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Abstract

This thesis is concerned with finite semifields. The objective of this thesis is to

give a full description of Knuth orbits of known commutative semifields. We also

describe planar functions corresponding to commutative semifields. Results are pre-

sented by tables. Nuclei of semifields are studied. Finally we consider applications of

semifields, planar functions and spreads to construction of mutually unbiased bases.

Keywords: Finite semifields, isotopism, Knuth orbit, planar functions, spreads, mutu-

ally unbiased bases.
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Chapter 1: Introduction

Finite semifields satisfy all the axioms for finite fields except that their multiplication is

not assumed to be associative or commutative. In this thesis, we review terminologies

essential for the understanding of finite semifields. We include a brief description of

the geometric motivations for the concepts of isotopism, cubical array, the dual and

transpose of a semifield.

The structure of the thesis is as follows. Chapter 2 contains a review of the basic

definitions and theory of finite fields. In Chapter 3, we provide the formal definition

of finite semifield. Furthermore, we introduce the concept of an isotopism between

semifields, and show that the multiplication in a semifield defines an n× n× n array

of scalars known as a cubical array. We also concentrate on the links between Knuth

orbit and each of nuclei, commutative and sympletic semifields. In Chapter 4, we cal-

culate the Knuth orbit of known commutative semifields. To show an example, we

also calculate Knuth derivatives of noncommutative Hughes-Kleinfeld semifields. In

Chapter 5, we describe the connection between commutative semifields and planar

functions in odd and even characteristics. We also find planar functions of known

commutative semifields of odd order. In Chapter 6, we compute the middle nucleus

and the center for Dickson semifields, Penttila-Williams semifields, Ganley semifields,

and Cohen-Ganley semifields. In Chapter 7, we consider applications of planar func-

tions, symplectic spreads, commutative and symplectic semifields to constructions of

mutually unbiased bases. Results of our calculations are collected in Tables 7.1 - 7.5.
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Chapter 2: Finite Fields

This chapter provides an introduction to abstract algebraic structures, called fields [24,

26]. Our primary interest is in finite fields, i.e., fields with a finite number of elements

(also called Galois fields).

A field is a set of elements with two operations, called addition and multiplication,

along with a set of properties governing these operations.

2.1 Fields

A field is a set F with two binary operations + and ∗ such that:

1. (F , +) is a commutative group with identity element 0.

2. (F∗ , ∗) is a commutative group with identity element 1 (where F∗ = F\{0}).

3. The distributive laws holds, ∀x,y,z ∈ F.

Examples: R, Q, C, Zp for p a prime, are fields.

• A field containing only finitely many elements is called a finite field or a Galois

field.

• A subfield of a field F is a subset of F, which is itself a field with respect to

operations of F.

• The smallest subfield of a field F is called the prime subfield.

• If K is a subfield of L, then we say that L is an extension of K.

• The order of a finite field is the number of elements in that field.
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2.2 Characteristic of a Field

Definition 2.2.1. The smallest positive integer number n, such that nx= 0 for any x∈F

is called the characteristic of the field F, and F is called a field of characteristic n. If

nx 6= 0 for any positive integer n, then F is called a field of characteristic 0.

Theorem 2.2.1. Let F be a field. Then the characteristic of F is either 0 or a prime

number p.

Proof. Let F be a field and char F = n, n 6= 0. Then ∀x ∈ F, we have nx = 0. In

particular ne = 0 ( e is the multiplicative identity). If n is prime, we are done. Other-

wise, n = p1 p2 with 1 < p1, p2 < n. Hence, 0 = ne = (p1 p2)e. Since e2 = e, we have

0 = ne = (p1 p2)e = (p1e)(p2e). Thus, p1e = 0 or p2e = 0 . But 1 < p1, p2 < n, which

contradicts to the fact that n is the smallest.

Note that R, Q and C are fields of characteristic 0, and Zp is a field of characteristic p.

Theorem 2.2.2. Let F be a field of characteristic p, p 6= 0, a and b be any two elements

of F and n be any positive integer. Then

(a+b)pn
= apn

+bpn
. (2.1)

Proof. By induction. For n = 1 the equation (2.1) becomes (a+b)p = ap+bp. By the

binomial theorem, we have

(a+b)p =
p

∑
i=0

(
p
i

)
ap−ibi,

where
(p

i

)
= p!

i!(p−i)! . If i = 0, then
(p

i

)
ap−ibi = ap, and if i = p, then

(p
i

)
ap−ibi = bp.

For 0 < i < p we have p - i! and p - (p− i)!. But p | p(p−1)(p−2) · · ·1 = p!, hence
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(p
i

)
= p!

i!(p−i)! = 0, since char F = p. So all the coefficients except for the first and for

the last are zero. Therefore,

(a+b)p = ap +bp.

Assume that the equation (2.1) is correct for some n. We will show that the statement

(2.1) is correct for n+1. Indeed,

(a+b)pn+1
= ((a+b)pn

)p = (apn
+bpn

)p = apn+1
+bpn+1

.

Therefore,

(a+b)pn
= apn

+bpn

for any positive integer n.

Definition 2.2.2. Given a polynomial with coefficients in a field F , the smallest ex-

tension of F in which the polynomial can be completely factored into linear factors is

called a splitting field for the polynomial.

Theorem 2.2.3. (Existence and uniqueness of splitting fields). Let f (x) be a poly-

nomial over a field F. There is a splitting field for f (x) over F, and it is unique in

the following sense. If E and E ′ are splitting fields for f (x) over F, then there is an

isomorphism between E and E ′ which is the identity on F.

Theorem 2.2.4. (Existence and uniqueness of finite fields). For every prime p and

positive integer n ≥ 1, there is a finite field with pn elements. Any finite field with pn

elements is isomorphic to the splitting field of xpn− x over Fp.

Proof. First we prove the existence part. Let f (x)= xpn−x∈Fp[x], and F be a splitting

field of f (x) over Fp. Then f ′(x) = pnxpn−1− 1 = −1. Therefore, ( f , f ′) = 1 and f
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has pn distinct roots. Now, Let S = {a∈ F : f (a) = 0}. Then S is a subfield of F since:

• S contains 0.

• a,b ∈ S implies that (a−b)pn
= apn−bpn

= a−b, so a−b ∈ S.

• For a,b ∈ S and b 6= 0, we have (ab−1)pn
= apn

b−pn
= ab−1, so ab−1 ∈ S.

On the other hand, xpn−x must split in S, since S contains all its roots, i.e. the splitting

field F is a subfield of S. Thus F = S, and since S has pn elements, F is a finite field

with pn elements.

To prove the uniqueness, let F be a finite field and |F |= pn. Then Fp is a prime field of

F . Since F is a field, we get that (F∗, ·) is a multiplicative group with pn−1 elements.

Then, for any a ∈ F∗ we have apn−1 = 1 if and only if apn
= a. Thus, for all a ∈ F∗,

we obtain apn − a = 0. Therefore, F is a splitting field of xpn − x. Hence, F is the

smallest field in which xpn − x splits completely in linear terms. Since the splitting

field of xpn− x is unique, this implies that there exist a finite field of pn elements.

The previous theorem shows that a finite field of a given order is unique up to a field

isomorphism. We shall denote this field by Fq, where q denotes a power of the prime

characteristic p of Fq.

2.3 Automorphisms

Definition 2.3.1. Let q be a prime power and n a positive integer. The map σ : α 7−→

αq from Fqn to itself is an automorphism of Fqn .

• If α ∈ Fq⇒ σ(α) = αq = α .

• An automorphism of Fqn which leaves every element of Fq fixed is called an

automorphism of Fqn over Fq.
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• The automorphism σ : Fqn 7−→ Fqn , α 7−→ αq is called the Frobenuis Automor-

phism of Fqn over Fq.

2.4 Characteristic Polynomials and Minimal Polynomials

Let α ∈ Fqn and let σ be the Frobenius automorphism of Fqn over Fq. Then the poly-

nomial

g(x) = (x−α)(x−σ(α))(x−σ
2(α))...(x−σ

n−1(α))

= (x−α)(x−α
q)(x−α

q2
)...(x−α

qn−1
)

is called the characteristic polynomial of α ∈ Fqn over Fq.

Related to the characteristic polynomial is the minimal polynomial of α , which is the

least degree monic polynomial f over Fq for which f (α) = 0.

Theorem 2.4.1. Let α be an arbitrary element of Fqn . Then

1. The minimal polynomial of α over Fq exists and it is unique, moreover, it is

irreducible over Fq.

2. Let m(x) be the minimal polynomial of α over Fq. If f (x) ∈ Fq[x] and f (α) = 0,

then m(x)| f (x).

3. Let d be the least positive integer such that σd(α) = α . Then d|n.

Proof. 1. Since the characteristic polynomial g(x)= (x−α)(x−σ(α))...(x−σn−1(α))

of α is monic and g(α) = 0, there exists a monic polynomial m(x) with least degree

such that m(α) = 0, which implies that the minimal polynomial of α exists. Assume

that m1(x) is another minimal polynomial of α . Then, deg m(x) = deg m1(x). As-

sume that m(x) 6= m1(x). Then, deg (m(x)−m1(x)) < deg m(x) , deg m1(x). Let c

be the leading coefficient of m(x)−m1(x), then c−1(m(x)−m1(x)) is a monic poly-
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nomial over Fq having α as a root and deg c−1(m(x)−m1(x)) < deg m(x). This is a

contradiction. Therefore, m(x) = m1(x), and m(x) is unique.

Assume that m(x) is not irreducible. Then we have m(x)= f1(x) f2(x), deg f1(x), f2(x)<

degm(x) and m(α) = f1(α) f2(α) = 0. Since f1(α), f2(α) ∈ Fqn and Fqn is field (i.e.

Fqn has no zero divisors), f1(α) f2(α) = 0 implies that f1(α) = 0 or f2(α) = 0. Thus,

m(x) doesn’t have the lowest degree. Therefore, m(x) is not the minimal polynomial.

This is a contradiction. Hence, m(x) 6= f1(x) f2(x) and m(x) is irreducible.

2. Given m(x) and f (x), then there exist a unique q(x) and r(x) such that f (x) =

q(x)m(x)+ r(x), deg r < deg m. Thus, r(x) = f (x)− q(x)m(x). And r(α) = f (α)−

q(α)m(α) = 0−0 = 0. Therefore, r(α) = 0, with deg r < deg m. But since m has the

lowest degree, we obtain r ≡ 0 and f (x) = q(x)m(x). Hence, m divides f .

3. Assume n = qd + r where 0 ≤ r < d. We know σn = 1, thus σn(α) = α . Then

α = σn(α) = σ r(σqd(α)) = σ r(α). Therefore, σ r(α) = α . Since d is the lowest

integer such that σd(α) = α , and since r < d, σ r(α) = α , we obtain r = 0 and n = qd.

Thus, d divides n.

2.5 Trace and Norm

Definition 2.5.1. Let q be a prime power and n be a positive integer. Assume Fq is a

subfield of Fqn . We define the trace and norm of α as:

TrFqn/Fq(α) = α +σ(α)+σ
2(α)+ ...+σ

n−1(α)

= α +α
q +α

q2
+ ...+α

qn−1



8

NFqn/Fq(α) = ασ(α)σ2(α)...σn−1(α)

= αα
q
α

q2
...αqn−1

= α
qn−1/q−1

where α ∈ Fqn and σ is the Frobenius Automorphism.

Theorem 2.5.1. For α,β ∈ Fqn , and a ∈ Fq we have:

1. Tr(α) ∈ Fq.

2. Tr(α +β ) = Tr(α)+Tr(β ).

3. Tr(aα) = aTr(α), and in particular, Tr(a) = na.

4. Tr(αq) = Tr(α).

5. N(α) ∈ Fq.

6. N(αβ ) = N(α)N(β ).

7. N(aα) = anN(α), and in particular, N(a) = an.

8. N(αq) = N(α).

2.6 Bases

Let Fqn be an extension of Fq, q = pe, p a prime. We can look at Fqn as a vector space

over Fq (the field elements are the vectors and the subfield elements are the scalars).

Assume {α1,α2, ...,αn} is a basis of Fqn over Fq. Then any element β ∈ Fqn can be

expressed uniquely as a linear combination of α1,α2, ...,αn with coefficients in Fq:

β = b1α1 +b2α2 + ...+bnαn, where bi ∈ Fq for i = 1,2, ...,n.
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Definition 2.6.1. Let α1,α2, ...,αn ∈ Fqn . We define the discriminant ∆Fqn/Fq as:

∆Fqn/Fq(α1,α2, ...,αn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

TrFqn/Fq(α1α1) TrFqn/Fq(α1α2) · · · TrFqn/Fq(α1αn)

TrFqn/Fq(α2α1) TrFqn/Fq(α2α2) · · · TrFqn/Fq(α2αn)

...
... . . . ...

TrFqn/Fq(αnα1) TrFqn/Fq(αnα2) · · · TrFqn/Fq(αnαn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The next two results use the discriminant to provide tests that determine whether a

given set of vectors forms a basis.

Theorem 2.6.1. {α1,α2, ...,αn} is a basis of Fqn over Fq if and only if the discriminant

∆Fqn/Fq(α1,α2, ...,αn) is nonzero.

Corollary 1. {α1,α2, ...,αn} is a basis of Fqn over Fq if and only if

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 α2 · · · αn

α
q
1 α

q
2 · · · α

q
n

...
... . . . ...

α
qn−1

1 α
qn−1

2 · · · α
qn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0

Proof. Computing D2, we obtain D2 =∆(α1,α2, ...,αn). And by the previous theorem,

{α1,α2, ...,αn} is a basis if and only if D2 6= 0 if and only if D 6= 0.

2.7 Bilinear Forms

Definition 2.7.1. Let V be an n-dimensional vector space over a field F . A bilinear

form is a map H : V ×V → F such that:

1. H(u+ v,w) = H(u,w)+H(v,w);

2. H(u,v+w) = H(u,v)+H(u,w);
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3. H(λu,v) = H(u,λv) = λH(u,v)

for any u,v,w ∈V , and ∀λ ∈ F .

• A bilinear form H is called symmetric if H(v,w) = H(w,v) for all v,w ∈V .

• A bilinear form H is called skew-symmetric if H(v,w) =−H(w,v) for all v,w ∈

V .

• A bilinear form H is called non-degenerate if for all v ∈ V , there exists w ∈ V ,

such that H(w,v) 6= 0.

• If H(v,v) = 0 for v ∈V , then v is called isotropic.

• If S is a non-empty set of V , then S⊥ = {u ∈ V : H(u,v) = 0,∀v ∈ V} is called

H-orthogonal of V ( i.e. the set of vectors that are H-orthogonal to all vectors of

S).

It is well known that bilinear form are related to matrices in the following way: Let

{e1, ...,en} be an F-basis for V . Let u and v be elements of V , and suppose u=∑
n
i=1 uiei

, v = ∑
n
i=1 viei for ui,vi ∈ F . Then by the above defining properties of bilinear forms,

we have

H(u,v) =
n

∑
i, j=1

uiv jH(ei,e j)

=
n

∑
i, j=1

uiv jhi j

where hi j = H(ei,e j) for each i, j.

Consider the matrix H = (hi j)i, j ∈Mn(F). Then

H(u,v) = uT Hv = (u1,u2...un)H



v1

v2

...

vn


.
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Note that the entries of the matrix H depends on the choice of basis. Hence we refer

to H as the matrix representing H with respect to the basis {e1, ...,en}.
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Chapter 3: Semifields

3.1 Semifields

In this section we recall basic definitions and facts on finite semifields [10, 21, 22].

The study of non-associative division rings were first considered by L.E.Dickson in

1905, and were depply studied by A.A.Albert in 1942, who introduced isotopy of

these algebras. The term semifields were introduced by Knuth in 1965 in his PhD

thesis. It was his first work in mathematics. Semifields have become an attracting

topic in many different areas of mathematics, such as coding theory, finite geometry

and cryptography.

Definition 3.1.1. A finite semifield is a finite set S with at least two distinct elements,

and two binary operations + and ◦ , satisfying the following axioms:

(S1) (S,+) is a group with identity element 0.

(S2) The distributive laws holds, for all x,y,z ∈ S.

(S3) x◦ y = 0 implies x = 0 or y = 0.

(S4) ∃1 ∈ S such that 1◦ x = x◦1 = x, for all x ∈ S.

• A semifield (S,+,◦) is called commutative if x◦ y = y◦ x for all x,y ∈ S.

• If S does not have a multiplicative identity, then it is called a presemifield.

• Any finite semifield can be represented by S = (Fpn,+,◦), where p is prime, n

is a positive integer.The prime p is called the characteristic of S. A semifield

which is not a field is called proper.

• The additive group of a semifield S is elementary abelian.
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Let’s prove the last statement. Using the distributive laws we find

(a+b)◦ (c+d) = (a◦ c+a◦d)+(b◦ c+b◦d)

= (a◦ c+b◦ c)+(a◦d +b◦d).

Since (S,+) is a group, we obtain a◦d +b◦ c = b◦ c+a◦d. Since any two elements

x,y ∈ S can be written as a product x = a ◦ d and y = b ◦ c for some a,b,c,d ∈ S, the

additive group is abelian.

To show the elementary abelian part, let a 6= 0 and p be the additive order of a. Then

p must be a prime number. Hence, (S,+) is elementary abelian.

Theorem 3.1.1. A two-dimensional finite semifield is a field.

Proof. Let S be two dimensional over Fp and has a basis of the form {1,x}. Then

|S|= p2. The multiplication in S is therefore determined by x∗x= ax+b, ∀a,b∈Fp.

Consider x2− ax− b = 0. This cannot be factored otherwise S would contain zero

divisors. Thus it is irreducible and S∼= Fp2 .

Lemma 3.1.2. (Knuth, [19]). If S is a proper semifield of order pn, then n≥ 3.

Knuth also proves in [19] that if |S|= 8, then S ∼= F8. Thus, the smallest proper semi-

fields are of order 16.

Let S= (Fqn ,+,◦) be a semifield. The subsets:

Nl(S) = {a ∈ S : (a◦ x)◦ y = a◦ (x◦ y),∀x,y ∈ S},

Nm(S) = {a ∈ S : (x◦a)◦ y = x◦ (a◦ y),∀x,y ∈ S},

Nr(S) = {a ∈ S : (x◦ y)◦a = x◦ (y◦a),∀x,y ∈ S}
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are called the left, middle and right nucleus of S respectively and the set

N(S) = Nl(S)∩Nm(S)∩Nr(S)

is called a (associative) nucleus. The set

C(S) = {a ∈ N(S) : a◦b = b◦a,∀b ∈ S}

is called the center of S. All these sets are finite fields, and if S is commutative then

Nl(S) = Nr(S)⊆ Nm(S).

Some further properties of finite semifield:

1. S is a vector space V over its centre.

2. S is a left vector space Vl over its left nucleus.

3. S is a right vector space Vr over its right nucleus.

4. S is a left and right vector space over its middle nucleus.

Let Fq denote the finite field of q = pe, p an odd prime, F∗q denote the set of nonzero

elements of Fq, and Fq[x] be the ring of polynomials in indeterminate x over Fq. A

polynomial f ∈ Fq[x] is called a permutation polynomial of Fq if it induces a bijective

mapping on Fq.

A polynomial of the form L(x) = ∑
e−1
i=0 aixpi

= a0x+ a1xp + ...+ ae−1xpe−1 ∈ Fq[x] is

called a p-polynomial. Such polynomials are also known as linearised polynomials,

whose name stems from the properties:

1. L(x+ y) = L(x)+L(y) for all x,y ∈ Fq.

2. L(αx) = αx for all α ∈ Fp and x ∈ Fq
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A Dembowski-Ostrom(DO) polynomial f ∈ Fq[x] is a polynomial with the shape

f (x) =
e−1

∑
i, j=0

ai jxpi+p j
.

A function from a finite field Fq to itself is affine, if it is defined by the sum of a

constant and a linearized polynomial over Fq.

Let S= (S,+,∗) and S′ = (S,+,◦) be semifields. A semifield homomorphism from S

to S′ is a function φ : S 7−→ S′ such that φ satisfies :

1. φ(a+b) = φ(a)+φ(b) ∀a,b ∈ S,

2. φ(a∗b) = φ(a)◦φ(b) ∀a,b ∈ S.

A homomorphism from a semifield to itself is called endomorphism. Any semi-

field homomorphism φ : S 7−→ S′ which is bijective is an isomorphism. If S = S′, we

say that the isomorphism φ is an automorphism.

Let S1 = (Fpn ,+,∗) and S2 = (Fpn ,+,◦) be two (pre-)semifields. They are called

isotopic if there exist three linear permutations M,N,L of Fpn such that L(x ∗ y) =

M(x) ◦N(y) for any x,y ∈ Fpn . The triple (M,N,L) is called the isotopism between

S1 and S2. If M = N, then S1 and S2 are called strongly isotopic. The set of (pre-

)semifields isotopic to a (pre-)semifield S1 is called the isotopism class of S1 and is

denoted by [S1].

• An isotopism from a semifield to itself is called an autotopism.

• In the case where M = N = L, the autotopism is clearly an automorphism.

Every commutative presemifield can be transformed into a commutative semifield. In-

deed, let S = (Fpn,+,∗) be a commutative presemifield which does not contain an

identity. To create a semifield from S choose any a ∈ F∗pn and define a new multiplica-

tion ◦ by (x∗a)◦(a∗y) = x∗y for all x,y∈F∗pn . Then S′= (Fpn,+,◦) is a commutative

semifield isotopic to S with identity a ∗ a. We say S′ is a commutative semifield cor-

responding to the commutative presemifield S. An isotopism between S and S′ is a
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strong isotopism (La(x),La(x),x) with a linear permutation La(x) = a∗ x.

3.2 The Knuth Orbit

If S= (S,+,∗) is a semifield n-dimensional over Fp, and {e1, ...,en} is an Fp-basis for

S, then the multiplication can be written in terms of the multiplication of the vectors

ei, i.e, if x = x1e1 + ...+ xnen and y = y1e1 + ...+ ynen with xi,y j ∈ Fp, then x ∗ y =

∑
n
i, j=1 xiy j(ei ∗ e j) = ∑

n
i, j=1 xiy j(∑

n
k=1 ai jkek) for certain ai jk ∈ Fp, called the structure

constants of S with respect to the basis {e1, ...,en}. The set {ai jk} is also called a

cubical array. We will use this process to define the dual and transpose of a semifield.

The semifield Sd (the dual of S) can be obtained by reversing the multiplication (i.e.,

x◦y= y∗x). The dualization process in terms of cubical arrays is ad
i jk = a jik. Similarly,

the semifield St (the transpose of S) can be obtained via exchanging i and k (i.e. at
i jk =

ak ji).

These processes, dualization and transposition, may be iterated producing six possible

semifields, which is equivalent to the action of the symmetric group S3 on the indices

of the cubical array, (i.e., S(12) = Sd , S(13) = St , S(23) = Sdtd = Stdt , S(123) = Sdt ,

S(132) = Std). These six semifields are called Knuth orbit [19] or Knuth derivatives of

a semifeld S.

Taking the transpose of a semifield can also be interpreted geometrically as dualising

the semifield spread. The resulting action on the set of nuclei of the isotopism class S

is as follows. The dual of S fixes the middle nucleus and interchanges the left and right

nuclei; while the transpose of S fixes the left nucleus and interchanges the middle and

right nuclei. Summarising, the action of the dual and transpose generate a series of at

most six isotopism classes of semifields, with nuclei according to Figure 1.



17

[S]

[Sd]

[Sdt ]

[Sdtd] = [Stdt ]

[Std]

[St ]

`mr

rm`

r`m

m`r

mr`

`rm

Figure 1: The Knuth orbit K(S) of a semifield S with nuclei `mr

Let S be an n-dimensional semifield over Fp, i.e. a semifield of order pn and character-

istic p. Define: x ∗ y = F(x,y) = ∑
n−1
i, j=0 ci jxpi

ypi
, where ci j ∈ Fpn . Each y ∈ S defines

an Fp-endomorphism of S denote by Ry(x) = F(x,y). We call this the endomorphism

of right multiplication by y. Since S has no zero divisors, Ry is invertible ∀y 6= 0, and

the set C = {Ry : y ∈ S} is an Fp-subspace of Fp-endomorphisms of S, where each

nonzero element is invertible. We call C the spread set of S. The spread set for Sd is

Cd = {Lx : x ∈ S}.

Define non-degenerate symmetric bilinear form (x,y) = tr(xy). For a Fp-linear map

ϕ : Fpn → Fpn , the adjoint map ϕ is defined by

(ϕ(x),y) = (x,ϕ(y)).

If ϕ(x) = ∑
n−1
i=0 βixpi

then ϕ(x) = ∑
n−1
i=0 β

pn−i

i xpn−i
.

Define ri(y) = ∑ j ci jyp j
, then Ry(x) = ∑i(∑ j ci jyp j

)xpi
= ∑i ri(y)xpi

. The adjoint R̄y(x)

of Ry(x) with respect to (·, ·) is R̄y(x) = ∑i(rn−i(y))pi
xpi

. This implies that the dual and

the transpose of S are defined, respectively, by the following multiplications:

x∗d y = F(y,x)
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and

x∗t y = R̄y(x) = ∑
i
(rn−i(y))pi

xpi
.

Knuth showed that these operations are well defined up to isotopism. Suppose S is

isotopic to S′, i.e. there exist three linear permutations M,N,L such that L(x ∗ y) =

M(x)◦N(y) for any x,y ∈ S. Then L(x∗d y) = L(y∗ x) = M(y)◦N(x) = N(x)◦d M(y).

Therefore, Sd is isotopic to S′d , with corresponding isotopism (N,M,L).

We have L(Ry(x)) = L(x ∗ y) = M(x) ◦N(y) = R′N(y)M(x) , ∀x,y ∈ S. This implies

L(Ry) = R′N(y)M , ∀y ∈ S. Taking the adjoint of both sides, we get R̄y(L̄) = (M̄)R̄′N(y).

Hence, M̄−1(x ∗t y) = M̄−1R̄y(x) = R̄′N(y)L̄−1(x) = L̄−1(x) ◦t N(y). Therefore, St is

isotopic to S′t , with corresponding isotopism (L̄−1,N,M̄−1).

Theorem 3.2.1 ([22]). If S is a semifield, then

1. Nr(S) = Nl(Sd) = Nm(St);

2. Nm(S) = Nr(St)∼= Nm(Sd);

3. Nl(S) = Nr(Sd)∼= Nl(St).

Proposition 1. Let S1 = (S1,+,◦) and S2 = (S2,+,∗) be two presemifields and let C1

and C2 be the two corresponding spread sets. Then S1 and S2 are isotopic under the

isotopism (M,N,L) if and only if C2 = LC1M−1 = {L◦Ry ◦M−1,y ∈ S1}.

Proof. Let C1 = {Ry,y ∈ S1} and C2 = {R′y,y ∈ S2}. And let (M,N,L) be an isotopism

between S1 and S2. Then M(x)∗N(y) = L(x◦ y),∀x,y ∈ S1. It follows that L(Ry(x)) =

R′N(y)(M(x)),∀x,y ∈ S1. Therefore, L(Ry(M−1(x))) = R′N(y)(x). Hence, R′N(y) = L ◦

Ry ◦M−1,∀y ∈ S1. Since C2 = {R′y,y ∈ S2}= {R′N(y),y ∈ S1}, we obtain C2 = {L◦Ry ◦

M−1,y ∈ S1}.

Conversely, assume that C2 = {L ◦Ry ◦M−1,y ∈ S1}, where M and L are invertible

Fp-linear maps from S1 to S2. Then the map N sending each element y ∈ S1 to unique
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element z∈ S2 such that R′z =L◦Ry◦M−1,(R′z ∈C2) is an invertible Fp-linear map from

S1 to S2. Therefore, ∀x,y ∈ S1, we have R′N(y)(x) = L(Ry(M−1(x)). Thus, x ∗N(y) =

L(M−1(x)◦ y). Hence, M(x′)∗N(y) = L(x′ ◦ y).

Lemma 3.2.2. Let R = (Fq,+,∗) be a commutative presemifield and suppose R1 =

(Fq,+,◦) is any presemifield isotopic to R. Any isotopism (M,N,L) from R to R1 must

satisfy M(x)◦N(y) = M(y)◦N(x), ∀x,y ∈ Fq.

Theorem 3.2.3. Let R1 = (Fq,+,◦) and R2 = (Fq,+,∗) be isotopic commutative pre-

semifields. Then there exists an isotopism (M,N,L) between R2 and R1 such that either

1. M = N, or

2. M(x) 6= N(αx) ∀α ∈ F∗p and x ∈ F∗q.

Proof. Let (M,N,L) be an isotopism from R2 to R1. Suppose M 6= N, and that there

exist x0 ∈ F∗q and α ∈ F∗p such that M(x0) = N(αx0). As α ∈ F∗p, we have (αx)◦ y =

α(x ◦ y) = x ◦ (αy), for all x,y ∈ Fq. Using the previous lemma, we have M(x) ◦

N(αy) = M(y) ◦N(αx), for all x,y ∈ Fq. Set y = x0, then we get M(x) ◦N(αx0) =

M(x) ◦M(x0) = M(x0) ◦N(αx) = N(αx) ◦M(x0). Since M(x0) = N(αx0), we have

M(x)=N(αx), for all x∈Fq. Therefore, M(x)=αN(x). Since (M,N,L) are isotopism

from R2 to R1, we have

M(x)◦N(y) = L(x∗ y),∀x,y ∈ Fq

αN(x)◦N(y) = L(x∗ y),∀x,y ∈ Fq

N(x)◦N(y) = α
−1L(x∗ y),∀x,y ∈ Fq

Hence, (N,N,α−1L) is an isotopism between R2 and R1.
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Theorem 3.2.4. Let R1 = (Fq,+,◦) and R2 = (Fq,+,∗) be isotopic commutative semi-

fields. Then there exists an isotpism (M,N,L) between R2 and R1 such that either

1. M = N, or

2. M(x) = α ◦N(x) where α ∈ Nm(R1).

Proof. Suppose M 6= N. Let α = M(b) and N(b) = e, where e is the identity of R1.

Then M(x) ◦N(b) = M(x) ◦ e = M(x) and M(b) ◦N(x) = α ◦N(x). By the previous

lemma, we have M(x) ◦N(b) = M(b) ◦N(x). Therefore, M(x) = α ◦N(x) ∀x ∈ Fq.

Now we have to show that α ∈ Nm(R1) i.e. (N(x)◦α)◦N(y) = N(x)◦ (α ◦N(y)).

Using the previous lemma, we have M(x)◦N(y) = M(y)◦N(x) for all x,y ∈ Fq. Then

(α ◦N(x))◦N(y) = (N(x)◦α)◦N(y)

= (N(y)◦α)◦N(x)

= N(x)◦ (α ◦N(y)).

Hence, (N(x)◦α)◦N(y) =N(x)◦(α ◦N(y)) for all x,y∈Fq. Since N is a permutation,

we obtain α ∈ Nm(R1).

3.3 Symplectic Semifields and Commutative Semifields

A symplectic semifield is a semifield whose associated semifield spread is symplectic.

A spread C of V is called symplectic if there is a nondegenerate alternating bilinear

form (,) on V such that (X ,X) = 0, for each X ∈C.

Starting from a semifield S, we can construct a family of semifield spreads by an it-

eration of the construction processes of transpose and dualization [16]. A semifield

is commutative if applying dualization to the semifield the original semifield is ob-

tained. That is, if {ai jk} 7−→ {a jik} = {ai jk}. Therefore, the Knuth orbit K(S) of a
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commutative semifield consists of the following isotopism classes {[S] = [Sd], [St ] =

[Sdt ], [Std] = [Sdtd]}.

[S] = [Sd] [St ] = [Sdt ] [Std] = [Sdtd]
• • •
`mr `rm mr`

Figure 3.1: The Knuth orbit K(S) of commutative semifield S with nuclei `mr

Similarly, the semifield is symplectic if applying transposition to the semifield, the

original semifield is obtained. That is, if {ai jk} 7−→ {ak ji} = {ai jk}. Therefore, the

Knuth orbit K(S) of a symplectic semifield consists of the following isotopism classes

{[S] = [St ], [Sd] = [Std], [Sdt ] = [Stdt ]}.

[S] = [St ] [Sd] = [Std] [Sdt ] = [Stdt ]
• • •
`mr `rm mr`

Figure 3.2: The Knuth orbit K(S) of symplectic semifield S with nuclei `mr
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Chapter 4: The Knuth Orbit of Semifields

4.1 The Knuth Orbit of Commutative Semifields

4.1.1 Dickson Semifields

Dickson semifields [11] are semifields (Fqk ×Fqk ,+,∗) of order q2k, q odd and k > 1

odd, with multiplication defined by

(a,b)∗ (c,d) = (ac+ jbσ dσ ,ad +bc)

where j is a nonsquare in Fqk , σ is an Fq−automorphism of Fqk , σ 6= id.

In order to obtain the multiplication for St we will use the alternating bilinear form:

〈((a,b),(c,d)),((u,v),(s, t))〉= tr[as+bt− cu−dv] (4.1)

to find all ((u,v),(s, t)) such that :

0 = 〈((a,b),(a,b)∗ (c,d)),((u,v),(s, t))〉

= 〈((a,b),(ac+ jbσ dσ ,ad +bc)),((u,v),(s, t))〉

= tr[as+bt−u(ac+ jbσ dσ )− v(ad +bc)]

= tr[a(s−uc− vd)+bt−uσ−1
jσ−1

bd− vbc]

= tr[a(s−uc− vd)+b(t−uσ−1
jσ−1

d− vc)]

Putting a = 0 we get the condition tr[b(t−uσ−1
jσ−1

d−vc)] = 0, for all b. This implies

t = uσ−1
jσ−1

d+vc. Similarly, after putting b= 0 we get s= uc+vd. Hence after some
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coordinate transformations, we get the multiplication for St :

(a,b)• (c,d) = (ac+bd,aσ−1
jσ−1

d +bc).

Reversing this muliplication we get the semifield Std by:

(a,b)◦ (c,d) = (ac+bd,cσ−1
jσ−1

b+ad).

We can confirm that (Std,+,◦) is symplectic. Indeed,

〈((a,b),(a,b)◦ (c,d)),((u,v),(u,v)◦ (c,d))〉

= 〈((a,b),(ac+bd,cσ−1
jσ−1

b+ad)),((u,v),(uc+ vd, jσ−1
vcσ−1

+ud))〉

= tr[a(uc+ vd)+b( jσ−1
vcσ−1

+ud)−u(ac+bd)− v(cσ−1
jσ−1

b+ad)]

= tr[auc+avd +b jσ−1
vcσ−1

+bud−uac−ubd− vcσ−1
jσ−1

b− vad]

= tr[0]

= 0.

4.1.2 Ganley Semifields

These semifields (F3r ×F3r ,+,∗) are defined in [13] with

(a,b)∗ (c,d) = (ac−b9d−bd9,ad +bc+b3d3),
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where r ≥ 3 odd. We will apply the equation (4.1) :

0 = 〈((a,b),(a,b)∗ (c,d)),((u,v),(s, t))〉

= 〈((a,b),(ac−b9d−bd9,ad +bc+b3d3)),((u,v),(s, t))〉

= tr[as+bt−u(ac−b9d−bd9)− v(ad +bc+b3d3)]

= tr[a(s−uc− vd)+bt +u3−2
bd3−2

+ubd9− vbc− v3−1
bd]

= tr[a(s−uc− vd)+b(t +u
1
9 d

1
9 +ud9− vc− v

1
3 d]

Putting a = 0 we get the condition tr[b(t +u
1
9 d

1
9 +ud9− vc− v

1
3 d] = 0, for all b. This

implies t = vc+ v
1
3 d−ud9−u

1
9 d

1
9 . Similarly, after putting b = 0 we get s = uc+ vd.

Hence after some coordinate transformations, we get the multiplication for St :

(a,b)• (c,d) = (ac+bd,bc+b
1
3 d−ad9−a

1
9 d

1
9 ).

Reversing this muliplication we get the multiplication for Std :

(a,b)◦ (c,d) = (ac+bd,ad +bd
1
3 −b9c−b

1
9 c

1
9 ).

We have that (Std,+,◦) is symplectic since:

〈((a,b),(a,b)◦ (c,d)),((u,v),(u,v)◦ (c,d))〉

= 〈((a,b),(ac+bd,ad +bd
1
3 −b9c−b

1
9 c

1
9 )),((u,v),

(uc+ vd,ud + vd
1
3 − v9c− v

1
9 c

1
9 ))〉

= tr[a(uc+ vd)+b(ud + vd
1
3 − v9c− v

1
9 c

1
9 )

−u(ac+bd)− v(ad +bd
1
3 −b9c−b

1
9 c

1
9 )]

= tr[auc+avd +bud +bvd
1
3 −bv9c−bv

1
9 c

1
9

−uac−ubd− vad− vbd
1
3 + vb9c+ vb

1
9 c

1
9 ]

= tr[0]

= 0.
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4.1.3 The Penttila-Williams Semifield

This semifield [25] is given by (F35×F35,+,∗), with

(a,b)∗ (c,d) = (ac+(bd)9,ad +bc+(bd)27).

Using equation(4.1), we will find all ((u,v),(s, t)) such that :

0 = 〈((a,b),(a,b)∗ (c,d)),((u,v),(s, t))〉

= 〈((a,b),(ac+(bd)9,ad +bc+(bd)27)),((u,v),(s, t))〉

= tr[as+bt−u(ac+(bd)9)− v(ad +bc+(bd)27)]

= tr[a(s−uc− vd)+bt−u33
bd− vbc− v32

bd]

= tr[a(s−uc− vd)+b(t−u27d− vc− v9d)]

If we put b = 0 then tr[a(s−uc− vd)] = 0, for all a and hence s = uc+ vd. If we put

a = 0 then tr[b(t−u27d− vc− v9d)] = 0, for all b and hence t = vc+ v9d +u27d.

By a straightforward change of coordinates we get the multiplication for St :

(a,b)• (c,d) = (ac+bd,bc+b9d +a27d).

Swap a with c and b with d in the product formula for St to get the product for Std :

(a,b)◦ (c,d) = (ac+bd,ad +bd9 +bc27).
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Note that (Std,+,◦) is symplectic since:

〈((a,b),(a,b)◦ (c,d)),((u,v),(u,v)◦ (c,d))〉

= 〈((a,b),(ac+bd,ad +bd9 +bc27)),((u,v),(uc+ vd,ud + vd9 + vc27))〉

= tr[a(uc+ vd)+b(ud + vd9 + vc27)−u(ac+bd)− v(ad +bd9 +bc27)]

= tr[auc+avd +bud +bvd9 +bvc27−uac−ubd− vad− vbd9− vbc27]

= tr[0]

= 0.

4.1.4 Cohen-Ganley Semifields

Assume that s ≥ 3 and j is a nonsquare in F3s . The Cohen-Ganley [6] semifields

(F3s×F3s,+,∗) are defined by

(a,b)∗ (c,d) = (ac+ jbd + j3(bd)9,ad +bc+ j(bd)3).

To determine the product formula for St , we will use equation (4.1) :

0 = 〈((a,b),(a,b)∗ (c,d)),((u,v),(s, t))〉

= 〈((a,b),(ac+ jbd + j3(bd)9,ad +bc+ j(bd)3)),((u,v),(s, t))〉

= tr[as+bt−u(ac+ jbd + j3(bd)9)− v(ad +bc+ j(bd)3)]

= tr[a(s−uc− vd)+bt−u jbd−u3−2
j3−1

bd− vbc− v3−1
j3−1

bd]

= tr[a(s−uc− vd)+b(t−u jd−u
1
9 j

1
3 d− vc− v

1
3 j

1
3 d)].

This implies that s = uc+ vd and t = u jd + u
1
9 j

1
3 d + vc+ v

1
3 j

1
3 d. Therefore, St is

defined by

(a,b)• (c,d) = (ac+bd,a jd +a
1
9 j

1
3 d +bc+b

1
3 j

1
3 d).
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Reversing this muliplication we get the semifield Std :

(a,b)◦ (c,d) = (ac+bd,c jb+ c
1
9 j

1
3 b+ad +d

1
3 j

1
3 b).

Note that (Std,+,◦) is symplectic since:

〈((a,b),(a,b)◦ (c,d)),((u,v),(u,v)◦ (c,d))〉

= 〈((a,b),(ac+bd,c jb+ c
1
9 j

1
3 b+ad +d

1
3 j

1
3 b)),

((u,v),(uc+ vd,c jv+ c
1
9 j

1
3 v+ud +d

1
3 j

1
3 v))〉

= tr[a(uc+ vd)+b(c jv+ c
1
9 j

1
3 v+ud +d

1
3 j

1
3 v)

−u(ac+bd)− v(c jb+ c
1
9 j

1
3 b+ad +d

1
3 j

1
3 b)]

= [auc+avd +bc jv+bc
1
9 j

1
3 v+bud +bd

1
3 j

1
3 v

−uac−ubd− vc jb− vc
1
9 j

1
3 b− vad− vd

1
3 j

1
3 b]

= tr[0]

= 0.

4.1.5 Coulter-Henderson-Kosick Presemifield

This presemifield S= (F38,+,∗) is defined in [8, 9] by

x∗ y = xy+L(xy9 + x9y− xy− x9y9)+ x243y3 + x81y− x9y+ x3y243 + xy81− xy9,

where L(x) = x35
+ x32

.

In order to obtain the multiplication for St we will use the alternating bilinear form:

〈(x,y),(u,v)〉= tr[xv− yu] (4.2)
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to find all (u,v) such that:

0 = 〈((x,x∗ y),(u,v))〉

= tr[xv−uxy−ux35
y37
−ux37

y35
+ux35

y35
+ux37

y37
−ux32

y34
−ux34

y32

+ux32
y32

+ux34
y34
−ux35

y3−ux34
y+ux32

y−ux3y35
−uxy34

+uxy32
]

= tr[xv−uxy−u33
xy32
−u3xy36

+u33
xy+u3xy−u36

xy32
−u34

xy36

+u36
xy+u34

xy−u33
xy34
−u34

xy34
+u36

xy36
−u37

xy34
−uxy34

+uxy32
]

= tr[x(v−uy−u33
y32
−u3y36

+u33
y+u3y−u36

y32
−u34

y36
+u36

y

+u34
y−u33

y34
−u34

y34
+u36

y36
−u37

y34
−uy34

+uy32
)].

This implies that v = uy+u33
y32

+u3y36−u33
y−u3y+u36

y32
+u34

y36−u36
y−u34

y+

u33
y34

+u34
y34−u36

y36
+u37

y34
+uy34−uy32

. By a straightforward change of coordi-

nates we get the multiplication for St :

x• y = xy+ x33
y32

+ x3y36
− x33

y− x3y+ x36
y32

+ x34
y36
− x36

y

− x34
y+ x33

y34
+ x34

y34
− x36

y36
+ x37

y34
+ xy34

− xy32

Swap x with y in the product formula St to get the product for Std :

x◦ y = xy+ y33
x32

+ y3x36
− y33

x− y3x+ y36
x32

+ y34
x36
− y36

x− y34
x

+ y33
x34

+ y34
x34
− y36

x36
+ y37

x34
+ yx34

− yx32
.

4.1.6 Generalized Twisted Fields

A semifield (Fqt ,+,∗) of order Fqt , q odd and t > 1 odd, with multiplication [3] defined

by

x∗ y = xαy+ xyα ,
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where α : x→ xqn
is automorphism of Fqt . Then

x∗ y = xqn
y+ xyqn

.

Using the alternating bilinear form (4.2), we will find all (u,v) such that:

0 = 〈((x,x∗ y),(u,v))〉

= tr[xv−u(xqn
y+ xyqn

)]

= [xv−uqt−n
xyqt−n

−uxyqn
]

= tr[x(v−uqt−n
yqt−n
−uyqn

)].

Therefore, v = uqt−n
yqt−n

+ uyqn
. After some coordinate transformations, we get the

multiplication for St :

x• y = xqt−n
yqt−n

+ xyqn
.

Reversing this multiplication, we have multiplication for Std:

x◦ y = xqt−n
yqt−n

+ xqn
y.

4.1.7 Coulter-Matthews/Ding-Yuan Presemifields

These presemifields [7, 12] are given by S= (F3e,+,∗) with

x∗ y = x9y+ xy9∓ x3y3 + xy,

where e≥ 3 odd.
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Using equation (4.2), we have

0 = 〈((x,x∗ y),(u,v))〉

= tr[xv−u(x9y+ xy9∓ x3y3 + xy)]

= [xv−u3−2
xy3−2

−uxy9±u3−1
xy−uxy]

= tr[x(v−u3−2
y3−2
−uy9±u3−1

y−uy)].

Therefore, v = u3−2
y3−2

+uy9∓u3−1
y+uy.

By a straightforward change of coordinates, we get the multiplication for St :

x• y = x3−2
y3−2

+ xy9∓ x3−1
y+ xy.

Interchanging x and y, we get the multiplication for Std:

x◦ y = x3−2
y3−2

+ x9y∓ xy3−1
+ xy.

4.1.8 Budaghyan-Helleseth Presemifields

Assume that p is odd prime, m > 1 and 0 < s < 2m. The Budaghyan-Helleseth pre-

semifields [5] (Fp2m ,+,∗) are defined by

x∗ y = xypm
+ xpm

y+[β (xyps
+ xps

y)+β
pm
(xyps

+ xps
y)pm

]ω,

where ω is an element of Fp2m \Fpm with ω pm
=−ω .
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We will apply the equation (4.2), to find the product formula for St :

0 = 〈((x,x∗ y),(u,v))〉

= tr[xv−uxypm
−uxpm

y−βωuxyps
−βωuxps

y

−β
pm

ωuxpm
yps+m

−β
pm

ωuxps+m
ypm

]

= tr[x(v−uypm
−upm

ypm
−βωuyps

−β
p−s

ω
p−s

up−s
yp−s

−βω
pm

upm
yps
−β

p−s
ω

pm−s
upm−s

yp−s
].

Therefore,

v= uypm
+upm

ypm
+βωuyps

+β
p−s

ω
p−s

up−s
yp−s

+βω
pm

upm
yps

+β
p−s

ω
pm−s

upm−s
yp−s

.

So the multiplication for St is

x• y = xypm
+ xpm

ypm
+βωxyps

+β
p−s

ω
p−s

xp−s
yp−s

+βω
pm

xpm
yps

+β
p−s

ω
pm−s

xpm−s
yp−s

Swap x with y in the product formula St to get the product for Std:

x◦y= xpm
y+xpm

ypm
+βωxps

y+β
p−s

ω
p−s

xp−s
yp−s

+βω
pm

xps
ypm

+β
p−s

ω
pm−s

xp−s
ypm−s

In a similar way, we calculate the Knuth orbit of other known semifields.

4.1.9 Zha-Kyureghyan-Wang Presemifields

Let u be a primitive element of Fp3s and let 0 < t < 3s. The Zha-Kyureghyan-Wang

presemifields [27] (Fp3s,+,∗) are defined by

x∗ y = ypt
x+ yxpt

−ups−1(yps+t
xp2s

+ yp2s
xps+t

).
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Then for St we have

x• y = ypt
x+ yp3s−t

xp3s−t
−ups(ps−1)yp2s+t

xps
−up2s−t(ps−1)yps−t

xp2s−t
,

and for Std we have

x◦ y = yxpt
+ yp3s−t

xp3s−t
−ups(ps−1)yps

xp2s+t
−up2s−t(ps−1)yp2s−t

xps−t
.

4.1.10 Bierbrawer Presemifields

These presemifields (Fp4s,+,∗) are defined [4] with

x∗ y = ypt
x+ yxpt

−ups−1(yps+t
xp3s

+ yp3s
xps+t

),

where u is a primitive element of Fp4s . Then for St we have

x• y = ypt
x+ yp4s−t

xp4s−t
−ups(ps−1)yp2s+t

xps
−up3s−t(ps−1)yp2s−t

xp3s−t
,

and for Std we have

x◦ y = yxpt
+ yp4s−t

xp4s−t
−ups(ps−1)yps

xp2s+t
−up3s−t(ps−1)yp3s−t

xp2s−t
.

4.1.11 Knuth’s Binary Semifields

Knuth’s binary semifields [20] consist of elements of the field Fqn for q even, n > 1

odd and trace map T : Fqn → Fq with multiplication defined by

x∗ y = xy+(T (x)y+T (y)x)2

= xy+T (x)2y2 +T (y)2x2.
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Then

0 = 〈(((x,x∗ y),(u,v))〉

= 〈(xv−u(xy+T (x)2y2 +T (y)2x2)〉

= tr[xv+uxy+
√

uy
n−1

∑
i=0

xqi
+
√

ux
n−1

∑
i=0

yqi
]

= tr[xv+uxy+ x
n−1

∑
i=0

(
√

uy)q−i
+
√

ux
n−1

∑
i=0

yqi
]

= tr[x(v+uy+
n−1

∑
i=0

(
√

uy)q−i
+
√

u
n−1

∑
i=0

yqi
)].

Therefore, v = uy+
n−1

∑
i=0

(
√

uy)q−i
+
√

u
n−1

∑
i=0

yqi
and the multiplication for St = (St ,+,•)

is given by:

x• y = xy+
n−1

∑
i=0

(
√

xy)q−i
+
√

x
n−1

∑
i=0

yqi
.

Furthermore, the multiplication of Std = (Std,+,◦) is

x◦ y = y• x

= xy+
n−1

∑
i=0

(
√

yx)q−i
+
√

y
n−1

∑
i=0

xqi

= xy+T (x
√

y)+
√

yT (x).

4.1.12 The Kantor-Williams Presemifields

Assume that we have a chain of fields F = F0⊃ F1⊃ ...⊃ Fn⊇K = F2,n≥ 1 with F =

F2m , m > 1 odd, ζ ∈ F and Ti : F→ Fi are the trace functions. Then the multiplication

x∗ y = xy+(x
n

∑
1

Ti(ζiy)+ y
n

∑
1

Ti(ζix))2

= xy+ x2
n

∑
1

Ti(ζiy)2 + y2
n

∑
1

Ti(ζix)2
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defines the Kantor commutative presemifields [16]. We calculate now corresponding

symplectic presemifield (which are called Kantor-Williams presemifields [17]).

0 = 〈((x,x∗ y),(u,v))〉

= 〈(xv−u(xy+ x2
n

∑
1

Ti(ζiy)2 + y2
n

∑
1

Ti(ζix)2))〉

= tr[xv+uxy+ x2u
n

∑
1

Ti(ζiy)2 + y2u
n

∑
1

Ti(ζix)2]

= tr[xv+uxy+ xu
1
2

n

∑
1

Ti(ζiy)+ yu
1
2

n

∑
1

Ti(ζix)]

= tr[xv+ xuy+ xu
1
2

n

∑
1

Ti(ζiy)+ x
n

∑
1

ζiTi(u
1
2 y)]

= tr[x(v+uy+u
1
2

n

∑
1

Ti(ζiy)+
n

∑
1

ζiTi(u
1
2 y))].

Therefore, v= uy+u
1
2 ∑

n
1 Ti(ζiy)+∑

n
1 ζiTi(u

1
2 y) and the multiplication of St =(St ,+,•)

is

x• y = xy+ x
1
2

n

∑
1

Ti(ζiy)+
n

∑
1

ζiTi(x
1
2 y),

and the multiplication of Std = (Std,+,◦) is

x◦ y = y• x = xy+ y
1
2

n

∑
1

Ti(ζix)+
n

∑
1

ζiTi(y
1
2 x).

4.2 The Knuth Orbit of Noncommutative Semifields

Suppose a = x1+θ +xb has no solution for x∈ Fq. Then Hughes-Kleinfeld Semifields

[15] are semifields (Fq×Fq,+,∗) of order q2, q odd, with multiplication defined by

(x,y)∗ (z, t) = (xz+atyθ ,yz+ xθ t + yθ bt).
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In order to obtain the multiplication for St , we have to find all ((u,v),(c,d)) for which:

0 = 〈((x,y),(x,y)∗ (z, t)),((u,v),(c,d))〉

= 〈((x,y),((xz+atyθ ),(yz+ xθ t + yθ bt))),((u,v),(c,d))〉

= tr[xc+ yd−u(xz+atyθ )− v(yz+ xθ t + yθ bt)]

= tr[x(c−uz− vθ−1
tθ−1

)+ y(d−uθ−1
aθ−1

tθ−1
− vz− vθ−1

bθ−1
tθ−1

]

Putting x = 0 we get the condition tr[y(d−uθ−1
aθ−1

tθ−1− vz− vθ−1
bθ−1

tθ−1
)], for all

y ∈ Fq. This implies d = vz+ uθ−1
aθ−1

tθ−1
+ vθ−1

bθ−1
tθ−1

. Similarly, after putting

y = 0 we get c = uz+ vθ−1
tθ−1

. Hence, after some coordinate transformations, we get

the multiplication for St = (St ,+,•):

(x,y)• (z, t) = (xz+ yθ−1
tθ−1

,yz+ xθ−1
aθ−1

tθ−1
+ yθ−1

bθ−1
tθ−1

).

Reversing this multiplication we get the multiplication for Std = (Std,+,◦):

(x,y)◦ (z, t) = (xz+ tθ−1
yθ−1

,xt + zθ−1
aθ−1

yθ−1
+ tθ−1

bθ−1
yθ−1

).

To find the product formula for Stdt , we will use the alternating bilinear form (4.1) such

that:

0 = 〈((x,y),(x,y)∗ (z, t)),((u,v),(c,d))〉

= 〈((x,y),(xz+ tθ−1
yθ−1

,xt + zθ−1
aθ−1

yθ−1
+ tθ−1

bθ−1
yθ−1

)),((u,v),(c,d))〉

= tr[xc+ yd−u(xz+ tθ−1
yθ−1

)− v(xt + zθ−1
aθ−1

yθ−1
+ tθ−1

bθ−1
yθ−1

)]

= tr[x(c−uz− vt)+ y(d− tuθ − zavθ − tbvθ )].
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This implies that c = uz+ vt, d = tuθ + zavθ + tbvθ . Therefore, multiplication for

Stdt = (Stdt ,+,×) is

(x,y)× (z, t) = (xz+ yt, txθ + zayθ + tbyθ ).

Swap x with z and y with t in the product formula for S to get the product for Sd =

(Sd,+,�) :

(x,y)� (z, t) = (z, t)∗ (x,y) = (xz+aytθ ,xt + zθ y+ tθ by).

Using equation(4.1), we will find all ((u,v),(c,d)) such that:

0 = 〈((x,y),(x,y)� (z, t)),((u,v),(c,d))〉

= 〈((x,y),(xz+aytθ ,xt + zθ y+ tθ by)),((u,v),(c,d))〉

= tr[xc+ yd−u(xz+aytθ )− v(xt + zθ y+ tθ by)]

= tr[x(c−uz− vt)+ y(d−uatθ − vzθ − vtθ b)].

This implies that c = uz+ vt, d = uatθ + vzθ + vtθ b. Therefore, Sdt = (Sdt ,+,?) is

given by:

(x,y)? (z, t) = (xz+ yt,xatθ + yzθ + ytθ b).
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Chapter 5: Planar Function

5.1 Planar Functions In Odd Characteristic

Let q = pn, where p is an odd prime and n is a positive integer. A function f : Fq→ Fq

is called a planar function if for each nonzero a ∈ Fq, f (x+ a)− f (x) is a bijection

on Fq. There is a one to one correspondence between commutative semifields of odd

orders and planar functions. Given a commutative semifields S = (Fq,+,∗) of odd

order, the function given by F(x) = x ∗ x is a planar function [10]. Conversely, given

a planar function f (x) ∈ Fq[x] , q is odd, then S = (Fq,+,∗) with x∗ y = 1
2( f (x+ y)−

f (x)− f (y)) for any x,y ∈ Fq , is a commutative semifield.

We calculated the planar functions of known commutative semifields.

Generalized twisted fields: Assume that q odd and t > 1 odd. The Generalized twisted

fields (Fqt ,+,∗) are defined by

x∗ y = xαy+ xyα ,

where α : x→ xqn
is automorphism of Fqt . Then , f (x) = x ∗ x is expressed as the

following :

f (x) = xqn
· x+ x · xqn

= 2xqn+1.

Coulter-Matthews/Ding-Yuan presemifields: Consider presdemifield (F3e ,+,∗), where

e≥ 3 odd. A multiplication is defined as

x∗ y = x9y+ xy9∓ x3y3 + xy
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Then, we have

f (x) = 2x10∓ x6 + x2

=−x10∓ x6 + x2

Coulter-Henderson-Kosick presemifield: This presemifield (F38,+,∗) is defined by

x∗ y = xy+L(xy9 + x9y− xy− x9y9)+ x243y3 + x81y− x9y+ x3y243 + xy81− xy9,

where L(x) = x35
+ x32

. Then we have

f (x) = x2 +L(2x10− x2− x18)+2x246 +2x82−2x10

= x2 +(2x10− x2− x18)35
+(2x10− x2− x18)32

+2x246 +2x82−2x10

= x2 +(x243 + x9)(2x10− x2− x18)+2x246 +2x82−2x10.

Zha-Kyureghyan-Wang presemifields: Consider (Fp3s,+,∗). A multiplication is de-

fined by

x∗ y = ypt
x+ yxpt

−ups−1(yps+t
xp2s

+ yp2s
xps+t

),

where u be a primitive element of Fp3s and 0 < t < 3s.

Then we have

f (x) = 2xpt+1−ups−1(2xp2s+ps+t
).

Bierbrawer presemifields: These presemifields (Fp4s,+,∗) are defined with

x∗ y = ypt
x+ yxpt

−ups−1(yps+t
xp3s

+ yp3s
xps+t

),

where u is a primitive element of Fp4s
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Then we have

f (x) = 2xpt+1−ups−1(2xp3s+ps+t
).

For the other known commutative semifields, we follow the method described in [23].

Cohen-Ganley semifields. A multiplication in (Fq2,+,∗) is defined as

(a+λb)∗ (c+λd) = (ac+αbd +α
3(bd)9)+λ (ad +bc+α(bd)3)

with q = 3n (n ≥ 2) and α is nonsquare in Fq and {1,λ} is a basis of Fq2 over Fq,

where λ 2 = α .

Let X = x+ λy ∈ Fq2 . We consider planar functions of quadratic polynomials and

express them in the finite field.

1. f : X → X ∗X = (x+λy)∗ (x+λy) = (x2 +αy2 +α3y18)+λ (2xy+αy6)

2. g1 : X → X2 = x2 +αy2 +2λxy

3. g2 : X → X1+3n
= (x+λy)1+3n

= (x+λy)(x−λy) = x2−αy2

4. g3 : X → X2·3n
= (x+λy)2·3n

= (x−λy)2 = x2 +αy2−2λxy

We use the expression (g1 +g3−2g2)(X) to find y2:

(g1 +g3−2g2)(X) = X2 +X2·3n
−2X1+3n

= 4αy2,

X2 +X2·3n
+X1+3n

= αy2.
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Therefore, y2 = α−1(X2 +X2·3n
+X1+3n

). On the other hand,

( f −g1)(X) = X ∗X−X2

= (x2 +αy2 +α
3y18)+λ (2xy+αy6)− x2−αy2−2λxy

= α
3y18 +λαy6

= α
3
α
−9(X18 +X2·3n+2

+X9+3n+2
)+λαα

−3(X6 +X2·3n+1
+X3+3n+1

)

= α
−6(X18 +X2·3n+2

+X9+3n+2
)+λα

−2(X6 +X2·3n+1
+X3+3n+1

)

We find f (X) using the equation ( f −g1)(X) = f (X)−g1(X):

f (X) = g1(X)+( f −g1)(X)

= X2 +α
−6(X18 +X2·3n+2

+X9+3n+2
)+λα

−2(X6 +X2·3n+1
+X3+3n+1

).

The Penttila-Williams semifield. A multiplication in (Fq2,+,∗) is defined as

(a+λb)∗ (c+λd) = (ac+(bd)9)+λ (ad +bc+(bd)27)

with q = 35 and α is nonsquare in F35 and {1,α} is a basis over F35 where λ 2 = α .

We find the equations of the following functions:

f (x) = X ∗X = (x+λy)∗ (x+λy) = (x2 + y18)+λ (2xy+ y54),

g1(X) = X2 = (x+λy)2 = x2 +2λxy+αy2,

g2(X) = X1+35
= (x+λy)1+35

= x2−αy2,

g3(X) = X2·35
= (x+λy)2·35

= x2 +αy2−2λxy.
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Then, we find y2 using the expression (g1 +g3−2g2)(X):

(g1 +g3−2g2)(X) = X2 +X2·35
−2X1+35

= 4αy2,

X2 +X2·35
+X1+35

= αy2.

Therefore, y2 = α−1(X2 +X2·35
+X1+35

). Furthermore,

( f −g1)(X) = X ∗X−X2

= (x2 + y18)+λ (2xy+ y54)− x2−αy2−2λxy

= y18 +λy54−αy2

= α
−9(X18 +X2·37

+X9+37
)+λα

−27(X54 +X2·38
+X27+38

)

− (X2 +X2·35
+X1+35

).

Thus,

f (X) = g1(X)+( f −g1)(X)

= X2 +α
−9(X18 +X2·37

+X9+37
)+λα

−27(X54 +X2·38
+X27+38

)

− (X2 +X2·35
+X1+35

)

Ganley semifields. A multiplication in (Fq2 ,+,∗) is defined as

(a+λb)∗ (c+λd) = (ac−b9d−bd9)+λ (ad +bc+b3d3)

with q = 3n (n ≥ 3) and α is nonsquare in Fq and {1,λ} is a basis of Fq2 over Fq,

where λ 2 = α .

We first consider planar functions of quadratic polynomials and express them in the

finite field:

1. f : X → X ∗X = (x+λy)∗ (x+λy) = (x2−2y10)+λ (2xy+ y6).

2. g1 : X → X2 = x2 +αy2 +2λxy.
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3. g2 : X → X1+3n
= (x+λy)1+3n

= x2−αy2.

4. g3 : X → X2·3n
= (x+λy)2·3n

= x2 +αy2−2λxy.

Accordingly,

(g1 +g3−2g2)(X) = X2 +X2·3n
−2X1+3n

= 4αy2,

X2 +X2·3n
+X1+3n

= αy2,

Therefore,

y2 = α
−1(X2 +X2·3n

+X1+3n
).

On the other hand,

( f −g1)(X) = X ∗X−X2

= (x2−2y10)+λ (2xy+ y6)− x2−αy2−2λxy

= y10 +λy6−αy2

= λ
−10[X10−X9+3n

−X1+9·3n
+X10·3n

]

+λ [α−1(X2 +X2·3n
+X1+3n

)]3−α[α−1(X2 +X2·3n
+X1+3n

)]

= λ
−10[X10−X9+3n

−X1+9·3n
+X10·3n

]

+λα
−3(X6 +X2·3n+1

+X3+3n+1
)− (X2 +X2·3n

+X1+3n
).

Hence,

f (X) = g1(X)+( f −g1)(X)

= X2 +λ
−10[X10−X9+3n

−X1+9·3n
+X10·3n

]

+λα
−3(X6 +X2·3n+1

+X3+3n+1
)− (X2 +X2·3n

+X1+3n
).

In similar way, we find the planar function of Dickson semifields.

Dickson semifields. Assume that q = pn, where p is an odd prime, n > 1 and let α be
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any element of Fq which is not square. A multiplication is defined as

(a+λb)∗ (c+λd) = ac+αbdσ ,λ (ad +bc)

with {1,λ} is a basis of Fq2 over Fq, λ 2 = α and σ is an automorphism of Fq given

by xσ = xpr
,1≤ r < n. Then , f (X) = X ∗X is expressed as the following:

f (X) = X2 +4−1
α

1−pr
(X2pr

+X2pn+r
−2X pr+pn+r

)−4−1(X2 +X2pn
−2X1+pn

).

5.2 Pseudo-Planar Functions

In this section, we introduce an analog of planar functions in even characteristic. Let

F = Fq be a finite field of even order q. Planar functions cannot exist in characteristic

two since, if q is even and x is a solution to f (x+ a)− f (x) = b, then so x+ a. This

implies that x and x+ a are both mapped to b. Therefore, f is not a bijection on Fq.

Recently, a new notion of planar functions in even characteristic was proposed by Zhou

[29]. However, the term "pseudo-planar" was first used by Abdukhalikov [1].

Definition 5.2.1. A function f :F2n→F2n is called a pseudo-planar if for each nonzero

a ∈ F2n , f (x+a)− f (x)+ax is a bijection on F2n

The following theorem illustrates the relationship between pseudo-planar functions

and commutative presemifields.

Theorem 5.2.1. If (F,+,∗) is a commutative presemifield with multiplication given by

x∗ y = xy+∑
i< j

ai j(x2i
y2 j

+ x2 j
y2i

)

then f (x) = ∑i< j ai jx2i+2 j
is a pseudo-planar function and x ∗ y = xy + f (x + y) +

f (x)+ f (y).

Example. The Kantor presemifields. Assume that we have a chain of fields F = F0 ⊃
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F1 ⊃ ... ⊃ Fn ⊇ K = F2,n ≥ 1 with F = F2m , m > 1 odd and Ti : F → Fi is the trace

function. The multiplication is defined as:

x∗ y = xy+ x2
∑

n
1 Ti(y)2 + y2

∑
n
1 Ti(x)2.

Then f (x) = (x∑
n
1 Ti(x))2 is pseudo-planar [29].

Note that this semifield is a generalization of Knuth’s binary semifields, on which the

multiplication is defined as:

x∗ y = xy+ x2T (y)2 + y2T (x)2.

The pseudo-planar function derived from Knuth’s semifields is

f (x) = x2T (x)2

= x2
m−1

∑
i=0

(x2i
)2

= x2(x2 + x22
+ x23

+ ...+ x2m−1
+ x2m

)

=
m−1

∑
j=0

x2+2 j
.
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Chapter 6: The Nuclei of Commutative Semifields

In this chapter, we compute the middle nucleus and the center for some known com-

mutative semifields.

6.1 Dickson Semifields

Consider (Fqk×Fqk ,+,∗) where q odd and k > 1 odd. A multiplication is defined as

(a,b)∗ (c,d) = (ac+ jbσ dσ ,ad +bc),

where j is a nonsquare in Fqk , σ is an Fq−automorphism of Fqk , σ 6= id. We have

(a,b)∗ (1,0) = (1,0)∗ (a,b) = (a,b).

This implies that the identity of S is (1,0). Assume (x,0) ∈ Nm(S). Then we have

[(a,b)∗ (x,0)]∗ (c,d) = (a,b)∗ [(x,0)∗ (c,d)],

[(a,b)∗ (x,0)]∗ (c,d) = (xa,xb)∗ (c,d) = (xac+ j(xb)σ dσ ,xad + xbc),

(a,b)∗ [(x,0)∗ (c,d)] = (a,b)∗ (xc,xd) = (axc+ jbσ (xd)σ ,xad + xbc).

Since [(a,b)∗(x,0)]∗(c,d) = (a,b)∗ [(x,0)∗(c,d)] for all a,b,c,d ∈ Fqk , we have that

the middle nucleus contains all the elements of the form (x,0), x ∈ Fqk . Furthermore,

S can be viewed as a vector space over its middle nucleus Nm(S). Let N = {(x,0) :

x ∈ Fqk}, N ∼= Fqk . Since N ⊆ Nm(S) and S is a vector space over N of dimension 2,

we obtain that Nm(S) = N or Nm(S) = S. But S is a semifield in which multiplication

is not associative, and Nm(S) is a field. Therefore, Nm(S) 6= S. We conclude that the

middle nucleus of S is Nm(S) = {(x,0) : x ∈ Fqk}.
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To show that the left nucleus of S is N`(S) = {(x,0) : x ∈ Fq}, we need to have

[(x,0)∗ (a,b)]∗ (c,d) = (x,0)∗ [(a,b)∗ (c,d)],

[(x,0)∗ (a,b)]∗ (c,d) = (xa,xb)∗ (c,d) = (xac+ j(xb)σ dσ ,xad + xbc),

(x,0)∗ [(a,b)∗ (c,d)] = (x,0)∗ (ac+ jbσ dσ ,ad +bc) = (xac+ jxbσ dσ ,xad + xbc).

Then [(x,0) ∗ (a,b)] ∗ (c,d) = (x,0) ∗ [(a,b) ∗ (c,d)] if and only if xac+ j(xb)σ dσ =

xac+ jxbσ dσ , which means xσ = x. Thus,

N(S) = N`(S) = Nr(S) = {(x,0) : x ∈ Fq}.

It is clear that

C(S) = N(S).

6.2 Penttila-Williams Semifield

This semifield [25] is given by (F35×F35,+,∗), with

(a,b)∗ (c,d) = (ac+(bd)9,ad +bc+(bd)27).

The identity of S is (1,0), since (a,b)∗ (1,0) = (1,0)∗ (a,b) = (a,b). Assume (x,0) ∈

Nm(S). Then we have

[(a,b)∗ (x,0)]∗ (c,d) = (a,b)∗ [(x,0)∗ (c,d)],

[(a,b)∗ (x,0)]∗ (c,d) = (xa,xb)∗ (c,d) = (xac+(xbd)9,xad + xbc+(xbd)27),

(a,b)∗ [(x,0)∗ (c,d)] = (a,b)∗ (xc,xd) = (xac+(xbd)9,xad + xbc+(xbd)27).
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This implies that [(a,b)∗ (x,0)]∗ (c,d) = (a,b)∗ [(x,0)∗ (c,d)] for all a,b,c,d ∈ F35

We derive that the middle nucleus contains all the elements of the form (x,0), x ∈ F35 .

On the other hand, S can be viewed as a vector space over its middle nucleus Nm(S).

Let N = {(x,0) : x ∈ F35} , N ∼= F35 . Since N ⊆ Nm(S) and S is a vector space over

N of dimension 2, we obtain Nm(S) = N or Nm(S) = S. But S is a semifield in which

multiplication is not associative, and Nm(S) is a field. Therefore, Nm(S) 6= S. Thus, the

middle nucleus of S is Nm(S) = {(x,0) : x ∈ F35}.

We show the nucleus and center of S is N(S) = {(x,0) : x ∈ F3}. Indeed,

[(x,0)∗ (a,b)]∗ (c,d) = (x,0)∗ [(a,b)∗ (c,d)],

[(x,0)∗ (a,b)]∗ (c,d) = (xa,xb)∗ (c,d)

= (xac+(xbd)9,xad + xbc+(xbd)27),

(x,0)∗ [(a,b)∗ (c,d)] = (x,0)∗ (ac+(bd)9,ad +bc+(bd)27)

= (xac+ x(bd)9,xad + xbc+ x(bd)27).

Then [(x,0)∗ (a,b)]∗ (c,d) = (x,0)∗ [(a,b)∗ (c,d)] if and only if

(xbd)9 = x(bd)9 (6.1)

and

(xbd)27 = x(bd)27. (6.2)

From (6.1) and (6.2) we get N(S) = F3.
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6.3 Ganley Semifields

Assume r ≥ 3 odd. The Ganley [13] semifields (F3r ×F3r ,+,∗) are defined by

(a,b)∗ (c,d) = (ac−b9d−bd9,ad +bc+b3d3).

We have (a,b)∗ (1,0) = (1,0)∗ (a,b) = (a,b). Therefore, the identity of S is (1,0).

Let (x,y) ∈ Nm(S). Then we have,

[(0,b)∗ (x,y)]∗ (0,1) = (0,b)∗ [(x,y)∗ (0,1)],

[(0,b)∗ (x,y)]∗ (0,1) = (−b9y−by9,bx+b3y3)∗ (0,1)

= (−b9x9−b27y27−bx−b3y3,−b9y−by9 +b3x3 +b9y9),

(0,b)∗ [(x,y)∗ (0,1)] = (0,b)∗ (−y9− y,x+ y3)

= (−b9x−b9y3−bx9−by27,−by9−by+b3x3 +b3y9).

Comparing the second components, we have

−b9y+b9y9 =−by+b3y9,

(y9− y)b9− y9b3 + yb = 0

for any b ∈ F3r . This means that the polynomial f (X) = (y9− y)X9− y9X3 + yX has

3r zeroes unless it is equal to 0. Therefore, y = 0.

Assume (x,0) ∈ Nm(S). Then we have

[(a,b)∗ (x,0)]∗ (c,d) = (a,b)∗ [(x,0)∗ (c,d)],
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[(a,b)∗ (x,0)]∗ (c,d) = (xa,xb)∗ (c,d) = (xac− (bx)9d−bxd9,xad + xbc+(xbd)3),

(a,b)∗ [(x,0)∗ (c,d)] = (a,b)∗ (xc,xd) = (xac−b9xd−b(xd)9,xad + xbc+(xbd)3).

Then [(a,b)∗ (x,0)]∗ (c,d) = (a,b)∗ [(x,0)∗ (c,d)] if and only if

xac− (bx)9d−bxd9 = xac−b9xd−b(xd)9,

x9(bd9−b9d) = x(bd9−b9d),

x9 = x.

Since r is odd, we have x ∈ F3. Thus, the middle nucleus of S is Nm(S) = {(x,0) : x ∈

F3}. Since F3 is a prime field, we have

N(S) = N`(S) = Nr(S) = Nm(S) =C(S) = {(x,0) : x ∈ F3}.

6.4 Cohen-Ganley Semifields

Let s ≥ 3 and let j be a nonsquare in F3s . The Cohen-Ganley [6] semifields (F3s ×

F3s,+,∗) are defined by

(a,b)∗ (c,d) = (ac+ jbd + j3(bd)9,ad +bc+ j(bd)3).

We have (a,b) ∗ (1,0) = (1,0) ∗ (a,b) = (a,b). Therefore, the identity of S is (1,0).

Assume (x,0) ∈ Nm(S). Then we have,

[(a,b)∗ (x,0)]∗ (c,d) = (a,b)∗ [(x,0)∗ (c,d)],

[(a,b)∗(x,0)]∗(c,d)= (xa,xb)∗(c,d)= (xac+ jbxd+ j3(bxd)9,xad+xbc+ j(xbd)3),

(a,b)∗ [(x,0)∗(c,d)]= (a,b)∗(xc,xd)= (xac+ jbxd+ j3(bxd)9,xad+xbc+ j(xbd)3).
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Therefore, [(a,b)∗(x,0)]∗(c,d) = (a,b)∗ [(x,0)∗(c,d)] for all a,b,c,d,x ∈ F3s . Thus,

the middle nucleus contains all the elements of the form (x,0), x ∈ F3s . Furthermore,

S can be viewed as a vector space over its middle nucleus Nm(S) . Let N = {(x,0) :

x ∈ F3s} , N ∼= F3s . Since N ⊆ Nm(S) and S is a vector space over N of dimension 2,

we obtain Nm(S) = N or Nm(S) = S. But S is a semifield in which multiplication is not

associative , and Nm(S) is a field. Therefore, Nm(S) 6= S. Hence, the middle nucleus of

S is Nm(S) = {(x,0) : x ∈ F3s}.

The nucleus of S is N(S) = {(x,0) : x ∈ F3} since

[(x,0)∗ (a,b)]∗ (c,d) = (x,0)∗ [(a,b)∗ (c,d)],

[(x,0)∗(a,b)]∗(c,d)= (xa,xb)∗(c,d)= (xac+ jxbd+ j3(xbd)9,xad+xbc+ j(xbd)3),

(x,0)∗ [(a,b)∗ (c,d)] = (x,0)∗ (ac+ jbd + j3(bd)9,ad +bc+ j(bd)3)

= (xac+ jxbd + j3x(bd)9,xad + xbc+ jxb3d3).

Then [(x,0)∗ (a,b)]∗ (c,d) = (x,0)∗ [(a,b)∗ (c,d)] if and only if

xac+ jxbd + j3(xbd)9 = xac+ jxbd + j3x(bd)9,

x9 = x (6.3)

and

xad + xbc+ j(xbd)3 = xad + xbc+ jxb3d3

x3 = x (6.4)

From (6.3) and (6.4) we get N(S) = F3. Therefore, C(S) = F3.

Nuclei for remaining known commutative semifields can be found in [22].
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Chapter 7: Mutually Unbiased Bases

7.1 Definitions

Mutually unbiased bases (MUBs) are a structure first defined in a quantum physics con-

text in 1960 by Schwinger. Then in 1981 Ivanovic provided a construction of MUBs

in odd prime power dimensions. In 1989 Wootters and Fields extended the Ivanovic

construction to all odd prime powers and provided a construction for even prime pow-

ers. In 2003 Klappenecker and Rotteler published a summary of known constructions

which included the sets of MUBs and descirbed by Wootters and Fields and Ivanovic.

Recently it was discovered that MUBs are very closely related or even equivalent to

other problems in various parts of mathematics, such as algebraic combinatorics, fi-

nite geometry, discrete mathematics, coding theory, metric geometry, sequences, and

spherical codes [1, 2].

Let Cn be a vector space of dimension n over the field C of complex numbers. A basis

for Cn is orthonormal if all basis vectors are orthogonal and of unit length. A pair

of orthonormal bases {e1, ...,en} and { f1, ..., fn} are said to be mutually unbiased if

the square of the absolute value of the inner product of any two vectors from distinct

bases is equal to 1/n. (i.e
∣∣〈ei, f j〉

∣∣2 = 1
n for 1 ≤ i, j ≤ n). A set {B0,B1, ...,Br} of

orthonormal bases in Cn is said to be mutually unbiased bases (MUBs) if each pair of

orthonormal bases is mutually unbiased.

The maximum number of mutually unbiased bases in Cn is n+1. A set of n+1 MUBs

is called complete. While constructions of complete sets of MUBs in Cn are known

when n is a prime power, it is unknown if such complete sets exist in non-prime power

dimensions.
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7.2 Constructions

We introduce several constructions of MUBs. The first construction is based on planar

functions over fields of odd characteristic. Let q = pr, F = Fpr and let ε ∈ C be a

primitive pth root of unity. Let {ew,w ∈ F} be the standard basis of Cq.

Theorem 7.2.1. Let F be a finite field of odd order q and f be a planar function on F.

Then the following forms a complete set of MUBs:

B∞ = {ew,w ∈ F}, Bm = {bm,v,v ∈ F}, m ∈ F,

bm,v =
1
√

q ∑
w∈F

ε
tr( 1

2 m f (w)+vw)ew.

Let S = (F,+,∗) be a commutative semifield of odd order. Then f (x) = x ∗ x is a

planar function. Therefore, from the previous Theorem we get the construction of

MUBs based on finite commutative semifields of odd order.

Theorem 7.2.2. Let S = (F,+,∗) be a commutative semifield of odd order. Then the

following forms a complete set of MUBs:

B∞ = {ew,w ∈ F}, Bm = {bm,v,v ∈ F}, m ∈ F,

bm,v =
1
√

q ∑
w∈F

ε
tr( 1

2 m(w∗w)+vw)ew.

Let f (x) = ∑i≤ j ai jxpi+p j
be a quadratic planar polynomial. Then, S = (F,+,∗) with

x ∗ y = 1
2( f (x+ y)− f (x)− f (y)) = 1

2 ∑i≤ j ai j(xpi
yp j

+ xp j
ypi

) is a commutative pre-

semifield. We follow the method described in chapter 4 to find the product formula for

corresponding symplectic semifield Std:

x◦ y =
1
2 ∑

i≤ j
apr−i

i j xp j−i
ypr−i

+
1
2 ∑

i≤ j
apr− j

i j upi− j
ypr− j

.
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Then we have

tr(
1
2

w(w◦m)) = tr(
1
4 ∑

i≤ j
wapr−i

i j wp j−i
mpr−i

+
1
4 ∑

i≤ j
wapr− j

i j wpr+i− j
mpr− j

)

= tr(
1
4 ∑

i≤ j
wpi

ai jwp j
m+

1
4 ∑

i≤ j
wp j

ai jwpi
m)

= tr(
1
2

m(w∗w)).

Therefore, we get the construction of MUBs based on finite symplectic semifields of

odd order:

Theorem 7.2.3. Let (F,+,◦) be a finite symplectic presemifield of odd characteristic.

Then the following set forms a complete set of MUBs:

B∞ = {ew,w ∈ F}, Bm = {bm,v,v ∈ F}, m ∈ F,

bm,v =
1
√

q ∑
w∈F

ε
tr( 1

2 w(w◦m)+vw)ew.

Where q = pr, and ε ∈ C is a primitive pth root of unity.

This construction can be generalized to any symplectic spreads [1].

Theorem 7.2.4. Let F be a finite field of odd characteristic. Consider symplectic

spread of F2 whose elements are subspaces of the form {(x,hm(x)) | x ∈ F}, where

for every m ∈ F the functions hm is linear, and the subspace {(0,y | y ∈ F}. Then the

following set forms a complete set of MUBs:

B∞ = {ew,w ∈ F}, Bm = {bm,v,v ∈ F}, m ∈ F,

bm,v =
1
√

q ∑
w∈F

ε
tr( 1

2 w·hm(w)+vw)ew.
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The previous constructions can be generalized for even characteristic cases, using com-

mutative and symplectic semifields, symplectic spreads and pseudo-planar functions,

see for details [1]. They use special technique called the Teichmüller lift.
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Table 7.1: The Knuth orbit of a commutative semifields

Type Knuth orbit

D
(S,+,∗) (a,b)∗ (c,d) = (ac+ jbσ dσ ,ad +bc)
(St ,+,•) (a,b)• (c,d) = (ac+bd,aσ−1

jσ−1
d +bc)

(Std,+,◦) (a,b)◦ (c,d) = (ac+bd,cσ−1
jσ−1

b+ad)

PW
(S,+,∗) (a,b)∗ (c,d) = (ac+(bd)9,ad +bc+(bd)27)
(St ,+,•) (a,b)• (c,d) = (ac+bd,bc+b9d +a27d)
(Std,+,◦) (a,b)◦ (c,d) = (ac+bd,ad +bd9 +bc27)

G
(S,+,∗) (a,b)∗ (c,d) = (ac−b9d−bd9,ad +bc+b3d3)

(St ,+,•) (a,b)• (c,d) = (ac+bd,bc+b
1
3 d−ad9−a

1
9 d

1
9 )

(Std,+,◦) (a,b)◦ (c,d) = (ac+bd,ad +bd
1
3 −b9c−b

1
9 c

1
9 )

CG
(S,+,∗) (a,b)∗ (c,d) = (ac+ jbd + j3(bd)9,ad +bc+ j(bd)3)

(St ,+,•) (a,b)• (c,d) = (ac+bd,a jd +a
1
9 j

1
3 d +bc+b

1
3 j

1
3 d)

(Std,+,◦) (a,b)◦ (c,d) = (ac+bd,c jb+ c
1
9 j

1
3 b+ad +d

1
3 j

1
3 b)

CHK

(S,+,∗) x∗y = xy+L(xy9+x9y−xy−x9y9)+x243y3+x81y−x9y+
x3y243 + xy81− xy9

(St ,+,•) x • y = xy+ x33
y32

+ x3y36 − x33
y− x3y+ x36

y32
+ x34

y36 −
x36

y− x34
y+ x33

y34

(Std,+,◦) x ◦ y = xy+ y33
x32

+ y3x36 − y33
x− y3x+ y36

x32
+ y34

x36 −
y36

x− y34
x+ y33

x34
+ y34

x34− y36
x36

+ y37
x34

+ yx34− yx32

GT
(S,+,∗) x∗ y = xαy+ xyα

(St ,+,•) x• y = xqt−n
yqt−n

+ xyqn

(Std,+,◦) x◦ y = xqt−n
yqt−n

+ xqn
y
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Table 7.2: The Knuth orbit of a commutative semifields, cont.

Type Knuth orbit

CM
(S,+,∗) x∗ y = x9y+ xy9−2x3y3−2xy
(St ,+,•) x• y = x3−2

y3−2
+ xy9 + x3−1

y+ xy
(Std,+,◦) x◦ y = x3−2

y3−2
+ x9y+ xy3−1

+ xy

BH
(S,+,∗) x∗y= xypm

+xpm
y+[β (xyps

+xps
y)+β pm

(xyps
+xps

y)pm
]ω

(St ,+,•) x • y = xypm
+ xpm

ypm
+ βωxyps

+ β p−s
ω p−s

xp−s
yp−s

+
βω pm

xpm
yps

+β p−s
ω pm−s

xpm−s
yp−s

(Std,+,◦) x ◦ y = xpm
y + xpm

ypm
+ βωxps

y + β p−s
ω p−s

xp−s
yp−s

+
βω pm

xps
ypm

+β p−s
ω pm−s

xp−s
ypm−s

ZKW
(S,+,∗) x∗y = ypt

x+yxpt −ups−1(yps+t
xp2s

+yp2s
xps+t

) where u is
a primitive element of F3s

(St ,+,•) x • y = ypt
x + yp3s−t

xp3s−t − ups(ps−1)yp2s+t
xps −

up2s−t(ps−1)yps−t
xp2s−t

(Std,+,◦) x ◦ y = yxpt
+ yp3s−t

xp3s−t − ups(ps−1)yps
xp2s+t −

up2s−t(ps−1)yp2s−t
xps−t

B
(S,+,∗) x∗y = ypt

x+yxpt −ups−1(yps+t
xp3s

+yp3s
xps+t

) where u is
a primitive element of F4s

(St ,+,•) x • y = ypt
x + yp4s−t

xp4s−t − ups(ps−1)yp2s+t
xps −

up3s−t(ps−1)yp2s−t
xp3s−t

(Std,+,◦) x ◦ y = yxpt
+ yp4s−t

xp4s−t − ups(ps−1)yps
xp2s+t −

up3s−t(ps−1)yp3s−t
xp2s−t

K
(S,+,∗) x∗y = xy+(T (x)y+T (y)x)2 F = GF(qn) , with q even and

n > 1 odd , T : F → GF(q)

(St ,+,•) x• y = xy+
n−1

∑
i=0

(
√

xy)q−i
+
√

x
n−1

∑
i=0

yqi

(Std,+,◦) x◦ y = y• x = xy+
n−1

∑
i=0

(
√

yx)q−i
+
√

y
n−1

∑
i=0

xqi

KW
(S,+,∗) x∗ y = xy+(x∑

n
1 Ti(ζiy)+ y∑

n
1 Ti(ζix))2

(St ,+,•) x• y = xy+ x
1
2 ∑

n
1 Ti(ζiy)+∑

n
1 ζiTi(x

1
2 y)

(Std,+,◦) x◦ y = y• x = xy+ y
1
2 ∑

n
1 Ti(ζix)+∑

n
1 ζiTi(y

1
2 x)
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Table 7.3: The Knuth orbit of Hughes-Kleinfeld semifields

Type Knuth orbit
S (x,y)∗ (z, t) = (xz+atyθ ,yz+ xθ t + yθ bt)

St (x,y)• (z, t) = (xz+ yθ−1
tθ−1

,yz+ xθ−1
aθ−1

tθ−1
+ yθ−1

bθ−1
tθ−1

)

Std (x,y)◦ (z, t) = (xz+ tθ−1
yθ−1

,xt + zθ−1
aθ−1

yθ−1
+ tθ−1

bθ−1
yθ−1

)

Stdt (x,y)× (z, t) = (xz+ yt, txθ + zayθ + tbyθ )

Sd (x,y)� (z, t) = (z, t)∗ (x,y) = (xz+aytθ ,xt + zθ y+ tθ by)
Sdt (x,y)? (z, t) = (xz+ yt,xatθ + yzθ + ytθ b)
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Table 7.4: Planar functions of commutative semifields

Type Planar Function
GTF f (x) = xqn · x+ x · xqn

= 2xqn+1

CMP f (x) =−x10− x6 + x2

CHP f (x) = x2 + (x243 + x9)(2x10 − x2 − x18) + 2x246 +
2x82−2x10

ZWP f (x) = 2xpt+1−ups−1(2xp2s+ps+t
)

BP f (x) = 2xpt+1−ups−1(2xp3s+ps+t
)

CG f (X) = X2 + α−6(X18 + X2·3n+2
+ X9+3n+2

) +

λα−2(X6 +X2·3n+1
+X3+3n+1

)

PW f (X) = X2 + α−9(X18 + X2.37
+ X9+37

) +

λα−27(X54+X2.38
+X27+38

)− (X2+X2.35
+X1+35

)

G f (X) = X2 + α−6(X18 + X2·3n+2
+ X9+3n+2

) +

λα−2(X6 +X2·3n+1
+X3+3n+1

)

D f (X) = X2 + 4−1α1−pr
(X2pr

+ X2p(n+r) −
2X pr+p(n+r)

)−4−1(X2 +X2pn−2X1+pn
)



59

Table 7.5: The nuclei of commutative semifields

Type The nucleus of S The middle nucleus of S
D Nr(S) = N`(S) = {(x,0) : x ∈ Fq} Nm(S) = {(x,0) : x ∈ Fqk}
PW Nr(S) = N`(S) = {(x,0) : x ∈ F3} Nm(S) = {(x,0) : x ∈ F35}
G Nr(S) = N`(S) = {(x,0) : x ∈ F3} Nm(S) = {(x,0) : x ∈ F3}
CG Nr(S) = N`(S) = {(x,0) : x ∈ F3} Nm(S) = {(x,0) : x ∈ F3s}
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any odd prime p. In: SETA âĂŹ08: Proceedings of the 5th International Confer-

ence on Sequences and their Applications, 403–414. Springer, Berlin, Heidelberg

(2008).

[6] S. D. Cohen, M. J. Ganley, Commutative semifields, two-dimensional over their

middle nuclei, Journal of Algebra 75 (1982), 373–385.

[7] R. S. Coulter and R. W. Matthews, Planar functions and planes of Lenz-Barlotti

class II. Commutative presemifields and semifields, Designs, Codes and Cryp-

tography 10 (1997), 167–184.

[8] R. S. Coulter and M. Henderson, Commutative presemifields and semifields, Ad-

vances in Mathematics 217 (2008), 282–304.

[9] R. S. Coulter and P. Kosick, Commutative semifields of order 243 and 3125, in:

Finite Fields: Theory and Applications, in: Contemp. Math., vol. 518, Amer.

Math. Soc., Providence, RI, 129–136 (2010).



61

[10] P. Dembowski, Finite geometries, Springer, Berlin (1968).

[11] L. E. Dickson, On commutative linear algebras in which division is always

uniquely possible. Transactions of the American Mathematical Society 7 (1906),

514–522.

[12] C. Ding and J. Yuan, A family of skew Hadamard difference sets. Journal of

Combinatorial Theory Ser. A 113 (2006), 1526–1535.

[13] M. J. Ganley, Central weak nucleus semifields, European Journal of Combina-

torics 2 (1981), 339–347.

[14] N. L. Johnson, V. Jha and M. Biliotti, Handbook of finite translation planes. Pure

and Applied Mathematics (Boca Raton), 289. Chapman & Hall/CRC, Boca Ra-

ton, FL, 2007.

[15] D. R. Hughes and E. Kleinfeld, Seminuclear extensions of Galois fields, Ameri-

can Journal of Mathematics 82 (1960), 389–392.

[16] W. M. Kantor, Commutative semifields and symplectic spreads, Journal of Alge-

bra 270 (2003), 96–114.

[17] W. M. Kantor and M. E. Williams, Symplectic semifield planes and Z4-linear

codes, Transactions of the American Mathematical Society 356 (2004), 895–938.

[18] W. M. Kantor, Finite semifields. Finite geometries, groups, and computation,

103–114, Walter de Gruyter, Berlin, 2006.

[19] D. E. Knuth, Finite semifields and projective planes, Journal of Algebra 2 (1965),

182–217.

[20] D. E. Knuth, A class of projective planes, Transactions of the American Mathe-

matical Society 115 (1965), 541–549.

[21] M. Lavrauw and O. Polverino, Finite semifields and Galois geometry, Current

Research Topics in Galois Geometry, 129–157, Nova Science Publishers, 2011.



62

[22] G. Marino and O. Polverino, On the nuclei of a finite semifield. Theory and appli-

cations of finite fields, 123–141, Contemp. Math., 579, Amer. Math. Soc., 2012.

[23] K. Minami and N. Nakagawa, On planar functions of elementary abelian p-group

type, Hokkaido Mathematical Journal 37 (2008), 531–544 .

[24] G. L. Mullen and C Mummert, Finite Fields and Applications, 2007.

[25] T. Penttila and B. Williams, Ovoids of parabolic spaces. Geometriae Dedicata 82

(2000), 1–19.

[26] Z.-X. Wan, Lectures on finite fields and Galois rings, World Scientific, Singapore,

2003.

[27] Z. Zha, G. M. Kyureghyan and X. Wang, Perfect nonlinear binomials and their

semifields, Finite Fields and Their Applications 15 (2009), 125–133.

[28] Z. Zha and X. Wang, New families of perfect nonlinear polynomial functions,

Journal of Algebra 322 (2009), 3912–3918.

[29] Y. Zhou, (2n,2n,2n,1)-relative difference sets and their representations, Journal

of Combininatorial Designs 21 (12) (2013), 563–584.


	United Arab Emirates University
	Scholarworks@UAEU
	4-2016

	Finite semifields and their applications
	Shamsa Ali Rashed Al Saedi
	Recommended Citation


	tmp.1474964421.pdf.3XL6b

