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ABSTRACT 

The aim of the present work is to study the crysta l l ization 

kinetics of some cha1cogenide glassy al loys in the Selenium­

Tel l urium system. Four glassy systems have been prepared: 

Se  0 Te2o-xSb (x = 0, 4, 6, 8, 1 0); Se70 Te30-xSbx (x = 2, 6, 8, 1 0); 

Seso Te20-xCdx (x = 2, 4, 1 0); and Seso Te20-xSnx (x = 2, 4, 1 0). The 

starting materials of (99.999%) purity were weighted according to 

their atomic percentages and sealed in evacuated s i l ica tubes, under 

a pressure of about 1 0-
5 torr. The tubes were heated in a furnace at 

the required temperature and then quenched in ice-water m ixture. 

X-ray d iffraction measurements indicated that al l samples in 

the first two systems are amorphous, whi le  al l samples in the other 

two systems indicated the existence of some degree of crystal l in ity, 

except only the sample (Se20 Te I 6Cd4). Therefore it was decided to 

confine the study on the first two systems and (Se20Te I 6Cd4) al loy. 

From the DSC measurements, the glass transition temperature 

(T g) and the onset temperature of crystal l ization (Tc) were 

determined at different heating rates .  It was found that (Tg) and (Tc) 
shift to higher values as the heating rate (a) i s  i ncreased. This 

dependence of (T g) and (T g) on ( a) was used to calculate the 

activation energy of glass transition (Et) and the activation energy of 

crystall ization (Ec), respectively.  The activation energy values of 

glass transition using several equations were found to be in good 

agreement with each other, for each glassy al loy .  S imi larly the 
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acti ation energy for crysta l l ization was calculated usmg several 

equations and they were i n  good agreement with each other. 

From the value of (Tc-Tg), which gives an i ndication of the 

kinetic resistance to crystal l ization, it was found that the al loy with 

6 at.% Sb  i s  the most stable  al loy for both systems (1 and 2). 

Crysta l l izations using partial area analysis were studied where 

the crystal l ization mechan ism was concluded for each glassy al loy. 
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Chapter 1 



Introduction 

Today we live in a world that is both dependent upon and highly 
determined by materials. Specific materials are designed within the 
potentiality of its properties. Properties are derived from certain 
characteri tics that re ult from carefully selecting the materials, and from 
controlling the manufacturing processes used to convert the basic 

materials into the final engineered product. Exciting new product 

de elopments are frequently possible only through new materials and/or 

processing. Most likely, material technologies would continue to develop 

more in the coming decades. During the last 3 decades of the 20th 

century, glasses with new characteristics have attracted the attention of 

cientists to the extent of calling this age the Glass age [1]. This is due to 

its wide range of applications, and exhibiting interesting phenomenon. 

1 . 1  A m o rphous an d Crystalline State of Matter: 

Solids lacking long range order (position order) are called 

noncrystalline solids (NCS) Non-Crystalline solids can be divided into 

two classes: and amorphous solids. Glasses are amorphous in nature 

[2,3], i.e. they form a disordered and metastable structure. 

Disorder can occur in several forms, of which topological (or 

geometric), spin (or magnetic), substitutional, and vibrational disorder 

are the most important. These types of disorder are illustrated 

chematically in Fig. 1 .1 .  Topological disorder is that form of 

randomness in which there is no translational periodicity whatsoever as 

shown in (Fig. 1.  I-a). In spin disorder, the underlying perfect crystalline 

is pre erved, but each atomic site possessed a spin or magnetic moment. 
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(a) (b) 
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• 

(e) (d) 
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• 
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• 

• 
• 

• 

• 
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• 

Fig  1 . 1 Types of disorder: ( a) Topological disorder. (b) Spin disorder. 
(e) Substitutional disorder. (d) Vibrational disorder. 
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that i oriented randoml (Fig. 1.  I-b). In ub titutional disorder. the 
underlying crystalline lattice is preserved but in fact the material is in an 
alloy with one type of atom randomly substituting for the other in the 
lattice (Fig. 1.1-c). The final category is vibrational disorder of a 
cry talline lattice (Fig. I. I-d) in which the concept of a perfect crystal is 

only alid at the absolute zero of temperature, and at any fmite 

temperature the random motion of atoms about their equilibrium 

positions destroys the perfect periodicity. 

Amorphous solids with random distribution of the particles are, 

like liquids, isotropic and do not form regular shapes. With respect to the 

et of their physical and chemical properties, amorphous solids occupy 

an intermediate position between the solid crystalline state and the liquid 

tate. 

An important difference between crystalline and amorphous 

tructures is that while in crystals the local environment is the arne 

e ery where, in amorphous materials one finds a large spectrum of three 

dimensionally (3D) varying spatial and bonding relationships. Due the 

lack of translational regularity in noncrystalline materials, it is not 

possible to determine its structure using a well established technique 

similar to offered by Braggs equation for crystalline materials. However, 

this lack of translational regularity makes it possible to change 

continuously the elemental ratios in noncrystalline compounds allowing 

systematic compositional studies to be made. 

The rate of molecular regrouping, (i.e. relaxation process) plays an 

important role in the glass formation. When the liquid is cooled, its 
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tructure become rearranged and the relative po it ions of the atom and 
molecule are changed. The completion of the rearrangement is slower 
the temperature. When the temperature is such that the relaxation time 
and the viscosity become very large, the probability of rearrangement of 

the tructure become negligibly small. 

Amorphous solids can be prepared by different ways [4], and the 

characteristics of the material obtained, are, in general, strongly 

dependent on the mode of preparation. There are two standard ways of 

preparing amorphous solids: 

(i) by condensation from vapor as m the thermal evaporation, 

sputtering, glow discharge decomposition of a gas, or other methods 

of deposition, and 

(ii) b cooling from a melt. 

The first methods produce thin films, while the second method produces 

bulk material . Materials that are obtained from the molten state are 

called glasses and generally have smaller tendency to crystallize 

compared to those prepared by deposition. 

1 .2 Cbalcogenide Glasses: 

Continuous progress in science and technology imposes new and 

increased requirements on semiconducting materials. Silicon and 

germanium on longer satisfy all these varied and specific requirements. 

The search is for new more effective semiconducting materials with 

properties that can be varied in a wide range. Cha1cogenide glasses are 

promising in many respects. 
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The word Chalcogenide is derived from 'chalcogen', which is the 
Latin name for ulfur [5]. Now a days, The term Chalcogenide Glass is 
u ed for inorganic material alloys composed of two or more chemical 
elements, when at least the major composite of the system is Sulfur ( S), 

elenium ( e) or Tellurium (Te), which are elements from group (VI-A) 
of the periodic table [6]. The other composites that form a chalcogenide 
y tern are more electropositive elements of group V, Tathogen elements 

of group IV-A such as Si, Ge, Sn, Pb, or Pnictides elements of group V­

A such as P, As, Sb, & Bi[7] as shown in Fig. 1 .2. 

Therefore chalcogens can combine with other elements to form 

glasses in wide ranges of proportion, while oxide glasses are essentially 

composed of stoichiometric oxides [5]. Unlike oxygen, which in the 

liquid state consists of 02 molecules that crystallize on cooling, S, Se, 

and Te form elemental glasses containing disordered rings or chains. The 

tructures of these large classes of glasses are based on rings, chains, or 

three-dimensional networks as well as combinations of such structural 

groupings. Most chalcogenides form glasses very easily. Several glass 

forming systems have been identified containing these elements and 

combination of several other elements [5-7]. 

Chalcogenide glasses have been studied for over one hundred 

years [8] but intensive investigation began only after the discovery that 

many of these materials transmit light well in the infrared out to 12 J..lm 

[9-11]. A systematic study of chalcogenide glasses was initiated by B. T. 

Kolomiets and N. A. Goryunova with their coworkers [ 12] discovered 

their semiconducting properties. This is how chalcogenide glasses have 

acquired their second name "glassy semiconductors". 
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Fig .  1 .2 The main components of the Chalcogenide Glasses in the 
periodic table .  
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1.3 Synthesis of Chalcogenide Alloys: 

There are many methods by which chalcogenide materials can be 
obtained, some of which allow the production of the materials in bulk 
form. Other produce a thin layer of film deposited upon a substrate. 

orne methods al 0 produce the chalcogens in fiber forms. The 

compositional range depends on the preparation method used e.g. the 

rapid vapor quenching technique allows a wider composition range to be 

produced in amorphous form than by melt quenching which enables bulk 

material to be produced. 

1.3.1 Melt Quenching 

The technique of preparing bulk glasses by rapid quenching of a 

melt is the most established and widely used method in the preparation 

of amorphous chalcogenide materials. Many chalcogenide materials are 

good glass formers, and the melts of these materials will vitrify (change 

into glass) when cooled by quenching in air or water. Thermodynamic, 

kinetic and structural factors also can influence the process in generic 

and specific ways. The viscosity of the melt is also important in glass 

formation. The thicker the melt at a given temperature above the melting 

point is, the greater the chances for glass formation exist. On cooling, 

the viscosity increases even further as it is usually activated due to heat 

flow [16]. 

The formation of crystals is avoided by making the movement of 

the atoms in the liquid increasingly difficult, by using suitable amounts 

of kinetic energy. Hence, the kinetics (speed) of the quenching process is 

also a factor influencing the glass forming abilities of the chalcogenide 

materials. The faster the quenching process the greater the likelihood of 
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forming glas and not a crystalline product. Another influencing factor 
is the proce s of 'fru tration', i. e. crystallization in a multi-component 
melt is avoided by encouraging competition between formation of 

everal different types (crystal of different composition) or simply by 

inducing difficulty of rearranging many different types of atoms to form 

a mUlti-component crystal. Chemical factors also can determine the ease 

of glass formation for chalcogenide materials [17]. 

Glassy semiconductor alloys are synthesized as rule from 

elemental sub tance of equal degree of purity. To obtain most glassy 

alloys, materials of very pure grade are used. The total weight of the 

obtained glassy alloys is determined mainly by its crystallization ability. 

Glasses of low crystallization ability can be synthesized in any amount. 

Easily crystallization glasses can be synthesized in amounts of 5-10 g. 

The smaller the total weight of the melt, the higher the rate at which this 

melt can be cooled uniformly. 

The synthesis is carried out in evacuated (10-5 Torr) quartz 

ampoules. The synthesis regimes are highly varied. They depend on the 

melting temperature of the glass components, on their vapor pressure, 

and others. The presence of even traces of oxygen in cha1cogenide 

glas es is highly undesirable, and is especially harmful to their optical 

properties. 

To obtain homogeneous glassy alloys it is necessary to use forced 

homogenization of the melt. This can be done by vibration mixing of the 

melt or by synthesizing the glasses in rotating furnaces. 
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The melt cooling regime vary. depending on its composition and 
on it crystallization ability. One procedure is to cool the melt slowly 
together with turned off furnace for 1 0- 1 2  h. slow cooling in the 
furnace. while offering certain advantages, has also senous 
hortcoming . In a lowly cooling melt, all the sheared bonds that can 

exist in the liquid state have time to be restored. The stress that can arise 

in fast cooling is eliminated However. the greatest shortcoming is that 

when the cooling is slow the structure of the melt itself is gradually 

altered and a complicated equilibrium, not always reproducible, IS 

e tablished between the structural formations; this equilibrium IS 

reflected in the physical and chemical properties of the alloys produced. 

It is therefore more advantageous to cool the obtained melts rapidly by 

removing the ampoules from the furnace to the air (quenching in air ) . to 

allow the glass to retain, as much possible, a definite structure 

corre ponding approximately to the structure of the melt at the synthesis 

temperatures [ 8. 1 8 ] .  

1.3.2 Vapor Deposition 

Vapor deposition methods can be used to obtain amorphous thin 

films deposited onto substrates. These techniques have extremely fast 

quenching rates and are therefore ideal for obtaining amorphous 

cha1cogenide products from those materials that are difficult to vitrify. It 

is also possible to extend the compositional range for which a given 

system can be made amorphous in these techniques, compared to the 

ranges available using conventional melt-quenching techniques. Vapor 

deposition methods are mainly divided into two categories: physical 

deposition involving the conversion of atoms and molecules into vapor 
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pha e from olid or liquid ource with no chemical modification� and 
reactive depo ition in which the vapor i chemically modified with 
re pect to the ource material. Main types of these techniques are 
thermal evaporation, puttering, and chemical vapor deposition [19- 21]. 

1 .4 Regu larities of Glass Formation in Cbalcogenide Systems: 

The tendency of chalcogenide systems to form glasses, as well as 

the physical and chemical properties of the glasses, determined by the 

character of the chemical bond between the atoms that make up the 

gla . An increased tendency to glass formation is possessed by 

cha1cogenide compounds and alloys with predominantly covalent 

chemical bonds. This is attested by the position of the main component 

of the chalcogenide glasses 

In the periodic Table of the elements (Fig. 1 .2) , they belong to 

groups IV - VII of neighboring periods and are compactly placed. This 

group includes also the elemental semiconductors germanium and 

ilicon. When these elements interact, the ion-bond component that 

hinders glass formation should be minimal. The excellent glass forming 

ability of the cha1cogenides originates from the large size of the anions 

which can be combined with other elements to form glasses in a wide 

range of proportion. 

It was found that the binary chalcogenide systems: As- Se, Ge-Se 

and As-S, have large glass forming regions. The As-Se glasses were 

obtained with composition ranging from 44 to 100 at. % Se. In the Ge -
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e tern. gla e were obtained with 60-100 at. % Se. In As-S s tem. 
gla e containing from 55to 95 at. % S were obtained [12]. 

A relati ely large region of glass formation was obtained in the 
ulfur-selenium system , where glassy alloys containing Se from 60 to 

100 at. % can be found [12].Glasses with a large S content, are 

exceedingly unstable. 

With increasing the number of components, the ability of the 

alloys to fonn glass increases. The more complicated the alloy 

composition, the greater the variety of spatially different structural units 

produced in it [12]. It is difficult to separate the individual crystal phases 

in the complicated composition of the alloy. 

1.5 The Structu re of Glassy Chalcogenides: 

In order to understand the structure of chalcogenide glas es, it is 

important to understand the framework within which the structural 

features can be explained. It is convenient to divide the structure in 

materials in general into three different ascending length scales. 

Short Range Order (SRO): In covalently bonded amorphous 

materials with strongly directed bonding such as chalcogenides, SRO 

can be defined in terms of a rather well defmed coordination polyhedra as 

hown in Fig 1.3. 

Medium Range Order (MRO): This group is defined by as 

imply the next highest level of structural organization beyond SRO. 

11 
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In  practic for covalently bonded material . it i convenient to divide 

MRO into three categories corresponding to progressively increasing 

cale : short range MRO (SRMRO) which are marked if the degrees of 

freedom associated with the relative orientation of pairs of neighboring 

polyhedra are re tricted in some way. (Fig. 1 .4); intermediate range MRO 

( IRMRO) which are associated with correlations between pairs of dihedral 

angle for neighboring bonds; and long range MRO (LRMRO) which is 

a ociated with the local dimensionality of covalently bonded amorphous 

network. 

Long Range Order (structure): Although there are no long 

range order in amorphous materials, by definition, not all such materials 

are isotropic on a macro copic  scale. 

Hence the structure of cha1cogenide glasses could be discussed as 

the appearance of these groups in a chalcogenide system. 

SRO in Chalcogenides: In the case of pure amorphous 

cha1cogens the fundamental structural unit is based on a single atom and 

as such the SRO is straightforward. In the case of binary (or more 

complex) compositions, the situation is more sophisticated. In the case of 

Group I II -VI glass, the structural unit is a planar triangular unit. I n  the 

case of Group V -VI glasses the structural unit is also triangular, but 

pyramidal, with the pnictogen atom raised above the plane defmed by 

the three cha1cogens. The polyhedral unit, for materials in Group I V  -VI, 

is a tetrahedron on a tetragen. This geometry is consistent with the 

vibrational characteristics found from inelastic neutron scattering 

mea urements. It has been assumed that these materials are completely 

chemically ordered, and hence each apex of the polyhedral units is 
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occupied b a chalcogens atom, which act as a bridging l ink between 

two unit . In the ca e of more complicated system or those containing 

wrong bond , the tructure remains the same but the chalco gens atoms 

are ub tituted by other elements. 

MRO in Chalcogenides: The degree of cross l inking is 

ufficiently low so that a three dimensional isotropic structure does not 

nece sari ly result  and superstructure units may form. It is difficult to 

probe the extent of MRO in glasses as those techniques of probing such 

as Diffraction and EXAFS�  are insensitive to MRO. Techniques such as 

vibrational spectroscopy are more useful as they probe the collective 

behavior of everal atoms. Only one aspect of diffraction results on 

chalcogenide materials has been ascribed to the influence of MRO, and 

this is cal led the first sharp diffraction peak (FSDP) in the structure 

factor S(Q)[23-25].  

Structure of Pure Chalcogens 

The structural configurations which can be formed are limited 

es ential ly  to rings or chains. The structure configurations are held by 

Van-Der-Waal interactions. For the case of Sulfur, there are several 

crystal l ine allotropic forms, each of them based on the packing of 

(cyc Iootasulfur) rings. 

As for Selenium (Se) There are 3 crystalline forms including: The 

triagonal or hexagonal (most stable) form consists of helical(spiral) 

chains that are packed in a parallel fashion; The a and � monocl inic 

forms are composed of cyclootaselenium rings but packed differently; 
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and The dihedral angle pol morphs form. Unlike Sulfur or Selenium, 

Tel lurium ha only one crystal l ine form. It  is a triagonal modification 

that compri e of infinite piral chains packed in a parallel arrangement 

of molecules [26]. 

Structure of Chalcogenic Composites 

A for (V-VI Materials) the most commonly studied materials in 

this system are the Arsenic (As) chaIcogenides, which is based upon the 

toichiometric compositions. The structure of As2S3 in both bulk glassy 

and amorphous thin films are superficially similar. Yet the bulk glas is 

more ordered than that of film. The structure of AS2 Te3 contains As sites 

which are octahedral ly coordinated by Te, whereas the glass contains 

mainly A Te3'2 pyramidal units. The structure of Antimony (Sb) 

chalcogenides have trigonal pyramidal coordination of Sb atoms . The 

tructure of amorphous phosphorus chaIcogenides materials form cage 

l ike molecul es [6, 7]. 

As for (IV-VI Materials), Germanium(Ge) and Sil icon(Si) 

chaIcogenides also exhibit a rich variety of structural features 

particularly related to the MRO, as a result of the propensity for the 

formation of edge sharing tetrahedra compared with their oxide 

counterparts. As for III -VI Materials, there has been l ittle structural work 

undertaken on boron chalcogenide glasses mainly because of their great 

ensitivity to hydrolysis and neutron scattering measurements are not 

possible with the naturally occurring isotopic mixture of boron due to the 

very h igh absorption cross section of the boron isotope nucleus. Other 

famous chalcogenic systems are metallic and halogennic chaIcogenide 

glasses [6, 7]. 
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1 .6 Technological Applications for Chalcogenide Glasses: 

A variety of table chalcogenide glasses can be prepared in bulk, 

thin fi lm, and multilayer forms. This led to a wide range of practical and 

potential technological applications. Generally four kinds of applications 

are commercial ly avai lable for practical uti l ization. These rely upon the 

unique features of chalcogenide glasses, which are quasistabi l ity, 

photoconductive properties, infrared transparency, and ionic conduction. 

The 1 st category is  the phase-change phenomenon used in erasable high­

density optical memories. The 2nd category is photoconductive 

appl ications such as photoreceptors in copying machines and X-ray 

imaging plate . The 3rd category of appl ications is purely optical . That is, 

ince the chalcogenide glass is transparent in IR regions, it can be 

uti l ized for IR optical components such as lenses and windows. It can 

also be uti l i zed for IR-transmitting optical fibers. Lastly, chalcogenide 

glasses containing group I elements such as si lver are used as high-

en itivity ionic sensor [25]. 

On the other hand, Kaplan, et .a! '  [26] studied the potential ity of 

util izing Se based chalcogenide glassy systems in the realization of ultra­

fast al l-optical switches suitable for telecommunication appl ications. 

anghera et.al . [27] showed appl ications that include laser power 

delivery, chemical sensmg, and imaging, scanning near field 

microscopy/spectroscopy, IR sources/lasers, ampl ifiers. K. Hirao and K. 

Miura. [28] conducted a structural analysis of chalcogenide waveguides 

and demonstrated their stabi l ity under variation of ambient conditions. 
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Chapter 2 



Theoretical background 

2 . 1  Thermal Analysis: 

The theoretical basis for interpreting differential thermal analysis 

( DTA) or differential scanning calorimetry (DSC) data is provided by 

the formal theory of transformation kinetics as the volume fraction (X) 

crystal l ized in time (t), using the Tohns-Mehl-Avrami equation [29]: 

x=l-exp[-(Kty] (2 . 1 )  

where (n) is an integer or haft integer, which depends on the mechanism 

of growth and the dimensionality of the crystal . (K) is defined as the 

effecti e overall reaction rate, which is usual ly assumed to have an 

Arrhenian temperature dependence: 

K = Ko exp[-E I RT] (2 .2) 

where (E) is the effective activation energy describing the overall 

crystal l ization process, which can be approximated as fol lows : 

(2 .3)  

where (E  ) and (EG) are the effective activation energies for nucleation 

and growth, respectively, and (n = m) for the nucleation frequency 

(1\ = 0 ) [30] and (n = m + 1 )  for (Iv -:t- 0) [29]. 

If E is negligible over the temperature range of concern m the 

thermoanalytical study [29], then : 

E == (min) Eg (2.4) 
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2.2 Method of Piloyan Borcha rdt: 

In  non-isothermal crystal l ization, it is assumed that there is a 

constant heating rate (a) in the DTA and DSC experiments . The relation 

between the sample temperature (T) and the heating rate (a) can be 

written in the form of : 

T = To + a t  

where (To) is the initial temperature. Differentiating equation (2.1) 

re u lts in the fol lowing expression : 

n 'ft I) { X = (1- X) n K { [1 + - K ] K 

(2.5) 

(2.6) 

\ here (X  = dX/dt) and (K ' = dk/dt) .  The derivation of K with respect to 

time is obtained from equations (2.2) and (2.5) 

K 
= dK dT _ aE 

K 
dT dt RT2 

Thus equation (2.6) becomes : 

X' = (1- X) n Kn t en J) [1 + at ] 

where 

a = (a E/ R r) 

(2.7) 

(2.8) 

In  the Piloyan [31] - Borchardt [32] method, the term (at) was 

neglected in comparison to unity assuming that (EIRT « 1). A better 

approach seems reasonable, if To in Equation (2.5) is much smaller than 

T, the term (at == E/RT), and equation (2.8) becomes 
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x = (I-x)n Knt(n-I) E IRT (2.9) 

I f  ( 0« T) and (EIRT« 0), equation (2.9) becomes: 

X = (1- X) n Kn t(n 1) (2.1 0) 

ombining equation (2.9) with the concept stated by Borchardt [30], 

that, at least for (X < 0.5), the reaction rate (Xl) at a particular temperature 

(T) is proportional to the heat flow difference between the sample and 

inert reference (�q), leads for DSC to 

X =CL1q 

In  preceding further, the fol lowing operations are performed 

(a) expressing (t) in terms of (X) in equation (2.11), 

1 = (11 K) [-In(l- X)r II 

(b ) substituting for t in equation (2.9) gives 

X = (n K ElR T) F(xJ 

The function F(X) is defined as : 

(2.11 ) 

(2.12) 

(2.13) 

F(x) == (l-x)[-ln(1-x)]«n-I)lnl (2.14) 

(c) combining equations (2.2), (2.11) and (2.13) gives 

C Llq = nKo (EiR T) F(xJ exp(-EIR T) (2.15) 

( d)taking the logarithm and rearranging equation (2.15) gives 

T. q nKo E E 
In[-- ] = In(-) + In( -) - -

F(X) C R RT (2.16) 
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In[T q/F( X ) ]  i a l inear function of ( l IT) .  The slope of thi relation 

yield the effecti e activation energy of crystal growth (Ec). 

2.3 Method of Coats-Redfern-Sestak: 

Coast-Redfem-Sestak (CRS) [33 ] suggested a method of 

determining the crystal l ization energy (E) by using the fol lowing 

equation: 

x = g(xJ Ko exp(-EIRT) (2.17) 

where (X ' = dX/dT), the activation energy of reaction {g(X) = ( l -xt}. 

By rearranging equation (2.17) and integrating one obtains 

I 

Ko fexp(-E I RT)dt == G(x) (2.18) 
o 

The integration is carried out from the beginning from the reaction of 

crystal l ization until some fract ion is  crystal l ized. The function G(X ) i 

independent from the heating rate used to obtain the crystall ized fraction 

(X ) .  The time integral in equation (2.18) is transformed to a temperature 

integral yielding: 

K 7  G( X') = _0 fexp(-EI RT)dT 
a T 

(2.19) 

where (To) is the initial temperature. 

I f  (To « T ') and (E/RT » 1), the solution of equation (2.19) is 

[ 34,45.36]  

G(X) = [-In(l-X)/ n = (Ko R rlEa) exp(-EIR T) (2.20) 
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Or in logarithmic fonn 

In[{-ln(l-x )}/{T2n}] = -nln(a)- nE +nlnCKoR) RT nE (2 .2 1 )  

At con tant a the relation between In [ { - ln( 1 -x') } / { T'2D } ]  and ( l IT) 

gi e the value of (E) .  

The order of crystal l ization reaction (n) was proposed by 

Ozawa[37 ]  method by differentiating equation (2.2 1 )  at constant 

temperature gives 

d{ln[-ln(J -yJ]}/d{ln( a)} = -n (2 .22)  

On this ba is  plotting { In [-ln( l -x)] } versus ( In a), which is 

obtained at the same temperature from a number of cry tal l ization 

exotherms taken at different heating rates should yield the value of (n). 

2.4 The Kissinger Method: 

The method which is  commonly used in analyzing the data in 

DSC and DTA experiments was developed by Kissinger [38, 39] . By 

using equation (2 . 1 0) and substituting from equation (2 . 1 2), the rate of 

reaction can be expressed as 

x = n K (J -yJ [-In(J _yJ/n-l) n (2 .23) 

In  taking the derivative of equation (2 .23)  with respect to time it is  

convenient to assume that, near the crystal l ization peak, ( [-In( l-X)](n­

I) D } i a constant denoted A.  taking the derivative of equation (2.23) with 

respect of time one obtains 
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l .e . 

or 

x - AKo[R�2 {A:O e p( EIRI;,)}] a(l- Xp)exp(�:) = 0 (2.24) 
p 

A RK 
a IT2 = _---"-0 exp(-E I RT ) P E P 

ln( alT/J = -EIR Tp + Constant 

(2.25) 

(2.26) 

The alue of E can be evaluated from the relation between In( alT p 
2
)and 

( l /Tp) in equation (2.26). 

2.5 Theories for Glass-Transition: 

The heating rate dependence of the glass transition temperature is 

interpreted in terms of thermal relaxation phenomena. In this kinetic 

interpretation, the enthalpy of the glassy system at a particular 

temperature and time, towards a new equil ibrium value {He(T) } .  The 

relaxation equation can be written if the fol lowing form 

(
aH

) = -(H-H.)/r 
at r 

< (2.27) 

where (L) is  a temperature dependent structural relaxation time and is 

given by the fol lowing relation 

I1E 
• =: '0 exp(-' )exp[ -c(H -H.)] 

RT 
(2.28) 
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\i here ('to) and (c) are con tant and (L\Et) i the activation energy of the 

relaxation time. Using the above equation, it can be shown that 

( a) being the heating rate. 

din a 
d (lITg) 

�E, 
R (2.29) 

The dependence of the glass transition (Tg) on the heating rate (a) 
can be analyzed in two approaches, one is the empirical relationship of 

the form 

Tg = A + B In( a) (2.30) 

where A and B are constants for a gIven glass composition. This 

equation was suggested by lasocka [40]. The other approach is the use of 

so cal led Kis inger formula [39] for the evaluation of the activation 

energy for glas transition (Et). For homogenous crystall ization with 

pherical nuclei, it has been suggested that the dependence of (Tc) on a is 

given by the fol lowing equation [41, 42] 

a E/ 
In( -2 ) = - -- + Constant Tg RTg (2.31 ) 

where (Et) is the effective activation energy of crystal l ization. Although 

original ly derived for the crystal l ization process, it is suggested that this 

expression is val id  for glass transition [43] and has often been used 

[41,44] to calculate the value of (Et). The Kissinger can be approximated 

by the form 

E/ C In( a) = - -- + onstant RTj!, (2.32) 
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Chapter 3 



Experimental Techniques 

3. 1 Sa m ple Preparation: 

Glassy al loy in the Se-Te system were prepared by using high 

purity (99 .999 %) e lements . Selenium (Se), Tel lurium (Te), Antimony 

( b), Cadmium (Cd) and Tin (Sn)  (from Aldrich) were weighted in 

appropriate at. % proportions by using electrical sensitive balance with 

accuracy of 1 0  - 4 g. 

The appropriate sample weight of each element (S.) is calculated 

form the equation : 

s !  = (3 . 1 )  

where OJ! is the weight of each e lement in the sample, 

OJ! = concentration of the element x atomic mass, 

I (1), = L weight of al l e lements in the sample, and 

WI is  the total weight needed for preparing the sample. 

Five grams of the starting sample composition were weighted and 

placed in a si l ica tube and sealed in a vacuum of about 1 0-5 torr. The 

tubes were heated in a furnace at the corresponding temperature for the 

pecified time as indicated in Table 3 . 1 .  

The tubes were shaken several times during the heating process to 

ensure the homogeneous mixing of the constituent elements. The tubes 
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Alloy Heating Time 
Temperature _tC) (Hou rs) 

SegO Te20 

SegO Te l6  Sb4 

SegO Te l 4  Sb6 700 24 

SegO Te l 2 Sbg 

SegO Te l O  Sb l O  

Se70 Te2g Sb2 

Se70 Te24 Sb6 
700 24 

Se70 Te22 Sbg 

Se70 Te20 Sbl O  

SegO Te l6  Cdt 800 20 

SegO Te l g  Cd2 
800 20 

SegO Te l O  Cd lO  

SegO Te l g  Sn2 

SegO Te l 6  Sil4 700 8 

SegO Te l O  Sn l O  

Table  3 . 1  Prepared a l loys. 



\i ere quenched m ice-water mixture and the glassy sample were 

obtained. 

3.2 X-ray Diffraction Mea s u rements 

X-ray diffraction measurements were used to confirm the glassy 

nature of the prepared samples. A Phil ips x-ray diffractometer model 

PW 1 1 840, with Ni fi lter, Cu-Ku radiation (Iv = 1 . 542 A 0) at 40 kV, 30 

rnA and scanning speed of (0.02 °/s) was used. 

Measurements were carried out at room temperature on the 

powder sample . The diffracted intensity as a function of the reflection 

angle was measured automatical ly by the x-ray diffractometer. The x-ray 

diffractograms of the prepared samples are shown in F igs. 3 . 1 - 3 . 1 5 . 

The ab ence of any peak in the x-ray diffractograms (Fig. 3 . 1  - Fig. 

3 . 1 0) indicates that SegO Te2o-xSbx (x = 0, 4, 6, 8, 1 0), Se70 Te30-xSbx (x = 

2.  6, 8, 1 0) and SegoTe l 6Cd4 al loys are in the glassy state. On the other 

hand, SegOTe2o_xCdx (x = 2, 1 0);  and SegOTe20_xSnx (x = 2, 4, 1 0) alloys 

have some degree of crysta l l inity as shown in Fig. 3 . 1 1 - F ig. 3 . 1 5 . 

3.3 Thermal A nalysis Measu rements 

When heated to h igh enough temperatures, all materials undergo 

physical or chemical changes. These changes alter the enthalpy and heat 

capacity of the material which in tum results in the release or absorption 

of heat .  By determining the instantaneous heat flow, differential 
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calorimetry ( 0  C) provide quantitative thermodynamic and kinetIc 

information about the phy ical and chemical changes occurring in the 

material .  

Thermal analysis refers to a group of methods in which some 

ph sical property of the sample is continuously measured as a function 

of temperature, whilst the sample is subjected to a control led temperature 

change. 

A convenient way of monitoring glass transition phenomena is by 

means of d ifferential scanning calorimetry (DSC) or differential thermal 

analys is ( OTA) in which the sample is heated at a constant rate and the 

change in heat (OSC) or temperature (OT A) with respect to an empty 

reference pan are measured. 

tudies of the crystal l ization of a glass upon heating can be 

performed in several ways . In calorimetric measurements two basic 

methods can be used; isothermal and non-isothermal . In the isothermal 

method, the sample is brought quickly to a temperature above the glass 

transition temperature T g and the heat evolved during the crystall ization 

process at a constant temperature is recorded as a function of time. In the 

non-isothermal method, the sample is heated at a fixed rate (a) and the 

heat evolved is recorded as a function of temperature or time. 

Differential Scanning Calorimetry : 

The differential scanning calorimeter records the difference in 

electric power required to keep the sample and a reference material at 
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equal temperature as the are heated (or cooled ) at a constant rate. The 

power difference show up during physical or chemical transitions in the 

ample and i equivalent to the thermal energy absorbed or released 

during the tran ition. 

The D C instrument used in our measurements was (Perkin-Elmer 

D C7).  It consists of a thermocouple, sample and reference holders, 

control and e aluation units and a series of measuring units (recorder, 

ampl ifier, control ler. etc . ) .  F ig. 3 . 1 6  shows a block diagram of the 

system.  The programmer of this instrument is capable of giving a wide 

range of heating rates from 1 °C/min to 200 °C/min. The recorder system 

incorporates and ampl ifies the signals from temperature (T ) sensor and 

heat flow sensor. Theses signals were recorded on a twin pen recorder in 

typical ease. Also the recorder has a range of sensitivity setting and of 

chart speeds. so that peak width as well as height can be varied. The 

curve obtained was registered on x-y recorder. Also it was possible to 

save the data digital ly and could be used later in (MS-Excel and MatLab) 

programs to p lot it. 

Samples in the form of powder weighing about 7 mg were sealed 

in aluminum crucibles and placed inside the sample holder. The sample 

was heated from room temperature up to 500 °C with different heating 

rates ranging from 5 Klmin to 50 Klmin. Nitrogen was used as a purge 

gas with a flow rate of about 1 00 ml/min. 

The temperature and energy calibration of the instrument were 

performed using a well known melting temperature and melting enthalpy 

of high purity indium, as shown in Fig 3 . 1 7 . 
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The fol lowing precaution were maintained in order to insure accurate 

re ults. 

1 - The heating rate was uniform over the whole temperature range and 

reproducible. 

2- Nitrogen flow through the specimen wa al lowed at a constant rate. 

Calculation of the fraction (x.) crystallized at any temperature: 

To calcu late the area between temperatures T \  and T (F ig 3 . 1 8) 

under the exothermic peak, the fol lowing procedure is fol lowed: 

- The total area of the exothermic peak between the temperature T \ ,  

where crystal l ization just begins and the temperature T 2 where the 

cry tal l ization is completed, is divided into a number of elemental 

areas (AJ), as shown in Fig. 3 . 1 8 . 

- The total number of elemental areas is (n), where (b = l in) is the 

width of each elemental area, b = 0.000 1 unit. 

- A l l  elemental areas are in the shape of trapezoids as shown in Fig. 

3. 1 8 . 

- To calculate the area under the curve between T \  and T (AT)' the 

fol lowing equation is used : 

T 
AT = L Aj 

j = 1 

where (3 .2)  

b ( a j + c j )  A j  2 
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\i here b, aJ and c, are as defined in Fig 3 . 1 8 . 

- The total area (A) is the summation of all  elemental areas (AJ) .  
- The fraction (X) crystal l ized at any temperature ( i  = T) is calculated 

from the fol lowing equation: 

A 
X = --..L 

A 
(3 .3 )  
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Chapter 4 



Results and Discussion 

The crystal l ization characteristics for glassy alloys in the Se-Te 

tern were tudied using a differential scanning calorimetric (DSC) 

mea urements . The glassy al loys used for the present study are l isted in 

Table 4. 1 .  DSC thermograms of glassy systems have exhibited common 

feature , which could be explained by considering (as an example) the 

o C thermogram of Seso Te20 al loy that shows three characteristic 

features, in the temperature range of investigation (Fig. 4. 1 ). 

1 - An endothermic peak corresponding to the glass transition 

temperature. This endothermic peak is usually observed in DSC curves 

as a re ult of a change in specific heat. Also the endothermic peak may 

be expected when the glassy spectrum relaxes quickly at the glass 

transition temperature due to a decrease in viscosity [45 ] .  This peak is 

caused by a rapid increase in enthalpy due to structural relaxation . 

2- An exothermic peak due to crystal l ization. 

3- An endothermic peak due to melting or softening of the alloy. 

Four characteristic transition temperatures are indicated in Fig. 

4. 1 ,  which are typical for glass-crystal l ine transformation.  These 

temperatures are : 

1 - The glass  transition temperature (T g), which is defined from the DSC 

thermograms as the temperature which corresponds to the point of 

intersection of the tangent l ines of baseline of the onset temperature of 

the first endothermic peak. 
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Alloy 
SegO Te20 

'1"""4 
SegO Te 16 Sb4 

S SegO Te l 4  Sb6 � ...... 
rn 
>. 

SegO Te l 2  Sbg en 

SegO Te lO Sbl O  

Se70 Te2g Sb2 

M Se70 Te24 Sb6 S 
� 

...... Se70 Te22 Sbg rn 
>. 

en 
Se70 Te20 Sbl O  

SegO Te l 6  Cc4 

Table  4 . 1 Glassy al loys invest igated i n  this study. 
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2- [he extrapolated on et cry tal l ization temperature eTc), which i 

defined from the DSC can a the temperature which corresponds to the 

point of inter ection of the tangent l ines of the ftrst side of the 

e othermic peak and the extrapolated base l ine. 

3- The peak temperature of crystal l ization (T p), which is deftned from 

the D C thermogram as the temperature which corresponds the 

exothermic peak maximum. 

4- The melting temperature (T mo) , which is the onset temperature of the 

econd endothermic peak maximum. 

4. 1 System 1 :  SeSOTe20-xSbx (x = 0, 4, 6, 8, 1 0) 

The DSC thermo grams of the SegO Te20-xSbx (x = O. 4, 6, 8, 1 0) 

gla sy al loys at d ifferent heating rates are shown in F igs. (4.2 - 4.6). It 

can be noticed from these figures that the three characteristics 

temperatures� the glass transition (T g), the onset temperature of 

crystal l ization (T c) and the peak temperature of crystal lization (T p) are 

shifted to higher values with increasing the heating rate. 

The DSC thermo grams of SegO Te20-xSbx (x = O. 4, 6, 8, 1 0) glassy 

al loys at a heating rate of 30 Klmin are shown in Fig. 4.7.  Al l  al loys 

have only one glass transition temperature. It is interesting to observe 

that SegO Te20, SegO Te1 6Sb4, and SegO Tel oSblO alloys have only one 

exothermic peak due to crystall ization . On the other hand, SegO Te l 4Sb6 

and SegO Te l 2Sbg alloys have two peaks of crystal l ization.  In  other words, 

it seems that for alloys which have Sb content between (4 < Sb < 1 0) 
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ther are two peak of cry tal l ization . Thi is the case for all  other 

heating rate a wel l .  The existence of two peaks of crystal l ization may 

indicate that such an al loy has two glassy phases and crystal l ization takes 

place in the e two phases. The existence of overlapping phases was 

ob erved in other cha1cogenide glasses such as Se6oGe2oSb2o [46] .  It can 

be noticed from Figs. (4.2 - 4.6) that both the endothermic peak due to 

glass transition and exothermic peak due to crystal l ization increase with 

increasing the heating rate. 

The glass transition: 

The dependence of the glass transition temperature (T g) on the 

heating rate (a) could be discussed using the fol lowing approaches : 

( i )  The empirical relationship which was suggested by Lasocke [40] is : 

Tg = A + B In a (4. 1 )  

where A and B are constants which depend on the glass composition . 

The relation between Tg and In(a) for the glassy system SegOTe20-

xSbx is  shown in Fig. 4.8 .  The solid l ines represent the best straight l ine 

fit to the experimental data points. The constants A and B are calculated 

for each glassy al loy, using the empirical relationship (4. 1 ), are l isted for 

each al loy in Table 4.2. 

( i i )  The dependence of Tg on heating rate a can be used to obtain 

experimental value for the glassy transition activation energy Et by 

means of Kissinger method [38 ] .  The relation between Tg and a is given 

by the equation : 
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Glass Composition A + B In a 
Seso Te20 3 1 4 + 8 .69 In  a 

Seso Te 1 6  Sb4 3 1 6 + 8 .55  In a 
Seso Te 1 4  Sb6 3 20 + 7 .32  In  a 
Seso Te 1 2  Sbs 323 + 7 .30 In  a 
Seso Te lO Sbl O 3 2 1  + 8 .30 In  a 

Table 4 .2  The fitting parameters to equation 4. 1 for the glassy system 
Seso Te20-xSbx . 



ln( �) = - � + Constant 
Til. RTI( 

(4.2) 

\ here R is  the gas constant. Although originally derived for the 

crystal l ization process, it was suggested that the expression is valid in a 

very general case [43 ] and has been often used to calculate Et [41 ,  42, 

44] .  

The variation o f  I n  ( a. / T g 
2

) with ( 1  / T g )  i s  shown i n  Fig. 4.9 

for the glassy system SegO Te2o-x Sbx• The solid l ines represent the best 

traight l ines fit to the experimental data points. The activation energy 

for the glass transition (EI) was calculated from the slope of each l ine. 

( i i i )  Mahadevan et .al. approximation [30]  could be used. The variation 

of In ( 1 / T g 
2

) with I n a. is considered to be less than that of ( 1 / T g )  

with I n a. .  Therefore eq. (4.2 )  could be approximated by 

E In( a )  = - _1_ + Constant 
R Tg 

(4.3 )  

The variation of  In a. with ( l ITg) i s  shown in  Fig. 4. 1 0  for the 

glassy system SegO Te2o-xSbx' The best fitting straight l ines are also 

shown, where the activation energy for the glass transition was 

calculated from the slope. The values of Et calculated from the slope of 

F ig. 4.9 and F ig. 4. 1 0  are l isted in Table 4.3 . It is c lear that the two 

deduced values of Et for each alloy are in good agreement with each 

other. This implies that either e q .  ( 4.2) or eq. ( 4.3)  could be used to 

calculate the glass transition activation energy. The average value of E I 
i also l isted in Table 4.3 for each glassy al loy. It could be observed from 
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Glass Composition Et (kJ/mol) Et (kJ/mol )  Et (kJ/mol )  
From Equation 4.2 From Equation 4 .3  Average Value 

Seso Te20 1 06 .68 + 0 .98 1 1 0 . 56  + 0 .97 1 08 . 1 2 + 1 .30 
Seso Te 1 6 Sb4 1 1 0 .64 + 0 .99 1 1 3 .26 + 0 .99 1 1 1 .69 + 1 .33  
Seso Te 1 4 Sb6 1 22 .99 + 0.95 1 29.22 + 0 .95 1 26 . 1 1 + 1 .35  
Seso Te 1 2  Sbs 1 24 .80 + 0.98 1 30.47 + 0.93 1 27 .68 + 1 .32  
Seso Te JO  Sb JO  1 1 6 . 86 + 0 .93 1 1 8 .49 + 0.95 1 1 8 . 88 + 1 .3 1 

Table 4.3 The values of activation energy for glass transition for the glassy system SegO Te2o_xSbx . 
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thi table that increasing Sb content results in increasing the value of the 

acti ation energy of glass transition up to 8 at .% of Sb. When Sb content 

i increased to 1 0  at .%, Ee decreases. 

It is interesting to observe the effect of Sb on the glass transition 

temperature for the glassy system Seso Te2o-xSbx . This behavior is 

represented in F ig. 4. 1 1 .  Increasing Sb content results in a l inear increase 

of the glass transition temperature. 

Crystallization kinetics: 

The dependence of the crystall ization temperature (Te) on the 

heating rate (a) could be discussed by using the fol lowing approaches: 

( i )  Kissinger formula [ 38 ], where it has been shown that for 

homogenous crystal l ization with spherical nucleation, the dependence of 

Tc and a is given by the fol lowing relation [42 ] :  

a E , C In( - ) = - -- + onstant 
T 2 R T  c , 

where Ee is  the activation energy for crystal l ization. 

(4.4) 

( i i )  Mahadevan et .al .  [30]  have indicated that eq. (4.4) could be 

approximated by 

Ec C In( a )  = - -- + onstant 
RTc  

(4. 5)  

since the ariation of ( l iT /) with ( In a) is considered to be less than that 

of l iTe with In a .  
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Equation (4.4) and (4. S )  ha e been used by several authors 

[ 30, 47, 48] to calcu late the activation energy of crystal l ization Ee. The 

relation 4.4 and 4.S are represented in Fig . 4. 1 2  and 4. 1 3. The relation 

between In(aJT/) and ( l ITe) is shown in Fig. 4. 1 2, while that between 

In(  u) and ( l iTe) is shown in F ig.4. 1 3  for the glassy system SegO Te20-x Sbx' 

The ol id l ines represent the best straight l ine fit to the experimental data 

points. Al l  calculations for the glassy al loy SegO Te 14Sb6 and SegO Tel 2Sbg 

are made for the first peak of crystall ization only. 

The activation energy for crystal l ization (Ee) was calculated from 

the lope of each l ine. The values of Ee calculated from Fig. 4. 1 2  and 

al 0 from Fig. 4. 1 3  for each composition are l isted in Table 4.4. It is 

c lear that the two deduced values of Ee ( for each alloy) are in good 

agreement with each other. The average value of Ee is also l isted in 

Table 4.4 for each glassy al loy. It is to be mentioned again that the 

values of Ee are calculated for the first exothermic peak for the glassy 

alloys Seso Te1 4Sb6 and Seso Te l 2Sbs· 

It is  interesting to compare the calculated value of Ee for SegO Te20 

al loy with some publ ished data. Afify [49, SO] had studied the 

crystal l ization kinetics for Seso Te20 al loy under isothermal and non­

isothermal conditions. His  value for Ee were found to be ( l 60 .8  and 

1 23.S kJ/mol )  for the isothermal and non-isothermal conditions, 

respectively. From Table 4.3,  the calculated value of Ee for SegOTe20 

al loy for the present study was found to be ( 1 54.65 kJ/mol). 

The effect of increasing Sb content on the on-set temperature of 

crystal l ization for the glassy system SesoTe2o-xSbx is shown in Fig. 4. 14. 
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a , 

b , 

Glass Composition Ee (kJ/mol) 
From Equation 4.4 

SegO Te20 1 5 1 .4 1  + 0.94 
SegO Te 1 6  Sb4 1 46.42 + 0.98 
SegO Te l O  Sb 1 0 1 1 9 .00 + 0 .96 --

Glass Composition Ee (kJ/mol)  
From Equation 4.4 

SegO Te 1 4  Sb6 1 39. 1 1 + 0.22 
SegO Te 1 2 Sbg 1 3 8 .24 + 0.99 

Ee (kJ/mol) 
From Equation 4 .5  

1 57 .89 + 0.93 
1 52 .3 1 + 0.98 
1 26.63 + 0.96 

Ee (kJ/mol )  
From Equation 4 .5  

1 45 .00 + 0.22 
1 43 .98 + 0.99 

Ee (kJ/mol )  
A verage Value 
1 54 .65 + 1 . 3 8  
1 49 .37  + 1 . 3 8  
1 22 . 82 + 1 .3 8  ----- -

Ee (kJ/mol) 
Average Value 
1 42 .06 + 0.3 1 
1 4 1 .0 1  + 1 .38  

Table 4.4 The values of activation energy for crystal l ization Eco for the glassy system Seso Te2o-xSbx . 
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It i intere ting to notice that increa ing Sb at.% up to 6% result 

in noticeable Increase in the value of Te. Further increase of Sb at.% up 

to 1 0% resu lt in a light decrease in the value ofTe .  

Crystallization using Partial area analysis: 

For non-isothermal crystal l ization, the volume fraction X of 

crystals precipitated in a glass heated at a uniform rate a is found to be 

related to Ee according to the fol lowing equation[5 1 ] :  

E In(- ln( l - xl = - n  In a - 1.052 m _c + Cons tan t RT (4.6) 

where n and m are constants having values between 1 and 4 depending 

on the morphology of the growth. The values of n and m for the various 

cr tal l ization mechanisms are l isted in Table 4.5 [30] .  

The fraction X crystal l ized at any temperature T is given by : 

AT X = -
A 

where A is the total area of the exothermic peak: between the temperature 

T I ,  where crystal l ization just begins and the temperature T 2 where the 

crystal l ization is completed and AT is the area between T I and T, as 

indicated by the shaded area in F ig. 4. 1 5 . 

The fraction of the crystal l ized sample (X) as a function of 

temperature (T) at different heating rates (a) is plotted in F igs. 4. 1 6  and 

4. 1 7  for Se80Te20 and Se80Tel 6Sb4 glassy alloys, respectively. On the 

other hand, F igs. 4. 1 8  and 4. 1 9  show the plot of ln[-1n( 1 -x)] versus ( l iT) 

for Se80Te20 and Se80Te l 6Sb4 al loys at different heating rates, 
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Mechanism m n 

Bulk nucl eation 

• Three dimensional growth 3 4 

• Two d imensional growth 2 3 

I • One dimensional growth 1 2 I 

I Surface nucleation 1 1 

Table 4 . 5  Values of n and m for various crystall ization mechanism 
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re pecti el . From the e figures. it can be noticed that the plot is l inear 

over mo t of the temperature range. At high temperatures, or in regions 

of large crystal l ized fractions, a break in the l inearity, or rather a 

lowering of the initial s lope is seen for all  heating rates. Such breaks was 

found in other chalcogenide glasses [52, 53 ] .  This break in slope is 

attributed to either saturation in nucleation sites in the final stages of 

cry tal l ization [53 ,  54], or to the restriction of crystal growth by the 

mal l ize of the particles [ 53 ] .  The analysis is confined to the initial 

l inear region, which is extended over a large range . 

From the slope of the In[  -In( l -x)] versus ( l iT), shown in Figs. 

4 . 1 8  and 4. 1 9  (m Ec) was calculated for SegOTe20 and SegoTe 1 6Sb4 

glassy al loys, for al l heating rates. Substituting for the average value of 

Ec from Table 4.4, the value of m could be calculated. It was found that 

the alue of m ,  for both alloys, is somewhat independent of heating rate. 

The calculated values of m for both al loys are l isted in Table 4.6. 

The variation of [-In( 1 -x)] with 1n(a) at fixed temperatures is 

shown in F igs. 4.20 and 4.2 1  for SegOTe20 and SegoTe 16Sb4 alloys, 

respectively .  The value of n is obtained from the slope of the reSUlting 

traight l ines, as indicated from eq.(4.6). The calculated values of n are 

l isted in Table 4.6 for both alloys 

From table 4.6, the values of m and n for SegO Te20 glassy al loy 

could be approximated to be 2 and 3, respectively. According to table 

4.5, these values of m and n indicate that crystal l ization mechanism for 

egOTe20 al loy is  based on a two-dimensional growth. On the other hand, 

the calculated values for m and n for SegO Te 1 6Sb4 glassy alloy ( 1  and 2, 
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Glass Composition m n 
Se80 Te20 1 .78+ 0 . 1 3  2 .67 + 0.2 1 

Se80 Te1 6  Sb4 1 .00 + 0. 1 1  2 .05 + 0.22 

Table  4 .6  The values of m and n for the glassy alloys Se80 Te20 and 
Se80 Te 1 6Sb4 
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re p cti el ) indicate that the crystal l ization mechani m for SegO Te 1 6Sb4 

aHo i based on a one-dimensional growth . 

The Temperature difference (Tc -TJ 

The kinetic resistance to crystal l ization increases with increasing 

the difference between T c and T g' This difference (T c -T g) gives an 

indication of the thermal stabi l ity of the glass [30] . Fig. (4.22) represents 

the relation between (Tc -T g) and Sb content for different heating rates. It  

can be noticed that (T c -T g) increases with the addition of Sb content up 

to 6 at. % and then tarts to decrease. This trend is independent of the 

heating rate. This indicates that SegO Te 1 4Sb6 is the most stable 

composition . A l l  other alloys have higher tendency towards 

crystal l ization. 

4.2 System2: Se70Te30-xSbx (x = 2, 6, 8, 1 0) 

The DSC thermograms of the Se70 Te30-xSbx at different heating 

rates are shown in Figs. 4.23 - 4.26. It can be observed that Tg, Tc and Tp 

are shifted towards higher values with increasing the heating rates . The 

DSC thermo grams of Se70 Te30-xSbx at a heating rate of 30 Klmin are 

shown in Fig 4.27. The data analysis for this system wi l l  be similar to 

that made for system 1 .  

The glass Transition 

( i )  The relation between T g and In a is shown in Fig. 4.28. The solid 

l ines represent the best straight l ine fit to the experimental data points . 
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The con tant A and B are calculated for each glassy alloy, usmg 
eg. ( 4 . 1 ), and they are Ii ted in Table 4.7 for each al loy. 

( i i )  The variation of In ( a/Tg
2
) with ( l /Tg) is shown in Fig. 4.29. 

( i i i )The variation of In a with ( l iT g) is given in Fig 4.30. 

The activation energy for glass transition for the Se70 Te30-xSbx 

tern is calculated from the slope of the straight l ines shown in Fig. 

4.29 and al 0 in Fig. 4.30. The values of Et calculated from both figures 

are l isted in Table 4.8 .  Also the average values are included in the table. 

It  is interesting to observe that increasing Sb at. % result in decreasing the 

alue of activation energy for glass transition. 

The effect of increasing Sb on T g is shown in Fig. 4.3 1 .  It is clear 

that T g increases l inearly with increasing Sb content. This behavior is 

imilar to the behavior of system 1 .  

Crystallization kinetics 

( i )  The relation between In ( a/T/) and ( l ITe) is shown in Fig. 4.32. 

(i i) The relation between ( Ina) and ( l ITe) is shown in Fig. 4.33 

The activation energy for crystal l ization Ec was calculated from 

the slope of the best straight l ine fit to the experimental data points for 

Figs. 4.32 and 4.33 .  The values of Ee for each alloy are l isted in Table 

4.9. Also the average values are l isted. It  is c lear that increasing Sb at.% 

results in increasing the value of activation energy for crystal l ization. 
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Glass Composition A + B in a 
Se70 Te28 Sb2 333 + 0.28 In a 
Se70 Te24 Sb6 338  + 0.37 In a 
Se70 Te22 Sb8 345 + 0.4 1 in a 
Se70 Te20 Sb l O  349+ 0 .52  I n  a 

Table  4 .7  The fitting parameters to equation 4. 1 for the glassy system 
S e70 Te30-x Sbx . 
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I Glass Composition Et (kJ/mol) Et (kJ/mol )  E t  (kJ/mol )  
From Equation 4.2  From Equation 4.3 Average Value 

Se70 Te28 Sb2 1 29 .3 1 + 0 .99 1 33 . 1 3  + 0.98 1 3 1 .22 + 1 .3 7  
Se70 Te24 Sb6 1 25 .0 1  + 0.96 1 28 .82 + 0.97 1 26.92 + 1 . 3 1  
Se70 Te22 Sb8 1 2 1 .43 + 0.96 1 24.48 + 0.93 1 23 .96 + 1 .3 1  
Se70 Te20 Sb l O 1 1 6 .97 + 0.97 1 20 . 1 5  + 0.96 1 1 8 . 56  + 1 . 33  

Table 4 .8  The values for activation energy for glass transition for the glassy system Se70 Te30-xSbx . 
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Glass Composition Ec (kJ/mol )  Ec (kllmol )  Ec  (kJ/mol) 
From Equation 4.4 From Equation 4 .5  Average Value 

Se70 Te28 Sb2 1 00 .30  + 0.98 1 04 . 86 + 0.98 1 02 .63 + 1 . 38  
Se70 Te24 Sb6 1 03 .02 + 0 .96 1 1 0 .37  + 0 .96 1 06 .69 + 1 .3 8  
Se70 Te22 Sbg 1 07 .53  + 0.97 1 1 5 . 35  + 0.22 1 1 1 .44 + 1 .3 7  
Se70 Te20 Sb lO 1 1 2 .4 1 + 0.92 1 1 8 .34 + 0.94 1 1 5 . 88  + 1 . 36 ---

Table 4.9 The values for activation energy for crysta l l ization for the glassy system Se70 Te30-xSbx. 
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The effect of increa ing the Sb at .% on Tc for the Se7oTe30_ Sbx 
y tern i hown in Fig 4.34. It i c lear that increasing Sb content 

re ult in an increa e in the value of T c up to 6 at. % of Sb and then 

decrea es s l ightly. Again the same trend was observed for SegO Te2o-xSbx 

glas y tern. 

Crystallization using partial area analysis 

The fraction of the crystall ized sample eX) as a function of 

temperature (T) at different heating rates (a) are plotted in Figs 4.35 To 

4.3 8  for the Se70 Te30-xSbx glassy system. The relation between In [  -InC I ­

X)] and ( l iT) at different heating rates are shown i n  F igs. 4.39 To 4.42. 

It i c lear that the plot is l inear over most of the temperature range 

measured. At high temperatures, a break: in the l inearity is observed for 

al l heating rate for al l al loys. The analysi is  confined to the lower 

l inear region . From the slope. the value of m could be calculated for each 

heating rate and an average value is calculated for each alloy. The values 

of m are l isted in Table 4. 1 0. 

The variation of In [  -In( I -X)] with ( In a) at fixed temperature is 

shown in F igs. 4.43 To 4.46 for the Se70 Te30-xSbx glassy alloys. The 

value of n is obtained from the resulting straight l ines. An average value 

for n was calculated for each glassy alloy and is l isted in Table 4. 1 0. 

The crystal l ization mechanism for each glassy alloy could be 

predicted by comparing the calculated values for m and n which are 

l isted in Table 4. 1 0  with those given in Table 4.5 .  It  is interesting to 

ob erve that each al loy has a different crystal l ization mechanism: 

l 
1 02 



--. 

440.00 

430.00 

420. 00 o 
Q 

)K 
A� ��_ � G-�_ ............ I:l 

0 
� 410.00 '-' 

() 

D 
0 � 

400.00 
)( 
IS. 
o 

390.00 0 

+ 
380.00 

1.00 

+ 

3.00 5.00 

Sb at. �o 

+- - -+ 
* a =  50 
� a = 40 

o a = 30 

o a = 20 

+ a =  1 0  
. , 

7.00 9.00 11 .00 

Fig. 4.34 Onset temperature of crysta l l ization as a function of Sb content for Se70 Te30-xSbx glassy 
system at different heating rates. ...... 

o w 

� 



1 . 1  

0 .9  

0 .7  

� 0.5  

0 .3 

0. 1 

-0. 1  

370 395 420 445 

T (K) 

o 10  Klmin 
o 20 Klmin 
+ 30 Klmin 
!::,. 40 Klmin 
x 50 Klmin 

470 

Fig. 4.3 5 The fraction of crystal l ization as a function of temperature at different heating rates for 
Se7oTe2sSb2 glassy al loy .  

....... 
o +-



1 

)<. 

0 . 8  

0 .6 

?-< 
( -J '+, 

rt '"j:, I / I , 
0.4 

¢ 
7' 

+ " "'"' 
0 . 2  ? � )� o 1 0  Klmin 

o 20 Klmin 
+ 30 Klmin 
f). 40 Klmin 
x 50 Klmin 

400 4 1 0  420 430 440 450 460 470 480 490 500 

T (K) 

Fig. 4 .36 The fraction of crystal l ization as a function of temperature at different heating rates for 
Se7oTe24Sb6 glassy alloy. 

...... 
o lJl 



1 

0 .8 

0 .6 

� 

0 .4 

0 .2 

o 

400 4 1 0 420 430 440 450 

T (K) 

o 10  Klmin 
o 20 Klmin 
+ 30 Klmin 
!1 40 Klmin 
x 50 Klmin 

460 470 

Fig. 4 .37 The fraction of crystal l ization as a function of temperature at different heating rates for 
Se7oTe22Sbs glassy al loy .  o 

0'1 



1 

0 . 8  

0 .6 

� 

0 .4 

0 . 2  

o 

400 

t 

4 1 0 

,A 

420 

.­'+'" 

430 440 450 460 

T (K) 

o 1 0  Klmin 
o 20 Klmin 
+ 30 Klmin 
(). 40 Klmin 
x 50 Klmin 

- � 
470 

< 

480 

F ig. 4 .38 The fraction of crystal l ization as a function of temperature at different heating rates for 
Se70 Te20SbIO  glassy al loy. 

o 
-..) 



r--I 
,.-... C>< 

I 
� 
'-' ..s 

I I...--,.j c:: ........ 

-0 5 

- 1  

- 1 . 5  

-2 

-2 . 5  

-3 
2 .3  2 .35 2.4 2 .45 

1 03fT (K- t )  
2.5 

o 1 0  Klmin 
o 20 Klmin 
+ 30 Klmin 
tJ. 40 Klmin 
'" 50 Klmin 

Fig. 4 .39 In [-ln( l -x)] versus ( 1 03fT) for Se70Te2SSb2 glassy al loy. 

2.55 

o 00 



,..--, 
,-., � 

I 
.-
'-" ..s 

I '--I � .......... 

0 5 

0 

-0 5 

- 1  

- 1 . 5  

-2 

-2 . 5  

-3 

-3 .5  
2 .2  

o 1 0  Klmin '\. o 20 Klmin 
+ 30 Klmin 
fl 40 Klmin 

.. � \ \ \ 
'" 50 Klmin 

2 .25 2 . 3  2 . 35 2 .4  

1 03 IT (K- 1 )  

F ig. 4 .40 In[- ln( l -x)] versus ( 1 03fT) for Se7oTe24Sb6 glassy al loy. 

2 45 

-
o 
I.D 



,......, 
� � 

I 
,........ 
'-" .s 

I 
"'--I � ....... 

1 

0 5  

a 

-0 .5  

- 1 

- 1 . 5  

-2 

-2 . 5  

-3 

2 .2  

�: 

2 . 25 2 3  

1 03fT (K- 1 )  
2 . 35 2 4  

o 10  Klrnin 
+ 30 Klrnin 
11 40 Klrnin 
* 50 Klrnin 

F ig. 4 .4 1 I n [  -1n( 1 -X)] versus ( 1 03 IT) for Se70 Te22Sbg glassy al loy. 

2.45 

......... 
....... 
o 



,..--, 
� ?< 

I 
.--I 
'-" ..s 

I 
"'-' � ....... 

1 

0 . 5  

0 

-0.5 

- 1  

- 1 . 5  

-2 
2 2  

l:::.. + 0 
+ 0 l:::.. + 0 o 1 0  Klmin 

\ \ \ 0 o 20 Klmin 

0 + 30  Klmin 
!1 40 Klmin 
* 50 Klmin \ � \ \ \ 

2 25 2 . 3  2 . 35 2 .4 

1 03fT (K- 1 )  

F ig. 4.42 I n [- ln( l -x)] versus ( 1 03/T) for Se70Te20Sb )O  glassy al loy.  

2 .45 

...... 
...... 
...... 



1 1 2 

Glass Composition m n 
Se70 Te28 Sb2 1 . 1 2 ± 0 .32 1 .08  ± 0. 1 8  
Se70 Te24 Sb6 1 .0 1 ± 0. 1 0  1 .95 ± 0.26 
Se70 Te22 Sb8 3 .08 ± 0 .2 1 4 . 1 6  ± 0 .07 
Se70 Te20 Sb l O  2 . 1 2  ± 0.26 3 .09 ± . 1 5  

Table  4. 1 0  The values of m and n for the glassy system Se70 Te30-x Sbx . 



,.--, 
,..-., c-< 

I 
..-I 
'-'" � --' 

I ......... � -

1 

0.5 i -

-

�--- �'-a .... -... .-
-� 

-0 .5 

-1 I 

- 1 .5 

-2 

-2 .5 
2.2 2.45 2.7 

-� � X 
� 6-, 
....... ----,.g .. ... " ......... 

� 

2.95 

. 

�� 

3.2 
In a 

O T=424K 
o T =427K 
A T =430K 
X T =433K 

X 

A - - x 
¢ ,�-,� X 

¢ - � "  � 
0 

3.45 3.7 3.95 

Fig. 4 .43 In [- ln( l -x)] versus In a at constant temperatures for Se70Te2SSb2 glassy al loy. 

4.2 

...... 
...... 
VJ 



o T =442 K  
0. 5 

[I T =444 X '" 

t. T =446 K o A " � " '" " �, __ , X 
X T =446K �" " -- '''''� - , A "".. .... L.l o -- -

-0.5 
0 , v -. ..... ....... /:"to. � 
0 

� 
I - 1 • :::: 

--0 ____ v 
� 

�- � 
, 

" ''"______ J 
� - 1 .5 

0 � 
............ 0 -2 

0 
-2 5 

3.6 

. 

3.2 2 .8 

In a 

Fig. 4 .44 In [  -In( 1 -x)] versus In  a at constant temperatures for Se70 Te24Sb6 glassy al loy .  

4 

...... 
.,. 



,--, 
".-.., X 

I 
..... 
'-'" � ..... 

I 
L...-.J � .......... 

1 

X 
0 5  A � T=438 K 

D D T=439 K 
� A T=440 K  0 X T=441 K  

X 
-0.5 .. A 

D 

- 1 r � 
" 

..... 

X 
- 15 A 

t::J 
-2 � 

-2 5  
33 34 3 5  3.6 3.7 3 8  3.9 

In a 

Fig. 4.45 In[ - In(1 -x)] versus In a at constant temperatures for Se70 Te22Sb8 glassy al loy . 

4 

....... 
....... 
Vl 



,.....-, 
,-..., ?< 

I 
..-
"-" � .-

I '--' 
c ........ 

2 

1 . 5  

1 r 
0 . 5  

0 

- 0 . 5  

- 1  

- 1 . 5 

- 2  

- 2 . 5  

- 3  

2 . 2  

)( 
/!i 
D 
<> 

2 .6 

In a 

X 
b. 
c 
Q 

3 

<> T =422 . 5 K 
c T =423.5 K 
b. T=424 . 5 K 
X T =425. 5 K  

X 
b. 
tJ 
� 

3.4 

Fig. 4 .46 In [- ln( 1 -x)] versus In  a at constant temperatures for Se70 Te20SbJO  glassy al loy. 
....... 
0'1 



- Se70 Te2g b2 : urface nucleation 

e70 Te24Sb6 . one dimensional growth 

e70 Te22Sbg : three-dimensional growth 

e70Te20Sb l O  : two dimensional growth 

The Temperature difference (T c -T J 

The effect of Sb content on the temperature difference (Tc -T g) is 

hown in F ig. 4.47. It is c lear that (Tc -T g) increases with increasing Sb 

content from 2 at. % to 6 at. % and then decreases with further increasing 

of b content up to 1 0  at.%. This indicates that Se7oTe24Sb6 is the most 

table al loy in the Se70 Te30-xSbx glassy system. It is interesting to 

ob erve that the al loy with 6 at.% of Sb in both system 1 and sytem2 is 

the most stable  al loy. 

4.3 SCso TC16Cd4 glassy alloy: 

The DSC thermo grams for the SegoTe J 6Cd4 glassy alloy at 

d ifferent heat ing rates are shown in Fig. 4 .48.  

The glass Transition 

( i )  The relation between Tg and In a is shown in Fig. 4 .49. The value 

of the constants A and B in eq.(4. 1 )  were found to be 303 and 1 0 .76, 

respectively. 

( i i )  The variation of In ( a/Tg2) with ( l IT g) is shown in Fig. 4.50. 

(i i i) The variation of In a with ( l IT g) is shown in Fig 4.5 1 .  

1 1 7 
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[he acti ation energy for the glass tran ition (Et) is calculated from 

Fig . 4 .50  and 4 .5 1 and was found to be (76 .84 ± 0.97) and (85 .66 ± 

0 .99) kllmol. respectively. The average values for Et is  (8 l .25 ± l .36) 

kllmol .  

Crystal lization kinetics 

( i i i) The relation between In ( a/T/) and ( l ITe) is shown in Fig. 4 .52 .  

( i ) The relation between ( lna) and ( l iTe) is shown in Fig. 4 .53 

The activation energy for crystal l ization (Ee) calculated from Figs 

5 .52  and 4 .53  was found to be ( 1 27.95 ± 0 .98) and ( 1 35 .4 1  ± 0 .96) 

kllmol ,  respectively. The average value for Ee is ( 1 32 .68 ± l . 34) kllmo! .  

Crystallization using partial area analysis 

The fraction of the crystal l ized sample (X) as a function of 

temperature (T) at different heating rates (a) is plotted in Figs 4.54. The 

relation between In [  -In( I -X)] and ( 1  IT) at different heating rates is shown 

in Figs.  4 . 5 5 .  From the slope, an average value for m was found to be 

around 1 . 1 3 .  

The variation of In[-ln( l -x)] with ( In a) at fixed temperatures is 

shown in F igs. 4 .56 .  From the slope, an average value for n was found to 

be 1 . 1 2 . The values of m and n indicate that surface nucleation is the 

dominant crystal l ization mechanism for Seso Te 1 6Cd4 glassy al loy. 
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Sum mary and Conclusions 

Chalcogenide gla sy al loys in the system Se-Te were prepared by 

the melt quenching technique . Four systems were prepared. It was found 

that ample of SegOTe20_ Sbx (x = 0, 4, 6 8, 1 0) and Se7oTe30-xSbx (x = 
2, 6, 8, 1 0) systems were al l in the glassy state. On the other hand, 

amples of SegO Te2o_xCdx (x = 2, 4, 1 0) and SegO Te20_xSnx (x = 2, 4, 1 0) 

systems had some degree of crystal l inity, except SegOTe 1 6Cd4 al loy 

which was in the glassy state. 

Differential canning calorimetry measurements were carried only 

on the glassy al loys. It was found that the glass transition temperature 

and the onset temperature of crystal l ization depend on the heating rate. 

The glass transition activation energy (Et) was calculated by different 

methods and the value were in good agreement, for each glassy al loy. 

Thi indicates that any methods could be used for the calculation of Et .  

The a erage value of Et was found to be (from 1 08 . 1 2  to 1 27.68 kllmol )  

for SegO Te2o-xSbx system and (from 1 1 8.56  to 1 3 1 .22 kllmol)  for 

Se70 Te30_xSbx system. 

The activation energy for crystal l ization (Ec) was calculated by 

using different equations. The values of Ec were in good agreement with 

each other, indicating that any equation could be appl ied for calculating 

Ec. The average value for Ec was found to be (from 1 22 .82 to 1 54 .65 

kllmol)  for SegO Te2o-xSbx system and ( from 1 06.63 to 1 1 5 .88  kllmot) for 

Se70 Te30_xSbx system. 
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Cry tal l ization u ing partial area analy is were tudied where the 

cry tal l ization mechanism was concluded for each glassy al loy. 

The difference between the crystal l ization temperature and glass 

tran ition temperature (T c - T g), which gives an indication of the thennal 

tabi l ity of the gla es, was calculated. 

In conclusion, it was found that Seso Te l4Sb6 al loy is the most 

table al loy in the Seso Te20_xSbx system. All  other alloys have higher 

tendency towards crystal l ization. It was also found that Se70 Te24Sb6 al loy 

i the most stable one in the Se70 Te30-xSbx ystem. It is  interesting to note 

that the alloy with 6 at.% Sb is the most stable one in both systems. 

Increasing Sb content for the SesoTe2o- Sbx system results in 

increasing the value of activation energy for glass transition up to 8 at. % 

Sb. When Sb content is increased to 1 0  at .%, the value of Et decreases. 

It  was found that increasing Sb content for Se70 Te30-xSbx system 

resu lts in decreasing the value of activation energy for glass transition 

and in increasing the value of activation energy for crystal l ization. 

Increasing Sb content for Se70 Te30-xSbx system results in a l inear 

increase in the value of T g. While increasing Sb content causes an 

increase in the value of Tc up to 6 at.% Sb and then decreases slightly. 
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APPENDCES 

A. The progra m used for drawing several thermograms on 

the same plot: 

ing MS-Excel software" 

For m � 2 �  where m is the raw reference 

= [ 1 , 4, 7 , 1 0, 1 3 ]  

J = [ 2, 5 ,  8 ,  1 1 , 1 4  ] 

o = [ 3  6, 9, 1 2, 1 5  ] ;  (i, j ,  0) are column references 

(Di) is the heating rate 

Di = [ 1 0, 20, 30  40, 50]  

[ R I Ci ]  = "The header of the Temperature Column at heating rate (Di)" 

[ RmCi] = [ values on Temperature axis] 

[R I Cj ] = "The header of the Heat flow Column at heating rate (Di)" 

[ RmCj ]  = [ values on Heat Flow axis] 

Ts = The starting value of the measured Temperature 

Hs = The starting value of the measured Heat Flow 

RnCi = The last measured Temperature value, at heating rate (Di)  

RnCj = The last measured Heat F low value 

1 3 1  



(Co) is the counter for the heating rate (Di) 

o = n / (Value(RnCi - Ts)) 

Xi = [ R I Ci � RnCi ] 

Yi = HLOOKUP("R I Cj " ·R I C$ l :R$nC$n;VALUE(RiC$o);FALSE) 

Then the X-Y plot is used to present the relations at different heating 

rate on the same graph. 

The arne approach could be used for everal thermograrns of different 

ample at a fixed heating rate 
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B. The p rogra m for calculating the fraction (X) 
c rystall ization fun ctions at a particular heating rate (Di). 

ing M S-Excel oftware" 

m � 2;  where m is the raw reference 

[R I C I ] = "The header of the Temperature Column at heating rate (DiY' 

[ RmC 1 ]  = [ values on Temperature axis] 

[ R I  C2] = " The header of the Heat flow Column at heating rate (Di)" 

[ RmC2] = [ values on Heat F low axis] 

T = The starting value of the measured Temperature 

H = The starting value of the measured Heat F low 

RnCi = The last mea ured Temperature value, at heating rate (Di) 

RnCj = The l ast measured Heat Flow value 

Indx = [ 1  � n] 

H Mx is the maximum value of the heating rate within arrange of data 

TMx is the temperature value corresponding to HMx 

CMx is the cell reference corresponding to HMx 

HMn is the minimum value of the heating rate within arrange of data 

TMn is the temperature value corresponding to HMn 

C Mn is the cel l reference corresponding to HMn 
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HMx =- MAX(R2C2 :RnC2) 

HMn - MIN(R2C3 :RnC3)  

CMx = MA TCH(V ALUE(HMx);R2C$2 :RnC$2;0)+ 1 

CMn = MA TCH(V ALUE(HMn);R2C$2: RnC$2;0)+ 1 

TMx = H LOOKUP("R 1 C 1 " ;R2B$2:RnC$2;CMx;F ALSE) 

TMn = HLOOKUP("R I C I  " ;R2B$2 :RnC$2 ;CMn;FALSE) 

WH = 0 . 5 *  AVERAGE(VAL(R I C I ) :VAL([R2C I -RnC2])); 

\ here W H  is the parameter used to calculate the iteration size for 

crystal l ization Area division. 

DH = ABS($L$2 - (HLOOKUP("tf" ;B$ 1 :C$5 1 02;VALUE($H$9) 

+ A2-2;FALSE)) 

- (HLOOKUP("tf" ;B$ l :C$5 1 02;VALUE($H$9) 

+ A2- 1 ;FALSE))); 

where (DH) is The parameter used to calculate the basel ine value. 

[ RmAE] = [ RmDH] x [RmWH];  

where (AT) is the value of the elemental areas. 

AB = MA TCH(TMx;R2 B$2:RnB$2;0)+ 1 

AL = MATCH(TMn;R2B$2 :Rn B$2;0)+ 1 

As = INT« H 1  0-H9)/30); 

where (As) is  the area calculation step parameter. 

Ap = AL - AB 
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AT - SUM(R2AE : RpAE); where [RpAE] is the end of Area point. 

[ RmCTi] = RmCT{ l - l }+VALUE($Ap); 

where CT i the counter used for temperature positioning on x-axis. 

[ RmTi ] = HLOOKUP( " R I C I  " ;R2B$ l :RnB$n;$RmCTi;FALSE) 

[ RmAfj = HLOOKUP("c l O" ;Rl M$n : RnN$n;$RmCTi;FALSE) 

x =[RmAfj/ A Tn 

X= V AL(RmTi) 

Y =LN( -LN( 1 -xx)) 

Then using the X-Y plot, the fraction (X) crystal l ization can be ploted. 
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