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Abstract

There are several methods for materals simulation. Ab initio or first principles methods
are used to solve the quantum mechanical equation which govern the behavior of a
system. Ab inito calculation of the optical and electronic properties of solids is
fundamental in solid state physics. APW+lo 1s used to examine different properties of
BeS, BeSe, and BeTe. Beryllium compounds show different features in structure under
different pressures, and they also show a phase transition from Zinc blende to Hexagonal
NiAs There 1s presently a great interest in the study of pressure induced phase
transitions 1n II-VI semiconductors. Little 1s known about the ground state properties of
Beryllium chalcogenides The aim of this work 1s to examine the electronic and optical
properties of these materials, with the emphasis on their dependence on hydrostatic
pressure. First, we calculated the electronic properties such as band structure, charge
density, density of state, and the contours of these matenals, second we examined there
optical properties such as refractive index, the dielectric function (both real and
imaginary), and the coefficient of absorption under normal and transient pressure. Two

packages -the Wien97 and the Wien2k- are used in our simulation.




CHAPTER 1

Introduction




There are several methods for simulation of the material properties. All of these
methods can be grouped into two categories, classical and quantum mechanical
simulations. Each has its advantages and disadvantages. Classical simulations can handle
a large number of atoms but have trouble dealing with the electrons, particularly defects
such as an F-center which is the substitution of a negatively charged ion with an electron.
They also require a lot of experimental data to fit the required empirical interatomic
potentials. On the other hand., quantum mechanical calculations require very little
experimental data but can only handle a small number of atoms, typically only a few tens
of atoms. Molecular Dynamics simulations these days often use first principles
calculations to fit force fields.

Ab initio or first principles methods, are used to solve the quantum mechanical
Schrédinger equation which governs the behavior of a system. The only information
which must be provided is the atomic numbers and positions of the atoms within the
system. In contrast, empirical or semi-empirical approaches require a model of the
interactions between the atoms to be supplied. The parameters of these models are
usually derived by fitting the outcome of simulations to experimental data. Ab initio
calculation of the optical and electronic properties of solids are reliable in solid state
physics. These calculations provide a testing ground for well-developed theories such as
the local density functional formalism [1].

Recent implementations of electronic structure methodologies can be divide into
two groups. On one side, there are all-electron (AE) approaches which consider both core
and valence electrons explicitly in the calculation. Since core electrons are strongly
localized and the valence electrons are delocalized; these methods need suitable
techniques such as augmented plane waves (APW) [2], linearized muffin tin orbitals
(LMTO) [3], Slater type orbitals (STOs) [4], or Gaussian orbitals [5]. Alternatively, one
can employ pseudo-potentials (PSPs) which effectively project out the core states from
the problem while retaining the physical properties of the valence region. Many pseudo-
potential applications use a plane-wave basis set but a variety of local orbital based
implementations exist. The size of the basis set needed for a calculation of this type

depends strongly on the shape of the atomic pseudo-potentials. Several approaches have




been proposed to construct soft pseudo-potentials which minimize the numerical cost of
the computation.

Although the pseudo-potential method is extremely useful, there are reasons why
alternatives could be attractive. Is the introduction of the pseudo-potential completely
innocent? What do you do if you are interested in information that is inherently contained
in the region near the nucleus (hyperfine fields for instance, or core level excitations)?
Can the basis set be made more efficient? Therefore, we will search for a basis set that
uses other functions than plane waves, and that does not require the introduction of a
pseudo-potential. Such a basis set will have to be more efficient, but of course we do not
want it to be biased. The successor will be the Augmented Plane Wave (APW) basis set.

In this work we use the Augmented Plane Wave combined with the local orbital
(APW+lo). The ideas that lead to the APW basis set are very similar to what made us
introduce the pseudopotential. In the region far away from the nuclei, the electrons are
more or less “freely' (delocalized). Free electrons are described by plane waves. Close to
the nuclei, the electrons behave quite as they did in a free atom, and they can be
described more efficiently by atomic like functions. We concentrate our efforts in the
theoretical study of optical and electronic properties of beryllium chalcogenides BeS,
BeSe, and BeTe at normal pressure and under the effect of a hydrostatic pressure. The
calculations are performed within the framework of density functional theory.

The Be compounds show features in structure and bonding very similar to the [11-
V semiconductor compounds. Each of these compounds crystallize at zero pressure in
the zinc-blende (ZB) structure. Recent experiments and theoretical studies [6] reported
the existence of a pressure induced structural phase transition of these compounds from
the ZB to the hcp structure [7,8]. There is presently a great interest in the study of
pressure induced phase transitions in 1I-VI compounds, among which the beryllium
compounds stand. However, little is known about the ground state properties of the
beryllium chalcogenides. These materials are potentially good for technological
applications, mainly for blue-green laser diodes and laser-emitting diodes.

The purpose of our study is to analyze the optical and electronic properties of

these elements at equilibrium and transition pressure.




The thesis is organized as follows: in the next chapter. a brief review of the many
body problem and the density functional theory is presented. In chapter 3, the Ab initio
pseudo-potential theory is extensively discussed. Chapter 4 deals with the different types
of algorithms presented for minimizing total energy of Kohn-sham system. In chapter S,
we introduce the APW+lo method and we demonstrate the usefulness as well as the
power of this method, and finally in chapter 6, we discuss our results and give our

conclusion.




CHAPTER 1l

Density Functional Theory as
a way to solve the quantum
many body problem




I1.1 The Many-body Problem
The macroscopic properties of all forms of matter are determined by quantum
mechanical solutions of a many body Schrodinger equation governing the motion of the

electrons and the nuclei [9].

The Schridinger equation is the main equation given by:

Hy = il (L1)
ot

where H is the exact many-body Hamiltonian, and the wavefunction i is the function of

the all electronic and nuclear coordinates.

Solving the Schriédinger equation is only part of the many—particle problem. As a
matter of fact the aim here is not to get the eigenvalues and the eigenfunctions but rather
use these latter to calculate some properties like the bonding energy, polarizability,
conductivity, etc... rather than the wavefunction itself [10].

A solid is a collection of heavy, positively charged particles (nuclei). and lighter,
negatively charge particles (electrons). For a system containing N nuclei, there are
N+ZN electromagnetically interacting particles. In this situation we are dealing with a
problem called a many-body problem. The exact many-particle Hamiltonian for this
system is:

e’Z,

- hl V2 hZ 2 ]
=320 L e 2R

| e 1 e’ZZ
z b :

“+ =
87[8” i) |V _r,’ 8”8,) i#) Rl _RI’

[

(11.2)

m, and M, is the mass of electrons and nuclei respectively. The first term is the kinetic
energy operator for the nuclei, the second is for the electrons. The last three terms are the
coulomb interaction between electrons and nuclei, between the electrons and other

electrons, and between nuclei and other nuclei [11].




1.2 Level 1: The Born-Oppenheimer approximation
The Born Oppenheimer approximation [11,12] is the basis for the most of our
thinking about shape and nuclear motion in polyatomic molecules. This approximation

assumes that the nuclei in molecules are virtually standing still relative to the electrons.
- : . ik, F |
This is based on the small electronic-nuclear mass ratio, which is =~ oo even for the
1

closest case of atomic hydrogen

The nuclei are much heavier and therefore much slower than the electrons.
Hence. the nuclei can be frozen at fixed positions, and we can assume them to be in
instantaneous equilibrium with each other. The nuclei are reduced to a given source of
positive charge, and become external to the electron cloud. Due to this approximation, a
collection of NZ interacting negative particles moving in the potential of the nuclei is left.

The Born-Oppenheimer approximation states that, the nuclei do not move any
more, hence, their kinetic energy is zero and the first term in the many-particle
hamiltonian disappears. The last term reduced to a constant, the kinetic energy of the
electron cloud is left [11].

The Hamiltonian can be written more compactly as
H =T (R)+T,(r)+V oy (r, R) + P (R) + 7, (r) (11.3)

where R is the set of nuclear coordinates and r is the set of electronic coordinates. If
spin-orbit effects are important, they can be added through a spin-orbit operator flso
[13].

Unfortunately, the P;eN(r,R) term prevents us from expressing H into nuclear
and electronic parts, which would allow us to write the sample wavefunctions as a
product of nuclear and electronic terms, y(r,R)=w(r)y(R). The term VeN(r,R) is

large and can not be neglected; however, we can make the R dependence parametric, so

that the total wavefunction is given as w(r;R)y(R), we can fix R, the nuclear

configuration, at some value R,, and solve for the electronic wavefunction w(r;Ra),




which depends only on R. We now show the mathematical details. First, f‘A (R) can be
neglected. and from the electrons point of view, the full Hamiltonian reduces to

H, =T.(r)+ V. (r,R)+V, (R)+ V., (r) (11.4)
ff,.,t//(r.R) =E_ y(r.R) (11.5)

this is called the “clamped-nuclei” Schrodinger equation. I}M\,(R)is neglected in the

above equation, which is justified to be just a constant which shifts the eigenvalues only

by a constant amount. If we leave V,, (R)out of the electronic, Schrodinger equation

leads to a similar equation

H, =T.(r)+ V., (r,R)+V_(r) (11.6)
Hy(r,R)=E. .y, (r.R) (11.7)

We will assume that I}W(R) is included in the electronic Hamiltonian.

Additionally, if spin-orbit effects are important, then they can be included at each nuclear

configuration according to

Hy=H,+H, (11.8)

H,y(r,R) = Ejw(r,R) (11.9)

Consider the original Hamiltonian in (I1.2). An exact solution can be obtained by using

an expansion of the form
w=(r R =D w(r,R)yR (11.10)
k

although, to the extent that the Born-Oppenheimer approximation is valid, very accurate

solutions can be obtained only for one or a few terms [14].

I1.3 Level 2: Density Functional Theory
It is known that electrons in metals behave as more or less free objects [10,15]. In

a classical liquid, the description is not in terms of individual particles positions and




momenta, but in terms of densities and velocity fields. A similar approach can actually
be taken for electrons, which is called Density Functional Theory (DFT) [15-19]. DFT
methods are currently implemented in most of commercial ab initio program packages

[20].

I1.3.1 Limitations

Despite the remarkable success of the LDA [20,21], its limitations impose that
caution must be used in its application. For systems where the density varies slowly, the
LDA tends to perform well, and chemical trends are well reproduced. In strongly
correlated systems, an independent particle picture breaks down, the LDA is very
inaccurate. For example, the transition metal oxides XO (X =Fe, Mn, Ni) are almost all
insulators, but the LDA predicts that they are either semiconductors or metals. More over,
the LDA has been applied to high T, superconductors, but finds several to be metallic,
when in reality they are insulating at 0 Kelvin.

It is a well-known trend that the LDA underestimates the bandgaps. This does not
affect its success and reliability for the ground state properties. Among other LDA
limitations we mention the following: the LDA finds the wrong ground state for many
simpler cases. For example, the LDA finds the wrong ground state for the titanium atom.
The LDA does not account for van der Waals bonding, and gives a very poor description
of hydrogen bonding. These phenomena are essential for most of biochemistry
compounds: the structure of DNA depends critically on hydrogen bonding, as do the
changes in the structure of most molecules on salvation.

An obvious approach to improving the LDA is to include gradient corrections by

making the energy functional a functional of the energy and its gradient:

ESC PP = [e.c(pFNPF)dr + [Fio[p()|VpFldr  (IL11)

where Fyxc is a correction chosen to satisfy one or several known limits for Exc.
We emphasize that there is no unique recipe for Fxc, and several dozen
functionals have been proposed in the literature. They do not always represent a

systematic improvement over the LDA and results must be carefully inspected.




11.3.2 The Choice of a Basis Set Plane Waves
The Kohn-Sham orbitals,y,, may be represented in terms of any complete basis

set. For this task. many choices are possible i.e. atomic orbitals, Gaussians, LAPW and
plane waves. This latter is the basis set we use in practice. The use of a plane wave
(PW) basis set offers a number of advantages. including the simplicity of the basis
functions, which make no preconceptions regarding the form of the solution. It also
yields the ability to efficiently calculate the forces on atoms.

In general. the representation of an arbitrary orbital in terms of a PW basis set
would require a continuous, and hence infinite, basis set. However, the implementation

of periodic boundary conditions allows the use of Bloch’s Theorem whereby the y, may

be written

W, (r) =D C (G (11.12)
G

where the sum is over reciprocal lattice vectors G and K is a wave vector which lies
within the first Brillouin zone. Thus, the basis set for a given K will be discrete, although
in principle it will still be infinite. In practice, the set of plane waves is restricted to a
sphere in reciprocal space most conveniently represented in terms of a cut-off energy,

E cur, such that for all values of G used in the expansion

R K +G

<E

(I1.13)

cut

2m,

Thus, the convergence of the calculation with respect to basis set may be ensured by
variation of a single parameter, £, This is a significant advantage over many other
basis set choices, with which the calculated properties often show extreme sensitivity to
small changes in basis set and no systematic scheme for convergence would be available.

The choice of periodic boundary conditions is natural in the case of bulk solids
which exhibit perfect translational symmetry.

The electron density p(r)and energy are given by averaging the results for all

values of K in the first Brillouin zone.

N
p(r)=7jp(k)d3K (11.14)

where

10




P =3" v, )| (11.15)

and

I
E:L—,jE(A’)d’K (11.16)

Where E is the energy of the electron

In an extended system. these integrals are replaced by weighted sums over a
discrete set of K-points which must be carefully selected to ensure convergence of the
results. An isolated molecule will exhibit no dispersion, i.e.. there will be no variation of
E and p(7)with K. Therefore, these properties need only be calculated at a single K-
point. There has been significant discussion regarding the optimal choice of K-point for
performing calculations on isolated systems.

The principle disadvantage of the use of a PW basis set is the number of basis
functions required to accurately represent the Kohn-Sham orbitals. This problem may be
reduced by the use of pseudopotentioals as described in the next chapter, but several
hundred basis functions per atom must still be used, compared with a few tens of basis

function with the use of some atom-centered basis sets

I1.3.3 The theorems of Hohenberg and Kohn
In the year 1964 Hohenberg and Kohn published in physical Review two

fundamental theorems which gave birth to the modern density functional theory, an
alternative approach to deal with the many body problem in electronic structure theory
[22].

Since the formulation of quantum mechanics in the 1920s, two major approaches
have emerged for the computation of the properties of atoms, molecules and solids:
Hartree-Fock theory [12,22,23] and density functional theory. The Hartree-Fock and
related methods have been most popular in the quantum chemistry community, while
density functional theory has been the main method used for calculations of solids [9].

Density functional theory is an extremely successful approach for the description
of ground state properties of metals, semiconductors, and insulators. The success of

density functional theory not only encompasses standard bulk material but also complex

11



materials. Density functional theory DFT is based on the notion of the single particle
electron density as a fundamental variable. This is a consequence of the Hohenberg-
Kohn theorem [21,22] which states that the ground state electron energy may be found by
minimizing the expectation value of the total energy regarded as a functional of the
electron density p(r).

The traditional formulation of the two theorems of Hohenberg and Kohn (18] is as
follows: The first Hohenberg-Kohn theorem, as published in 1964, states that there is a

one-to-one correspondence between the ground state density po(7) of a many-electron

system and the external potentialV,,. In other words, the external potential V, (7)is a

unique functional of the density p(7); since, in turn V_, (F) fixes H and we see that the
full many particle ground state is a unique functional of p(r).

V. (r)=>p(r) (11.17)
and the inverse mapping exists

pr)=>V,, (F) (11.18)

Every property could be calculated with the help of p(7), since the density p(r)
contains all the information of the system [22].

The proof of the Hohenberg-Kohn HK'1 is based on reduction and runs as follows:
Suppose that we have two different external potentials V, (r)and V, (r) with the same
ground state density po(r)

V.=V () (11.19)
The two external potentials lead to two different Hamiltonians with two different ground

state wavefunctions y

H=H,+V,, Hy=Ey (11.20)

H'=H,+V',, Hy'=Ey (11.21)

Therefore ywand y' are different N particle wavefunctions. Using the variational

principle we can write

E=( w’ﬁ‘w ) <( (//"f{’y/' y=(y'|Hl' )+( w"ﬁ[—f["c//' ) (11.22)
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Since, the two Hamiltonians differ only by the external potential we can write

E<EH( YW -Vu'lw ) (11.23)

which yields
E<E+ j PFWV.,, — V., ' YdF (11.24)

The external field interacts only via a classical electrostatic interaction between

the electrons and the nuclei.
We interchange the primed and the unprimed quantities and we will repeat the same steps

above which leads to

E<E+ [p(A)V' V. )dF (11.25)

ext

Then
E+E<E+FE (11.26)
which means that, there cannot be two different external potentials V, and V,,' that
yield the same density p(r).
Since the complete ground state energy E, is a unique functional of the density p, we

can write

E,(p)=T(p)+Vyu(P)+V,,(p) (11.27)

The previous expression can be divided into two parts, system dependent V_, (p),
and system independent T(p)+V,_ (p). The system dependent part, depends on the

actual system determined by the external potential, and the system independent part

defines the Hohenberg-Kohn functional

Fue () = T(p) + Ve (P) (11.28)
The second Hohenberg-Kohn theorem states that:
E, SE(B)=T(P)+ V(D) + V(D) (1129)

where p is the density associated to a N electron system with external potential V,, ,

valid only if p = p [22].




11.3.4 The Kohn-Sham equations

While the Hohenberg-Kohn theorem shows that it is possible to use the ground
state density to calculate properties of the system, it does not provide a way of finding the
ground state density. This is provided by the Kohn-Sham equations [24].

The Kohn-Sham theory is considered as the most practical method for calculating
the electronic structure of materials [7].

The main advantage of the Kohn-Sham method is that it allows a straightforward
determination of a large part of the kinetic energy in a simple way. Another advantage, it
provides a self-consistent one particle picture including correlations of interacting
electronic systems, which provides a basis for the one-particle arguments used in solid
state physics and chemistry to explain and predict certain properties of chemical bonding
[10].

If we return back to Hohenberg-Kohn functional, both known and unknown parts can be
identified
FucT +V,, (11.30)

with potential energy term

Vs [[PO2L0) g i, + B (0) = J(0) + Ener () (I131)
p4 ¢

12

where J(p) is classical interaction of two charge densities and E,, () contains all non
classical parts. Thus the complete energy functional is given by:
E[p)=T(p)+J[p)+ Eyey[p)+ [V, p(F)dF (11.32)

The basic problem is the unknown functional for the kinetic energy. Kohn and
Sham published a paper in 1953 to solve this problem, where they suggested to split this

functional into two parts.

T(p)=Tg[pl+T:[P] (11.33)

where Tg[p] will be the expressed in a one particle approach similar to Hartree-Fock,

and the second part, which is the unknown part contains the difference between the real




functional T[p] and the one particle term 7¢[p]. which will be treated as well as the

other. The remaining parts of the total energy functional are also unknown. We can

write

Elpl =T¢[pl+J[p)+V [Pl + Eve [P)+ T p] (11.34)
=Ty p)+J(p1+V . [Pl+ Exclp]

E . [p]called the exchange-correlation functional, which remains unknown. Tg[p] is

defined as

Lo =-> 2 (6. ) (11.35)

1

where 6, are one particle wavefunctions, which are determined by applying the variation
principle, which leads finally to the Kohn-Sham equations

1556, =e, (11.36)

with the Kohn-Sham operator

j‘rxs :_lvz + J’P(rz)l;l +VXC(;.‘)+Z£1 (11.37)
2 [ 4 Ny

=_%Vﬁugm)

This shows that the Kohn-Sham equations provide a method of obtaining the
kinetic energy functional and also minimizes the energy functional. In general, the

method only provides the total energy as well as the ground state electron density [25].
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Figure 2.1: Flow chart for computing the wavefunctions

11.3.5 The exchange-correlation functional
The Local Density Approximation (LDA) introduces the form of the exchange

correlation functional [12,26] as

Ex' = Jp(F)Sn~(p(F))dF (11.38)

The previous form means that the exchange-correlation energy due to a particular density
p(r) could be found by dividing the material in infinitesimally small volumes with a
constant density. Each such volume participates in the total exchange correlation energy
by an amount equal to the exchange correlation energy of an identical volume filled with
a homogeneous electron gas that has the same overall density as the original material has
in this volume [11].

The £, is the exchange correlation energy per particle of a uniform electron gas.

This quantity can be further split into two parts:



Ex (p(r)) =&, (p(F)) +& . (p(F)) (11.39)

For example, the exchange part &, (po(7))can be derived analytically and reads as

: 3 [3oG
£ (p(F)) = Z;/ifir—) (11.40)

The correlation part cannot be derived analytically, but can be calculated numerically
with high accuracy by means of Monte Carlo simulations [ 10].

In the Local Density Approximation LDA, the XC hole p, (r.r') about an
electron at r is approximated by the XC hole of a uniform electron gas of density
p = p(r). This is not enough for many chemical and biological applications. The most
widely used correction to the LDA is the generalized gradient approximation GGA [27]

in which the effects of homogeneity are modeled using the semi local approximation

B = Idrf(p,|Vp|) where f is some parameterized nonlinear function of p and Vp.

A common feature of all current GGA is that their construction is guided by
limiting behaviors and sum rules, they are designed to fit various integrated quantities
such as total exchange energies of atoms or ionization energies of molecules, but
incorporate little or no information about the behavior of local quantities such as

Py (r,r')and the exchange correlation energy density e,.(r) in strongly inhomogeneous

systems [28].




CHAPTER Il

The Pseudopotential Method



I11.1 Introduction

Nowadays, the pseudopotential method [29] of a solid is implemented using
modemn computers. It paved the way in providing workable models and simulations. It
is now possible to predict accurately the properties of complex systems such as
semiconductors, liquids with hundreds, if not thousands of atoms. The pseudopotential
model treats this matter as a sea of valence electrons moving in a background of ion
cores. The cores are composed of nuclei and inner-core electrons. This model avoids
many complexities that could be encountered in the electron model. For example, a
group IV solid. such as C (with 6 electrons) is treated in similar way as Pb (with 82
electrons) since both have 4 valence electrons [30]. Pseudopotential calculations focuses
on the accuracy of the valence electron wavefunction in the special region away from the
core. The smoothly varying pseudo wavefuction is taken to be identical to the
appropriate all-electron wavefunction in the chemically active bonding region.

Pseudopotentials are very important components of first principles calculations as
they remove the need to consider core electrons, but rather take into account only the
valence electrons. The pseudo-wavefunction is a much simpler and smoother function to
approximate than all-electron wavefunction. The justification for the use of a
pseudopotential lies in the fact that the highly localized core wavefunction cannot take
part in the bonding of atoms. Nevertheless, the valence electrons undergo exchange
interactions with core ones and this makes the problem of constructing pseudopotentials

non trivial [11].

I11.2 Construction of the Pseudopotential

A number of schemes have been developed to construct pseudopotentials that
yield wavefunctions. As previously mentioned, most modem pseudopotentials are based
on the same idea, but are not fit to experimental data. Rather, they are based on density
functional theory. Within this framework, it is easy to apply the pseudopotental approach

to a wide variety of problems [11].
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111.3 Empirical schemes

We have focused our effort in this work on the ab-initio method, and their
outstanding predictive power. Nevertheless, computing cost are the main handicaps and
in this matter. methods such as the empirical pseudopotental. tight binding, classical
molecular dynamics. etc... have been giving results that are correct with less computing
time and system constraints. The empirical pseudopotentail method has revealed so far
quite satisfactory results for the semiconductor materials. In these perspectives, it also
has a predictive power. even though it relies on experimental results as input such as

(energy gaps) in its reliability.

I11.3.1 Empirical Pseudoptential method

The empirical pseudopotential method (EPM) [31,32] has been extensively
applied to the diamond and zinc-blende semiconductors. Studies on these latter materials
have been based on local approximations. In this approach, reflectivity experiments have
played a prominent role in determining the theoretical parameters needed in the EPM
calculations. The local approximation has been proven to be efficient to explain most of
the optical data available for semiconductor compounds. However, if we extend the early
calculations, which have invoked the local pseudopotential approximation to the valence
bands, and compare the results to experiment some discrepancies arise. Specifically,
high resolution photoemission results (XPS) and ultraviolet photoemission spectroscopy
(UPS) have demonstrated that local EPM calculations obtain incorrect valence
bandwidths, in the majority of cases, as compared with experiment. Experimental
advances using x-rays have permitted an assessment of the pseudopotential charge
densities. While the experimental data for Si indicated that the local pseudopotential
yielded a correct bonding-charge, the bond shape was incorrect. Also X-ray data on InSb
indicated the local pseudopotential approach overestimates the ionicity of the crystal, i.e.,
it yields a greater charge transfer from In to Sb than indicated by the experiment. |

Owing to the nature of these discrepancies, it was speculated that a purely local
pseudopotential technique could not yield satisfactory results, and nonlocal
pseudopotential should be considered. This evidence for this reasoning was reinforced

particularly by the valence band width discrepancy, because other one-electron
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approaches (which corresponded to energy dependent non local pseudopotential) tended

to yield more accurate valence bands than the local EPM approach.

[11.3.2 Non local Pseudopotentials

The fundamental concept invoked in a pseudopotential calculation is that the ion
core can be omitted. Computationally this is crucial as the deep core potential has been
removed and a simple plane wave basis set would yield rapid convergence. Simply

stated. we rewrite the one-electron Hamiltonian as

2
H=P—+VP(F) (111.1)

2m

If many atomic species are present, let R} is the position of the jth atom of the ath

species. These equations may be specified, for instance, in the case of the diamond or
zinc-blende compounds, (AN BN ) to
V(G) = V5 (G)cos(G.t) +iV*(G)sin(G.T) (111.2)

where

V.(G) =[G+, 6)] (111.3)

V,(G) = %[V,(G)—VB(G)]

t=1/4a(l,1,1), where a is the lattice constant. V¥ and V' are the symmetric and
antisymmetric form factors, respectively.

The local empirical pseudopotential method is based upon the above

simplification. If we take the pseudopotentials to be spherical so that V°p(r) = |V°p(r)’.

the form factors depend upon the magnitude of G, with a corresponding reduction in the
number of form factors. These form factors are the empirically determined parameters fit
to experimental data such as optical gaps.

We may write a non local (NL) correction term to the local atomic potential term of the

form

Vem(r,E) = iA,(E)f,(f)P, (111.4)
1=0
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where A,(E) is an energy dependent depth, /(7 )is a function simulating the effect of core

states with 1-symmetry, and P, is a projection operator for the /-th angular momentum

component. Only | =0, 1 are significant, so we may write (symbolically)
stp+d=| (I11.5)

and need to consider, for example, s and d terms. Model potentials calculations indicate a

weak energy dependence for the 4,(E), where / = 1 or 2. To choose a form for f; (¥)we

employ a square well, a form which has the advantage of simplicity and wide

applicability. Hence

l,r for < R,} (11.6)

Sitr) = {O.r forzR,

with a plane wave basis set the required matrix elements are of the form

Vi (K,K') = 4—”2 A (E)RI+1)P,(cos(@ ) xS (K -KYF/ (K,K')  (lIL7)

a Wi

where K =k +G,and]("= E+G',

2R, (KR = ji 1 (KR) jou (KR} Vo K=&

F(K.K")=
8 ) {[R2 I(K?-K"? )J[l\jM(KR)j,(K'R)— K'j,. (K'R)j,(KR)], forK # K'

(111.8)

The j, (x)are the spherical Bessel functions, P,(x)are the Legendre polynomials and i is a

sum over the atomic species present.
To simulate energy dependence for the s-states we make the approximation for the matrix

elements between K and K ’as follow:

A, (B + B, {[EC (OB (K] - E°(K ), (111.9)

where E°(K)=h2K?/2m. This approximation works quite well compared to more

rigorous techniques. The parameters required by our potential were fixed by detailed

comparisons with experimental reflectivity and photoemission data. Unfortunately, the
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addition of a non-local correction term increases the number of parameters rather

dramatically.

[11.4 Band Structure
Once the potential is determined, it is a straightforward calculation to solve for the
energy band spectrum. The eigenvalues and eigenvectors are found by solving the

secular equation for the effective one electron Hamiltonian matrix

A s SUE  Bilhaiss o B E A =
Hz. =;”A O +IV (K =KD+ Vy (K,K)]cos|(K - K).7]
+ilFA(K =K' ))+ Vi (K, K")Sinl(K - K').7") (111.10)

The spin-orbit Hamiltonian matrix element contribution to the Hamiltonian is written as
HO (k) =(KxK').oc_{-ii’cos[(G-G").t]+ A*sin[(G~G').r]]

where K=k+G and K'=k+G . o5 is the Pauli spin matrix, 4 is a quantity which represents
the strength of the spin interaction, similar to the pseudopotential form factor.

Where

A = (A1+ A2)/2 (IL11)
A(K,K')= uB, (K)B, (K') (111.12)
A (K,K')=auB, (K)B,,(K") (111.13)

Atoms undergo small displacement u,, from their equilibrium positions R,,. Within this
model we can compute both energy shifts caused by strains. It remains however that this
model is certainly not exact. Nevertheless, to first order in the displacement u,, it seems

often to be an excellent approximation.
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[11.4.1 Static energy shift

The energy eigenvalues &, of perfect and strained crystals are given by:

det {[(/Z +G)) -6, [6(G,.G,) +V (G, + G,)|=o0,

det {|(/Z'+(3', )= £, |[8(G', .G ) + V(G 4Gy ) =0

The plane wave representation 1s used only for convenience. It is not assumed that there

1s a weak pseudopotential 1s necessarily viable for an actual calculation Primes are used

to denote quantities in the strained crystal They are given for lattice vectors IQ, and for
reciprocal lattice vectors G,. The unit-cell volume is:

(R xR,).R, =Q_ > Q' =(+1rS)Q,
The potential of the unstrained crystal has a fourier transform given by

V(G) = lajdfe Kre ZV(,(F -7)

- ZVG((-;)L) -iG .Ta

To work out the corresponding quantity for the strained crystal, we need an explicit

formula for the location of the atoms:




R, >R, =(1+S)R_+5,

=R, +(1+8)F, +6,
Here da is the “intemnal shift™ of atom coordinates within a cell which is due to the strain.

The Fourier transform for the strained crystal is:

V(G =(1-1r$)Y V,[(1-8)Gle™ o (111.14)

The empty core model is used to allow a well to have a depth and including a

screening factor. The atomic pseudopotential is given in real space by

l—A r<R
tj,(r)=1 (111.15)

-1 -

=L@ " r>R

where the factore ™ represents screening of the potential due to other electrons. The

Fourier transform of the pseudopotential is given by:

Z e—aRi

e} COS G, +a—jsin GRi
87| G2+a; G

Qijj

Vi(G) = - (111.16)

+ i(sin GR, - GR, cosGR,)
G3

Where &, is the volume of the unit cell of the binary compounds formed by elements i
and j. All quantities are given in atomic units. We obtain the symmetric and
antisymmetric form factors of a binary system which contains eight parameters: 4, Z, a,
and R, (i=1, 2). We then perform the least squares fit the function simultaneously to the
symmetric and antisymmetric form factors of the given binary crystal. The parameters

are adjusted to get the best fit to these form factors.
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CHAPTER 1V

The Minimizations of the
Kohn-Sham energy
Functional




IV.1 Periodic systems

In contrast to the single-particle picture, previously discussed, one must overcome
other difficulties such as the interaction between the electrons. The formidable task
which remains task is the handling of a very large number (infinite) of non-interacting
electrons moving in the static potential of a large number of the nuclei or ions. Two
difficulties must be overcome: (i) the wave function must be calculated for each of the
large number of electrons in the system, and (ii) each electronic wave function extends
over the entire solid, and the basis set required to expand each wave function is infinite.
Performing calculations on periodic systems and applying Bloch’s theorem to the

electronic wave function can surmount both problems.

IV.2 Bloch’s theorem
Bloch's theorem [33] states that in a periodic solid each electronic wave function
can be written as the product of a cell periodic part and a wave like part
w,(r) = explik.r)f,(r) (IV.1)
The cell periodic part of the wave function can be expanded using a basis set consisting
of a discrete set of plane wave whose wave vectors are reciprocal lattice vectors of the

crystal,

£,(F)=> ¢, expliGF] (IV.2)
G

where the reciprocal lattice vectors G are defined by G/ =2mn for all /, where / is a
lattice vector of the crystal and m is an integer. Therefore each electronic wave function

can be written as a sum of plane waves,

Y, = Zc,.uc expli(k + G).F] (IvV.3)
G

IV.3 k-point sampling

Electronic states are allowed only at a set of k points determined by the boundary
conditions that apply to the bulk solid. The density of allowed k points is proportional to
the volume of the solid. The infinite number of electrons in the solid are accounted for

by an infinite number of k points, and only a finite number of electronic states are
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occupied at each k point. The Bloch theorem changes the problem and reduce it to
calculating a finite number of electronic wave functions at an infinite number of k points.
The occupied states at each k point contribute to the electronic potential in the bulk solid
so that, in principle, an infinite number of calculations are needed to compute this
potential

However, the electronic wave functions at k points that are very close together
will be almost 1dentical. Hence 1t 1s possible to represent the electronic wave function
over a region of k space by the wave functions at a single k points are required to
calculate the electronic potential and hence determine the total energy of the solid.

Methods have been devised for obtaining very accurate approximations to the
electronic potential and the contnibution to the total energy from a filled electronic band,
by calculating the electronic states at special sets of k points in the Brillouin zone [34-
36] Using these methods one can obtain an accurate approximation for the electronic
states using a very small number of k points.

The magnitude of the error in calculating the total energy can always be reduced
by using a denser set of k-points; or selecting a suitable technique such as: Monkhorst-

pack, or tetrahedron methods etc. ..

IV.4 Plane wave basis set
Bloch’s theorem states that the electronic wave functions at each k point can be
expanded in terms of a discrete plane wave basis set. In principle, an infinite plane wave

basis set [37] 1s required to expand the electronic wave functions. However, the
coefficients C, for the plane waves with small kinetic energy 4* /Zm‘k + G|2 are typically

more important than those with larger kinetic energy. Thus the plane wave basis set can
be truncated to include only plane waves that have kinetic energies less than some
particular cutoff energy. The truncation of the plane wave basis set at a finite energy
cutoff will lead to an error in the computed total energy. However, it i1s possible to
reduce the magnitude of the error by increasing the value of the cutoff energy. It is
common practice to increase the cutoff energy until the calculated total energy has

converged.
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IV.S Plane wave representation of Kohn-Sham equations

When plane waves are used as a basis set for the electronic wave functions, the
Kohn-Sham equations assume a particularly simple form.
The integration over r gives:

h’ : - N g n .
Z[ﬂ |k + (,|2 S V(G =G Y+V (G-G")+ V(G —o')]c,_m

G

(IV.4)
= EICI,IMG

In this form, the kinetic energy is diagonal, and the vanous potentials are described in

terms of their Fourier transforms.

IV.6 Direct Minimization of the Kohn-Sham energy Functional

For the calculation of the Kohn-Sham(KS) ground state, it i1s possible to
discnminate between two methods. (1) Methods for determining the minimum of the KS
total energy functional directly (called direct methods) and (1) iterative methods for
diagonalizing the KS Hamiltonian in conjunction with an iterative improvement (i.e.,
mixing) of the charge density or the potential (These methods are called self-consistent
methods).

Both methods require no explicit storage of the Hamiltonian matnix and should
therefore show similar efficiency. The direct methods (1) have been pioneered by Car
and Parrinelo. They are based on the fact that the Kohn-Sham energy functional 1s
minimal at the electronic ground state. Therefore, minimization with respect to the
variational degrees of freedom leads to a convenient scheme for calculating the electronic
ground state. The original scheme of Car and Parrinelo have been so far improved.
Improvements might be obtained by introducing an improved preconditioning for the
gradient or by replacing the second order CP equations by first order steepest descent
equations We are using the self consistent method for finding the KS ground state.

In this respect conjugate gradient(CG) schemes are very promising. Within these
schemes the KS functional 1s minimized along a given search direction exactly, and in
successive steps the new search direction i1s conjugated to previous search directions.

In this section the methods that allow direct minimization of the Kohn-Sham energy

functional in a tractable and efficient manner are described. There are an infinite number




of Kohn-Sham Hamiltonians, each of which has a different set of eigenstates. One of
these sets of eigenstates the set generated by the Kohn-Sham Hamiltonian, minimizes the
Kohn-Sham energy functional. This 1s useful when we calculate the relaxation of the

atomic position which we did not do in this work.

IV.7 The Hellmann-Feynman theorem
The force on 1on /, f;, 1s minus the derivative of the total energy ofthe system with
respect to the position of this respective ion
fi = —% (1V.5)
As the 1on moves from one position to another, the wave function must change to the
self-consistent Kohn-Sham eigenstated corresponding to the new position of the 1on if the
value of the Kohn-Sham energy functional i1s to remain physically meaningful The

changes in the electronic wave functions contribute to the force on the 10n, as clearly can

be seen by expanding the total derivative:

X oE OoF Sy S5E O /:
A, o b M Wy B (IV.6)
OR, ~ Ay, dR, — Oy, OR,

It can be seen that the force i1s only the partial derivative of the Kohn-Sham energy
functional with respect to the position of the 1on. In the Lagrange equations of motion for
the 10n, the force on the 10n 1s not a physical force. It is an effective force that the 1on
would experience from a particular electronic configuration. However, it is easy to show

that when each electronic wave function is an eigenstate of the Hamiltonian the final two

terms sum to zero. Since 1s just Hy,, these two can be written

oy,

Z<%|HW>+ Z<Hw,

1

i lV

1

However, if each y, 1s an eigenstate of the Hamiltonian,
HW: = 2‘1'/’1 ’

then
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)l

Since Z< y, |l,1/, > is a constant by normalization.

oy, o
=) A—< >=0 IV.8
5 > Z & <Y v, (1V.8)

This shows that each y, is an eigenstate of the Hamiltonian, the partial derivative

of the Kohn-Sham energy with respect to the position of an ion gives the real physical
force on the ion. The result is usually referred to as the Hellmann-Feynman theorem
[28.38]. The Hellmann-Feynman theorem holds for any derivative of the total energy.

Hence, when each i, is an eigenstate of the Hamiltonian, only the explicit dependence of

the energy on the size and the shape of the unit cell has to be calculated to determine the

integrated stresses.

Consequences of the Hellmann-Feynman theorem

The Hellmann-Feynman theorem simplifies the calculation of the physical forces
on the ions and the integrated stresses on the unit cell. However, the electronic wave
functions must be eigenstates of the Kohn-Sham Hamiltonian for the Hellmann-Feynman
theorem to be applicable. Therefore the forces on the ions should not be calculated until
the electronic configuration is near its ground state. Once the forces and stresses have
been calculated, the positions of the ions or the size and shape of the unit cell are
changed, the electrons must be brought to the ground state of the new ionic configuration
in order to calculate forces and stresses for the new ionic configuration. When the ionic
configuration is relaxed to a local energy minimum, the relaxation of the electronic
configuration can be partially overlapped with the initial relaxation of the electronic
configuration. Provided that the magnitude of the Hellmann-Feynman forces are larger
than the errors in the forces, moving each ion the direction of the calculated force will
lower the total energy of the system and move the ionic configuration towards the local
energy minimum. However if the Hellmann-Feynman forces are smaller than the errors
in the forces, displacement of the ions in the directions of the forces may not decrease the
total energy and could take the ionic configuration away from the global energy

minimum. In this case, overlapping the ionic configuration with the relaxation of the
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electronic relaxation will increase the total number of iterations needed to relax the
system to the global energy minimum.

However, 1t might be argued that, as long as the kinetic energy is continuously
removed from all degrees of freedom in the system, the total energy in the system must
continuously decrease, so that the i1onic configuration must relax to a local minimum.
This 1s only true if the time steps are made sufficiently short. Moving the i1ons a finite
distance can add energy to the electronic system. If the energy added to the electronic
system 1n each time step becomes too large, the electronic system will never relax to its
ground state, and the 1onic system will never reach a local minimum. Therefore some
caution has to be exercised when one overlaps 1onic relaxation with the electronic
relaxation, to ensure that the 1onic system reaches the local energy minimum in the

shortest possible time.

IV.8 The APW and the LAPW method

There are two things to be taken into consideration when choosing a basis set.
First, the basis functions should be as mathematically simple as possible, in order to
simplify the setup of matrix elements. The other important feature is to have basis
functions that are well suited to describe the system of interest. In 1937 Slater used the
muffin-tin approximation as a starting point, he constructed a set of basis functions called
augmented planewaves [2,17,18]. In the muffin-tin approximation the crystal 1s divided
into the muffin-tin region consisting of non-overlapping spheres centered around each
atomic site, and the surrounding space called the interstitial, the potential 1s almost
spherically symmetric in the muffin-tin region, it will be flat in the interstitial. In the
Augmented planewaves method both the simple planewaves and the exact solutions of
the Schrodinger equation for a spherical potential are combined to produce very good set
of basis functions for describing the electronic structure everywhere in a crystal potential.

The exact APW eigenvalues can be found using information from the eigenvalues
of the APW secular matrix which provide a more efficient scheme to solve the APW

eigenvalue problem than the traditional evaluation of the secular determinant [2].

One augmented plane wave APW used in the expression of y/ is defined as:
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Le:(EHE)F
$E(F.E)={ WV
D AR Ul (rE )+ Y (F)

V is the volume of the unit cell. The APW basis set is k -dependent as was the plane
wave basis set. The position inside the sphere 1s given with respect to the center of each
sphere by 7'=7—r . The length of 7 1s 7' and the angles 6' i1s ¢' specifying the
direction of 7' in spherical coordinates, are indicated as 7'. The Y. are spherical

harmonics. The A,‘,"""“'Z and E are yet undetermined parameters, £ has the dimension of

energy. The u;" are solutions to the radial part of the Schrodinger equation for a free

atom « , and this at the energy £ [11]

IV.8.1 The regular LAPW method

The u(r',E) have to be constructed at the as yet unknown eigenenergy E = ¢/
of the sought eigenstate and this causes a problem in the APW method. The linearized
Augmented Plane Wave method enables us to recover u,*(r',&”) on the fly from known

quantities. Using Taylor expansion

ouj(r',E)

u,“(r',gf’):u,“(r',EO)+(EO—85) o~ IE:E

+O(E, -€])° (IV.9)

Substituting the first two terms of the expansion in the APW for a fixed £, gives the

definition of an LAPW. But, the energy difference (£, - ;) is unknown, leading to an

undetermined B***f which has to be introduced.

Im

1 ik »1?')? =
) —¢ rel
¢g(F)=4VV
X LA Fu (' Ey) + BRE T (B, (P) Fes,

The function in the sphere matches the plane wave in value and slope at the sphere

boundary. Then both Al‘,’"";"2 and Bl;'f;';*'E can be determined. Now, if we want to describe



an eigenstate ; that has a p character (/=1), the A(‘f‘:f;f, expansion in LAPW’s will be

large, to keep the O(E, —.9,;’)2 term small, choose Eq¢ near the center of the p band

repeating this argument for every physical /(s, p,d, f states, i.e. up to /=3) and for every

atom. The final definition of an LAPW is:

1 i(k+K)F =
) —e rel
¢:, (F) = N7 d o
D LA uf (' Ey) + B R (' EDIY, () Fes,

The basis functions can be calculated once and for all with the £;* being fixed. Compared

to a plane wave basis set. the LAPW basis set can be much smaller.

7.5 9.0 -
=— ~ dau
min
a

Koax , depending on the desired accuracy. The basis set size

P =195 compared to P =270 for planewaves. The size of the LAPW basis set must be
increased as compared to that of APW, due to the less physical shape of the augmenting

functions, yielding a larger secular matrix [11].

I1V.8.2 The APW+lo method

In the APW method a problem arose concerning the energy dependence of the
basis set. This problem can be avoided by removing the energy dependence as the cost of
a somewhat larger basis set size. In the APW+lo method the basis set will be energy
independent and still have the same size as in the APW method. The APW+lo method
combines the good features of APW and LAPW+LO. It is known that the APW+lo basis

set contains two kinds of functions. The first kind are APW’s with a set of fixed energies

E;
Le,u{u{'}; F = ]
piF) =1V
DA Ul (' EF )Y, () reS,

This basis set does not give a good description of the eigenfunctions with fixed

energies. Therefore, the basis set is augmented with a second type of functions which are



called the local orbitals. They are another type as the one used in connection with the

LAPW method. Their definitions are:

0 resS..
¢zb(F)_{ “

L4527 (' B + B (r Ef )a (7) FESa

The ’ indicates that all atoms rather than inequivalent atoms are considered. The same set

a'lo
im

of energies E; s used as for the corresponding APW’s A and B are determined

by normalization and by requiring that the local orbital has zero value at the muffin tin
boundary Both the APW and the local orbital are continuous at the sphere boundary but
for both therr first derivative 1s discontinuous.

To have accurate results, the APW+lo basis set appears to require a size that is

comparable to the APW method (K, =~3.5an"',P ~130)which is less than the

LAPW+LO method (K, ~4au"' P =200) P eigenvalues are obtained by a single

diagonalization as in LAPW+LO [11]
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V.1 Electronic Properties

V.1.1 Band Structure

Figures (5.1 a,b,c) show the band structures E(E)of BeS, BeSe, and BeTe
respectively. The most important features of the band structures are: the lowest
conduction band 1s represented by the minima E. and of the highest valence band is
represented by the maxima E,. The minima and maxima are the places where the free
electrons and holes are most likely to be found. The valence band edge in each of these
matenals 1s located at the zone center (k = 0) and 1s actually composed of three subbands.
When spin 1s neglected. The spin-orbit effect 1s assumed to be negligible. Consistent
with the effective mass concept, the band with a smaller curvature around k = 0 1s called
the light -hole band and the band with a larger curvature around k = O 1s called the heavy-
hole band. The conduction bands are also composed of a number of subbands. The
calculated lattice constants for the Be-based compounds are given in table (5.1), note that
there 1s a good agreement between our parameters and the ones found experimentally

[39]

Table- 5.1 Lattice parameter a(A) of the BeS, BeSe and BeTe

Compound |  Expt Present LMTO Pseudo Pseudo
BeS ‘ 4.865 4.839 4.864 4.745 4.731
BeSe 5.139 5.137 5.137 5.037

BeTe 7 >.62¢ 5.638 5.626 5.531

In Be chalcogenides semiconductors, the conduction band minimum occurs at X-

: 27 | _
q point (kK = — from the zone center along the I'X direction). As a result, there are two
a

n main valence bands ( heavy and light valence bands) with the valence band edge E, . The
it forbidden band gap E, 1s defined as (E-E,).

The Figures (5.1 a,b,c ) show the band structures of BeS, BeSe, and BeTe along
rithe high symmetry points in the B3 phase at equilibrium volume. The overall band profile
1sare similar and are in good agreement with earlier results [39]. The lowest band arises
1gpredominantly from the chalcogen valence s state and the upper valence bands arise from

irithe chalcogen valence p states with the top occurring at I'-point. The conduction band
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anses from the Be 2s states with the minimum energy occurring at X-point. The
calculated values of direct and indirect band gap (I"-X) for these compounds are given in
table (5.2)

Table -5.2 Calculated values of direct and indirect band gaps (I'-X) for BeS, BeSe, and

BeTe versus pressure.

BeS
Pressure (GPa) | Lattice Parameter a | Direct Band gap | Indirect Band gap
(A) (eV) (eV)
0 4. 865 5.510 2.809
10 4.737 5457 Z2hl T
20 4.640 5.401 2557
30 4.563 5.350 2413
40 4 498 5.291 2282
69 4.353 5116 1.939
BeSe
Pressure (GPa) | Lattice Parameter a | Direct Band gap | Indirect Band gap
(A) (eV) (eV)
0 52159 4173 2453
10 4.986 4.776 2.247
20 4875 4.827 2.073
30 4.787 4.797 1918
40 4715 4757 1.776
56 4.619 4.734 1.588
BeTe
Pressure (GPa) | Lattice Parameter a Direct Band gap | Indirect Band gap
(A) (eV) (eV)
ST 5.627 3.606 1.868 i
10 5.409 3.503 1.573
20 5.263 3.401 1.334
30 3. 152 3.305 1.132
35 3.105 3.256 1.035
40 5.063 3.216 0.955

These compounds all have indirect band gaps. The minimum in the conduction
band occurs at X or along the I'-X line. The next lowest conduction band minimum

occurs at L;; point in BeSe and BeTe, and at the I'}s; in BeS. The third minimum 1n the
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conduction band occurs at the I';; point in BeSe, I'js. point in BeTe, and at L, in BeS.
The I and L point minima are close to each other in energy but much higher than the

minimum which occurs along the I'-X line.

Table- 5.3 Energy band gap E; (I' — X) in the B3 phase in (e V).

E,
Compound | _Calculated Theoretical | Experimental®
BeS 2.81 3.78%, 2.75° »4.5
BeSe 2.35 BRI 24 3-3.5
BeTe 1.74 Zi7, 1% 2.7

* Reference [40] TB-LMTO-ASA method
®Reference [41] pseudo-potential method

¢ Reference [42]

Effect of pressure on the main band gaps:
The results of our calculation for the direct and indirect gaps for BeS, BeSe, and
BeTe versus pressure are presented respectively in figures (5.2 a,b,c). We have used

Murnaghan equation of state [43] to express our results in terms of pressure rather than

P:EII&J '—1} V. 1)
B a

ap : Equilibrium lattice parameter.

lattice constant:

a : The lattice parameter under pressure p
B : The Bulk modulus.
B’ : The pressure derivative of the bulk modulus.
Our results show a linear variation of the gap in all Be compounds. However the
results also show that the main energy gaps in BeTe vary linearly quicker than in BeS and

BeSe




Figures (5.2 a,b,c) represent band structures of Be compounds at the transition
volumes. Notice that the BeS and BeSe compounds are still semiconductors with the
values of indirect gaps (I'-X) decrease at 69 GPa for BeS and 56 GPa for BeSe, but BeTe

compound shows a structural phase transition at an energy gap of 35 GPa.

V.1.2 Density of Charge:

The electronic charge density is obtained for each band n by summing over the k-

states in the band
Pu®)= Xl P (v-2)
k

and the total charge density is obtained by summing over the occupied band.

p(F) =Y p,(F) (V.3)

The calculated charge densities of BeS, BeSe, and BeTe are displayed in Figures
(5.5.a,b,c ) respectively. The results show that the distribution of the electronic charge is
not symmetric, it decreases from cation to anion, when moving from BeS to BeTe, this is
closely linked to the decreasing ionicity of the material. This also shows the clear
covalent nature of the bond. In fact Be-based compounds have much higher degree of
covalency than the other wide band gap [1-VI semiconductors such as CdTe or ZnSe.

Figures (5.3.a.b,c ) are contour plots of the charge densities of BeS, BeSe, and
BeTe respectively. These charge density plots along the (110) plane indicate that most of
the valence charge is concentrated around the anion which decrease from S to Te. This
decreasing of symmetry observed in the valence charge distribution for these compounds
is often associated with the concept of ionicity. This effect is appropriately described by
Phillips scale of electronegativities from atoms where (Be=1.50, S=1.87, Se=1.79, and

Te=1.47).

Behavior of the charge density under compression:
The figures (5.5.a,b,c) and figures (5.6.a,b,c) show the valence charge density
profiles in the (1,1,1) directions at equilibrium volumes and at compressed volumes in the

three Be-based compounds in the zinc-blende structure.



These plots show that as the atoms of column VI are changed from S to Te. the

compounds become more ionic. i. e., the charge becomes more accumulated on the
cation. The observed trend suggests that the relative electron attraction of anion (S, Se,
and Te) with respect to cation (Be) in these compounds increases with increasing
hydrostatic pressure. Then the ionicities for these Be compounds decreases with
increasing pressure.

One can deduct the mechanism of the compositional transition from the

coordination number N.= 4 (Zinc-blende) to N.= 6 (NaCl) [44].

V.1.3 Density of States (DOS)

The density of state (DOS) corresponding to the band structures shown in figures
(5.1.a,b,c) is presented in figures (5.7.a,b,c). The DOS is calculated using the modified
tetrahedron method [45]. This is done by dividing the Brillouin zone into 24 tetrahedral
cells. As seen in this figure. the total densities of states are quite similar for all three
compounds, with some small differences in the profiles. In this DOS diagram, the
minimum of the valence-band density of states occurs is at '} at -5.81 eV for BeS, at -
5.83 eV for BeSe and at -10.56 eV for BeTe . The charge density of the lowest valence
band has primary s character for all the three Be compounds. The large peak comes
primarily from the onset of the second valence band at point L. The charge density of this
band is primarily of cation s character, it changes rapidly to p-like character at the top of
the valence band. The conduction bands are well separated from the valence bands by an
energy gap of the order of 2.89 eV for BeS, 2.45 eV for BeSe and 1.86 eV for BeTe
under normal pressure. The bottom of the conduction band is primarily of cation s

character.

V.2 Optical Properties

We now turn to the analysis of the optical spectra. The absorptive part of the
dielectric function, €, , is shown in figures (5.8.a,b,c ). It is seen that g, is rather similar
for all the three beryllium chalcogenides. The main feature is a broad peak with a
maximum around 20.81 eV for BeS, 20.78 eV for BeSe, and 24.65 eV for BeTe. The

maximum is always greater for BeTe than the two other chalcogenides. Our calculated



spectra are quite similar to the spectra in reference (46] , which were obtained with the

empirical pseudopotential method.

The trends in €; as a function of chalcogen may be linked to the trends observed
in the DOS and band structures. Compare the highest lying valence bands for the three
systems and also the lowest lying conduction bands. Our band-resolved optical
calculations show that the transitions between these two bands account for almost all
structure in the optical spectra at energies below 6 eV. In BeS, these bands show less
dispersion than in BeSe and BeTe. This is the reason why the main peak moves to lower
energy and becomes sharper as the chalcogen column is traversed downward.

Next, we consider the dispersive part of the dielectric function, €, , for the three
chalcogenides, see figures (5.9.a,b,c). The calculated spectra have been obtained by
Kramers-Kronig transformation of the shifted €, spectra. The main features are a shoulder
at lower energies, a rather steep decrease between 4 and S eV, after which g becomes
negative, a minimum and a slow increase toward zero at higher energies. All these
features are very well reproduced in the calculated spectra. The structures are more
pronounced in the calculated spectra since these are not broadened.

Finally we shortly discuss the spectra obtainable from the dielectric function. As
seen in figure ( 5.9.a,b,c), €, is zero at 7.03 eV , 6.3 eV, and 5.184 eV for BeS, BeSe
and BeTe respectively. If we look at the curves representing the refractive index, figure
(5.1l.a,b,c ), we find local maxima at these energies. On the contrary, in the absorption
coefficient spectra figure (5.10.a,b,c) no maximum is present at these energies, since &; is
still large at these energies. Higher up, however, all three beryllium compounds show a
large peak in the absorption coefficient spectrum. This peak corresponds to g going
through once again, this time becoming positive. At such energies €, is small, and thus

the amplitude of the energy loss may become large.
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Conclusion

In this work we have analyzed the beryllium chalcogenides materials in the B3
phase, we have used the Wien2k package. this code performs all-electron full-potential
linear-augmented plane wave method within the local-spin density approximation. It
solves iteratively the Kohn-Sham equation in a plane wave basis set and computes the
electronic band structure . and the electronic charge density. The most time consuming
step of the program is the optimization of the wave function coefficients by means of an
iterative procedure.

The compounds (BeS, BeSe and BeTe) are indirect band gap semiconductors with
gap occurring between I' and X. The indirect band gaps of the three Beryllium
chalcogenides decrease with the increasing hydrostatic pressure as in most of
semiconductors. Detailed analysis of the valence charge density distribution confirm that
the three chalcogenides compounds are covalent binary compounds. The calculated
energy gaps agree well with some other theoretical and experimental techniques. Also
the calculated lattice parameters were found to be in good agreement with experimental
and theoretical results.

In conclusion, we have shown that the optical properties of the Beryllium
chalcogenides BeS, BeSe, and BeTe are excellently reproduced using density functional
theory. Not only the general form but also the absolute amplitudes are very well
reproduced in our calculations; which makes these materials potentially good for
technological applications, mainly for blue-green laser diodes and laser-emitting diodes.

The present results, demonstrate that we have actually reached a level of accuracy

for certain fundamental material properties where theory can reliably be trusted.
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Appendix A

Basic Concepts of Solid
State Physics
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A.l1 Fourier Transform
Most often, one first encounter with Fourier transform is in the context of time
dependent functions. The Fourier Transform (FT) of a function f{t) is a function F(w) in

frequency domain. defined by:

F(w):F{f}:—\/%Lf(t)e"“'dl (A.l)
f)=F'{F}= ‘/_% [: F(w)e'"dw (A.2)
2z

If one would like to construct f{t) by adding different functions e'”, then F(w) tells what

the weight of each function is. For instance, for f(r) = cos(w,r) it can be shown that:
] || -
F(w) =55(a)0 +a))+5(‘)(w0—a)) (A.3)

Therefore. cos(w,t)must be equal to a sum of two e functions, each with a weight

given above:

| 1
cos(wyt) = —e' %) 4 '™ A4
of) 5 > (A.4)

which indeed is true, considering the definition:

oM

e'™ =cos(wt) +isin(wt) (A.S)

In this example, there is a discrete set of w-values where F(w) is non-zero. In
general, this is true for any periodic function. Its Fourier transform is nonzero at a
discrete set of frequencies (although there might be an infinite number of frequencies in
the set). A periodic function can therefore be written as a sum of functions e'*. If, f{1)

is non periodic, F(w) is non-zero over a continuous and often infinite range, and f(r) can

therefore be written only as an integral over e [11].

A.2 The Reciprocal Lattice

The properties of a solid can mainly be investigated the reciprocal lattice vectors.
Any property of the solid whether scalar, vector or tensor should have the same periodic
translational invariance as the crystalline potential. The primitive vectors of the

reciprocal lattice play an important and special role in the Fourier transform of the
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physical quantity. The Reciprocal Lattice Vectors have dimensions of inverse distance
and are defined in terms of the direct primitive lattice vectorsa, g, and a,. The
primitive reciprocal lattice vectors, 5" . related to the original lattice vectors via the

relations:

a,.b"” =25’ (A.6)

The Kronecker symbol 8’ =1 if i = j and zero if i # j. Thus, the primitive reciprocal

lattice vectors are orthogonal to two primitive lattice vectors of the direct lattice. The

primitive reciprocal lattice vectors can be constructed via

d, Nd;

ﬁm =2r—=—= (A.7)
a,(a, na,)

p® =27 —=2 05 (A.8)
a,(a, na,)

b = g =0l (A.9)

a,(a, na;)
The denominator is the volume of the primitive unit cell.
The reciprocal lattice consists of the points given by the set of vectors O where

g= m,Q(” + ng(z) A m3l_)(3) (A.10)

(m,,m,,m,) are integers.
The reciprocal lattice vectors can be considered to be the duals of the direct lattice

vectors. This relation can be seen by expressing the primitive lattice vectors @, in terms

of the primitive reciprocal lattice vectors b', via

1 (1)
a, =— b All
e | 27rlzgl.l-— ( )

g, , is given by the metric, since



a,.a =§Z’jg,,,l_:""-gk (A.12)
since
b . a, =276) (A.13)
one has
812 =0, 8 (A.14)

The metric tensor expresses the length s of a vector rin terms of its component x,along

the basis vectorsa,. Thatis, if

5:Zx,¢_z, (A.15)

For a constant metric, the length is given in terms of the components via

5 =Zg,‘jx,xj (A.16)
]
The metric tensor, when evaluated in terms of the parameters of the primitive unit cell, is

given by the matrix

a} a,a, cosa; a,a, cosa,
2
(g,,)=|aa,cosa, a, a,a, cosa,
2
a,a, cosa, a,a,cosa, a;

The inverse transform is given by

b = 27) g™ a, (A.17)
k

g"* is the metric for the dual vectors.

A.3 Familiar examples

Every physical situation in quantum mechanics is completely defined by its

Hamiltonian H . Every stationary solution of such a problem is described by a state y,
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that is an eigenstate of that Hamiltonian. The energy of that solution is the

corresponding eigenvalue E, .

Hy, = Ey, (A.18)

The boundary condition in a physical situation limits the possible eigenvalues,

and only a discrete set E, remains. The symbol stands for one or more quantum

numbers that are used to label the different eigenfunctions and eigenvlaues that satisfy

the boundary conditions [11].

Here, we have an example: The one-dimensional harmonic quantum oscillator

2

A particle with mass M moves in a one-dimensional harmonic potential V(x) = , the

Schrédinger equation for this system is given by:

2 2 v 2
( Lo b an(x):Enwnm (A.19)

- +
2M dx’? 2
The boundary condition is that the particle is bound: its probability to appear at

x —> o is zero. The discrete set of eigenvalues E, and eigenfunctions y,(x) can be

labeled by a single quantum number n(n =0,1,2, ...) and are

En =(n+%)hv (A.20)

1 &2
= - H, A.2l)
) = == e () (

A.4 Bloch’s theorem

Bloch’s theorem states that any eigenfunction y/(7) can be written as a product of
a functionu, (r) that has the periodicity of the lattice, and a palne wave e'#” with g any

vector in reciprocal space.

w(F)=u, (F)e"™” (A.22)
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As there are an infinite number of vectors in reciprocal space, there are an infinite

number of eigenstates of such a Hamiltonian. The wave vectors g serve as labels of the
eigenstates, and we could therefore rename y/(7) into (//E(F) .

Every g can be written as the sum of a vector in the first Brilloium zone and a reciprocal

lattice vector K.
g=k+K (A.23)
Bloch’s Theorem can now be rewritten as follows:
S T P (A.24)
The function between brackets still has the periodicity of the lattice. We could

rename it into u,;'(F), where »n indicates the number of the Brillouin zone where g was

in. Indeed n and k contain the same information as g, and can therefore be used as an
alternative way of labeling. For n = 1, k and g are identical. For g in the second

Brillouin zone, we use the same set of vectorsI;, but » is increased to 2, etc. For each
k . an infinite number of n is possible. The parameter # is called the band index.
Bloch’s theorem can now be restated in its most frequently used form: Any eigenfunction

u/;(F) can be written as a product of a function u}'(F)that has the periodicity of the

lattice, and a plane wave e*" with k any vector in the first Brillouin zone:
wi(F)=ul(Fe™’ (A.25)

Actually we have now split off a known part (e* ") from the eigenstate, such that

only the unknown remainder ; () has to be determined. An important advantage is that

this part now known to have the periodicity of the lattice. If a plane wave basis set is
used, it can therefore be written as a sum over plane waves that have the same
periodicity, and these precisely are the plane waves corresponding to reciprocal lattice

vectors

ul(F) = ;ck ™ (A.26)

The expansion of y/;(7) in the same basis is then
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(//:(F) — ZC;,Eel(k_+k_')F (A27)
3

and what have to be searched are the coefficients c;,"; [T1].

A.5S Plane waves
The concept of Fourier transforms can be translated for use with functions f(7)in

real space. In case of spatial function the role of @ will be taken over by so-called

reciprocal vectors g that have as dimension l/length. Fourier and inverse Fourier

transforms between real and reciprocal spaces are now defined as :
- 1 e ol 3k
F@)={f}=—7=|f(F)e*"dF (A.28)
7l

f#) = F{F}=—— [F@)e® d’g (A29)

2z

A particular kind of function in real space is a plane wave, defined as:
S (P=e (A.30)

with g any vector in reciprocal space. The Fourier transform of a plane wave is non-zero
at a single point g in reciprocal space only:

F(@) = [e® " d’g (A.31)

=0(8, - &)

which is very logical, as we need only one function e?"at g = g,with weight | to build
e’ . The shorter the period of the plane wave in real space is, the further away the
point indicated by g, lies from the origin of the reciprocal space.

Functions that are periodic in real space, will have a Fourier transform that is non-zero
only at discrete points in reciprocal space (Fourier spectrum). For periodic functions in
real space, the Fourier transform will be non-zero over a continuous volume of reciprocal

space [11].

A.6 Crystalline solids

In A crystalline solid the potential due to the nuclei is periodic:



V(F+R)=V(F) (A.32)

Ris any vector of the Bravais lattice. Therefore, if the potential is periodic, the total
Hamiltonian is. An infinite solid is built by filling space periodically with copies of the

primitive cell. Under these conditions, eigenvalues and eigenfunctions of a periodic

Hamiltonian can be labeled with the quantum number » and 1;, n=12,3,...and k is

any vector in the first Brillouin zone that corresponds to a plane wave that is
commensurate with the macroscopic crystal. For every valid k&, all values of n occur.
The number of valid k -vectors is equal to the number of unit cells in the macroscopic

crystal. For real solids. the k -vectors are very close to each other, because this number

is huge about 107,

The special k -vectors that are selected inside the first Brillouin zone are

commensurate with the entire macroscopic piece of crystal. Eigenfunctions are written as
w; ,eigenvalues as £ or E}.
The problem here is the eigenvalues are labeled by 4 independent numbers (n, &;,

k, and k), such 4 variables would be needed to make a plot. To solve this problem, an

alternative procedure is to select a path through the first Brillouin zone, and plot for every
n the energy versus k. The way the path is selected is usually along the high-symmetry

lines in the BZ. Now it is possible to plot the DOS. The DOS is a function of the energy

only. Due to the presence of the continuous extra quantum number k , the definition of
the DOS has to be extended:

g(E):iZja(g—g;)dE (A33)
VHZ

n

Here Vpz is the volume of the first Brillouin zone, and the integral is over the first

Brillouin zone. The factor 2 is included to account explicitly for spin [11]. And the k -

vectors are selected from within the bulk of BZ.
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Appendix B

Murnaghan Equation of
State
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B.1 Equations of state:

Formulations

The equation of state (EOS) used in EosFit most commonly used for fitting
isothermal (i.e. P-}" datasets) are listed brieflv here. Further details of the derivations and
limitations can be found in, for example, Anderson (1995) and Angel (2001)

Murnaghan. This can be derived from the assumption that the bulk modulus
varies linearly with pressure, K =K, + K, P; K, being independent of pressure.
Integration yields the P-V relationship:

v -1/K4
" s K,P
J :IO[H 1&0 ] (B.1)

0

This EOS reproduces P-V data and yields correct values of the room pressure
bulk modulus for compressions up to about 10% (i.e. V/V4>0.9), and has the advantage of
algebraic simplicity over other formulations such as the Vinet Birch-Murmaghan EoSs
which should be used if the range of compression is greater than 10%. The Murnaghan
EoS can also be re-arranged to provide a direct expression for pressure in terms of

compression:

. s
P:i—{[i—) -1} (8.2)

Birch-Murnaghan. This is a “Finite strain EoS”, and is based upon the
assumption that the strain energy of a solid undergoing compression can be expressed as

a Taylor’s series in the finite strain, f. The Birch-Mumaghan EoS is based upon the
Eulerian strain, f, = [(VO/V)2 - IJ/Z. Expansion to fourth-order in the strain yields an

EoS:

P=3K f(0+2f:) 2[1 +%(K'—4)f5 +%[K0K"+(K'—4)(K'—3)+%)f52} (B.3)

If this EoS is truncated at second-order in the energy, then the coefficient of fg must be

identical to zero, which requires that K’ has the fixed value of 4. The third-order



truncation, in which the coefficient of £ is set to zero yields a three-parameter EoS (with

Vo, Kpand K’) with an implied value of K’ given by:

en — 1 . N2
K =ITO((3—I\ )(4-K )+3) (B.4)

Natural strain. Poirier and Trantola developed an EoS based upon the “natural™
or “Hencky™ measure of linear strain, fy = In(1/lp) which, for hydrostatic compression,
may be written as fy=1/3In(V/Vy). This yields a pressure-volume relationship expanded

to fourth-order in strain of:
Vi 3 2\ £2
pP= 3K0[I—f’jf\.[l +S(K-2) fy + %(I + K B =)+ (-2) )f,;} (B.5)

Examination of Equation (B.5) shows that truncation of this “Natural strain” EoS at
second-order in the strain implies a value of K’ =2, different from that of the second-
order Birch-Murmaghan EoS. For truncation at third-order in the strain, the implied value
of K’ is given by:
K= "L+ (k-2)+ (K-2)°] (B.6)
I\O

Vinet. The finite-strain EoS do not accurately represent the volume variation of
most solids under very high compression (n<0.6), so Vinet et al. derived an EoS from a
general inter-atomic potential. For simple solids under very high compressions the
resulting Vinet EoS provides a more accurate representation of the volume variation with

pressure:

P =3K, d _f{")exp@(m-l)(l —f,,)) (B.7)

JV
where fy = (V/Vo)"j. There is no theoretical basis for truncation of the EoS to lower
order, although examination of Equation (B.7) shows that such truncation yields an

implied value for K’ of 1. The value of K'’ implied by equation (B.7) is given by Jeanloz

(512

as:
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Expansions of the Vinet EoS to include a refineable K have been proposed but are not
required to fit most experimental P-V data simple solids. Despite being often called a
“Universal EoS™ it should be noted that the Vinet EoS is not intended for materials with

significant degrees of internal structural freedom such as bond-bending [40].

B.2 Eigenvalues and eigenvectors

Consider a vector space (/R", take n=2 for simplicity) with a basis set (¢,,é,)that
need not to be orthogonal. With respect to this basis, every vector x can be uniquely
characterized by two numbers (x,,x,). With H , we denote an operator that can operate

on x, resulting in a new vector y =(y,,¥,):

~

Hx=Yy (B.9)
Given H, we want to find all vectors X that under A transform into a vector that is
parallel with itself:
HE = )% (B.10)
we rewrite this condition using the basis vectors, and will search for the (x,x,)that
satisfy it:
H(x,, +x,8,) = A(x,€, +X,€;) (B.11)
Left-multiply this equation with e, :
x,&,. (Hé,) + x,&, (He,) = A(x,&,.8, + x,¢,.¢,) (B.12)
Do the same with e, :
x,&,. (Hé,) + x,&, .(He,) = A(x,é, &, + X,¢,8,) (B.13)

Equations B.12 and B.13 can be summarized in matrix notation as

@,.(i{é,)ﬂ?l .(f{éz) [x,}_ll:e:',.é_, fl"?]["']{o] Gl
€,.(He))+e,.(He,) |L* €6, Ea%3 i % 0

The ij'h element of the first matrix is a number, as it is the result of a dot product. This
matrix is completely determined if the action of H on the basis vectors is known. The
element of the second matrix are determined by the basis only. This matrix is called the

overlap matrix. With this notation, our 2 equations to find suitable (x,,x,)become:



H,,—ZS,, le"lslz X 0
= (B.15)
Hsi = AS;; H,, —AS,, || *; 0

The left matrix is fully known, apart from A that is a parameter. For every value of 4.
equation (B.15) can be solved for x; and x,. For most values of A, the determinant of the
matrix will be different from zero. Equation (B.15) will have then one unique solution,
which is obviously (0, 0). This vector is parallel with the original x, but in a trivial way.
Other, more interesting solutions can occur only for those values of A that give a
vanishing determinant:

H,, "iSn le _ASIZ

qu _’qu) H:z _AS::}

=0 (B.16)

The above equation is called the secular equation of H. Itisa polynomial

equation in A, with as highest power the dimension of the space n. The roots of the
secular equation are called the wigenvalues of H. If A =24,is an eigenvalue,
[H—J.‘S][x]z[O] has an infinite number of solutions: indeed, if (x;=a, x,=b) is a
solution, ( fa,Bb)is one too, for Fany real number. This conforms with our initial
requirement: If H transforms % into a vector that is parallel withx, it will do the same
with any vector fx. These vectors are called the eigenvectors of H, belonging to the
eigenvalue A,. Usually a unit vector among them is chosen to represent this set of

vectors.  Eigenvectors belonging to different eigenvalues, can be shown to be

perpendicular. Therefore, unit vectors belonging to n different eigenvlaues can be taken

as an orthonormal basis (€,*,€,2) for the vector space.

What will be the matrix representation of the operatorfi, written in this now basis?

According to equation (B.14), the matrix elements are:

H, =¢&" (He") (B.17)
=¢/.(4,e}) (B.18)
= 4,6, (B.19)

This is a diagonal matrix with the former eigenvalues on the diagonal:
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[H]:L? u (B.20)

We could now try to find the eigenvalues and eigenvectors of this operator in the
new basis, using the same procedure as described previously. Obviously we will find the
same A,and A, as before, with as eigenvectors (1,0) and (0,1). This illustrates that
eigenvalues and eigenvectors are intrinsic properties of the operator, and do not depend
on the choice of the basis. If the basis we originally started with was already
orthonormal, then the overlap matrix will be a unit matrix. This simplifies equation
(B.14).

It could happen that 2 of the roots of the secular equation coincide. In that case,
that eigenvalue leads to a plane instead of a line of eigenvectors. There is freedom then
to choose two mutually perpendicular basis vectors in that plane, but still they are

perpendicular to eigenvectors of the other different eigenvalues [11].

B.3 Basis transformation

Consider an operator/i with matrix representation A, in a vector space /R" with a
normalized but not necessarily orthogonal basis. This operator transforms every vector
into a new vector. Also the basis vectors are transformed, and in this way you can
understand that the /¥ column of A contains the coefficients that express the transformed

j'" basis vector in the original basis:

r T e &
e Ay e € = q,,
e =
o ey =0 =la, (B.21)
RO e a
X o Jnxn _e".l O_,,x] LY dnx

This provides a practical recipe to find the matrix representation of an operator about
which we want that it transforms the basis vectors € in a new set é'f: express each E/ﬂ in
the old basis €', and these expansion coefficients form the columns of A. Note that in

this way a non-orthogonal basis can be transformed into an orthogonal basis. If both

bases are orthonormal, than the matrix A has special properties [11].
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Conversely, thef" column of the inverse matrix 4™ contains the coefficients that express

the vector El" of the old basis in the new basis of the Ef.

22 22

# = 2 2 P ps 2
V2 N2 22
2 2 2 %

that rotates every vector of /R’ counterclockwise over 45° . The old basis (¢/,é#). The

coordinates of these 4 vectors in both bases are:

Old New
E," (1,0) (-‘/2—5,——\/2—5-
& 0. 1) (72,72)
& RERREN (1,0)
2 2
: ) V2 2
B SO O
€, ( D) ) ( )
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