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Ab tract 

\VhJ!e acute organophosphorous compound poisoning due to inhibition of 

acetylchohn sterase IS a wel l - stab l ished cl inical enti ty, the existence of chronic 

pOlsomng due to exposure to low levels of organophosphorous compounds (below the 

thre ho ld reqUlred for chol inergic c l imcal symptoms) is a hotly debated issue. In this 

study, \\ e have e'valuated the effects of nonchol inergic doses of malathion (0 .0 1 -20 

!l� [) on apopto i' of murine L929 fibroblasts. Employing now c)iometric and caspase 

act l\ atlOn analyses, we demon'trate that malathion induces apoptosis in L929 cel ls in 

a dose- and time-dependent manner. The init iator caspases (caspase-8 and caspase-9) 

as well as the effector caspase (caspase-3 ) were activated by the treatment of L929 

e l ls  with malathion. Exposure of L9_9 cel ls  to malathion in the presence of a general 

i nhibitor of caspase, z-VAD-F fK, abo l ished the apoptotic effect of the compound. In 

addition, malathion induced an mcrease m the expression of the pro-apoptotic protein 

p 53 .  Ho\.vever, the induction of p53 expres ion was ubsequent to activation of the 

caspase cascades. The present findings suggest that the cytotoxici ty of malathion at 

nonchol inergic doses is mediated through caspase-dependent apoptosis .  

By employing caspase spec ific inhibitors, we extended our observations to 

e luc idate the sequence of events involved in malathion-stimulated apoptosis . 

Pretreatment of L929 cel ls with the caspase-9 specific i nhibitor zLEHD-frnk 

attenuated malathlOn induced apoptosis in a dose-dependent manner, whereas the 

caspase-8 inhibi tor, zIETD-frnk, had no effect. Furthermore, the activation of caspase-

9, -8 ,  and -3 in response to malathion treatment was completely inhibited in the 

presence of zLEHD-fmk impl icat ing the involvement of caspase 9-dependent 

mitochondrial pathways in malathion-stimulated apoptosis . Indeed, under both Ln 

vitro and In VlVO conditions, malathion triggered a dose- and time-dependent 
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translocatIOn of cytochrome c from mitochondria into the cytoso l, as assessed by 

\Vestem b lot analysi s .  In  estigation of the mechanism of cytochrome c release 

revealed that malathion disrupted mitochondrial  transmembrane potenti al , induced 

formation of  reactive oxygen species and caused loss of  mitochondri al cardiol ipin 

independent of the activation of  caspase cascades. Final ly, malathion treatment also 

resulted in a time-dependent up-regulation and translocation of the pro-apoptotic 

molecule Bax to mitochondri a. Inhibition of this event by zV AD-frnk suggests that 

the activation and trans location of Bax to mitochondria is subsequent to activation of 

the caspase cascades. The results i ndicate that malathion induces apoptosis in L929 

cel ls  through direct e ffects on mitochondrial functions, causing the release of  

cytochrome c into the cytosol and subsequent activation of caspase-9. I nh ibition of  

this spec ific pathway might provide a useful strategy to minimize organophosphate­

induced poisoning. 
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CHAPTER 1: 

INTRODUCTION 



1.1 I n trod u cti on  

truggle for survival : under this s logan man has waged violent batt les against 

many thousands of envi ronmental enemies termed inj urious pests. During this time 

man developed many different weapons to control these pests. These weapons are 

known as pesticides. Pesticide is defined as any substance or mixture of substances 

intended for preventing, destroying or contro l l ing any pest, such as insects, weeds, 

rodents, fungi , bacteria or other organisms. The term includes insectic ides, herbicides, 

rodenticides, dis infectants, fumigants, and wood preservatives, as well as growth 

regulators , defol iants, and desiccants (F AO, 2003 ; Ware, 1 98 3 ;  Roberson and Nolan, 

1 988 ;  Bohmont, 1 997) .  

During the past four decades some 1 5  000 individual compounds and more 

than 3 5,000 different formulations have come into use as pesticides. Amongst these 

i nsecticides constitute an important group, and organophosphorus compounds (OPCs) 

are the major c lass of insectic ides app l ied in the world today (Karal l iedde and 

Senanayake, 1 989· Aspel in,  1 994; Bardin et a l . ,  1 994). Malathion (0, O-dimethyl S-

1 ,2-bis-ethoxy carbonyl ethyl phosphorodithioate), i s  one of  the most widely used 

organophosphorus pesticides for agriculture and public health programmes (Banerjee 

et al . ,  1 998 a,b, 1 999; Baselt and Cravey, 1 989) .  The acute toxic ity of malathion is 

mediated by the inhibition of acetylcholinesterase (AChE) (Nigg and Knaak, 2000; 

Overstreet and Dj uric, 200 1 ;  Kwong, 2002) .  

In spite o f  extensive research related to  cholinergic effects of  OPCs, l itt le is 

known about health effects from long term exposure to very low levels of OPCs on 

other biochemical pathways that do not involve AChE inhibition. It is well recognized 

that many compounds are not direct ly cytotox ic ; rather they cause sublethal damages, 

which may trigger an innate suicidal sequence of activi ties in the cel l  (Hampton and 



Orrenis. 1998 ). Recent studies have suggested the involvement o f  OPCs in apoptotic 

proce 'ses (Carlson and Ehrich , 200 I ;  Carlson et al . 2000 Carlson and Ehrich , 1999). 

However, the mechanisms by which they modulate this process are poorly 

investigated. Apoptosis or programmed cell death is a physiological process activated 

to eliminate umvanted, damaged, aged, or misplaced cells during embryonic 

development and tissue homeostasis (Ravagnan et al., 2002; Bomer, 2003 ). The two 

pathways o f  apoptosis include the cell receptor pathway, which mediates transduction 

of the death signal, and the mitochondria-initiated pathway, which involves 

membrane permeabilization and release of several mitochondrial proteins, such as 

cytochrome c and procaspases (Pessayre et al., 1999; Zarnzami et al ., 1998; Maeda, 

2000). The most important apoptotic e f fectors are the caspases (Cain 2000) that are 

synthesized and stored as inactive precursors and activated by proteolysis upon 

induction by various apoptotic stimuli (Pallardy et al ., 1999). Progression o f  the 

caspase cascade ends with the activation o f  the e f fector caspase-3, which finally 

cleaves various vital substrates in the cell (Alnemri, 1997 ). Be fore presenting the 

results of this thesis on the ef fects o f  non-cholinergic doses o f  malathion ( 0. 0  1-20flM) 

on apoptosis o f  murine L929 fibroblasts and the role of a mitochondrial pathway in 

the induction o f  apoptosis by malathion, I will s ummarize the knowledge on OPCs, 

using malathion and its toxicological effects as an example. In addition, the two 

pathways of apoptosis and the previous studies on the e ffect o f  di fferent pesticides on 

apoptosis will be discussed, as results from this work indicate that malathion induces 

apoptosis in L929 cells through direct ef fects on mitochondrial functions causing the 

release of cytochrome c into the cytosol and subsequent activation o f  caspase-9 . 

These findings suggest that inhibition of this specific pathway might provide a useful 

strategy to minimize organophosphate-induced poisoning. 
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1 . 2  Orga n o p h o  p h o r u  Co m po u n d  U a ge 

Organophosphorus co mpounds ( OP Cs )  are extensively used in agriculture as 

pesticides, in industry and technology as plasticizers in products like paints, lacquers, 

and varnishes, as additives in lubricants and hydraulic fluids, plastic softeners, 

stabilizers, anti foa ming, antioxidants, wetting agents and fla me retardants in plastic, 

textiles and building materials lMochida et al. 1988; Katoh et al., 1990; Mortensen 

and Lade foged, 1 992: Ware, 199-+; W H O, 1998; Weiner and Jortner, 1999; Marklund 

et al., _003). They are also used in veterinary practice as ectoparasiticides (Kwong 

_00_ ). in human medicine for eradication o f  hu man body lice ( Elston, 2002' Roberts 

_002), and in food preparation and processing areas ( avage et al. 1 98 1 ) . In addition, 

so me OPCs are applied in military teclmology as chemical warfare agents 

(Karalliedde, 1999 Karalliedde et al., 2000). 

However, these economic and health benefits are not achieved without 

potential risk and possible adverse health effects to humans, domesticated animals and 

the environment. It has been esti mated that 85-90% o f  the pesticides applied in 

agriculture never reach their target organisms but instead are dispersed in the air, 

water, and soil (Repetto and Baliga, 1996). Based upon such estimates, pesticide 

exposure is likely for non-target organisms . 

Most studies on toxicity of OP Cs have focused on the enzyme alterations, 

i mmunotoxic, reproductive and develop mental e f fects, mutagenic and potential 

genotoxic properties of these agents . Only recently have the potential o f  pesticides to 

induce apoptosis received adequate attention . More in formation is, however, required 

regarding the mechanis ms through which these agents induced apoptosis. 
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1 .3 Tox ic i ty o f  Oro-an o p h o  p h oru C o m p o u nds 

Organophosphorus (OP ) poisonings continue to be a major cause of morbidity 

and mortality in the third world countries (Peter and Cherian, 2000). The World 

Health Organization ('W HO ) reported that more than one million casualties occur 

annually due to OP exposure amba, 197 1 ). Nu merous OP poisonings are actually 

accidental and have occurred among pesticide workers ( Baker et a1 ., 1978 ) and 

children ( Hayes, 1982 ) .  

Over a ten-year period fro m 1987 to 1996 hospitals in Western Australia 

encountered 69 ca es o f  OP poisoning ( E merson 1999) .  There were 47 cases o f  OP 

in ecticide poisoning in Turkey between 1990 and 2 000 (Sungur and Guven 200 1 ) .  

In addition, from 199 1 to  1992, there were 1 33  cases o f  OP insecticide poisoning in 

Tanzania gowi et al. 200 1 ) .  

Toxicity of organophosphorus compounds stems mainly from the 

accumulation of acetylcholine in the nervous system due to inhibition of 

acetylcholinesterase (AChE, Pope, 1999) .  Many studies have demonstrated the 

toxicity of organophosphorus compounds . These studies were done in different organ 

syste ms, either in vitro or in vivo. 

eurotoxic effects of OP pesticides and related compounds fall into three 

categories either in humans or animals (Ray, 1998) . The acute or cholinergic 

syndro me, which results from AChE inhibition, occurs within a few minutes to hours 

after exposure (Karalliedde et a1 ., 2000; Brown and Brix, 1998). It produces a 

complex mixture of muscarinic and nicotinic signs which vary according to the 

severity with target organ tissue, dose and agent ( Marrs, 199 3 ) .  The second 

neurotoxic effect of OPs is an intermediate syndro me (Karalliedde et al., 2000), 

described as a late co mplication of some cases of severe acute poisoning (Ray, 1998) .  
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It is characterized by vveakness of respiratory neck and proxi mal limb muscles (Lotti, 

2 002). OP-induced delayed neurotoxicity ( OPIDN) or polyneuropathy is a third type 

neurotoxicit , which is characterized by paralysis o f  the lower li mbs, partial sensory 

loss, and degeneration o f  long axons in the spinal cord and peripheral nerves evident 

1 0- 1-1- days after exposure. It is attributed to phosphorylation and aging of neuropathy 

target esterase T E, Johnson, 1992). 

e veral studies have addressed the potential o f  low-dose OPs to produce a 

variety of effects in man (Ja mal 1997) and in ani mals (Ray and Richards, 200 1 ). 

Funhermore repeated exposure to low-level o f  OPs can lead to chromc da mage to the 

nervous syste m (Stephens and Spurgeon, 1995) such as neurological syndro me 

characterised by headache, fatigue skeletal muscle, weakness and nausea 

(Karalliedde 1999). 

The toxic effects of OPs have also been investigated in fish and birds ( Walker 

and Johnston 1989). Animals that are exposed to organophosphates show that low 

single doses on a critical day o f  develop ment can cause hyperactivity and permanent 

changes in neurotransmitter receptor levels in the brain (Ahlborn et aI., 1995). 

Furthermore, organophosphates such as flupyrazofos, chlorpyri fos and dichlorvos 

induce maternal toxicity in experimental ani mals ( Baksi, 1978; Breslin et aI., 1996' 

Chung et at, 2002). 

1 . 4  No n - E s te rase C e l lular  E ffec ts of  O Ps 

However, the toxicity of OPs is not restricted only to AChE inhibition. It has 

been shown that parathion was capable of inducing toxic e f fects in F G-93 07 cells and 

causing alteration of mitochondria, rough endoplasmic reticulu m nuclear membranes 

and production of nu merous lysoso mes (Li and Zhang 200 1 ). Also, it has been 
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de monstrated that oxidative stress may occur in OP toxicity (Pena- Llopis et aI ., 2002). 

everal studies have proved oxidati e stress is induced by OPs in rats ( Gultekin, 2000; 

Gupta et al., 200 1 :  Akhgari et aI., 2003) and hu mans ( Banerjee et al ., 200 1 ·  Ranjbar et 

a 1.. 2002). 

There are a nu mber of in vitro studies where OP sensitivity of a nu mber of 

proteins was propo ed . For exa mple, calmodulin activity (Pala et ai., 199 1)  and 

pho phoinositol phosphodiesterase (Davies and Holub, 198 3 )  are both in fluenced by 

OP esters at extre mely high concentrations. Diazinon is an organophosphorus 

co mpound has been shown to increase protein metabolism (Ceron et ai., 1996), inhibit 

protein synthesis (Marinovich et al. 1994) and alter the metabolic pathways for 

specific a mino acids (e.g. L-tryptophan, Seifert and Pewnim 1992) .  A potential 

genotoxic effect of OPs was observed in fish treated with organophosphorus 

msecticides, methyl parathion and phosphamidon, which resulted in sister chromatid 

exchanges and chro moso mal aberration (Das and ] oh, 1999). In another study 

hukla et ai., ( 2000) showed that topical exposure of Quinalphos on mouse skin may 

initiate tu morigenic potential. Furthermore, organophosphates such as flupyrazofos, 

chlorpyrifos and dichlorvos induce maternal toxicity in experimental ani mals ( Baksi, 

1978; Breslin et aI., 1996· Chung et ai ., 2002). 

Defined mechanisms i mplicated in OPC elicited in vitro such as cell death are 

not widely described, but the implication of apoptotic processes is observed 

(Akbarsha and Sivasamy, 1998; Hamm et aI., 1998). 

1 .5 M a l a t h i o n  

Malathion [S- 1 2-bis ( ethoxycarbonyl )ethyl 0, O-di methyl phosphorodithioate; 

CAS Registry 0. 1 2 1-75-5] is a widely used organophosphorus insecticide applied in 
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agnculture as a pesticide in veterinary practice as ectoparasiticide (Flessel et aI., 

19 ' ), in eradication of human body lice (Elston, 2002; Roberts, 2002) and in food 

pr paration and processing areas ( avage et al., 198 1 ). Malathion is c1assi.fied as class 

I I I  (slightly toxic ) in terms of risk according to the W HO ( W HO, 2000). In the USA 

alone, it an e timated 1 6 . 7  million pounds of malathion are applied annually. Its 

chemical structure is shown in Figure 1.1. Approximately 1 2.5 million pounds are 

used in agriculture, mostly for cotton, through the USDA Boll Weevil Eradication 

program, and 3.-+ million pounds are applied to non-agricultural uses, such as for the 

med fly quarantine mosquito abatement, golf courses and home owner outdoor 

control (U EP A, 2000a ). In 1999, malathion was also utilized in the West ile Virus 

eradication effort (U EPA ,  _OOOb 200 1 ) .  

I n  the UAE in 2000 malathion was used during the malaria control 

programme (Ministry of Health 2003 ). 

Figu re. 1 .! The chemical structure of malathion (adapted from Dikshith, 1991). 

1 .5. 1 .  Tox ic o logic a l  E ffec ts 

1 .5 . 1 . 1 .  P o is o n i n g  Stat is t ics 

Acute toxic effects induced by malathion pesticides are mainly caused by 

inhibition of acetylcholinesterase (AChE ) in the nervous tissue with a consequent 
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increase in the levels of the neurotransmitter acetylcholine m synapses igg and 

Knaak, 2 000; O v  [street and Djuric, 200 1; Kwong, 2 002) .  

� blathion has been implicated in se eral cases of accidental or suicidal 

poisoning, some of which were fatal. In Japan , from 1 957 to 196 1 and 1965 to 1966, 

there were 63 accidental poisonings resulting in ten fatalities, and 48 0 suicide or 

homicide attempts, of which 404 were deaths (Matsumura 1975 ) .  In 197 3, Nalin, 

detected an epidemic of _64 suicides that resulted from malathion poisoning in 

Guyana alin 1 97 3 ). 

In Pakistan among malaria workers, malathion accounted for 28 00 cases of 

poisoning ( Baker et aI., 1 978). Petros (1 990) reported on nine cases of malathion 

poisoning admitted to a hospital in Ethiopia in 198 6 .  Hayes and Vaughn ( 1977) 

reported that for five years surveyed ( 1956, 196 1, 1969, 1 97 3  and 1974 ), malathion 

was responsible for 1 1  deaths due to accidental causes. Furthermore, malathion was 

one of two insecticides (endosulfan being the other ) identified as causing 64% of the 

pesticide related fish kills in US coastal areas between 1 98 0  and 1 989  (Pait et al ., 

1992). 

Intermediate syndrome has been reported in humans after exposure to 

malathion ( Gallo and Lawryk 1 99 1 ). The cytotoxic effects of malathion (50).lM) 

have also been demonstrated in human, rat hepatocytes and HaCaT cells (Delescluse 

et al., 1 998 ) .  

1 .5.1 .2. M utage n ic i ty and G e n otoxic ity E ffects 

Malathion can be regarded as a potential mutagen! carcinogen agent ( Blasiak 

et al., 1 999) .  Use of malathion by farmers has been linked to an increased risk of one 

type of cancer, non- Hodgkin s lymphoma (Cantor et al ., 1 992). In experimental 
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ani mal study u ing three acute doses (2 . 5 ,  5 ,  10mglkg ), malathion was reported to 

produce chro moso mal aberration, sperm abnormalities, and delay in cell cycle at 

higher do es ( Girl et a 1., 2002). A low concentration of malathion, was found to be 

genotoxic in mou e spleen CArner et aI., 1996). Several in vitro studies in hu man cells 

have also shown an increase in chro moso me aberrations and/or chro matid exchanges 

after malathion exposure ( Herath et aI., 198 9· Garry et aI., 1990; Walter et a1. 198 0; 

obti et aI . ,  198 2: 1 icholas et aI. , 1979). Ka mrin ( 1997) summarized results of 

mutagenicity tests of malathion and other selected organophosphours pesticides: 

malathion produced detectable mutagenesis in three different types of cultured hu man 

cells. 

1 .5 . 1 .3 .  R e p ro d u c tive and Devel o p m e n t a l  E ffects 

Malathion has develop mental effects on the male reproductive syste m and on 

e mbryogenesis. Several studies have addressed the potential of malathion to cause 

Sertoli cell changes in animals (Contreras et a!. 1999; Banerjee et a!. ,  1998). Male 

mice injected i.p. with 240mglkg/day of commercial malathion for 4 0  days show 

significant decreases in sperm count, and plasma testosterone level, as well as altered 

sperm tail morphology ( Bustos-Obregon and Gonzalez- Hormazabal, 2003) .  

Embryotoxicity, as indicated by decreases in  body weight and skeletal size and 

a lag in develop ment has been reported in mice after ad ministration of malathion at 

about 1 5 -50% of the oral LDso values, but no indication of maternal toxicity was 

provided (As matullah et a!. 1993 ). Embryonic abnormalities and mortality have been 

induced by malathion when injected into yolk sac of fertile chicken eggs ( Pourrnirza, 

2000). There is also evidence that malathion induce morphological abnormalities 

such as vertebral deformities in fish ( Lien et a!., 1997 ). Si milarly, ad ministration of 
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malathion to toad embryos reduces glutathione ( GS H) level, glutathione S-transferase 

( GS H  -transferase )  activity, and produces morphologic abnormalities and mortality 

(Anguiano et aL, 2 00 1 ). 

Developmental defects were also observed in Xenopus embryos exposed to 

malathion ( nawder and Chambers, 1990, 1 993). A potential reproductive effect was 

demonstrated in Culex quinquefasciatus (Aguilera et a1., 1 995 ). Additionally 

sublethal doses of malathion (5 and 20l-.tl/l) were found to cause a sex hormonal 

imbalance in fish ( ingh and ingh, 1 992). 

1 .S. 1 A. I m m u n ot o x ic e ffec t 

Malathion is known to modulate or suppress immune responses at specific 

dose le vels (Johnson et al., 2002; Beaman et a 1., 1 999' Rodgers and Xiong 1 997 ). 

on-cholinergic doses of malathion elevate the macrophage, proliferative and 

humoral immune responses in MRL- Ipr mice (Rodgers, 1 997). Non-cholinergic 

doses of malathion as low as O.l mg/kg per day ( LD5 0= 28 00 mg/kg ) stimulate the 

immune system by inducing mast cell degranulation (Rodgers and Xiong, 1997); 

\\'hereas cholinergic doses of malathion (>7 20 mg/kg) suppress immune function by 

reducing anti-sheep red blood cell (SRBC)  antibody production (Casale et a 1., 1 983 ). 

Moreover, it has been reported that malathion suppresses generation of nitric 

oxide and TNF -a by rat peritoneal macrophages under in vitro conditions over 24 h 

(Ayub et al., 2003 ). In addition, a decrease in cellular immune responses has been 

reported for malathion ( Banerjee et al., 1998 ) .  
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1 .  -. 1 .5 .  Oth e r  Hea lth E ffect  o f  Subletha l D o  es 

Cho\,,:dhury et a1. ( 198 0), treated rats with a single oral dose ( 1  g/kg body wt) 

of malathion and reported reduced glucose and glycin absorption, as well as depressed 

on brush border enzymes including sucrase, lactase, alkaline phosphatase. Mg2+­

ATPase and lactate deh drogenase in rat intestine. Malathion induced alterations in 

the lipid profile and the rate of lipid peroxidation in rat brain and spinal cord ( Haque 

et al., 1987) .  In an other study, application of malathion in rat hepatoma-derived Fa 3 2  

cells resulted in lysosomal attack and mitochondrial dysfunction as the primary 

intoxication mechanism (Dierick'(, 2000). Administration of malathion for 4 weeks 

increased the acti vities of catalase and superoxide dismutase in erythrocytes and liver 

of rats exposed to malathion ( Akhgari et al., 2 003 ). Furthermore, malathion, has been 

found to cause oxidative stress in rats and mice ( Ahmed et al. 2000; Yarsan et al . 

1999) .  

Sublethal doses of malathion affect ovarian lipid metabolism in catfish (Singh, 

199 2 ), and the carbohydrate metabolism of crustaceans (Reddy et al., 198 6). Use of 

sublethal doses of malathion, was found to produce variation in the serum protein 

fractions of fish (Richmonds and Dutta, 1992), and inhibit lipid and protein synthesis 

by the liver (Saxena et al., 1989) .  Thyroid physiology impairment by malathion has 

also been investigated in fish (Sinha et al., 1992). 

Most studies on toxicity of malathion either in vitro or in vivo have focused on 

the neurotoxic, immunotoxic, reproductive and developmental effects, as well as 

mutagenic and potential genotoxic properties of this agent. However, there is an area 

regarding malathion's toxicity which must be explored, which is the effect of 

malathion on induction of apoptosis. 
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1.6 Apoptos i 

poptosis or progr ammed cell death is a physiological process that is 

activated to eliminate unwanted, damaged, aged, or misplaced cells during embryonic 

de velopment and tissue homeostasis (Ravagnan et a1. 2002; Bomer, 2003). Apoptosis 

has unique morphological and biochemical features characterised morphologically by 

shrinkage of the cell, membrane blebbing into membrane-bound apoptotic bodies and 

rapid phagocytosis by neighbouring cells (Saraste and Pulkki, 2000; Poulaki et a1., 

2001) .  Internucleosomal fragn1entation of genomic D NA has been the biochemical 

hallmark of apoptosis for many years (Saraste and Pulkki, 2000). 

Apoptosis is orchestrated by the activation of a family of aspartate-specific 

cysteine proteases known as caspases, which normally exist as inactive proenzymes 

(Cohen 1997) .  Two major apoptosis pathways have been identi fied: the death 

receptor pathway and the mitochondrial pathway. 

The death receptor pathway is initiated through the binding of death ligands, 

such as Fas ligand and tumor necrosis factor (TN F ), to their specific receptors on the 

cell surface . This stimulation results in the recruitment and activation of caspase-8 

through the related adaptor molecules ( F  ADD and F LAS H ). Active caspase-8 farther 

activates downstream effector caspases such as caspase- 3, 6 and 7 (Cohen, 1997). The 

other major route leading to apoptosis is the mitochondrial pathway. Mitochondria 

play a major role in the apoptotic death by liberating apoptogenic proteins, including 

cytochrome c, into the cytoplasm (Martinou and Green 200 1· Zarnzami and Kroemer, 

2001). Once in the cytoplasm, cytochrome c, in the presence of A TP or dATP, 

associates with Apaf-l (a poptotic protease-activating factor ) and procaspase-9 in a 

complex known as the apoptosome. Apoptosome formation leads to activation of 
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caspase-9, which then directl, cleaves and activates procaspase- 3 (Saleh et al., 1999; 

Green, _ 000). 

Although the precise molecular mechanisms by which cytochrome c is Iibrated 

from mitochondria to the cytosol are still unclear, it is believed that members of the 

Bcl-2 family proteins modulate the release process. The me mbers of this family can 

be subdivided into two groups: one with anti-apoptotic proteins that inhibit apoptosis, 

such as Bcl- 2 and Bel- XL, and pro-apoptotic proteins that promote apoptosis, such as 

Ba'\ and Bak (Antonsson, 200 I; Huang and trasser, 2000) .  

1 .  7 P es t ic ide a n d  A p o p tosis 

Pesticides among several other factors can induce apoptosis (Carlson et al., 

2000: Kannan et al., 2000; Warren et al., 2000). However, studies in this field are 

scarce. For example, organophosphates of chlorinated hydrocarbon insecticides have 

been de monstrated to induce apoptosis (Carlson et aI., 2000; Kannan et al., 2000; 

Rought et al., 2000). N-nitroso metabolite of carbofuran (carbamate pesticides) 

induces cell cycle arrest and apoptosis in CHL cells ( Yoon et al. , 200 1) .  

In vitro exposure to OP co mpounds such as tri-ortho tolyl phosphate, triphenyl 

phosphite, and parathion have been shown to produce changes in mitochondrial 

trans me mbrane potential in hu man neuroblastoma cells (Carlson and Erich, 1999) . 

Subsequently, Carlson et al ., ( 2000) proposed that cytotoxicity of organophosphorus 

compounds could be due to induction of apoptosis by various routes, including 

mitochondrial permeability pores mediated caspase pathways, or serine protease 

activation . 

Pena- Llopis et al. ( 2002) studied the association between the glutathione 

levels in marine bivalves and survival through exposure to the OP pesticide 
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ferurrothion . They reported that an impai rment in the glutathione re dox status could 

result in an in duct IOn of the cell death, either by apoptosis or necrosis, leading 

e \entually to the death of the organism . In another study, a single topical application 

of permethrin insectici de in mice resulte d in thymocyte apoptosis ( Prater et al., 2002). 

In ad dition, mitochon drial depolar ization, caspase-3 activation an d apoptosis have 

been ob erve d  in culture d cells ( dopaminergic P C  12) following exposure to 

organochlorine pestici de , diel drin (Kitazawa et al., 200 1; 2003). 

The O P  insectici de dichlorvos in duced in vivo ne urotoxicity an d apoptosis, 

respectively, has been demonstrate d by a variety of techniques including depletion of 

glutathione metabolism, inhibition of AChE an d caspase- 3- like activity ( Pena- Llopis 

et al . _ 003). 

Biochemical changes other than acetylcholinesterase inhibition have been 

reported In vitro a fter exposure to O P  compoun ds, inclu ding inhibition o f  protein 

syl1thesis ( Har vey and Sharma, 198 0; Re d dy et al ., 1990), fragmentation of D NA 

(Carlson an d Ehrich 1999), leakage of lactate dehy drogenase ( Bagchi et al., 1995) 

and inhibition of glucose metabolism ( Har ey and Sharma 1 98 0) .  Recent studies 

have indicated that through non-cholinergic mechanisms, chlorpyrifos affects brain 

cell development involving alterations in the expression and function of transcription 

factors that control cell replication, differentiation, an d apoptosis (Crumpton et al . 

2000; Garcia et al. 2001; Schuh et al . 2002) .  Furthermore, ultrastructural changes of 

rat hepatoma, mitochon dria an d lysosomes a fter malathion treatment were also 

observed by Dierickx (2000). 

Results from these stu dies con ducte d in vivo an d in vitro models in dicate that 

the O P  compoun ds can in duce apoptotic cell death. 
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1 . 8  Obj ecti es 

All 1 1 :  To test the effect o f  malathion pest icides on the induction o f  apoptosis 
in L9_9 ce l l  l ine. 

AI�l _ :  To e aluate the toxic effect o f  malathion on  mitochondrial function . 
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CHAPTER 2: 

E F FECT OF MALATH I O N  ON APOPT O S I S  O F  

M UR INE L 9 2 9  F I BRO B LASTS: 

A PO S S I BLE MECHAN I S M  F OR 

TOX I CITY IN LOW D O SE EXPOSURE
* 

A versIOn of this chapter has been published. 

Maso u d ,  L. ,  V1Jayasarathy, c. ,  Femandez-Cabezudo, M.,  Petroianu, G . ,  and Saleh, A.M.  
(2003 ) .Effect of malathion on  apoptosis of mur ine  L929 fibrobl asts: a poss ible mechanism 

for tOXICIty 10 low dose exposure . Taxieal. 1 85, 89- 1 02 .  



2 . 1 . I n t rod u c t i o n  

Ialathion [S- 1  ,2-bis ( ethoxycarbonyl )ethyl O, O-di methyl phosphorodithioate; 

CA Registry [ 0 . 12 1 -75-5 ] is one of the most widely used organophosphate 

compounds (OPCs ) applied in agriculture as a pesticide, in vete rinary practice as an 

ectoparasiticide (Flessel et al ., 1993 ), in eradication of hu man body lice ( Elston 2002; 

Robe rts , 2002) and in food preparation and processing areas (Savage et al., 198 1 ). 

Acute toxic effects induced by malathion pest icides are mainly caused by inhibition of 

acetylcholinesterase (AChE) in the ne rvous tissue with a consequent increase in the 

levels of the neurotrans mitter acetylcholine igg and Knaak, 2000; Overstreet and 

Djuric _ 00 1 ;  K wong, 2002). Malathion can be metabolized to non-toxic 

inte rmediates by carboxyesterases enzy mes (Gupta et al., 198 3 ·  igg and Knaak, 

2000). Ho wever, its \videspread use in agriculture and household practices has raised 

concern 0 er its potential to cause adverse health effects in humans, ani mals, wildlife 

and fish (Flessel et al ., 199 3; Wolfe and Seiber, 1993 ) .  Occupational exposure to 

malathion is a cause for concern. Dermal exposure to malathion following aerosol 

application has been esti mated to be as high as >5 mglkg per day ( Wolfe et al ., 1967 

& 1978) .  

Recent studies have indicated that at noncholinergic (sub-lethal acute ) doses, 

malathion affects several biochemical pathways that do not involve modulation of 

AChE activity. Both under in vitro and in vivo conditions, malathion « 1 0  mglKg 

body weight � 30  �M ) has been shown to induce DNA damage, chro moso mal 

aberrations ( Blasiak et al., 1999; Giri et al ., 2002) and malignant transformation 

(Cabello et al ., 200 1). Malathion has also been shown to modulate oxidative stress 

and i mmune response in expe rimental ani mals ( John et al ., 200 1;  Johnson et al ., 2002). 

1 6  



Cells undergo apoptosis (progra mmed cell death ) in response to vanous sti muli 

including che mical stress. Apoptosis, \ hich is distinct fro m necrosis, anot her form of 

cell death ( Ra flra y  and Cohen, 1997 ; Pallardy et a i., 1999 ; Bratton and Cohen, 200 1) ,  

is  mediate d by t he intracellular aspartate specific cysteine proteases designated as 

caspa es ( . lne mri , 1997 ). Caspases are nthesized and stored as inactive precursors 

(procaspases ) and acti ated by proteolysis upon induction by various apoptotic sti muli 

(Pallardy et aI. , 1999). 

Of the t v,fO pat h',: ays that activate caspases, the receptor-mediated pathway 

in volves the ligation of death receptors resulting in recruitment and activation of 

caspase-8 ( ca ffidi et a i., 1998),  \ hile the stress induced mitochondria dependent 

pathvv'ay leads to activation of caspase -9 ( aleh et a i., 1999; Zou et a i ., 1999). 

Follo wing activation of the initiator caspase-8 or -9, the two pathways converge on 

the activation 0 f the effector caspase-3, which finally cleaves various vital substrates 

in the cell ( Alne mri, 1997). Apart fro m t hese two pathways, p5 3, a molecule involved 

in cell surveillance also activates the mitochondr ial pathway of apoptosis in response 

to D N A  damage ( Luu et a1. 2002; Tr inei et a1 . ,  2002). Although these pathways 

appear tD be distinct fro m each other, a cross talk between them ensures effective 

elimination of injured or damaged cells . 

Although the c ytotoxicity of malathion has been shown to involve several 

biochemical pathways, studies on apoptosis following exposure to t his compound 

have not received much attention as yet. In the present study, we assessed the 

cytotoxic effect of very low non -cholinergic doses of malathion (concentrations that 

do not inhibit AChE activity : 0.0 1 -20 11M ) on apoptosis of cultured mouse L929 

fibroblasts using flow c yto metry, caspase activation and D N A  fragmentation 
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techniques . Our results demonstrate that malathion induces a caspase-dependent 

apoptosis in a time and dose-dependent manner in cultured mouse L929 fibroblasts . 
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2.2 . M a te r i a ls a n d lV l e tb ods 

2 . 2 . 1 .  Reage nts  

Malathion \'vith 9 - 0 0 pu rity was obtained f ro m  PolyScience (Di ision of 

Pr ston lndu t ries, Inc . iles , I L ) .  tock solution of malathion (100 mM) was 

p repa red in dimeth , I sul foxide (D MSO )  and sto red at -8 0°C . The wo rking dilutions 

in phosphate buf fe red saline ( P BS ) we re p rep ared just be fo re use . Protease inhibitors, 

[ P  IS F peps tat in A, leupeptin and ap rotinin] we re acqui red fo rm Sigma Che mical 

Co mpany (Sigma Ald rich Che mie Gmb H  Steinhei m, Germany).  The color imet ric 

tet rapeptide subst rates fo r caspase-8 ( c- IETD-p A), casp ase-9 ( Ac - LEHD -pNA) 

and caspase- 3 lAc-D E VD-pNA) we re purchased from Calbioche m (San Diego, CA). 

Caspase-8 inhibitor ( Ac- IETD- CHO ), caspase-9 inhibito r (z- LE H D- F MK), caspase-3 

inhibito r ( Ac-DEVD-C HO )  and the gene ral caspase inhib ito r (z-V AD- F M K) were 

also obt ained fro m Calbioche m. The following polyclon al antibodies we re obtained 

fro m ar ious sources as indic ated : anti-caspase-8, anti-p S3, anti a-tubulin and anti­

P ARP (Sant a Cruz Biotechnology, CA), anti-caspase-9 and anti-c aspase-3 (St ressgen 

Biotechnolgies, Victor ia, B C, Canada ) .  

2 . 2 . 2 .  C e l l  C ultu re 

L929 mouse fib roblast cells we re obtained f ro m  A me ric an Type Culture 

Collection ( ATCC; Rockv ille , NID ). Cells we re cultu red in R P M I  1 640 medium 

containing L-glutamine (Sig ma St . Lois, MO ) supple mented with 10% he at­

inactivated fetal bovine se ru m  ( G I B CO BRL, Grand Isl and, Y), 100 U/ml penicillin 

and 1 00 )lg/ml st repto mycin, and we re kept at 3 7°C in hu midi fied 5% CO2/ 9S% ai r. 

Prio r to confluence the cells we re h arvested and seeded onto pl astic 6-well cultu re 

plates o r  1 00-mm cultu re dishes at 5 X I 05 cells /m ! .  The cells we re then allowed to 
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gro \\ for 2-3 da y and expo ed to arying concentrations of malat hion (0 . 0 1 to 20 ).lM) 

for 16 h .  Follo win g treat ment . t he cells were harvested using 0 ._5% trypsin/ED T A 

( G I BCO BR L),  centrifuged at 1000 rp m for 5 min , was hed wit h P BS and 

subsequently used for arious bioche mical investigations. T he specificity of caspase ­

mediated apoptosis ',; as dete nnined by including z- V AD-FMK, a general i nhibitor of 

caspases , in the mediu m.  In those expe rime nts w here the inhibitors were used , the 

cells were pretreated wit h 25 or 50  ).l { z- V AD-FMK for 6 h, followed by treatment 

\vit h malathion for 1 6  h prior to harvesting. 

2 . 2 .3.  A n a l), is o f  A p o p tosis by Flow Cyt o m e t ry 

Loss of plas ma me mbrane asym metry is one of t he earliest features of 

apoptosis . In apoptotic cells, t he me mbrane p hosp ho lipid , p hosp hatidylserine CPS ) is 

exposed to t he external cellular environment as a result of translocation fro m t he inner 

to t he outer leaflet of t he plas ma me mbrane ( Oka moto et al., 2002) .  To identi fy early 

apoptotic cells, we used t he Annexin V -F I TC ( fluorescein isothiocyanate ) staining kit 

from BD Biosciences (Franklin Lakes, J) .  Annexin V has a hig h  a ffInity for PS and 

binds to cells with exposed PS (Ve nnes et al . 1995) .  Propidi urn Iodide (P I) was used 

to di fferentiate apoptotic cells with preserved me mbrane integrity (Annexin +, P I) 

fro m necrotic cells t hat lost me mbrane integrity (Annexin-, pt). T he assay was 

perfonned following t he manufacturer 's procedure . Brie fly, malathion -treated cells 

( l X 106/ml ) were harvested and washed twice wit h ice-cold P BS. About l X I 0
s cells 

were stained with Annexin V-F I TC and P I  as per t he manufacturer 's protocol . 1 0,000 

cells were analyzed by flow cyto metry (Facs Vantage, Becton, Dickinson, USA ).  

Cells with positive Annexin V stain (Annexin+, pr) were counted as apoptotic and 

t heir nu mber expressed as a percentage of the total cells. 
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2 .2 04 .  \Ve tern Blot  A n a l}' i 

Malathion-treated cel ls were harvested washed twice with PBS and suspended 

in a I)- s is  buffer contain ing 1 00 m1t1 HEPES pH 7 . 5 ,  1 0% sucrose, 1 0  mM DTT, 

0 . 1 0'0 HAP 1 50 m 1 aCI and protease inhibitors ( 1  rn1vl PM F, and 1 flglml 

leupeptin, aprotinin and pepstatin A). Cel ls were lysed by four repeated cyc les of 

freeze tha\ving and centrifuged at  4 °C for 30  min at  1 4,000 xg .  The supernatant was 

col lected and stored at -80°C or used immediately .  The samples were analyzed for 

total protein by a protein assay kit based on Bradford ( 1 976) colorimetric reaction 

(BioRad U ) .  Ce l l  lysates (50 flg protein per lane) were separated on 8 and 1 2% 

S DS-polyacrylamide gels and electrob lotted onto a PVDF membrane (Mi l l ipore, USA) 

using standard techniques (Laemmli ,  1 970' Towbin et aI. , 1 979). After 

electrophoretic transfer, the membranes were blocked by incubat ion for 1 h with 5% 

non-fat dry m i lk in PBS contain ing 0 . 1 % Tween-20. The blots were then incubated 

for 2 h at room temperature or overnight at 4°C with one of the fol lowing antibodies 

d i luted in PBS containing 0 . 1 % Tween-20 and 2% non-fat dry m i lk :  anti -caspase-8 

( 1 : 1 000), anti-caspase-9 ( 1 : 3 000), anti-caspase-3 ( 1 : 1 000), anti-PARP ( 1 :  1 000) and 

anti-p5 3 ( 1 :  500) .  The b lots were then incubated with a horseradish peroxidase­

conj ugated secondary antibody against rabbit IgG ( 1  : 2000 d i lution' Sigma). The 

ant igen-antibody complexes on the b lots were detected by SuperS ignal 

chem i luminescence kit as described in the manufacturer ' s  protocol  (pierce 

Biotechnology, Rockford, lL) and visual ized by autoradiography. To confirm equal 

loading of proteins, the b lots were also immunoprobed with a rabbit polyclonal 

antibody against the cytoskeletal protein a-tubul in ( 1 :  2500 di lution). The consistent 

equal s ignals of a-tubul i n  from the different extracts also indicate that malathion does 

not interfere with protein synthesis in L929 cel ls .  
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2 . 2 .5 .  A ay o f  C a  pa e-8 -9 a n d  -3 ct iv i t ies 

Caspase-3 , one of the pri nc ipal caspases in apoptotic cel ls ,  is activated during 

the apoptotic ignal 1ng by upstream caspases inc luding caspase-8 and -9 (Bratton and 

Cohen, _00 1 ) . The activities of  caspase-8 ,  -9 and -3 were determined using the 

co lorimetric tetrapeptide substrates Ac- IETD-p A, Ac-LEHD-pNA and Ac-DEVD­

pl A. respecti ely, as previousl described by Srinivasula et al . (200 1 ). Lysates (30 

flg protein) from malathion treated ce l l s  were incubated with 0.2 mM of caspase-3 ,  -8 

or -9 col rimetri c  peptide substrates in a �2 volume microtiter plate at 30°C. The 

assays were performed both in the presence and absence of the caspase-8 (Ac-IETD­

CHO) caspase-9 (z-LEHD-F f K) or caspase-3 ( c -DEVD-CHO) specific inhibitors 

(_0 )lM) to e l iminate non-spec ific activit ies in the l ysates. Caspase activity was 

monitored spectrophotometricaly, with a microtiter p late reader by measuring the 

increase in absorbance at 405 nm ,  which corresponds to the amount of p- i troani l ine 

(PI T A) l iberated from the peptide substrates. The absorbance change was converted 

into units of enzyme ac tivity using a standard curve generated with free pNA. One 

unit of caspase-3 -8 or -9 act ivity corresponds to the amount of enzyme that wi l l  

release 1 pmol of p A from 0.2 mlvl DEVD-pNA, IETD-pNA or Ac-LEHD-pNA per 

min, respectively. 

2 . 2 . 6 .  DNA Fragm e n ta t i o n  Assay 

D 'A fragmentation was analysed using agarose gel e lectrophoresis. Genomic 

Dl A was prepared using the method of Gong et a l .  ( 1 994) with sl ight modification. 

After treatment of  L929 fibroblasts with malathion, about 2x 1 06 cel ls  were washed in 

ice-cold PBS and prefixed in ice-cold 70% ethano l .  The partial ly degraded 

ol igonucleosomal D A was selectively extracted with 1 00 fl l of 0 .2 M phosphate-

22 



citrate butTer at pH 7 .8 .  The extracts \- ere then treated with P-40 (0 .0 1 5%), RNase 

A (0.06 mg/ml )  and Proteinase K (0 .06 mg/ml) .  The D A was e. tracted and purified 

sequential l) \-\ ith pheno l :  chloroform ( 1 :  1 )  and chloroform fol lowed by precipitation 

in 1 000 0 ethanol . The samples were then air dried and resuspended in TE buffer ( 1 0  

mJ\ 1 Tris HCL 1 ITli f EDTA, pH 7 .5 ) .  DNA samples (5  flg each) were resolved by 

e lectrophoresis for .f h at  -1-0 Vo lts on a 1 .  5% agarose gel in TBE buffer (89  mM Tris­

HCl .  89 ml'vl boric acid, 2 mM EDTA, pH 7 .5 ) .  The gels were stained with ethidium 

bromjde and the banding patterns were v isual ized with the Fotol Ecl ipse UV 

trans i l luminator and photographed. 

2 .2 . 7. R B C-AC h E  Act i v i ty 

The effect of malathion (0-50 flM) on AChE act ivity was measured in di luted 

\- hole b lood samples in the presence of the selective butyrylcho l inesterase inhibitor, 

ethoproprazine, as previously described (Worek et a l . ,  1 999) .  The assay, which is 

based on E l lman ' s  method, measures the reduction of dithiobis-nitrobenzoic acid 

(DTN:8) to nitrobenzoate (TNB-) by tmochol ine, the product of acetylthiochol ine 

(ASch) hydrolysis .  Freshl y  drawn venous b lood samples from three male mice were 

di luted in 0 . 1 M phosphate buffer (PH 7 .4) and incubated with DTNB ( l OmM) and 

ethopropazine (6 mlvf) for 1 0  min at 3 7 °C prior to addit ion of ASch. The change in 

the absorbance of  DTN B  was measured at 436 nrn .  The AChE activity was calculated 

using an absorption coefficient of TNB- at 436 nrn (E = 1 0 .6 mM - , crn' ) .  The values 

were normal ized to the hemoglobin (Hb) content (determined as cyanmethemoglobin) 

and expressed as mU/flmollHb. lCso values were derived from a plot that indicates 

percent AChE activity as a function of  malathion concentration. 
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2 .3 .  Res u l t  

2 .3. 1 .  E a l u at ion  o f  Apopto i by Flow Cyt o m et ry 

First, we investigated \- hether malathion induces apoptosis .  To assess this 

etIect \-ye incubQted L929 cells with various concentrat ions of malathion overnight 

and measured apoptosis by counting the Annex in V stain posi tive and PI negative 

cel ls (Anoexin +, pr). As shown in figure .  2 . 1 A, malathion induced apoptosis in L929 

cel ls in a dose-dependent manner. As compared to untreated cel ls, apoptosis became 

apparent (i\nnexin + ,  PC 1 0% above the background apoptosis seen in the control) at 

doses of malathion as low as 1 0  oM and reached maximum (30%) in cel ls treated with 

1 11M of malathion. Higher concentrations of malathion up to 20 11M did not cause 

any further increase in the percentage of apoptotic cel ls .  At all concentrations of 

malathion tested, the number of necrotic cel ls that lost their plasma membrane as 

determined by PI stain (Annexin-, PI) were not significant. However there was a 

dose-dependent increase in the number of cel ls wi th positive Annexin V and P I  signal 

(Annex i n'" 
, Pl).  S ince there is a possibi l i ty that the necrotic stage cel ls also acquire 

Annexin V s ignal and could not be distinguished from apoptotic cel ls , the Annexin+, 

Pi cel ls were not included in the analysis (Figure .  2 . 1 A, B) .  To further assess the 

effect of malathion-induced apoptosis, we determined the percentage of apoptotic 

cells after i ncubation with 1 11M of malathion at d ifferent intervals of  time (Figure . 

2 . 1 B) .  Malathion i nduced apoptosi s  in a time-dependent manner. Apoptosis 

(Annexin"', Pi) was apparent as early as 2 h o f  i ncubation with malathion (- 1 0%) and 

reached max imum (-45%) between 1 6  and 20 h of treatment. These results indicate 

that malathion is a potent apoptosis- inducing agent at concentrations as low as � 1 Ilrvr . 

To relate the potential of malathion to induce apoptosi s  at such low concentrations to 

i t ' s  chol inergic effect, we determ ined the ICso value for malathion. As shown in 
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Figu re 2 . 1 :  M a la t h i o n  i n d uces a po p to is i n  a do e- a n d  ti me-depen d e n t  m a n n e r. 

A. L929 cel ls were treated with various concentrations o f  malathion (0-20 ).1L [ )  

overnight. After treatment, ce l l s  were harvested, stained with Annexin V -FITC ami PI  

and analyzed by flow cytometry. The percentages o f  ce l l s  in early (Annexin"', Pi ;  

lower right quadrant) and late apoptotic-necrotic stages (Annex i n'" 
, pC; upper right 

quadrant) are indicated. The results are representative of two independent 

experiments . Cel ls with positive Annexin stain (Annexin +, P i) were counted as 

apoptotic and their number expressed as a percentage of the total ce l ls .  

B. L929 cell s  were incubated with 1 ).1M malathion for different periods of  time (0-24 

h) and apoptosis was analyzed by flow cytometry as described in (A). The contro l (0) 

represents cel ls incubated under simi lar conditions in the presence of the carner 

DMSO. The results represent the average of two independent experiments. 



Figure. 2 . 2 ,  we report an 1C50 value of  24 )lM for malathion as an inhibitor of mouse 

RBC-AcChE. These results indicate that the tox ic i ty of malathion at low 

nonchol inergic doses is mediated through its e ffect on apoptosis .  

2.3.2.  P roce s i n g  and Activa t ion of C as pases 

Activat ion o f  caspases is the major s ignal to init iate apoptosis . We, therefore, 

tested processing (activat ion) of caspase-8 ,  -9 and -3 to complement the flow 

cytometry results .  Figure 2 .3A shows the immunoblot analysis for detection of 

caspase processing in L929 fibroblasts treated with malathion. Cel l  lysates (50 )lg 

protein) were separated by SDS-PAGE and immunoblotted with the respective 

antibodies. Treatment of L929 murine ce l l s  for 1 6  h with malathion was effectively 

associated with processing o f procaspase-8 -9, and -3 as detected by the formation of 

the smaller subunits (p20 p35 and p 1 9  respectively) of their active enzyme 

complexes. Whi le there was a gradual increase in caspase-8 -9 and -3 processing in a 

dose-dependent manner, the maximum processing o f  these pro enzymes was detected 

after treatment with 1 )lM of malathion. Consistent with the apoptosis percentages 

observed by Annexin V staining assay, increasing the malathion concentrations up to 

20 )lM did not i nduce further processing of any one of these caspases. Taken together, 

these results suggest that malathion induces apoptosis in a caspase-dependent fashion. 

We direct ly assayed caspase-8, -9 and -3 act ivi ties by measuring the hydrolysis of 

colorimetric tetrapeptide substrates of  these enzymes (Figure . 2 . 3B) .  As expected 

there was a dose-dependent i ncrease in caspase-8 ,  -9 and -3 act ivities, reaching peak 

levels in lysates obtained from l )lM malathion-treated ce1 ls .  Thus, the processing of  

caspases, as shown by immunoblot analysis, is associated with their activation as 

demonstrated in this experiment. 
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F igu re 2.2 : I Cso v a l u e  fo r malath ion as i n h i b itor of mOll e RBC-'-\Ch E .  

The effect of malathion (O-SO).lM) on AChE acti vity \-vas measured in mouse blood 

samples as described in the Materials and Iethods, and the IC50 values were 

calculated from a plot that indicates percent AChE activity as a function of malathion 

concentration. The results are representative of t\ 0 independent experiments. 
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Figu re 2 .3 :  M a l a t h i o n  pro m otes ca pase-8, -9 a n d  -3 act ivat ion  i n  L929 cel l  . 

A. Whole cell extracts (50 /-lg), obtained from L929 cel ls  after treatment " ith variou 

concentrations of malathion for 1 6  h as inclicated on top of each lane, \\ ere analyzed 

by 'vVestem b lotting with antibodies against caspase-B ,  -9 and -3 , re pect i\ ely. The 

unprocessed forms of caspase-B  (pro-casp-B ;  5-+ kDa) caspase-9 (pro-casp-9; -+6 

kDa), caspase-3 (pro-casp-.J :  32 kDa) and their respective c leavage products p_O. p " S  

and p 1 9  o f  the active enzymes are indicated. The same membranes were also probed 

with an antibody against cHubul in as a loading contro l .  The results are representativ e 

of  two independent experiments. 

B .  Extracts (30 �lg) from cel ls treated with various concentrations of  malathion were 

analyzed for caspase-B ,  -9 and -3 catalytic activities using their specific colorimetric 

tetrapeptide substrates Ac-IETD-p A, Ac-LEHD-p A and Ac-DEVD-p A, 

respectively. The assays were performed both in the presence and absence of the 

caspase-8 (Ac-IETD-CHO),  caspase-9 (z-LEHD-FMK.) or caspase-3 (Ac-DEVD­

CHO) spec ific inhibitors (20 /-lM) to el iminate nonspec ific activit ies in the lysates. 

The spec ific enzyme activities, which represent the average o f  two independent 

experiments, were measured as described in the methods. 



2 . 3 .3 .  P R P  Clem"a ge a n d  0 A F ra g m e n tat ion 

Activation of  the effector caspase-3 , under In VlVO conditions, leads to 

c leavage ( inacti\'ation) of  essential target proteins requi red for ce l l  viab i l i ty. One of 

the targets of active caspase-3 ,  is the D repair enzyme, PARP (Lazebnik et aI . ,  

1 99-1-). To demon trate the effect of caspase-3 activation on PARP, we subjected the 

lysates from malathion-treated cel ls  to immunob lot analysis with a polyc lonaJ 

antibody against PARP .  As shown in figure . 2AA. the 1 1 6 kDa PARP was effectively 

lea\ ed into a 89 kDa fragment in a dose-dependent manner with a max imal 

proces ing occurring in cel ls treated with 1 �M of malathion, Thus the abi l i ty of 

malathion to induce apoptosi s  at low but effective nonchol inergic concentrations is 

associated with e levated caspase-3 activity and c leavage of PARP by proteolysis. 

The effect of malathion-induced caspase-3 activation on DNA fragmentation 

was viewed by  agarose gel e lectophoresis of D A, i so lated from malathion treated 

ce l ls .  F igure. 2 .4B shows DNA fragmentation, a characteri stic ladder pattern in 

malathion treated cel ls that is consistent with the c lassical apoptoti c  features. Cel ls 

treated with I � f malathion showed an intense banding pattern as compared to the 

ce l l s  treated with lower concentrations of  malathion (data not shown). In agreement 

with the earl ier results discussed above, there were no sign ificant di fferences between 

the intensi ties and the banding patterns of DNA obtained from cel ls  treated with 1 �M, 

1 0 �M or 20 �M of malathion. 

2 .3 .4 .  Specifi c i ty of  Caspase Act ivat ion  a n d  Apoptosi  

The above results suggest that the abi l ity of  malathion to induce apoptosis is 

dependent on triggering the activation of caspase cascades. To i nvestigate this 

possib i l ity, we compared the ab i l ity of malathion to i nduce apoptosis in the presence 
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Figu re 2 0 4 :  l\ l a l a t h i o n  i n d u ces P A R P  c1eavaae a n d  D N A  frag m e n t a t io n  i n  L929 

cel ls. 

A.  50 ).lg protein of who le cel l  extracts obtained from ceJ 1s treated with vanous 

concentrations of malathion, as indicated on top of each lane, were loaded onto a 80 0 

SDS-PAGE, fol lowed by Western b lotting with a polyclonal antibody against PARP. 

The 1 1 6 kDa full- length (FL) and the 89 kDa c leavage product (CP) immunoreactive 

bands of P ARP are labeled. 

B. Oligonuc leosomal D A was selectively extracted from ce l ls treated with di fferent 

concentrations of mala.thion as described in the methods. 5 ).lg of the extracted D A 

was resolved onto 1 . 5 0/0 agarose gels and the DNA bands were visual ized on a UV 

transi l luminator after staining with ethidium bromide. A DNA size marker (marker) 

was nm along with the samples as indicated. The results are representative of two 

independent experiments . 



and absence of  the broad-range caspase i nhibitor z- V AD-FMK (Figure. 2 . 5A). L929 

cells were treated \.vith 1 )l 1 malathion alone or in combination with 25 )lM or 50 )lM 

z-V.-\D-FMK and apoptosis was assessed by the flow cytometry method describe 

earl ier. As compared to untreated control and malathion alone treated cel ls ,  25 )l 1 z-

.W-FMK decreased the abi l i ty of malathion to induce apoptosis by -40%, whi le the 

presence of -0 )lM z-V AD-FMK completely prevented malathion induced apoptosis .  

Inh ibition of  the malathion-mediated apoptosis in the presence of z-V AD-FMK 

correlated wel l  with a substantial decrease in D A fragmentation (Figure. 2 . 5B) .  

Under these conditions the c leavage of  ful l - length P ARP into a 89 kDa product was 

also inhibited in the presence of z-V AD-FMK (not shown). These observations 

indicate that the malathion-induced apoptosis is mediated by activation of the caspase 

cascades in L929 fibrob lasts. 

2 .3 .5 .  p53 E x p ress i o n  and C as p as e  Act ivat ion 

It was reported that malathion i s  capable of  inducing DNA damage in human 

peripheral b lood lymphocytes as wel l  as in purified bacterial p lasmids (Griffin and 

Hi l l ,  1 978 '  Richardson and Imamura, 1 98 5 ;  P luth et a I . ,  1 996 ;  B l as iak et. aI . ,  1 999) . 

This effect was attributed to i ts abi l i ty to act as a strong positive alkylating agent. 

Cel ls respond to DNA damage by increasing the production of several DNA repair 

enzymes/proteins, including p53 .  The protein molecule p53 is known to induce 

apoptosis through i ts effect on mitochondrial pathway (Robles et aI . ,  1 999; Chao et 

a l . ,  2000). To examine the possible relationship between malathion-induced apoptosi s  

and p53 ,  we examined the kinetics of processing 0 f caspase-3 and expression of p53 
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F i g u re 2 . 5 :  M a l a t h i o n  i n d u ces a caspa e-depen d e n t  a po p tosis  i n  L929 ce l l  . 

A. L929 cel ls were cultured for 1 6  h without (control) or with 1 � I malathion alone. 

or in combination \vith 25 �:vl or 50 � 1 z-VAD-F lK for 6h. fter taining with 

Annexin V-FITC and P I  apoptotic cells were counted by flow cytometry as described 

above (Figure .1 . 1 A). The results are representative of three independent experiments. 

B. Oligonuc leosomal D A "vas extracted from L929 cel ls  treated with malathion 

alone or in combination with z-V AD-FMK as indicated on top of each lane. D A 

fragmentation was analyzed by agarose gel electrophoresis as described in Figure. 1 .4 

B .  The results are representative of  two independent experiments. 



by immun blotting (Figure. 2 .6A). While the appearance of  the c leaved p 1 9  product 

o f  caspase-3 was evident as early as 2 h of incubation with malathion the increase in 

p - 3 expression became apparent onl at 1 2  h of treatment. These results, in addition 

to the inhibit ion of malathion-induced D A fragmentation in the presence of z-V AD­

Fl 1K,  suggest that malathion induces a caspase-dependent DNA fragmentation which 

subsequently promotes higher p5 3 express ion. In tum, p53 can ampl i fy the apoptotic 

s ignal through its effect on caspase activation. 

To further confirm " hether p53 induction is a pre- or post- apoptotic event, 

the cel ls  were first preincubated with z-V AD-FMK, the general i nhib i tor of caspase 

and later exposed to malathion for 1 6  h. As shown in figure . 2 .6B,  inhibition of  

caspase mediated D A fragmentation by z-V AD-F MK suppressed the induction of  

p53 by malathion. These results thus confirm that p53 induction is subsequent to 

caspase-mediated D A fragmentation. 
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F i g u re 2 . 6 :  � I al a t h i o n - i n d u ced exp ress i o n  o f  p53 

act ivat ion . 

u b  eq u e n t  to ca ' pase 

A.  50 flg protein of who le cel l  extracts, obtained from cel ls  treated with 1 fl 1 or 1 0  

fl M  malathion at different time points. as i ndicated on top of  each lane. were loaded 

onto a 1 2% DS-PAGE, fol lo ed by Western blotting analysis with po lyc lonal 

antibodies against caspase-3 and p53 . The immunoreactive bands of the unprocessed 

form of caspase-3 (pro-casp-3), p 1 9  c leavage product of the active caspase-3 enzyme 

and p53 are labeled. 

B .  50 flg protein of  whole cel l  extracts, obtained from cel ls treated with 50  IlM of z­

V AD-F lK for 6h prior to incubation with 1 fl 1 malathion at different time points, 

were loaded onto a 1 2% SDS-PAGE and the expression level of pS3 was visual ized 

by Western b lotting with a polyc lonal antibody against the protein. The results are 

representati ve of  two independent experiments. 



2 A .  D i  c u  I O n  

Recent studies on  OPCs toxic ity have focused on  chronic intox ication 

em i ronmental contamination and diseases not immediately related to their toxic 

potential on AChE uch as Parkmson's  di sease, skin, lung and immune diseases. Most 

o f  these dl eases appear as long term and delayed health effects in agricultural 

\\ orker and In populations exposed to en i ronmental sources. In an effort to 

under'tand the pathophysiology of these non-cho l inergic effects, both ill vitro and In 

\'/\'o im e t lgatlOns have been carried out using concentrations of OPCs comparable 

to their chronic expo ur 1 vels  (B las iak et  a i . ,  1 999; amimi and Last . ,  200 1 ;  a leh et 

aL _00_). In the e studies, the dosage chedules ( <0.00 1 - L5 )lM) were elected to 

model the environmental and occupational exposure levels and were kept far below 

the level found in the b lood of individuals (530- 1 560 )lM who were dead fol lowing 

an 0\ erdose o f  malathion (Jadhav et ai . ,  1 992 ;  Blasiak et ai . 1 999) .  These studies 

have pro\lded insights i nto the mechanisms of action of OPCs that are independent of  

AChE inhibit ion. amimi and Last 200 1 )  reported a decrease in hydroxylation of 

col lagen lysine residues i n  fetal lung fibroblasts exposed to malathion or malaoxon (0-

1 25 )ll. 1 ) .  Inhibition of  lysyl hydroxylase activity wi l l  affect the maturation of 

col lagen that might lead to sk in diseases and teratogenic  effects of malathion. 

The observations made in the present study demonstrate that at non­

chol inergic doses (0 .0 1 -20 )lM) malathion induces apoptosis in cultured L929 mouse 

fibroblasts . The cel ls  exposed to malathion exhibited both time- and dose-dependent 

morphologlcal and biochemical changes that are characteristic of c lassical apoptosis. 

This finding is of great physiological re levance as OPCs, i nc luding malathion, are 

readi ly  absorbed through the skin, respiratory or gastrointestinal tract and via eyes 

(\ Iarty et a I . ,  1 994) . Dermal exposure to pestic ide appl icators has been estimated to 
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be as high as > - mg malathion per kg per day (Wolfe et aI . ,  1 967) .  Immune cel l  uch 

a T-lymphocytes are also \\idel, used as a sensitive too l to examine the subc l inical 

effect of chemIcal expo 'ures (Luster t al . ,  1 98 8) . t low, non-chol inergic doses, 

malathion also induced apoptosi s  in EL-t murine T-lymphocytes (data not shown). In 

a previous study \\ e have also reported that at doses below ICso ( 1 2 . 5 rilltI for mouse 

RBC-. hE), paraox n i '  a potent inducer of apoptosis both in cultured EL-t T­

lyll1phoc)-1es and mous fibroblasts (Saleh et al . 2002) .  These results, as wel l  as a 

growing bod)- of  recent evidence (Carlson and Ehrich, 200 1 )  indicates that apoptosis 

might be one of the mechanisms by which the cells respond to chronic exposure to 

10\\ doses of OPCs. 

The acute toX IC l t ,  of OPCs is mediated by the inhibition o f  ChE. However, 

the inhibition appears to decrease as the OPC concentration increases (Kardos and 

ultatos, 2000). The molecular basis of the biphasic dose response is poorly 

understood. In our study, the response to non-cholinergic doses of malathion ( 1 0  nM-

20 !ll 1 )  exhibited a hyperbol ic curve reflecting saturation kinetics with a maximal 

percentage of apoptosis occurring at 1 !lM Ie el, a value much l ess than the observed 

IC50 value of 24 !l 1 for malathion as an inhibitor of  mouse RBC-AChE . 

The chemical properties of the OPCs inc luding malathion, support their 

potential to cause ce l l  inj ury. The cel ls respond to such an inj ury by undergoing 

apoptosl s .  Recent studies have demonstrated the abi l ity of malathion to act as a 

strong positive alkylating and cause genotox ic effects (Griffin and H i l l ,  1 978 ;  

Richardson and Imamura, 1 98 5 '  P luth et al . ,  1 996; B l asiak et a l . ,  1 999; Amer e t  aI . ,  

2002 ; Giri e t  a l . ,  2002) .  Further, the l ipophi l ic nature of OPCs fac i l i tates their 

interactlOn with the membrane and lead to perturbations of the phosphol ipid b i layer 

structure (Videira et al . ,  200 1 ) . uch a phenomenon occurr ing in mitochondrial inner 
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membrane might affect electron del i  very and s ignal apoptosis as a result of 

mitoch ndrial inj ury ( foreno and [adeira, 1 990) .  

Caspase activation is a hal lmark of c lassical apoptosis and our results show the 

a tivation of both the ini tiator caspases, namely caspase-8 and caspase-9. 

Furthermore, we demonstrate that there is a coordinated induction of  apoptotic signals 

in malathion treated cel ls .  The time courses of caspase-3 activation and p53 induction 

in malathion treated ce l l s  indicate that during the init ial phase of malathion-mediated 

ce l l  inj ury, there is an activation of caspase cascade that w i l l  execute apoptosis by 

Dl A fragmentation. Caspase-mediated D A fragmentation leads to the induction of 

p53 expression, which an an1pl ify the apoptotic processes through i ts  effect on 

m itochondria. 

In summary, the results of this study indicate that at non-chol inergic doses, 

malathion induces a caspase-mediated apoptosis . B y  using caspase spec ific inhibitors 

we are currently investigating the molecular mechanisms by which malathion and 

other OPCs trigger apoptosis .  Such studies wi l l  provide further insights into the 

molecular mechanisms behind OPCs poisoning, and might suggest new diagnostic 

and therapeutic approaches to their toxic i ty. 

37 



CHAPTER 3: 

THE ROLE O F  A lVI ITOCH O N D RI A L  PAT H WAY 

I THE I DUCTION O F  A PO PTO S I S  

B Y  THE ORGAN O P H O S P H ORUS CO MPOUND 

MALAT H I O N  



3 . 1 .  I n t rod u c t i o n  

�[alathlOn I S  one of  the most widely used organophosphate compounds (OPCs) 

employed In agnculture as a pesticide, in  veteri nary practice as an ectoparasitic ide 

tFles 'cl et a\ . ,  1 993) ,  in eradication of human body lice (E lston, 2002) and in the food 

indu try ( a\ age et a1 . ,  1 98 1 ) . , cute toxic effects induced by malathion pestic ides are 

mainly caus d b. inh ib i tion of  acet lcho linesterase ( ChE) in nervous tissues with a 

con'equent increa e in the levels of the neurotransmitter acetylchol ine (Kwong, 2002;  

0\ er treet and OJ uric .  200 1 ) . The widespread use in agriculture and household 

practices has ral ed concern over i ts potent ia l  to cause adverse health effects in 

human', dom tic animals. wi ldl i fe and fi h (Flessel et al . .  1 993 ; Wolfe and eiber, 

1 99 "' ) .  

Recent studies have indicated that malathion affects several biochemical 

pathways that do not Involve modulation of AChE activity. Both under in vitro and in 

\-IVO conditlOns, malathion has been shown to induce l ip id peroxidation (Ahmed et a! . ,  

_000: Datta e t  aI . ,  1 994: Hazarika e t  ai . ,  2003)  D A damage, chromosomal 

aberrations (B las iak et aI . ,  1 999: Giri et aI . ,  2002) and mal ignant transformation 

(Cabe l lo et a l . .  200 1 ) . Ialathion has also been shown to modulate oxidati e stress 

and immune response in experimental animals (John et aI . 200 1 ;  Johnson et aI . ,  2002). 

Our recent studies have revealed that at non-chol inergic concentrations (up to 

)..I.Yf) , malathion induces apoptosis in cultured murine L929 fibroblasts (Masoud et 

aI . ,  2003) .  1 lalathion-induced ce l l  death showed features s imi lar to c lassical apoptosis 

as revealed by caspase-3 activation and 0 A fragmentation. Howe er, the 

mechanism of malathion-stimulated processing and activation of caspase-3 was not 

charactenzed . 
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Effector caspases, includmg caspas -3 ,  may be a tivated ia  mitochondria­

mdependent or dep ndent path\ ays (loza et a ! . ,  _002; hi , 2002) .  The mitochondria­

mdepend nt pathway IS activated upon binding of l igands of the tumor necrosis-factor 

r c ptor (T. -R) fami ly, such as Fas and TNF, to th ir agonist receptors and requires 

the direct c lea\'age of ca pase-3 by activated caspase-8 ( t nnicke et a ! .  1 998) .  

Alternatl\ ely, aspase-3 can be a tiv ated through a m itochondria-dependent 

pathway �Il tochondria have been recognized to play an important ro le in apoptosi s  

by releasmg Cytochrome c from I t S  intermembrane space into the cytop lasm (Reed, 

1 997). In the cytoplasm, C)1 chrome c in the presence of A TP or dATP, associates 

with a omplex of apoptotic protease activating factor 1 Apaf- l )  and caspase-9, 

which leads to autocatalytic c lea age and activation of caspase-9 in this complex 

( aleh et al . . 1 999;  Qin et aI . , 1 999) . In  tum, caspase-9 can then directly c leave and 

activate the proform of caspase-3 .  

The mechanisms by WhICh cytochrome c is  translocated from mitochondria 

i nto the cytosol are not ful ly understood. Current theories involve transient opening of 

the mitochondrial permeabI li ty transition pore causing s light swel l ing as well as 

formation of pores in the outer membrane by proapoptotic members of the bc l -2 

fami ly, e g Bid BAX Bad and BAK (Budihardjo et ai . ,  1 999; Wei et aI . ,  200 1 ) . 

These mechanisms mediate the passage of unbound cytochrome c through the 

mitochondrial outer membrane. However, the mechanism by which cytochrome c 

dissociates from the inner membrane is less c lear. Cytochrome c is bound to the outer 

surface of the i nner membrane phosphol ip ids, part icularl y cardiol ipin, by electrostatic 

forces (predominating at neutral pH) .  Dissociation from the inner membrane is a 

necessary first step before cytochrome c can pass through release channels and 

ult imately reach the cytosol (Garcia-Fernandez et a! . ,  2002; Petro i l lo  et aI . ,  2003) .  
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Thus a d crease in cardiol ipin synthesi s  an or its oxidation by free oxygen radicals 

(RO ), generated b, mitochondria in stress- induced apoptosis, may directly affects 

cytochrom c release from the mi tochondrial inner membrane into the cytosol 

(Petro'l l I o  e t  a1 . .  _00 '"' ) . 

In thIs study \\ e ha\- e extended our observations on the apoptotic effect of  

malathion in  cultured murine L929 cel ls .  Employing caspase spec ific i nhibitors as 

wel l  as Indicators to study mitochondrial membrane permeabi l i ty changes, we have 

delIneated the sequence of e\ ents in ohed in malathion-stimulated apoptosis by 

immunoblot, flo\-\ Cy10metry and enzyme activity analyses. The results indicate that 

malathion stimulated apoptosis by altering m itochondrial transmembrane potential , 

inducing RO formation and reduc ing cardiol ipin content in mitochondria of  L929 

treated cells. These events subsequently caused the release of  cytochrome c into the 

Cytosol \\ hich leads to activation of the Apaf- \  Icaspase-9 apoptosome. 
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3.  2 .  I a te r i a l a n d  l e t h od 

. 1 . 1 . Reaa n t  

\lalathlOn [ - 1 .2-bl (etho. ycarbonyl )ethy\ O. O-dimethyl phosphorodithioate; 

c. .., R gi'try o. 1 2 1 -r -5 ]  ',: as obtained from Poly c ience (Division of Preston 

Indu tnes, Inc. des, I l l inois) .  As stock solution of  malathion ( 1 00 m I) was 

prepared 1 11 dimeth, I sulfoxide (D f 0) and stored at -80°C. The working di lutions in 

phosphate buffered al ine (PB ) were prepared j ust before use. Protease i nhibitors 

( P�1 F, p pstatin A, leupeptlO and aprotinin) -acetyl- L-cysteine C)  and 2' ,7'-

dichlorofluorescein diacetate (DCFH-DA) were acquired from igma Chemical 

Company ( 19ma Aldrich Chernie GmbH teinheim, Germany). The colorimetric 

tetrapeptide substrates for caspase-8 ( c - IETD-p A), caspase-9 (Ac-LEHD-Pl A) 

and caspase-3 (Ac-DEVD-p A) \ ere purchased from Calbiochem, San Diego CA, 

(U A). Caspase- inhibitor (zIETD-fmk) Caspase-9 inhibitor (zLEHD-fmk), 

Caspase-3 inhibitor (zDEVD-frnk), and the general caspase inhibitor (zV AD-fink) 

\\- ere obtained from Alexis Corporation (Switzerland) .  The fol lowing polyc lonal or 

monoclonal antibodies were obtained from various sources as indicated: anti-caspase-

8. anti-p5 3 ,  anti-cytochrome c, anti -a-tubulin,  anti-VDAC,  ant i -ANT, anti-Bax,  Anti-

Bad, Anti-Bak, ant i -Bcl-2 and anti-Bc l -xL  antibodies (Santa Cruz B iotechnology CA, 

USA), anti -caspase-9 and anti-caspase-3 antibodies (S tressgen B iotechnologies, 

ictoria, BC, Canada) and anti -Bid antibody from B D  B iosciences Pharmingen 

(Frankhn L akes, J, USA). 

3 . 2 . 2 .  e l l  u l t u re 

ouse L929 cel l s  (A TCC, Manassas, V A, USA) were grown in monolayers in 

RPl l1  1 640 medium (S igma) supplemented with 1 0% fetal bovine serum (Gibco BRL,  
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rand Isl:lI1d, y, A), 1 00 nits/ ml penic i l l in  and 1 00 �lgrml streptomycin and 

\\ er kt:pt at .., 7° in humidi fied 50 0 O:! 9 . 0 0 air .  Prior to confluence, the cel ls were 

han est d :lI1d t:edcd onto pla 'tic 6-\vel l  ul ture plates or 1 00-mm culture dishes at  5 

x 1 0  e l l s  ml :md al lowed t gro\ for 2-" days, Fol lowing this, they were incubated 

\\ ith \ arious concentrations ( 1  0-60 �l 1) of inhibitors spec ific to caspase-8  (zIETD­

frnk) or ca p ase-9 (zLEHD-fmk), or \\'ith 50 � 1 of  the general i nhibitor of caspases 

zVAD-fm1.. for -+ h,  The cel l  were then expo ed to malathion at a concentration of I 

��1 for 1 6  h, The control cells ,  i .e .  cel ls  without malathion or caspase spec ific 

i nhibitors, \\ ere Incubated \\ ith the carrier solvent of  these compounds (DMSO). 

Fol lo\\ing the treatment, ce l l  were han ested by centrifugation at SOOg for 5 min 

washed with phosphate buffered sal ine (PBS)  :lI1d subsequently  used for vanous 

bIOchemical investigations. 

3 . 2 .3 .  A n al.  i of Apoptos i  b Flow C t o m e t ry 

ApOptOSIS i n  the L929 cel ls subjected to various treatments was detennined with 

the Annexm V-FITC ( fluorescein i sothiocyanate) stain ing kit from BD B iosciences 

(Frankl in  Lakes, J, US ) .  Propidium Iodide (PI) was used to differentiate apoptotic 

cel ls  with preserved membrane integrity (Annex in  
... 
, Pr) from necrotic cel ls  that had 

lost membrane integrity (Annexin-, PI) .  The assay was perfonned fol lowing the 

manufacturer 's  procedure. After staining, the percentage of apoptotic cel ls  under 

vanous treatments were anal yzed by flow cytometry (F ACSCall iber, 

Bec tonDickinson, U A) as described recently (Masoud et a I . ,  2003 ; aleh et a1. 

2003) .  
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3 . _  . ..  L \Ve t rn B l ot A n a l )' i 

�[alathlOn-treated cel ls  v.ere harvested \ ashed twice with PB and suspended in  

a I)  - i  - buf� r containing 1 00 m [ HEPE , pH 7 . 5 ,  1 00 0 sucrose. 1 0 m [ OTT. 0. 1 % 

H P . 1 -0 m� 1 . ·a I and protease inhibitors ( I  m [ P  F ,  and 1 )lg/ml leupeptin. 

aprotmin and pepstatin A). The ce l l s  were lysed by 4-5 repeated cycles of freeze 

tha\\ ing and \\ ere centrifuged at -l°C for 30 min at l -+ ,OOOg. The supernatant was 

col lected and stored at -80°C or used immediately .  The samples were analyzed for 

total prot In by a protem assay kit based on the Bradford colorimetric reaction 

( Bradford. 1 976.  B ioRad, Hercules. CA, ) .  Ce i l lysates ( S O  j.l g  protein per lane) 

\\ ere separated on 1 20 0 0 -po lyacrylamide gels and electroblotted onto a PVDF 

membrane (BlORad, USA) by standard techniques as described in our recent 

publ i cation (�[a oud et aI . ,  _003 ; aleh et aI . ,  2003) .  After electrophoretic transfer, 

the membranes \\- ere blocked by incubation for 2 h in PB buffer containing 5% non­

fat dry mi lk and 0. 1 % Tween-20. The blots were then incubated for 2 h at room 

temperature or overnight at -l°C with one of the fol lowing po lyc1onal antibodies 

(except for anti -Bax .  which is  a monoclonal antibody) d i luted in PBS containing 0 . 1 % 

Tween-_O and 2% non-fat dry mi lk.  The fol lowing were the di l utions of the 

antibodIes: anti -caspase-8 ( 1 :  1 000), anti -caspase-9 ( 1  : 3000), anti-caspase-3 ( 1  :2000), 

anti-cytochrome c ( 1 : 2000) ant i -VDAC ( 1 : 1 000), anti-A T ( 1 : 1 000) anti-Bc l-2 

( 1 : 1 000), ant i -Bel-xL ( 1 : 1 000) anti-Bax ( 1 : 500),  anti -Bad ( 1 : 1 000), anti -Bak ( 1 : 500) 

anti -B id ( 1  : 700) and anti -pS3 ( 1  : 500) .  The blots were then incubated with appropriate 

horseradish peroxidase-conj ugated secondary antibodies ( 1  : 2000 di lution). The 

antigen-antIbody complex on the b lots was detected by a SuperS ignal 

chemiluminescence kit  as described in the manufacturer' s  protocol (Pierce 

B iotechnology, Rockford, IL ,  S A),  and visualized by autoradiography. To confirm 
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equal loadIng of  proteins, the blots \ ere also immunoprobed with a rabbit polyc lonal 

antibody aga1 I1st the c }10skeletal protein a-tubul in ( 1 : 2 - 00 d i lution). The consistently 

equal I gnals of a-tubul In from the di tTerent extracts also indicate that malathion and 

the ca'pa-es inhibitor do n t interf re \vith protein synthesi in L929 cel ls (data not 

ho\\ n). 

3.2. - . . ay of a pa es-8, -9 a n d  -3 Act iv i t ie  

The actl\lt les of  caspase- , -9 and -3 in cel l  lysates (30 ).lg) \ ere determined 

'pectrophotometncaly at -l05 nm \\ ith a microtiter p late reader. The assays were 

performed bJ in ubating 0 .2  m I f the caspa e spec ific  co lorimetric tetrapeptide 

substrates, Ac-IETD-Pl A (caspase-8 )  or c -LEHD-p A (caspase-9) or Ac-DEVD­

pi -A (caspase-3) for 1 h at 3 rC as described by Masoud et al. (2003 . The results 

were expressed as percentages of total activity obtained from the lysates of cel ls 

treated wIth malathion alone. 

3.2 .6 .  I o l a t i o n  of M itoc h o n d ri a l  a n d  Cyto o l i c  F ra c t i o n  

Mitochondrial and cytoso lic fractions from malathion-treated L929 cel ls  w re 

prepared by differential centrifugation at 4°C (Yang et a I . ,  1 997) .  The cel l  pellets 

were washed twice with P B  ( p H  7'-+) and resuspended in  five volumes of H medium 

(70 m 1 sucrose, 220 mi l manni tol ,  2 . 5  mM HEPES,  pH  7 .4,  2 mM E DTA, I mM 

DTT and 0 . 1 m 1 PM F) .  The cel ls were homogenized in a glass Dounce 

homogenizer (20 strokes) .  The homogenates were centrifuged twice at 600g for 1 0  

min to remove nuclei and the debris .  The result ing supernatant was centrifuged at 

1 2 ,000g for 1 5  min and the mitochondria recovered in the pel lets were washed and 

resuspended in H medium . The supernatant was used as the c ytoso lic fraction . 
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3 . 2 . 7. A '  e m e n t  o f  C h a n ges i n  M i toc h o n d ri a l  T r a n s me m b ra n e  Pote n t i a l  

The intactness of  mitochondria l  transmembrane potential in  cel ls treated with 

malathion \\ as measured by a I i toCapture™ apoptosi s  detection kit (Alexix 

B iochemicals, U ) as per manufacturer 's  protocol .  The kit  uti l izes MitoCapture™, a 

catlOnic dye that fluoresces di fferently in healthy and apoptotic cel ls .  H ealthy cells, in 

\\ hich I i toCapture™ accumulates and aggregates in  the mitochondria, give off a 

bright red tluorescence. In apoptotic cells,  the green tluorescing MitoCapture™ 

remains in the cytosol due to the altered mitochondrial membrane potentia l .  Briefly, 

the cel ls were either treated \ i th various concentrat ions of malathion or exposed to 

malathion for varying periods of time. Fol lowing this, the cel ls (1 x l  06) were 

incubated in 1 ml of incubation buffer containing MitoCapture ™ dye ( 1  flg/ml) for 20 

min at 3 7°C in humidified 5% CO2/95%/air. L ater the cel ls  were col lected by 

centrifugation and the percentage of green tluorescing apoptotic cel ls  under different 

treatments was determined b y  tlow cytometry (F ACSCall iber, BectonDickinson, 

USA) .  tvlltochondria containing MitoCapture aggregates in healthy cel ls are 

detectable in  the P I  channel ( usually FL2),  and MitoCapture monomers in apoptotic 

cells are detectable in  the F ITC channel (usually FL l ) . Therefore, the cells fluorescing 

green represent apoptotic cel ls .  

3.2.8.  Release of Cyto c h ro m e  c 

The in vivo release of  cytochrome c from mitochondria into the cytoplasm of 

malathion treated L929 cel ls was monitored by probing the b lots containing 

mitochondrial (30  flg) or cytosol ic (50 flg) fractions with the anti -cytochrome c 

antibody as described above, by Western blot analysis .  To assess the direct effect of 

malathion on mitochondria, freshly iso lated mitochondria ( 1 00 flgl l OO fll) suspended 
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in H medium ( 70 m 1 u ro e, 220 mM mannito l ,  2 . 5  mM HEPES,  pH 7 .4,  2 mlv1 

EOTA, 1 m r OTT and 0 . 1 m 1 P 1 F, Yang et a I . ,  1 997) were incubated at 30°C for 

"' 0  min in 1 0 m r Tris-HCl buffer pH 7 .4  containing 0 . 1 5  M KCI, 5 mM succinate 

and variou on entrations of malathion (0 .025 - 1 .00 ).1M) .  The incubated samples 

\vere centrifuged at 8000g for 1 0  min at -toe. l iquots of supernatants (20 ).1 1) were 

dissolved in Laemml i  buffer, boi led for 5 min at l OO°C and subj ected to S DS-PAGE 

fol lowed by immunoblotting with anti-cytochrome c antibody. 

3.2 .9 .  D e t e r m i n a t i o n  of I n t ra ce l l u l a r  ROS F o r m a t i o n  

Fonnation of  intracel lu lar peroxides was detected with an ox idant-sensing 

fl uorescent probe, 2 ' ,T-dich10rofluorescin  diacetate (DCFH-DA), which is  de­

esteri fied \vithin cel ls by endogenous esterases to the ionized free acid, 

2']dich1oro fluorescin .  2 ' ,T-dich10rofluorescin i s  then oxidized to the fluorescent 

2' ,7'-dichlorofl uorescein ( DCF) by hydroperoxides ( Hempel et ai. 1 999) .  A 1 0  mM 

DCFH-DA stock solution was prepared in dimethylsulfoxide (DMSO).  L929 cel ls (- 1 

X 1 06) were p lated in  1 00-rom dishes and cul tured overnight. After treatment with 1 

).1M malathion for the i ndicated periods of time, cel ls were incubated with 1 0  ).1M 

DCFH-DA for an additional 1 5  min at 3 7°C.  Cel ls  were then washed with ice-cold 

P B  detached b y  tryps ini zation and suspended in  PBS contain ing 1 0  mM E D T  A .  The 

fl uorescence of DCF fonned by the reaction of DCFH-DA with ROS of more than 

1 0 ,000 viable cel ls  from each sample was analyzed by record ing the increase in FL- l 

fluorescence with the F ACS Cal l iber flow cytometer. In certain cases, cel ls  were pre­

incubated with 5 mM AC for 2 h before treatment with malathion. 
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3 . 2 . 1 0 . [\ I ea u rm c n t  of M i to c h o n d ri a l  Cardio l i p i n  Co n te n t  

?vf ito hondria prepared from cells previously exposed or  not to different 

concentrations of malathion in the presence or absence of 50 flM zV AD-fink were 

prepared as described abo e. Aliquots of the mitochondria were disrupted by 

ultrasonication in 0 .2 ml of a s lution containing 0 . 1 1 KH2PO.j, 0 . 1 5  M KC 1 and 0 . 1 

m I EDTA (PH 7 ,-\, ) .  The lysed material was transferred to glass tubes containing 2 

ml  of  methano l and mixed. After 5 minutes 4 ml of chloroform was added and the 

tubes remixed. fol lo\ ed after 1 0  minutes by 1 ml of 0.05 M KCl solution. The tubes 

were capped and centri fuged to separate the phases . The upper aqueous:-methanol 

phase and the i nterphase protein pel let were discarded and the chloroform phase was 

transferred to a c lean glass tube and concentrated to about 20 III under nitrogen. The 

concentrated l ipid extract was appl ied at one comer of a 20 x 20 em thin layer of 

s i l ica gel H containing 1 % (w/w) magnesium acetate and two dimensional 

chromatography was carried out fIrstly with chloroform : methano l :  25  % ammonia 

(65 : 3 5 :  ) ,  by 01) and then chloroform: methano l :  acetic ac id :  methano l :  water (50 :  

20 :  1 0 : 1 0 : ) .  by vol) . eparated phosphol ipids were detected by exposing the dried 

chromatogram to iodine vapour and spots corresponding to cardiolipin and 

phosphatidylchol ine were identified by comparison with authentic standards (Sigma 

Chern Co.,  St .  Louis, USA).  After evaporation of the iodine the areas of  si l ica gel 

containing these phosphol ipids were scraped from the p lates into thick-walled glass 

tubes and their l ipid phosphorus content measured as described by Bartlett ( 1 959) .  

The results are expressed as the ratio of  l ipid phosphorus in cardiol ipin to that in 

phosphatidylcholine. 

47 



3 . 3 .  Res u lts 

3.3. 1 .  E ffect of Va riou ea pa e I n h i b i t o r  o n  M a l a t h i o n - I n d u ced Apop tosis 

To characterize the upstre:J.m events involved in both caspase-3 activation and 

apoptosis induced b malathion we first investigated the effect of  caspase spec ific 

inhibItors on malathion-induced apoptosis .  Prior to  exposure to  malathion ( 1  )lM)  for 

1 6  h. the L9_9 ce l ls were first pre-incubated for 4 h in  the presence or absence of the 

caspa e-8 pec iilc inhibitor zIETD-fmk, or the caspase-9 specific inhibitor zLEHD­

fink. or the broad range inhibitor of  caspases, zV AD-fink. The percentages of 

apoptosis in  these cel ls  were analyzed by the Annexin VIPI flow cytometric assay 

(F igure. 3 . 1 A  and 3 . 1 8) .  The caspase-9 specific i nhibitor (zLEHD-fink) caused a 

dose-dependent reduction i n  malathion-induced apoptosis .  Inhibition was marginal at 

an inhibitor concentration of 1 0  )l 1 and was more marked at a concentration of 60 

)lM.  Malathion- induced apoptosis was also i nh ibited to a simi lar extent by the general 

caspase inhibitor zV AD-fmk (50 )lM) .  The i ncrease in apoptosis mediated by 

malathion was �6- fold i n  the absence of these inhibitors, but only 1 . 4- and 1 .  I -fold in  

the presence of  zLEHD-fmk (60 ) l  f) and zV AD-fmk (50 )lM),  respectively. In 

contrast. even at a concentration of 60 )lM, the caspase-8 inhibitor (zIETD- fmk) had a 

min imal inhibitory effect on malathion-induced apoptosis ( 5 -fold vs. 6-fold) .  

Increasing the concentration of zIETD-fmk up to 1 00 )lM did not cause any further 

decrease in malathion-induced apoptosi s  (data not shown).  It is important to note that 

the effects of these inhibitors are spec ific bec ause the vehic le dimethyl sulfoxide 

CD SO), used at a simi lar concentration, had no effect on malathion-stimulated 

apoptosis .  These observations suggest that malathion-induced apoptosis is dependent 

on caspase-9 activation. 
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F i g u re 3. 1 :  M alath ion  i n d u ced apo p tosis i n  L929 c e l l  i n  a ca pa'e-9 depen den t 

man n e r. 

A .  L929 cel ls were incubated for -+ h with various concentrations (0-60 �M) of: 

caspase-8 inhibitor (zIETD-fmk) or caspase-9 i nhibi tor (zLEHD-fmk) or 50  �l { of  

the broad range caspase i nhibitor zV AD-fmk. Malathion ( 1  �M) \ as added and the 

cells were incubated for an addi tional 1 6  h .  After the various treatments, the cells 

were harvested, stained with Annexin V-FITC and P I  and analyzed by flov 

cytometry. Annexin V stained cel ls that were PI negati e were counted as apoptotic 

and their numbers expressed as a percent of total cel ls .  The values are means ± SD of  

three independent experiments . 

B. Representation of the flow cytometry data obtained for the various treatments. 



3 . 3 . 2 .  ffeet  o f  a pa e-9 I n h i b i t o r  o n  M a l a t h ion- t i m u l ated ct i  a t i o n  o f  

a pa e-3 

To Identi fy the up tream caspase responsible for activation of caspase-3,  we 

a es ed the processing of  caspase- '"' in who le cel l  lysate prepared from cel l s  xposed 

to various concentratIOns of the different i nhibitors prior to stimulation with 

malathion a de cribed abov e .  Figur s 3 ._ A and B sho\ immunoblot analysis for 

detectIOn of cn pase-3 processing in  L929 cel l  treated with 1 )l 1 malathion in the 

presence or absence of zIETD- fmk zLEHD-fmk or z AD-fink. Treatment of these 

cel ls \\ i th malathIOn was effecti ely associated with processing of caspase-3 as 

detected by the formation of the mai ler ubunit (p 1 9) of i ts acti e enzyme complex. 

Exposure to malathion in  the presence of  increasing concentrations of caspase-B 

inhibitor did not sho\\' any s ignificant effect on caspase-3 processing (Figure. 3 . 2  ) .  

However, the caspase-9 inhibitor zLE H D - fmk caused a dose-dependent decrease in 

the processlOg of caspase-3 (Figure. 3 .2B) .  In  comparison to cel ls stimulated with 

malathion alone, incubation of malathion-treated cel ls  for 1 6  h in the presence of 60 

)lM of zLEHD-fmk caused approximately 9- fold decrease i n  processing of caspase-3 , 

s imi lar to the effect seen in  the presence of 50  )lM of zV AD-fmk (F igure. 3 . �B) .  

We also evaluated the effect of the caspase spec ific  i nhib itors on malathion­

i nduced caspase-3 processing in relation to the enzyme activity . The who le cel l  

lysates used 10 the immunoblot analysis were also tested for caspase-3 activity with 

the colorimetri c  caspase-3 specific substrate Ac-DEVD-p A. As expected, zLEHD­

fmk caused a dose-dependent decrease of  caspase-3 activation in  malathion-treated 

cel l s  (Figure. 3 . 2 8) .  s compared to cel ls treated with malathion alone, preincubation 

of L929 cel ls  with 60 )l I of zLEHD-fmk caused a 5 . 5 -fo ld decrease in malathion-
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Figu re 3 .2 : M a l a t h i o n  i n d u ced a caspase-9-de p e n d e n t  act ivat ion of ca p a  e-3. 

L929 cel ls  were treated with 1 �lM malathion in the presence of various 

concentrations of  caspase-8 i nh ibitor zIETD-fmk (A) or caspase-9 inhibitor zLEHD­

fink (B)  as described in figure 3 . 1 .  After treatment, whole cel l  extracts ",,, ere prepared 

and analyzed for caspase-3 processing by irnmunoblotting with an anti -caspase-"\ 

antibody. The unprocessed forms of  caspase-3 (pro-casp- 3 ;  32  kOa), and the c leavage 

product (P 1 9) of the active enzyme are indicated. The zVAD-fmk lane indicates 

processing of caspase-3 from cells treated with 50 fl f zV AD-fmk for 4 h prior to 

exposure to malathion. The activity of caspase-3 was measured in the same cell 

extracts (30 flg) by use the caspase-3 specific tetrapeptide substrate Ac-DEVD-pl A. 

The values are expressed as a percentage of the maximum activity ( 1 00%) obtained 

from cells treated with malathion alone. The values are means ± SD of three 

i ndependent experiments . 



induced activation of  caspase- " .  Thi inhibi tory effect on malathi n-stimulated 

c3spa e-"  activation \'va comparable to the one seen in cel ls  treateu with 50 11 f of 

z\', D-fmk. (5 - - fold \ .  6.  - fold) .  In contrast to the e data, the pre 'ence of 60 11M of 

ca pa e- inhibit r z1  TD-fmk aus d a 1 . 3 - fold decrease in malathion- induced 

caspase-" activation (Figure . 3 .2A). Taken together, the resul ts indicate that the 

kmetlcs of malathIOn-mediated processing and activation of caspase-3 in the presence 

of z IEHD-fmk and zLEHD-fmk are consistent \ i th the ir  effects on the apoptosis  data 

a' demonstrated by Annexin/P I  taining (Figure. 3 . 1 ) . 

3.3 .3 .  E ffect  o f  z I E T D- fm k  a n d  z L E H D-frn k o n  M a l a t h i o n - I n d u c ed P roce s ing 

and Act ivat ion o f  e a  p a  e 

To assess further the role  of caspase-9 in  malathion-stimulated apoptosis we 

examined processing and activation of caspases in  the presence of  caspase-spec i fic 

inhibitors (Figure. 3 .3 ) .  Whi le  malathion st imulated processing (Figure. 3 . 3A) and 

act ivation of caspases-8 ,  -9 and -3 in L929 cel ls  (F igure . 3 .3 B  , there was a marked 

inhibition of al l  these caspases in the presence of 60 11M of zLEHD-fmk. A simi lar 

degree of inhib i t ion \Vas obtained with 50 11M o f  the general inhibitor of  caspases 

zV AD-fmk. In contrast the presence of 60 11M zIETD- fmk spec ifical ly inhibi ted 

caspase-8 processing and activation and showed marginal effects on caspase-9 and -3 

activation in malathion-treated cel ls .  These results indicate the crit ical ro le of caspase-

9 activation in malathion-induced apoptosis .  

3 . 3 A .  E ffect  o f  :Y I a l a t h i o n  o n  R e l e a  e o f  t o c h r o m e  c F r o m  M i toch o n d ria  

Activation of caspase-9 in  the Apaf- l apoptosome is  predominantly triggered 
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F i g u re 3.3 : I n h i b it ion of casp ase-8 d i d  n o t  abol i sh  m a l at h i o n- me d i ated act ivat ion 

o f  caspase-9 a n d  ca pa e-3. 

A.  L929 cells \vere treated vvith 1 ,u I malathion in the presence or absence of 60 p\, l  

of caspase-8 inhibitor (z IETD-fmk) or caspase-9 i nhibitor (zLEHD-fmk) or  50 11M o f  

the general inhibitor of caspases z AD-fmk as indicated on top of  each lane. Whole 

cell extracts (50 I1g), obtained from the same cel ls ,  were analyzed by Western blotting 

with antibodies against caspases-8 ,  -9 and -3 , respectively. The unprocessed forms of 

caspase-8 (pro-casp-8 ;  54 kDa), caspase-9 (pro-casp-9; �6 kDa), caspase-3 (pro-casp-

3 :  32 kDa) and their respective c leavage products p20, p3 5 and p l 9  of the active 

enzymes complexes are indicated. The blots are representative o f  two independent 

experiments. 

B. The same extracts (30 I1g) ere analyzed for caspases-8 ,  -9 and -3 catalytic 

activities by use of their spec ific colorimetric tetrapeptide substrates Ac-IETD p A, 

Ac-LEHD-p A and Ac-DEVD-pNA, respectively. The values are expressed as 

percentages of the maximum activity ( 1 00%) obtained from cells treated with 

malathion alone. The values are means ± SD of three i ndependent experiments. 



bJ the relen e of cytochrome c from mitochondria into the cytoplasm ( aleh et al . ,  

1 999:  Qin et  aL 1 999) .  Accordingl) , th cytosol ic and mitoch ndrial  fractions, 

prepared from cel ls treated with increasing concentrations of malathion, \ ere 

subjected to Western blot anal sis to assess the release of cytochrome c (Figure . 

.., -+A). l though not related to apoptosi , the ne .. ly synthesized non-heme pool 

contnbute to the presence of very 10\ Ie els of cytochrome c in  control cel l cytosol .  

:"'Ialnthion mduced a do e-dependent increase in cytoso l ic levels of cytochrome c .  

Even at a concentration as low as 0. 1 flM malathion induced cytochrome c release as 

sho\\ n by a prominent imrnunoreati e band on the b lot. Interestingly, the presence of 

z\'AD-frnk did not mhibit malathion-induced leakage of cytochrome c from 

mitochondna. The latter finding suggests that malathion induced the release of 

cytochrome c independent of caspase activation. However, the activation of the 

caspase cascade also ampl ifies cytochrome c efflux and this would explain why 

malathion was less effective in i nducing cytochrome c release in the presence of the 

general inhibI tor of caspases, zV AD-fmk. 

We also tested whether malathion releases cytochrome c from freshly isolated 

mitochondria (Figure. 3 .-+8) .  Purified mitochondria from L929 cel ls were i ncubated 

with increasing concentrations of malathion (0 to 1 .0 flM)  and the efflux of 

cytochrome c from mitochondria to the supernatant was assessed by i mmunoblot 

analysis .  Agam, malathion was able  to stimulate the release of cytochrome c from 

isolated mitochondna in a dose-dependent manner. 

3.3. - .  E ffec t  o f  I a l a t h i o n  o n  M i toc h o n d ri a l  M e m b r a n e  P o t e n t i a l  of  L929 Cel ls  

One of the possible mechanisms responsib le for the release of cytochrome c 

from mItochondria mvolves changes in the mitochondrial membrane potential ( \1') 
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Figure 3 . 4 :  M a l a t h i o n  i n d u ced release o f  cytoc h ro m e  c fro m  m itoc h o n d ria  i n to 

the  cytoplasm o f  L929 cel ls  i n dependen t o f  caspa e act ivat io n .  

A .  Mitochondrial (30 flg) and cytosol ic (50 flg) fractions were iso lated from L9'29 

cells treated with various concentrations of malathion in the presence or absence of 

zV AD-fmk (50 flM) as indicated on top of each lane. The presence of cytochrome c 

in both fractions was detected by immunoblotting with a spec ific antibody to the 

protein. The results are representative of two independent experiments . 

B. Freshly isolated mitochondria ( 1 00 flgl l 00 Ill )  from L929 ce l l  were i ncubated " ith 

various concentrations of malathion (0.025 - 1 11M)  for 30 min at 30
°
C in a reaction 

buffer as described in Materials and Methods. After incubation, the mitochondria 

were centrifuged and the leakage of  cytochrome c from mitochondria  into the reaction 

buffer was analyzed by Western b lotting with an antibody against cytochrome c. The 

control lane represents 20 fll of the untreated reaction mix ture. The results are 

representative of two independent experiments. 



( Brenner et ;11 . ,  2000). on 'equentl) , we monitored hanges in the mitochondrial 

m mbrane pot ntial b) 'taining malathion treated L 929 cel ls  with the cationic dye 

�l l to aptureT\l . .  blathion inouced depolarization of  the mitochondrial membrane 

potential in a tim - (F igure. "' . 5 ) and concentrat ion- (Figure . 3 . 5 B) dependent 

manner, as sho\\ n by the increase in the intensity of green fluorescence in the cytosol 

of malathion-treateo cel ls .  Malathion- induced membrane depo larization was also 

contimled by fol lowing the concurrent time- and concentration-dependent decrease in 

the reddish fluorescence given by non-apoptot ic mitochondria (data not sho. n). 

DI  ruption 0 f the mitochondrial membrane potentwl by malathion was not affect d by 

the pre nce of  zVAD-fmk (Figure . .., .5:-\) .  This finding once again support our 

earlier ob en'ation that the action of malathion on mitochondria of L929 cells does 

not reqUIre the acti, ation of caspases. 

3.3.6.  E ffec t  of � I a l a t h io n  on E x p re i o n  of V DA C ,  A T, B c I-2,  B cI-XL' Bad,  B ak, 

B i d  B a x  a n d  p53 

VDAC IS an abundant protein in the outer mitochondrial membrane that forms 

a l arge voltage-gated pore in the p lanar l ipid bi layers '(Tsuj imoto and Shimizu 2002) 

and seems to serve, in combination , ith the proapoptotic members of  the Bcl-2 

fami ly  as a path, ay for cytochrome c release from mitochondria (Kuwana et a l . ,  

2002 ; h i  et a l .  2003) .  To test this hypothesis, we examined the induction of VDAC 

and its regulatory proteins AJ. T (ademne nue leotide translocator), Bel-2,  Bel-XL, Bad, 

Bak, Bid and Bax .  Malathion was found to increase the expression of Bax and induce 

truncatIOn of Bid In a dose-dependent manner in L929 ce l ls  (F igure . 3 .6A). However, 

the Ie els of V DAC, Bcl-2 ,  Bel-XL, Bad and B ak were unchanged in malathion-treated 

cel ls .  Thus, the increased expressIOn of B ax and truncation of Bid may be attributed to 
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Figure 3 . 5 :  M a l a t h i o n  i n d u ced a t i me- a n d  c o n ce n trat ion-depe n d e n t  d i  rupt ion  

of mitoc h o n d ri a l  t ra n s m e m b r a n e  poten t i a L  

A .  L929 ce l l s  treated with 1 flM malathion for various periods of time (0- 1 6  h)  in the 

presence or absence of 50 flM zV AD- fink as indicated in each pro fi le.  After 

incubation, cel ls were stained with the MitoCapture n,1 cationic dye and the increase in 

the percentage of green fluorescence was monitored by flow cytometry. 

B. L929 cells were exposed to various concentrations of malathion (0- 1 0  fl 1) for 1 6  

h, stained with MitoCapture n,! cationic dye and analyzed by flow cytometry as 

described in (A). The flow cytometry data shown are representative of two 

independent experiments. 
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Figu re 3.6 : M a lath ion p ro m o ted t r u n cat ion  of B i d  as w e ) )  as e x p re ion  a n d  

t ra n  locat ion of Bax from t h e  cyto p l a  m to m i t oc h o n d ria of L 9 2 9  c e l l  . 

A. \Vhole cell extracts (50  �lg) from L929 cel ls  treated with various concentrations 

of malathion (0-5 �M), (as indicated on top of each l ane), were analyzed for the 

expression of VDAC, ANT, Bel-2,  Bel-xL, Bax,  Bad, Bid and Bak by Western 

blotting with their respective antibodies. 



the abi l i ty of  malathion to release cytochrome c from mitochondri a into the cytop lasm 

of L929 cel l  . 

To examme the po sible relati nship between malathion- induced apoptosis 

and Bax ,  \\ e examined the kinetics of release of cytochrome c and 

expre slon tran 10catlOn of Ba\: to mitochondria by immunoblot analysis (F igure . 

.... 68) .  Whi le the leakage of cyt chrome c from mitochondria into the cytoso l was 

e\ ldent as early a _ h of incubation \vith malathion the increase in Bax expression as 

\\e l l  a it translocatlOn to mitochondria became apparent only at 8 h of po t­

treatment. Th se results suggest that ( i )  initial ly, malathion triggered apoptosis 

through a dIrect effect on mitochondria and caused the release of c ytochrome c and ( i i )  

subsequent downstream events ampl i fied the apoptotic s ignal by way of translocation 

o f Bax from c;10s01 to mItochondria. 

To confirm further whether Bax induction was a pre- or post-apoptotic event, 

the L929 cel ls  were first pre incubated \\ ith zV AD-fink, the general inhibitor of 

caspase, and later exposed to malathion for different periods of time (0 to 1 6  h). As 

sho\\ n in figure 3 .6C, inhibition of caspase activation by zV D-frnk suppressed the 

induction of both pS3  and Bax by malathion. These results thus confirm that induction 

of Bax expression is an event that is  subsequent to malathion-mediated caspase 

activation. S lmi lar to the effect of the broad range caspase inhibitor zV AD-fink, 

inhlbmon of caspase-9 activation in malathion treated cells suppressed both the 

induction of expression of Bax and c leavage of B id (Figure. 3 .6D) .  

3.3 .7 .  I n d u c t i o n  of R O  G e n e rat ion  by M a l a t h i o n  

To in  estlgate whether RO is involved in malathion-mediated apoptosis, we 

measured the le\ el RO within the L929 cel ls  by using the fluorometric probe DCF. 
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Figu re 3.6 : M a lath ion p ro moted tru n cat ion o f  B i d  a wel l  a e x p re ion a n d  

translocat ion o f  Bax from t h e  cy topla m to m i toch o n d ria o f  L 9 2 9  c e l l  ' .  

B.  Immunoblot analysi s of cytochrome c and Bax in cytosol ic  ( -0 �lg) and 

mitochondrial (30 �g) fractions obtained from L929 cel ls  treated with 1 fllVl 

malathion for di fferent periods of time (0- 1 6  h). 

C .  Western blot analysis of Bax and p53 expression in  whole cell extracts (50 flg) o f  

L929 cel ls  exposed to 1 � M  malathion for diH rent time points (0- 1 6  h) in the 

presence or absence of 50 fl 1 zV AD- fmk as indicated on top of the lanes. 

D. Western blot analysis of Bax and Bid expression in whole cel l extracts (50 flg) of  

L929 treated or  not treated (control)  with 1 flM malathion in  the presence or  absence 

o f z LEHD-fmk (60 �M) or zV AD- frnk (50 flM) .  The bands corresponding to the ful l­

length Bid (FL) and its c leavage product (truncated Bid, t-Bid) are indicated. 



As sho\\ n in Figure 3 . 7 , the basal Ie e l  of  DCF-sensit ive RO in L929 cel ls  was not 

readi ly  detectable .  Fol lowing treatment with 1 /-Ltv! malathion, a sign i ficant generation 

of RO appeared as early as 2 h (F igure. 3 . 7  ). Incubation of L929 cel ls with various 

concentrations of malathion also showed a dose-dependent increase in ROS 

generation, as reflected by the increase in the green fluorescence of DCF dye (Figure. 

3 . 7B) .  Given the critical ro les of malath.ion in ROS generation, we next investigated 

whether inhibition of ROS production could rescue malathion treated cel ls  from 

apoptosis .  Whi le pretreatment of  L929 cel ls with 5 mM NAC almost completely  

prevented RO formation (Figure . 3 .  7C) ,  i t  was only ab le  to  provide a partial 

protection against malathion-induced apoptosis (Figure. 3 . 7D) .  Increasing the 

concentration of AC up to 20 mM did not provide further protection against 

malathion-induced apoptosis (data not shown). Taken together, the results suggest that 

RO generation by malathion contributes to  i t s  abi l ity to  induce apoptosis in L929 

cel ls .  

3.3 .8 .  E ffec t  of  · M a l a t h i o n  o n  M itoc h o n d ria C a r d io l i p i n  

F igure 3 . 8  shows that treating L929 ce l l s  with malathion caused a substantial 

decrease of mitochondrial cardiol ip in in  a dose-dependent manner. This effect was not 

a caspase-dependent because the broad-range caspase inhibitor zV AD-frnk was not 

capab le  of inhib iting changes in cardiol ipin content (F igure. 3 . 8 ) .  
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Figure 3 . 7 :  M aJ a t h i o n  i n d u ced ROS p ro d u c t i o n  i n  a t i rne- a n d  c o n ce n t rat ion­

depen d e n t  man n e r, w h ich w as b lo c ked by the  an t i o xi d a n t  A C .  

A .  L929 cel ls treated with 1 fl 1 malathion for various periods of tim (0-4 h) a' 

indicated in each profile .  After incubation, cel ls  were stained with the DCFH-DA 

reagent and the increase in the percentage of  FL 1 fluore cence was monitored by the 

flow cytometry. 

B .  Similarly, L929 cel ls  were exposed to various concentrations of malathion (0- 1 

flM) for -+ h, stained with DCFH-DA and analyzed by flow cytometry as described in 

(A). 

C. Cells were exposed to malathion for 4 h in the presence or absence of  5 mM C 

and anaJyzed for ROS formation as described above. The flow cytometry data shown 

in A, B and C are representative of two independent experiments. 

D. L929 cel ls \ ere exposed to 1 flM malathion in the presence or absence of 5 mM 

AC or 50 flM zV AD-fmk and analyzed for apoptosis using the AnnexinIPI method 

as described in figure 3 . 1 .  The values are means ± SD of three independent 

experiments. 
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Figu re 3 .8 : E ffec t  o f  m a l a t h i o n  on m i toch o n d ri a  c a rd i o l i p i n .  

Ylitochondria prepared from L929 cells previously exposed or  not to di fferent 

concentrations of malathion in the presence or absence of 50 �M zV AD-fmk were 

prepared, and lysed by ultrasomcation. Phosphol ipids were extracted from the lysed 

mitochondria and cardio l ipin content was determined as described in the Methods 

section. The results were expressed as the ratio of l ip id phosphorus (Pi) in cardiol ipin 

(CL) to that in  phosphatidylcholine (PC). The values are means ± SD of three 

independent experiments. 



3.4.  D i  e ll 'S l O n  

e a  pases, found i n  mammal ian cel ls  as inactive protease precursors, are grouped 

mto up tream init iator caspases and do\ nstream effector caspases. Inactive initiator 

caspases (caspases- and -9) are first activated in response to apoptotic stimuli and are 

responsible for processing and activation of effector caspases such as caspases-3 ,  -6 

or - . Activated effector ca pases subsequently, e, ecute apoptosis by c leaving 

various ce l lular substrates that are vital for cel l  survival (Shi ,  2002). In this study we 

have used integrated approaches to examine the sequence of events that lead to the 

aeti ation of easpases in the malathion-treated L929 mouse fibroblasts. 

Recently, we have shown that malathion induces apoptosi s  in L929 cel ls  in a 

dose- and time-dependent manner ( asoud et al . ,  2003 ) .  Apoptosis was detectable  

fol lowing a 1 6  h exposure to  1 �M malathion by  four distinct c ri teria (Annexin VIPI 

staining, D A laddering activation of  caspases-S ,  -9, and -3 and c leavage of cel lular 

substrates such as the D A repair protein P ARP) .  S ince spec ific  proteases belonging 

to the caspase fam i l y  are the major effectors of apoptosis the type of intracel lular 

apoptotic pathways involved may be deduced from the c lass of  init iator caspase that is  

activated, i . e. caspase-9 versus -S .  Our current data demonstrate that malathion­

stimulated apoptosis predominant ly  involves the caspase-9 pathway. We observed 

that inhibition of caspase-9 activation by zLEHD-frnk decreased malathion-induced 

apoptotic events. In malathion-treated cel ls, zLEHD-frnk caused a dose-dependent 

reduction in morp ho logical changes of p lasma membrane asymmetry as demonstrated 

by Annexin V staining. zLEHD-fmk also inh ibited caspase-8 ,  -9 and -3 processing 

and activation. In contrast, the caspase-8 specific  inhibitor z IEHD-frnk had only a 

marginal effect on malathion-stimulated apoptosis and activation of caspase-9 and -3 . 

It i s  wel l  known that activation of  the upstream init iator caspase, caspase-9, can 
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trigger a cascade that culminates in the acti ation of downstream effector caspase 

ca pase-3 ( aleh et a l . ,  1 999:  Qin et a 1 . .  1 999).  Once activated, caspase-3 has also 

been hown to process and activate the upstream ini tiator caspase, casapase-8, leading 

to the ampl i fIcation of the apoptotic cascade (S lee et aI . ,  1 999) .  Thus the observed 

activation of caspase-8 in malathion-stimulated cel ls  is  mainly due to the activation of 

caspase-3 by active caspase-9.  

Activation of  caspase-9 usual ly occurs downstream of  cytochrome c release 

from mitochondria ( aleh et a ! . ,  1 999).  Our results demonstrate, for the first time the 

activation of a spec ific  mitochondrial apoptotic pathway in a fibroblastic cel l l ine 

fol lowing exposure to malathion. 'vVe document a concentration- and time-dependent 

release of cytochrome c i nto the cytosol c leavage of B id and up-regulation and 

translocation of B ax to mitochondria upon stimulation wi th malathion. The efflux of 

cytochrome c from the mitochondrial compartment into the cytosol occurred at 2 h 

fol lowing incubation with I )lM malathion and gradual ly increased at 8 h. On the 

other hand transcriptional up-regUlation of Bax and its translocation to mitochondria 

were only evident at 8 h post-treatment. These results indicate that the leakage of 

cytochrome c precedes act ivation and translocation of B ax to mitochondria. This 

interpretation suggests that induction and translocation of Bax to mitochondria is 

dependent on further ampl ification of the caspase cascade and entry of the cell into 

the execution phase of  apoptosis. During thi s  phase, induced-expression of p53  in 

response to D A fragmentation, triggers the transcriptional up-regUlation of Bax 

(Miyashita and Reed, 1 995) ,  and thus disturbs the ratio of  pro-survival heterodimer 

(Bcl -2-Bax) to pro-apoptotic homodimer (Bax-Bax) proteins ( Bomer, 2003) .  Excess 

Bax homodimers w i l l  translocate to the mitochondrial outer membrane leading to 

leakage of cytochrome c through its pore-forming activity (Wei  et aI . ,  200 1 ) . This 
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scheme o f  events is consistent with our results and explains the time lag between 

caspase activation and the activation as wel l  as translocation of B ax to mitochondria. 

It is important to note that during this phase, no sign i ficant changes were observed in 

the expression levels of Bcl-_ and Be l-xL. Our observat ion that malathion-induced 

o A fragmentation was dependent on activation of caspases (Masoud et al . ,  2003) 

suggests that activation and translocation of  B ax to mitochondria may represent an 

ampl i fication mechanism rather than being a major trigger of  apoptosis in response to 

malathion treatment. Furthermore, the up-regulation of both p53 and Bax as wel l  as 

generation of tBid from its precursor protein in malathion treated cel ls  were inhibited 

in the presence of zV AD-£rnk and zLEHD-fmk. These results provide addit ional 

eVIdence that the actions of Bax and tBid on release of c ytochrome c are subsequent 

to activation of caspases triggered b y  the direct effect of malathion on mitochondria 

of L929 cel ls .  

Our results demonstrate that malathion disrupts mitochondrial transmembrane 

potential  and causes the release of cytochrome c under both in vitro and in vivo 

condit ions. In L929 cel ls  malathion stimulated the efflux of cytochrome c from 

mitochondria into the c ytosol even in the presence o f  the general inhib itor of caspases 

zV AD-fmk. These resul ts indicate a d irect action of malathion on mitochondria. 

Although the b iochemical mechanisms by which malathion induces the release of 

cytochrome c from mitochondria remain incompletely understood reactive oxygen 

species ( ROS) have been suggested candidates that trigger mitochondrial membrane 

permeabi lty transitions (Morkunaite-Haimi et a l . ,  2003) .  Recent studies have 

impl icated ROS as mediators of OPC-induced cytotoxic i ty (Banerjee et a l . ,  200 1 ) . 

The OPC-induced membrane depolarization by  ROS probab ly  involves oxidation of 

critical amino acid residues (such as cysteine) in the pore voltage sensor (Carlson and 
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· hrich. 1 999) causing al teration' in membrane permeabil i ty that leads to release of 

apoptogenJc fa tor from mito hondria. The results presented here indicate that 

malathion Induced RO formation . Interestingly, although the antioxIdant C 

i nhibited th generat lOn o f  RO in malathion treated cel ls, it conferred only partial 

prot ctlOn again t malathion- induced apoptosis .  The l imited protective ro le of AC 

ugge t that malathion-induced apoptosis may in 01 e addit ional effects other than 

induction of oxidative stress. uch effects may inc lude damage to cel lu lar proteins 

(Han ey and harma. 1 9  0; },, !arinovich et a l . ,  1 996) and D A (Bla  iak et a l .  1 999;  

Ri  hard on and Imamura, 1 985 )  and alterations in metabo l ic pathways ( Harvey and 

harma. 1 9  0) .  

In addition to the role  of RO , translocation of  cytochrome c to the cytoso l is  

stimulated by changes in the l ipid composit ion of  mitochondrial membranes, 

particularly cardiol ipin .  The l ipophi l ic  nature of  malathion and other 

organophosphorus pestic ides fac i l i tates their interactions with mitochondrial 

membranes l eading to alterations in the composition of these structures (Videira et a I . ,  

:200 1 ) . The release of cytochrome c into the cytop lasm during apoptosis depends on 

disruption of its electrostatic interact ions with the mitochondrial inner membrane l ipid 

cardiol ipin (Garcia-Fernandez et al . ,  2002) . Our results show that malathion causes a 

dramatic loss of this l ip id from the inner membrane of  mitochondria of L929 treated 

cel ls .  ThiS effect, in tum, may induce dissociation of cytochrome c from the 

mitochondrial inner membrane. Changes in the oxidation status of cardiol ip in and/or 

alteratlOns in ItS synthesis are responsible for di sturbing its electrostatic interaction 

with cytochrome c (Garcia-Fernandez et a l . ,  2002) .  Thus, the abi l i ty of malathion to 

induce changes in mitochondrial cardiolipin content may be due to ox idative damage 

by ROS or to alteration In its biosynthetic pathway. Our finding that inhibition of 
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malathIOn- Induced RO formation by 1 C conferred only a partial restorat ion of the 

mllochondnal cardIOl ipin content, indicates that malathion may also interfere with the 

biosynthe IS of this phospho l tp ids (data not shown).  

In summary, we have shown that malathion induces apoptosis via the 

mitochondnal path\\ ay. �lalathion stimu lates a dos - and time-dependent di sruption 

of mltochondnal membrane potential, RO formation, loss in cardio l ipin content and 

translocation of Bax and BId to mitochondria  of treated cel ls .  These events, 

co l le  tl\'e l;, cause release of  cytochrome c from mitochondria into the cytoplasm of 

ultured L929 ce l l  to induce a caspase-9-dependent apoptosis .  Thus, inhibi tion of 

this specific  path\ ay might provide a useful strategy to m inimize organophosphate­

induced pOisoning. 
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CH PTER 4 :  

CONCLUS I O N S  

AN D 

FUTURE D IR E CTIONS 



-t . t .  C o n c l u  io n  a n d F u t u re D i rectio n s  

The general public are exposed to low Ie  e l  of  OP  insectic ide through 

ingestion of r s iduces on food and contaminated water supp lies as well as through 

i nhalation and dermal contact. 

In the present study \ve demonstrate that at concentrations below the ICso for 

AChE i nhibit ion in  red b lood cel ls,  malathion induces cel l  death in  murine L929 

fibrob lasts b apoptotic pathways. This is the first demonstration that very low doses 

of OPCs affected non-neuronal cel ls and induced apoptosis independent of AChE 

i nhibi t ion. At doses below the ICso, malathion also induced apoptosis in  EL4 murine 

T- lymphocytes (data not shown) .  In a previous study we have also reported that at 

low, non-chol inergic doses, paraoxon i s  a potent i nducer of  apoptosis both in cultured 

EL4 T-I) mphoc}1eS and mouse fibroblasts (Saleh et aI . ,  2002). These results, as wel l  

as a grO\ i ng body of recent evidence (Carlson and Ehr ich,  200 1 )  indicate that 

apoptosis might be one of the mechanisms by which the cel ls  respond to chronic 

exposure to low doses of OPCs. 

In tills study we have used i ntegrated approaches to examine the sequence of 

events that lead to the activation of  caspases in  the malathion-treated L929 mouse 

fibrob l asts. 

Organophosphorus compounds are usual ly  esters, amides or thiol derivatives 

of phosphonic ac id. They form a large fami ly  of �50,000 chemical agents with 

b iological properties that have important and sometimes unique impl ications for man. 

Thus, the ubiquitous organophosphates present a continuing health hazard in 

agriculture, pub l i c  health eradication programs and as chemical  warfare agents 

(Kamanyire and Karal l iedde, 2004) .  The major concern is that there is insufficient 
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informat lon regarding the molecular mechanisms of  their  toxic i ty for implementing 

appropnate preventive measures in occupational exposures . 

fost of  the i l l -health fo l lowing exposure to organophosphorus compounds has 

been attributed to the inhibition of cholinesterases. However, the current l iterature 

(1 10nnet-Tschudi et a l . ,  2000) and the work presented in this thesis have j ustifi ably 

chal lenged this vie. , as the inhibition of cholinesterases by itself cannot account for 

the wide range of disorders that have been reported fol lowing organophosphorus 

poisoning. It is becoming apparent that, although i nhibition of chol inesterases plays a 

key ro le in the toxicology of  organophosphates, individual suscept ibi l i ty, the 

inhibition of other enzyme systems and the direct effects of organophosphates on cel ls 

tissues are also important. 

The findings of this study that malathion induces apoptosis through i ts abi l i ty 

to release cytochrome c from mitochondria to the c ytoplasm of  mammalian cel ls ,  

suggest the possible use of  this phenomenon as a diagnostic strategy for 

organophosphate poisoning. In dying cel ls ,  c ytochrome c may leak out to the plasma 

of organophosphate poisoned animal . To test this possibi l i ty in vivo, we have recent ly  

exposed five groups of  rats to  different concentrations of the organophosphate 

malathion, parathione or paraoxon for various period of times and the level of 

cytochrome c in the p lasma of these animals was semi-quanti tatively determined by 

Western b lotting (unpublished data) . Indeed, the results indicate that the leakage of 

c ytochrome c from tissue cel ls to the plasma of  the animals is  proportional to the 

toxici ty levels .  Therefore, our results introduce a novel assay to evaluate the levels of 

opes toxic i ty of exposed individuals. 

In addi tion to the diagnostic assay, molecu lar characterization of the 

malathion-induced apoptosis in L929 cel ls allowed us to screen for potential treatment 
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for organophosphate-induced tox ic i ty. Recently, we have found that the benzamide 

derivati\'e metoc lopromide, which is c l inical l y  used as anti-emetic drug, is able to 

inhibit  a l l  the apoptotic events induced by malathion and paraoxon. These findings 

suggest the potent ial use of this drug to treat poisoning with organophosphates. 

Recently, in col laboration with professor G. Petroianu 's  l aboratory (Department of 

Pharmaco logy, Faculty of ledicine, UAE Universi ty) , we have found that 

metoc lopromite was able to al leviate the inhibi tory effect of organophosphates on 

ACH E  activi ty (Petroianu, et a i . ,  2003), decrease the leakage of  cytochrome c from 

dead tissue cel ls  to the p lasma and substantia l ly reduce the mortality rates of animals 

poisoned with OPCs (unpubl ished results) . 

In addit ion to the above advantages gained from this study, our results indicate 

that malathion induces apoptosis at doses lower than the one required to inhibit 

chol inesterase act ivi ties.  These findings suggest that malathion is  highly toxic to 

organisms. Therefore, the use of this compound in agriculture to control pests should 

be restri cted. Our in vitro apoptosi s  assays provide sensi t ive techniques to screen for 

alternative safer pestic ides. 

This study concentrated on the effect of  malathion on the induction of 

apoptosis in mammalian cel ls .  I t  provides potential diagnostic and therapeutic 

strategies for malathion and other OPCs poisoning. However, work is  sti l l  required to 

address the effect of these compounds on other ce l lu lar systems to implement 

appropriate preventive measures and optimum treatment interventions for poisoning 

with OPCs. 

In summary, we have shown that malathion i nduces apoptosi s  Vla the 

mitochondrial pathway (Figure 4 . 1 ) . Malathion stimulates a dose- and time-dependent 

disruption of mitochondrial membrane potential ,  ROS format ion, loss in cardiol ipin 
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content and trans location o f  Bax and Bid to mitochondria of  treated ce l ls .  These 

events, col lectively, cause release of cytochrome c from mitochondria into the 

cytopla m of ul tured L929 cel ls  to induce a caspase-9-dependent apoptosis .  
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