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Abstract

The distribution system is one of the main components in a a smart grid, readings

are transferred from the distribution substations to the control center. Compromising

transferred system data will result in drawing wrong conclusions about current opera-

tion status at the control center. Which leads to sending wrong operational commands,

that may result in very serious consequences.

Firstly, we propose a scalable communications architecture for future smart

grid distribution systems (i.e. Security Aware Distribution System Architecture -

SADSA). The architecture is adaptable to use WiFi or other technologies to transfer

smart grid information. The architecture is studied from various angles. Both commu-

nication and cybersecurity challenges are extracted. In addition, the work provides a

detailed discussion on how the proposed architecture meets National Institute of Stan-

dards and Technology (NIST) cybersecurity requirements for smart grids.

Secondly, we propose the False Data Injection Prevention Protocol - FDIPP,

the protocol prevents packet injection, duplication, alteration and node replication. In

other words, it guarantees both system and data integrity. The protocol was analyzed

using formal security analysis. Furthermore, Network Simulator 2 is used to evaluate

both SADSA and FDIPP. The simulation is used to measure the delay and security

overhead introduced from FDIPP and the proposed architecture.

Keywords: Smart Grid Security, Power Distribution System, Security Architecture,

Security Analysis, Communication Network Security, Data Integrity, System Integrity,

False Data Injection, Node Replication, Scyther, Network Simulator 2.
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Chapter 1: Introduction

Smart grids are the next generation power systems, they aim at running the regular

power system over a smart communication architecture. Smart grids integrate the us-

age of solar energy and distributed energy generation. Implementing and using smart

grids is envisioned to increase efficiency and reliability of power systems. However,

achieving this functionality requires using smart devices, which will introduce many

vulnerabilities. Exploiting such vulnerabilities is much more critical than exploiting

vulnerabilities in regular networks. Because a successful attack on a smart grid can

cause a power outage for large areas and ,in turn, results in huge financial losses.

The distribution system is one of the major components in legacy power grids.

It is responsible for delivering power to end consumers. There are two types of distri-

bution substations, namely, primary substation (PS) and secondary substation or (SS).

The latter is connected to consumers from one side and to a primary substation from

the other. Every group of secondary substations is connected to one primary substa-

tion. Therefore, there is a large number of secondary substations, which are highly

distributed by nature.

Acquiring the correct data from secondary substations with appropriate com-

mands is important for future smart grid operation. Receiving wrong information

from secondary substations may result in making inappropriate decisions, and send-

ing wrong operational commands, which may cause sever consequences. Researchers

have identified many security attacks, which can cause fires, hurt people, or even cause

blackout for a whole city. Authors of [3] describe an attack that results in preventing

legitimate status messages from being delivered to the control center. The authors in

[4] discuss a false data injection attack that will affect the State Estimation System, a

system that allows getting an accurate estimate about the power system status, which

is a part of Energy Management System. They also identified the minimum number
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of compromised nodes needed to cause an unobservable data attack to SCADA system

in the control center. In [5], authors show how compromising one control center can

result in causing denial of service for state of the art State Estimation system. In addi-

tion, using specific technologies such as WiFi or ZigBee for communication in smart

grids introduces vulnerabilities related to these technologies.

Before looking at the security service we are targeting in this work, let’s define

the three core aspects of security, namely, confidentiality, integrity, and availability.

Confidentiality is basically ensuring private information is not disclosed to an unau-

thorized party. Integrity is ensuring that the information sent was not modified on its

way in an unauthorized manner and making sure that the system is functioning free

from any unauthorized manipulation. Availability is ensuring that users are able to

access the service in a timely manner [6].

Confidentiality service is achieved using encryption. There are two types of

encryption, symmetric and asymmetric. In symmetric encryption there is a secret key

that is used for both encryption and decryption. On the other hand, in asymmetric

crypto-systems, every entity has two keys, one is private and one is public. As the

names imply, the public key is shared with everyone and it is used for encryption,

while the encrypted ciphertext can be only decrypted by using the private key [6].

Altering the content of a transmitted packet is considered a violation of data

integrity, whereas, having a node that does not belong to the system injecting data is

considered a violation of both data and system integrity. Data integrity can be improved

by employing one way hash functions such as SHA-3 [7]. Any change in data will

result in changing its hash value, thus, the attempt will be detected. On the other

hand, authentication improves system integrity i.e. it denies unauthorized users from

accessing the system assets.

To increase security of smart grids, NIST has developed Guidelines for smart

grid cybersecurity [8]. The document shows a remarkable effort that can significantly

reduce vulnerabilities. It has defined cybersecurity requirement development guide-
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lines for communication interfaces between different smart grid domains. The docu-

ment will be discussed in more details in section 2.1.

On the other hand, communication challenges in smart grids are considered

another major concern. Smart grids in their nature use heterogeneous device types,

protocols, and communication technologies. Thus, achieving seamless integration be-

tween all smart grid components is considered a great challenge. Furthermore, it is

known that the power distribution system is made of a huge number of nodes. All

these nodes need to communicate with each other in the future smart grid. In addi-

tion, the network should be reliable to allow the desired functionality. Thus, scalability

and reliability of the underlying communication architecture should be taken into ac-

count. Moreover, given the number of nodes in a smart grid communication system,

key management should be considered as one of the challenges.

In this work, we focus on the integrity of the distribution system. Although the

proposed protocol FDIPP encrypts packets, confidentiality and availability are con-

sidered out of the scope of this thesis. Furthermore, security analysis of all the used

protocols except FDIPP is considered out of scope as well. That’s because the security

of all these protocols was verified by their authors. The contributions of this work are

as follows:

1. Security Aware Distribution System Architecture - SADSA: It’s a scalable,

adaptable, and security aware communication architecture for smart grid distri-

bution system. Both communication and cybersecurity challenges of the pro-

posed architecture are highlighted. In addition, detailed analysis of the security

awareness of SADSA is introduced based on NIST smart grid security require-

ments.

2. False Data Injection Prevention Protocol - FDIPP: FDIPP is an authentication

and key management protocol. FDIPP prevents packet injection, duplication, al-

teration and node replication. Scyther tool is used for the formal security analysis

of FDIPP.
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3. Performance Evaluation: NS2 software is used to study the delay and security

overhead resulting from both SADSA and FDIPP.

Addressing the contributions listed beforehand helps in addressing two active areas in

the literature. Firstly, we propose a security aware smart grid communication architec-

ture and analyze the requirements with respect to the proposed architecture. Secondly,

we propose a protocol that completely fits the underlying communication architecture.

Moreover, the key management algorithm significantly reduces the overhead resulting

from key transfers, but still does not use encryption or hashing keys for more than

one hour. As a result, the protocol meets forward secrecy property as well. In addi-

tion, simulation results help in determining the correct number of nodes per cluster to

achieve predefined delay requirements.

The rest of this thesis is organized as follows: Chapter 2 covers the literature

review, it covers both background and related work. After that, Chapter 3 covers the

Security Aware Distribution System Architecture. It describes the architecture and

the communication challenges. It also discusses the security awareness of SADSA

and how it aligns with NIST cybersecurity guidelines. Then, Chapter 4 describes the

False Data Injection Prevention Protocol. Additionally, it covers the detailed protocol

operation, the key management algorithm, and FDIPP security analysis. Chapter 5

addresses the performance evaluation of SADSA and FDIPP. Moreover, it covers both

the simulation design and the acquired results. Finally, Chapter 6 concludes this work

and highlights future work.
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Chapter 2: Literature Review

2.1 Background

The National Institute of Standards and Technology developed a conceptual architec-

ture for smart grids. According to this model, the smart grid is made of 7 domains as

follows [9]:

1. Customer: This covers the end users of electricity, but they may generate and

store their own electricity using distributed energy resources.

2. Markets: It defines the price of electricity based on supply and demand levels.

Dynamic pricing is a component of this domain.

3. Service Provider: The entity that provides electricity to customers.

4. Operations: Managing electricity movement.

5. Generation: Generation and storage of electricity, it may include distributed en-

ergy resources as well.

6. Transmission: Carrying bulk electricity over long distances.

7. Distribution: Delivering electricity to and from customers.

Here, we focus on the distribution system, which allows delivering electricity from

distribution domain to customers. Electricity passes through substations over its jour-

ney to the customers, namely, primary and secondary substations; these substations are

used to step down voltage to suit customer needs and they are referred to as PS and SS

respectively. Components of distribution domain interact with other domains, such as

Operations and Customer domains. These components are called actors in the smart

grid arena. Actors are simply software and hardware systems that participate and play

a significant role in the smart grid. Actors of the distribution domain are listed below
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along with their definitions[8]:

• Distribution Sensors: Devices that measure physical quantities and send them as

digital signals to be used by other actors in the system.

• Remote Terminal Units and Intelligent Electronic Devices - RTU and IED: Re-

ceive information from various sensors and send commands accordingly.

• Distribution Data Collector: A system that collects data from different sources

and modify or transfer these data.

• Distributed Intelligence Capabilities: Autonomous applications that operate sep-

arate from centralized control to increase responsiveness and reliability of the

system.

• Geographic Information System: A management system that provides asset in-

formation and status for other advanced applications.

• Field Crew Tools: Maintenance handheld tools that are used for field engineer-

ing.

The described actors are shown in Figure 2.1. Geographic Information System and

Field Crew Tools are out of the scope of this work.
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Figure 2.1: Distribution System Components

Communication between substations has specific delay requirements based on

the application. These requirements are defined as constraints in IEC 61850 as shown

in Table 2.1 [1]. Messages of Type 1A have very strict time requirements because they

are used for protection and fault isolation. Type 1B messages are used for traditional

communications between different systems. Finally, use of Type 2 and Type 3 mes-

sages is restricted to less critical messages such as reading from substations. Because

of the importance of such requirements, they should be planned before building any

communication network supporting smart grid distribution system.

Message type Delay constraint(ms) Usage
Type 1A/P1 3

Fault isolation and protection
Type 1A/P2 10
Type 1B/P1 100

Routine communication
Type 1B/P2 20

Type 2 100
Monitoring and readings transfer

Type 3 500

Table 2.1: IEC 61850 Delay Constraints [1]
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A smart grid distribution system is a large scale system because of the number

of its components and their high density. Key management includes key generation,

distribution, storage, and revocation. Clearly, for a system with this size, key man-

agement is needed. Furthermore, maintaining security services is not a simple task

because attacks take different shapes. For example, node replication, packet injec-

tion, packet duplication, packet alteration, spoofing, and tampering are all considered

integrity attacks and every one of them needs to be mitigated using a unique counter-

measure.

NIST has developed a comprehensive report titled Guidelines for smart grid cy-

bersecurity in [8] that covers smart grid cybersecurity guidelines. The report is divided

into three volumes as follows:

• Smart Grid Cybersecurity Strategy, Architecture, and High-Level Requirements:

It covers a systematic strategy for developing security architectures. It also cov-

ers the logical architecture developed by NIST and its components. It covers the

related cybersecurity requirements as well.

• Privacy and the Smart Grid: It defines the privacy terms in smart grids. It deter-

mines which personal activities are within the scope of smart grids. After that, it

discusses relevant issues, concerns, and risks.

• Supportive Analyses and References: It classifies vulnerabilities and highlights

security problems in the smart grid. It also gives an overview on how to asses

standards against security requirements.

The first volume was used in this work to analyze and verify security awareness of

SADSA. Although this volume maps cybersecurity requirements to the defined logical

architecture, the architecture used is considered high-level because it does not cover

the underlying communication network. In addition, the volume only covers definition

of requirements. It does not cover how defined requirements are met.

Evaluation of security protocols plays a vital role in determining trustworthi-
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ness of developed protocols. It’s very hard for humans to identify flaws by inspec-

tion. Thus, formal security analysis methods can be used. Authors in [2] have com-

pared multiple security evaluation approaches. As shown in Figure 2.2, evaluation

approaches were categorized based on three factors. Namely, model checking or theo-

rem proving, symbolic or cryptographic, and bound or unbound.

Figure 2.2: Security Evaluation Approaches [2]

In model checking, algorithms are followed to verify security. Whereas proofs

should be constructed to verify security in theorem proving. Theorem proving requires

significant experience and effort. Dolev-Yao model is usually used for symbolic pro-

tocol representation and analysis. On the other hand, probability and complex theories

are used for cryptographic analysis. Bounding the analysis limits the number of con-

current protocol sessions an attacker can have. Increasing the number of these sessions

may allow an attacker to manipulate replay messages and exploit a weakness in the

protocol [2].

Scyther [10] is a formal security analysis tool. It was developed by the au-

thors in [11] based on PhD dissertation. It employs automatic security verification of

protocols. It supports bound and unbound parallel sessions. Increasing the number

of parallel sessions may exploit new introduced vulnerabilities. It was used to verify

IKEv1 (i.e. Internet Key Exchange version 1) and IKEv2, and it found unreported

weaknesses as shown in [12]. More details about this tool are covered in Chapter 4.
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2.2 Related Work

Authors of [13] have only highlighted the general characteristics and high level require-

ments for the smart grid, but without a specific proposal. Authors of [14] and [15] have

discussed possible communication technologies that can be used. They mainly dis-

cussed communication requirements without a focus on security-aware architectures.

In [1], the authors surveyed cybersecurity requirements and threats, and evaluated these

threats in different scenarios. However, both requirements and threats are not mapped

to a specific architecture.

The authors of [16] targeted the data injection attacks on the energy manage-

ment system, they proposed an algorithm that would find the minimum number of

meters if controlled would result in an unobservable attack, but they did not provide

any countermeasure. The authors of [17] provided an algorithm to detect integrity

attacks if less than 5 meters were compromised, they also propose a countermeasure

based on state estimation. However, it allows the attackers to inject data, and they

will find their way around it sooner or later, it is better to prevent them from injecting

anything at all. The solution doesn’t cover the possibility of compromising more than

5 smart meters as well. Authors of [18] use homomorphic signature for aggregated

data, the proposed method is computationally inexpensive, but it does not cover sys-

tem integrity. In addition, it requires data aggregation, which is not always possible in

WiFi networks because of data rate limitation. The authors of [19] use historic data to

find any inconsistency, a patient attacker can trick this by modifying the data slowly

enough to make it undetectable over a long period of time. The authors of [20] propose

sending the data over a high speed IP network, and sending a watermark over a low

bandwidth secure network, the nature of smart grids makes this solution costly and not

scalable.

Authors of [21] have introduced a privacy aware smart grid communication

architecture. The proposed architecture is mainly targeting secrecy and anonymity of

customers. Furthermore, the authors don’t cover performance evaluation. Authors of
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[22] have defined information security risks and requirements; they also proposed a

framework to support smart grids. Both defined risks and requirements are high level.

For example, the authors looked at integrity, confidentiality, and availability require-

ments without going any deeper. In addition, the proposed framework is not based on a

specific architecture. Furthermore, it’s defined high level goals in the framework, such

data leak prevention, but without describing a process for achieving these goals.
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Chapter 3: Security Aware Distribution System Architecture

This chapter describes the proposed architecture, SADSA. At the beginning, an

overview of SADSA is given, then communication in SADSA and communication

challenges are described. After that, cybersecurity awareness of SADSA is analyzed.

3.1 Overview

The proposed distribution system architecture is shown in Figure 3.1, the scope of this

architecture is to define the setup, communication link type and high level communi-

cation protocols (i.e. point to point, mesh...etc.) between the Control Center, Primary

Substations, and Secondary Substations. Only the components with blue frame in Fig-

ure 2.1 are within the scope of this architecture. All nodes are organized to be a part of

one or more of the following virtual clouds: Control Center Cloud, Primary Substation

Cloud, Secondary Substation Backbone Cloud, or Secondary Substation Cloud. These

clouds are described as follows:

• Control Center Cloud - CCC: It contains the SCADA system and the authentica-

tion server. One of the SCADA system’s tasks is to monitor and control remote

substations based on received readings. In addition, CCC has managed net-

work interfaces to allow communication to other domains or external networks.

Communication through these interfaces goes through a proxy. Furthermore,

communication is protected by a firewall and an intrusion prevention system.

• Primary Substation Cloud - PSC: It contains all the primary substations; these

substations belong to different geographical areas. Every PS is connected to the

Secondary Substation Cloud using a minimum of two routers (e.g. R1 and R2)

for redundancy.

• Secondary Substation Backbone Cloud - SSBC: It connects the gateways (e.g.
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Figure 3.1: Security Aware Distribution System Archeticture
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GW1 and GW2) in a Secondary Substation Cloud to a Primary Substation. Gate-

ways are Secondary Substations in reality; they only have an extra responsibilitie

in the network. These gateways should be the least distant ones from the routers

in this cloud, which imrpoves the state of wireless communication link between

gateways and routers.

• Secondary Substation Cloud - SSC: It connects the Secondary Substations to

the Secondary Substation Backbone using gateways, and ultimately, to the Con-

trol Center Cloud to exchange operational data and commands. There are two

gateways in every Secondary Substations Cloud to provide redundancy.

• Substations and network devices: All substations have smart devices to allow

distributed intelligence. They also support in meeting some cybersecurity re-

quirements, which will be described in more details in Section 3.4. All smart de-

vices have customizable software; therefore, they support having a Host Based

Firewalls, HBFWs. Furthermore, other network devices such as routers and gate-

ways have HBFWs as well.

Clouds described beforehand are defined in a hierarchal approach to allow better scal-

ability, i.e. CCC collects information and sends commands to all substations, all PSCs

are connected to CCC and every one of them covers a different geographical area.

SSBC’s role is to ease the communication between PSC and SSC.

3.2 Communications in SADSA

Different communication technologies are used within the system. They are defined

based on the nature and requirement of the cloud as follows:

• Inside CCC: CCC is considered to have a data center structure. Communication

inside it is assumed to be using high-speed network channels, such as Fiber or

Gigabit Ethernet.

• Between CCC and other domains or external networks: A protected high speed

wired connection is used for security reasons, which will be discussed in more
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details in Section 3.4.

• Between CCC and PSC: High speed wired network connection is used to allow

this communication, such as fiber optical cable. This covers the communication

between CCC and every PS.

• Inside PSC: Primary substations do not communicate with each other, thus,

there’s no communication requirement inside PSC. However, they are connected

to the Control Center using high speed wired network connection as described

earlier.

• Between PSC and SSBC: PSs have two routers directly connected to them using

a wired connection, these routers form a mesh network and they are wirelessly

communicating with SSBC. One router is enough for functionality but two are

used for redundancy.

• Inside SSBC: Routers on the edge of PSC and routers inside SSBC form a mesh

network that uses 802.11s protocol [23]; all of them are communicating wire-

lessly.

• Between SSBC and SSC: Gateways have two wireless network interfaces, one

of them is using 802.11s to be a part of SSBC’s mesh network. Whereas the

other interface is a part of SSC’s mesh network.

• Inside SSC: Every SS in SSC has one wireless network interface, these inter-

faces form a layer 2 mesh network or a cluster to allow communication between

the nodes. Gateways are the cluster heads in these mesh networks. Secondary

substations in SSC have hierarchical mesh setup, they are configured to use the

cluster head to exit the cluster and reach CCC.

Mesh networks allow multiple nodes to send data at the same time because there’s no

central access point to collect and forward data. A node can act as a relay to the des-

tination, which results in redundancy and reducing the bottleneck effect. In addition,

all devices in the 802.11s mesh are using 802.11n because they naturally transfer more
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data than the devices in SSC for example. On the other hand, devices in the Layer 2

mesh network can use 802.11g or 802.11a.

3.3 Communication Challenges

This section addresses the communication network challenges in the proposed archi-

tecture.

3.3.1 Low Communication Overhead

To maintain up-to-date status of substations in the distribution system, sensors at sub-

stations need to send reading frequently. The size of transferred readings is usually less

than 500KB [24], but extra overhead usually comes from the communication protocols.

It’s important to reduce the communication overhead as much as possible because a

small increase in the overhead will have a significant impact on traffic transferred over

a system of this scale.

3.3.2 Scalability

Scalability is a big concern for distribution systems. If the architecture does not con-

sider scalability, network congestion will occur because the number of nodes sending

data is huge. In addition, the architecture should support future expansion without af-

fecting the performance. For example, integrating substations from City B with the

distribution system of City A shouldn’t affect the current operation or result in any

performance degradation in City A.

The proposed architecture supports scalability because all system nodes are

grouped in clouds. Adding a group is simply adding one more cloud. The effect of this

is keeping the number of hops as minimal as possible. Furthermore, if adding an SSC

resulted in a bottleneck because of bandwidth limitation example, adding one more

SSBC will resolve the issue.
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3.3.3 Reliability

Reliability is very important in Distribution Systems, because decisions will be made

based on received data. Using wireless communications is generally less reliable than

using wired ones because wireless channels are susceptible to noise, interference, and

attacks.

The proposed architecture increases reliability by adding redundancy to avoid

outages resulting from node failures. Redundancy is clearly defined in SADSA, both

in redundant devices (i.e. R1, R2 and GW1 GW2) and the communication protocols.

Using a mesh network minimizes the dependency on a single node to reach the desti-

nation. For example, if one node failed for any reason (or the communication link for

that matter), other nodes can be used to transfer information to their desired destina-

tion in a timely manner. Automatic recovery is possible but subject to the used mesh

protocol.

3.3.4 Delay Introduced by Medium Access Control

Delay caused by CSMA based systems becomes more significant when the number of

clients increases. Authors of [25] show how increasing the number of nodes decreases

the effective throughput. The architecture minimizes this delay by grouping nodes

into horizontal clouds, and controlling the number of nodes per cloud based on the

bandwidth requirement. Cluster 1 and Cluster 2 in Figure 3.1 represent horizontal

clouds because they belong to the same level in the hierarchy. Note that contiguous

clusters and clouds use different channels to minimize interference and achieve better

wireless performance.

3.3.5 Time Sensitive Protocols

Applications in Distribution System are sensitive; and they require receiving data in a

timely manner based on the message severity as shown in Table 2.1. Ensuring most
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packets arrive in a timely manner is considered challenging because of the factors

discussed earlier. Medium access control, limited bandwidth, shared channels, inter-

ference, and security overhead are exmples of such challenges. These factors arise

clearly when using wireless communications as in the proposed system. However,

maintaining the correct number of nodes in a cloud allows delivering data in a timely

manner.

3.3.6 Interoperability

Devices in smart grids need to communicate with each other, but they are of a het-

erogeneous nature. This implies that these devices may include servers, single board

computers, routers, access points, or any other types of sensors. Integrating these

devices seamlessly is considered a challenge because they have various operating sys-

tems, capabilities, applications, and they support different protocols.

The proposed architecture supports interpretability. For instance, assuming

devices in SSC 5 do not support WiFi; they can communicate with each other using

ZigBee. The only special requirement lies at the gateways connecting SSC 5 and Area

1. They should support both ZigBee and the communication protocol used in Area 1.

Considering that gateways have two network interfaces in their design, these interfaces

would allow devices in SSC 5 to communicate seamlessly with the rest of the system.

3.4 Cybersecurity Awareness

In this section, the security awareness features for proposed architecture are identified.

Smart grid security guidelines document [8] developed by NIST is used during the

process of identifying cybersecurity requirements relevant to SADSA. Each one of the

following subsections represents one of the NIST guidelines.
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3.4.1 Concurrent Session Control

This means that the number of concurrent sessions should be limited. In SADSA, this

requirement should be enforced at gateways, SSBC routers, CCC and nodes them-

selves. Concurrent Session Control can be achieved by doing the following:

• Limiting the number of sessions at the gateways from SS.

• Limiting the number of sessions at SSBC routers from gateways.

• Limiting the number of sessions at PS from SSBC routers.

• Limiting the number of sessions at CCC from all users and devices in the distri-

bution system.

• Limiting the number of sessions at CCC from Operations domain per actor (e.g.

Engineering and Energy Management)

• Limiting the number of sessions at devices using HBFW.

SADSA makes it easier to meet the requirement for two reasons. SADSA partitions

the system into multiple clouds and it requires having firewalls. Clouds in the system

architecture eases defining and controlling the number of concurrent sessions for nodes

that have similar or different roles in the system. Furthermore, both CCC firewalls and

HBFW can be configured to limit the number of sessions initiated from a source.

3.4.2 Remote Session Lock and Termination

This requirement highlights the need to define an inactivity period that will result in a

session timeout. After this period, users and devices need to re-authenticate to be able

to activate the session again. It is important to verify meeting this requirement at the

gateways, PSC and CCC in the proposed architecture. Session Lock requirement can

be met by:

• Defining an idle inactivity timeout per user or service type or connection type

(i.e. wired, wireless..etc)
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• Defining the actions should be taken when a session times out. These actions

may include session termination and current information hiding.

• Enforcing the Session Lock mechanism in all nodes at CCC, in gateways to

monitor the sessions of SSC, and PSC routers to monitor the sessions of PSC.

As can be clearly seen, organization of the proposed architecture makes it easier to

define different timeout periods based on the node’s role and location in the network.

In addition, it helps to monitor the sessions in a hierarchical manner, which better

supports scalability to avoid having a singe point of failure.

3.4.3 Permitted Actions without Identification or Authentication

The requirement here focuses on defining access levels to users based on their role in

the system. SADSA makes meeting this requirement more practical, because actions

can be defined by node role instead of looking at them node by node. In addition, a

centralized authorization server, is easier to manage than having authorization imple-

mented at multiple locations.

3.4.4 Remote Access

Remote access is concerned with both wired and wireless access, thus, the requirement

breaks down into the following:

• All methods of remote access should be managed, authorized, and monitored.

• Cryptography should be used to protect such communications.

• Wireless access should be protected using both authentication and encryption.

• The spectrum should be monitored to detect any fake access points and take

appropriate measures.

• Remote access should be disabled by default, and only enabled when required,

approved, and for the required time period only.
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In SADSA, this requirement applies to WiFi access at PSC, SSBC, SSC. It also applies

to all nodes that need to be accessed remotely. This requirement can be met by the

following:

• Authenticating and encrypting all WiFi communications.

• Implementing a Wireless Intrusion Detection System -WIDS- that reports to

CCC if any attacks were detected.

• Defining if Distribution Engineering and Distributed Generation and Storage

Management from Operations domain need to access nodes remotely, if yes,

which nodes and in what matter.

• Deny remote access by default, and give permissions for it based on earlier defi-

nitions.

SADSA makes it easier to meet the requirement because it has the following features:

• All WiFi nodes support state of the art authentication and encryption.

• Substations have smart devices that can support WIDS.

• Remote access is not allowed by default.

• Grouping nodes logically in clusters helps in defining which nodes need to be

remotely accessible based on their role in the network.

• HBFW and firewalls at CCC block remote access by default.

3.4.5 Wireless Access Restrictions

This requirement is applicable to PSC, SSBC, and SSC. The way the proposed ar-

chitecture is organized, the smart devices in all substations, and the fact that all WiFi

enabled nodes support state of the art protocols helps in meeting Wireless Access Re-

strictions requirement. The requirment can be met by doing the following:

• Planning and documenting appropriate WiFi implementation details and use it

as guidance.
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• Authenticating and encrypting all WiFi communications.

• Implementing a WIDS that reports to CCC if any attacks were detected.

3.4.6 User Identification and Authentication

This requirement highlights that all users should be uniquely identified and authenti-

cated using multi-factor authentication. The following features of the proposed archi-

tecture support this requirement:

• Having a centralized authentication server helps in providing multi-factor au-

thentication service for all users.

• The state of the art customizable software at all nodes eases the process of en-

forcing multi-factor authentication. This is needed because authentication agents

need to be installed and configured to communicate with the central authentica-

tion server when authentication attempts occure.

3.4.7 Device Identification and Authentication

The requirement can be met by preparing and documenting a list of authentic devices

with their details and enforcing authentication for all devices using bi-directional au-

thentication through the authentication server at CCC. Meeting this requirement is

considered easier because of the following supporting features in SADSA:

• Organization of the system architecture makes it easier to identify nodes, their

types, roles, and location.

• Node information can be used for documentation and authentication server con-

figuration.

• State of the art customizable software on all nodes doesn’t restrict authentication

methods. Thus, it allows custom protocols or bi-directional authentication.
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3.4.8 Denial-of-Service Protection

The aim of this requirement is to ensure that all nodes in the smart grid information

system mitigate the effect of DoS attacks. And that the nodes have extra bandwidth

and resources to reduce their impact. The following SADSA features help in meeting

Denial-of-Service Protection requirement:

• If a node fails due to DoS attack, its redundant node can take over and deliver

traffic because of planned redundancy in routers and gateways.

• Redundancy in the network in SSBC and SSC helps in mitigating the effect of

WiFi DoS attacks. For example, if communication through a network path fails,

other paths can be used to reach the destination.

• WIDS will alert CCC when such attacks occur and proper actions can be taken

immediately.

• HBFW can be used to limit the number of concurrent sessions per source.

• Defense in depth in CCC can protect from most attacks coming to or through

CCC, including DoS and DDoS.

3.4.9 Authenticator Feedback

Obscuring feedback of the authentication server during the authentication process is

considered essential, which helps in preventing unauthorized individuals from under-

standing exploiting the authentication process. This requirement needs to be met at

all nodes and it is relatively easy. Information shared and displayed to the user when

they try to authenticate should be limited as much as possible. For example, there is

no need to tell the user why a login attempt failed.
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3.4.10 Security Function Isolation

It’s useful to isolate security and non-security functions to avoid unintended informa-

tion leakage. Which should be done at all nodes in the system. In addition, it is better

to employ underlying hardware separation. Smart devices used at substations can be

designed or tweaked to support the requirement. The following lists how this require-

ment can be met.

• Using smart devices whenever a security requirement is involved.

• Using Common Criteria for Information Technology and Security Evaluation

[26]. Common Criteria is an international standard that allows organizations to

specify their security requirements for computer systems, vendors develop these

systems after that, then, the developed systems are tested in certified laboratories

to verify their compliance.

• Using routers with custom firmware to isolate security and non-security require-

ments.

3.4.11 Boundary Protection

This requirement is applicable to the interface between CCC and Operations System,

and the interface between CCC and external networks. These interfaces are shown in

Figure 3.1. The aim of Boundary Protection is to achieve different goals as follows:

• Defining internal and external boundaries and controlling communication at the

defined boundaries.

• Allowing communication to external networks only through protected interfaces,

and limiting the number of these interfaces.

• Ensuring the system fails securely if any of boundary protection security controls

failed.

SADSA has few features that make meeting the requirement easier as follows:
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• Boundaries are defined between domains and external networks.

• Communication to other domains is done through protected managed interfaces

only.

• Number of managed interfaces is limited to one interface per smart grid domain,

and one more interface to external networks.

• Managed interfaces have a two way proxy, IPS and a firewall for protection.

3.4.12 Communication Integrity

The goal of this requirement is to warrant that smart grid information system protects

the integrity of data in all communications. This requirement should be met on all

communication links, which can be achieved by the following:

• Applying HMAC on all messages for all communications.

• Using a homomorphic signature scheme to sign aggregated data. Such signatures

can be applied at the gateways for example after aggregating data from different

SS.

3.4.13 Application Partitioning

Application partitioning requirement is made of two components: i.e. separating user

and management functionalities, and ensure that management features are not avail-

able to all users. This requirement applies to all nodes in the architecture and can be

achieved by employing the following two concepts:

• Always assigning the least privilege required by entity to perform its functions.

• Implementing proper access control scheme and enforce using it by all nodes.
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3.4.14 Software and Information Integrity

This requirement applies to all nodes in SADSA. It aims at detecting any unauthorized

changes to information. It can be achieved by the following:

• Using tamper proof devices, which can be guaranteed by Common Criteria for

Information Technology and Security Evaluation [26]. These devices include

substation smart devices, routers, HBFWs, firewalls, IPS, and proxies.

• Executing regular tampering checks every organizational defined tampering

check period.

• Ensuring physical security.

3.5 Summary

In this chapter, a scalable security aware distribution system architecture is proposed.

SADSA has been described along with the communication technologies used to allow

functionality between its components and clouds. In addition, multiple communica-

tion challenges in SADSA were discussed, namely, Low Communication Overhead,

Scalability, Reliability, Medium Access Control Delay, Time Sensitive protocols, and

Interoperability.

Furthermore, NIST smart grid cybersecurity guidelines [8] were used to study

security awareness of SADSA. It was shown how the requirements can be met and how

SADSA helps in achieving that. Various cybersecurity requirements were extracted in

that section, namely, Concurrent Session Control, Remote Session Lock and Termi-

nation, Permitted Actions without Identification or Authentication, Remote Access,

Wireless Access Restrictions, User Identification and Authentication, Device Identifi-

cation and Authentication, Denial-of-Service Protection, Authenticator Feedback, Se-

curity Function Isolation, Boundary Protection, Communication Integrity, Application

Partitioning, and Software and Information Integrity.



27

Chapter 4: False Data Injection Prevention Protocol

In this chapter, False Data Injection Prevention Protocol is introduced. FDIPP pro-

tects against packet injection, duplication, alteration and node replication. Integrity

is the main security service FDIPP is addressing, which covers both system and data

integrity. We start this section by giving a background about the Extensible Authen-

tication Protocol used in FDIPP along with some assumptions. Then, we cover the

detailed operational procedure of FDIPP. After that, key management for FDIPP is

discussed. Finally, formal security analysis is conducted using Scyther tool.

4.1 Background

4.1.1 The used EAP

We use EAP protocol proposed by the authors in [27] for authenticating entities as a

part of our protocol. It is selected for many reasons; it was designed for WiFi net-

works, it provides forward secrecy, it has low computation and communication cost,

and it meets all the security requirements of RFC 4017. The protocol assumes a secure

communication channel between the Access Point - AP and the Authentication Server

- AS. In addition, it has three main components as follows:

1. Registration phase: This phase is used to exchange credentials between a User

- U and the AS. The authors of [27] assume that it was done offline and it is

not specified by their protocol. However, they specify that AS and U should

negotiate and exchange a long-term key k, a password pw, and a random one

time key y in this phase.

2. Normal authentication process: This process is used to authenticate U and as-

sist U and AP in sharing time limited credentials so that they can use the Fast

reconnect process.
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3. Fast reconnect process: This process is used to accelerate the authentication

process, it is used unless the limited time credentials are expired or if this process

fails; the normal authentication process is used in these two cases. Fast reconnect

process is not used in FDIPP.

4.1.2 Assumptions

• The network cables connecting the Primary Substations to the Control Center

are secure.

• The Control Center Cloud is highly secure, and it employs defense in depth tech-

niques to reduce the probability of compromise. Defense in depth techniques in-

clude antivirus software, intrusion detections systems, intrusion prevention sys-

tems, firewalls, multi-factor authentication, and access control.

• The computers in power substation are tamper proof and all the locations are

physically secure.

• There are private/public key pairs generated and stored at all the devices when

installing them.

• The authentication server keeps track of the authenticated nodes, their IP ad-

dresses, the cloud they belong to and the keys. This helps in revoking access at

any time if intrusion attempts was detected.

• Time is synchronized between all nodes.

4.2 FDIPP

4.2.1 High Level Protocol Operation

False Data Injection Prevention Protocol uses the authentication protocol presented in

[27] for authentication, RSA [28] for asymmetric cryptography, AES [29] for sym-

metric cryptography and SHA-3 [30] for hashing. Although the authors of [31] have
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presented multiple attacks on RSA, all of these attacks can be mitigated by ensuring

physical security. Furthermore, The protocol is made of two major phases as follows:

1. Node Authentication: The goal of this phase is to authenticate nodes with the

authentication server.

2. Peer Authentication: This phase is used to authenticate peers in the same net-

work with each other. It is initiated after successfully completing phase 1.

The following describes the operation of FDIPP. In addition, Figure 4.1 reflects this

operation.

1. Authentication parameters (i.e. k, pw, and y) are transferred between the nodes

and the authentication server. These parameters are encrypted using RSA before

being transferred.

2. Nodes attempt to authenticate using the EAP presented in [27].

3. After successful authentication, all communication is encrypted and signed using

HMAC and SHA-3.

4. Peers (or nodes in the same cloud) authenticate each other on demand. For

example, Node 1 will initiate the mutual authentication process with Node 2,

only when Node 1 needs to use Node 2 as its next hop.

5. After peer authentication, nodes start sending data with an HMAC in all mes-

sages.
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Figure 4.1: False Data Injection Prevention Protocol

4.2.2 Node Authentication

Node authentication is achieved after completing three phases, namely, SSBC Router

authentication, Gateway authentication, and Secondary Substation authentication. Fig-

ure 4.2 shows the complete sequence diagram for Node Authentication in FDIPP. The

three phases are identical and every one of them is made of 11 steps. Furthermore,

we describe the steps of SSBC Router authentication phase below. Please note that ||

symbol is used to represent concatenation throughout this work.

1. SSBC Router ←→ Authentication Server: The keys k,y are generated by

the authentication server, and the password pw is generated by the router.

Then, identities are transferred between both sides. All data transferred is en-
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crypted using RSA. EPubAS(RID||pw) is sent to the Authentication Server and

EPubR(ASID||k||y) is sent to SSBC router. Where PubAS and PubR are the pub-

lic keys of Authentication Serve and SSBC Router respectively, RID is the router

ID, ASID is the authentication server ID, k is the long term key, y is a random

one time key, and pw is the password.

2. SSBC Router→ Primary Substation: Authentication start.

3. SSBC Router←Primary Substation: Identity request.

4. SSBC Router→Primary Substation: The router provides a temporal ID as the

identity response. The sent message is [Ek⊗y(RID),Ek⊗y(RID||NR)] where NR

is the router’s nonce.

5. Primary Substation→Authentication Server: The primary substation forwards

[Ek⊗y(RID)E,k⊗y (RID||NR)] to the authentication server.

6. Primary Substation←Authentication Server: The authentication server sends

a challenge made of H(NR)⊗Ek⊗y(ASID||NAS||yN ||y‘||T K). Where NAS is a

nonce generated by the authentication server, yN is a randomly generated key,

y‘ is another one time key and T K is a temporal key. y‘ and T K are only used

in the fast reconnect process, which is not used by FDIPP. However, they will

be still generated and transferred when needed in the normal authentication pro-

cess to avoid mistakingly reducing the security of the used EAP protocol. For

instance, cracking H(NR)⊗Ek⊗y(ASID||NAS||yN) could be easier than cracking

H(NR)⊗Ek⊗y(ASID||NAS||yN ||y‘||T K).

7. SSBC Router←Primary Substation: The primary substation forwards H(NR)⊗

Ek⊗y(ASID||NAS||yN ||y‘||T K) to the router. The router will be able to extract

NASand yNby XORing the received message with H(NR) again. Then decrypting

(ASID||NAS||yN ||y‘||T K). After that, it sets y← yN .

8. SSBC Router→Primary Substation: The router responds with

H(RID||pw||yN ||y‘||T K).
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9. Primary Substation→Authentication Server: The primary substation forwards

H(RID||pw||yN ||y‘||T K) to the authentication server.

10. Primary Substation←Authentication Server: If the hash was correct, the server

sets y ← yN and sends Access Accept message. The session key is set

to SK = H(NAS ⊗ NR). It also generates and sends the Cloud Key CK in

ESK(CK||H(CK,y)). CK is kept at the serve and is unique per cloud.

11. SSBC Router←Primary Substation: The primary substation sends Authentica-

tion Success and forwards CK. The router sets SK = H(NAS ⊗NR). It also

divides CK into two portions (i.e. CK = CK1||CK2) to be used for encryption

and hashing respectively.

After successful authentication, all transferred traffic is encrypted and signed using

HMAC. Thus, the channel between SSBC Router and the Authentication Server is con-

sidered secure. The session key is equally divided into two keys (i.e. SK = SK1||SK2).

SK1 is used as the key for AES and SK2 is used for HMAC. CK is unique per cloud

whereas SK is unique per node.
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Figure 4.2: Node Authentication Sequence Diagram

4.2.3 Peer Authentication

All nodes from the same cloud will have a layer 2 routing table (e.g AODV routing

table). Although nodes are authenticated with the authentication server, they should

authenticate each other before node 1 uses node 2 as the next hop for instance. An

example for peer authentication method is shown in Figure 4.3. It covers peer au-

thentication between two secondary substations. Furthermore, the method is initiated

whenever a node needs to communicate with another node from its routing table, and
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it is described in more details as follows:

1. SS1→ SS2: Secondary substation 1 sends its ID and the nonce NSS1to secondary

substation 2 as ECK1(NSS1||H(SS1||NSS1||CK2)). SS2 stores the nonce NSS1.

2. SS1 ← SS2: Secondary substation 2 responds with its ID and the nonce NSS2

to secondary substation 1 as ECK1(NSS2||H(SS2||NSS2||CK2)). SS1 stores the

nonce NSS2.

3. SS1 → SS2: Secondary substation 1 responds with HMAC of both nonces in

ECK1(H(NSS1||NSS2||CK2)). If the hash was correct, SS2 considers SS1 to be

authentic.

4. SS1 ← SS2: Secondary substation 2 responds with HMAC of both nonces in

ECK1(H(NSS1||NSS2||CK2)). If the hash was correct, SS1 considers SS2 to be

authentic.

Figure 4.3: Peer Authentication Sequence Diagram

4.2.4 Post Authentication Data Transfer

After both node and peer authentication, nodes are ready to transfer data. All data

transfers should be encrypted and singed with HMAC. Thus, when secondary substa-

tion 1 sends a data packet it should be in ECK1(data||H(data||N1||N2||CK2)) form.

Where N1 is the nonce shared with the next hop and N2 is the nonce shared with the

authentication server. CK1 and CK2 are changed as applicable, i.e. when the packet

crosses the boundary of a cloud. In addition, N1is changed and the hash is recalculated

at every hop in the path.
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4.3 Key Management

SADSA has a huge number of nodes, and key management is very important. Key

management defines how keys are generated, distributed and revoked. It also defines

there expiry. The following principals cover key management in FDIPP.

1. Twelve RSA keys are already stored in all nodes except the authentication server.

Every key is one of the public keys of the authentication server. And it may be

used for a period of 1 month only.

2. The authentication server has 12 public keys for every node in the system. Each

key may be used for a period of 1 month only.

3. Asymmetric RSA keys are changed every month. And they are changed in a

predefined order.

4. RSA keys to be physically replaced every year at all nodes in the system.

5. The session key SK is dynamically changing, as it is equal to H(NAS⊗NR).

6. The cloud key CK to be changed every hour by finding the hash of the current

key, e.g. CKn+1 = MD5(CKn).

7. The cloud key CK to be periodically generated by the authentication server and

communicated to all nodes every week.

4.4 Security Analysis

In this section, Peer Authentication portion of FDIPP is analyzed. The formal security

analysis of the EAP protocol used in Node Authentication was already covered in [27].

Scyther tool [10] was found to be a perfect fit in our case for two factors. Firstly, it

uses symbolic analysis. Which implies that mathematical cryptographic basis in the

protocol is not analyzed. In fact, the author in [11] explicitly says that Scyther as-

sumes cryptography is perfect. That property aligns very well with FDIPP because

cryptography is beyond the scope of this work. Secondly, it supports both bounded
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and unbounded analysis. Thus, it allows setting the maximum number of parallel ses-

sions and identifies attacks within that bound. In the below subsections, configuration,

claims, and results are presented.

4.4.1 Configuration and Claims

In Sycther, the script was configured to assume CK1 and CK2 are secret. It was also

configured to consider N1 and N2 as nonces and increment them in every message.

After that, the protocol was written and analyzed with the below claims:

1. Secrecy: Secret information are not revealed to an intruder although the commu-

nication network is not trusted.

2. Aliveness: Communication partner is alive and he/she initiated an event that was

received by the other partner. For example, an intruder replaying messages sent

earlier is considered a violation of aliveness claim.

3. Synchronization: Communication parties are in synch, i.e. Agent A sends mes-

sage 1 to Agent B, then Agent B will respond with message 2. Synchronization

covers both ordered and unmodified delivery of messages.

4. Agreement: Communication parties agree on the values of all variables trans-

ferred in the protocol.

Both Synchronization and Agreement were claimed to be Non-Injective because

Syther does not support any injective synchronization or injective agreement. The

authors of Syther tool define injective synchronization to be non-injective Synchro-

nization but it’s immune to replay attacks. And the same applies to Agreement.

4.4.2 Results

As shown in Figure 4.4, FDIPP Peer Authentication protocol was proven to be secure

and all claims were verified. Although injectivity is not supported in Sycther, we

know that every transferred message has a unique nonce, which prevents intruders to



37

replay messages. Thus, if the protocol was verified to have non-injective agreement

and synchronization, then, it also matches injective agreement and synchronization.

Figure 4.4: Syther Analysis of FDIPP Peer Authentication Protocol
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4.5 Conclusion

False Data Injection Prevention Protocol was introduced, this protocol prevents packet

injection, duplication, alteration and node replication. Which guarantees both the sys-

tem integrity and data integrity in distribution systems. The chapter described Node

Authentication, Peer Authentication, and Post Authentication Data Transfer. Key man-

agement in FDIPP was also described. In addition, formal security analysis was pre-

sented.
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Chapter 5: Performance Evaluation

Performance evaluation is covered in this chapter. It’s a very important task to identify

how well an architecture is performing, and what are the factors that affect. Which will

help to know how to customize and improve it. This chapter is divided into three main

sections. Section 5.1 covers the simulation design, which is divided into two phases.

Section 5.2 presents the simulation results. The results for both phases are separately

discussed. Then, results of both phases are integrated and presented.

5.1 Simulation Design

With reference to Figure 3.1, the simulation was divided into two phases. Phase 1

covers communication from secondary substations in SSC to the gateways. Phase 2

covers communication from gateways to the authentication server and SCADA system.

Considering that communication links between primary substation routers and both the

authentication server and SCADA are completely wired. Routers (e.g. R1 and R2) are

assumed to be the destination of traffic destined to CCC. The basis of this assumption

is that wired links are using high speed fiber optic cables and will only cause negligible

delay and packet loss. Thus, phase 2 of the simulation will cover communication from

gateways and primary substation routers. The below subsections cover these phases

in more details. In addition, this simulation covers data transfers only. As per FDIPP,

authentication messages will not be often transferred, and we assume that it has already

completed before the beginning of the simulation. The simulation period was set to be

between 58 and 59 seconds in all samples.

5.1.1 Phase 1

Given the number of 6.6kV and 11kV substations in Dubai was equal to almost 29,000

substation in 2014. And the area of Dubai is equal to 4,200km2. The average number



40

of secondary substation destiny is 7 substations per km2 as shown in equation5.1.

29,000substations
4,200km2 h 7substations/km2 (5.1)

In our simulation, we will assume that we cover various secondary substation

density. We simulate having 6 ,8 ,10, 12, and 14 substations per km2, which covers

a future density increase of up to 200%. All substation nodes send CBR UDP data

packets to the gateway. We assume there’s only one gateway considering that only one

gateway of the High Availability pair is active at a time. Authors of [32] stated that

sensing and control traffic size is usually equal to 60 bytes or less. They also state that

multi-drop lines are configured at data rates equal to 1200bps.

In our simulation, we will assume that packet payload is equal to 512 bits, and

each substation will send 10 messages per second. Security overhead equals to 256

extra bits per message. Where SHA3-256 will result in adding 256 digest bits to all

messages [30]. However, AES-128 will only add processing overhead, as the number

of cipher text bits for 768 plain text bits is equal to 768 bits. In addition, channel rate

is configured to be equal to 54Mbps in this phase to simulate 802.11abg.

5.1.2 Phase 2

This phase was run with two different number of gateways (i.e. 2 and 4). Everyone

of these gateways represents a cluster. Which means that all of them send packets

during the simulation. Node locations in this phase were not configured to be random.

Locations were manually set and were not changed through out the trials to ensure

that we have two nodes at the middle which don’t send packets. These nodes are

similar to the routers inside SSBC (i.e. not on the edges). In addition, the simulation

was configured such that all gateways will send to one destination. The destination

simulates CCC. In addition, there is one node to at the middle between gateways to
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facilitate communication for far nodes.

Packet size was kept same as in Phase 1. However, source rate was increased to

100 messages per second (i.e. 10*10 messages per second). Which was set to simulate

10 secondary substations sending data through the gateway. Furthermore, channel data

rate was set to 150Mbps to simulate 802.11n. All other variables were kept the same.

5.2 Simulation Results

In this section, simulation results are presented. Results of Phase 1 and Phase 2 are

presented in separate subsections. After that, both results are integrated to calculate

end to end performance.

5.2.1 Phase 1

In Phase 1, all delay and packet loss measurements were taken as an average of 48

runs. Furthermore, nodes were configured to have a random location at each run.

Figure 5.1 shows the average delay for two packet sizes. As mentioned beforehand,

these packet sizes belong to two cases where there is a security overhead resulting from

SHA3-256 [30] and where there is no such security overhead. It is clear from the graph

that with the defined density of communicating nodes in 1km2 introduces a delay of

2ms. It’s also observed that increasing the number of substations from 6 to 14 dose not

significantly increase the delay.
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Figure 5.1: Average Delay in Phase 1

In addition, Figure 5.2 shows the average packet loss. The in packet loss

matches our expectation based on the delay values acquired earlier. It’s very close

to 0%. Moreover, increasing the number of substations does not increase the packet

loss in an observable manner.
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Figure 5.2: Average Packet Loss in Phase 1

Based on simulation results presented in Figures 5.1 and 5.2 we make the fol-

lowing conclusions:

1. Communication in this phase is introducing very low delay and packet loss.

2. Increasing the number of nodes from 6 to 14 does not significantly affect the

communication.

3. Communication link is still far from saturation and data of larger size can be set.

The number of nodes can be increased as well.

5.2.2 Phase 2

In this phase, delay values and packet loss measurements represent an average of 5

runs. More runs were taken in Phase 1 because its results required smoothing. Figure

5.3 compares the average delay for a total number of nodes of 4 and 6 (2 nodes are

always not sending because they are considered to be at the center). It shows that
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the delay goes from 3ms to slightly less than 30ms when increasing the number of

gateways from 2 to 4. It also shows that the packet size increase resulting from security

overhead addition does not make a major contribution in this phase.

Figure 5.3: Average Delay in Phase 2

In addition, looking at Figure 5.4, we can see that packet loss is very low under

all variations. The packet loss is almost 1% with the security overhead. On the other

hand, it’s very close from 0% without security overhead.
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Figure 5.4: Average Packet Loss in Phase 2

5.2.3 End to End Performance

In this subsection, end to end measurements are calculated. Starting with the average

delay, Table 5.1 shows a summary of the acquired delay values from simulation. It

covers values for both phases (i.e P1 and P2). After that, Table 5.2 shows the end to

end average delay.

State Without Security Overhead (ms) With Security Overhead (ms)
P1, 6 nodes 1.5 1.6
P1, 8 nodes 1.5 1.6

P1, 10 nodes 1.6 1.6
P1, 12 nodes 1.7 1.7
P1, 14 nodes 1.8 1.8

P2, 2GW 3 3
P2, 4GW 26 27

Table 5.1: Average Delay Summary
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State Without Security Overhead (ms) With Security Overhead (ms)
6 nodes, 2GW 4.5 4.6
8 nodes, 2GW 4.5 4.6

10 nodes, 2GW 4.6 4.6
12 nodes, 2GW 4.7 4.7
14 nodes, 2GW 4.8 4.8
6 nodes, 4GW 27.5 28.6
8 nodes, 4GW 27.5 28.6

10 nodes, 4GW 27.6 28.6
12 nodes, 4GW 27.7 28.7
14 nodes, 4GW 27.8 28.8

Table 5.2: End to End Average Delay

As packet loss from phase 1 was found to be very close to 0%, we consider it

to be negligible when compared to the loss introduced by phase 2. Thus, the packet

end to end packet loss is only coming from phase 2 and shown in Table 5.3.

State 2GW 4GW
Without Security Overhead 0% 0%

With Security Overhead 1% 1.2%

Table 5.3: End to End Average Packet Loss

5.2.4 Summary

In this chapter, performance of SADSA and FDIPP were studied. It was found that

most packet loss and delay is coming from communication from gateways, which

makes sense as they aggregate data from multiple substations. Which can be decreased

by increasing the channel rate, or decreasing message frequency. Or maybe, some ap-

plications may be able to tolerate such delays. It’s all subject to the application require-

ments. In other words, one size fits all doesn’t apply in a network of this nature. Some

clusters may need to have higher bandwidth, whereas others may need to share mea-

surements less frequently. However, SADSA is flexible per its design, and it allows

tweaking the network to achieve application requirements.



47

Chapter 6: Conclusion

Smart grids are the future power systems. They are used to increase efficiency and

reliability of power systems. Distribution system is one of its major components, and

it was the focus of this work. There are three main contributions in this thesis, namely,

Security Aware Distribution System Architecture, False Data Injection Prevention Pro-

tocol, and Performance Evaluation. SADSA was described in details, and communica-

tion challenges were highlighted. Furthermore, it was shown how SADSA meets NIST

cybersecurity requirements for smart grids. In FDIPP, the protocol was described, key

management was covered, and Scyther tool was used for formal security analysis. Mo-

rover, performance of SADSA and FDIPP was simulated using NS2.

This work can be extended by studying performance of SADSA and FDIPP

more deeply, which can involve testing different protocols and communication tech-

nologies. In addition, the concept of SADSA can be extended to design other smart

grid domains, which will result in having security aware domains that are more im-

mune to cyberthreats.
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