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Abstract ill 

Abstract 

uperconductor materials that have no resistance to the flow of electricity are one of the last 

great frontiers of cientific disco ery. 

uperconductivity in these materials occurs particularly in the copper-ox ide (CU02) planes. 

Ho ever, since these materials are type-II superconductors, magnetic fields can penetrate 

these materials in quantized amounts of flux called vortices without completely destroying 

superconductivity, but producing some resistance, due to vortex motion. In order to overcome 

the resistance problem, vortices must be pinned to prevent their motion and hence eliminate 

the resi tance. 

In this work study we have performed ex tensive numerical simulations to study the effect of 

the size of pinning centres on the critical current density of driven vortex lattices interacting 

with square periodic arrays of pinning sites. This has been carried out at different 

temperatures and for several values of pinning strengths. We have solved the over damped 

equation of vortex motion taking into account the vortex-vortex repulsion interaction, the 

attractive vortex -pinning interaction, the thermal force, and the driving Lorentz force. 

We have found that, while the critical current density increases with pinning size at high 

temperatures, it is almost independent of pinning size at low temperatures. We have also 

found that increasing the size of the pinning centres suppresses the rate at which the critical 

current density decreases with temperature. 



Acknowledgments IV 

Acknowledgments 

lowe great thanks to the United Arab Emirates University that offered me this opportunity to 

enrol in the Master Program. I also would l ike to thank my supervisors Dr. Maamar 

Benkraouda, Dr. Thab Obaidat and Dr. Osama Al Khawaja for their patient and understanding 

and for the great help they provided me in my thesis. 

pecial appreciation is expressed to my col leagues and friends in the UAE University, 

especially my dear friends Bakhita and Hessa for their great help and support. 

Special acknowledgement to my parents, sisters and brothers who provided me with their 

continuous encouragement and support, especially my sister Sharnma, for her great help 

especial ly  in designing the presentation, my mother and sister Yammna for taking care of my 

sons during my work on this thesis .  



Table of ontents v 

Table of Co n te n ts 

Ab tract............................................................................................. iii 
Acknowledgments................................................................................. IV 

Cha pte r Page 
Li t of figures .................................................................................... . 

Chapter 1: Introduction to uperconductivity 
1 .  Introduction ...................................................................... " . . .  . . . . . 2 
2. The basic quantities Te) He and Je ............ . . .  . . .  . . .  . .  . . . . .  . .  . . .  . .  . . . . . .  . . . .  . . .  . . .  . . .  2 
3 .  Two kind of superconductors........................................................ ... 4 
4 .  Flux quantization and Josephson Effect............................................... 4 
5 .  Theorie of superconductivity......................................................... 5 

5. 1 .  London theory.................................................................. 5 
5. 2 .  The BCS theory.. ....... . . . . . . . . . . .  . . . . . . .  . . . . . . . . . . . . . . .  . . .  . . . . . .  . . .  . . .  . . . .  . . . .  6 
5.3 .  Ginzburg-Landau theory...................................................... 7 

6. Type II superconductivity ....................... ......... .............................. 9 

6. 1 .  The electromagnetic region ( A ) and core region (� ) of a single Abrikosov 
vortex.............................................................................. 1 0  

6. 2. The lower critical magnetic field .............................. '" . . . . . .  . .  . 1 2  
6.3 . The upper critical magnetic field... . . . . . .  . . . . . .  . .  . . . .  . .  . . . .  . . .  . .  . . . . . . . . .  . 1 3  
6.4 . Vortex pinning........................................................... .... 1 3  
6 .5 .  The resistive state of  type II  superconductor .................. '" . . . . .  . .  1 5  

7 .  High temperature superconductivity.............................................. 1 6  
7.1. Features of High-temperature superconductors...... . . . . . . .  . . . .  . . . . . . .  1 7  

Chapter 2: Numerical Method 
1 .  Introduction.......................................................................... 20 
2. The system... . . . . . . . .  . . . . . . . . . .  . . . . .  . . . . . . . . . . . .  . . . . . . . . . . .  . . . . . . . .  . .  . . . . . . .  . . . . .  . . . 22  
3 .  The eq uation of motion... . . . . .  . . . .  . . .  . .  . . . .  . . . . . .  . .  . . .  . . .  . . . .  . . .  . .  . . .  . . . . . . .  . . . . . 23 

3 . 1 .  The vortex-vortex force.................................................. 23 
3 . 2. The vortex-pin force...................................................... 24 
3 .3 .  The driving force......................................................... 24 
3 .4 .  Effect of the temperature................................................. 25 

4 .  The numerical method. .. . .  . . .  . . . .  . . . . .  . . . .  . . . .  . .  . . .  . .  . . . . . . .  . . .  . .  . . . .  . . .  . . . . . .  . . .  25 

Chapter 3: Re ults and discussion 
1 .  Introduction.. . . . .  . . .  . . .  . . .  . .  . . . .  . . . .  . . . . . . . .  . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . .  . .  . . . .  . . . . . 29 

2. The ortex average velocity Vx versus the driving force fd .............. ...... 30 

3. The dependence of the critical depiruring force F; on temperature......... 38 

4. The effect of the pinning size on the critical depinning force Fdc . . . . . . . . . . . .  4 1  

Conclusions. .. . . .  . .  . . . . . . . .  . . . . .  . . .  . . . .  . . .  . . . . . . .  . . .  . . . . .  . .  . . . . . .  . . .  . .  . . . .  . . .  . . .  . . .  . . .  . .  . 45 
Referen e .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 



List of Figures VI 

List of Figu res 

Figure title 

Figure 1.1: The temperature dependence of the critical field He. 3 

Figure 1.2: The phase diagram of a typical type I I  superconductor. 1 0  

Figu re 1.3: A schematic diagram of the distributions of the order parameter If/( p), the 

magnetic field H(p) and the current density J(p) near a single Abrikosov vortex. 1 1  

Figure 2. 1: (a) chematic plot of square pinning sites represented by circles and vortices 

repre ented by dots.(b) Vortex-vortex and vortex pin forces. 22 

Figure 2.2: The average velocity Vx vs. the driving force/d at different temperatures. 27 

Figure 3. 1: The average velocity Vx vs. the driving force /p at two different temperatures. 3 1  

Figure 3.2: The average velocity Vx vs. the driving forceJd for/p=l, for different rp and 

different temperatures. 

Figure 3.3: The average velocity \Ix vs. the driving forceJd for/p=3, for different rp and 

different temperatures. 

Figure 3.4: The average velocity \Ix vs. the driving forceJd for/p=5, for different rp and 

different temperatures. 

Figure 3.5: Calculation of F; from the \Ix vs./p curve 

33 

34 

35 

37 

Figure 3.6: The critical depinning force F; as a function of temperature for several values of 

the radius of the pinning center rp and pinning strength/p. 40 

Figure 3.7: The critical depinning force F; as a function of the radius of the pinning center rp . 

. he pinning strength/p is fixed for all curves in the sub figures. 43 

';gure 3.8: The critical depinning force F; as a function of the radius of the pinning center rp. 
temperature is fixed for all curves in the sub figures. 44 



Chapter 1: Introduction to superconductivity 1 

Chapter 1 

Introduction to superconductivity 



hapter 1 :  Introduction to superconductivity 2 

1- In trod uctio n 

uperconducting is a new state of matter, it was known by Kammerlingh Onnes in 1911 [1]. 

In 1908 Kammerlingh Onnes liquefied helium, after three years; in 1911 he found that the 

re i tance of mercury, Hg dropped to zero at temperature below 4.19 K. The most important 

thing was that the re istance drop was discontinuous which means that a phase transition to 

new state with zero resistance took place. The temperature of this phase transition was called 

the critical temperature Te. Lead (Pb) and Tin (Sn) al 0 give the same transitions. The highest 

Te was 23.2 K for Nb3Ge until the discovery of a new class of so-called high-temperature 

superconductors in 1986. 

The superconductivity was found to be destroyed by heating the sample above its critical 

temperature and by applying a magnetic field above a value cal led the critical magnetic field. 

The behaviour of a superconductor in a magnetic field has become the subject of systematic 

tudy, especial ly after the discovery of type II superconductors in 1960. 

2- The basic qua n tities To He a n d  Je 

The thermodynamic critical field He is an important magnetic characteristic of a 

superconductor. In 1933 Meissner and Ochsenfeld found that when a superconductor is 

cooled below Te in a weak magnetic fi led H < He. the field is expel led from the sample. This 

perfect diamagnetism is cal led the Meissner effect [2]. The physical explanation is that 

screening supercurrents flow in a thin surface layer of sample, producing a magnetic field 

which exactly cancels the external field. As a result, the magnetic field inside a 

superconductor is zero. At H > He the superconducting state is unstable and a transition to 
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nonnal state with finite resistance occurs. Figure 1.1 shows the relation between He and 

temperature. 

�(O) 

N 

s 

o T 

Figure 1. 1: The temperature dependence of the critical field He. 

(S is the superconducting state, and N is the normal state) 

Another important characteristic of a superconductor is the maximum possible transport 

current density Je, which can flow without dissipation. According to Silsbee's criterion, a 

superconductor loses its zero resistance when at any point on the surface the total magnetic 

field strength, due to the transport current and applied magnetic field, exceeds the critical field 

strength He- This quantity Je is called the thermodynamic critical current density or the 

depairing current and depends on the external magnetic field and temperature. 

Because of th.e penetration of magnetic flux into the superconductor at magnetic field lower 

than He, Je for most practical superconductor is much smaller than the thermodynamic critical 

current density. In this respect, according to Abrikosov (1952), superconductors are classified 

into two kinds: type I and type II superconductors 
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3- Two types of su perco n d uctors 

In type I superconductors the magnetic field H < He is completely screened due to Meissner 

effect and zero resistance is preserved in the field up to He. Most type I superconductors are 

pure elements like Al Hg, Sn, etc. 

T pe II superconductor are characterized by incomplete flux expulsion, even in a small 

magnetic field, which is a fundamental property of these materials. Magnetic field penetrates 

type II uperconductor in form of superconducting vortices. Each vortex carries a magnetic 

flux equal to a superconducting flux quantum <Do 

( 1. 1) 

where h is plank's constant 6.6262 x 10-34 J s and e is the charge of an electron 1.60219 x 10-19 

c. 

These vortices move under external current generating an electric field. Therefore, zero 

resistance state does not occur in the sample because of the motion of the magnetic vortices. 

For practical applications it is important to have zero resistance superconductor materials. 

This is attained if the vortices are prevented from moving. This effect is called vortex pinning. 

4- Fl u x  quan tization a n d  Josephson effect 

The first quantum nature of Superconductivity is the flux quantization. If a superconducting 

ring carries a supercurrent, magnetic flux inside the ring can have only values which are 

integer multiples of a superconducting flux quantum <1>0' Thus <Do is the unit of magnetic flux 

distributing within a superconductor [3). 
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Another quantum nature of superconductivity is the Josephson Effect. If two superconductor 

are brought into weak electrical contact then nondissipative superconducting current can flow 

through such contact with zero voltage drops [4]. 

5- Theories of su percond uctivity 

mee the discovery of superconductivity, great efforts have been devoted to explain the 

remarkable properties of superconductors. The most important theories are London, the BCS 

and Ginzburg-Landau theories. 

5.1 Lo n d o n  theory 

In 1935, after the discovery of Meissner effect, London brothers developed a 

phenomenological theory of superconductivity, which is referred to as London theory [5,6, 7 

8, 9, and 10]. London theory which deals with the electrodynamics behaviour of 

superconductors on macroscopiC scale was capable of describing a large number of 

observations. The two basic equation of the London theory are: 

d - --(A}) = E, 
dt 

curl(A]) = -h, 

(l.2) 

(1.3) 

where A = � is the screening length and m, ns, and e are the mass, the number per unit 
nse 

volume, and charge of carriers of the super current, respectively. Equation (1.2) means that 

the change of the current density with time is proportional to the electric field jj; [7], and 

equation (1.3) describes the Meissner effect in quantitative way [5, 7]. The most important 



hapter 1: Introduction to superconductivity 6 

conclusions of London theory are: I. The decay of the external field of order AL in the surface 

layer of the superconductor. II. The magnetic flux quantization, which was experimentally 

confirmed in 1961. In spite of the importance of the observation of London theory, it could 

not give any explanations about the origin of superconductivity on the microscopic scale. 

5.2 The BCS theory 

The understanding of the theory of superconductivity was advanced in 1957 by three 

American physicists; John Bardeen, Leon Cooper, and John Schrieffer th rough th eir famous 

theory of superconductivity which is known as the BCS theory [8 11, 12]. A key conceptual 

element in the BCS theory is the pairing of electrons (Cooper pair) [5]. This Cooper-pairing 

results from the slight attraction between the electrons mediated by lattice vibrations (phonon 

interaction) . 

Pairing of electrons can behave very differently from single electrons, they do not obey th e 

Pauli Exclusion Principle, but they can condense into the same energy level. The electron 

pairs have a slightly lower energy and leave an energy gap above them of order of 0.001 eV 

which inhibits the kind of collision interactions which lead to ordinary resistivity. For 

temperatures such that the thermal energy is less than the band gap, the material exhibits zero 

resistivity. 

Bardeen, Cooper, and Schrieffer received the Nobel Prize in 1972 for the development of 

theory of superconductivity. 
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5.3 Gi nzbu rg-La n d a u  theory 

Ginzburg-Landau theory is a mathematical theory used to model superconductivity. This 

theory was published by Ginzburg and Landau in 1950 and was extended in a subsequent 

microscopic theory by Gor'kov during 1950-1960, based on BCS theory. 

Ginzburg and Landau argued that the free energy F of a superconductor near the 

uperconducting transition can be expressed in terms of a complex order param eter If [5, 8 ], 

which describes how deep into the superconducting phase the system is. The free energy has 

the form: 

(1. 4) 

where Fn is the free energy density of the normal phase, a and fJ are phenomenological 

parameters depending on the temperature and the material, A is the electromagnetic vector 

potential m and e are the mass and charge of the electron respectively and H is the external 

magnetic field. Integrating equation (1. 4) over the sample volume gives the free energy. By 

minimizing the free energy with respect to fluctuations in the order parameter and the vector 

potential we get the two Ginzburg-Landau equations: 

2e • 
J = -(If (-ih'V - 2eA)Ij/) 

m 

(1. 5) 

(1. 6) 

where J is the electrical current density. The fust equation determines the order parameter If 

based on the applied magnetic field. The second equation provides the superconducting 

current[8 ]. 
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The Ginzburg-Landau equations provide many important results. The most important result is 

its prediction of the existence of two characteristic lengths in a superconductor. 

The first is the coherence length � given by 

�2 
�-

-

- 2m/a/ (1.7) 

which de crib s the size of thermodynamic fluctuations in the superconducting phase. � 

characterizes the distance over which !/f decreases to zero . The second is the penetration 

depth A. given by 

.,1.= (1.8 ) 

where !/fo is the equilibrium value of the order parameter in the absence of an electromagnetic 

field. The penetration depth describes the depth to which an external magnetic field can 

penetrate the superconductor [10 13, 14]. 

The ratio K = .Y� is known as the Ginzburg-Landau parameter. For type I superconductors K 

< J10, and for type II superconductors K > 110. For type II superconductors, the phase 

transition from the normal state is of second order, for type I superconductors it is of first 

order in an applied magnetic field. The most important finding from Ginzburg-Landau theory 

was made by Alexei Abrikosov in 1957. In a type II superconductor in a relatively high 

magnetic field- the field penetrates in quantized tubes of flux, which form a hexagonal 

arrangement in clean sample. 
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6- Type II su pe rco n d u ctivity 

The value of the Ginzburg-Landau (GL) param eter K > 110., characterizes type II 

upercondu tors. Another characteristic is that if a specimen is placed in magnetic field, it 

doe not exhibit total flux expulsion except for very low fields [15]. The penetration field is 

called the 10 er critical magnetic field Hc/ and it is smaller than the thermodynamic critical 

field He. HcI can be small as 10-100 G whereas He is of order of 103 G. 

Figure 1.2 shows a typical H-T phase diagram for type II superconductor of an ideal 

cylindrical shap . For H < Hcl there is complete flux expulsion (Meissner phase). For Hc/< 

H< He2 magnetic flux penetrates a superconductor but the penetration is incomplete. 

Complete penetration of a flux takes place at a much higher field He2 which is called the 

upper critical magnetic field. In the field range Hcl< H< He2 the superconductor is described 

to be in the mixed state. According to Abrikosov's theory the mixed state results from the 

penetration of magnetic vortices into a superconductor. Each magnetic vortex carries the flux 

quantum <1>0' A superconductor in this region contains finite amount of vortex lines. In 

equilibrium conditions and in clean samples the vortices form regular vortex lattice. The 

existence of the vortex lattice was fust confirmed by T rauble and Essman in 1967 [16]. 
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H 

HdO) 

fLAO) 

o 

Normal state 

V ortex state lLa(T) 

Hc(T) 

Figure 1.2: The phase diagram of a typical type II superconductor. 

10 

6.1 The electromagnetic regIOn ( A ) a n d  core region (� ) of a single 

Abrikosov vortex 

The structure of a single Abrikosov vortex in a homogeneous bulk type II superconductors is 

shov.ll in Figure 1.3. The magnetic field is maximum near the center of the line and 

exponentially decays with distance from the center over the characteristic length A (the 

penetration depth). The order parameter l.fI(p} is reduced in a small core region of radius of the 

order of the coherence length �; therefore the vortex core can be qualitatively represented as a 

region of normal phase of cross sectional area � �
2
. Physically, the reduction of the order 

parameter in the vortex core is due to large depaicing currents flowing near the centre of the 

vortex line. 
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-- -

H(p) 

A(f) 

11 

p 

Figure 1.3: A schematic diagram of the distributions of the order parameter tf/(p), the 

magnetic field H(P) and the current density J(p) near a single Abrikosov vortex. 

Mathematically the magnetic field distribution near the vortex line H can be written in the 

form 

H + A?curlculrH = <1>oo(p)eu (1.9) 

where ev is a unit vector directed along the vortex line, o(x) is the delta-function and p is the 

distance from the core, and the normalization factor <1>0 reflects the fact that the vortex carries 

exactly one magnetic flux quantum. The solution of equation 0.9) is: 

H - � K (p) 
u 

- 2;rA? 0 A 
(1.10) 

where Ko is the zero-order Bessel function of an imaginary argument. 
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The vortex line energy per unit length & can be calculated using the free energy functional of 

the London theory and is given by: 

& =(�)2 lnK. 
47l"A. 

(1.11) 

Till quantity is a ortex line tension and is important for many estimates regarding energy 

scale in type II superconductors. The above formula includes contributions of magnetic field 

and electric currents to the total energy of vortex. An additional contribution is the core 

energy which is given by the superconducting condensation energy within the vortex. Exact 

numerical integration of GL equations leads to the following expression for the total energy 

(1.12) 

where a-D.S represents the core contribution to the vortex energy [17]. 

6.2 The lowe r c ritical magnetic field 

The lower critical magnetic field HcI is the magnetic field strength where the Meissner effect 

is destroyed and vortices of cylindrical shape start to penetrate into the bulk of a type II  

superconductor. It  is given by 

(1.13 ) 

where the core contribution is neglected. For T = 0 the relation between Hel and He has the 
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6.3 The u p per c ritical  magnetic field 

The high magnetic field strength up to which the mixed state can persist is called the upper 

critical magnetic field He2. He2 can be estimated from using GL theory [18] as: 

(1.14) 

This suggests that materials with a high value of k remain in the mixed state until quite strong 

magnetic fields are applied. Physically He2 corresponds to the onset of the overlap between 

the vortex cores. The upper critical field was found to grow with Tc of a superconductor and 

can be of the order of20 - 40 T for commercially available superconductors. 

For H> He2 a macroscopic sample does not show flux expulsion; however a superconducting 

phase still remains in thin surface layer of the order of �(I). This surface superconductivity 

exists in an interval He2 < H < Hc3 where the so-called surface nucleation field Hc3 ::::: 1. 69Hc2 

[19]. 

6.4 Vo rtex p i n n ing  

There are two types of pinning forces; the elementary pinning force and the bulk pinning 

force density. An example of elementary pinning force is the interaction between a flux line 

and a void which may be present due to the manufacturing process of type I I  material. When a 

vortex passes through the void, its energy is lowered by roughly the product of the 

condensation energy density and the void dimensions. In practical superconductors, defects 
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which act as pinning centers include various lattice defects nonsuperconducting precipitates, 

grain boundaries, dislocations etc. 

The bulk pinning force density Fp is the pinning force per unit volume of a pinning centre, 

gi en as a product of the critical current density and tLe corresponding magnetic flux density: 

The pinning becomes most effective when the thickness of the sample, d becomes of the order 

of A.. For d< <J.. the pinning force vanishes. A successful theory for the description of random 

pinning i the collective pinning theory [20], which assume that the long-range order of the 

vortex lattice is destroyed by the presence of the disorder leaving a short range order over 

some correlation length Le which depends on the elasticity of the lattice determined by the 

ortex - vortex interaction and on the disorder. Each correlated volume is assumed to be 

pinned independently by a total pinning force. The critical current can then be estimated from 

the equilibrium condition between the driving Lorentz force and the total pinning force acting 

on this volume. The disorder strength is parameterized by r = /p nl? where /p is the 

elementary pinning force for a single defect and nl is the concentration of defects. The 

collective pinning length Le is given by: 

(1.15) 

where &0 is related to the energy of a vortex line per unit length 

B - _0_ 
(cD )2 

o 4nJ.. 
(1.16) 

For weak disorder (small rJ the collective pinning length Le is typically much larger than the 

coherence length � Le»;' For Le� � the pinning should be considered as strong. 
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In the collective pinning theory the critical current density Jc is determined by equating the 

total effective pinning force (rLJ112 with the lorentz force Jc<PaL/c and is given by 

J � J  L ( J
II2 

c O L 
e 

(1.17) 

The regime of weak collective pinning (large Lc» !} is characterized by a large reduction of 

the critical current density Jc with respect to the depairing value Jo. On the other hand, in the 

strong pinning regime, with Lc - S, the critical current density Jc achieves its maximum 

possible value of the depairing current Jo. This is the situation one needs for practical 

purpose in hard type I I  superconductors. 

At high magnetic fields, the condensation energy decreases which leads to a corresponding 

decrease of Je. 

6.S The resisti ve state of type D s u perco n d u ctor 

As mentioned above, the flow of magnetic vortices under an external current leads to the 

generation of an electric field. This state of type I I  superconductor is called the reisistive state. 

The corresponding resistivity is called the flux-flow resistivity PI and is given by the 

following simple expression 

(1.18) 

Where ." is the viscous drag coefficient and it is given by: 

(1.19) 

Where Pn is the normal-state resistiviy of a material [21]. 
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7. High te m peratu re s u percond uctivity 

Since the discovery of superconductivity in 1911 the search for superconductivity with high 

transition temperature, above the liquid nitrogen temperature of 77K, has been one of the 

most challenging tasks to physicists and material scientists. 

In 1986 B dnorz and Muller made a remarkable discovery, they achieved superconductivity 

at around 30 K in the Ba-La-Cu-O system [22]. The material they used was La2Cu04 in 

\i hich Ba, Sr or Ca was introduced to replace some of the La atoms. Several months after the 

discovery of the Ba-La-Cu-O system, groups at the universities of Alabama and Houston 

jointly announced the discovery of superconductivity above 77 K in the Y -Ba-Cu-O (YBCO) 

system [23]. With the exact stoichiometry and the general structure of the superconducting 

phase determined. Attempts were made to replace Y by the rare-earth elements to examine 

their role in high-temperature superconductivity. It was found that nearly all of the rare-earth 

elements, including magnetic rare earths like Gd, could be substituted for Y without having a 

significant effect on the transition temperature. Thus a new class of superconductors, 

ABa2Cu)07..o with A=Y, La, d, Sm, Eu Gd Ho, Er or Lu, with Tc above 90 K was 

discovered. There are two exceptions, the rare earth Ce and Pr. In 1988 many new 

compounds and classes of compound were discovered. otable among these with the Bi-Sr

Cu-O and the Bi-Sr-Ca-Cu-O (BSCCO) compound with transition temperature up to 115 K 

and the TI-Ba-Ca-Cu-O (TBCCO) compounds with transition temperature up to 125 K [24]. 

The family of high-Tc superconductors is very large. Despites the high Tc compounds having 

many different structures with a variety of chemical substitutions the general property is the 

presence of the cooper oxide layers. 
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For large-scale appl ications large currents in superconducting wires and cables are required 

in environments where the magnetic field is strong. The advantage of high-Tc 

superconductors is that superconductivity is achieved above 77 K which means that they can 

be cooled using l iquid nitrogen. High-Tc superconductors should be typ� II materials with 

e tr mely high Hc2 values. Curr nts applications for high-Tc superconductors include wires 

and superconducting magnets, magnetic levitated trains, etc. 

For practical applications the flux-flow regime must be avoided. Specific quantum properties 

of superconductors general ly valid at 77 K can be used for e lectronic appl ications. Very 

promising is the use of high-Tc superconductors in passive microwave devices such as 

transmission l i nes and high qual ity resonators. The best known examples for the active 

devices are the Superconducting Quantum Interference Device SQUI Ds and detectors based 

on Josephson and quasiparticle tunnel l ing. 

H igh temperature superconductivity is now evolving from a research area to a commercial 

industry. However, the pract ical use of high-Tc superconductors is more difficult than was 

expected, and to take ful l  advantage of superconductivity at 77 K many fundamental and 

technological p roblems remain to be solved. 

7.1 Featu res of High-tem peratu re su pe rcond ucto rs 

High-Tc superconductors (HTSC) are extreme type-II superconductors containing Abrikosov 

flux l ines in a large range of applied fields between Hc! :::::: 0.01 T and Hc2 :::::: 100 T. Apart from 

their high transition temperatures (Tc :::::: 90 - 125 K), HTSC differ from conventional 
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superconductors by their short coherence length S large magnetic penetration depth A, and 

pronounced material anisotropy and layered structure. 

The e four properties drastical ly enhance the thermal ly activated depinning of flux l ines. 

mal l S reduces the pinning energy. Large A softens the flux-l ines lattice (FLL) and thus 

reduce the iz of the corre lated volume in which the FLL is pinned col lectively. Thermal 

depinning means that the re istivity of a HTSC in a magnetic field does not completely vanish 

e en at low current densi ties. The layered structure of HTSC causes two fascinating novel 

phenomenon: I: A flux l ine is now a string of two-dimensional pancake vortices in the 

superconducting CuO layers. These 20 vortices interact magnetical ly over a distance A and 

b Josephson coupl ing between neighbouring layers. Strong coupl ing means that this stack of 

20 vortices behaves as a usual 3D flux l ine .  Weak coupl ing means ( large anisotropy) means 

the fl ux l i ne is ery flexible and can evaporate into independent 2D pancake vortices. 

Furthermore, uncorreJated 2D vortex lattices can occur in the CuO layers, and in zero 

magnetic field values, spontaneous nucleation of vortex-anti-vortex pairs can cause a 

Kosterl iz-Thouless phase transition. I I: flux l ines parallel to the CuO layers are "Josephson 

vortices' which have their core in between layers where the superconducti ng order is reduced 

or zero. In  oblique appl ied field the vortices form kinks consist ing of pancake vortices 

connected by Josephson vortices. Al l  these features strongly influence the resist ivity of HTSC 

[25] . 
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Chapter 2 

Numerical Method 
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In this chapter we describe our system of superconducting material with square vortex 

array. We present the equation of motion governing the motion of vortices. we end the 

chapter by discussing the numerical method used to solve the equations of motion. 

1- I n trod uctio n :  

In high-Tc superconductors (HTSCs), there is a total expulsion of magnetic flux up to a lower 

critical field Hel at fields greater than the upper critical field Hc2 there is complete penetration 

of magnetic flux and the material becomes normal, and at field between HcJ and Hc2 the 

magnetic field penetrates the HTSC in the form of quantized magnetic flux lines (vortices). 

The total magnetic flux that each vortex contains is exactly one quantum of magnetic flux iA:J 

= hcf2e = 2.07 x 10-15 Wh, where h is Plank's constant that equals 6.62629 x 10-34 J s, and e is 

the charge of electron that equals 1.60219 x 10-19 C. The vortices repel each other and spread 

out over the entire superconductor volume forming a regular array, known as the Abrikosov 

vortex lattice. 

In order to use the HTSCs in technology, vortices must be pined in there places. When the 

pinning force is equal to the maximum deriving Lorentz force the vortices will be stationary. 

In addition spacial inhomogeneity of the superconducting material will contribute to a finite 

pinning force. 

At high temperature, the pinning of vortices in HTSCs was found to be fairly weak [26, 27]. 

Hence there have been many efforts to enhance the pinning properties in HTSCs by creating 

structural defects in them using energetic radiations. Irradiation by neutrons [28-32] protons 
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[33], electrons [34, 35] x-rays [36], and heavy ions [37-42] has been very successful in this 

respect. 

General interest in lithographically-created well-defined nanostructure periodic arrays of 

pinning centres has now increased such that it is possible to construct samples with well 

defined periodic pinning structures in which the microscopic pinning parameters, such as size, 

depth periodi ity, and density can be carefully controlled [26, 43-48].  

Periodic pinning arrays are also of technological importance since the arrays can produce 

higher critical current density than in the case of an equal number of randomly placed pins 

[49, 50]. This enhancement of critical current density using periodic arrays has recently been 

demonstrated for high critical temperature (high-Tc) systems [51, 52] .  

Recent simulations of vortices interacting with periodic pinning arrays [52-55]  or random 

pinning distributions [56] did not focus on the effect of size of pinning centres on the 

behaviour of the critical current density as function of temperature. Instead those studies have 

focused on the ordering states of vortex lattice at integer matching fields [53 ] ,  at fractional 

submatching fields [54], on the multivortex states [55 ], and on the melting transition in a 

random disorder and at a fixed temperature [56].  Owing to its large impact on technological 

development of HTSCs, the temperature dependence of the critical current density is one of 

the most important aspects being studied in experimental research on HTSCs. 

We have recently performed numerical calculations on the effect of pinning density and 

pinning strength on the critical current density as a function of temperature [56, 57]. In the 

present work, we extend our previous calculations to investigate the effect of the size of 

pinning centres on the behaviour of the critical current density in square periodic arrays of 
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pinning sites as the pinning strength is varied. We relate our results to theoretical nwnerical, 

and experimental data published in several articles. [ 59] 

2- The system :  

We consider a 2D transverse slice (in the xy-plane) of an infinite 3 D  slab containing rigid 

vortices and columnar defects, all parallel to both the sample edge and the applied 

field H = Hz . The e vortices attain a uniform density nv allowing us to define the external 

field H = nvlPo. This model is most relevant to superconductors with periodic arrays of 

columnar defects or thin-film superconductors where the vortices can be approximated by 2D 

objects. 

Figure 2. 1 is a schematic plot of square pinning sites and vortices and the forces between 
them. 

free vortex pinned vortex pinning site 

Q C!) (!) y 
• • • 

Q 0 C!) 0 fvv r,j 
• • • 

0 Q C!) 
• • • 

Q C!) C!) 
(a) (b) 

Figure 2. 1 :  (a) Schematic plot of square pinning sites represented by circles and vortices 

represented by dots.(b)  Vortex-vortex and vortex pin forces. 
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3- Tbe equ ation of motion : 

The 0 er-damped equation of motion for each vortex is given by [58, 56, 57] : 

f lOI = f vv + f Yp + f T + f = nv 1 I I I d . •  l '  ( 1 ) 

where f,IOI 
i the total force on vortex i, f,'" 

is the vortex-vortex force, f,''P is the vortex-pin 

force fd is the driving force in the x-direction corresponding to the Lorentz force, and f,T 
is the 

effecti e force re ulting from thermal noise. The difference forces appearing in equation ( 1 )  
are described in details in the following subsections: 

3.1 The vo rtex-vortex fo rce 

The force due to the interaction of vortex i with other vortices f,vv , is given by [53]: 

f"" = � r K ( I r, - rJ I f ' � Jo 1 ') I) '  
) =1 /L 

(2) 

where Nv is the number of vortices, fl) = ( r, - r) I I r, - rJ I ,  (shown in figure 2. 1 ), K J ( r/A) is 

the modified Bessel function of the first kind, A is the penetration depth and 

(3) 

Is to be considered as our unit of force. 

The Bessel function decays exponentially for I r l greater than A, so for computational 

efficiency we found that the interaction can be safely cut off at 611. [ 47] . 

In thin-film superconductors the long range vortex-vortex interaction decays as l Ir unlike in 

3D bulk superconductors' however, the excellent agreement between calculated results and 
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experiments in thin films [31 53] indicates that the calculated results are valid for both slabs 

and thin films and are general enough to be applicable to other system with repulsive particles 

on a periodic substrate (e.g. colloids). 

3.2 The vo rtex-pin fo rce 

The vortex-pin force (''P , it is given by: 

v, [ I ) [ r 1 r rep) I ) f vP - " � 1 - (p) 1 E> P - , - k � (p) 
i - � r, r k 

A. 
r,k , 

k�1 rp 
(4) 

where E> is the Heaviside step function,/p is the maximum pinning force, Np is the number of 

pirming sites, rp is the radius of the pirming sites, rk is the position of the f(h pinning site and 

rep) = (r - r (P » / l r - r ep) 1 ,k , k , k · 

ortex-pin force can be also taken as parabolic function, but we didn't take as a parabolic 

function we take only the Heaviside step function E>. 

3.3 The d riving force 

If an external current density J is applied to a superconductor in the mixed state it will cause 

the flux lines to move under the action of Lorentz force FL = J x BIc, where B = n¢o and n is 

the vortex density per unit area [26 60] .  

This motion of vortices produce a finite electric field E = -B x vic along J, where v is the 

vortex velocity. These motions cause power dissipation in the superconductor . To prevent this 

dissipation, the vortices have to be pirmed such that v = O. In this case the driving Lorentz 
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force is counter acted by the pinning force /p. Fortunately, special inhomogeneity of the 

uperconducting material wil l  contribute to a finite pinning force.  The vortices wi ll be 

stationary when the pinning force is equal to the maximum driving Lorentz force and the 

c ritical C UIT nt d n it is thus given by Jc = cf/B ( for J perpendicular to B). This critical 

current density leads to the depinning of the vortices and hence to reappearance of dissipation. 

Dis ipati n-fr e flow is thus a matter of optimizing the pinning force /p to give the largest Jc 

possible. 

3.4 Effect of the tem pera t u re 

The thermal fl uctuations are accounted for by a stochastic term that has the properties 

< /,T >= O and < /, T (t )fjT (t ') >= 277kB T6(t - t ')61j where /,T is given by /,T = Afo , and A 

is the number we tune to vary T. I n  this manner the temperature i s  given by T = 

I ,(2 77kB)(Aloilll, where III is the time step used in the numerical simulation [47 ] .  

4- The n u me rical m ethod :  

Our system has a size of 36A x 36X The pinning sites are distributed over this area i n  a square 

array with a density np = 2. 0/"? We measure al l  forces in units o f  10 = ¢lo /8d-).?, fields i n  

units o f  tAl;..?, lengths in  units o f  A, temperature in  units of JelkB, and the velocity in  units o f  

felT] . Furthermore we take 10 = k8 = 77 = 1. 



Chapter 2 :  Numerical Method 27 

1 .4 

__ T=l f =l 
1 2  --a- T:2 p 

-+-- T:3 r =0.2 
_ T:4 p 
--+--- T=5 
----.!>-- T =6 
_ T=7 
_______ T=8 

0.8 ---+-- T:9 
I ;. � __ T=1 0  

0.6 

0.4 

02 

0 

0 0.2 0.4 0.6 0.8 1 .2 1 .4 

� 

5 

f =5 
p 

r =0. 5 
4 --e-- T=2 p 

--a- T=4 

-+-- T=6 

- T=8 

3 --t- T= 1 0  

I ;. � ----.!>-- T = 1 2  

-'- T= 1 4  

-'- T= 1 6  

2 -- T= 1 8  

- T=20 

0 ... •• 
o 2 4 5 6 

Figure 2.2: The average velocity v" vs. the driving force Jd at different temperatures. v I IS m 

units of lei" andJd is in units of 10. 
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Initially, we place the vortices of density nv = O. 751A2 in a perfect square lattice, then slowly 

increase a spatial ly uniform driving force fd from zero to a maximum value and measure the 

average velocity over all Nv vortices: 

1 N. v,r = -Lv, i  
N. ,=1 

( 5) 

For each drive increment we measure the average vortex velocity in the direction of drive, v .. ' 

The average velocity v,r versus the force fd curve corresponds experimentally to a voltage-

current, V (1), curve and the critical depioning force F: corresponds to the critical current 

density. The critical depinning force is defined to be the driving force value at which v .. 

exhibits a sharp j ump and thus marking a transition from the pinned to the moving vortex 

phase. 

We used the Euler method to solve the equations of motion. The time step used is M = 0. 02. 

We found that the maximum time needed for the vortices to reach a steady state is 2 x 1 04 for 

all of our calculations. The actual computation time was about 11 hours for each curve of Fig. 

2 performed on Pentium IV personal computer with a speed of 2.2 Ghz. 

We can see in figure 2.2 that the average velocity of vortices is  almost zero until a critical 

value of driving force /d is reached where there is a sudden jump in the average velocity 

corresponds to the depinning of all vortices and flowing in same direction. And as 

temperature increase the depinning shift to lower fd value, also we can see that at high 

temperature the average velocity increase l inearly withfd, and asfd get very large the curves 

converge and l inear regime is attained 
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Chapter 3 

Results and discussion 
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1 - I n t rod uction 

In this chapter, we present the results that we have obtained through the simulations of driven 

ortic to stud the effect of the pinning size on the c ritical current density. 

The stem we consider is a two-dimensional transverse slice (in the xy plane) 

uperconduc tor, v hich contains a fixed number of vortices Nv = 961, and a fixed number of 

pinning sites, Np = 2 60 1. These pinning sites are ordered in square lattice of size 36Ax3 6A. 

This corresponds to a density np=2/)..2 , and nv = 0.75/)..2 . 

We have imulated the dynamics of the vortices in this system starting from a initial state 

where all the vortices are pinned. B y  applying a force F and tuning on the temperature 

vortices start to move. 

The average velocity of all vortices is computed as a function of time. Once the average 

velocity reaches a steady value, the values of the velocity and the corresponding driving force 

are recorded. F inally a curve, such as figure 3. 1 represented the average velocity versus the 

driving force is obtained. 

Physic ally, the driving force represents the Lorentz force due to an applied current and the 

average velocity is proportional to the potential difference. 

This kind of simulation has been carried out extensively with different parameters. Since in 

this study we are interested in the effect of the pinning size on the critical current density, we 

varied the pinning strength fp and the pinn ing size rp , with fp= (1 3, 5)10 and rp = (0. 2 -0.6)1... 

with a step of 0.11... when we increasing the pinning size, we made sure that they do not 

overlap [33 ,34,54]. 
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2- The vortex a verage velocity v .. versus the d riving force/d 

I n  molecular dynam ic imulations, we ha e used the over-damped equation for each vortex in 

the ystem . 

We have calculated the average velocity v.r for al l  the vortices i n  the system as the driving 

force is increased. Fig 3 . 1 represents the steady state average velocity v .. versus the driving 

force fd for fp = 10, rp= 0.2 A, and for 2 temperature T I = 1 T2 = 4 ( where the temperature is 

measured in units of JelkB ). 

The curves clearly show 2 different regions for each temperature. The fi rst region has very 

low average velocity, which corresponds to the system of pinned vortices, and the second 

region corresponds to unpinned vortices where the average velocity increases l i nearly with the 

driving force. 

In between there is a critical region, where the value of the driving force for which the 

average elocity v .. has a sudden j ump corresponds to the critical value F; of the driving 

force, that is the maxim um force before the vortices get unpinned. 
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Figure 3 . 1 : The average velocity Vx vs. the driving forcefp at two different temperatures. 
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All  the fi fteen cases, corresponding to the three values of fp and the five values of rp, are 

represented in figs. 3 .2-3.4. 

For each et of parameter . such as fp= l and rp = 0.2 shown in fig. 3 .2a, we plot the steady 

tate average velocity for al l vortices versus the driving force fd for the range of temperatures 

T= l - l O. with temperature step of l .  

The general observation one can see from figs (3 .2-3 .4), as mentioned before that there is a 

sudden jump in the a erage velocity due to the ortices depinning, as the temperature 

increases the onset of depinning shifts to lower driving forces due to the thermal energy 

which suppre e the effect of pinning forces also we can see that at high temperatures the 

average velocity increases l inearly with the drivi ng force. And as the driving force becomes 

ery large al l the curves converge and a l inear regime is attained independently of the 

temperature. This is expected as al l the vortices are depinned and the average velocity 

becomes directly proportional to the applied driving force. 

From these dynamic phase diagrams, we can identify two distinct phases at low temperatures ' 

a plastic phase at low driving forces and an elastic phase at high driving forces. The plastic 

phase appears when only a small nwnber of vortices are depinned and move under the 

influence of the driving force. The elastic phase appears when al l the vortices become 

depinned and flow col lectively in one direction, giving a sharp rise in the average velocity. 

The transition from plastic to elastic phase is smeared out as temperature increases and 

disappears at high temperatures, where we see only an elastic phase. 
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From the curve of the average velocity versus the driving force in fi gures (3 .2-3 .4) we 

calculated the critical depinning force F; ( wbich is directly related to the critical current 

den ity) at each temperature for speci fic values of rp and .!;. The critical depinning force is the 

alue of the driving force at which an abrupt change in the average velocity of the vortices 

occurs. From Figs ( 3 .2-3.4) \ e see that while F; can be exactly defmed at low temperatures, 

it becomes di fficult to define at higher temperatures. In addition, the appearance of the sub

ohmic b havior in the plastic region prohibits using a constant value of the average velocity 

as a criterion to define F; . To overcome these difficulties of the suitable criteria used for the 

critical depinning force is the value of the driving force at which Vx reaches a value of 0 .03 

above the sub-ohmic response [54, 56 5 7 ] .  

For a practical purposes, we chosen t o  defi ne the critical driving force F; as shown in fi g .  3 . 5 .  

Figure 3 . 5  shows how we calculated the critical depinning force F; from the Vx v s  . .!; curve. 

F; is the i ntersection betvv'een the two straight l i nes corresponding to the pinned and unpinned 

regimes of the vortex system, as shown in fig. 3 . 5 .  
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W e  calculated F; for each temperature for each set of val ues of rp and /p. Once F; was 

defi ned for all  these parameters, we were able to study: The dependence of the critical 

depinning force F; on temperature and, The effect of the pinn i ng size on the critical 

depinning force F; . 

3. T h e  d e pe ndence of the  c ritical depi n n i n g  force F; on te m pe ratu re :  

I n  this ect ion, we investigate the effect of temperature on the critical depinning force F; for 

different val ues of rp and fixed value of /p. 

Figure 3 .6 shows the critical depinning force F; as function of temperature for several values 

of the size of the pinning centers rp at fixed pinning strength/p. 

It can be seen from this figure that the rate of decrease of the c ritical depi nni ng force becomes 

faster as rp decreases. The slowest rate of decrease of F; as function of temperature occurs for 

the largest rp val ues for all  val ues of /p. For /p = 1, F; decreases almost l inearly with 

temperature for rp = 0. 6. This behavior of F; as function of temperature is supported 

theoretical l y  [6 1 ] , where it was suggested that vortex pinning at low temperatures i s  

predomi nantly produced by point defects while at high temperatures it is produced by 

extended defects. This was also observed experimentally [27] ,  where a contrasting behavior 

of the critical current density as function of temperature in YBa2Cu307-o and Ba0 57Ko43Bi03 

polycrystall ine samples was found. In YBa2Cu307_0 samples, Jc was found to decrease fast at 

low tem peratures and slows down as the temperature is increased. I n  YBa2Cu307-0 samples, Jc 
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was found to decrease slowl (almost l inearly) at all temperatures. The sharp decrease of Jc as 

the temperature increases in YBa2Cu307-o was attributed to the oxygen vacancies, which is 

commonly pre ent in such samples, whereas they are essential ly absent in Ba0.57Ko.43Bi03 

samples. The results of our numerical calculations provide a furn and solid support to the 

experimental and theoretical results. Pinning centers with small rp behave as point-l ike defects 

so they become less important in pinning vortices at high temperatures. Whereas pinning 

centers v.rith large rp behave as extended defects, which play a significant role in pinning 

vortices at al l temperatures. Simi lar behavior of F; versus temperature is  also seen in Fig. 

3 .6b and Fig. 3 .6c for different values of pinn ing strength,'!;. 
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4. The effect o f  the pi n n i ng size o n  the c ri tical depi n n i n g  fo rce F; 

In this section, we investigate the effect of the pining radius rp on the critical depinning force 

F; , figure 3 .7  shows the critical depinning force, F; , as function of the radius of the pinning 

center for e eral alues of temperature and fixed value of the pinning strength/p. 

It i seen that the values of F; at any specific temperature are large for large values of rp. 

These results were also experimental ly found [62] ,  where it was shown that vortex pinning 

was impro ed by increasing the size of col umnar defects in BSCCO single crystals. The 

critical current density was experimental ly found to increase as the defect size increases in an 

array of Josephson junctions with columnar defects [63 ] .  The increase of critical current 

density with increasing the defect size was also predicted by numerical calculations on 

periodic array of loops [55 ] ,  but the main focus of others work was to study the multi -vortex 

states configurations and their calculations were done only at absolute zero temperature. 

Using numerical calculations based on Ginzburg-Landau Theory on 2-Dimensional model of 

extreme type-I I  superconductor [64]  it was found that the critical current density increases 

l inearly with increasing the size of the defect, however these calculations suggest that the 

increase in the critical current density with the defect radius is substantial ly smaller than the 

phenomenological estimate made in [26] .  In  the latter reference, it is suggested that the 

critical current density is proportional to the square of the defect radius rp. We find a l inear 

dependence of F; on rp only at high temperatures whi le no dependence on rp is found at any 

temperature. In Figs. 3 .7  and 3 .8 ,  we notice that at high temperatures, F; increases almost 

l inearly with rp [or al l  /p values. As the temperature decreases, F; approaches saturation at 

large rp values. This saturation appears sooner at low temperatures, indicating that the 
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i ncrease in the size of the defect ceases to enhance the critical current density. This puts an 

upper l imit on the usefulness of the size of the defect i n  enhancing the critical current density, 

while at high temperatures, this role is sti l l  significant. Our simulations are made for several 

val ue of temperature ranging from very low to high temperatures. Hence, our calculation 

al lo\ a more detailed and qual itative and quantitati e study of the dependence of critical 

depiuning force on the size of the pinning centers as a function of temperature and pinning 

strength. 
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Conclusions 

The high temperature sup rconductors are very proffilsmg materials in a wide range of 

appl ications, such as the Supercomputers SQUIDS electric power transmission, motors 

M Rl, and magnetical ly  levitated trains. 

For most of technological appl ications of HTSCs, it is very important to have high critical 

current density. umerical simulations are very effective tool in studying the effect of the 

size of pinning centres and temperature on the critical current density in the superconductor. 

In this the is we have conducted extensive numerical study on the effect of the size of pinning 

centres and temperature on the critical current density in the superconductor with square 

periodic arrays of pinn ing sites. 

The results we have got show that the critical current density at any temperature increases as 

the size of the pinning centres increases. We found also that for smal l s ize of pinn ing centres, 

the critical depinning force decreases rapidly as the temperature is increased, resembling the 

effect of point defects. And for large size, the rate of decrease becomes slower, resembl ing the 

effect of  extended defects. We also found that at low temperatures, there is an upper l imit to 

the effect of the size of pinning centres in enhancing the critical current density. Our results 

are in excel lent agreement with theoretical and numerous experimental results. 

From our results one can see that high temperature superconductors can be useful m 

technological appl ication if  we can increases the size of the pinning centres. 
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