units of

Jo/n. Furthermore we take fo = kg=n=1.
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Figure 2.2: The average velocity v, vs. the driving force f; at different temperatures. v, 1s in

units of fy/n7 and f; is in units of fo.
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Initially, we place the vortices of density n, = 0.75/4% in a perfect square lattice, then slowly
increase a spatially uniform driving force f; from zero to a maximum value and measure the

average velocity over all N, vortices:

2

l & .
V. =— ) V.X 5
PN )

v

For each drive increment we measure the average vortex velocity in the direction of drive, v_.
The average velocity v versus the force f; curve corresponds experimentally to a voltage-
current, ¥ (), curve and the critical depinning force F; corresponds to the critical current

density. The critical depinning force is defined to be the driving force value at which v,

exhibits a sharp jump and thus marking a transition from the pinned to the moving vortex

phase.

We used the Euler method to solve the equations of motion. The time step used is Ar = 0.02.
We found that the maximum time needed for the vortices to reach a steady state is 2 x 10 for
all of our calculations. The actual computation time was about 11 hours for each curve of Fig.

2 performed on Pentium IV personal computer with a speed of 2.2 Ghz.

We can see in figure 2.2 that the average velocity of vortices is almost zero until a critical
value of driving force f; is reached where there is a sudden jump in the average velocity
corresponds to the depinning of all vortices and flowing in same direction. And as
temperature increase the depinning shift to lower f; value, also we can see that at high
temperature the average velocity increase linearly with f;, and as f; get very large the curves

converge and linear regime is attained
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1- Introduction

In this chapter, we present the results that we have obtained through the simulations of driven

vortices to study the effect of the pinning size on the critical current density.

The system we consider is a two-dimensional transverse slice (in the xy plane)
superconductor, which contains a fixed number of vortices N, =961, and a fixed number of
pinning sites, N, = 2601. These pinning sites are ordered in square lattice of size 36Ax36A..

This corresponds to a density n,,=2//12 ,and n, = 0.75/A%.

We have simulated the dynamics of the vortices in this system starting from a initial state
where all the vortices are pinned. By applying a force F and tuning on the temperature
vortices start to move.

The average velocity of all vortices is computed as a function of time. Once the average
velocity reaches a steady value, the values of the velocity and the corresponding driving force
are recorded. Finally a curve, such as figure 3.1 represented the average velocity versus the
driving force is obtained.

Physically, the driving force represents the Lorentz force due to an applied current and the
average velocity is proportional to the potential difference.

This kind of simulation has been carried out extensively with different parameters. Since in
this study we are interested in the effect of the pinning size on the critical current density, we
varied the pinning strength f, and the pinning size r,, with f= (1, 3, 5)f; and r, = (0.2-0.6)A.
with a step of 0.1A. when we increasing the pinning size, we made sure that they do not

overlap [33,34,54].
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2- The vortex average velocity v_versus the driving force f,

In molecular dynamic simulations, we have used the over-damped equation for each vortex in

the system .

We have calculated the average velocity v, for all the vortices in the system as the driving
force is increased. Fig 3.1 represents the steady state average velocity v, versus the driving

force f4 for f, = f, r,= 0.2 A, and for 2 temperature T, = 1, T, = 4 ( where the temperature is

measured in units of fo/kg ).

The curves clearly show 2 different regions for each temperature. The first region has very
low average velocity, which corresponds to the system of pinned vortices, and the second
region corresponds to unpinned vortices where the average velocity increases linearly with the

driving force.

In between, there is a critical region, where the value of the driving force for which the
average velocity v, has a sudden jump corresponds to the critical value F; of the driving

force, that is the maximum force before the vortices get unpinned.
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Figure 3.1: The average velocity v, vs. the driving force f, at two different temperatures.
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All the fifteen cases, corresponding to the three values of f, and the five values of rp, are

represented in figs. 3.2-3.4.

For each set of parameters. such as f;=1 and r, = 0.2 shown in fig. 3.2a, we plot the steady
state average velocity for all vortices versus the driving force f4 for the range of temperatures

T=1-10. with temperature step of |.

The general observation one can see from figs (3.2-3.4), as mentioned before that there is a
sudden jump in the average velocity due to the vortices depinning, as the temperature
increases the onset of depinning shifts to lower driving forces due to the thermal energy
which suppresses the effect of pinning forces, also we can see that at high temperatures the
average velocity increases linearly with the driving force. And as the driving force becomes
very large all the curves converge and a linear regime is attained independently of the
temperature. This is expected as all the vortices are depinned and the average velocity

becomes directly proportional to the applied driving force.

From these dynamic phase diagrams, we can identify two distinct phases at low temperatures;
a plastic phase at low driving forces and an elastic phase at high driving forces. The plastic
phase appears when only a small number of vortices are depinned and move under the
influence of the driving force. The elastic phase appears when all the vortices become
depinned and flow collectively in one direction, giving a sharp rise in the average velocity.
The transition from plastic to elastic phase is smeared out as temperature increases and

disappears at high temperatures, where we see only an elastic phase.
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Figure 3.2: The average velocity v_ vs. the driving force f; for f,=1, for different r, and

different temperatures. v, is in unit of f,/7 and f; is in unit of f,.
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Figure 3.3: The average velocity v, vs. the drfving force f4 for f,=3, for difterent r, and

different temperatures. Units here is the same as mentioned in figure 3.2
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Figure 3.4: The average velocity v_ vs. the drivi‘ng force f; for f,=5, for ditterent r, and

different temperatures. Units here is the same as mentioned in figure 3.2
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From the curves of the average velocity versus the driving force in figures (3.2-3.4) we
calculated the critical depinning force F;(which is directly related to the critical current

density) at each temperature for specific values of r, and f,. The critical depinning force is the

value of the driving force at which an abrupt change in the average velocity of the vortices
occurs. From Figs (3.2-3.4), we see that while F; can be exactly defined at low temperatures,

it becomes difficult to define at higher temperatures. In addition, the appearance of the sub-

ohmic behavior in the plastic region prohibits using a constant value of the average velocity

as a criterion to define F; . To overcome these difficulties of the suitable criteria used for the
critical depinning force is the value of the driving force at which v, reaches a value of 0.03

above the sub-ohmic response [54, 56, 57].

For a practical purposes, we chosen to define the critical driving force F{ as shown in fig. 3.5.

Figure 3.5 shows how we calculated the critical depinning force F; from the v, vs. f, curve.

F; is the intersection between the two straight lines corresponding to the pinned and unpinned

regimes of the vortex system, as shown in fig. 3.5.
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Figure 3.5: Calculation of F; from the v_ vs. f, curve
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We calculated Fy for each temperature for each set of values of r, and f,. Once F; was
defined for all these parameters, we were able to study: The dependence of the critical

depinning force F; on temperature and, The effect of the pinning size on the critical

depinning force F;.

3. The dcpendence of the critical depinning force F; on temperature:

In this section. we investigate the effect of temperature on the critical depinning force F; for

different values of r, and fixed value of f,.

Figure 3.6 shows the critical depinning force F; as function of temperature for several values

of the size of the pinning centers r, at fixed pinning strength f,.

It can be seen from this figure that the rate of decrease of the critical depinning force becomes

faster as r, decreases. The slowest rate of decrease of FJ as function of temperature occurs for
the largest r, values for all values of f,. For f, = 1, F; decreases almost linearly with

temperature for r, = 0.6. This behavior of F; as function of temperature is supported

theoretically [61], where it was suggested that vortex pinning at low temperatures is
predominantly produced by point defects while at high temperatures it is produced by
extended defects. This was also observed experimentally [27], where a contrasting behavior
of the critical current density as function of temperature in YBayCu3(q.5 and Bag 57K 43Bi0Os
polycrystalline samples was found. In YBa;Cu3()7_s samples, J. was found to decrease fast at

low temperatures and slows down as the temperature is increased. In YBa;Cu3();.s samples, J,
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was found to decrease slowly (almost linearly) at all temperatures. The sharp decrease of J, as
the temperature increases in YBaaCu3z()7.s was attributed to the oxygen vacancies, which is
commonly present in such samples, whereas they are essentially absent in Bags7K¢43Bi03
samples. The results of our numerical calculations provide a firm and solid support to the
experimental and theoretical results. Pinning centers with small r, behave as point-like defects
so they become less important in pinning vortices at high temperatures. Whereas pinning

centers with large r, behave as extended defects, which play a significant role in pinning

vortices at all temperatures. Similar behavior of F; versus temperature is also seen in Fig.

3.6b and Fig. 3.6¢ for different values of pinning strength, f,.
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Figure 3.6: The critical depinning force F; as a function of temperature for several values of

the radius of the pinning center r, and pinning strength f,. Fjandf, are in unit of f, and T is in

unit of Af/Kpg
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4. The effect of the pinning size on the critical depinning force F;

In this section, we investigate the effect of the pining radius r, on the critical depinning force
F;, figure 3.7 shows the critical depinning force, F; , as function of the radius of the pinning

center, for several values of temperature and fixed value of the pinning strength f,.

It is seen that the values of F; at any specific temperature are large for large values of rp,.

These results were also experimentally found [62]. where it was shown that vortex pinning
was improved by increasing the size of columnar defects in BSCCO single crystals. The
critical current density was experimentally found to increase as the defect size increases in an
array of Josephson junctions with columnar defects [63]. The increase of critical current
density with increasing the defect size was also predicted by numerical calculations on
periodic array of loops [55], but the main focus of others work was to study the multi-vortex
states configurations and their calculations were done only at absolute zero temperature.
Using numerical calculations based on Ginzburg-LLandau Theory on 2-Dimensional model of
extreme type-llI superconductor [64] it was found that the critical current density increases
linearly with increasing the size of the defect, however these calculations suggest that the
increase in the critical current density with the defect radius is substantially smaller than the
phenomenological estimate made in [26]. In the latter reference, it is suggested that the

critical current density is proportional to the square of the defect radius r,. We find a linear

dependence of Fjon r, only at high temperatures while no dependence on r, 1s found at any
temperature. In Figs. 3.7 and 3.8, we notice that at high temperatures, F; increases almost

linearly with r, for all f, values. As the temperature decreases, Fjapproaches saturation at

large r, values. This saturation appears sooner at low temperatures, indicating that the
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increase in the size of the defect ceases to enhance the critical current density. This puts an
upper limit on the usefulness of the size of the defect in enhancing the critical current density,
while at high temperatures, this role is still significant. Our simulations are made for several
values of temperature ranging from very low to high temperatures. Hence, our calculation
allow a more detailed and qualitative and quantitative study of the dependence of critical
depinning force on the size of the pinning centers as a function of temperature and pinning

strength.
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Figure 3.7: The critical depinning force F; as a function o f the radius of the pinning center r,.

the pinning strength f, is fixed for all curves in the sub figures. Units here is the same as

mentioned in figure 3.6
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Figure 3.8: The critical depinning force F; as a function of the radius of the pinning center r,,

the temperature is fixed for all curves in the sub figures. Units here is the same as mentioned

in figure 3.6.
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Conclusions

The high temperature superconductors are very promising materials in a wide range of
applications, such as the Supercomputers, SQUIDS, electric power transmission, motors,

MRI, and magnetically levitated trains.

For most of technological applications of HTSCs, it is very important to have high critical
current density. Numerical simulations are very effective tool in studying the effect of the

size of pinning centres and temperature on the critical current density in the superconductor.

In this thesis we have conducted extensive numerical study on the effect of the size of pinning
centres and temperature on the critical current density in the superconductor with square

periodic arrays of pinning sites.

The results we have got show that the critical current density at any temperature increases as
the size of the pinning centres increases. We found also that for small size of pinning centres,
the critical depinning force decreases rapidly as the temperature is increased, resembling the
effect of point defects. And for large size, the rate of decrease becomes slower, resembling the
effect of extended defects. We also found that at low temperatures, there is an upper limit to
the effect of the size of pinning centres in enhancing the critical current density. Our results
are in excellent agreement with theoretical and numerous experimental results.

From our results one can see that high temperature superconductors can be useful in

technological application if we can increases the size of the pinning centres.
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