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Abstract 

Packaging of DNA into the condensed structure of chromatin presents a barrier to 

many cellular processe that require DNA access such as transcription and replication. 

This problem is solved, in part, by the action of various complexes that modify the 

chromatin structure so that it becomes more accessible and, therefore, a more suitable 

platform for these processes. A TP-dependent chromatin remodeling complexes and 

histone acetyltransferases are examples of many chromatin modifying complexes that 

work to alleviate chromatin-mediated repression. Histone H I is an important component 

of chromatin which serves in both stabilizing and folding of chromatin into a higher order 

tructure. Many studies have demonstrated the importance of histone HI in gene 

regulation. Furthermore, histone H l  has been suggested to affect the functions of 

modifying proteins. [n this study, we have used pull-down assay to test the effects of 

histone HI on the binding of two chromatin modifying complexes ( SWIfSNF and SAGA) 

to in vitro assembled unmodified and accetylated nucleosomal arrays. Gel shift assay was 

also performed to check for the effect of histone HI on the binding of these complexes to 

mononuc1eosomes. Furthermore, we have tested the effects of histone HI on the 

remodeling activity of SWIlSNF using restriction enzyme accessibility assay. Our results 

show reduced binding of both SWIlSNF and SAGA complexes to both unmodified and 

acetylated nuc1eosomal array templates in the presence of histone HI. However, the 

histone HI-dependent inhibition of binding was specific to SWIlSNF when unmodified 

mononuc1eosomes were used. Furthermore, histone HI was found to decrease the activity 

of the S WIfSNF complex. 

Additionally, we investigated the effects of benzo[a]pyrene [B(a)P] on two cell 

lines, WRL-68 and HepG2 cells in an attempt to fmd whether chromatin modification is a 
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possible pathway in the carcinogenesis of this compound. Benzo[a]pyrene is a chemical 

carcinogen that belongs to the polycyclic aromatic hydrocarbons, and is known to induce 

DNA damage by forming DNA adducts. We tested both cells lines with different 

concentrations of benzo[a]pyrene and for different durations. Cell viability and apoptosis 

were checked by cell cytotoxicity assay and flow cytometery, respectively followed by 

tudies on the expres ion patterns of three chromatin remodeling proteins ( BRG 1, GcnS 

and BAFl SS). Results show toxic effects of benzo[a]pyrene on both cells lines with 

increasing concentration and duration, while no changes in the expression of either 

BRG 1 ,  Gcn5, and BAF 155 was observed. This suggests that the carcinogenicity of 

benzo[ a ]pyrene doesn't affect the expression pattern of at least these three proteins. 

However, our results don't exclude chromatin modification as a possible pathway in the 

carcinogenesis of this compound. The expression of other chromatin modifying proteins 

need to be checked as well as the effects of B[a]P on the activity of these proteins before 

we can completely rule out a link between B[a]P effects on cells viability and chromatin 

modifying. 
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Chapter 1: Chromatin remodeling complexes 

Introduction 

The prokaryotic genome is mostly contained in a single large circular DNA molecule, 

with a minor fraction present in small plasmids. Ibis genome is supercoiled and complexed 

with various proteins existing free in the cytosol, a structure that we refer to as the nucleoid. In 

eukaryotes the situation is quite different. The eukaryotic cell has enormous amount of DNA, 

for example the diploid DNA content of a human cell is about 8 x 10 9 base pairs 

corresponding to a total length of nearly 3 meters. All this DNA should be packed into a 

nucleus of about 10 !lm in diameter. This enormous amount of DNA poses some serious 

challenges, 1) the effective compaction of this large genome so that it fits into the small area 

available in the nucleus, 2) the selective transcription since only 5%-10% of the whole 

genome is ever transcribed in a typical eukaryotic cell. Both compaction and the control of 

gene expression in eukaryotes are achieved by having the DNA complexed with a set of 

special proteins to form a proteinlDNA complex called chromatin. 

Proteins complexed with DNA fall into two major classes of histone and nonhistone 

chromosomal proteins. Histones are small in size and are very basic proteins rich in lysines 

and arginines. They constitute the basic building blocks of the chromatin structure. Histones 

include five types of proteins. They are HI, H2A, H2B, H3, H4, which are always found in 

equimolar quantities (Mathews and van Holde, 1996). The most conserved histones among 

living eukaryotes are H3 and H4, which differ very little, even between extremely diverse 

species. The H2A and H2B are less conserved than H3 and H4 but still exhibit substantial 

evolutionary stability, especially within their nonbasic portions. Linker histone HI is quite 
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distinct from other histones, being larger, more basic and by far the most tissue-specific and 

species specific histones. Vertebrates contain an additional linker histone, H5, which has a 

function very similar to HI. The high content of basic amino acids in histones makes them 

polycationic and leads to their interaction with the polyanionic phosphate backbone of DNA to 

produce uncharged nucleoproteins. All five histones are characterized by a central nonpolar 

domain, which forms a globular structure, and N-terminal and C-terminal regions that contain 

most of the basic amino acids. The basic N -terminal regions of H2A, H2B, H3 and H4 are the 

major sites of interaction with DNA. 

The nucleosome 

Histones interact with DNA to form a periodic "beads-on-a-string" structure, called a 

polynuc1eosome, in which the basic building block is the nuc1eosome. Each nucleosome is a 

disk-shaped structure of about 11 nm in diameter and 6 om in height that consists of a DNA 

segment and an octameric histone cluster composed of two molecules of each of H2A, H2B, 

H3, and H4 histones. Each cluster consists of a tetramer of (H3)2- (H4)2 with a H2A-H2B 

dimer stacked on each face of the disk. The DNA is wrapped around the octamer as a negative 

toroidal superhelix with the central H3- H4 tetramer core interacting with the central 70-80 bp 

of the surrounding DNA. Approximately 146 bp of DNA is wrapped around the histone 

octamer complex. Histones are in contact with the minor groove of DNA and leave the major 

groove available for interaction with proteins that regulate gene expression and other DNA 

functions. 

To form the beads-on-a-string structure nuleosomes are joined by "linker DNA" of about 

20-90 bp long. This DNA is associated with HI that locks the coiled DNA in place, producing 
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a complex called the chromatosome. Formation of nucleosomes , known as the lO-nm fiber, 

achieves one level of compaction which is about tenfold reduction in the apparent length of 

DNA. Since the distribution of these nucleosomes is not random with respect to the DNA base 

sequence it has been suggested that DNA binding is sequence dependent. In fact it has been 

shown that nucleosomes tend to associate preferentially with certain DNA regions. DNA 

sequences such as long A tracts or G-C repeats are not usually associated with nucleosoems. 

In contrast, certain bent DNA regions, for instance, periodically phased A tracts, associate 

strongly with histones (Devlin, 2002). 

The higher structure of chromatin 

To achieve further compaction the IO-nm fiber is condensed into a solenoid arrangement 

involving six to seven chromatosomes per solenoid turn . The linker histone HI has an 

important role in the higher level of compaction since histones HI bind to one another 

cooperatively, bringing the neighboring nucleosomes together to form the 30 nm fiber. This 

condensation step compacts the DNA structure with a ratio that may be as high as two orders 

of magnitude. The 30 nm fiber comprises only selected regions of DNA that are characterized 

by the absence of binding of sequence-specific nonhistone DNA-binding proteins. The 

presence of DNA binding proteins and the effects on the formation of 30 nm fibers may 

depend on the transcriptional status of the regions of DNA involved. The 30 nm fiber can 

further condense and fold to form chromosomes, which are thicker chromatin fiber visible in 

metaphase. This is achieved by the formation of looped and condensed domains of the 30 nm 

fiber. These domains bind to a nuclear scaffold consisting of histone HI and several non 

histone proteins such as ScI (a topoisomerase) and Sc2, which leads to the accumulation of 
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uperc il . The e l oop are further packed by being arranged into stacked hel ical coils, a 

tructure we refer to a the chromatid ( Devlin, 2002). Figure 1 shows the hierarchical folding 

f chromatin. 
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Fig 1 . 1 :  Hierarchical folding of chromatin (Lodish et.al., 2000). 
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Chromatin involvement in gene regulation 

While the packaging of cellular DNA into chromatin serves to compact the eukaryotic 

genome into a small nucleus, the physical structure and the compact nature of the chromatin 

presents a functional barrier to any cellular process that require access to the DNA such as 

tran cription and replication (Hill et al., 2000). Biochemical studies have implicated both 

nucleo orne core assembly and/or the subsequent binding of linker histone H I  which leads to 

higher order structure of chromatin in transcriptional repression (Workman et al., 1988; 

Workman et aI., 1990; Croston et aI, 1991; Workman et al., 1991; Laybourn et al., 1991; 

Lorch et al., 1992). Repression by nucleosomes seems to be carried either by nucleosomes on 

DNA blocking the access to sequence specific DNA binding factors by steric inhibition with 

histone DNA contacts occluding regulatory sites or by inhibiting the movement of RNA 

polymerase II (Wolffe, 2001; Paranjepe et al., 1994). 

Chromatin modifying complexes 

As mentioned earlier, the chromatin appears to be a barrier for many biological processes 

that use DNA as a substrate such as transcription, replication, recombination, and repair. 

Nucleosomes are remarkably stable to physical perturbation and under physiological 

conditions, nucleosomal arrays fold to stable higher order structures that self-associate within 

the nucleus to achieve concentrations in excess of 50 mg/ml (van Holde, 1988; Wolffe, 1998). 

Despite the compaction and accessibility problems that arise from nucleosome assembly and 

chromatin structure formation, complex metabolic processes occur very efficiently in vivo. 

In principle, all reactions that involve DNA can be regulated by altering DNA packaging 

and hence DNA accessibility. For example transcription requires that DNA be accessible to 
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sequence specific transcription factors and RNA polymerase and requires the melting and 

reformation of the double helix throughout the length of the transcript. Chromatin structure 

impedes all the steps required for transcription. So repression of transcription can be achieved 

by creating a stable, inaccessible chromatin structure while activation can be achieved by 

creating an accessible chromatin structure. Chromatin structure regulation is not a random 

proce s and proper regulation requires many factors that collaborate to ensure successful work 

(Narlikar and Fan. 2002). The contrasting requirement between storage and functional utility 

is met through the use of specialized molecular machines that reversibly disrupt and modify 

chromatin. 

The term chromatin remodeling has been used to describe transitions in chromatin 

structure that can include physical alterations to the histones, histone post-translational 

modifications, DNA methylation, the non- histone protein content of the chromatin, and 

chromatin conformation through the action of special complexes (Flaus and Hughes., 2004). 

The most widely characterized chromatin-modifying complexes studied to date can be 

classified based on their modes of action into two major groups, as follows: (1) ATP­

dependent complexes, which use the energy of ATP hydrolysis to locally disrupt or alter the 

association of his tones with DNA and (2) histone modifying complexes such as histone 

acetyltransferases (HAT) and histone deacetylases (HDAC) complexes, which regulate genes 

expression by determining the level of acetylation of the amino termini tails of nucleosomal 

histones associated with them (Vignali, 2000). 
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A TP-dependent chromatin remodeling complexes 

All of the A TP-dependent remodeling complexes contain an ATPase subunit that belongs 

to the SNF2 superfamily of proteins. Based on this subunit, the complexes have been 

classified into two main groups: The SWl2/SNF2 group and the imitation SWI 

(ISWI) group. Mi-2, a third class of ATP-dependent complexes which contains a Snf2-like 

ATPase and also shows deacetylase activity has been recently described (Eisen et aI., 1995). 

The SWI2/SN F2 group. Complexes belonging to this group contain a highly conserved 

ATPase subunit, which belongs to the Swi2/Snf2 subfamily of proteins. This group includes 

the yeast SWI/SNF (ySWI/SNF), the yeast RSC, the Drosophila Brahma complex, and the 

human BRM (hBRM) and BRG 1 (hBRG 1) complexes. The ATPase subunit they contain are 

Swi2/Snf2, Sth}, Brm , hBRM and hBRG 1, respectively. The homology of these proteins 

extends beyond the ATPase domain, as they all contain a bromodomain in the C-terminal 

region and two other conserved regions of unknown function called domains 1 and 2 (Laurent 

et aI., 1993; Tamkun et al., 1992). 

The ySWI/SNF complex was the first remodeling complex to be described and 

characterized. It contains 12 known subunits, including Swi2/Snf2. Several of the subunits 

were initially identified genetically as gene products involved in the regulation of either the 

HO endonuclease gene or the SUe2 gene, which encodes for an invertase enzyme. HO is 

required for mating type switching, hence SWI, while SUC2 mutants are classified as sucrose 

non-fermenters, thus SNF (Imbalzano, 1996; Peterson, 1996). The SWI/SNF was subsequently 

shown to be involved in the transcriptional regulation of a wider subset of yeast genes 

(Holstege et aI., 1998). About 5% of yeast genes have now been shown to be regulated by the 

SWIlSNF complex. Other studies have provided a connection between the functions of 
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SWIJSNF complex and chromatin. Several mutations that suppressed SWI/SNF phenotypes 

corresponded to genes encoding histones and other proteins (Kurger et al., 1995; Recht and 

Osley., 1999). The link between ySWI/SNF complex and chromatin was strengthened when 

the SWI/SNF complex was purified and found to alter the nucleosome structure in an ATP­

dependent manner (Cote et al. 1994· Peterson and Herskowitz, 1992). 

The yeast RSC complex contains many proteins that are homologues to the SWI/SNF 

subunits, they share at least two identical subunits. These two complexes also have similar 

biochemical activities, however, the yeast RCS complex is far more abundant than SWIlSNF 

in the yeast cell (thousands of molecules compared to 100-200 molecules of SWI/SNF). In 

additio� the 15 subunit. , RCS complex contains several subunits that are essential for the 

viability of the cell, whereas, none of the SWIlSNF subunits is essential. These 15 RCS 

subunits include a homolog to the Swi2/Snf2 ATPase, called Sthl, and homologues of Snf5, 

Swi3, and Swi73 which are Sthl, Rsc8/Swh3, and Rsc6, respectively (Cairns at al., 1996). In 

addition the yeast RCS complex contains two actin related proteins Arp7 and Arp9 that are 

identical to the actin related proteins in SWIlSNF complex, the Swp6 1 and Swp59, 

respectively (Cairns et aI., 1998; Peterson et aI., 1998). 

Genetic screening for repressors of the transcriptional polycomb protein in Drosophila 

melanogaster lead to the identification of proteins which were homologues of SWI/SNF 

proteins (Tamkun et al., 1992) and were found to form part of a large multirprotein complex 

called Brahma (BRM) (Dinwall et ai., 1995). The Brahma complex is composed of eight 

major proteins; including the ATPase subunit Brm. Proteins that copurify with Brm have been 

called BAPs for Brm Associated Proteins. Brm complex subunits Bap45/Snrl, Bap 155lMiora, 

and Bap60 are conserved between yeast and humans (papoulas., 1998; Dingwall et ai., 1995). 

MoiralSwi3D is a homologue of yeast Swi3 and the human proteins Baf155 and is reportedly 
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identical to Bap 170, (Papulas et al., 1998; Corsby et al ., 1999).The similarities between the 

Drosophila Brm protein and its human homologue are extensive and are across many regions. 

The first region is rich in prolines and hydrophobic and aromatic amino acids. The second is 

the tryptophan-rich SANT domain. This domain might be involved in Moira's association 

with Brm. The third region of homology is a leucine zipper motif, which is thought to be 

involved in self- association ability of Moira (Crosby et all., 1999). Brm complex includes a 

protein that seems to be unique to higher eukaryotes, Bap I l l , which contains an HMG 

domain and is homologous to Baf57. Bap l l l seems to be present in human complexes but not 

in the related yeast RSC and SWI/SNF complexes. Other components of the Drosophila Brm 

complex are Bap74 and Bap47 (Papulas et aI., 1998). 

Two SWI/SNF-like multisubunit complexes of approximately 2 MDa have also been 

purified from human cells (Wang et al., 1996; Wang et aL, 1996b) Those complexes contained 

different DNA-dependent ATPase/ helicase subunits, BRGI and hBRM, and are called 

hBRG 1 and hBRM, respectively. The two subunits are 70% identical and show homology to 

the yeast Swi2/Snf2 across the entire gene (Eisen et al., 1995). The proteins that are associated 

with hBRG 1 and hBRM in these complexes, called BAFs or BRG 1 Associated factors, are 

also very similar. It has been suggested that there might be multiple complexes in different cell 

types, each containing a different subset of BAF proteins and either hBRGl or hBRM as the 

catalytic subunit (Kown et al., 1994). Later studies have shown that hBRG 1 and hBRM have 

been found in different cell lines from a wide range of tissues, and the complexes containing 

them might have slightly different subunit compositions (Wang et aI., 1996). 

The ISWI group. This group of ATP- dependent remodeling complexes contains the 

ISWI protein as the ATPase subunit. The most studied members of this group are ACF (ATP­

utilizing Chromatin Assembly and remodeling Factor), NURF ( Nucleosome Remodeling 
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factor), CHRAC (Chromatin Accessibility Complex), which were purified from Drosophila 

extracts by using biochemical methods based on the their ability to disrupt and/or generate 

regularly spaced nucleosomal arrays (Ito et aI., 1997;Tsukiyama and Wu, 1995; Vagra-Weisz 

et aI., 1997). These complexes contain the nucleosome-dependent ATPase ISWI, which has 

significant homology with the Swi2/Snf2 proteins exclusively over the region of the ATPase 

domain (Elfring et al., 1994). ISWI complexes are smaller and have fewer subunits than their 

SWI/SNF counterparts. For example, the NURF complex has a molecular mass of 500 kDa 

and is composed of 4 subunits (Martinez-balbas et aI., 1998), the CHRAC complex has a 

molecular mass of approximately 670 kDa and is composed of 5 subunits (Varga-weisz et aI., 

1997), while the smallest of all is the ACF complex with a molecular mass of 220 kDa and 

contains two subunits, one of which is the ISWI subunit (Ito et al., 1997). 

In yeast ISWII and ISWI2 are two ISWI-related proteins that have been recently identified 

based on their homology to the ATPase domain of Drosophila ISWI. They were found to be 

components of multi subunit complexes with diverse nucleosomal- remodeling and spacing 

abilities (Tsukiyama et aI., 1999). In human an ISWI-containing complex was also purified 

based on its ability to facilitate transcription from chromatin templates (LeRoy et aI., 1998). 

The Mi-2 group. Complexes of this group posses both chromatin remodeling and 

deacetylase activities (Tong et aI., 1998). In human the complex is tenned hNURD and it 

contains HDACl, HDAC2, the retinoblastoma protein (Rb) associated proteins, RbAp46 and 

48, and the Swi2/Snf2 ATPase homologue, CHD4 also called Mi-2B. This complex has the 

ability to both deacetylase histones and remodel chromat� presumably by means of HDAC 

and Mi-2/CHD subunits respectively (Xue et al., 1998). A Mi-2 complex related to hNURD 

has also been identified in Xenopus egg extracts (Wade et a., 1998). Xenopus Mi-2 complex 

have peptides that are homologus to mammalian NURD complex subunits. These peptides are 
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thought to be involved in recruiting remodeling activities of Xenopus Mi-2 to methylated 

D A. Hwnan NURD was also found to contain two forms of MBD3, however, only the 

MBD2 , a homologue of MBD3, is capable of binding to both methylated DNA and the 

NURD complex. Thus, it is believed the NURD complex is tethered to methylated DNA via 

its interaction with MBD3 (Zhang et al., 1999). These contrasting activities of remodeling and 

deacetylation displayed by both human and Xenopus Mi-2 complexes suggest that remodeling 

activity of these complexes might be specifically directed to methylated regions of the 

genome, which in turn, can lead to repression either by compaction of the chromatin or by 

allowing the binding of repressor proteins. Other possibility is that Mi-2 complexes are 

recruited to specific genes by repressors (Kehle et aI., 1998; Kim et aI., 1999). 

Comparing different chromatin remodeling complexes 

As previously mentioned ATP-dependent chromatin remodeling complexes can be 

divided into three main classes based on the identity of their ATPase subunits which display 

homology through their ATPase domains, but contain different additional domains. This 

subunit binds to additional different subunits in different complexes. To date SWIlSNF family 

and ISWI-based family are the two best studied families of remodeling complexes. (Kingston 

and narlikar, 1999; langst and becker , 200 1). 

In general chromatin remodeling can be defmed as a stable alteration in the nucleosomes 

and the chromatin structure (vignali et al., 2000). The exact mechanisms by which ATP­

dependent remodeling complexes work are becoming more clear now. Recent studies have 

revealed some additional facts about the activities of chromatin remodeling complexes. 
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Biochemical comparisons performed found similarities and differences among different 

families. Comparisons included the nature of substrates to which they bind and the outcome of 

their remodeling activities which could suggest variations in their mechanisms of action. To 

illuminate the similarities and differences in the mechanistic functions of chromatin 

remodeling proteins, it would be very helpful to discus how they differ in binding to substrates 

to remodel as well as their potential activities. 

A. Binding of chromatin-remodeling complexes to DNA and nucleosomal 

substrates 

A first step for remodeling requires that complexes recognize and bind to their substrates. 

Different complexes have been found to bind differently to DNA and nucleosomes. For 

example, while the NURF Complex was not found to form stable complex with nuleosomes or 

DNA in vitro, it may interact with nucleosomes in a manner dependent on the core histone 

tails. The ISWI subunit of NURF, CHRAC and ACF has been shown to binds to DNA at least 

transiently (Gorgel et aI., 1997; Tsukiyama and Wu, 1995). The ability of recombinant ISWI 

to have some nucleosomal activity on its own indicates its ability to directly interact with 

nucleosome substrates (Tsukiyama and Wu, 1995; Corona el ai., 1999; Hamiche et ai., 1999). 

The SWIlSNF complex, however binds to DNA and nucleosomes with high affinity (Cote et 

al., 1998; Lorch et aI., 1998; Quinn et al ., 1996), This binding to naked DNA was shown to be 

ATP- dependent in ySWIlSNF with a k<J in the nanomolar range (Quinn et aI., 1996). 

Displacement of the complex by distamycin A or chromomycin A3 suggested that this binding 

occurs through minor grooves interactions (Cote et aI., 1998., Quinn et aI., 1996). The binding 

of the SWIlSNF to DNA nonspecifically in a length-dependent manner with a preference for 
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four way junctions and cruciforms has also been demostrated. This could be achieved by the 

INI 11h NF11 and BAF57 ubunits of SWl/SNF which contain HMO box that could bind to 

DNA containing such structural features (Morozov et al ., 1998; Wang et al , 1998). 

The inability to easily disrupt ySWlISNF binding to nucleosomes by the addition of 

distamycin A, excludes the possibility of SWlISNF binding to nucleosomes through minor 

groo e interaction (Cote et ai. , 1994). The SWl/SNF interaction with nucleosomes was found 

to be slightly higher than that for naked DNA, a possible reason would be the additional 

interactions of SWlISNF with the core histones. In fact the ability to bypass SWl/SNF 

requirement by H2A1H2B dimer depletion either in vivo by core histone mutations or in vitro 

by adding chaperones suggests the interaction of SWlISNF with the core histones (Cote el al., 

1994; Hirschhorn el al., 1995). A more recent experiment demonstrated interaction of core 

histones with SWl/SNF. That was done by inducing site directed mutagenesis in the core 

histone tails which resulted in SWI/SNF independent (Sin) mutations (Recht and Osley, 1999). 

Those mutations targeted regions needed for H2A1H2B dimerization and dimer/tetramer 

association and also the H2B amino terminus , which is suggested to have inhibitory role that 

can be antagonized by SWI/SNF. The presence or absence of hi stones N- terminal tails in 

nucleosomes and its effect on binding and activation of ATP-dependent remodeling 

complexes would also suggest other biochemical differences among the different complexes. 

The Drosophila ISWI-based complex, NURF, was not able to remodel nucleosomes 

lacking the histone N-terminal tails, while, these tailless nucleosomes were remodeled by 

yeast and the human SWlISNF complexes (Langst and becker, 2001 b ). Another work has 

shown the requirement ofH4 N terminal tail for the stimulation of the ATPase activity of the 

ISWI. These tails were suggested to play a role in coupling ATP hydrolysis to conformational 

changes in nuc1eosomes rather than nucleosome binding (Clapier el aI., 2001). However, the 
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case for WI/SNF was different as the removal of the H4 N-terminal tail did not affect the rate 

of remodeling (Guyon et aI., 1999; Logie et al. 1999), but rather it increased the affinity of 

WII NF for the nucleosomal array (Logie et aI., 1999).The human SWI/SNF was found to 

be able to remodel tail-less mononucleosomes as well as nucleosomal arrays suggesting that 

hSWI/SNF is activity was not dependent on core histone tails (Guyon et al. , 1999). 

B. Biochemical comparisons of ATP-dependent remodeling complexes 

Understanding the mechanisms of action of chromatin remodeling requires biochemical as 

well genetic assays. Initial biochemical approaches were not very helpful since the 

biochemical assays used for the ISWI were different from those used for the SWI/SNF 

complex. For example, the ISWI complexes were tested for both their ability to disrupt or 

assemble spaced nucleosomal arrays and their ability to stimulate in vitro transcription (Ito et 

al., 1997; LeRoy et aI., 1998; Tsukiyama et aI., 1995; Varga-Weisz et aI., 1997). On the other 

hand, SWI/SNF and RCS complexes were assayed for their ability to disrupt rotational 

phasing of DNA sequences on nucleosome core particles as well as for their ability to 

stimulate the binding of transcription factors to nucleosomes (Imbalzano et aI., 1994; Cote et 

aI., 1994; Kwon et aI., 1994; Wang et aI., 1996). Although NURF was found to disrupt the 

rotational phasing of DNA on nucleosomes cores but their mode of action was not similar to 

SWI/SNF complex (Tsukiyama and Wu, 1995). 

Although different approaches were followed with different classes of remodeling 

proteins, some important data were revealed. Later (side-by-side) experiments allowed 

comparisons of the different families by using the same remodeling assays. For example, 

BRGI (the human homolog of yeast SWI2/SNF2) and SNF2H (the human homolog of ISWI) 
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were tested for their ability to remodel nucleosomal arrays and only BRG 1 was able to alter 

restriction enzyme and DNase accessibility on rnononuleosomes. In addition, in another 

experiment BRG 1 was able to introduce topological changes in a closed nucleosomal array 

(Aalfs et aI., 2001). Octamer sliding assays showed that dMi-2 remodeling complex has 

caused the histone octamer to move toward central positions within a 248 bp DNA fragment, 

while the ISWI complex moved the histone octarner towards the ends of DNA. In addition Mi-

2 could remodel nucleosomes that lacked the N- terminal tails of his tones H4, H3, and H2A 

which was not possible with ISWI ( Brehm et aI., 2000). DNA extrusion assay is another assay 

that suggested mechanistic difference among different complexes. This assay detects the 

ability to promote the formation of cruciform DNA structures from inverted repeats of DNA. 

Both BRG 1 and ySWI/SNF could extrude cruciform DNA from both naked DNA and 

chromatin templates, while ISWI and Mi-2 Complexes could perform this function only on 

chromatin templates, which confirms the importance of nucleosomal substrates in stimulating 

ATPase activities of ISWI and Mi-2 ( Langst and becker, 2001). 

Mechanisms of chromatin remodeling 

The previous comparison of remodeling complexes suggests mechanistic difference 

among some of them in their modes of actions. In general remodeling can be considered a 

consequence of nucleosome conformation disruption which can itself represent remodeling or 

this disruption can lead to a subsequent movement of nucleosomes. Remodeling mechanisms 

can be classified into : I). remodeling by mobilizing and repositioning of nucleosomes. 

II). Remodeling by causing conformational changes to nucleosomes. 
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I .  Remodeling by mobilizing and repositioning of nucleosomes. 

It is clear that the histone octamer blocks the access of factors to nucleosomal DNA 

and a way to expose these blocked sites would be to reposition the whole octamer or mobilize 

it.There are two known nuleosome rearrangement models: sliding of histone octamers along 

DNA in cis or displacement of histones in trans. 

A. Sliding of histone octamers in cis (Spooling, Twist defect diffusion, and B ulge 

diffusion) 

Sliding, in general, means sliding the DNA with respect to the histone octamer. It involves 

identical amounts of movement of the entry and exit points of the DNA in the same direction, 

which leads to an octamer which is translationaly repositioned and so DNA that is free of 

histones, see figure 1.2 (Meersseman et al . ,  1992). Using assays that distinguish between 

translational position of mononucleosomes assembled on � 240-350 bp of DNA by NURF, 

CHARC,and ISWI has demonstrated sliding of the histone octamer (Hamiche et al., 1999; 

langst et aI., 1999). In addition the existence of an array of randomly positioned nucleosomes 

provided further evidence (Langst and Becker, 2001b). The ySWI/SNF has also been shown to 

slide the histone octamer to remodel chromatin (Whitehouse et aI., 1999). Other study have 

found nucleosome sliding induced by CHRAC or NURF appears to occur without 

displacement of the histones octamer from DNA but rather is suggested to be done in small 

steps and not large leaps (Hamishe et al., 1999; Uingst et ai, 1999). Further, restriction enzyme 

accessibility in the linker regions of nucleosomal arrays was blocked indicating repositioning 

nucleosomes over these regions by sliding (laskelioff et aI., 2000). Nucleosome mobility by 
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sliding can be explained by three models: Spooling, twist diffusion. and Bulge diffusion 

(Figure 1.2). 

The "spooling model" can explain the repositioning of nuc1eosomes (pazin and Kadonaga, 

1997). This idea developed by experiments that monitored the transcription of RNA 

polymerases through nuc1eosomes (Bednar et al., 1999). In this scenario, the movement of the 

enzyme on DNA leads to the peeling off the histone octarner surface of larger DNA segments. 

The patch of free histone is then available to capture a different DNA segment. 

The "twisting model" suggests that a remodeling complex as ISWI alters the topology of 

DNA and, thereby, changes histone-DNA interactions. It was found that the generation of 

superhelical torsion represents a primary biomechanical activity shared by all Snf2p-related 

ATPase-containing proteins. The generation of superhelical torque provides a potent means by 

which A TP-dependent chromatin remodeling complexes can manipulate chromatin structure 

(Havas et al., 2000; Varga-Weisz and Becker, 1998). Thermal energy could alter the twist of 

DNA (van Holde and Yager, 1985), effectively disrupting a set of DNA-histone interactions at 

the site of entry into the nucleosome and replacing them by analogous interactions involving 

the neighboring base-pair. Since small distortions of the helix geometry can be accommodated 

in the nucleosome (Luger and Richmond, 1998), it is possible that the locally altered twist is 

propagated over the surface of the nuc1eosome. Once the helix distortion emerges on the other 

side of the nuc1eosome, the DNA will have been displaced by one base pair relative to the 

octarner surface. 

The "bulge diffusion" is a model that suggests the unpeeling of DNA from the histone 

octamer at the entry and exit of the nucleosome and the subsequent rebinding of more distal 

sequences to the same histone contact points which would cause the nulceosomal particles to 

harbor excess DNA, looping out in a bulge. The migration of the bugle around the 
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nucleosomal superhelix would result in the nucleosome stepping in the direction where the 

bulge has initiated(Flaus and Owen-Hughes, 2003; Kulic and Scheissel, 2003). Many 

observations of nucleosomaL sliding in vivo and in vitro are consistent with movements in this 

bulge diffusion model (Flaus and Owen-Hughes, 2003b; Fazzio and Tsukiyama, 2003). 

B. H istones displacement in trans 

In this model, the histone octamers are transferred to other DNA regions. In general, 

although many remodeling complexes showed nucleosome sliding, it was not the only 

mechani m in which nucleosomes were repositioned or remodeled. For example, sliding 

alone couldn't explain how DNA is made accessible in regions of tightly packed nucleosomes. 

Remodeling was seen in mononucleosmes with no flanking DNA into which histone octamer 

can slide (Kingston and Narlikar, 1999). Moreover restriction sites which were closer to the 

center of DNA were exposed faster and more when compared to DNA ends, an event that 

can't be explained by the simple sliding of his tones (Narlikar et ai., 2001). Furthermore, site­

specific cross linking of DNA to the histone octamer didn't prevent remodeling by hWI/SNF 

(Lee etat., 1999). Remodeling mechanisms other than sliding as histone displacement in trans, 

and nucleosomal conformational change, looping can explain many remodeling activities 

which can't  follow the easy way of sliding of nucleosomes. 

Both the RCS and SWIlSNF complexes have been found to displace histone octamer in 

trans (Lorch et aI., 1999; Owen-Hughes et aI., 1996). The binding of transcription factors was 

found to further destabilize histone-DNA interactions and facilitate trans displacement (Owen­

Hughes and Workman, 1996). The RSC complex was found to catalyze the transfer of a 

histone octamer from a nucleosome core particle to naked DNA. The newly formed octamer­

DNA complex is identical with a nucleosome in all respects. The reaction requires A TP and 

18 



In  01 es an acti ated R -nuc1eo orne intermediate. The mechanism may entail formation of 

a duple di placement loop on the nucl osome, facilitating the entr of exogeneous D A and 

the release of the endogenou molecule ( Lorch et al . ,  1 999). eighboring nucleosomes were 

Ii und to form a barri r for liding and cau e S W II N F  to switch to trans displacement 

( Owen-Hughe et al., 1 996). 

The same re o1t was concluded in another work in which S W VSNF complex was found to 

prefer to I ide hi tone octamers in the presence of barrier that prevent sliding ( Whitehouse et 

a I . ,  1 999). Unlike W IISN F,  complex C H A RC and N U RF complexes has not been shown to 

have an trans di placement activity ( Langst et aI., 1 999; Harniche et al.,  1 999). The abi lity of 

W IlSNF to perform displacement of the octamer could be explained by the strong binding to 

D A compared to the I S W I  containing complexes. The additional binding of transcription 

factors to nuc1eosomes may contribute to this destabil izing of histone-DNA i nteractions within 

the disrupted nucleosome ( Owen-Hughes et  al., 1 996; Owen-Hughes and workman, 1 996). 

Tl"a nsfel" 

S po o l i n g  
m o d e l 

1 b p  

r�� 

Twi s t i n g  
m o d e l  

x 1 0  b p  
� 

B u l g i n g  
m o d e l  

Fig 1 .2 : The three dist inct model s  ( spool i ng, twisti ng and bul ging) for nucleosome mobility ( 

Uingst and Bec ker, 200 1 ). 
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I I . Remodeling without mobil izing of n ucleosomes 

The e mechanisms present ways in which nucleosomes are locally disrupted and DNA­

histone interactions are weakened to expose occluded DNA without the need of repositioning 

of nucleosomes. However the mobilizing of nuclosomes can be a subsequent step after 

nucloesomal conformational disruption. 

A. Creating DNA loops on the surface of n ucleosomes 

SWIISNF was found to create DNA loops on the surface of nucleosomal arrays. Loop 

formation on nucleosome surface causes the loss of DNA content on nucleosomes allowing 

the unwrapping of part of the nucleosomal DNA (David et al 1999). When BRG 1 and 

SNF2h were compared for their abilities to make nucleosomal sites accessible on a 

mononucleosome and on the central nucleosome of a trinucleosome, it was found that BRG 1 

opens centrally located sites more than an order of magnitude better than SNF2h. This 

capability of BRG 1 probably due to the ability to create DNA loops on the surface of a 

nucleosome, even when that nucleosome is constrained by adjacent nucleosomes. This 

ability to unravel central sites allows SWI/SNF family complexes to facilitate binding of 

nuclear factors in chromatin environments where adjacent nucleosomes might otherwise 

constrain mobility (Fan et ai., 2003). 

B. Remodeling by causing a n ucleosome conformational change (or n ucleosomal 

disruption) 

Altering the conformation of nucleosome is an alternative model that would describe 

remodeling without the mobilizing of nucleosomes. The features of SWIlSNF - or RSC-

20 



disrupted nucleosomes conformation are as follows: i) the loss of rotational phasing of the 

DNA on the surface of the histone octamer, although the DNA remains at least partly 

associated with the histone octarner surface, ii) increased accessibility ot nucleosomal DNA to 

transcription factors and restriction enzymes, iii) reduction of the total amount of DNA 

a sociated with the histone octarner, iv) the formation of dinucleosome-like species perhaps by 

the interaction of loosened DNA with histone octamer from other nucleosomes, v) reduction 

of the stability of nucleosomes at elevated ionic strengths, vi) the relocation of H2A N­

terminal tail from a position approxiarnatly 40 bp on either side of the nucleosome dyad to a 

location near the nucleosome dyad (reviewed in Vignali et al., 2000). Previous data have not 

shown helicase-like activity by S W I/SNF complex despite sequence homology between 

Swi2/Snf2 ATPase domain and that of helicase (Cote et al., 1998). Moreover, loss of 

H2A1H2B dimer was not demonstrated since cross linking of histones didn't inhibit 

remodeling by chromatin remodeling complexes (Cote et ai.,  1998; Bazett-jones et al., 1999). 

However, more recently the involvement of loss or exchange of H2A1H2B dimer in an 

octamer by some of these complexes have been demonstrated as will be discussed later. 

H istone dimer removal or replacement by chromatin remodeling complexes 

Loss of histones dimer was suggested after observing that depletion of H2A and H2B 

levels enabled the SUC2 gene to be induced in the absence of the SWI/SNF complex. It was 

also found that the depletion of H2A and H2B caused a transition in chromatin structure at the 

SUC2 promotor that mimics SWI/SNF acitity in vivo ( Hirschhorn et aI . ,  1992). Unraveling of 

DNA from the surface of nucleosomes can explain how dimer exchange occurs. However, 

other factors can do the dimer removal or exchange such as the interaction of the SnfS subunit 

with H2B (Bruno et aI., 2003) and the generation of negatively superhelical torsion during 
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remodeling activity (Brooks and Jackson, 1994). In contrast to SWl/SNF complex ISWl 

complexes were not found to have features as altering the conformation of nucleosomes, this 

was observed by the inability of those complexes to form stable complex between with 

nucleo orne nor a persistently altered nucleosome conformation has been observed. In fact 

most mechanistic studies on the ISWI-containing NURF and CHRAC complexes suggest a 

gradual movement of nucleosomes along DNA in cis as a consequence of their action 

(Imbalzano et al., 1994; Hamiche et al., 1999). Many events take place as a consequence of 

dimer 10 s from a nuc1eosome. The removal of the dimers may act as a fust step in the 

complete removal of histone octamers from DNA (Mozziconacci and Victor, 1994). The loss 

of dimers can destabilize the organization of the remaining histones, since the direct contact 

between histone dimers is thought to increase the stability of their association (Luger et aI., 

1997). Recently SWI/SNF was found to be involved in the removal of nucleosomes from the 

yeast PH05 promoter in vivo (Boeger et aI., 2003; Reinke and Harz, 2003) and cooperation 

between the Drosophila SWI/SNF complex and the histone H31H4 chaperone ASF I was also 

supports dimer/tetramer exchange and displacement (Moshkin el aI., 2002). The potential 

consequences of dimer removal could be ( i) removal of the remaining dimers or tetramers, (ii) 

allowing a closer approach of nucleosomes, (iii) the increasing of DNA accessibility, (iv) 

enabling conformational changes, (v) affecting the higher order structure (Flaus and Owen­

Hughes, 2004). 

The H2A1H2B dimer could a lso be exchanged with different H2A1H2B forms resulting in 

a nuc1eosome having an altered histone composition. The Yeast Swr 1 protein has been shown 

to direct replacement of H2A-type dimers with Htz lp-Htb lp in an ATP- dependent manner 

(Mizuguchi et aI, 2004). This action of incorporating type Htzp 1 protein may act to prevent 

the spread of heterochromatin into normally euchromatin regions (Menegbini et aI. , 2003). 
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The swapping of histone composition allows the generation of non-canonical nuc1eosomes 

which would allow the interaction of transcription factors with nucleosomal DNA. This 

prevents the formation of well ordered heterochromatin fibers or might alter the number of 

supercoils constrained by the chromatin. Dimer exchange potential consequences are: (i) 

controling of chromatin higher structure, (ii) alter the propensity for subsequent remodeling or 

polymerase passage events, (iii) reprogram signals implicit in nucleosome modification state 

and composition (Flaus, A and Owen-Hughes, 2004). 

Chromatin modifyin g  complexes 

A TP-dependent chromatin remodeling is not the sole mechanism by which chromatin 

structure is altered. The chromatin could also be covalently modified which doesn't require the 

use of energy. The covalent modifications include acetylation, phosphorylation, 

ubiquitination, ADP-ribosylation and methylation (Bradbury, 1992). Acetylation of his tones is 

the most understood of all and will be discussed since other modifications are beyond the 

scope of the thesis. 

A. Chromatin  modification by histones acetylation 

Histone acetylation was found to play a major role in eukaryotic transcription regulation. 

Histone acetyltransferases or HATs work by transferring an acetyle group from acetyl­

coenzyme A( acetyle-CoA) to the E-aminO group of some lysine side chains within a histone's 

basic N- terminal tail region (Loidl, 1994). Extending out, from the globular domains and 

harboring a positive charge these N-terminal regions of his tones are believed to bind with the 

negatively charged DNA to form the nucleosomes of hi stones (Fletchur and Hansen, 1995; 
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Lurgur et al., 1997). The e histone tails al 0 mediate interactions between nucleosome . 

Lysine acetylation which neutralizes part of a tail region's positive charge is believed to 

weaken hi tonelDNA (Hong et at., 1993; Kelly and Kuroda, 1995), or 

nucleosome/nucleo orne interactions (Fletcher and Hansen, 1996; Lurger and Richmond. 

1998) and/or ignaJ a conformational change (Norton et al., 1989). This will destabilize the 

nucleo orne tructure or arrangement and gives other nuclear factors, such as transcription 

factor more acce to the genetic material. This is supported by the fact that acetylated 

chromatin is as ociated with transcription activation (Hebbes et aI., 1988; Turner, 1993). The 

acetylation of histones is a reversible process which was found to be associated with 

acti ation, deacetylation tends to correlate with transcriptional repression. The regulation of 

such oppo ing processes ensure appropriate level of transcription of various genes (Kuo and 

Alii . 1998). 

B. H istone acetyltransferases (HATs) 

In general histone acetyltransferases or (HATs) can either be located in the nucleus or in 

the cytoplasm. Although some might present in many complexes and locations and don't fit 

this classification. The nuclear H A Ts acetylate nucleosomal histones within the chromatin in 

the nucleus and are linked to transcription (Bronwell and Allis, 1996 ; Garcea and Alberts, 

1980). While cytoplasmic HA Ts acetylate newly synthesized free histones in the cytoplasm, 

which are transported into the nucleus where they are deacetyled again and incorporated into 

the chromatin (Allis el aI., 1985; Ruiz- Carrillo et ai., 1975). HATs are very diverse proteins 

and they belong to different protein families including Gcn5-related N-acetyle transferase 

superfamily (GNA T), the MYST family, the p300lCPB family, nuclear receptor coactivators, 
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BP- A 'ocited factor TAF1I250, and TFII ( stumer and Berger, 2000). ince this thesis i 

nl concerned ab ut AG hi tone acetyltran ferase comple which contains a HAT from 

the GNAT uperfamily, we will summarize the available information about the SAGA 

comple, . 

The GenS H AT 

Gcn5 belong to the NA T uperfamily. The proteins of this family were grouped 

t gether ba ed on similarity in several regions and acetylation-related motifs, and they include 

eukaryotic and prokaryotic acetyle transferases with different specificity (Neuwald and 

Land man, 1997). Four equence motifs A,B,C and D with not fully understood functions 

define thi famil with motif A being the most conserved region (Dutnall et ai. 1998; Wolf el 

aI, 1998). G N5 was first recognized in the ciliate Tetrahymena thermophila and was found to 

be a tran cription related HAT (Bronwel el aI., 1996). This 55-KDa polypeptide was able to 

accelytate free histone (Bronwell and Allis 1996). Homologs of Gcn5 have been found later 

on in many organism including accharomyces cerevisiae (Georgakopoulos and Thireos, 

1992), humans (Candau et aI., 1996), mouse (Xu et aI., 1998) Schizosaccharomyces pombe, 

Dro ophUa melanoga ter ( mith et aI., 1998), Arabidopsis thalania, and Toxoplasma gondii 

(Hettrnan and Soldati., 1999). Such wide spread homology in organisms suggests the highly 

conserved role throughout eukaryotes. Yeast Gcn5 contains a C-terminal bromodomain, an 

Ada2 interaction domain and a HA T domain which was found to be required by adaptor­

mediated transcriptional activation in vivo (Candau et aI., 1996). Results of alanine scan 

mutagenesis perfomed in the Gcn5 HA T domain have demonstrated the correlation of Gcn5 

HAT function with cell growth, in vivo transcription, and histone acetylation at the Gcn5-

25 



dependent HIS3 promotor in vivo (Kuo et al., 1998). Further mutation studies have also 

revealed the effect of HAT activity of GcnS in chromatin remodeling at the P H05 promotor in 

vivo (Gregory et al., 1998). Other investigations have found that recombinant GcnS acetylates 

histone H3 strongly and H4 weakly in vitro in a free histone mixture. Analysis of these 

reactions products revealed primary sites of acetylation were lysine 14 in histone H3 and 

lysines 8 and 16 in histone H4 (Kuo et aI., 1996). This acetylation activity was not found in 

nucleosomal histones (Grant et al., 1997, Kuo et al., 1996; Scott et al., 2000), except under 

special conditions and at high enzyme concentrations (Tse et aI., 1998). 

In the humans the GcnS subclass of acetyltrasnferase is represented by two closely related 

proteins, GCNS and p300/CREB - binding protein associated factor (pCAF). These proteins 

share remarkable degree of homology throughout their sequence, but they contain an 

aproximatley 400-residue amino terminal region which is not present in the yeast GCNS (Xu 

et al. , 1998). In vivo and in vitro studies on human GCNS revealed its role as a transcriptional 

adaptor analogous to those of yeast GcnS (Candau et ai., 1996). In addition, the human GCNS 

was shown to have HAT activity in vitro (Yang et al . ,  1996) and its HAT domain was able to 

substitute for that of yeast in vivo indicating evolutionary conservation (Wang et aI.,  1997). 

The bromodomain of GCN S similar to other bromodomains has been shown to bind 

acetylated lysines in histone N-terminal tails (Jeanrnougin et aI., 1997; Winston, 1992). In 

vitro binding studies have shown direct interactions between yeast GCNS bromodomain with 

H3 and H4 N- terminals tails (Omaghi et aI., 1999) indicating its role in contributing to 

substrate interaction and tethering to chromatin sites (Brownell and Allis, 1996). Using GST 

(Glutathione S- transferase ) pull down assay, Hassan et al. (2007) demonstrated the 

specificity of binding of some bromodomains including the GCNS bromodomain to 

differentially acetylated H3 and H4 peptides as well as HAT- acetylated histones. 
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The SAGA histone acetyltransferase complex (SAGA) 

The inability of GcnS to acetylate nucleosomes which are the physiological substrates for 

I IA Ts was e plained by the requirement for other factors. Identification of native yeast 

complexes that were capable of acetylating nucleosomal substrates showed the importance of 

other subunits in their function (Grant et aI., 1997). At least four distinct complexes have been 

identified from the yeast S. cerevisiae extracts. These complexes include the SAGA, ADA, 

uA4 and NuA3 histone acetyletransferases which mainly acetylate. Below is a brief 

description of the yeast SAGA and the Human SAGA complexes. 

The yeast SAGA is a large 1. 8 MDa in size complex was. This complex brings together 

four different groups of transcription related proteins: Transcription adaptors (Ada proteins), 

subset of the Spt proteins, and a subset of Tafs (Grant et al ., 1998) and the Tra1 protein (Gant 

et aI., 1998; Saleh et aI., 1998). The yeast SAGA complex also contains the transcriptional 

regulator Sin4 (Yu et aI. , 2000). Using various biolchemical and genetic screening studies, 

these subunits were found to have various roles, which range from retaining complex integrity 

to, effect on growth (Grant et ai., 1997, Roberts and Winston., 1997, Sterner et ai., 1999) 

activator interactions, nucleosome acetylation to TBP interaction. In vitro the SAGA complex 

was found to be able to stimulate transcription using various chromatin-templates (kundu et 

aI., 1999; Utley et ai., 1998; Wall berg et aI., 1999). A similar role of transcription stimulation 

was also found in vivo at a subset of genes (Dudley et aI., 1999). The SAGA complex was 

found to give GcnS the ability to acetylate nucleosomes and affect the histone substrate 

specificity of GcnS, conferring a primary specificity for histone H3 and to a lesser extent for 

H2B (Grant et aI., 1997.) More over the GcnS within the SAGA complex expanded its lysine 
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specificity n hi ton H3 indicating the effects of other subunits on G N5 specificity (Grant et 

aI., 1999). A human 5-containing compte ha been also identified and purified from 

HeLa nuclear extracts (Ogryzko et aI., 1998) with similar ubunits to the yeast SAGA complex 

Yu et aI., 1998, McMahon et aI., 1998) and similar fuctions (McMahon et aI., 1998, Vassilev 

et aI., 1998). 

Cooperation between ATP- dependent remodeling complexes and H ATs 

veral tudies have indicated cooperation between ATP-dependent chromatin 

r modeling complexe and H AT comple es to achieve gene regulation. Gcn5/ SAGA and 

chromatin remodeling complex WIfSNF were found to display genetic interactions (Pollard 

and Peter on., 1997, Roberts and Win ton., 1997) and together play a role in regulation of 

orne gene (Bigger et aI., 1999; Gregory et al.,  1999; Sudarsanam et aI., 1999). 

For example, ingle mutations in the yeast SAGA subunits or in the y WI/SNF subunits 

dido't  lead to evere growth defects while simultaneous mutations in both complexes were 

lethal, suggesting genetic interaction between components of these two complexes. Another 

evidence was with chromatin immunoprecipitation (ChIP) where it was found that both BRG 1 

and p300/ BP are pre ent on estrogen receptor-responsive promoters following estrogen 

treatment of MCF7 cells (DiRenzo et ai. 2000; Shang et ai. 2000). 

Cooperation between the different chromatin modifying complexes can happen in two 

different ways. One way is through physical interactions between the A TP-dependent 

remodelers and chromatin modifiers which could increase their affinities for the chromatin 

template. This potenial interaction could also affect the activities of each complex. The second 

way is through genetic interaction between various complexes. Genetic studies and genome-
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wide micr array analy i indicate that ISW2 and SIN3-RPD3 function synergistically to 

r gulatc gen e pre ion (Fazzio et aI . ,  200 1 ' Goldrnark et aI . ,  2000). In addition. an in vitro 

tran cription y tern, p300 and PI AF enhanced NURF-mediated tran criptional activation 

fr m a chr matin t mplate (Mizuguchi et aI . ,  200 1 ) . 

Another p ibil ity i that the alteration of the chromatin template by one complex could 

make it a better ub trate for the oth r complex. The yeast WII NF complex has been shown 

to be tabi lized n the chromatin template fol lowing acetylation in vivo using an altered PH05 

promoter in ea t. Thi tudy sugge ted that the GcnS-containing SAGA complex might serve 

tw functions which are acetyl ing of nuc1eosomes as well as the stabilization of SWI/SNF 

complex to the newly acetylated nuc1eosomes ( yntichaki et aI . ,  2000). This was also shown 

u ing an in vitro sy tern, the SWII NF was shown to preferentially bind and be retained on 

acetylated templates. Thi data shows that acetylation stabi l izes SWI/SNF association (Hassan 

et al . ,  200 1 ). The order in which the e complexes would work together might depends on the 

nature of promoter , thus at different promoter , a different order of recruitment is envisioned. 

For e ample, the recruitment of A TP-dependent chromatin remodelers was found to precedes 

that of HAT complexes on the yeast HO promoter (Cosma et aI . ,  1 999; Krebs et aI . ,  1 999). 

While the reverse order of complex recruitment has been observed on the IFN-P promoter and 

for retinoic acid-induced promoters (Agalioti et aI., 2000; Dilworth et aI . ,  2000). 

The overall  objectives of this propo al are to 1) investigate the effects of the l inker histone 

H I  on the binding of SWI/SNF and SAGA to nuc1eosomal templates as wel l  as to study its 

effect on the function of SWI/SNF and 2) to investigate the effects of benzo[a] pyrene on cell 

viability and apoptosis of HepG2 and WRL-68 cell l ines and to test the effects of 

benzo[a]pyrene on the expression of some proteins that are subunits of chromatin remodel ing 

Complexes. 
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Chapter 2 :  The effect of histone H I  on chromatin remodeling 

comple e 

Introduction 

The previ u ly mentioned organization of DNA into a «beads on a string" structure is not 

the end of DNA compaction. For efficient compaction this l O-nm fiber is further condensed 

into a olenoid arrangement involving ix to seven nucleosomes per solenoid turn. This is 

fien refi rred to as the 30 nm fiber. Most of nucleosomes in eukaryotic chromatin are closely 

as ciated with histone of the ly ine-rich clas such as histones H I  H I o, HS, etc. These are 

ft n referred to as l inker histones (LHs) because they are bound, at least in part, to the l inker 

D A between nucleo omes. Linker histones' role is believed to create and/or maintain the 30 

run fib r structure of the chromatin fiber. (Zlatanova and Holde, 1 996; Holde and Zlatanova, 

1 996: Ramakrishnan, 1 997; Widom, 1 998). ince l inker histone H I  is the main focus of this 

tudy and it wil l  be discussed in more details. 

The linker histone H I  i important ince H I  proteins, in addition to binding to l inker 

DNA, also bind to one another in a cooperative manner bringing the neighboring nucleosomes 

together to form the 30-nm fiber. This condensation step provides a compaction ratio that is as 

high as two orders of magnitude. The 30- nm fiber is found to form only over selected regions 

of DNA that are characterized by the absence of binding with other sequence- specific non­

histone DNA-binding proteins. The presence of DNA-binding proteins and the effects on the 

formation of 30-nm fibers may depend on the transcriptional status of the regions of DNA 

(Devlin, 2002).  H istone H I  has also been found to have preferential binding to four-way 

hel ical juction DNA resembel ing the histone H I  binding site in the l inker region between 
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nuc1e mes (Vagra- Wei z st ai . ,  1 993). While the l inker histones faci litate the formation of 

higher rder tructure of chromatin, their presence was not found to be as essential as core 

histone fi r chromatin and chromosome assembly. However l inker histones play an important 

role in tabi l izing the chromatin tructure (Das 0 et ai., 1 994; hen et ai . ,  1 995). Linker 

hi tone ha e three tructural domains that include a central globular domain flanked by N­

and - terminal tai ls  (Ramakrishnan et ai ., 1 993). The- N- and C-terminal tai ls of the l inker 

hi tone bind to the DNA within the nucleosome core and in the linker DNA between the 

nucleo orne cores. he e tai l  harboring basic residues serve to neutralize polyanionic 

backbone of the DNA which erves in folding the chromatin into higher order structure (Al lan 

et at 1 98 1 ;  Al lan et al 1 986; Howe et ai., 1 998; Carruther and Hansen, 2000). 

Li n ker histon e  H I  involvement in gene regulation 

As mentioned previou ly the packaging of cel lular DNA into chromatin serves to compact 

the large genome into a small volume but at the same time the compact nature of the 

chromatin pre ents a functional barrier to many cel lular process that require access to the 

DNA (van Holde, 1 988). Both in vivo and in vitro experiments have provided proof of the 

involvement of histone H I  in gene regulation. The nonrandom distribution of histone H I  on 

the genome ensures its major role in gene regulation, for example it was abundant in inactive 

chromatin, and it was suggested to cross l ink adjacent nucleosomes in inactive regions. 

Moreover it was found that histone H I  binds differently in expressed regions (Weintraub, 

1 984). Other experiments showed that histone H I  was less abundant in active genes sequences 

(kamakaka and Thomas, 1 990; Bresnick et aI., 1 99 1 ; Necheva et aI., 1 989). A later study 

found that histone H I  was absent in CpO-rich islands which are a major characteristic of 
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h u e keeping gene (Tazi and Bird, 1 990). Histone H I  was al 0 found to be abundant in 

nuel e orne rich in 5- methylcyto ine (Ball et al . ,  1 983). H istone H I  has been shown to affect 

tran cription in various way . In a study Shimamura et al. ( 1 989) found that transcription 

from the Xenopu 5 rRNA gene was repres ed by adding histone H I  to minichromo omes 

that wer as embled in vitro. This inhibition was rever ed when the histone H I  was removed. 

Another in vitro tudy demon trated that the addition of hi tone H I to the transcriptionally 

active Xenopu laevis chromatin re ults in the dominant and selective repression of oocyte 5S 

rRNA gene and satel l ite I DNA, indicating the role of H I  in gene regulation (Wolffe, 1 989). 

ther tudie have shown the repre sion of oocyte- pecific 5S rRNA genes by H I  in vivo 

(Kandolf, 1 994; Bouvet et a!., 1 994). 

Hi tone H I  was found to participate in repression of the genome in ground state and that 

equence - pecific transcription factors induce selective genes by combination of true 

activation and relea e of basal repression that i s  imposed, in part, by H I  (Croston et al., 1 99 1 ). 

Hi  tone H I  was also shown to bind to and cause increased transcription inhibition on 

methylated templates compared to unmethylated templates.This higher inhibition of 

transcription on methylated DNA was at the transcription initiation stage and had no effect on 

tran cription elongation (Levine et aI. ,  1 993). Although in one of the studies histone H I  was 

not found to cause trascriptional repression in reconstituted preblastoderm Drosophila 

chromatin and repression was found only to be confered by nueleosomal structure 

( andaltzopoulos et at.. 1 994), other studies provided evidence for H I -mediated 

transcriptional repression (Neil et al ; 1 995). In  this study H I  deposited on nueleosomal arrays 

was shown to inhibit both transcription initiation and elongation by T7 RNA prolymerase. 

Inhibition of trasncription was shown to result from premature termination of transcripts. This 

indicates that histone H I  binding to chromatin might form structures which repress 
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tran cription. Hi tone H I  was al 0 found to reduce the amount of RNA synthesis from in vitro 

recon ·tituted template to 1 -4 percent of that ob erved with chromatin containing only 

nucle . orne core histone (Layboum and Kadonaga, 1 995). Another evidence was also found 

when repeat-induced point mutation in histone H I  gene in Neuri para crassa caused 

depres ion in pyruvate decarboxylase gene, which has a key role in the respiratory­

fennentative pathway (Folco et ai . ,  2003). orne studies have shown histone H I  can cause 

tra cription repere ion by repre ing transcription factor USF binding to stable nucleosomal 

template and that thi repres ion was not simply due to teric occlusion (Juan et ai. ,  1 995). 

In tead it wa caused by H I  binding leading to reduced transient dynamic exposure of the 

D A from the histone octarner surface as was suggested by Polach and Widom, ( 1 995). I n  

another tudy H I -mediated repre sion o f  factor binding was shown to be dependent o n  the 

core hi tone amino-terminal tai ls. It was suggested that there would be less stable interaction 

of hi tone H I with the core particle in the absence of the amino termini (Juan et al . 1 994). 

On the other hand, hi tone H I  was al 0 found to be required for activation of 

certain genes ,which makes its role much more difficult to understand (Shen and Gorovsky, 

1 996). Another study has hown parallel results in which histone H I encoding gene deletion in 

yea t didn't  result in  increased gene expression but rather in a modest reduction ( Hel laur et ai, 

200 I ). Moreover another in vitro study has revealed the fact that H I  enhances transcription 

initiation from a MMTV promoter on which nucleosomes were assembled (Koop et al . ,  2003). 

uch fmdings suggests that histone H I does not have major effect on global transcription but 

can be either a positive or negative gene- specific regulator of transcription in vivo. Whether 

H I  role was repression or compaction both facts show its contribution to gene regulation. 
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The effect of histone H I  on chromatin remodeling 

Hi tone H I '  role in tablizing and promoting the formation of the higher order sturcture 

of chromatin tructure cau e problem to many processe that require open chromatin 

turcutre. ince A TP-dependent remodeling complexes such as WII NF work mainly to 

make chromatin an open structure for many of the nuclear processes such as replication and 

tra cription, it would be very l ikely that hi tone H I  could affect it activity due to its binding 

to the chromatin structure. hromatin modification by acetylation is another process that 

might be affected by the binding of H I .  In this study, we will  focus on the effects that the 

binding of H I  to nucleo omal arrays would have on the binding and fuction of these two 

groups of chramtion-modifying complexes. 

Very few tudies have hown the effects of histone H I  on the binding or activity of 

WIISNF. ne tudy howed partial inhibition of SWI/SNF activity on nucleosomal 

template with H I ,  which was due to the structure formed by the addition of H I  to 

nucleosome and was not due to the presence of histone H I  alone (Hi l l  et aI . ,  2000). 

Another study supporting the same has shown that abolished activity of hSWI/SNF, xMi-2 

and XAcf complexes was not mainly due to histone-induced folding of the array and that 

pho phorylation of the histone H I  by Cdc2/cyclin B kinase could rescue remodel ing of 

WI/SNF (Hom et aI . ,  2002). In another study, histone H I  was found to affect the nature and 

the position of hSWI!SNF products which provides evidence for histone H I  effect on 

WI! NF products (Ramachandran et aI . ,  2003). 

S ince acetylation of chromatin is a process of chromatin modification and it was found to 

be a solution to overcome the repressive nature of chromatin by accessing their targets in the 

highly compacted chromatin, it is  logical to test whether involvement of histone H I  can 
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affect their binding as wel l  as activitie . Histone H4 acetylation during nul eo omal as embly 

ha been uge ted to regulate the binding of histone H I  to regulate higher tructure of 

chromatin (Perry and Annunziato, 1 99 1 ; Perry and Annunziato, 1 989). Other studies have 

te ted the incorporation of H I  in hyperacetylated chromain and has demonstrated that hi tone 

acetylation alter the capacity of hist ne H I to condense chromatin (Ridsdale et aI . ,  1 990) 

and that it pre ence affect the abi l ity of tran cription factors to interact with DNA (Juan et 

aI., 1 994; chultz et ai, 1 996). While all these studies presents the effect of acetylation on 

hi tone H I  incorporation, other studies show the reverse effect, that is the possible effect of 

histone H I  incorporation on the acetylation process. H I  and H 5  were found to specifically 

inhibit the acetylation of mono- and oligonuc1eosomes carried by p300/CPB and that 

inhibition was found to be due to steric hindrance of H3  with the tai ls  of l inker histones and 

was not due to condensation of chromatin (Herreraa et aI . ,  2000). Such inhitory effect of H I  

wa al 0 examined in an in vivo study testing the acetyaltion activity of nuclear extracts 

prepared from normal cel ls  on the chromatin templates prepared from normal and H l ­

overexpressing cel ls, this study has proven reduced activity on templates with excess H I  and 

such an inhibiton was suggested to result from changes in chromatin stucture which might 

modulate the level or the rate of core histone acetylation in vivo (Gunjan et aI . ,  200 1 ). In a 

more recent study it was shown that H I  repressed p300 acetyltrasferase activity at the Human 

T- Cell  Luekernia Virus type 1 promotor (Konesky et aI., 2006). 

Previous studies were only able to present the many effects that histone H I  might have 

on chromatin remodeling but others were with more specific fmdings about how H I  can affect 

the remodel ing process. Pennings et al. ( 1 994) found that adding histone H I  to nuc1eosomes 

suppressed a short range mobil ity of nucleosome cores that generally occurs at low ionic 

strength conditions. This can point to its effect in any acitvity that requires nucleosomes 
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mobil ity such as ATP- dependent chramatin remodel ing by WI! NF.  Another study ha 

demo ntrated that HMG-O and hi tone H I  could cause local changes in the acce sibl ity of 

nueleo omal NA up n binding to linker DNA (Ragab and Travers., 2003). 

Regulating chromatin remodeling can be one of the way that histone H I works to 

regulate tran cription or other processe . Not much information is available on how histone 

H I interfere with chromatin remodeling complexes l'-ut sti l l  the e information sugests an 

inhibitory eITe t f hi tone H I  on their binding and their activity. Based on studies which 

demon trate histone H I  involvement in regulation, we wanted to test the effects of histone 

H I on the binding of SWII NF and AGA complexes to in vitro assembeled nuc1eosomes 

template . In thi tudy we wil l  use nueleosomal arrays as wel l  as mononculeosomes. 

ueleo omal arrays provide a good model for compacted chromatin while, mononueleosomes 

e -elude uch pos iblity and would shed l ight on whether repression of both complexes has a 

common mechanism and function. On the other hand, since less binding reveals less 

remodeled templates and so less products, the other goal of this study is to test possible 

inhibitory effect of H I  on ATP- dependent remodeling activity of the SWI!SNF complex 

" hich might suggest an effect on any subsequent process of chromatin remodel ing. 
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Experimental procedure 

Purification of the SW/ISNF and SA GA chromatin modifying complexes 

The WI! NF and the AGA complexes were purified from the yeast strain accharomyces 

cere i iae using Tandem Affinity Purification (TAP) method ( Rigaut et aI . ,  1 999� lee at aI., 

2004; Has an el aI . ,  2006). The Snf6 and pt7 subunits of the SWIlSNF and AGA complexes 

are tap-tagged as de cribed by . The e tagged strain were grown in six l iters of Yeast Peptone 

Dextrose (YPD) media unti l an optical density (OD600) of 3.0 was reached. Cel ls where then 

harve ted and yeast whole cel l  extract was obtained by bead beating using glass beads in 

extraction buffer that contained 40 mM HEPES-KOH pH 7.5, 350 mM NaCl, 0. 1 % Tween-

20, 1 jlglml pep tatin A, 2 jlg/ml leupeptin, 0.5 mM DTT, 1 mM PMSF. Whole cel l  extract 

wa then cleared by centrifuging at 1 3000 rpm for 30 min. The supernatant was then 

ultracentrifuged and the resulting supernatant which contains the cel lular proteins was bound 

to 0.5 ml of IgG affinity resin (Amersham, Sweden) which had been pre-washed three times 

with the e traction buffer. Binding was carried out by rotating over night at 4 DC. IgG resin 

wa then washed once with 20 ml of extraction buffer and then with 1 0  ml of TEV cleavage 

buffer ( 1 0  mM Tris, p H 8, 1 50 mM NaCI, 0. 1 % NP-40, 0.5 mM EDT A, 1 0% Glycerol, 1 mM 

PM SF , 2 jlg/ml leupeptin, 1 jlg/ml Pepstatin A, 1 mM DIT). The IgG resin was then re­

suspended in 1 ml  of TEV cleavage buffer and c leaved overnight with TEV protease on a 

rotator. The cleaved protein was then eluted and resin was washed with 3 mL of calmodulin 

binding buffer ( 1 0mM Tris p H 8 ,  1 mM MgAc, 1 mM imidazole, 2 mM CaCb , 2 mM 

PMSF, 2 jlg/ml leupeptin, 1 jlg/ml Pepstatin A, 0.5 roM DTT). The elute was then 

supplemented with 3 jll of 1 M CaCb and incubated with 0.5 m! of washed calmodul in resin 

(Amersham, Sweden) overnight. The calmodulin resin was then washed and the bound 
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proteins eluted with calmodulin elution buffer ( I SO mM NaCI, 1 0mM Tris pH 8 ,  I mM 

MgAc 1 mM imidazole, 2 mM EGTA, 0. 1 NP- 40 , 1 0% glecerol, 1 mM PMSF, 2 J.!glml 

Jeupeptin, I J.!g!ml Pepstatin, O.S mM DTI). Elution was in S fractions of 200 III after which 

the elution was concentrated by a concentrator from Mil l ipore. This was fol lowed by elustions 

with calmodulin elution buffer that contained O.S M and 1 M NaCL Protein quality was 

checked both SDS-PAGE electrophoresis fol lowed by silver stain and Western blot using Anti 

-Tap antibodies. Figure 2. I .A shows the si lver stain of purified SWIlSNF and SAGA 

complexes. Figure 2. 1 . B shows the Western blot of the same purified protein complexes. 

The Biotinylated G5E4-5S nucleosomal array template 

GSE4-SS template was prepared by using pGSE4T plasmid (Figure 2.2.A) which 

contains five consensus Gal4-binding sites upstream of the adenovirus 2 E4 minimal promoter 

flanked on both sides by five SS  rDNA nucleosome positioning sequences (Figure 2.2.B) 

(Ikeda et aI . ,  1 999). 80 Ilg of pGSE4T plasmid was digested by S units of Asp7 1 8  restriction 

enzyme ( Roche) in I X  Boehringer Manheim B ( 1 0  mM Tris-HCI pH 8, 1 00 mM NaCI, S mM 

MgCI, 1 mM Beta-mercaptoethanol at 37 °C for 3 hours. Complete digestion was verified on 

1 % agarose gel (Figure 2.2.C).The digestion product was then biotinylated using Klenow 

enzyme (Gibco) I X  Boehringer M anheim buffer B in the presences of 0. 1 mM of dNTPs ­

dA TP plus Biotin- 1 4  dA TP ( Invitrogen, USA) at a final concentration of 0.4 mM. The 

labeling reaction was carried on at 30 °C for 30 minutes. The biotinylated product was purified 

using PCR purification kit from QlAquick PCR purification kit (Qiagen, Hi lden, Germany). 

This was fol lowed by a second digestion using 1 0  units and 6 units of restriction enzymes CIa 

I and Eae I (New England BioLabs, USA) respectively. Digestion was carried out at 37 °C for 
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3 hours. The digestion produces the biotinylated 2.5 kb G5E4-5S fragment of interest and 

other fragments of smaller sizes. To separate the 2.5 kb fragment, the DNA was run on 0.8 % 

agarose gel at a voltage of 5 VI cm (Figure 2.2D) excised and purified by Qiagen Gel 

Extraction kit. G5E4 DNA concentration was measured by UV spectrophotometry . 

Reconstitution of nucleosomal arrays and chromatosomes 

The quality of hyperacetylated or unacetylated core histones purified from Hela cells as 

wel l  as l inker histone H I  (purchased from Sigma) was checked after running on 1 5% SDS­

PAGE fol lowed by si lver staining (Figure 2. l .C). Reconstitution was done as described 

previously. Briefly, 0.6 Ilg of the G5E4 array fragment was incubated with 0.6 Ilg of each of 

hyperacetylated or unacetylated core histones to achieve a 1 .2 :  1 molar ratio of core histones to 

nucJeosomal sites on DNA. The reconstitution reaction contained 2 M NaCI in a final volume 

of 1 0  Ill .  The reaction was first incubated for 1 5  min at 37 °C, then it was serially diluted by 

adding 3 .3, 6 .7, 5, 3 .6, 4.7, 6.7, 1 0, 30, and 20 III of buffer A (50 mM HEPES (PH 7.5), 1 mM 

EDTA, 5 mM DTT, 0.5 mM phenylmethylesulfonyl fluoride(PMSF)) with I S-minutes 

incubation at 30 °C for each dilution step. The reaction was brought to a [mal NaCI 

concentration of 0. 1 mM by adding 1 00 III of buffer B ( 1 0  mM Tris-HCI (PH 7.5), 1 mM 

EDTA, 0. 1 %  Nonidet P-40, 5 mM DTT, 0.5 roM PMSF, 20% glycerol and 1 00llglml of BSA) 

and incubated for 1 5  minutes at 30 °C. To make nucleosomal arrays in the presence of H I ,  it 

was added in the step at which the NaCI concentration was 0.6 mM. The molar ratio of H I  to 

nucLeosomes was approximately 1 :  1 .  Reconstitutions quality was checked by running them on 

a 1 % agarose gel in I x  TBE buffer at 5 v/ 1 cm and products were stained with Ethidium 

bromide (Figure 2.3 .A). 
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Micrococal Nuclease digestion to check the reconstitutions 

Approximately 500 ng of each of naked DNA and nucleosomal array template were 

dige ted eparately with 2 units of MNase enzyme in a reaction buffer that contained 

50 rnM KCI and 3 rnM of caclium chloride. Digestion was carried on at room temperature for 

2 minute . after which it was stopped by adding EGT A to a fmal concentration of 1 0  rnM . 

Products were then extracted with phenol/chloroform and ethanol precipitated, and then 

resolved on a 2 % agarose gel that was stained with ethidium bromide (Figure 2.3 .B) .  

Immobilizing nucleosomal arrays on magnetic beads 

The G5E4 and nucleosomal templates with and without H I  were bound to streptavidin 

paramagnetic beads (Promega) (Hassan et aI . ,  2002; Carrozza et aI., 2003). First, 30 III of 

magnetic beads were washed twice with a buffer that contained ( 1 0  mM HEPES, 5 % 

glycerol, 50 mM KCl,  0.25 mglml BSA and 2 rnM MgCh ). Separation of beads was done by 

using a magnetic separator. The templates were then added to these washed magnetic particles 

in a binding buffer containing ( 1 0  mM HEPES, 5 % Glycerol, 300 mM KCl ,  0.25 mglml BSA 

and 2 mM M gCh) and incubated for 3 hours at 30 °C with mixing. The supernatant was saved 

and the beads were washed twice resuspended in 30 III of the buffer. Binding efficiency was 

checked by both running reconstitutions before binding to magnetic partic les and the 

supernatant after binding on a 0.8% agarose gel .  
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Biotinylated pull-down assay 

After the nucleosomal arrays are reconstituted with and without H I  and bound to 

magnetic particles either of the purified SWI/SNF or SAGA complexes were added to it in a 

pul l down as ay. Briefly, 5 III of magnetic particles alone or bound with different DNA 

templates (nucleosomal arrays with or without H I )  was incubated with either SWIJSNF or 

SAGA in a reaction volume of 201l1 in a binding buffer that contained ( 1 0  mM HEPES 5 % 

glycerol,  50 mM KCI, 0.25 mg/ml BSA and 2 mM MgCh ). After 2 hours incubation at 30°C 

with occasional mixing, the beads were separated from the supernatant by a magnetic 

eparator. The beads were then washed twice with binding buffer and re-suspended in the 

binding buffer. Both the supernatant and beads were run on a 1 0% SDS-PAGE at 1 50V for 2 

hours. The protein was then transferred onto nitrocel lulose membrane, blocked in 5% 

skimmed milk, 0 .05% Tween-20 containing phosphate buffered saline (PBST) for one hour. 

The blots were then washed twice with PBST and then incubated with anti-TAP primary 

antibody which is an antibody against the calmodulin epitope ( Openbiosystems) with a 

dilution of 1 :  1 000. The blot were then washed three times with PBST and incubated for one 

hour at room temperatures with an anti-rabbit secondary antibody conj ugated with horse 

radish proxidase (HRP). The b lot was again washed three times with PBST and the signal was 

detected on blots by SuperSignal chemiluminescence kit (Pierce, Biotechnology, Rockfor, IL, 

USA) and visualized by atutoradiography. 
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Generation of a radio- labeled mononucleosomal template 

Polymerase chain reaction (PCR) was used to generate a 1 83 base pair DNA fragment 

from a plasmid that contains the Gal4 and USF binding sites, called pGUB (Juan et al . ,  1 994; 

Prochasson et aI . ,  2003). The primers sequences used for the PCR are 5 ' :  5 '- GAT CCT CTA 

GAC GGA GGA CA -3 ' ,  3' : 5 '- GAT CCC TCG ATT CCA TGG-3 ' .  First, the 5' primer was 

radio-labeled with 32p by using T4 polynucleotide kiuase enzyme (T4 PNK) in 1 X NEBuffer 

T4 PNK reaction buffer that contains (70 roM Tris-HCI (PH 7.6), 1 0  mM MgCI, 

5 mM Dithiothreitol) .  In this reaction 0. 1 ).1M of the 5 'primer, 1 0  units of T4 PNK and (25 

�ci) of 32 P-ATP ( Institute of I sotopes Co., Ltd, BUdapest) in a 1 0 �I reaction volume was 

incubated for one hour at 37°C fol lowed by incubation for 1 0  minutes at 70 °C to stop the 

reaction . After labeling the primer with 32p, a PCR was set to generate the GUB fragment. 

The PCR reaction volume was I 00 �l and had 0.2 roM deoxynucleotides (dNTPs), 0. 1 ).1M of 

the 3 '  primer and all the kinase reaction ( 1 0�) that contains the labeled 5 'primer and Taq 

polymerase and the polymerase buffer. Using denaturing, annealing and extension 

temperatures of 94 °c, 57 °C and 72 °c respectively for one minute in each of these steps. The 

PCR reaction was done for 30 cycles using PCR machine (Thermocycler). The PCR product 

was then separated on a 2 % agarose gel and purified by Qiagen Gel Extraction kit. The 

radio labeled fragement was eluted in 20 �l TE buffer and radioactivity was counted. 

Reconstitution of the GUB mononuclesomes with and without HI 

The 32p labeled GUB DNA fragment was used to reconstitute mononucleosomes with and 

without the presence of histone H I .  Reconstitution was done by mixing 2 �l of GUB template 
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in a reaction buffer that contained 1 M NaCI and the template was titrated with different 

amounts of short oligonucleosomes. A step wise dilution of the reaction was done by adding 

buffer A that contained 50 mM Hepes (PH 7.5), 1 mM EDTA, 5 mM DTT, 0.5 mM 

phenylmethylesulfonyl fluoride (PMSF) to achieve a serial dilution in the salt concentration 

with the reaction, fol lowed by the addition of Buffer B ( 1 0  mM Tris-HCI pH 8, 1 00 mM 

NaCl, 5 mM MgCh, 1 mM beta mercaptoethanol). The fmal NaCI concentration in the 

reconstitutions was 0. 1 M .  After that the products were separated on a 8 % polyacrylamide gel 

using a 0.5 X TBE buffer, exposed to X-ray fi lm and developed to check the signal intensity. 

Ba ed on signal intensity the optimum amount of o l igonucleosomes used for the 

reconstitutions was determined. The same reaction was repeated this time but the template was 

titrated with increasing amounts 0 histone H I .  Histone H I  was added on the second step of 

salt dilution when salt concentration was 0.6 M the incorporation of H I  to form chromatosome 

particles was then checked by running products on a 8 % poly acrylarnide native gel as before 

(Figure 2.6.A). 

Gel mobility retardation assay 

Naked DNA and mononuleosomes were titrated with different amounts of both SWI/SNF 

and SAGA complexes to fmd out the amount needed to cause a band shift. The Reaction was 

carried in a 20 111 reaction buffer containing ( 1 0  roM HEPES, 5 % glycerol, 50 roM KCI, 0.25 

mglml BSA and 2 mM MgCh) , The reaction was then incubated at 37°C for 1 hour and 

resolved on a 4% polyacrylamide gel and visualized as before. After determining the amount 

of SWI/SNF and SAGA needed for the gel shi� the same reaction was repeated with 

nucleosomes in the presence or absence of H I  (Figure 2.6.B and C). 
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Restriction enzyme accessibility assay 

WI/ NF complex was incubated with nuleosomes ±H I in the presence or absence of 

ATP to al low remodeling (prochasson et al . ,  2003 ' Hassan et aI . ,  2006). This reaction was 

similar in conditions to the gel shift explained above except for the addition of ATP. Then I 

ilL of al l restriction enzyme was added and al lowed to digest DNA for 30 minutes at 30 °C. 

The enzyme activity was stopped by adding 22 III of stopping mixture that contained (20 mM 

Tris, 50 mM EDT A, 2 % SDS,0.2 mg/ml Protinase K, 1 mg/ml glycogen ) and incubating the 

reaction for one hour at 70 °C. The products of digestion were then ethanol precipitated and 

boiled in 5 III of 95% formarnide dye prior to resolving on a 6% denaturing. Results were 

visualized by using X-rays films (Figure 2.7). 

Results 

P urification of chromatin modifying p rotein complexes and the GSE4 nucleosomal 

array template. Following the purification of the TAP-tagged yeast SWIlSNF and SAGA 

complexes by tandem affinity purification method, both protein complexes eluted at three 

different salt concentrations ( 0. 1 50, 0.5 and I M )  were resolved on 1 0  % SDS- PAGE gel 

and were visualized by si lver staining (Figure 2. 1 .B ). 1bis figure demonstrates the purity of 

protein complexes eluted since different subunits can be seen in the gel .  Different amounts of 

the same proteins complexes were analyzed by Western blot as seen in Figure 2. 1 .A. In  

addition, the purity of core histones, acetylated core histones, and histone H I  was also tested 

by running them on a 1 5% - SDS PAGE fol lowed by sl iver staining (Figure 2. l .C). 
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u 1 0 mal array were as embled on the GSE4-S fragment conta in ing tandem repeat of 

the ea urchin S rO A nu leo orne po itioning equence . Thi template for nueleo ornal 

a mbl was generated by enzymati digestions of the p208S -GSE4 ( Figure 2.2.A). The 

effic iency of digestion wa tested b checking DNA after each digestion tep on a 1 % native 

agaro e gel .  Figure 2.2.C sho the uncut pIa mid in lane l ,  whi le  complete l inearization of 

the plasm id after digestion with restriction enzyme Asp 718 is shown in lane 2, lane 3 shows 

ub equent dige tion by the re triction enzymes Cia I and Eae I to generate the 2.S kb DNA 

t mplat . Figure 2 . 2 . 0  how total DNA load d after complete dige tion and 
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Fig 2. 1: Puri fied WVS F, SAGA, and h istones. (A) TAP tagged SWVSN F and SAGA complexes 

\\-ere purified by the Tandem Affin ity Purification method. Complexes were el uted from calmodu l in 

affin ity resin at d ifferent salt concentrat ions, 0. 1 5  M, 0.50 M and 1 M NaCI .  The purified complexes 

were run on a 1 0% DS- PAGE gel and s i lver stained. ( B )  Western bolt for d ifferent amounts of the 

purified WVSNF and SAGA protein  complexes were run on 1 0% SDS-PAGE (C)  Acetylated, 

unmodified core h i stones, and H I  were run on a 15% SDS-PAGE gel,  fo l lowed by s i lver stain ing. 
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eparation of fragments on a 0.8% agarose gel .  The 2.S kb fragment was excised and purified 

by QIAquick gel extraction kit from Qiagen. DNA concentration was measured by using UV 

pectrophotometry and was found to be 0.2 I-Lg/I-Ll .  

After the preparation of the SS-GSE4 template, i t  was used to assemble nucleosomal 

arrays by salt dilution. The template was titrated with core histones till a ratio of 1 :  1 was 

achieved. Successful nucleosome assembly was detected by slower migration of the assembled 

nucleosmes on a 0.8% agarose gel . (  Figure 2 .3 .A). Lane 2 of the figure shows the 2.Skb naked 

DNA, lane 3 shows the nucleosomal array. Lanes 4 and S show the same nucleosomal arrays 

titrated with two concetrations of histone H I .  The increasing amounts of H I  led to slower 

migration of nucleosomes on the gel indicating, incorporation of H 1 .  The slowest migrating 

band in lane S was found to match H I  to nuclosomes molar ratio of 1 :  1 .  This figure 

demonstrates how different reconstitutions migrate when compared to each other. To further 

demonstrate the assembly of nucleosmes, a micrococal nuclease digestion assay (MNase) was 

perfomed on both naked DNA and the nucleosomal array. In Figure 2 .3 .B, digestion for 2 

minutes with MNase revealed a ladder l ike pattern when nucleosomes were digested, 

indicating protection of DNA sites by the nucloesomes ( lane 2) whi le digestion of naked DNA 

produced complete digested products ( lane 1 ). 
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Fig 2.2: Generation of a 2 . S  kb DN A fragment conta in ing SS-rDNA nucleosome posit ion ing 

sequences. (A) A map of the pGS E4 with the position of the restriction sites that were used.( B)  A 

d iagram of the 2 .S0 bp GSE4 fragment. It has a SGa14 binding s i tes up tream of the adenovirus 

min imal E4 promoter ( Utley et aI,  1 998).(C)  An agarose gel showing I flg of each of uncut pGS E4 in 

lane I ,  pGS E4 cut with Asp7 1 8  i n  lane 2 and cut w ith Eae I and CZa I i n  Jane 3 .  (D) An agarose gel 

showing the 2 . S  kb G S E4 template that was cut from a 1 %  agarose gel for purificat ion .  
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Fig 2.3: Preparation of the G 5 E4 nucleosomal array.(A )  An agarose gel showing the 

recon t itution of G5 E4 template into nucleosomal array and chromatosomal array, lane 1 is the 1 

kb D A ladder, lane 2 shows the migration of the 2 .5  kb DNA template alone and lane 3 

reconstituted w ith core h i stones and lanes 4 and 5 shows nuc leosomes with increasing amounts of 

H I  (B)  MNa e djgestion of the reconstituted G5 E4 template, lane 2 shows the laddering of the 

array after a brief d igestion with MNase, whi le, th is  laddering is  not observed with the same 

amount of MNase digestion for the naked DNA shown in lane 1 .  
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H istone H I  represses tbe binding of botb SWIJSNF and SAGA complexes to 

nucleosomal a rrays. To study whether histone H 1 affects the binding of SW1/SNF and 

SAGA complexe to nucleosomal arrays, a pulJdown assay was done. SWII SNF and SAGA 

binding to nucleosomal arrays reconstituted with or without H I  was tested in separate 

experiments. Each complex was incubated with magnetic beads with different templates and 

then magnetic beads were separated and resolved on a 8 % SDS- PAGE and was 

immunoblotted fol lowed using anti-TAP antibody incubation. Beads alone were included as a 

control for specific binding to magnetic beads and the supernatant of all reactions were 

included to ensure that less protein binding to templates on beads was not due to unequal 

protein loading input. Figures 2.4.A and B show the binding of SWIlSNF and SAGA 

respectively to nucleosomal array templates. The nonspecific binding of SWl/SNF complexes 

to beads is shown in lane I of Figure 2.4.A. Lane 2 shows the binding of SWl/SNF complex to 

the naked DNA and lane 3 shows similar binding to nucleosomal arrays, while, in lane 4 there 

is very clear reduction in binding of SWl/SNF complex to nucleosomal arrays in the presence 

of H I .  Lanes 5-8 show the supernatants of the four binding reactions, they show the amount of 

SWI/SNF complex that was left unbound in lanes 1 -4 respectively.  Same inhibitory effect of 

H I  upon the binding of SAGA complex to nucleosomal arrays is observed in Figure 2.4.B. 

Nonspecific binding of SAGA to magnetic beads alone in lane 1 ,  lane 2 shows binding of 

naked DNA and lane 3 shows similar binding to nucIeosomal arrays, while, the binding in the 

presence if H I  was diminished in  lane 4. Lanes 5-8 show the supernatant of the four binding 

reactions, they show the amount of SAGA complex that was left unbound in lanes 1 -4 

respectively. Al l  these results show inhibitory effect of histone H I  on the binding of both the 

SWIlSNF and SAGA complexes to nucIeosomal arrays. 
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Fig 2.4. Autoradiograms of we tern blot showing that h istone H I  inh ib its the binding of WVSN F 

and AGA complexes to nucleosomal arrays (A)  The binding of SWV SN F  to nuc leosomal array 

templates in  the pre ence or absence of H I .  Lane 1 shows the binding of SWVSNF complex to 

magnet ic beads as a control .  Lane 2 and 3 show the binding of S WVSN F complex to DNA and 

nuc leo ome re pect ively. Lane 4 shows the binding to nuc leosome + H I . Lanes ( 1 -8 ) show the 

presence of unbound SWVSNF in supernatant in the same order. (B )  The binding of SAGA to 

nuc leosomal array templates of with and without H I . Lane 1 shows the b inding of SAGA complex 

to magnetic beads as a contro\ .  Lanes 2 and 3 show the b inding of SAGA complex to DN A and 

nucleosomes respectively. Lane 4 shows the binding to nuc leosome +H I .  Lanes ( 1 -8 ) show the 

presence of unbound SAGA in supernatant in the same order. 
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H istone H I  represses the binding of SWIlSNF and SAGA complexes to acetylated 

Ducleosomal arrays. To examine the effect of histone H I  on the binding of SWI/SNF and 

AGA on acetylated nucleosomal arrays, arrays were reconstituted as previously described 

using hyperacetylated core histones rather than unmodified ones (Figure 2 .5 .A). Fig 2 .5 .B and 

C show the results of the biotinlyated pul l-down experiments in which increased binding of 

SWIlSNF as wel l  as SAGA complexes to hyperacetylated nucleosomal array was observed 

( lane 2 in both figures) when compared to unmodified templates (lane 1 in both figures), 

demonstrating better binding of SWI/SNF to acetylated nucleosomal arrays when compared to 

unmodified templates which is due to the presence of bromo domain that recognizes acetylated 

histones. Moreover the binding of both of these complexes of both was reduced when 

hyperacetylated nucleosomes in the presence of H I  was used to reconstitute the template 

(Figure 2 .5 .B and C lanes 3 and 4). This suggests that even with acetylated nucleosomes, 

histone H I  can repress the binding of SWIlSNF and SAGA complexes to nucleosome. In 

other words, while acetylation can increase the binding of these complexes to nucelosomes, 

the repression by histone H I  is sti l l  significant. The acetylation and histone H I  binding seems 

to have almost equal but opposing effects in the binding of SWIlSNF and SAGA complexes to 

nucleosomal arrays. 
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Fig 2.5: Autoradiogram of  we tern b lot showing that h i stone H I  inh ib its the binding of SWIJSNF 

and AGA to acetylated nuc leosomal arrays (A)  An agarose gel showing the reconst itution of the 2 .5  

kb G 5 E4 template with hyperacetylated h istones in  the presence and absence of h istone H I .  ( B )  

Western blot showing the binding o f  the SWIfSNF complex to nuc leosomal array reconstituted with 

hypracetylated h istones in the presence and absence of H l .  (C)  B inding of the SAGA complex to 

nucleosomal array reconst i tuted with hypracetylated h istones in the presence and absence of H l .  
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H istone H I  inhibits the binding of SWIJ SNF but not SAGA to monoculeosomes. 

gel mobi l ity retardation assay performed on to find out the effect of histone H I  on the 

binding of SWI/SNF and SAGA complexes to mononucleosme template. This was done by 

generating 1 83 bp DNA fragment from the pGUB by PCR. Amplification was preceded by 

end label ing using 32p_ A TP fol lowed by PCR. The template was then reconstituted into 

mononucleosomes, this was fol lowed by another reconstitution to form mononucleosomes 

with histone H I .  Reconstitution products were resolved on a 6% acrylamide native gel in 

which the success of reconstitution was recognized by a band shift caused by slower migration 

(Figure 2.6.A lanes 2 and 3) compared to the DNA alone (lane 4) The reconstituted templates 

in the presence or absence of histone H I  were incubated with increasing amounts of SWI/SNF 

( Figure 2.6.B) or SAGA ( Figure 2.6.C) in separate reactions and the products of these 

reactions were resolved on 4% native gel .  The results show partial binding of SWI/SNF to 

naked DNA (Figure 2.68, compare lanes 1 and 2). The binding of SWI/SNF to 

mononucleosomes in the absence or presence of R !  is shown in lanes 3-6 and 7- 1 0  

respectively. Lanes 4-6 show the aggregation of mononucleosomes upon SWI/SNF addition, 

while lanes 8- 1 0  show a decrease in the intensity of the shifted band (corresponding to 

S WI/SNF binding) when the nucleosomes are reconstituted in the presence of histone H I .  In 

other words histone H I  inhibits the binding of SWI/SNF to mononucleosomes indicating an 

inhibitory effect of R I  on SWIlSNF binding. Figure 2.6.C shows the effect of H I  on the 

SAGA binding to mononucleosomes. In  contrast to the SWI/SNF data, histone H I  didn't 

seem to affect the binding of SAGA to mononucleosomes (compare lanes 5-7 and 2-4). 
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Fig 2.6: Autoradiograms showing that hi tone H I  inh ib its the binding of SWlfSN F, but not SAGA 

to mononucleosomes.(A )  Autoradiogram howing the reconst itution of the 1 83 bp GUB template 

into mononuc1eosomes with and without H I .( B )  Gel mob i l ity retardat ion of the b ind ing of 

WV N F  complex to monon ucleosomes reconst ituted in the presence or absence of h istone H 1 .(C)  
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el m b i l it retardati n of the binding of AG comple to mononucleo omes recon tituted in 

the pre cnce or ab ence of h i  tone J 1 1 .  

Remodeling activity of SWII N F  is decreased i n  the presence of h istone H I .  To test 

whether hi tone H I  has an effect on the remodel i ng act ivity of WIIS F, the accessib i l ity of 

the re tricti n enz me al  I to i ts site in the mononucleosmes assembled on GUB fragment 

with and without hi tone H I  in the pre ence of WI! NF was mea ured. The acce sibi l i ty of 

al I tested after th addition of W II N F  in  presence or absence of A TP to a l low 

remode l i ng of mononucl 0 omes. Fi gure 2.7 shows the remodel ing activi ty of the SWI/SNF 

on mononuclesomes i n  the pre ence of A TP ( lane 5) by the generation of a smal ler fragment. 

When mononucleo omes reconstituted in  the presence of H I ,  the Sal I restriction enzyme 

acce ib i l i ty was significantly reduced, this was observed by less cut products ( compare l anes 

5 and 8). In other words, the pre ence of histone H i  inhibi ts the remodel ing activity of 

WI! NF on mononucl eosomal templates. 
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Fig 2.7 Autoradiogram showing that remodel ing act iv ity of SWIISN F i s  reduced in the presence of 

h i stone H I .  Chromat in  remodel ing was fol lowed by the restriction accessib i l ity of the enzyme Sal I 

to mononuc leosmal templates. Products were resolved on a 6% denaturing gel .  
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Discussion 

Histone HI  plays a major role in organizing chromatin into higher order structure. Many 

studies have suggested histone H I  to be a potent inhibitor of transcription (Shinamura et al . 

1 989; Croston et al. 1 99 1 ;  Laybourn and Kadonaga). It is also well  established that the 

SWI/SNF remodeling complex functions mainly to make chromatin more accessible for the 

transcriptional machinery (Narl ikar and Fan., 2002 ). Having a common role in gene 

regulation raised questions on whether histone H I  could affect the binding of SWI/SNF to 

nculeosomes and its activity. Very few studies have tested how histone H I  affects the 

SWIJSNF function. One study showed inhibition of SWI/SNF activity on nucleosomal 

templates with H I ,  which was found to be confered by the structure formed by the addition H I  

to nucleosomes rather than the presence of histone H I  alone ( Hi l l  et al. ,  2000). Another study 

has supported the same idea but such an inhibtion was not found due to histone-induced 

folding of the array (Hom et al ., 2002). Further studies have shown that histone H I  affects the 

nature and the position of hSWI/SNF products (Ramachandran et aI., 2003). Beside these 

effects on SWl/SNF, histone H I  was also found to regulate acetylation of chromatin.  Histone 

H I and H5 were found to specifical ly inhibit the acetylation of of mono- and 

oligonucleosomes carried by p300lCPB and that inhibition was found to be due to steric 

hindrance of H3 by the tai ls  of l inker histones and was not due to condensation of chromatin. 

(Herreraa et al . ,  2000). Such inhitory effect of histone H I  was also tested in which in vivo 

and was suggested to result from changes in  chromatin stucture which might modulate the 

level or rate of core histone acetylation (Gunjan et aI., 200 1 ). I n  addition histone H I  was 

found to repress p300 acetyltransferase activity at the human T- cel l luekemia virus type 1 
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promotor ( Konesky et al . ,  2006). All these data demonstrate the repession effects of histone 

H I  on the tra cription from nucleosomal templates (Juan et al .  1 994; Juan et al . ,  1 995) and 

suggests a possible effect on the binding of SWI/SNF and HATs to nucleosomal arrays. 

Uti l izing a purified system to test the binding of SWIlSNF and SAGA to nucleosomal 

templates with or without H I  we found that histone H I  repressed the binding of both 

SWII  NF and SAGA complexes to in vitro assembled nucleosomal arrays. This reduced 

binding is suggested to be either due to chromatin higher order structure promoted by the 

addition of H I  (Devlin, 2002) by steric occlusion or masking of the sites by histone H I  sites 

where both complexes might prefer to bind. Such a suggestion is supported by data that 

showed the preferential binding of histone H I  to four-way hel ical junction DNA, which is 

similar to the histone H I  binding site in the nucleosome structure (patrick et al . ,  1 993). The 

binding to the four-way hel ical junction DNA was also found to be a property of SWI/SNF 

complex as wel l  (Zlatanova and Van holde, 1 989). It is possible that histone H I  occupies the 

binding site where SWI/SNF might prefer to bind. Since SAGA has not been shown to bind to 

four-way hel ical j unction DNA, the inhibition of SAGA binding might be due to chromatin 

condensation rather than competition for binding sites as is the case with SWI/SNF.  To test 

whether this histone H I  repression is observed on modified chromatin templates as wel l ,  the 

effect of histone H I  on SWI/SNF and SAGA binding to nuclesomal arrays was repeated using 

hyperacetylted nucleosomal arrays. Results revealed that same level of inhibition was sti l l  

seen even when templates were hyperacetylated. To find out whether chromatin higher order 

structure was behind the repression, mononucleosomes assembled on a 3
2
p_ 1 83 bp labeled 

DNA fragment reconstituted with or without H I  were used. In a gel shift assay, there was a 

clear inhibition on SWI/SNF binding to the monucleosmes with H I  whi le, there was no effect 

on the binding of SAGA to mononucleosomes suggesting a different mode of repression of 
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histone H I  on the binding of SWIJSNF and SAGA to nucleosomal arrays. It is l ikely that the 

inhibition of SAGA binding by histone H I  is due to chromatin condensation rather than steric 

occlusion of the binding site. Less binding implies less remodeling activity on nucleosomes 

and thus a remodeling assay on mononculeosomes reconstituted in the presence or absence of 

H I ,  SWIlSNF remodeling activity was found to be reduced significantly in the presence of 

H I .  Such inhibitory effect on remodeling activity might be explained by less SWIJSNF protein 

available for remodel ing due to less binding, even though we can't exclude the inhibitory 

effect of histone H I  on the remodeling function of SWIJSNF itself. 
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Chapter 3 :  The effect of benzo[a] pyrene on chromatin remodeling 

complexes 

Introduction 

As I have discus ed in previous chapters, it is well  establ ished that chromatin is an 

important regulator of transcription and that genes which are packaged into chromatin are 

transcriptionaly inactive. This compacted structure of chromatin can be remodeled to a more 

accessible structure to enable transcription activation (Workman and Kingston, 1 998). Factors 

that mediate chromatin transitions are ( i)  histone acetyltransferases (HATs); ( i i) histone 

deacetylases ( HDACs); and adenosine triphospate ATP-dependent chromatin remodeling 

complexes (Kingston et ai ., 1 996). Alteration in either recruitment or the function of any of 

these factors can lead to misregulation of transcription; which can affect key regulatory genes 

leading to improper proliferation and differentiation of cells, events that can lead to cancer. 

Many studies have linked ATP- dependent remodel ing complexes and HATs to cancer which 

has made chromatin-modifying complexes an important pathway in cancer development. 

Since chromatin is the substrate on which chromatin remodeling complexes and modifying 

complexes work, this can raise a question on whether DNA damage can affect their work. 

Such damage in DNA accounts for the mutagenicity and carcinogenicity of many chemical 

carcinogens such as the wel l  known polycyclic aromatic hydrocarbons (PAHs). Some studies 

have provided primary data on how these compounds can modulate gene expression of many 

chromatin related proteins. Such data encouraged the search for the involvement of chromatin 

remodeling in the carcinogenicity of those compounds. In this chapter, we study the effects of 

benzo [a] pyrene (B[a]P) which is a frequently used model compound for PAHs on two cel ls  
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l ines, HepG2 (Human hepatocel lular l iver carcinoma cel l  l ine) and WRL-68 (human liver 

embryonic cel ls) and investigate whether protein expression of particular subunits of 

modifying complexes is altered upon treatment with benzo[a]pyrene. In addition, we were 

interested in understanding how a possible alteration in gene expression can be related to 

effects een as apoptosis or increased cel l proliferation. First, we wil l  discus the roles of A TP­

dependent chromatin remodeling complexes and HATs in cancer fol lowed by a brief 

description of P AHs and how they induce mutagenicity .  Final ly, the results of our studies on 

the effect of P AHs on chromatin remodeling wil l  be presented. 

The role of ATP-dependent chromatin-remodeling complexes in 

ca ncer 

Many studies have implicated ATP-dependent-remodel ing complexes in the regulation of 

cel lular growth and proliferation. For example, hBRG 1 and Sth ! protein have been shown to 

play a role in cel ls  cycle progression (Cao et 1., 1 997; Khavari et al . ,  1 993), while BRM 

knockout mice show increased cel l proliferation ( Reyes et aI ., 1 998), Human ATP-dependent 

remodel ing complexes have also been identified as co-regulators of genes involved in cel lular 

transformation (Muchardt and Yaniv, 1 999) . It is believed that this sort of regulation is 

mediated indirectly by the abil ity of A TP-dependent remodeling complexes to remodel 

promoters of genes involved in cel l  cycle control .  Other studies demonstrate different possible 

ways of cell cycle control as physical interactions between subunits of theses complexes and 

other proteins, or the phosphorylation status of subunits of these protein complexes. For 

example, it was shown that hBRG l and hBRM subunits of human SWIlSNF complex 

physical ly interact with retinoblastoma protein forming a complex inducing cell cycle arrest 
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(Dunaief et aI . ,  1 994; Strober et aI ., 1 996). Another study shows that hBRG 1 co­

immunoprecipitates with cyelin E, which in turn, associates with the cyele dependent kinase 

Cdk2 to control the G l iS checkpoint of the cel l  cycle. Moreover in the same study other 

WISNF subunit were found to coimmunoprecipitate suggesting that cyelin E/Cdk2 might 

interact with the SWIfSNF as a whole. Cyclin E/Cdk2 complex was aIso found to 

phosphorylate both hBRG- I and BAF 1 55 subunits which were proposed to regulate the 

activity of hSWI/SNF (Shanahan et aI . ,  1 999). Phosphorylation of subunits in ATP-dependent 

chromatin remodeling complexes was also suggested to regulate the complex function during 

the cel ls  cycle. For example, the phosphorylationaI status of Sth l p, a component of yeast 

RSC, was found to oscil late during cel l  cycle (Cao et aI . ,  1 997). Another study have found that 

hBRM and hBRG 1 in SWI/SNF were phosphorylated during mitosis and were excluded from 

condensed chromatin. Moreover, hBRM was partially degraded in mitotic cel ls which is 

bel ieved to lead to inactivation of SWI/SNF during cell division (Muchardt et aI., 1 996). The 

phosphorylation of another subunit of SWI/SNF, hswi3 which fol lowed that of Brg l has also 

been demonstrated. I t  was found that the phosphorylated complex with the lost ability to 

disrupt nucleosomes recovered its activity as cel ls  exited mitosis and became 

dephosphorylated (Sif et aI., 1 998). Another study shows phospho inositol pathway mediated 

targeting of hSWIfSNF complex to chromatin upon lymphocyte activation (Zhao et aI . ,  1 998). 

The above mentioned studies provide evidence on how A TP- remodeling complexes are 

involved in the control of the cel l  cycle progression. I t  is also wel l  known that cancer might 

develop when cel l  cycle is disrupted. Many studies have demonstrated a relation between 

A TP-dependent remodel ing complexes and cancer. For example rhabdoid tumors, which is an 

aggressive cancer of the brain and soft tissue, was found to consistently express a mutated 

hSNF5-IN I l ,  a component of human SWI/SMF complex. In addition, hSNF5-INI l was found 
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to display the properties of a tumor-suppressor gene (Versteege et al . ,  1 998; Sevenet et aI . ,  

1 999). orne studies have shown that mutations in the ATPase subunit of SWIJSNF, Brg 1 ,  are 

also associated with multiple types of tumors (Wong et al. ,  2000). BRCA l which is a tumor 

suppressor gene was also found associated with a SW1JSNF-related complex. It has been 

shown that B RCA I can directly interact with the BRG l subunit of the SW1JSNF complex 

(Bochar et al . ,  2000). Moreover p53-mediated stimulation of transcription by BRCA I was 

completely abrogated by either a dominant-negative mutant of B RG l  or the cancer-causing 

deletion in exon 1 1  of B RCA I (Bochar et aI ., 2000). In another study, c-Myc was found to 

interact directly with the hSNFS-IN I l component of SW1JSNF and that its transactivation 

requires an intact and active SWI/SNF complex (Cheng et al . ,  1 999). 

The role of histone acetyltra nsferase (HAT) com plexes in  cancer 

Studies of oncogenic fusion proteins have revealed evidences of the role of HAT 

complexes to cancer. I t  was found that a significant number of chromosomal translocations, 

that are often associated with leukemia, had a significant number of genes encoding HATs 

(Rowley, 1 998). One of the oncogenic fussion proteins which cause acute leukemia in humans 

is formed by the fussion of the human mixed lineage leukemialtrithorax protein (MLL) and 

CREB binding protein (CBP), resulting in the MLL-CBP fussion protein. MLL is a DNA­

binding transcriptional regulator that interacts with chromatin remodeling complexes, and is 

important for maintaining the expression of HOX genes, which play an important role in 

development and hematopoieses (Yu et al., 1 998). CBP is a large protein that contains a HAT 

domain, a bromodomain, and several other domains that bind a wide variety of gene-specific 

activators (Shikama et el . ,  1 997). Many models have been proposed to explain transcriptional 
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misregulation caused by this type of oncogenic fusion. One suggests recruitment of CBP to 

MLL target site , resulting in their acetylation and activation (Yu et aI . ,  1 998). An alternative 

model suggests that this fusion protein is recruited to targets not normally bound by MLL.  

Other models suggest MLL to alter the acetylation activity of CBP or alter interactions of CBP 

with other proteins, resulting in misregulation of the target. Final ly, another possibi l ity is that 

MLL-CBP is sequestered at MLL- binding sites and thus there wouldn't be enough CBP for 

other targets (Cairins, 200 1 ). Fusion proteins were also found to form between two HAT 

proteins such as CBP and other HAT related proteins as Monocytic leukemia zinc fmger 

(MOZ) and MOZ-related factor (MORF) (Borrow et al . ,  1 996; Panagopoulos et al . ,  200 1 ). 

One explanation for misregulation by MOZ-CB P  and MORF-CBP complexes is the 

presumably increased acetylation at CBP targets. Also other model is the recruitment of CBP­

MOZ and MORF to undefmed MOZ and MORF targets (Cairins, 200 1 ). Such fusion was also 

found to occur between MOZ and transcriptial intermediary factor 2 (TIF2) (Sterner and 

Berger, 2000). Al l  of these data i l lustrate that misregulation of HAT targeting and activation 

could lead to cancer. 

Polycyclic aromatic hydrocarbons as cancer causing agents 

Polycycl ic aromatic hydrocarbons (P AHs) are ubiquitous environmental pol lutants with 

high carcinogenic potencies that have been l inked to the etiology of human cancers through 

their presence in cigarette smoke and environmental pol lutants (Colon et al. ,  1 999). Since they 

are ubiquitous compounds (present in several places at the same time) they have received 

much attention and numerous studies reflect that importance. P AHs are a large group of 

organic compounds with two or more fused aromatic rings (Fig. 3 . 1 )  They have relatively low 
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solubi l i ty in water, but are highly l ipophi l ic. PAHs are formed mainly as a result of pyrolytic 

processes, especial ly  the incomplete combustion of organic materials during industrial and 

other human activities, such as processing of coal and crude oil, combustion of natural gas (for 

heating) , combustion of refuse, vehicle traffic, cooking and tobacco smoking, as wel l  as 

natural processing such as carbonization. Several hundreds of different P AHs, in addition a 

number of heterocyclic aromatic compounds as wel l  as nitro-PAHs can be generated by 

incomplete combustion (Colon et aI . ,  1 999). 

co 6) XX) 
aohthalene Acenaohthene Anthracene 

GO )SO 
Phenanthrene Pyrene Benzoohenanthrene 

Benzo r a l Pvrene 

Fig 3.1 Poly cyc l ic aromatic hydrocarbon PAHs 

Metabolism of PAHs 

The lipophil ic nature of PAHs enables them to readily penetrate cel lular membranes and 

remain in the body indefmitely .  Metabol ism of P AHs in the body renders them more water 

soluble and more excretable. Metabolism of P AHs occurs in al l tissues and it involves several 
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possible pathways involving various enzyme activities. A tissue's metabol ic route is  

determined by the activities and the affinities of the enzymes in that tissue. The enzyme 

system primari ly responsible for PAR metabolism is the microsomal mixed function oxidase 

system (MFO) which converts the non-polar PARs into polar hydroxy and epoxy derivatives 

( Hall et al. 1 989). Epoxides are the major intermediates in the oxidative metabol ism of 

aromatic double bonds. The epoxides are reactive and ezymatically metabolized to other 

compounds such as dihydrodiols and phenols (Glatt and Oesch, 1 987). The structural 

similarity of P AHs contributes to the simi larities that exist in  their metabolism, and the 

metabolism of benzo[a ] pyrene which has been extensively studied is used as a model for 

PAHs metabolism. 

Benzo[a]pyrene is metabolized initially by microsomal cytochrome P- 450 systems to 

several arene oxides. Once formed these arene oxides may rearrange spontaneously to 

phenols, undergo hydration to the corresponding trans-dihydrodiols in a reaction catalyzed by 

microsomal epoxide hydrolase or react covalently with glutathione ( IARC., 1 983). 6-

Hydroxybenzo[a]pyrene is further oxidized either spontaneously or metabolically to 1 , 6-, 3 ,  

6- or  6, 1 2- quinones. 3-hydroxybenzo pyrene is  also metabolized to 3 ,6- quinone, and the 9-

hydroxy- benzo[a]pyrene is further oxidized to k- region 4,5 oxide which is hydrated to the 

corresponding 4, 5 dihydrodiol . The phenols, quinones and dihydrodiols can all be conjugated 

to glucuronides and sulfate esters, the quinone also form glutathione conjugates (IARC., 1 983;  

Agrawal et  aI . ,  1 99 1 ). In addition to being conj ugated, the dihydrodiols undergo further 

oxidative metabolism. The cytochrome P-450 system metabolizes benzo[a]pyrene- 4,5-

dihydrodiol to a number of uncharacterized metabolites, while 9, 1 0  dihydrodiol is 

metabol ized predominantly to its 1 - and/or 3 phenol derivative with only minor quantities of 

65 



9, 1 0- diol -7 8- epoxide being fonned. In contrast to the 9, 1 0-diol, benzopyrene -7, 8- diol is 

metabolized to a 7,8 - dihydrodiol -9, l 0  epoxide and a phenol - diol which is a minor 

pathway. The diol epoxides can be conjugated with glutathione either spontaneously or by 

glutathione- -transferase catalyzed reaction. They may also hydrolyze spontaneously to tetrols 

(Hal l et aI . ,  1 987). Fig 3 .2  summarizes the metabolism of benzo[ a ]pyrene. 
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Fig 3.2 : Metabolic scheme for Benzo[a]pyrene. 

66 



Enzyme systems that metabolize P AHs are widely distributed in the cells and tissues of 

humans and animals. The highest metabolizing capacity is present in the liver, followed by 

l ung, intestinal mucosa, skin and kidneys, but metabolism may take place also in nasal tissues 

mammary gland, spleen, brain, hair follicles , erythrocytes, platelets, leukocytes, placenta and 

uterus. Animal and human fetal tissues have the capacity to metabolize P AHs, but at a low 

rate compared to the adult tissues (Anderson et ai ., 1 (89). P AHs stimulate their own 

metabolism by inducing microsomal cytochrome pA50 monooxygenase and epoxide 

hydrolases. The induction of isoenzymes belonging to the cytochrome PA50 lA subfamily 

(CYP 1 A 1  and CYP 1 A2) is mediated by binding to a cytosolic receptor protein, the Ah 

receptor (Nebert et al., 1 993).  In addition to the previous system, other enzyme systems have 

been suggested to be involved in the metabolism of P AHs (philipson and Ioannides, 1 989). 

M utagenicity of P AHs 

The mutagenic effects of benzo[a]pyrene is  well  established and i t  is frequently used as a 

positive control to demonstrate the sensitivity of various test systems to detect the genotoxic 

action of unknown compounds. Moreover, it serves as a model compound for PARs. P AHs 

exert their mutagenic and carcinogenic activity through biotransformation to chemical ly 

reactive intermediates which bind covalently to cellular macromolecules. The level of binding 

of PAH to DNA correlates with the relative carcinogenic potency of the PAH (Brookes and 

Lawly, 1 989). Extensive and systemic studies on the tumerigenicity of individual P AH 

metabolites in animals have led to the conclusion that vicinal or so called bay-region diol 

epoxides are the ultimate mutagenic and carcinogenic species of some P AHs, although not the 

only one (Graslund and Jemstorrn, 1 994). Two pathways are involved in mutagenicity i)  the 
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formation of dihydrodiols epoxides that covalently bind to exocycl ic amino groups of purines 

in DNA to form table adducts. i i )  the formation of radical cations that bind to N7 and C8 of 

guanine to form unstable adducts. 

i )  Dihyd rodiol Epoxides and the formation of stable DNA 

adducts 

Bezo[a]pyrene uti l ized as a model helps our understanding of how dihydrodiol epoxides 

are formed, in the case of benzo[ a]pyrene, it is called 7 8-diol -9, 1 0  epoxide. The formation 

of this metabolite requires three enzymatic reactions: initial epoxidation to yield the 7,8-

epoxide, hydrolysis of this epoxide to yield the (-)- trans- 7, 8 diol and finally a second 

epoxidation of the diol to produce benzo[a]P -7,8 diol- 9, 1 0  - epoxide, (B[a]PDE) (Yang et 

aI. , 1 977) (Figure.3 .3) .  
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Fig 3.3 : Fonnation of 7,8 - diol- 9, I 0 epoxide. 
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~ benzo( a ] pyrene 
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JJ, DNA i ncorporat ion 

B PDE - DNA adduct 

Fig 3.4. Benzo[aJpyrene diol-epo ide adduct 

8 [a] PDE form binds to the DNA by forming stable adducts on the exocyJ ic amino group of 

deoxyguano ine (dG) ( Figure 3 .4) ( Meehan and Calvin, 1 979). 

ii) Radical cations and the u nstable adducts 

This is the alternative activation pathway in which radical cations are generated by one 

electron oxidation of diol epoxides. These diol epoxides are easily converted by epoxide ring 

opening into electrophilic carbonium ions (Figure 3 .5)  which are alkylating agents that 

covalntently bind to nucleophi l ic sites in the DNA bases and in proteins (Brookes and Lawly, 

1 964).  Due to the binding of these intermediates, mainly at N7- or C8- positions of purine 

bases, the resulting adducts are unstable and generate apurinic (AP) sites in the DNA by 
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sp ntane us d purination ( avalieri and Rogan., 1 995). AP site have also been reported to be 

pr duced in 0 A b reaction with dihydr diol epoxides (Li et al. 1 995). It has been proposed 

that the Ie ion , rather than stable DNA adducts, are re ponsible for the induction of 

mutations in critical genes leading to cancer initiation (Cavalieri and Rogan, 1 995). 

HQ 

1 O·car toea ion 

Fig 3.5: The formation of carbonium ion 

� 

(+) (7 R.8R.9S, 1 Ofij· 7 ,8·dihyd rOod 
id ·9, 1 ().e PJ)jd e 

A Lin k  between the carcinogenesis of PADs and ch romatin 

remodeling. 

As mentioned above, metabolic activation of PAHs results in the formation of reactive 

intermediates that can damage DNA by covalently binding (Melendez-Colon et al ., 1 999), and 

DNA adducts by P AHs has been shown to form in vitro and in vivo (Nesnow et aI., 1 998; Ross 

et ai . ,  1 995). Some studies have shown that the presence of nucleosomes suppresses BPDE 
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induced damage levels within the central area of nucleosmes by up to 60% ( avalieri and 

Rogan, 1 995� Melendez- olon et aI . ,  1 999). On the other hand, another study found that 

BPDE adducts in X boreali 5 rRNA gene enhance nucleosome formation in a damage­

dependent manner. It was ugge ted that adduct formation in nucleosome could potentially fix 

o A in a conformation favorable for nucleosome formation. An alternative explanation was 

that a fte ible hinge point induced by BPD adduct may require less energy for DNA to wrap 

around the hi tone . I t  was uggested that within a transcriptional region of a gene, a more 

table nuc1eo orne could affect nucleo orne disruption (Mann et ai . ,  1 997) by chromatin 

m difying complexes. 

orne tudie tried to explore molecular mechanisms of mutagenesis and carcinogenesis 

induced by B[aJ P .  One group used a two-dimentional gel electrophoresis to investigate protein 

expre ion levels in FL cell ( human amnion cel ls) after B[a]P exposure and results revealed 

alt ration of 47 proteins, with SWIlSNF related proteins, and other bormodomain-containing 

protein among the identified proteins (Gao et ai, 2003). The same group tested the effect of 

B [ a] P on the expres ion of proteins in human amnion epithelial cel ls and expression changes 

were again detected in a number of transcriptional regulators including SNF2L 1 ( Wl/SNF 

related, matrix as ociated, actin dependent regulator of chromatin, subfami ly a, member 1 ). 

This protein. which is mainly involved in the chromatin remodel ing and transcription 

regulation was found to be down-regulated greatly after B[a]P exposure (Gao et al, 2004). In  

anther study, the treatment of  HepG2 cel ls with B[a]P was also shown to result in  modulation 

of gene expression with slight reduction in genes expressing histone 1 (H2a l ), histone 1 ( H3d) 

and histone deacetylase 1 (HDAC I )  (Staal et ai . ,  2006). Yet another study has shown time and 

concentration dependent changes in gene expression induced by B [a]P in MCF-7 and HepG2 

cel ls  l ines (Hockley et ai. 2006). The over all response consisted of up-regulation of tumor 
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uppres r gene and down-regulation of nco genes promoting cel l  cycle arre t and apoptosis. 

Anti-ap ptOtiC ignal were al 0 affected. In this tudy, gene involved in nuclear a embly 

l ike hi tone 1 ( I 12bg) histone I (H4b), hi tone 1 (H2bj), hi tone 1 (H3d) and histone 1 (H4c) 

were down regulated in M F- 7 cell whi le down-regulated and then up-regulated or vice 

ver a in Hep 2 cel l  . All the above data howing modulation of expression of some genes 

In lved in chromatin a embly or even chromatin remodeling suggest the possible 

involvement of chr matin remodeling in the carcinogencity of B [a]P. Additional studies have 

hown the in olvement of chromatin remodel ing in apoptosis, which could be used to explain 

a p sible pathway that cel l  go through after B[a]P treatment. For example, it was shown that 

the 0 er e pre sion of INI l protein, a chromatin remodel ing factor associated with SWI/SNF, 

in Ini l-deficient cel ls caused induced G 1 arrest and apoptosis ( Keisuke et al ., 2002). Similarly, 

a more r cent study have shown that forced expression of Brg 1 in mesenchymal cel ls  by 

adenoviral trasndcution induced growth arrest and apoptosis (Napolitano et al ., 2007). In this 

stud we wil l  in estigate the effects of B[a]P on the expression of B RG- I ,  BAF55 and GeN5 

which are chromatin-modifying related proteins. 
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Experi mental proced u re 

Chemical and reagent : 

B [ a]P  (purity 1 00%, A no. 50-32-8) was purchased from Accu tandard , lnc. (New Haven, 

T), and was di 01 ed in dimethyl ulfoxide (DM 0; igma Aldrich Chemie GmbH 

teinheim, Gennany to prepare a 50 mM stock solution and stored at -20 °C protected from 

l ight. Protea e inhibitor (PM F, leupeptin, aprotenin and pepstain A) were obtained from 

igma-Aldrich o. ( t. Louis, MO). Anti- Brg l ,  anti-Gcn5, and anti-Bafl l 5  antibodies were 

all obtained from anta Cruz Biotechnology (CA, USA). The anti-actin antibody was 

purcha ed from igma (St. Loui , MO, USA). 

Cell culture 

WRL-68 and HepG2 Cell l ines (A TCC, USA) were cultured in Roswell  Park 

Memorial I n  titute media (RPMI 1 640 + Glutarnax™; GIBCO-BRL) supplemented with 1 0% 

fetal calf  serum (GIBCO-BRL )  and 1 00 units/ml penici l lin- streptomycin ( GIBCO-BRL). 

Cell were maintained at 37 °C in 5% CO2 incubator. After reaching confluency, cel ls were 

ubcultured into 6-, 1 2-, and 96- wel ls  culture plates for subsequent treatment. Treatment was 

done by replacing old media with fresWy prepared media containing various concentrations of 

B [a]P (0. 1 �, 1 � 1 0 �, and 1 00 � ). DMSO concentration in all media as wel l  as 

control media was maintained at a concentration of 0.2 %. 
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Cell cytotoxicity a ay (CCK-B assay) 

ytoto icty in WRL-68 and Hep 2 cel l , after treatment by B[a]P, was evaluated 

u ing the C K- cel l  counting kit ( Ooj indo Laboratorie ). Cells were plated in three 96-well 

plate at a den ity of 5000 cel l  /wel1J 1 00 /-11 of RPM! 1 640 plus 1 0  % FCS and 1 00 units/ml 

penici l l in- treptomycin at 37 °C. Next day old media was replaced with freshly prepared 

media with B[a] P at concetrations of 0. 1 1-tM, 1 1-tM, 1 0  I-tM and 1 00 I-tM for 1 , 3 and 6 days. 

ontrol contained media with 0.2% OM 0 only.  Toxicity was evaluated after each treatment 

according to manufacturers instructions, by adding 1 0  I!L of CCK-8 solution to each wel l .  

Reduction time was al lowed to proceed for 1 -3 hours. Absorbance at 450 nm was measured 

with a micoplate reader. Data were calculated as a percent of absorbance compared to OMSO 

control group. 

Detection of Cell Viability and Cell Death (Flow Cytometry) 

Detection of cell viabil ity and cel l  death by flow cytometry was performed using 

Annexin V-FITC and propidium iodide stains (BD Biosciences, USA). Cel ls were seeded in 

two 1 2-wel ls  culture plates with approprate media, and on the next day, old media was 

replaced with media containing different concetrations of B[a]P. Treatments lasted only for 

three and six days, after which the cel l s  were washed with phosphate-buffered saline. Briefly, 

Cells were resuspended in 1 00 III of Annexin V binding buffer (BD Pharmingen). Annexin V­

FITC (4 Ill )  and Propidium I odide (PI ) (4 Ill)  were added to each treatment in the dark. Cells 

were incubated at room temperature for 30 minutes and kept in the dark. Cell suspensions 
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were raised to a final v lume of 500 �l with Annexin V binding buffer. Flow cytometry was 

performed u ing a Becton-Dicken on FA can flow cytometer and Cel l Que t software. 

SDS-PAGE and Western blot analysi 

Both WRL-68 and HepG2 cel l  were expo ed to the same concetrations of B[a]P 

mentioned above with DM c ncetration maintained of 0.2 % in al l wel ls. Controls 

contained nly 0.2 'ro DM O. el l  were trp inized, washed and col lected after 1 , 3 and 6 hours 

e po ure and then ly ed in 1 00 �l of lysi buffer ( 1 00 mM Hepes, pH 7.5,  1 0  % sucrose, 1 0  

m M  DTT, 0. 1 %  C HAP , 1 50 m M  NaCI, protease inhibitors ( 1  m M  P M  S F  and 1 �g/ml each 

of leupeptin, aprotenin and pep tain A). Cel ls were lysed by 6 consecutive cycles of freezing 

and thawing, and spun at 1 4000 rpm for 30 minutes at 4 °C. Supernatent was eprated from 

p l Iet and stored at -80 °C. Concetration of protein in cellular extracts was estimated by a an 

a ay based on the Bradford colormetric reaction (BioRad, USA). For Western bloting, 30 �g 

of cel lular protein was electrophoretica1ly separeted on a 1 0% SDS-PAGE. Fol lowing 

electrophoresi gel , were transferred onto nitrocel lulose membranes (Mi l l ipore, U A). 

Fol lov.ing the transfer, the membranes were blocked by incubation in 5% nonfat dry milk in 

phospate buffered sal ine with 0.05% Tween-20 (PBST) for 2 hours at room temperature. Then 

the, membranes were incubated at 4 °c overnight with the fol lowing antibodies diluted in 

PB T: anti-Brg l ( 1 :  1 000), anti - I SS ( 1 :  1 000), anti-GcnS ( 1 :  1 000), and anti-actin ( 1 :  1 000). 

Blots then were washed with PBST and were incubated with the appropriate horseradish 

peroxidase-conj ugated secondary antinodies ( 1 :  1 000 di lution) for 2 hours at room 

temperature. After washing with PBST, binding of antibodies was detected on blots by 

uperSignal chemiluminescence kit (Pierce, Biotechnology, Rockfor, IL, USA) visualized by 
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atut radiograph . < qual, loading of protein was confinned u ing mouse monoclonal 

econdary antib dy t detect a tin. 

Re ults 

Cytotoxic effect of B [ a ) P  on WRL-68 and HepG2 cells. Cel l  counting kit-8 (CCK-8) 

wa. used to te t the cyt toxic effect of Bla]p on WRL-68 and HepG2 cel ls. The kit al lows 

en itive colorimeteric detennination of the number of viable cel ls. It is based on the reduction 

of W T -8 [2-(2-methoxy-4-nitrphenyl)-3-( 4-nitrophenyl)-5-(2,4-disulfophenyl )-2H­

tetrazolium. monosodium alt] by dehydrogenase in  viable cel ls  which produces a water-

s luble fonnazan dye. The amount of the yel low fonnazan dye generated in cel ls  is directly 

proportional to the number of living cel ls. Both dose and time dependent effects of B [a]P on 

the viabil ity of both HepG2 and WRL-68 cel ls  were tested. Both cel ls l ines were treated with 

various concentrations of B [  a ] P, treatment was also done for different duration of one, three or 

i days. HepG2 Cel ls treated with B [a ] P  for three and six days showed a clear dose­

dependent reduction in viabi l ity, where increasing concentration of B [a]P resulted in reduced 

viabi l ity (Figure 3 .6.A). At highest B [a]P concentration ( 1 00 �, viabil ity was reduced down 

to 63% • On the other hand, viabi lity of HepG2 cel ls after one day of treatment was sl ightly 

reduced even at the highest concentrations. WRL-68 cel ls (Fig 3 .6.B) treated for one or six 

days shows only a slight-dose dependent change in viabil ity whi le viability of WRL-68 cel ls 

treated with B [a]P for three days was reduced to 59%, at the highest B [a]P concentration. In 

general, these data indicate that B [a] P was more toxic at high concentrations and that toxicity 

was more apparent with longer treatments, but the pattern of toxicity was also cel l type 

dependent, possibly because of metabolic differences in the two different cel ls  l ines. 
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F i g  3.6 : Cytotoxic effects of B[a]P on  two cel l  l i nes. (A )  V iabi l ity of HepG2 cel l s  after treatment with 

d ifferent concentration of B[a] P for 1 , 3 and 6 days.( B )  V iabi l ity of WRL-68 after treatment with 

different concentrat ions of B[a] P for 1 3 and 6 days. 
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Apoptotic effect of B (a ] P  on HepG2 and WRL-68 cells 

Cytotoxicity assay only provides an idea about the effects of B[a]P on cell viablity but 

cannot differentiat between apoptotic and viable cel ls since both have dehydrognease activity 

which is detected by CCK-8 kit. Testing the apoptotic effect of B [a ]P  can support data 

obtained from cytotoxicity assay. Moreover it gives more details on whether B[a] P induces 

apoptosis. Flow cytometry after dual-staining with annexin V -FITC in combination with 

propidium iodide (PI ) was used to differentiate between viable, apoptotic, and secondary 

necrotic HepG2 and WRL-68 cells. Loss of plasma membrane asymmetry is one of the earliest 

features of apoptosis. This feature can be detected by binding of Annexin V to the membrane 

phosphol ipids phosotidyle serine (PS) that is  translocated from the inner to the outer leaflet of 

the plasma membrane of apoptocic cells. Since PS translocation also occurs during necrosis, 

PI is used with Annexin V.  P I  can penetrate plasma membrane when membrane integrity is  

breached. Viable cel ls do not stain with either dye, apoptotic cel ls with only annexin V -FITC, 

late apoptotic and necrotic cells with both annexin V -FITC and PI . Graphical representation of 

flow cytometry of both cell l ines revealed a concetration-dependent increase in apoptotic cells 

and that effect was more evident after treatment for 6 days compared to 3 days treatment (see 

Figure 3 . 7.C and Figure 3 . 8.C) So in general results of flow cytometery revealed that 6 days 

treament was more toxic than 3 days treatement which was not similar to results obtained from 

cytotoxicity assay. These results can be possibly because of B [a]P interfering with the 

metabolic rate in the cells and after long durations giving that false result of increased viablity. 

F low cytometery results for both HepG2 and WRL-68 cell l ines look similar, however the 

variation in  toxicity results in  CCK-8 can be expalined by possible metabolic difference in 
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C 8[a] P ind uced apoptos is i n  HeG2 cel ls 
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Fig 3.7: F I  w cytometric analysis of HepG2 cel ls  after treatment with B[aJP.  (A)  Treatment with B [a] P 

for 3 day . ( B) Treatment with B[a] P for 6 days. (C)  Graph ical repre entation of the flow cytometry 

data for 3 and 6 days treatment of HepG2 cel l s  from A and B.  
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C 8[a]P induced apoptos is i n  WRL-68 cel ls  
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Fig 3.8: F low cytometric analysis of WRL-68 cel ls after treatment with B[a]P.  (A )  treatment with 

B [a]P for 3 da . (B )  treatment with B [a]P for 6 days (C) GTaph ical representation of the flow 

cytometry data for 3 and 6 days treatment of WRL-68 cel ls from A and B. 
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The expression of BRG- l ,  GeNS and BA F I SS in H epG2 and WRL-68 cells after 

treatment w ith B [ a J P. 

After observing apoptosis in both cel l  lines upon treatment with higher concentration of 

B [ a] P, we wanted to test if this apoptosis was accompanied with a change in the expression 

BRG- l ,  BAF 1 55 or Gcn5. Cel ls  were harvested after treatment with different concentrations 

of B[a ]P  (0. 1 �, 1 J.LM, 1 0  flM and 1 00 f..LM) for 1 ,  3 and 6 days. Total cell protein was run on 

DS-PAGE gels and detection was performed with antibodies against BRG- l and GCN5 

( Figure 3 .9.A). The expression of the components of chromatin-remodel ing proteins in HepG2 

cel ls after treatment for 3 and 6 days were measured. It is clear that there is no significant 

change in expression even with treatment with higher concentration of B[a]P at which 

apoptosis was detected. In addition, we measured the expression of B RG- l ,  BAF 1 55 and 

Gcn5 after treatment of HepG2 and WRL cells at different times points ( 1 ,  3, an 6 days) with 

two concentrations of B[a]P and observed no significant time-dependent change in protein 

expression (Figure 3 . 1 O .A and B).  The lanes of actin at the bottom of Figure 3 . 1 O.A and B 

serves as a loading control .  
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Fig 3.9: The expression o f  both Brg l  and GCNS after treatment of  HepG2 ce l l s  with d ifferent 

concentrations of B[a] P for 3 and 6 days (A)  treatment for 3 days. ( B )  Treatment for 6 days. 
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Discussion 

arcinogenicity and mutagenicity of B[a ]P  is mostly explained by the covalent binding of 

B [a ]P  metabolites to DNA and the formation of DNA adducts. Such adducts might alter and 

introduce point mutations in a gene, an event that can lead to cancer development if genes that 

were affected are related to cel l cycle control .  Some studies have shown that chromatin 

remodel ing might play a major role in inducing cancer or apoptosis. Most of these studies 

have analyzed the expression of chromatin remodeling complexes or tested the effects of their 

loss on cel ls. For example, one study demonstrated that BRG- I loss renders cells resistant to 

retinoblastoma mediated cel l  cycle arrest an event that might lead to cancer (Strobeck et aI., 

2000). Another study has l inked increased expression of BRG 1 to the development and 

progression of gastric carcinoma (Sentani et al., 200 1 ). In this study gastric carcinomas 

showed increased BRG 1 expression in tumor tissue with gastric carcinomas with lymph node 

metastasis expressing BRG- l at higher levels. Another evidence for the implication of B RG- l 

in cancer development was demonstrated when the expression level of both BRG- l and B RM 

was anaylyzed in primary lung adenocarcinoma and lung squamous cel l  carcinoma. The 

results showed that 1 0% of tumors showed concomitant loss in B RG I and BRM expression 

(David et aI ., 2003). The role of BRG- l in cancer was also shown when it was found that 

BRG- l with ablated function in T l umphocytes resulted in profound abnormalities in mice 

demonstrating the role BRG- l plays in regulating thymocyte cel l  proliferation and survival 

(Gebuhr et aI ., 2003). In addition, the deletion of B RG- l locus AT 1 9p 1 3  as a predictive 

marker for the prognosis of the patients that have oral carcinomas, such a conclusion was 

inspired from analyzing clinicopathological data for patients with oral squamous cel l  

carcinoma (Gunduz et  aI ., 2006). F inal ly, microarray data revealed that aberrant expression of 
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BRG- l is associated with twnor development and increased invasiveness in prostate cancer 

(Sun et aI ., 2006). 

BAF 1 55 is one of the SWII NF subunits that was shown to stimulate the remodeling 

activity of BRG- I .  BAF 1 55 is one among the four subunits that are needed for efficient 

chromatin remodeling (Phelan et al.,  1 999). It was found that targeted deletion of BAF 1 55 in 

mouse is embryonicaly lethal. Similar to BRG- l ,  Gcn5, a histone acetyltransferase was also 

proved to play an important role in cell cycle progression through transcription regulation of 

various cell  cycle related genes. For example, Gcn5 deficiency in DT40 mutants resulted in 

influencing apoptotis- related genes and G l iS phase transition related genes ( Kituchi et aI . ,  

2005) .  Simi larly, deletion of Gcn5 gene was found to result in embryonic lethality in mice 

indicating its role in embryogenesis ( phan et al . ,  2005). I n  this study, we were interested in 

whether the cytotoxicity of observed in cells leading to their apoptosis after B [  a]P treatment is 

due to changes in expression of subunits of chromatin-modifying proteins such as Brg l , 

Bafl 55  and Gcn5. 

Here, we show high toxicity of B[a] P on both HepG2 and WRL-68 cells using CCK-8 

cytotoxicity. These results were confmned by flow cytometry, however, time dependent 

changes were not observed in the assay. In cytotoxicity assay, cel ls were more viable with 

longer duration of incubation while less viable with shorter treatment durations. This was not 

found in flow cytometry analysis in which longer durations of treatment were more toxic to 

cells. A possible explanation for this might be that B [a]P interferes with dehydrogenase 

activity especially after longer durations showing increased viability. Western blot analysis 

showed neither a time- or dose-dependent change in the expression of three subunits within 

chromatin-remodeling or histone acetyltransferase complexes. This demonstrates that reduced 

cell viability observed or increased incidence of apoptosis was not due to changes in the 
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expression of these proteins. These results, however, don't  exclude a possible role of 

chromatin remodeling in the carcinogenesis of B [a]P.  Measuring the expression of other 

subunits of chromatin-modifying proteins could shed more l ight into the possible involvement 

of remodel ing as a possible pathway in B [  a]P carcinogenesis. In addition to that change in 

expression, the activation and deactivation of subunits of chromatin-modifying proteins such 

as those were demonstrated in some studies could help greatly in pathway identification 

(Muchardt et al.,  1 996; Sif et al.,  1 998). Furthermore, chromatin immunoprecipitation (ChI P) 

can help in detecting any change in recruitment of remodeling complexes to genes involved in 

cell cycle regulation, as this can be one of the ways in which chromatin remodel ing activity 

can be increased at certain genes. 
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