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Abstract 

There are se eral methods for materials simulatiOn. Ab initio or first principles methods 

are u ed to sol e the quantum mechanical equation which govern the behavIOr of a 

system Ab mito calculatiOn of the optical and electronic properties of solids is 

fundamental m solid state physics. APW+lo is used to examine different properties of 

Be , BeSe, and BeTe. Beryllium compounds show different features in structure under 

different pressures, and they also show a phase transition from Zinc blende to Hexagonal 

lAs There is presently a great interest in the study of pressure induced phase 

transitiOns m II-VI semiconductors. Little is known about the ground state properties of 

Beryllium chalcogenides The aim of this work is to examine the electronic and optical 

properties of these materials, with the emphasis on their dependence on hydrostatic 

pressure. First, we calculated the electronic properties such as band structure, charge 

density, denSity of state, and the contours of these materials, second we examined there 

optical properties such as refractive index, the dielectric function (both real and 

Imagmary), and the coeffiCient of absorption under normal and transient pressure. Two 

packages -the Wien97 and the Wien2k- are used in our simulation. 
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CHAPTER I 

Introduction 



There are e eral method for imulation of the material properties. A l l  of these 

method can be grouped into two ategorie , cJas ical and quantum mechan ical 

imu lation . ach has it ad antages and di advantage . las ical s imulations can handle 

a large number of atom but ha trouble deal ing \ ith the electron , part icularly defects 

uch a an F-center wh ich i the ub t itution of a negati e ly charged ion with an electron. 

The al 0 require a lot of e peri mental data to fit the requ i red empirical interatomic 

p tential . On the other hand, quantum me hanical calcu lations require very l i tt le 

e. perim ntal data but can only handle a smal l number of atoms, typical ly only a few ten 

of atom . Molecu lar Dynamics simu lation these days often use first princip les 

calcu lation to fit force field . 

b init io or fir t principles methods, are used to so lve the quantum mechan ical 

chr5dinger equation which go ems th behavior of a sy tern . The only information 

which mu t be pro ided is the atomic numbers and positions of the atoms within the 

system.  In contrast, empirical or semi -empirical approaches require a model of the 

interaction between the atoms to be uppl ied. The parameters of these models are 

usual ly derived by fitting the outcome of s imulat ions to experimental data. Ab in it io 

calcu lation of the optical and electronic properties of sol i ds are re l iable in  sol i d  state 

physic . These calculations provide a test ing ground for wel l-developed theories such as 

the local density funct ional formal ism [ 1 ] . 

Recent implementations of e lectronic structure methodologies can be div ide i nto 

two groups. On one s ide there are a l l -e lectron (AE) approaches wh ich consider both core 

and valence e lectrons exp l ic itly i n  the calcu lation. S ince core e lectrons are strongly 

local i zed and the valence e lectrons are delocal i zed; these methods need suitable 

techniques such as augmented p lane waves (APW) [2], l inearized muffin  tin orbita ls  

(LMTO) [3 ] ,  later type orbita ls  (STOs) [4] ,  or Gaussian orbita ls  [5 ] .  A lternative ly, one 

can employ pseudo-potentials (PSPs) which effectively project out the core states from 

the problem wh i le retaining the physical properties of the valence region . Many pseudo­

potential appl ications use a plane-wave basis set but a variety of local orbital based 

implementations exist .  The s ize of the basis set needed for a calculation of this type 

depends strongly on the shape of the atomic  pseudo-potentials .  Several approaches have 

2 



been proposed to construct soft pseudo-potentials which minimize the numerical cost of 

the computation . 

Although the pseudo-potent ial method is extremely useful, there are reasons why 

alternatives cou ld be attractive. Is the introduction of the pseudo-potential completely 

innocent? What do you do if you are interested in information that i s  inherently contained 

in the region near the nucleus (hyperfine fields for instance, or core level excitat ions)? 

Can the ba is  set be made more efficient? Therefore, we wi l l  search for a basis set that 

uses other functions than plane waves, and that does not requ ire the introduction of a 

pseudo-potent ial .  Such a basis set wi l l  have to be more efficient, but of course we do not 

want it to be biased. The successor wi l l  be the Augmented Plane Wave (APW) bas is  set. 

In this work we use the Augmented P lane Wave combined with the local orbital 

(AP W+lo). The ideas that lead to the APW basis  set are very s imi lar to what made us 

introduce the pseudopotentiaL In the region far away from the nuc lei the electrons are 

more or less 'freely' (delocal ized) .  Free electrons are described by p lane waves. Close to 

the nuclei ,  the e lectrons behave qu ite as they did in a free atom, and they can be 

described more efficiently by atomic l ike functions. We concentrate our efforts in the 

theoret ical study of optical and electronic properties of beryl l i um chalcogen ides BeS, 

BeSe, and BeTe at normal pressure and under the effect of a hydrostatic  pressure. The 

calcu lations are performed with in  the framework of density functional theory. 

The Be compounds show features in structure and bonding very s imi lar to the Il l­

V semiconductor compounds. Each of these compounds crysta l l ize at zero pressure i n  

the z inc-blende (ZB) structure. Recent experiments and theoretical studies [6] reported 

the existence of a pressure i nduced structural phase transition of these compounds from 

the ZB to the hcp structure [7,8] .  There i s  presently a great i nterest in the study of 

pressure induced phase transitions in  I J-VI compounds, among wh ich the bery l l ium 

compounds stand .  However, l ittle i s  known about the ground state properties of the 

bery l l i um cha1cogenides. These materials are potential ly good for technological 

appl icat ions, main ly  for b lue-green laser d iodes and laser-emitting d iodes. 

The purpose of our study is to ana lyze the optical and electronic propert ies of 

these e lements at equ i l ibrium and transition pressure. 

3 



The the i i organ ized a [0\10\ : in the next chapter, a brief review of the many 

b d problem and the den it functional theory i pre ented . In chapter 3, the b init io 

p udo-potential theor i e ten ively d i  cu ed . hapter 4 deal with the d ifferent type 

of algorithm pre ented for minim izing total energy of Kohn- ham s tern. In chapter 5, 

we introduce the PW+lo method and we demon trate the u efulne s as wel l as the 

p wer of thi method, and final ly in chapter 6, we di cu s our re ults and give our 

c nclu ion. 

4 



CHAPTER II 

Density Functional Theory as 

a way to solve the quantum 

many body problem 
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11.1 The Many-body Problem 

The macr copic pr pertie of a l l  form of matter are determined by quantum 

mechan ical olution of a many body chrodinger equation govern ing the motion of the 

el tron and th nu lei [9] . 

The chrodinger equation i the main equation given by : 

( ILl) 

where H i  the e act man -body Hami lton ian, and the wavefunction If is the function of 

the all e lectronic and nuclear coordinates. 

olving the chrodinger equation i on ly part of the many-particle problem. As a 

matter of fact the aim here i not to get the e igenvalues and the eigenfunctions but rather 

u e the e latter to calcu late some properties l i ke the bonding energy, polarizab i l ity, 

conducti i t  , etc . .  , rather than the wavefunction it e lf  [ 1 0] .  

A o l i d  i a col lection of heavy, positively charged particles (nuclei) ,  and l ighter, 

negative ly charge part ic les (electrons) . For a system containing N nuclei, there are 

N+ZN electromagnetical ly interacting part ic les. In this situation we are deal ing with a 

problem cal led a many-body problem. The exact many-particle Hami ltonian for this 

s stem is: 

( I I .2 )  

me and M, i s  the mass of e lectrons and nuclei respect ively. The first tenn is the kinetic 

energy operator for the nuclei ,  the second is for the electrons. The last three tenns are the 

cou lomb interaction between electrons and nuclei ,  between the e lectrons and other 

e lectrons and between nucle i  and other nuclei  [ 1 1 ] . 
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11.2 Levell :  The Bo rn-Oppenheimer approxi mation 

The Born ppenheimer appro imat ion [ 1  1, 1 2] i the ba is  for the mo t of our 

thinking ab ut hape and nuclear motion in pol atomic molecules. This approximation 

as ume that the nuclei in molecule are v irtual ly standing t i l l  relat ive to the e lectron . 

Thi i ba ed on the mall electronic-nuc lear mass ratio, which is 

c lo  e t ca e of atomic h drogen 

I 
� -- even for the 

1 800 

The nuclei are much heavier and therefore much slower than the e lectrons. 

Hence, the nuclei can be frozen at fi ed position , and we can assume them to be in 

instantaneou equ i l ibrium with each other. The nuclei are reduced to a given ource of 

po it ive charge, and become e ternal to the e lectron c loud. Due to this approx imation, a 

col lection ofNZ interacting negat ive part ic les mov ing in the potential of the nuclei is left. 

The Born-Oppenheimer approximation states that, the nuclei do not move any 

more, hence, their kinetic energy is zero and the first term i n  the many-particle 

ham i ltonian disappear . The last term reduced to a constant the kinetic energy of the 

e lectron c loud is  left [ 1 1 ] . 

The Hami l tonian can be written more compact ly as 

... ..... .... .... ,. .... 
H = T"CR) + TeCr) + Ve,v(r, R) + V NNCR) + Vee(r) (1l .3 ) 

where R i s  the set of nuclear coordinates and r is the set of electronic coordinates. I f  

spin-orbi t  effects are important, they can b e  added through a spin-orbit operator H so 

[ 13 ] .  

Unfortunately, the VeN (r, R) term prevents us from expressing H i nto nuclear 

and electronic parts, which wou ld al low us to write the sample wavefunctions as a 

product of nuc lear and electronic terms, lIf(r,R)=IIf(r)z(R). The term VeN(r,R) is 

large and can not be neglected; however, we can make the R dependence parametric, so 

that the total wavefunction is given as lIf(r; R)Z(R), we can fix R, the nuclear 

configuration, at some value RQ, and solve for the electronic wavefunction lIf(r; Ra), 
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which depend oni on R. We n w show the mathematical detai l . F irst, T, (R) can be 

neglected, and from the electron point of v iew, the fu l l  Hami l ton ian reduces to 

( 1 1 .4) 

(1 1 .5) 

thi  cal led the "clamped-nuc lei" chrod inger equation. VI\?, (R) i neglected in the 

abo e quat ion, " h ich i justi fied to be just a con tant wh ich sh ift the eigenvalue only 

b a con tant amount. If we leave VN, (R) out of the electron ic, chrod inger equation 

lead to a im i lar equation 
... ... ,. .... 

He = Te(r) + V.s (r,R) + V,,(r) ( 1 1 .6) 

( I I .  7) 

We " i l l  assume that V 'N (R) IS inc luded in the electronic Hami l ton ian . 

Additional ly, i f  spin-orbit effects are important then they can be included at each nuc lear 

configuration according to 

( 1 1.8) 

( I I .9) 

Consider the original Hami ltonian in ( I L2) .  An exact solut ion can be obtained by using 

an expansion of the form 

If = (r,R) = LIf(r R)XkR (U. I O) 
k 

although, to the extent that the Born-Oppenheimer approximation is valid, very accurate 

solutions can be obtained only for one or a few terms [ 1 4] .  

n.3 Level 2: Density Fu nctional  Theory 

I t  is known that e lectrons in metals behave as  more or  less free objects [ 1 0, 1 5 ] .  I n  

a c lassical l iquid, the description is  not in  terms of individual partic les posit ions and 
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momenta, but in  term of den itie and elocity field . s imi lar approach can actual ly 

be taken for electrons, h ich i cal led Density Functional Theory (OFT) [ 1 5- 1 9] .  DFT 

method are currentl implemented in  mo t of commercial ab in it io program packages 

[20] . 

11.3.1 Lim itations 

De pit the remarkable ucces of the LOA [20,2 1 ] , i ts l imitations impose that 

caution mu t be u ed in it appl ication. For sy terns where the density varies slowly, the 

LOA tend to perform \ e l l ,  and chemical trend are wel l reproduced . I n  strongly 

correlated stem , an independent particle picture breaks down, the LDA is very 

inaccurate. For e ample, the transition metal oxides XO (X =Fe, Mn, N i )  are almost a l l  

in u lators, but  the LDA predicts that they are either semiconductors or metals .  More over, 

the L DA has been appl i ed to h igh Tc uperconductors, but finds everal to be meta l l ic, 

when in  real ity they are i nsulating at 0 Kelvin .  

It i s  a wel l-known trend that the LDA underestimates the bandgap . This does not 

affect its succes and rel iabi l ity for the ground state properties. Among other LDA 

l i mitat ions we mention the fol lowing: the LOA finds the wrong ground state for many 

simpler cases. For example, the LDA finds the wrong ground state for the titan ium atom. 

The L DA does not account for van der Waals bonding, and g ives a very poor description 

of hydrogen bonding. These phenomena are essential for most of b iochemistry 

compounds: the structure of DNA depends critica l ly  on hydrogen bond ing, as do the 

changes in the structure of most molecules on salvation. 

An obvious approach to improving the LOA is  to inc lude gradient corrections by 

making the energy functional a functional of the energy and its gradient: 

where F xc is a correction chosen to satisfy one or several known l im i ts for Exc. 

We emphasize that there is no unique recipe for Fxc, and several dozen 

functionals have been proposed in the l iterature. They do not always represent a 

systematic improvement over the LOA and resu lts must be careful ly  inspected. 
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11.3.2 The Choice of a Ba is et Pla ne Waves 

The Kohn- ham orbital ,1//" rn a be repre ented in terms of an complete basi 

et. For thi ta k. man choice are po ible i .e .  atomic orbital , Gaussians, LAPW and 

plane \. a e .  Th i latter i the basi et \ e u e in pract ice. The use of a plane wave 

( P W) ba i t offer a number of ad antage . including the simplicity of the basis 

function , wh ich make no preconcept ion regarding the form of the so lution. It a lso 

yield the abi l ity to effici nU calculate the force on atoms. 

In general.  th repre entat ion of an arbitrary orbital in terms of a PW basis set 

wou ld require a cont inuous. and hence infin ite, basis set. However, the implementation 

of periodic  boundar condition al lo\. the use of B loch 's  Theorem whereby the 1//, may 

be written 

I//,.Ic (r) = L C,.t (G)e'(K+G)r ( I I .) 2) 
(, 

where the sum i over reciprocal latt ice vector G and K i s  a wave vector which l ies 

within the fir t Bri l louin zone. Thus. the basis set for a given K wi l l  be d iscrete, al though 

in principle it wi l l  sti l l  be infin ite. In practice, the set of plane waves is restricted to a 

phere in reciprocal space most conveniently represented in terms of a cut-off energy, 

Ecut• such that for a l l  values of G used in the expansion 

/i21K +G12 
--'-----'- :s; E cur 2me 

(11 . 1 3) 

Thu , the convergence of the calcu lation with respect to basis  set may be ensured by 

variation of a single parameter, Ecut. This  is a sign ifi cant advantage over many other 

bas is  set choices, with wh ich the calculated properties often show extreme sensit iv ity to 

smal l  change in bas is  set and no systematic scheme for convergence wou ld be avai lable. 

The choice of periodic boundary cond itions is natural in the case of bulk sol ids 

which exhibit perfect translat ional symmetry. 

The electron density per) and energy are given by averaging the resu lts for a l l  

values of K in  the first Bri l louin zone. 

(11 . 1 4) 

where 
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( 1 1 . 15 )  

and 

( I I .  1 6) 

Where E i the energ) of the electron 

In an cl\tended tern, these intcgral are replaced by weighted sum over a 

di crete et of K-point which must be careful l  elected to ensure convergence of the 

re u lt . An i o lated mol cule wi l l  exh ibit no di persion, i .e  . .  there wi l l  be no variat ion of 

E and per) \ ith K. Therefore, the e properties need only be calculated at a single K­

point. There ha been significant d i  cu ion regard ing the optimal choice of K-point for 

performing calcu lation on isolated sy terns. 

The principle disad antage of the use of a P W  basis  set i the number of basis 

function requ ired to accurately represent the Kohn-Sham orbital . This problem may be 

reduced by the u e of p eudopotentioal as described in  the next chapter, but several 

hundred basis functions per atom must sti l l  be used, compared with a few tens of basis  

function with the u e of some atom-centered basis et 

11.3.3 The theorems of Hohenberg a nd Koh n  

I n  the year 1964 Hohenberg and Kohn pub l i shed In physical Review two 

fundamental theorems which gave birth to the modem density functional theory, an 

alternative approach to deal with the many body problem in e lectronic structure theory 

[22 ] .  

ince the formu lation of  quantum mechanics in  the 1920s, two major approaches 

ha e emerged for the computation of the propert ies of atoms, molecu les and sol ids: 

H artree-Fock theory [ 12,22,23] and density functional theory. The H artree-Fock and 

re lated methods have been most popu lar in the quantum chemistry commun ity, whi le 

density functional theory has been the main method used for calculat ions of sol id  [9] . 

Density functional theory is  an extremely successfu l  approach for the descript ion 

of ground state propert ies of metal s, semiconductors, and insu lators. The success of 

density functional theory not only encompasses standard bu lk material but also complex 
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material . Den ity functional theor OFT i ba ed n the not ion of the ingle particle 

el tron den it a a fundamental ariable. Thi i a con equence of the Hohenberg­

Kohn theorem [2 1 ,22] \ hich tate that the ground state electron energy may be found by 

m in imizing th e pectat ion alue of the total energy regarded as a functional of the 

electron den it)' p(r). 

The trad it ional formu lation of the two theorems of Hohenberg and Kohn [ I S] is a 

fol low : The fir  t Hohenberg-Kohn theorem. as publ i hed in 1 964 states that there is a 

one-to-one correspondence between the ground state density per) of a many-electron 

s stem and the external potential Vw. In  other words, the external potential Vex/ (r) is a 

uniqu functional of the density p(r) · ince, in tum V.x, (r) fixe H and we see that the 

fu II many particle ground state i a un ique functional of p(r) . 

Vw (r) => per) ( 1 1 . 1 7) 

and the in  erse mapp ing exi t 

p(T) => V.t, (r) ( I I .  I S) 

E ery property could be calcu lated with the help of p(T) , since the density p(T) 

contain al l the information of the system [22] .  

The proof o f  the Hohenberg-Kohn HK I i s  based on reduction and runs as fol lows: 

uppose that we have two d i fferent external potentials Vw (r) and Vex, (r) ' with the same 

ground state density per) 

Vw (r) � Va' (r) ' ( I I . 1 9) 

The two external potent ials lead to two d i fferent Hami l tonians with two d i fferent ground 

state wavefunctions !fI 

( I I .20) 

( I I .2 1 )  

Therefore !fI and !fI' are d ifferent N particle wavefunctions. Using the variational 

principle we can write 

( I I .22) 
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ince, the two Hami ltonian difTer only by the external potential we can write 

which ield 

£ < E'+( V/'IVert - V /IV/ ) 

£ < £'+ fp(r){Vcxt - Vert '}dr 

(J 1 .23) 

( I I .24) 

The e ternal field interact onl ia a c lassical electro tat ic interaction between 

the e lectron and th nuclei .  

We interchange the primed and the unprimed quanti t ie and we wi l l  repeat the same steps 

abo e which leads to 

(IL2S) 

Th n 

£'+£ < E + £' ( I I .26) 

which mean that, there cannot be two d ifferent external potential Vext and Vert' that 

yield the same density p(r). 

ince the complete ground state energy Eo i s  a unique funct ional of the density p, we 

can write 

( IL27) 

The previous expression can be divided into two parts, system dependent Vert (p) , 

and system independent rep) + Vmt (p). The system dependent part, depends on the 

actual system determined by the external potential ,  and the system independent part 

defmes the Hohenberg-Kohn functional 

( I I .28) 

The second Hohenberg-Kohn theorem states that: 

( I I .29) 

where j5 is the density associated to a N electron system with external potential Vert' 

al id  only i f  j5 = p [22 ] .  
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11.3.4 The Kohn- ham eq uation 

Wh i le the Hohenberg-K hn theorem show that it is po s ible to u e the ground 

tate den ity to calcu late propertie of the y tern, it doe not provide a way of finding the 

ground tate den it)'. Thi i pro ided b the Kohn- ham equation [24]. 
The Kohn- ham th ory i con idered a the mo t practical method for calcu lating 

th electroni tructure of material [7]. 
The main ad antage of the Kohn- ham method is  that it al lows a straightforward 

determ ination of a large part of th kinetic energy in a simple way. Another advantage, it 

pro ide a e l f-consi tent one particle picture including correlat ions of interact ing 

e le tronic tern , which pro ides a ba i for the one-particle arguments used in sol id 

tate ph} I C  and chemi try to explain and pred ict certain propert ies of chemical bond ing 

[ 1 0] .  

I f  we return back to Hohenberg-Kohn functional , both known and unknown parts can be 

identified 

( I I .30) 

" ith potential energy term 

( lUI ) 

where J (p i s  c lassical i nteraction of two charge densit ies and E NCL (p) contains al l non 

c lassical parts. Thus the complete energy functional is given by: 

E[p] = T[p]+J[p]+ENCL[P]+ fVwp(r)dF ( 1 1 .32) 

The basic problem is the unknown functional for the kinetic energy. Kohn and 

Sham publ i shed a paper in 1 953 to solve this problem, where they suggested to spl it th is  

functional into two parts. 

T[p] = Ts[p] + Tc[p] ( 1 1 . 33 )  

where T� [p] wi l l  be  the  expressed in  a one particle approach s imi lar to  Hartree-Fock, 

and the second part, which is the unknown part contains the difference between the real 

1 4  



functional T [p] and the one particle term T,,[p] ,  which wi l l  be treated as well as the 

other. The remaining part of the total energy functional are al 0 unknown, We can 

write 

E[p] = T,.[p] + J[p] + Vw [p] + E \'('J [p] + T( [p] ( 1I.34) 

= T\ [p] + J[p] + Vw [p] + E xc [p] 

En [p] ca l led the e change-correlation functional, which remains unknown . Ts[p] IS 

defined as 

�'I[p] = -� I ( BII\72�, ) , ( 1 1.35) 

where B are one particle \J a efunctions, which are determined by applying the variat ion 

principle, which leads final ly to the Kohn-Sham equations 

f� KSB = e B , " 

with the Kohn- ham operator 

JKS =_�\72 + fP(r2)ar; +VXL'(�)+ I ZA 
2 rl2 A rIA 

= -� \72 + Vs (�) 
2 

( 1 1.36) 

( I L37) 

This shows that the Kohn-Sham equations prov ide a method of obtaining the 

kinetic energy functional and also min imizes the energy functional .  In general ,  the 

method only provides the total energy as wel l  as the ground state e lectron density [25]. 
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Figu re 2.1 : F low chart for computing the wavefunctions 

II.3.S The exchange-correlation fu nctional 

The Local Density Approximation ( LOA) introduces the form of the exchange 

correlation functional [ 12,26] a 

Eft = J p(r)6' xC<p(r)dF ( 1 1 .3 8) 

The previous form means that the exchange-correlation energy due to a part icular density 

per) could be found by d ivid ing the material in infin itesimal ly smal l  volumes with a 

constant density. Each such volume participates i n  the total exchange correlation energy 

by an amount equal to the exchange correlation energy of an ident ical vol ume fi l led with 

a homogeneous electron gas that has the same overa l l  density as the original material has 

in th is  volume [ 1 1] . 

The 6' xc i s  the exchange correlation energy per particle of a uniform electron gas. 

This quantity can be further spl it into two parts: 
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6.n (p(r» = 6 y (p r» +6 c(p(r» (l I .39) 

For e. ample, the e change part 6y per»� can be derived analytical ly and read a 

6\ (p(r» = _�v3P(r) (II .40) 
4 7i 

The corr lation part cannot b derived analyt ical ly, but can be cal cu lated numerical ly 

with h igh accurac by mean of Monte arlo imulation [ 1 0]. 

In the Local Den ity Approximation LOA, the XC hole PX( (r,r') about an 

Ie tron at r i approximated by the XC hole of a uniform electron gas of density p = p(r). This is not enough for many chemical and biological app l ications. The most 

widel u ed correct ion to the LDA is the general ized grad ient approximation GGA [27] 

in  wh ich the effects of homogeneity are modeled using the semi local approximation 

Exc = fdlf(p,IV pi) where! is some parameterized nonl inear function of p and V p. 
A common feature of al l current GGA is that their construction is guided by 

l im it ing behaviors and sum ru les they are designed to fit various integrated quant itie 

such as total exchange energies of atoms or ionization energies of molecu les, but 

incorporate l ittle or no information about the behavior of local quantit ie such as 

Pxc (r, r') and the exchange correlation energy density e xc (r) in  strongly inhomogeneous 

systems [28] .  
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CHAPTER III 

The Pseudopotential Method 



111.1 Introd uction 

owadays, the p eudopotent ial method [29] of a olid i s  implemented using 

modem computer . I t  paved the way in prov iding workable models and simulations. It 

nm po ibl to pred ict accuratel the propertie of complex systems such a 

emi onductor ,l iquid \ ith hundreds if not thousand of atom . The pseudopotent ial 

model treat thi matter as a ea of alence e lectrons moving in a background of ion 

core . Th cor are compo ed of nuclei and inner-core electrons. This model avoids 

man comple it ies that could be encountered in the e lectron model . For example, a 

group I V  ol id, uch a C (with 6 electrons) is treated in s imi lar way a Pb (with 82 

e lectrons) ince both ha e 4 valence e lectrons [3 0] . Pseudopotential calculations focuses 

on the accurac of the a lence electron wavefunction in the special region away from the 

core.  The mooth ly arying p eudo wavefuction is taken to be identical to the 

appropriate a l l -e lectron wavefunct ion in  the chemical ly active bonding region . 

P eudopotentials are very important components of first principles calculat ions as 

they remo e the need to consider core electrons, but rather take into account only the 

valence e lectrons. The pseudo-wave function is a much simpler and smoother function to 

appro imate than al l -e lectron wavefunction . The just ification for the use of a 

pseudopotential l ies in the fact that the h ighly local ized core wavefunction cannot take 

part in the bonding of atoms. Nevertheless the valence electrons undergo exchange 

interactions with core ones and this makes the problem of constructing pseudopotentia\s 

non triv ial [ 1  1] . 

III.2 Construction of the Pseudopotential 

A number of schemes have been developed to construct pseudopotentials that 

yield wavefunctions. As previously mentioned, most modem pseudopotentials are based 

on the same idea, but are not fit to experimental data. Rather, they are based on density 

funct ional theory. With in  this framework, i t  is easy to apply the pseudopotental approach 

to a wide variety of problems [11] . 
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III.3 E m pirical cherne 

We ha e focu ed our effort in this work on the ab-init io method, and their 

out tanding predicti e power. e erthele computing co t are the main handicap and 

in thi matter. method uch a the mpirical p eudopotental .  t ight binding, c ia  ical 

mole ular dynamic . etc . . .  ha e been gi ing re ult that are correct with Ie s computing 

t ime and tern con traint . The empi rical p eudopotentai l  method has revealed so far 

quit  at i factory re ult  for the emiconductor materials .  In these per pect ives, it also 

ha a predi ti e power. e en though it rel ies on experimental resu lts as input such as 

(energ gap ) in it rel iabi l i t}. 

1 1 1.3.1 E m pirical Pseudoptential  m ethod 

The empirical pseudopotential method (EPM) [3 1,3 2] has been extensively 

appl ied to the diamond and zinc-blende semiconductors. tudies on these latter materials 

have been based on local approximations. In  this approach, reflect ivity experiments have 

p layed a prominent role in determin ing the theoretical parameters needed in the EPM 

calculation . The local approximation has been proven to be efficient to explain most of 

the opt ical data a ai lable for semiconductor compounds. However, i f  we extend the early 

calculation which have invoked the local pseudopotential approximation to the valence 

band and compare the results to experiment some discrepancies arise. Speci fical ly, 

h igh resolution photoemission resu lts ( XPS) and u ltraviolet photoemission spectroscopy 

(UP ) have demonstrated that local EPM calcu lations obtain incorrect valence 

bandwidths, in the majority of cases, as compared with experiment. Experimental 

advances using x-rays have permitted an assessment of the pseudopotential charge 

densitie . Whi le  the experimental data for S i  indicated that the local pseudopotential 

yielded a correct bonding-charge, the bond shape was incorrect. A lso X-ray data on JnSb 

indicated the local pseudopotential approach overestimates the ionic ity of the crystal, i .e. 

it yields a greater charge transfer from In to Sb than indicated by the experiment. 

Owing to the nature of these d iscrepancies, it  was speculated that a purely local 

pseudopotent ial technique could not yield satisfactory results, and non local 

pseudopotential should be considered. This evidence for this reasoning was reinforced 

particu larly by the valence band width d iscrepancy, because other one-electron 
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approache (wh ich corre ponded t energ dependent non local pseudopotential) tended 

to yield more accurate al nce band than the local EPM approach .  

111.3.2 on loca l Pseudopoten tials 

The fundamental concept invoked in a p eudopotential calculation is that the ion 

core can be omitted. omputational l thi is crucial a the deep core potential has been 

remo ed and a imple plane a e ba i et would yield rapid convergence. Simply 

tated, \ e rewrite the one-electron Hami ltonian as 

p2 
H =-+Vp(F) 

2rn 
( I I I . ] ) 

I f  many atom ic pecies are pre ent, let R; is the position of the jth atom of the a th 

pecie . The e equations may be peci fied, for instance, in the case of the diamond or 

z inc-blende compounds (A B8-N ) to 

where 

Vee) = VS (e)cos(e.i) + iV A (e)sin(e.i) ( I I I .2)  

Vo (e) = � [VA (e) -VB (e) ] 
2 

( 11 1.3 ) 

'F 1 I4a( 1,1,1), where a i s  the latt ice constant. VS and vA are the symmetric and 

anti symmetric form factors, respectively. 

The local empiri cal pseudopotential method is based upon the above 

s impl ification. I f we take the pseudopotentials to be spherical so that VOp(r) = IVOp(r)1 

the form factors depend upon the magni tude of G, with a correspond ing reduction in the 

number of form factors. These form factors are the empirical ly determined parameters fit 

to experimental data such as optical gaps. 

We may write a non local (NL) correction term to the local atomic potential term of the 

form 

"" 
VONl(F,E) = LA,(E)J;(F)� (1 I I .4 ) 

I;{) 
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where AlE) i an energy dependent depth,Jj (F) i a function s imulating the effect of core 

tate 'With 1- ymmetr , and P, i a projection operator for the l-th angu lar momentum 

component. Onl I = 0, 1 ar ign ificant, 0 we rna write (symbolical ly) 

+ p + d�l (IlLS) 

and need to con ider, for e ample, and d terms. Model potential calculations indicate a 

weak energy dependence for the AlE), where I = I or 2. To choose a form for Jj (F) we 

emplo a quare wel l ,  a form which ha the advantage of s impl ic i ty and wide 

appl icabi l ity. H nce {I,r 
j,(r) = O,r (I I l .6)  

with a plane wave basis et  the requ ired matrix e lement are of the form 

( 1 1 1.7) 

where fc = k +G,and fc' = k +G', 

o (K, K') = {ll 2R2 li, (KR)r - il-l (KR)i[+1 (KR) 1 for K = K'} 
[R2 I(K2 - K'2 )] [KJ[+I (KR)i[(K'R) - K'i[+1 (K' R)i[(KR)] for K *' K' 

(IIL8) 

The i[ (x) are the spherical Bessel functions, � (x) are the Legendre polynomials and i is a 

sum 0 er the atomic species present. 

To s imulate energy dependence for the s-states we make the approximation for the matrix 

element between K and K' as fol low: 

(IIJ.9) 

where EO(K) = 11.2 K2 12m. This  approximation works qui te wel l compared to more 

rigorous techniques. The parameters requ ired by our potential were fixed by deta i led 

comparisons with experimental reflect ivity and photoem ission data. Unfortunately, the 
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add ition f a non-local correction term increa e the number of parameter rather 

dramatica l l  , 

111.4 Ba nd tructure 

n e the p tential i determ ined, it i a traightforward calcu lation to solve for the 

en erg} band pe trum.  The eigen alue and eigenvector are found by olving the 

e u lar equation for the effect i e one electron Hami ltonian matrix 

t/ 1 ,  S 1 - - I  S - - - -
HAi, = - K -Oii + [ V '  ( K - K' )  + VN1 (K, K' ) ] cos[ (K - K ) .  f ]  

2m 

+ i[V A (IK - K ' I ) + VA� ( K, K' )]Sin[ (K - K' ) .  f ' ] (Il l. 1 0) 

The pin-orbit Hami l tonian matrix element contribution to the Hami l ton ian is written as 

HtJ, (k) = (K x K' ) .CY�. {- iA:'i cos [(G - G') . r] + /l,A sin [(G - G' ) .r] }  

v" here K=k+G and K '=k+G ', Uss · i s  the Pau l i  spin matrix, A. is a quantity which represents 

the strength of the spin interaction, s imi lar to the pseudopotential form factor. 

Where 

/l,SA 
= (/l,l  + /l,2) / 2 

.It, (K, K' )  = j.iBnl (K)Bnl (K' )  

� ( K, K') = aJ.1Bnl (K)Bn2 (K')  

(III. 1 1 ) 

(UI. 1 2) 

( U I. l 3) 

Atoms undergo smal l d isp lacement U,a from their equ i l ibrium positions R,a. Within this 

model we can compute both energy sh ifts caused by strains. It remains however that this 

model i s  certain ly not exact. Nevertheless to first order in  the displacement U,a i t  seems 

often to be an exce l lent approximation. 
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k---+------(l1 1) 

( 1 1'1) 

Figu re 3. 1 . a: FCC 

rystal tructure 

Figu re 3 . 1 .b: Bnllouin zone 

of the FC lattice 

111.4. 1 tatic energy sh ift 

The energy eigenvalues elm of perfect and strained crystals are given by 

det {I(k + G1 ) - clin 18(01 , (2 ) + V(OI + O� ) }= 0, 

det {1(k'+(}1 ) - cfn I8(0'1 , G':! ) + V(G'I +G'� ) }= 0 

The plane wave representation IS used only for convenience. It is not assumed that there 

IS a weak pseudopotentlal IS necessanly via ble for an actual calculation Primes are used 

to denote quantities In the stra Ined crystal T hey are given for latt ice vectors R, and for 

reciprocal lattice vectors G, The unit-ce il volume IS 

The potential of the unstrained crystal has a founer transform given by 

a 

To work out the correspondIng quantity for the stra Ined crystal, we need an explicit 

formula for the locatIOn of the atoms 
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- -= R', +Cl + S  fa + 6a 

Her 00 i the "internal h ift" of atom coordinate with in a cel l  which i s  due to the strain .  

The Fourier tran form for the trained cry tal i : 

( I I I . 1 4) 
(/ 

The empt cor model i u ed to al low a wel l  to have a depth and inc luding a 

screeni ng factor. The atomic pseudopotential i s  gi en in real space by 

r < R } 
r > R  

( l I L I 5 ) 

where the factor e -a' repre ents creening of the potential due to other electrons. The 

Fourier tran form of the pseudopotential i given by : 

. 87r Vl(G) = - -
Qij 

, 
2 cos GR, + � sin GRi 

z �m� [ ) 
G2 + a, G 

+ 
Ai 

(sin GR, - GR, cos GR, ) 
G3 

( I I J. 1 6) 

Where QIJ i s  the volume of the unit cel l  of the binary compounds formed by elements i 

and j. A l l  quantit ies are given in atomic un its. We obtain the symmetric and 

anti symmetric form factors of a binary system wh ich contains eight parameters: A" Z" G" 

and R, (i= 1, 2). We then perform the least squares fit the function simu ltaneously to the 

symmetric and antisymmetric form factors of the given binary crystal .  The parameters 

are adjusted to get the best fit to these form factor . 
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CHAPTER IV 

The Minimizations of the 

Kohn-Sham energy 

Functional 
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I V. 1  Period ic ystem 

In contra t t the i ngle-particle picture previou Iy d i scus ed, one mu t overcome 

other d ifficul tie uch a the interaction between the e lectron . The formidable task 

whi h remain ta k is th hand l ing of a ery large number ( infin ite) of non-interact ing 

e lectron mo ing in the tatic potential of a large number of the nuclei or ions.  Two 

d ifficult ie mu t be 0 ercome: ( i )  the v ave function must be calcu lated for each of the 

large number of electron in the system, and ( i i )  each e lectronic wave funct ion extends 

o er the ent ire ol id, and the basis et requ ired to expand each wave function is infin ite. 

Performing calculation on period ic sy terns and applying Bloch 's  theorem to the 

electron ic wa e function can surmount both problems. 

I V.2 B loch ' s  theo rem 

Bloch' theorem [33]  states that in a period ic sol id each electronic wave function 

can be written as the product of a ce l l  period ic part and a wave l ike part 

1//, (F)  = exp[ik.r]J, (F) ( lV . I )  

The cel l  periodic part of the wave function can be expanded using a bas is  set consist ing 

of a d iscrete et of p lane wave whose wa e vectors are reciprocal latt ice vectors of the 

crystal ,  

J, (F) = I C J.G exp[iG.r ] ( IV.2) 
G 

v here the reciprocal lattice vectors G are defined by Gl = 2mn for a l l  I, where 1 is a 

lattice vector of the crystal and m is  an integer. Therefore each electronic wave function 

can be written as a sum of p lane waves, 

1//, = LCJ,k+G exp[i(k + G ).F ) ( IV.3) 
G 

IV.3 k-point  sampl ing 

Electronic states are al lowed only at a set of k points determined by  the boundary 

cond itions that apply to the bulk  sol id. The density of a l lowed k points is proportional to 

the volume of the sol id .  The infin ite number of e lectrons in the solid are accounted for 

by an infin ite number of k points, and only a finite number of electronic states are 
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OCCUPied at each k po mt. The Bloch theorem changes the problem and reduce it to 

ca lculatmg a finite number of electronic wave functions at an Infinite number of k points. 

The occupied states at each k point contribute to the electronic potent ial m the bulk sol id 

so that, m pnnciple, an infimte number of ca lculations are needed to compute this 

potent ta l 

HOv e er, the e lectromc wave functions at k points that are very close together 

WIll be almost Ident ica l .  Hence i t  IS possible to represent the electronic wave function 

over a regIOn of k space by the wave functions at a single k points are required to 

calculate the e lectronic potential and hence determine the total energy of the solid. 

Methods have been devised for obtaining very accurate approximat ions to the 

electronic potentia l and the contributIOn to the tota l energy from a filled electronic band, 

b calculatrng the e lectronic states at special  sets of k points in the Bri llouin zone [34-

36]  Using these methods one can obtain an accurate approximation for the e lectronic 

states using a ery smal l  number of k points.  

The magnitude of the error in calculating the total energy can always be reduced 

by using a denser set of k-points; or selecting a suitable technique such as: Monkhorst­

pack, or tetrahedron methods etc . . .  

IVA Plane  wave basis set 

Bloch's theorem states that the e lectronic wave functions at each k point can be 

expanded in terms of a d iscrete plane wave basis set .  In princip le, an infinite plane wave 

basis set [37] IS required to expand the e lectronic wave functions. However, the 

coefficients C) for the plane waves with small kinetic energy h 2 1 2mlk + GI2 are typical ly 

more important than those with larger kinetic energy. Thus the plane wave basis set can 

be truncated to include only p lane waves that have kinetic energies less than some 

particular cutoff energy. The truncation of the plane wave basis set at a finite energy 

cutoff will lead to an error in the computed total energy. However, it is possib le to 

reduce the magnitude of the error by increasing the value of the cutoff energy. It is 

common practice to increase the cutoff energy unti l  the calculated total energy has 

converged .  
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IV.S Plane wave representation of Koh n-Sham equations 

When plane wa es are used as  a basis set for the electronic wave functions, the 

Kohn- ham equations assume a particularly simple form 

The mtegratlOn over r gives 2:[ n� Ik + G I2 DOG '+V,on (G - G' ) + VH (G - G ' )  + V I'C (G - G' )]C, k+G' 
G 2m ' 

= G,C" ktG 
( IVA) 

In thiS form, the kinetlc energy is diagonal, and the various potentials are descr ibed in 

terms of their Fourier transforms 

IV.6 Direct M i n i m ization of the Koh n-Sham energy Functional  

For the calculatIOn o f  the Kohn-Sham(KS) ground state, it i s  possible to 

d iscnminate between two methods. (i) Methods for determining the m inimum of the KS 

total energy functional directly (called direct methods) and (ii) iterat ive methods for 

diagonal iz ing the KS Hamiltonian in conjunct ion with an iterative improvement (i .e. ,  

m lxing) of the charge density or the potential (These methods are called self-consistent 

methods). 

Both methods reqUlre no explicit storage of the Ham iltonian matrix and should 

therefore show similar efficiency. The direct methods (i) have been pioneered by Car 

and Parrinelo. They are based on the fact that the Kohn-Sham energy functional is 

minimal at the electronic ground state. Therefore, m inimization w ith respect to the 

variational degrees of freedom leads to a convenient scheme for calculating the electronic 

ground state. The original scheme of Car and Parr inelo have been so fur improved. 

Improve ments m ight be obtained by introduc ing an improved preconditioning for the 

grad lent or by replacing the second order CP equations by first order steepest descent 

equations We are using the self consistent method for finding the KS ground state. 

In this respect conjugate gradient(CG) schemes are very promising. W ithin these 

schemes the KS functional is minimized along a g iven search direction exactly, and in 

successive steps the new search direct ion is conjugated to previous search d irections. 

In this sect ion the methods that allow direct m inimization of the Kohn-Sham energy 

functIonal in a tractable and efficient manner are described. There are an infinite number 
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of Kohn- ham Hamiltonians, each of which has a different set of e igenstates One of 

these sets of elgenstates the set generated by the Kohn-Sham Hamiltonian, minimizes the 

Kohn-Sham energy functional .  Th is  is  useful when we calculate the relaxation of  the 

atomic posit ion which we did not do in this work. 

IV. 7 The H el lmann- Feynman theorem 

The force on ion l,fj, IS minus the derivative of the total energy of the system with 

respect to the posit ion of this respective ion 

dE 
II = - dR I 

( IV. S )  

As the ion moves from one posit ion to another, the wave function must change to the 

self-consistent Kohn-Sham eigenstated corresponding to the new position of the ion if the 

value of the Kohn-Sham energy functional is to remain physically meaningful. The 

changes in the electronic wave functions contri bute to the force on the ion, as clearly can 

be seen by expandmg the total derivative: 

( IV.6) 

It can be seen that the force is only the part ial derivative of the Kohn-Sham energy 

functIonal with respect to the posit ion of the Ion. In the Lagrange equations of motion for 

the ion, the force on the ion is not a physical force. It is an effective force that the ion 

would experience from a particular electronic conf iguration. However, it is easy to show 

that when each electronic wave function is an e igenstate of the Hamiltonian the final two 

terms sum to zero. Since OE. is just H'I/" these two can be written 
8'1/, 

( IV. 7) 

However, if each '1/, is an e igenstate of the Hamiltonian, 

then 
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( IV.8) 

S ince � < 1//, 11//, > is a constant by normal ization. 

This shows that each 1//, is an eigenstate of the Ham i ltonian the partial derivat ive 

of the Kohn-Sham energy with respect to the position of an ion gives the real physical 

force on the ion. The result is  usual ly referred to as the Hel lmann-Feynman theorem 

[28,38 ] .  The Hel lmann-Feynman theorem holds for any derivative of the total energy. 

Hence, when each 1//, is an eigenstate of the Hami ltonian ,  only the expl icit dependence of 

the energy on the size and the shape of the unit cel l  has to be calculated to determine the 

integrated stresses. 

Conseq uences of the Hellmann-Feynman theorem 

The Hel lmann-Feynman theorem simpl ifies the calculation of the physical forces 

on the ions and the integrated stresses on the un it cel l .  However, the e lectronic wave 

functions must be eigenstates of the Kohn-Sham Hami ltonian for the He l lmann-Feynman 

theorem to be appl icable. Therefore the forces on the ions should not be calculated unt i l  

the electronic configuration is near i ts  ground state. Once the forces and stresses have 

been calculated, the posi t ions of the ions or the s ize and shape of the unit cel l are 

changed, the electrons must be brought to the ground state of the new ionic configuration 

in order to calculate forces and stresses for the new ionic configuration. When the ionic 

configuration is  relaxed to a local energy minimum, the rel axation of th.e e lectronic 

configuration can be part ia l ly overlapped with the in it ial relaxat ion of the e lectronic 

configuration. Provided that the magnitude of the He l lmann-Feynman forces are larger 

than the errors i n  the forces, moving each ion the d irection of the calculated force wi l l  

lower the total energy o f  the system and move the ionic configuration towards the local 

energy min imum. However if  the Hel lmann-Feynman forces are smal ler than the errors 

in the forces, disp lacement of the ions in the d i rections of the forces may not decrease the 

total energy and could take the ionic configuration away from the global energy 

min imum.  In this case, overlapping the ion ic configuration with the relaxation of the 



electron Ic relaxatIOn WIll Increase the total number of iteratIons needed to relax the 

system to the global energy mmimum. 

However, It mIght be argued that, as long as the kinetic energy is continuously 

removed from all degrees of freedom in the system, the total energy in the system must 

contmuousl decrease, so that the Ionic configuratIOn must relax to a local mimmum. 

ThiS IS on l true If the time steps are made sufficiently short. Moving the Ions a fmite 

dIstance can add energy to the electronic system. If the energy added to the electronic 

system m each tIme step becomes too large, the electronic system wil l  never relax to its 

ground state, and the ionic system wil l  never reach a local minimum. Therefore some 

cautIOn has to be e ercised when one overlaps ionic relaxation with the electronic 

relaxatIOn, to ensure that the ionic system reaches the local energy minimum in the 

shortest possible time. 

1V.8 The A PW and the LAPW method 

There are two things to be taken into consideration when choosing a basis set. 

Fust, the basis functions should be as mathematical ly s imple as possible, in order to 

s implify the setup of matrix elements .  The other important feature i s  to have basis 

functions that are wel l  suited to describe the system of interest. In 1 937  Slater used the 

muffm-tin approximation as a starting point, he constructed a set of basis functions called 

augmented planewaves [2, 1 7, 1 8 ] .  In the muffin-tin approximation the crystal is divided 

into the muffm-tin region consisting of non-overlapping spheres centered around each 

atomic site, and the surrounding space cal led the interstitial, the potential is almost 

spherica l ly symmetric in the muffin-tin region, it wi l l  be flat in the interstitial .  In the 

Augmented p lanewaves method both the s imple planewaves and the exact solutions of 

the Schrodinger equation for a spherical potential are combined to produce very good set 

of basis functions for describing the electronic structure everywhere in a crystal potential .  

The exact APW eigenvalues can be found using information from the eigenvalues 

of the APW secular matrix which provide a more efficient scheme to solve the APW 

elgenvalue problem than the traditional evaluation ofthe secular determinant [2] .  

One augmented p lane wave APW used in the expression of '1/'; is defined as : 
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{ I '(k+K) r 
- e 

¢; Cr, E) = JV 
" Aa,k+Kua Cr' E ) + yI Cf' ) �I ,m I.m I ,  m 

V is the volume of the unit cell. The APW basis set is k -dependent as was the plane 

wave basis set The position inside the sphere is given with respect to the center of each 

sphere by r' = r - � .  The length of r is r' and the angles 8' is ¢' specifying the 

direction of r' in spherical coordinates, are indicated as ,.. . The Y� are spherical 

harmonics. The Af:"k,K and E are yet undetermined parameters, E has the d imension of 

energy. The u; are solutions to the radial part of the Schrodinger equation for a free 

atom a , and this at the energy E [ 1 1 ] . 

IV.S. I The regular LAPW method 

The u; (r' , E) have to be constructed at the as yet unknown e igenenergy E = c; 

of the sought e igenstate and this causes a problem in the APW method. The l inearized 

Augmented Plane Wave method enables us to recover u; (r' , cf )  on the fly from known 

quant ities. Using Taylor expansion 

a ( , n ) a ( , E )  (E n ) 8u; (r'
, E) I + O(E _ c� ) 2  u l  r , ck = u/ r ,  0 + o - ck 8E E=Eo 0 k (N.9) 

Substituting the first two terms of the expansion in the APW for a fixed Eo gives the 

definition of an LAPW. But, the energy difference (Eo - cf ) is unknown, leading to an 

undetermined Bt/+K which has to be introduced. 

The function in the sphere matches the plane wave in value and slope at the sphere 

boundary. Then both A;:;k,K and B;:;k+K can be determined. Now, if we want to describe 
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an eigenstate 1//; that has a p character (1= 1 ) the A(��:;! expansion in LAPW's wi l l  be 

large, to keep the O(Eo - ££ )2 term smal l ,  choose Eo near the center of the p band 

repeat ing this argument for every physical l (s, p, d, J states, i .e. up to 1=3) and for every 

atom. The final defin it ion of an LAPW is :  

The basis  functions can be calculated once and for a l l  with the Eta being fixed. Compared 

to a p lane wave basis set, the LAPW basis set can be much smal ler. 

7.5 B 9.0 -1 
d d· h d 

. 
d h Kmax = . � 4au epen mg on t e eSlre accuracy. T e basis set size 

R lllill a 

P :::::: 1 95 compared to p :::::: 270 for planewaves. The size of the LAPW basis set must be 

increased as compared to that of APW, due to the less physical shape of the augmenting 

functions, yielding a larger secu lar matrix [ 1 1 ] . 

IV.8.2 The APW+lo method 

I n  the APW method a problem arose concern ing the energy dependence of the 

basis set. This  problem can be avoided by removi ng the energy dependence as the cost of 

a somewhat larger basis set s ize. I n  the A P W+lo method the basis set w i l l  be energy 

i ndependent and st i l l  have the same s ize as i n  the APW method. The APW+lo method 

combines the good features of APW and LAPW+LO. It is known that the APW+lo basis 

set contains two kinds of functions. The first kind are APW's  with a set of fixed energies 

This basis set does not give a good description of the eigenfunctions with fixed 

energi es. Therefore, the basis set is augmented with a second type of functions which are 
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cal led the local orbitals. They are another type as the one used in connection with the 

LAPW method. Their definItIOns are: 

1m _ {O 
¢a'lo (r ) -

[ Aa',10 a ( ., Ea' ) Ba''/o ' a' ( , Ea' )]yJ ( � ' )  1m UJ ' , JJ + 1m UJ r , J m r 

r E a' 
r E Sa' 

The ' mdlcates that al l  atoms rather than meqUlvalent atoms are considered. The same set 

of energies Et IS used as for the corresponding APW's AJ�.IO and B� are determined 

by normal tzation and by requinng that the local orbital has zero value at the muffin tin 

boundary Both the APW and the local orbital are continuous at the sphere boundary but 

for both therr first denvati e is discontinuous. 

To have accurate results, the APW+lo basis set appears to reqUIre a size that is 

comparable to the APW method (Kmax :::::: 3 . 5au - 1 , P  :::::: 1 30) which is less than the 

LAPW+LO method (Kmax :::::: 4au-1 , P  :::::: 200) P e igenvalues are obtained by a single 

diagonalizatlOn as in L APW+LO [ 1 1 ] . 
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CHAPTER V 
Results and Discussions 



V. I Electronic Properties 

V. 1 . 1  Band tructure 

Figures (5 1 a,b,c) show the band structures E(k ) of BeS, BeSe, and BeTe 

respectIvely The most Important features of the band structures are: the lowest 

conduction band IS represented by the minuna Ec and of the highest valence band is 

represented by the rna Ima E". The minima and maxima are the places where the free 

electrons and ho les are most l ikely to be found The valence band edge m each of these 

matenals IS located at the zone center (k = 0) and IS actual ly composed of three subbands. 

When spin IS neglected The spin-orbit effect IS assumed to be negl igible. Consistent 

W1th the effective mass concept, the band with a smal ler curvature around k = 0 is cal led 

the l ight -hole band and the band with a larger curvature around k = 0 is cal led the heavy­

ho le band The conduction bands are also composed of a number of subbands. The 

calculated lattice constants for the Be-based compounds are given in table (5 . 1 ), note that 

there IS a good agreement between our parameters and the ones found experimentally 

[39] 

Table- 5. 1 Lattice parameter a(A) of the BeS, BeSe and BeTe 

Compound Expt P.oesent LMTO P�eudo Pseudo 

BeS 4.865 4.839 4 .864 4 .745 4.73 1 

BeSe I 5 . 1 39 5. 1 37 5 . 1 37 5 .037 

BeTe I 5 627 5 .638 5 .626 5 .53 1 

In Be chalcogeOides semiconductors, the conduction band minimum occurs at X­

pomt (k = 
27r 

from the zone center along the rx direction) As a result, there are two 
a 

malO valence bands ( heavy and l ight valence bands) with the valence band edge Ev . The 

forbidden band gap Eg is defined as (Ec-Ev). 
The Figures (5 . 1 a,b,c ) show the band structures of BeS, BeSe, and BeTe along 

the high symmetry points in the B3 phase at equil ibrium volume. The overall band profi le 

are Similar and are 10 good agreement with earlier results [39] .  The lowest band arises 

redommantly from the chalcogen valence s state and the upper valence bands arise from 

r he chalcogen valence p states with the top occurring at r-point. The conduction band 
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anses from the Be 2s states WIth the mLnlmum energy occurnng at X-point. The 

calculated alues of direct and Indirect band gap (r-X) for these compounds are given in 

table (5 2) 

Ta ble -5.2 Calculated values of d irect and indirect band gaps (r-X) for BeS, BeSe, and 

BeTe versus pressure. 

Pre. U loe ( G Pa )  Lattice Pa .oa mete.o a 
(A) 

0 4.865 
1 0  4.737 
20 4 640 
30 4 .563 
40 4 .498 
69 4.353 

P res UI"e ( G Pa )  Lattice Pa rameter" a 
(A.)  

0 5 . 1 39 
1 0  4 986 
20 4.875 
30 4 787 
40 4 7 1 5  
56 4.6 1 9  

Pre s u re ( G Pa )  I Lattice Pa" a mete." a 
(A) 

0 5 .627 
1 0  5 .409 
20 5 . 263 
30 5 . 1 52 
35  5 . 1 05 
40 5 .063 

BeS 

Din�ct Ban d ga p I nd i .'ect Band gap 
(eV)  JeVJ 
5 .5 1 0  2.899 
5 .457 2 .7 1 7  
5 .40 1  2 .557 
5 . 350 2 .4 1 3  
5 .29 1 2 .282 
5 . 1 1 6 1 .939 

BeSe 

,- -,-
Direct Ban d  ga p I nd i ."ect Band gap 

(eV) (eV ) 
4. 1 73 2.453 
4.776 2.247 
4.827 2.073 
4.797 1 .9 1 8  
4.757 1 . 776 
4.734 1 . 588 

BeTe 

Di.'eet Ban d  gap I nd i r"ect Band gap 
(eV)  (eV) 
3 .606 1 . 868 
3 . 503 1 . 573 
3 .40 1 1 . 334 
3 . 305 1 . 1 32 
3 .256 1 .035 
3 .2 1 6  0.955 

These compounds all  have indirect band gaps. The minimum in the conduction 

band occurs at X or along the [-X l ine. The next lowest conduction band minimum 

occurs at L ie point in BeSe and BeTe, and at the [1 5c in BeS. The third minimum in the 
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conductIOn band occurs at the ric pomt In BeSe, rl 5c pOint m BeTe, and at L I e  in  BeS 

The r and L pomt minima are close to each other in energy but much h igher than the 

minimum whIch occurs along the r- l ine. 

Ta ble- 5.3 Energy band gap Eg (r - X) In the B3 phase in (eV) 

EI! -
Compound Calculated 
BeS 2 .8 1  
BeSe 235 
B eTe 1 . 74 

8 Reference [40] TB-LMfO-A A method 

b Reference [4 1 ]  pseudo-potential method 

c Reference [42] 

Theon�tical 
3 . 783 , 2 .75b 

3 . 1 23 ,  2 .4b 

2 1 78 1 1 8° 
. , 

Effect of pressu re on the main band gaps :  

Expe.-i mentalC 
) 4 . 5  
3 -3 . 5  
2 .7 

The results of our calculation for the direct and indirect gaps for BeS, BeSe, and 

BeTe versus pressure are presented respectively in figures (5 .2  a,b,c). We have used 

Murnaghan equation of state [43 ] to express our results in terms of pressure rather than 

lattice constant: 

ao Equihbnum lattice parameter. 

a The lattice parameter under pressure p 

B The Bulk modulus. 

B' . The pressure derivative of the bulk modulus. 

(V. 1 )  

Our results show a l inear variation of the gap In all Be compounds. However the 

results also show that the mam energy gaps in BeTe vary l inearly quicker than in BeS and 

BeSe 
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Figure (5 .2 a,b,c) repre ent band tructure of Be compound at the transit ion 

o lume . otice that the Be and Be e compound are sti l l  semiconductor with the 

alue of indirect gap (r-X) decrea e at 69 GPa for Be and 56 GPa for Be e, but BeTe 

compound ho\ a tructural pha e transition at an energy gap of 35 GPa. 

V. 1 .2 Density of Charge: 

The electronic charge den ity is obtained for each band n by summing over the k­

tate in the band 

Pn (F) = I 11// nk (if (V.2) 
k 

and the total charge density is obtained by summing over the occupied band . 

(V.3)  
n 

The calcu lated charge densities of BeS, Be e, and BeTe are d isplayed in Figures 

(5 .5 .a,b c ) respect ively. The resu lts show that the d istribution of the e lectron ic charge is 

not symmetric, it  decreases from cation to anion, when moving from BeS to BeTe, this i s  

c losel) l i nked to the decreasing ionicity of the materia l .  This also shows the clear 

covalent nature of the bond. I n  fact Be-based compounds have much h igher degree of 

covalency than the other wide band gap I I -VI  semiconductors such as CdTe or ZnSe. 

F igures (5 .3 .a,b,c ) are contour p lots of the charge densit ies of BeS BeSe, and 

BeTe respectively. These charge density plots along the ( 1 1 0) p lane indicate that most of 

the valence charge is  concentrated around the an ion which decrease from S to Te. This 

decreasing of symmetry observed in  the valence charge d istribution for these compounds 

is  often associated with the concept of ionic ity. This effect is appropriately described by 

Ph i l l ips scale of e lectronegat iv ities from atoms where (Be= 1 .50, S= 1 .87, Se= 1 .79, and 

Te= 1 .47). 

Behavior of the charge density u nder com p ression : 

The figures (5 .5 .a,b,c) and figures (5 .6.a,b,c) show the valence charge density 

profi les i n  the ( 1 , 1 , 1 )  d irections at equ i l ibrium volumes and at compressed volumes in the 

three Be-based compounds in the zinc-blende structure. 
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The e plot ho that a the atom of column VI  are changed from to Te, the 

ompound be orne more i n ic, i. e. the charge become more accumulated on the 

cation .  The observed trend uggest that the relative e lectron attraction of anion (S, e, 

and Te) \ ith respect to cat ion ( Be) in the e compounds increases with increasing 

hydro tati pre ure. Then the ionicit ie for the e Be compounds decreases with 

increa ing pre ure. 

ne can deduct the mechan ism of the composit ional transition from the 

coordination number Nc= 4 (Zinc-blende) to Nc= 6 (NaC l )  [44] . 

V. 1 .3 Density of States (DOS) 

The den ity of state (DO ) corresponding to the band structures shown in  figures 

( 5 . l .a,b,c) i pre ented in figures (5 .7 .a,b,c).  The DOS is calculated using the modi fied 

tetrahedron method [45 ] .  This is done by d ividing the Bri l louin zone into 24 tetrahedral 

cel l  . As seen in this figure. the total densit ies of states are quite s imi lar for al l  three 

compound , with some smal l d i fferences in the profi les. I n  this DOS diagram, the 

min imum of the valence-band density of states occurs is at r ,  at -5 .8 1 eV for BeS, at -

5 .83 eV for Be e and at - 1 0.56 eV for BeTe . The charge density of the lowest valence 

band has primary s character for a l l  the three Be compounds. The large peak comes 

primari ly from the onset of the second valence band at point L. The charge density of this 

band is  primari ly of cation s character, it  changes rapidly to p-l i ke character at the top of 

the alence band. The conduction bands are wel l  separated from the valence bands by an 

energy gap of the order of 2 .89 eV for BeS, 2.45 eV for BeSe and 1 .86 eV for BeTe 

under normal pressure. The bottom of the conduction band is primari ly of cation s 

character. 

V.2 Optical Properties 

We now tum to the analysis of the optical spectra. The absorptive part of the 

die lectric function, £2 , is shown in figures (5 .8 .a,b,c ). It  is seen that £2 is rather s imi lar 

for a l l  the three bery l l ium chalcogenides. The main feature is a broad peak with a 

maximum around 20. 8 1 eV for BeS, 20.78 eV for BeSe, and 24.65 eV for BeTe. The 

maximum is always greater for BeTe than the two other chalcogenides. Our calculated 
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pectra are qu ite imi lar to the pectra in reference [46] , wh ich were obtained with the 

empirical p eudopotential method . 

The trend in C2 a a function of chalcogen may be l inked to the trends observed 

in the 0 and band tructure . ompare the h ighest lying valence band for the three 

tern and al 0 the 10\; e t lying conduction band . Our band-resolved optical 

calcu lation how that the tran ition between the e two bands account for almost a l l  

tructure in th optical pectra at energie below 6 eV. In BeS, these bands show less 

di per ion than in Be and BeTe. Th is i the rea on why the main peak moves to lower 

energy and become harper a the chalcogen column i traversed downward . 

e t we consider the di per ive part of the die lectric funct ion, C )  , for the three 

chalcogenide , ee figure (S .9.a,b,c). The calcu lated spectra have been obtained by 

Kramers-Kronig transformation of the sh ifted C2 spectra. The main features are a shou lder 

at 10\ er energie , a rather steep decrease between 4 and S eV, after which C) becomes 

negati e, a m inimum and a slow increase toward zero at h igher energies. A l l  these 

features are very wel l  reproduced in the calculated spectra. The structures are more 

pronounced in  the calcu lated spectra since these are not broadened. 

F inal ly we short ly discuss the spectra obtainable from the d ielectric function. As 

seen in figure ( S .9.a b,c) , C )  is zero at 7.03 eV , 6.3 eV, and S . 1 84 eV for BeS, BeSe 

and BeTe respectively. If we look at the curves representing the refractive index, figure 

( S . l l .a,b,c ), we find local max ima at these energies. On the contrary, i n  the absorption 

coefficient spectra figure ( S . I O.a,b,c) no maximum is present at these energies, since C2 is 

sti l l  l arge at these energies. H i gher up, however, a l l  three bery l l ium compounds show a 

large peak i n  the absorption coefficient spectrum.  This peak corresponds to t) going 

through once again, this time becoming posit ive. At such energies t2 is smal l ,  and thus 

the ampl itude of the energy loss may become large. 
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Conclu ion 

In thi work we ha e analyzed the bery l l ium chalcogenide materials in the B3 

pha e, we ha e u ed the Wien2k package, thi code perform a l l -electron ful l-potential 

l i near-augmented plane ,. a e method within the local- pin density approximation.  I t  

iterati el the Kohn- ham equat ion in a plane wave basis set and compute the 

ele tr n i  band tructure , and th electronic charge den ity. The most time con uming 

tep of the program i the opt imization of the wave function coefficients by means of an 

iterat ive procedure. 

The compound (Be , Be e and BeTe) are indirect band gap sem iconductors with 

gap occurring between r and X. The indirect band gaps of the three Bery l l ium 

chalcogen ide decrease with the increasing hydro tatic pressure as in most of 

emiconductors. Detai led analysis of the alence charge density distribution confi rm that 

the three chalcogen ides compounds are covalent binary compounds. The calculated 

energy gaps agree wel l with some other theoretical and experimenta l  techniques. Also 

the calcu lated latt ice parameters were found to be in good agreement with experimenta l  

and theoretical results. 

I n  concl usion, we have shown that the optical propert ies of the Beryl l i um 

chalcogenides Be , BeSe, and BeTe are excel lently reproduced using density functional 

theory. Not only the general form but also the absolute ampl itudes are very wel l  

reproduced in  our calcu lations; which makes these materials potentia l ly good for 

technological  appl icat ions, main ly for blue-green laser diodes and laser-emitt i ng d iodes. 

The present results, demonstrate that we have actual ly reached a level of accuracy 

for certain fundamental material properties where theory can rel iably  be trusted . 
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A. I Fou rier Tra nsform 

Most often, one fir t encounter with Fourier transform is  in the context of time 

dependent functions. The fourier Transform ( FT) of a function J(t) i s  a function F(OJ) in 

frequency domain.  defined b : 

F( OJ) = F{J} = d- L J(t )e -'M dl 
v2n 

(A. I )  

(A.2) 

I f  one would l ike to constructJ(t) by adding d ifferent funct ions e/{nl , then F(w) tel ls what 

the weight of each function is. For in tance, for J(t) = cos(OJot )  it can be shown that :  

1 1 F(w) = - t5(wo + w) + - t5(wo - OJ) 
2 2 

(A .3)  

Therefore. cos(OJot )  must be equal to a sum of two e 'OlI functions, each with a weight 

given above: 

cos(OJ t )  = �e'(-OIo )1 + �e''''ol o 
2 2 

which indeed is true, considering the defin it ion : 

e 'M = cos(OJt ) + i sin(OJt)  

(A.4) 

(A.5)  

In  th is  example, there is a d iscrete set of (D-values where F(OJ) i s  non-zero. I n  

general ,  th is  i s  true for any period ic function. Its Fourier transform i s  nonzero at a 

d iscrete set of frequencies (although there might be an infin ite number of frequencies i n  

the set). A periodic function can therefore be  written as  a sum of functions e 'OJ' •  I f, J(t) 
is non period ic, F(OJ) i s  non-zero over a continuous and often infinite range, and J(t) can 

therefore be written only as an integral over e'OJI [ 1 1 ] .  

A.2 The Reciprocal Lattice 

The properties of a sol id can main ly  be investigated the reciprocal latti ce vectors. 

Any property of the sol id whether scalar, vector or tensor shou ld have the same periodic 

trans lational i nvariance as the crysta l l ine potential .  The primit ive vectors of the 

reciprocal latt ice play an important and special  ro le in the Fourier transform of the 
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ph sical quantity. The Rec iprocal Lattice Vectors have dimensions of inverse distance 

and are defined in terms of the direct prim it ive lattice vectors Q l, Q 2 and f!.) .  The 

primit ive reciprocal lattice vectors, 12( ') , related to the original latt ice vectors via the 

re lation : 

(A.6) 

The Kronecker symbol 8/ =1 if i = j and zero if i *- j .  Thus, the primitive rec iprocal 

latt ice ectors are orthogonal to two primit ive lattice vectors of the direct lattice. The 

prim it ive reciprocal  lattice vectors can be constructed via 

be)) = 21[ f!. \ /\ f!.2 - f!. \ ·(f!.2 /\ f!.3 ) 

The denominator is the volume of the prim itive unit cel l .  

(A. 7) 

(A .8)  

(A.9) 

The rec iprocal lattice consists of the points given by the set of vectors Qwhere 

Q = m b(l) + m b(2) + m be)) 
\ _  2 _ 3 _  (A. I O) 

The rec iprocal lattice vectors can be considered to be the duals of the direct latt ice 

vectors. This relation can be seen by expressing the prim it ive lattice vectors f!.; in terms 

of the primit ive reciprocal lattice vectors 12' , via 

(A. l l )  

g,,} i s  given by the metric, since 
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mee 

one has 

b(/) 2 5: 1 _ ' �k = nUl 

(A.  1 2) 

(A. I 3 ) 

(A.  1 4) 

The metric tensor expresses the length s of a vector !.. in  terms of its component X, along 

the basis vectors a . That is if - I  

(A . l S) 

For a constant metric, the length is given in terms of the components via 

(A. 1 6) 
I,J 

The metric tensor, when evaluated in  terms of the parameters of the prim itive unit cel l ,  is 

g iven by the matrix 

[a2 

(g,.) = a:a2 cos a3 

aJ a3 cos a2 

The i nverse transform is given by 

Q (I) = 2n L g" k �k k 

g " k is the metric for the dual vectors. 

A.3 Fam i liar  examples 

(A. l 7) 

Every physical situation 10 quantum mechanics is completely defined by its 

Hamil tonian iI .  Every stationary solution of such a problem is described by a state 'l'k 
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that is an eigenstate of that Hami l tonian. 

corresponding eigenvalue EA . 
The energy of that solution IS the 

(A. I 8) 

The boundar cond it ion in a physical situat ion l imits the possible eigenvalues, 

and only a d iscrete et Ek remains. The symbol stands for one or more quantum 

numbers that are used to label the d ifferent e igenfunctions and eigenvlaues that satisfy 

the boundar cond itions [ 1 1 ] . 

Here, we have an example: The one-d imensional harmonic quantum osc i l lator 

A particle with mass M moves in a one-dimensional harmonic potential Vex) = 
Cx2 

the 
2 

Schrod inger equation for this system is  given by: ( li2 d2 Cx2 J -
2M dx2 + -

2
- If/Il (x) = Elllf/n (x) (A . 1 9) 

The boundary cond ition is that the particle i s  bound : its probab i l ity to appear at 

x � ex) is zero. The d iscrete set of e igenvalues En and eigenfunctions If/ n (x) can be 

labeled by a single quantum number n (n = 0, 1 , 2, . . . ) and are 

1 En = (n + -) hv 
2 � e12 If/11(x) = 
I 

e - Hn (r;) 
"II ,, 2n n! 

A.4 Bloch's  theorem 

(A. 20) 

(A.2 1 )  

B loch 's  theorem states that any e igenfunction If/(r) can be written as a product of 

a function ug (r )  that has the period ic ity of the lattice, and a paIne wave elgr with g any 

vector in reciprocal space. 

(A.22) 

.. 
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A there are an infin ite number of vectors in rec iprocal space, there are an infin ite 

number of eigen tate of uch a Hami lton ian . The wave vectors g serve as labels of the 

eigenstate and we could therefore rename If/(F) into If/ g (F) . 

E ery g can be written as the sum of a ector in the first Bri l loium zone and a reciprocal 

latt ice vector K . 
(A.23 ) 

B loch ' s  Theorem can now be rewritten as fol lows: 

If/g = 
�g (F)e IK .r �'k F (A. 24) 

The function between brackets st i l l  has the periodicity of the lattice. We could 

rename it into uf (F) , where n ind icates the number of the Bri l louin zone where g was 

in .  Indeed n and k contain the same information as g ,  and can therefore be used as an 

alternative way of label ing. For n = 1 ,  k and g are identical .  For g in the second 

Bri l louin zone, we use the same set of vectors k , but n is increased to 2, etc . For each 

k , an infinite number of n is possible .  The parameter n is cal led the band index. 
B loch 's  theorem can now be restated in its most frequent ly used form : Any eigenfunction 

If/f (F) can be written as a product of a function uk' (F) that has the periodic ity of the 

latt ice, and a plane wave elk;: with k any vector in the first Bri l louin zone: 

(A.25) 

Actual ly we have now spl it off a known part (e ,k ;: )  from the eigenstate, such that 

only the unknown remainder uk' (F) has to be determined. An important advantage is that 

th is  part now known to have the periodic ity of the l attice. If  a plane wave basis set is 

used, it  can therefore be written as a sum over plane waves that have the same 

periodicity, and these precisely are the p lane waves corresponding to rec iprocal lattice 

vectors 

(A.26) 

The expansion of If/f (F) in  the same bas is  is then 

.. 
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lfI'l (r)  = I e'l e,(h;;') r 
i. 

and what have to be searched are the coeffic ients e�J( [ 1 1 ] . 

A.S Plane waves 

(A.27 ) 

The concept of Fourier transforms can be translated for use with functions f(r ) in  

real space. I n  case of spat ial function the role of (tJ wi l l  be taken over by so-cal led 

reciprocal ectors g that have as d imension I 1length. Fourier and inverse Fourier 

transform between real and reciprocal spaces are now defined as : 

A particular k ind of function in real space is a p lane wave, defined as: 

fer) = e ,go r 

(A.28) 

(A .29) 

(A.30) 

with g a any vector in  reciprocal space. The Fourier transform of a plane wave is  non-zero 

at a single point g in reciprocal space only:  

F(g) = Je,(gO-g) r d3 g (A.3 1 )  

which is  very logical, as we need only one function e,g r  at g = go with weight 1 to bui ld 

e ,go r .  The shorter the period of the plane wave in real space is, the further away the 

point indicated by ga l ies from the origin of the reciprocal space. 

Functions that are period ic in real space, w i l l  have a Fourier transform that is non-zero 

only at d iscrete points in reciprocal space ( Fourier spectrum). For period ic functions in  

real space, the Fourier transform wi l l  be non-zero over a continuous volume of reciprocal 

space [ 1 1 ] . 

A.6 Crysta ll ine solids 

In A crystal l ine sol id the potential due to the nuclei is periodic :  
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V Cr + R) = V Cr ) (A.32) 

R i s  any ector of the Bravais lattice. Therefore, if  the potential i s  period ic, the total 

Hami ltonian i . An infin ite ol id is bui lt  by fi l l ing space periodical ly with copies of the 

primit i  e cel l .  Under these conditions, eigenvalues and eigenfunctions of  a periodic 

Ham i lton ian can be labeled with the quantum number n and k ,  n = 1 ,  2, 3, . . .  and k IS 

any ector in the first Bri l lou in zone that corresponds to a plane wave that is 

commensurate with the macroscopic crystal .  For every val id k ,  al l values of n occur. 

The number of val id k -vectors is equal to the number of unit cel l s  in the macroscopic 

cry tal . For real sol ids, the k -vectors are very c lose to each other, because this number 

huge about 1 0
23 . 

The spec ial k -vectors that are selected inside the fi rst Bri l louin zone are 

commensurate with the ent ire macroscopic piece of crystal .  E igenfunct ions are written as 

1//; eigenvalues as &; or E; . 
The problem here i s  the e igenvalues are labeled by 4 independent numbers (n, � 

Is, and kz) such 4 variables wou ld be needed to make a plot .  To solve this problem, an 

a lternat ive procedure is to select a path through the first Bri l louin zone, and plot for every 

n the energy versus k .  The way the path is selected is usual ly along the h igh-symmetry 

l i nes in the BZ. Now it is possible to p lot the DOS. The DOS i s  a function of the energy 

only. Due to the presence of the continuous extra quantum number k , the defin ition of 

the DOS has to be extended : 

(A.33) 

Here VEZ is the volume of the first Bri l lou in  zone, and the integral is over the first 

Bri l louin zone. The factor 2 is included to account expl icit ly for spin [ 1 1 ] . And the k ­
vectors are selected from with in the bulk of BZ.  
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Appendix B 

Murnaghan Equation of 

State 
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B. 1 Equations of state: 

Fo rm ulations 

The equation of state (EO ) used in EosFit most commonly used for fitt ing 

isothermal ( i .e. P- V datasets) are l isted briefly here. Further deta i ls  of the derivations and 

l im itations can be found in for example, Anderson ( 1 995) and Angel (200 1) 

M u rnaghan.  Thi can be derived from the assumption that the bulk modulus 

vanes l inearly with pressure, K = Ko + K�P ;  K� being independent of pressure. 

Integration yields the P-V relation hip :  

(B.  1 )  

This EOS reproduces P-V data and yields correct values of the room pressure 

bulk modulus for compressions up to about 1 0% ( i .e. V/VO>O.9), and has the advantage of 

algebraic s impl icity over other formulations such as the V inet B i rch-Murnaghan EoSs 

wh ich should be used if the range of compression is greater than 1 0%. The Murnaghan 

Eo can also be re-arranged to provide a direct expression for pressure in terms of 

compressIOn : 

(B .2) 

B i rch-Mu rnaghan. This  i s  a "Fin ite strain EoS", and is  based upon the 

assumption that the strain energy of a sol id undergoing compression can be expressed as 

a Taylor's series in the fin ite strain, f The B irch-Murnaghan EoS is based upon the 

Eu lerian strain, IE = l(vo I Vy/3 - 1  J I 2 .  Expansion to fourth-order in  the strain yields an 

EoS : 

p � 3KofE {l + 2/£ ) 5 ' ( I + % (K'--4)/£ + � ( KoK"+(K'-4)(K'-3) + 3:)11 ) ( B .3) 

If th is  EoS is  truncated at second-order in  the energy, then the coefficient of IE must be 

identical to zero, which requires that K' has the fixed value of 4. The third-order 
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truncation, in wh ich the coefficient of 1/ i set to zero yields a three-parameter Eo (with 

Vo, Ko and K ') with an impl ied value of K"  given by: 

K"= �((3 - K' )(4 - K ' )  + 35 ) 
Ko 9 

(8 .4) 

Nat u ra l  t rain .  Poirier and Trantola developed an EoS based upon the "natural" 

or 'Hencky" mea ure of l i near strain, JAr = In(l/lo} which, for hydrostat ic compression, 

may be written as /,v= J/3In (V/Vo). This yields a pressure-volume relat ionsh ip  expanded 

to fourth-order in strain of: 

Examination of Equation (B .5 )  shows that truncat ion of th is  ''Natural strain" EoS at 

second-order in the strain impl ies a value of K '  =2, different from that of the second­

order B irch-Murnaghan EoS. For truncation at third-order in the strain the impl ied value 

of K "  i s  given by: 

K"= � [l + (K'-2) + (K'-2) 2 ] 
Ko 

( B.6) 

V inet. The fin ite-strain EoS do not accurately represent the vol ume variation of 

most sol ids under very h igh compression (Tl<O.6), so Vinet et al. derived an EoS from a 

general i nter-atomic potentia l .  For s imple sol ids under very h igh compressions the 

result ing V inet EoS provides a more accurate representation of the volume variation with 

pressure: 

P = 3Ko ( 1�!v )  eXP(% (K'- l )( l -Iv )) (B .?) 

where Iv = (V/Vo}JI3. There is  no theoretical basis for truncation of the EoS to lower 

order, although examination of Equation (B .?) shows that such truncat ion yields an 

impl ied value for K '  of 1 .  The value of K "  impl ied by equation (B.?) is given by lean loz 

as : 

(B .8) 
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E pansion of the Vinet Eo to incl ude a refineable K "  have been proposed but are not 

required to fit most experimental P-V data simple o l ids. Despite being often cal led a 

"Universal Eo " it shou ld be noted that the Vinet EoS is  not intended for materials with 

igni ficant degrees of internal structural freedom uch as bond-bending [40] .  

B.2 Eigenvalues and eigenvectors 

Consider a vector space (JRn, take n=2 for s impl ic i ty) with a basis set (e" eJ that 

need not to be orthogonal .  With respect to this basis, every vector x can be un iquely 

characterized by two numbers (x) ' x2 ) .  With iI ,  we denote an operator that can operate 

on x resu lting in a new vector y = (y) ' Y2 ) : 

HX = y  (B .9) 

G iven if ,  we want to find all vectors x that under if transform into a vector that is 

para l le l  with itse lf: 

(B . l O) 

we rewrite th is cond ition using the basis vectors, and wi l l  search for the (xl l x2 ) that 

sat isfy it :  

H(xA + x2eJ = A(x1el + x2e2 ) 

Left-mult ip ly this equation with el : 

x ] el • ( He] ) + x 2 el . ( He2 ) = A ( x1 e1 ·e2 + x 2 el .e2 ) 

Do the same with e2 : 

x)e2 • (ire) + x2e2 . (ire2 )  = A(x1e2 £) + x2e2 .e2 ) 

Equations B . l 2  and B . l 3  can be summarized i n  matrix notat ion as 

[�: �:,�:�:�!;:J[:J A[�:i, ::�:t:] � [�] 

(B .  1 1 )  

(B . 1 2) 

(B . 1 3) 

(B . 1 4) 

The ijth element of the first matrix i s  a number, as it i s  the result of a dot product. This 

matrix i s  completely determined i f  the action of iI on the basis vectors i s  known. The 

element of the second matrix are determined by the basis only. This matrix is cal led the 

overlap matrix .  With this notation, our 2 equations to find suitable (x] , x2 ) become: 

79 



(B . I S ) 

The left matri i s  fu l ly  known, apart from A.. that is a parameter. For every value of A.. , 
equation (B .  I S) can b so lved for XJ and X2. For most values of A.. , the determinant of the 

matrix wi l l  be d ifferent from zero. Equation ( B .  I S ) wi l l  have then one un ique solut ion, 

wh ich is obviously (0 0). This vector is paral le l  with the original x ,  but in a trivial way. 

Other. more interest ing sol utions can occur only for those values of A.. that give a 

an ishing determinant: 

(B. I 6) 

� 
The above equation is cal led the secular equat ion of H .  It i s  a polynomial 

equation in  A.. , with as highest power the d imension of the space n.  The roots of the 

secu lar equation are cal led the wigenvalues of iI .  I f  A.. = Il, i s  an eigenvalue, 

[H - Il,S] [x]= [0] has an infin ite number of solutions: indeed, if (xJ=a, x2=b) i s  a 

solution, ( fJa  , j3b) is  one too, for f3 any real number. This conforms with our in it ial 

requ i rement: If If transforms x into a vector that is paral lel  with x ,  i t  w i l l  do the same 

with any vector f3i .  These vectors are cal led the eigenvectors of If ,  belonging to the 

eigenvalue Il, .  Usual ly a unit vector among them is  chosen to represent th is set of 

vectors. E igenvectors belonging to d ifferent eigenvalues, can be shown to be 

perpend icular. Therefore, unit  vectors belonging to n d i fferent e igenvlaues can be taken 

as an orthonormal bas is  (elA.. , e;Z )  for the vector space. 

What wi l l  be the matrix representation of the operator H ,  written in this now basis? 

According to equation (B . l 4), the matrix elements are : 

_ -,u � Ai HI) - e, . (Fe) ) 
- e- ,u ( 1  e- Ai )  - , . "") ) 

This  i s  a d iagonal matrix with the former e igenvalues on the diagonal : 

(B . I 7) 

(B . I 8) 

(B . 1 9) 
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(B .20) 

We cou ld now try to find the eigenvalues and eigenvectors of this operator in the 

ne ba i , u ing the arne procedure a described pr viou Iy. Obviously we wi l l  find the 

arne A, and � a before. with a eigenvectors ( I  0) and (0, I ) . Th is i l l ustrates that 

eigen alue and eigen ector are intrin ic propertie of the operator, and do not depend 

on the choice of the ba i .  I f  the basis we original ly started with was already 

orthonormal. then the overlap matri wi l l  be a unit matrix .  This s impl ifies equation 

(B . 1 4) .  

I t  could happen that 2 of the roots of the secular equation coincide. In  that case 

that e igenvalue lead to a p lane in tead of a l ine of eigenvectors. There is freedom then 

to choose tv 0 mutual ly perpendicUlar bas is  vectors in that plane, but sti l l  they are 

perpend icular to e igen ectors of the other d ifferent eigenvalues [ 1 1 ] . 

B.3 Basis tra nsformation 

Consider an operator A with matrix representation A, in a vector space IR" with a 

normal ized but not necessar i ly  orthogonal basis .  This operator transforms every vector 

into a new vector. A l so the basis  vectors are transformed, and in this way you can 

understand that the /h column of A contains the coefficients that express the transformed 

/h basis vector in the original basis :  

. • .  al; 
a 

el; = 0  al; 

. • .  a j} e
a = 0  = aj} j} (B .2 1 )  

. . . 

an; 
a = 0  an; . . .  en; nxl nxn nxl 

This provides a practical recipe to find the matrix representation of an operator about 

which we want that it transforms the basis vectors e; in a new set e: : express each e: in  

the old basis  e;a , and these expansion coefficients form the col umns of A .  Note that in 

th i s  way a non-orthogonal bas is  can be transformed into an orthogonal basis .  I f  both 

base are orthonormal, than the matrix A has special properties [ I I ] . 
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onver ely, the /h column of the inverse matrix A-I contains the coeffic ients that express 

the vector eJa of the old basi in the new basis of the e; . 
12 12 - - -

A =  2 2 A -J = 
12 12 - -
2 2 

that rotate every vector of IR2 counterclockwise over 45° . 

coord inates of these 4 vectors in both bases are : 

-a  eJ 

-a 
e2 

- p 
e1 

- p e2 

Old 

( 1 , 0) 

(0, 1 )  

( 12 12) 
2 2 

(_ 12 12 )  
2 ' 2 

12 12 - -
2 2 

12 12 - - -
2 2 

The old basis (et , ef ) . The 

New 

( 12 _ 12) 
2 '  2 

( 12 12) 
2 ' 2 

( J , O) 

(0, 1 )  
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