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Abstract

Geometric numerical integration is a relatively new area of numerical analysis.

The aim is to preserve the geometric properties of the flow of a differential equation

such as symplecticity or reversibility. A conventional numerical integrator approxi-

mates the flow of the continuous-time equations using only the information about the

vector field, ignoring the physical laws and the properties of the original trajectory. In

this way, small inaccuracies accumulated over long periods of time will significantly

diminish the operational lifespan of such discrete solutions. Geometric integrators, on

the other hand, are built in a way that preserve the structure of continuous dynamics,

so maintaining the qualitative behaviour of the exact flow even for long-time integra-

tion. The aim of this thesis is to design efficient geometric integrators for Hamiltonian

systems and to illustrate their effectiveness. These methods are implicit for general

(non-separable) Hamiltonian systems making them difficult to implement. However,

We show that explicit integrators are possible in some cases. Both geometric and non-

geometric integration methods are applied to several problems, then We do a com-

parison between these methods, in order to determine which of those quantities are

preserved better by these methods. In particular, We develop explicit integrators for a

special case of the restricted 3-body problem known as Hill’s problem.

Keywords: Hamiltonian systems, geometric integrators, dynamical systems, Hill’s

problem, Splitting and Composition methods.
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Chapter 1: Introduction

The topic of this thesis is geometric integrators with applications to Hamiltonian

systems. We will concentrate to give an introduction to the relatively new area of

numerical analysis called geometric integration. This is an overview applied to a se-

ries of numerical methods, that aim to preserve the qualitative features of a diffrential

equations.

During the past decade there has been an increasing interest in studying

numerical methods that preserve certain properties of some differential equations. The

reason is that some physical systems possess conserved quantities, and that the solu-

tions of the systems also should contain these invariants.

In this thesis we are mainly concerned with symplectic geometric integra-

tion methods. We will give the definition of symplectic maps, and call any numerical

scheme which induces a symplectic map as the symplectic numerical method. The

results obtained in this thesis centers around solving some certain types of dynamical

systems of Hamiltonian type using symplectic integration. More details on these topics

can be found in several recent books [3, 7, 14], and survey articles [1, 2, 4, 8, 9, 12]. In

particular, we solve a special case of the restricted three body problem by first splitting

the Hamiltonian into Linear and nonlinear parts and solving each part separately. We

then combine both parts using a symplectic method of order two.

The outline of this thesis is as follows. First, we describe Hamiltonian

systems and the relationship with Lagrange’s Equations. We then outline the main

properties of Hamiltonian systems. Finally, we give a brief description of Poisson

brackets and its properties. In chapter 2, we start by describing one step methods

including an error analysis; we also illustrate the stability of such methods. We the

describe in detail several popular numerical methods. In chapter 3, we discuss the
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main properties of geometric integration. In chapter 4, we apply symplectic and non

symplectic methods to three well known problems, namely, the pendulum, Kepler’s

problem, and Hill’s problem.
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Chapter 2: Hamiltonian Systems

In this chapter Hamiltonian systems and Poisson brackets will be introduced with

their main properties.

2.1 Hamilton’s Equations

Given a Lagrangian function L(q, q̇), then Lagrange’s equations of motion are given

by

d
dt

∇q̇L(q, q̇)−∇qL(q, q̇) = 0, (2.1)

where q = (q1, ....,qn)
T is the position of a mechanical system, with n degrees of free-

dom. This equation can be reduced to a system of first-order equations, by introducing

the conjugate momenta

p = ∇q̇L(q, q̇). (2.2)

The relation defines a one to one map between p and q, for fixed q. We see that using

equation (2.2), Lagrange’s equations (2.1) can be reformulated as

ṗ = ∇qL(q, q̇) (2.3)

The Hamiltonian is defined by [7]

H(p,q) = pT q̇−L(q, q̇). (2.4)
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2.2 Examples of Hamiltonians

Example 2.2.1 (The pendulum). The mathematical pendulum is a system with one

degree of freedom having the Hamiltonian

H(p,q) =
1
2

p2− cosq.

Example 2.2.2 (Kepler’s problem). The Kepler problem considers the movement of a

body around a center of gravity. It can be described by the Hamiltonian

H(p,q) =
1
2
‖ p ‖2− 1

‖ q ‖

where q = (q1,q2) and p = (p1, p2).

Example 2.2.3 (Henon-Heiles problem). The polynomial Hamiltonian in two degrees

of freedom

H(p,q) =
1
2
(p2

1 + p2
2)+

1
2
(q2

1 +q2
2)+q2

1q2−
1
3

q3
2

is a Hamiltonian differential equation that can have chaotic solutions.

Example 2.2.4 (The Restricted 3-Body Problem). The restricted 3-body problem is

defined by the Hamiltonian:

H =
1
2
‖ q‖2− pT Kq−U
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where

K =

 0 1

−1 0

 ,

and U is the self-potential

U =
µ

d1
+

1−µ

d2

The idea is to consider two bodies with masses µ and 1− µ respectively, where µ ∈

[0, 1
2 with di the distance from the infinitesimal body to the i-th primary, or

d1
2 = (p1−1+µ)2 + p2

2, d2
2 = (p1 +µ)2 + p2

2.

Definition 2.2.1. A Hamiltonian system is a system of second order differential equa-

tions of the form:

q̇ = Hp(t,q, p) ṗ =−Hq(t,q, p) (2.5)

where the Hamiltonian H =H(t,q, p) is a real valued function, the vectors q=(q1, ...,qn)

and p = (p1, ...., pn) are called the position and momentum vectors, respectively, and

t is the time. The variables q and p are said to be conjugate variables and the integer n

is the number of degrees of freedom of the system.

Here we consider only autonomous Hamiltonian systems, i.e., time invari-

ant systems of the form H(q, p). In general, introduce the 2n vector z, the 2n×2n skew
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symmetric matrix J, and the gradient ∇H by

z =

q

p

 , J = Jn =

 0 I

−I 0

 , ∇H =


∂H
∂ z1
...

∂H
∂ z2n


where 0 is the n× n zero matrix and I is the n× n identity matrix. So the notation of

the Hamiltonian system becomes

ż = J∇H(t,z). (2.6)

An important class of Hamiltonians are those that are separable into kinetic and poten-

tial energy

H(p,q) = T (p)+V (q). (2.7)

In this case the equations of motion take the form

q̇ = ∇pT (p) ṗ =−∇qV (q) (2.8)

Theorem 2.2.1. Lagrange’s equations are equivalent to Hamilton’s equations [3]

ṗk =−
∂H
∂qk

(p,q), q̇k =
∂H
∂ pk

(p,q), k = 1, ...,d.

Proof. The definitions for the momenta p and the Hamiltonian H imply that:

∂H
∂ p

= q̇T + pT ∂ q̇
∂ p
− ∂L

∂ q̇
∂ q̇
p

= q̇T

∂H
∂q

= pT ∂ q̇
∂q
− ∂L

∂q
− ∂L

∂ q̇
∂ q̇
∂q

=−∂L
∂q
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Therefore the Lagrange equations are equivalent to Hamilton’s equations.

2.3 Main Properties of Hamiltonian Systems

Consider the Hamiltonian system

ṗ = ∇qH(p,q), q̇ =−∇pH(p,q) (2.9)

with flow

ϕt : (p◦,q◦)−→ (p(t),q(t)). (2.10)

We introduce the notion of a first integral.

Definition 2.3.1. A non-constant function I(y) is a first integral of ẏ = f (y) if

I′(y) f (y) = 0 ∀ y.

This is equivalent to the property that every solution y(t) of ẏ = f (y) satisfies I(y(t)) =

Const.

Example 2.3.1 (First integral of the Lotka-Volterra Model). For two species with u(t)

denoting the number of predators and v(t) the number of prey, the Lotka-Volterra,

models the growth of the two species with equations of motion given by

u̇ = u(v−2) (2.11)

v̇ = v(1−u) (2.12)
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If we divide by each other and do separation of variables we get:

0 =
1−u

u
u̇− v−2

v
v̇ =

d
dt

I(u,v). (2.13)

with the first integral

I(u,v) = lnu−u+2lnv− v (2.14)

Example 2.3.2 (First integral for the pendulum). The equations of motion for the math-

ematical pendulum are given by

ṗ =−sinq, q̇ = p

Now let

dH
dt

= pṗ+ sinqq̇ (2.15)

substituting into the equations of motion we obtain

dH
dt

= p(−sinq)+(sinq)p = 0

which shows that H is a first integral.

Definition 2.3.2 (Integrable Systems). A Hamiltonian system is said to be completely

integrable, if it has n first integrals (including the Hamiltonian itself), where n is the

number of degrees of freedom. In mechanical systems, the first integrals are often

familiar quantities.
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Some of the important properties of the Hamiltonian H(q, p) are listed

below.

1. Conservation of the total energy: The Hamiltonian H(p,q) is constant along the

solutions of (2.9) and H(p,q) is a first integral.

Example 2.3.3. We show that the Hamiltonian is a constant of the motion:

Ḣ =
n

∑
i=1

∂H
∂qi

q̇i +
n

∑
i=1

∂H
∂ pi

ṗi

=
n

∑
i=1

∂H
∂qi

∂H
∂ pi

+
n

∑
i=1

∂H
∂ pi

(−∂H
∂qi

) = 0

2. Conservation of the total linear and angular momentum.

Example 2.3.4. We consider a system of of N particles interacting pairwise with

potential forces depending on the distances of the particles. This is a Hamilto-

nian system with total energy

H(p,q) =
1
2

N

∑
i=1

1
mi

pT
i pi +

N

∑
i=2

i−1

∑
j=1

Vi j(‖ qi−q j ‖).

Here qi, pi ∈ R3 represents the position and momentum of the ith particles of

mass mi, and Vi j(r),(i > j) is the interacting potential between the ith and jth

particle.

The equations of motion are given by

q̇i =
1
mi

pi, ṗi =
N

∑
j=1

vi j(qi−q j)

where for i > j, we have vi j = v ji = −V ′i j(ri j)/ri j with ri j =‖ qi− q j ‖ . The
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conservation of the total linear and angular momentum

P =
N

∑
i=1

pi, L =
N

∑
i=1

qi× pi

is a consequence of the symmetry relation vi j = v ji. We can see that

d
dt

N

∑
i=1

pi =
N

∑
i=1

N

∑
j=1

vi j(qi−q j) = 0

d
dt

N

∑
i=1

qi× pi =
N

∑
i=1

1
mi

pi× pi +
N

∑
i=1

N

∑
j=1

qi× vi j(qi−q j) = 0

3. The flow ϕt (2.10) is a symplectic map, i.e.

ϕ
′
t (y)

T Jϕ
′
t (y) = J with J =

 0 I

−I 0

 . (2.16)

We discuss symplecticity in detail later.

2.4 Poisson Brackets

Consider Hamilton’s equations

ṗ =
∂H
∂q

(2.17)

q̇ =−∂H
∂ p

. (2.18)

We can rewrite these equations in a simple form by using the Poisson brackets. So we

need to define two functions f ,g depending on the same variables (p,q). By definition

of the Poisson brackets we have

{ f (p,q),g(p,q)}= ∂ f
∂ p

∂g
∂q
− ∂ f

∂q
∂g
∂ p
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So Hamilton’s equations become:

ṗ = {q,H(p,q)} (2.19)

q̇ = {p,H(p,q)} (2.20)

From above the equation appear symmetrical. So for any function p,q

d
dt

f (p,q) =
∂ f
∂ p

ṗ+
∂ f
∂q

q̇ =
∂ f
∂ p

∂H
∂q

+
∂ f
∂q

(−∂H
∂ p

) = { f ,H}.

We can write it also with respect to time as:

d
dt

f (p,q, t) = { f ,H}+ ∂ f
∂ t

2.4.1 Properties of Poisson Brackets

The main properties are listed below.

1. { f ,g}=−{g, f} which implies that { f , f}= 0.

2. { f ,g+h}= { f ,g}+{ f ,h}, { f +g,h}= { f ,h}+{g,h}.

3. From the chain rule for partial derivatives we can see that:

{ f ,gh}= g{ f ,h}+{ f ,g}h

{ f g,h}= { f ,h}+{g,h}.

4. An important property:

{ f ,{g,h}}+{h,{ f ,g}}+{g,{h, f}}= 0
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Chapter 3: Numerical Methods

In any numerical study, we should first examine any geometric or structural prop-

erties of the differential equation or its flow. Then we design numerical methods which

also have these structural properties and examine the consequences. All of which

should encourage us to confront questions of phase space and degrees of freedom and

think about the significance of local, global, and qualitative errors, and finally think

about the tools and functions allowed in numerical analysis.

We now review some basic facts of the theory of numerical methods for

the integration of systems of differential equations. We restrict our attention to one-

step methods. General references on numerical integrators can be found in [3, 4, 11].

Here we are mainly interested in Hamiltonian problems though we point out that the

methods we present can be applied to general systems of differential equations.

A numerical method when applied to an ordinary differential equation,

approximates the solution of the problem, Consider the ODE:

y′ = f (t,y), t ≥ t0, y(t0) = y0. (3.1)

We assume that f is sufficiently well behaved and y0 ∈Rn is a given vector. We require

that f obeys the Lipschitz condition

‖ f (t,x)− f (t,y)‖ ≤ λ‖x− y‖, ∀x,y ∈ Rn, t ≥ t0. (3.2)

The real constant λ > 0 is independent of the choice of x and y and is known as the

Lipschitz constant. If the Lipschitz condition is verified, then the system of ordinary

differential equations has a unique solution.
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3.1 One Step Methods

Given a discrete trajectory up to time tn, y0,y1, . . . ,yn, there are many ways of

constructing the next approximation yn+1. One common approach is to construct the

next approximation from the l previous points yn−l+1, . . . ,yn and then find the deriva-

tives at these points ẏn−l+1, . . . , ẏn, where ẏi = f (yi).

A linear multistep method is a linear recurrence relation,

n+1

∑
i=n−l+1

aiyi +
n+1

∑
i=n−l+1

biẏi = 0. (3.3)

We will primarily be concerned with one-step method

yn+1 = ψh(yn) (3.4)

where ψh is generally non-linear and will depend on f and its derivatives.

Because one step method generate a mapping of phase space, there is a natural corre-

spondence with the flow map [7].

3.1.1 Derivation of One Step Methods

One step method can be derived in many ways. One way is to apply the fun-

damental theorem of calculus by integrating both sides on a small interval [t, t + h]

obtaining

y(t +h)− y(t) =
∫

f (y(t + τ))dτ.

The right-hand side can then replaced by a suitable quadrature formula resulting in an

approximation of the form

y(t +h)≈ y(t)+∑bi f (y(t + τi))
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with quadrature weights {bi} and quadrature points {τi} [7].

3.1.2 Error Analysis

Error analysis for a one-step method is concerned with:

• Local error: which is a comparison of the Taylor series with the true solutions

and the numerical approximation.

• Global error: it is the accumulated error during the computation of a trajectory.

Figure 3.1: Local errors in numerical integration [7].

The term local error is used for the difference between the exact and approximate

solution for a time-step h, starting at a point z̄. Then by using Taylor expansion, we

obtain:

ψ̄h(z̄)−φh(z̄) = le(h; z̄) = cp+1(z̄)hp+1 + cp+2(z̄)hp+2 + . . . (3.5)

where p is termed the order of the method.

3.1.3 Convergence of One-Step Methods

Lemma 3.1.1 (Discrete Gronwall Lemma). Let a positive sequence {y}N
n=0 satisfy

yn+1 ≤ a yn +b
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for constants a,b > 0. Then

yn ≤
b

a−1
(an−1)+any0 (for a 6= 1) and yn ≤ nb+ y0 (for a = 1)

3.1.4 Convergence of generalized One-Step Methods

Let the local error be given by: le(h; ȳ) = ψ̄h(z̄)− φh(ȳ), where ψ̄h(z̄) is the

numerical method, and φh(ȳ) is the exact solution.

In general

||le(h; ȳ)|| ≤ c(y)hp+1.

We further suppose that

||ψ̄h(u)− ψ̄h(v)|| ≤ (1+hL̂)||u− v||

where in general L̂ is not the same as the Lipschitz constant for the vector field. Then:

εn+1 = yn+1− y(tn+1)

= ψ̄h(yn)−φh(y(tn)).
(3.6)

We add and subtract ψ̄h(y(tn)), which is the numerical solution at tn+1 obtained from

the exact solution at time tn.

||εn+1||= ||ψ̄h(yn)− ψ̄h(y(tn))+ ψ̄h(y(tn))−φh(y(tn))||

≤ ||ψ̄h(yn)− ψ̄h(z(tn))||+ ||ψ̄hy(tn))−φh(y(tn))||

≤ (1+hL̂)||yn− y(tn)||+ c(y(tn))hp+1

= (1+hL̂)||en||+ c(y(tn))hp+1

≤ (1+hL̂)||εn||+ c̄hp+1

(3.7)



16

Then by the Discrete Gronwall lemma, we can find the global error by:

||εn|| ≤
c̄hP+1

k−1
(kn−1)+ kn||εo||

≤ hp c̄
L
(εT L̂−1)

(3.8)

which implies that the global error satisfies maxn=0,...,N ||εn||= O(hp)

3.2 Stability of Numerical Methods

For a linear system of ODEs, dy
dt = Ay, where A is a n×n matrix with a basis of

eigenvectors, the general solution is given by

y(t) =
n

∑
i=1

cieλitξi

where λi’s are the eigenvalues, and ξi’s the corresponding eigenvectors. The stability is

then determined by the eigenvalues. For example, if all the eigenvalues have negative

real part, the origin is asymptotically stable. If the eigenvalues are in the left-half plane,

the origin is Lyapunov stable.

• A-stable: a method is A-stable if the stability region includes the entire left plane.

An A-stable method has the property that the origin is stable regardless of the

stepsize.

• L-stable: L-stability is concerned with the asymptotic behaviour as µ → ∞.

A method is L-Stable if:

• it is A-stable

• R(µ)→ 0 as µ → ∞.
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3.3 Stiff Differential Equations

In a stiff differential equation the solution components evolve on very different

timescales. This causes a problem as a numerical method, possibly chooses a step

size for the most rapidly evolving component, even if its contribution to the solution

is negligable. This leads to very small step sizes, highly inefficient computations and

long waits for the user. The reason for this is an instability in the method, where a

small error may grow rapidly with each step.

3.4 Explicit Euler Method

The most basic explicit method of integration known as Euler’s method is given

by

yn+1 = yn +∆t f (yn).

The quadrature rule used is just:

∫
∆t

0
f (y(t + τ))dτ = ∆t f (y(t))+O(∆t2)

This method is easy to use and each step is fast as no equations need to be evaluated

and there is only one function evaluation per step. The Euler method is still used when

f is hard to evaluate and there are a large number of simultaneous equations. Problems

of this kind arise, for example, in weather forecasting. The main problem with this

method is that there are often severe restrictions on the size of h = ∆t.

Local Error

For the explicit Euler method, the error after one step of the method starting from

the exact solution, is called the local error, is given as

en+1 = (y(tn)+h f (tn,y(tn)))− y(tn +h).
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By estimating the remainder term in the Taylor expansion of y(tn + h) at tn, we can

bound en+1 by

||en+1|| ≤Ch2 with C =
1
2

max
t0≤t≤T

||y′′(t)||

provided that the solution is twice continuously differentiable, which is the case if f is

continuously differentiable.

3.4.1 Global Error

The global error will be the summation of local errors, and is given by:

|
n

∑
i=1

en+1| ≤
n

∑
i=1

h2

2
y′′(ti) =

h
2

y′′(t), t0 ≤ t ≤ 1

We note that the overall error is proportional to h, and to max |y′′|. We say that this is

an order O(h) or a first order method.

There are therefore two restrictions on h, it must be small both for accuracy at each

stage and for stability to stop the errors growing. Stiffness arises when the restriction

on h for stability is much more severe than the restriction for accuracy.

3.4.2 Stability and Instability

A numerical method to solve a differential equation is unstable if the errors it

makes grow more rapidly than the underlying solution. If the errors decay then it is

stable.

To check the Stability for Explicit Euler method if h> 0 and λ = p+ iq then |1+hλ |<

1 implies that

(1+hp)2 +(hq)2 < 1

2hp+h2 p2 +h2q2 < 0

2p+hp2 +hq2 < 0
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so that the method is stable if (p,q) lies in the circle of radius 1
h as shown in Figure 1.

In this figure the shaded region shows the values of p and q for which the numerical

method is stable. Recall that the original differential equation is stable provided that p

lies in the half-plane p < 0. The shaded region only occupies a fraction of this half-

plane, although the size of the shaded region increases as h→ 0. Thus, for a fixed value

of h the numerical method will only have errors which do not grow if the eigenvalues

of A are severely constrained

Figure 3.2: Stability region for the Explicit Euler method

3.5 Implicit Euler Method

For non-stiff equations we can use implicit Euler method with fixed point itera-

tion.

yn+1 = yn +hn f (yn+1)

In the Implicit Euler method, yn+1 is not given as an explicit expression. Instead,

yn+1 is given as the solution of an equation. If function F(y, t) is non-linear in y, the

equation is a non-linear equation. But in case of a stiff differential equation for which

certain numerical methods for solving the equation are numerically unstable, unless

the stepsize is taken to be extremely small, we can use implicit Euler with Newton

iteration:

yn+1 = yn +h f (yn+1) (3.9)
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yn+1− yn−h f (yn+1) = 0 (3.10)

yk+1
n+1 = yk

n+1 +δyn+1 (3.11)

where k is the iteration counter. These iterations are performed at every integration

step.

Now to see when should we use fixed point iteration or Newton iteration we should

check the contractivity, i.e. if we take the linear equation ẏ = λy then the contractivity

will be |ϕ ′(u)|= |hλ |< 1.

The Implicit Euler method has the same order of error of the Explicit Euler method.

i.e. the global error is proportional to h. If we now apply this to the equation ẏ = Ay

we have

yn+1 = yn +hAyn+1 (3.12)

This is a linear system which we need to invert to give:

yn+1 = (I−hA)−1yn (3.13)

Now if the eigenvalues of A are λ j, those of (I−hA)−1 are (1−hλ j)
−1 with the same

eigenvectors.

Thus the contribution to yn in the direction of φ j involves:

|1−hλ j|1−n (3.14)

Now let λ j = p+ iq, it follows that

|1−hλ j|−2 =
1

(1−hp)2 +(hq)2 (3.15)
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Therefore the error decay and the method is stable if

1
(1−hp)2 +(hq)2 < 1

If

1 < (1−hp)2 +(hq)2

or

0 < h(p2 +q2)−2p

the stability region is shaded in Figure 1. This picture is in complete contrast to the one

that we obtained for the Explicit Euler method. The stability region is now very large

and certainly includes the half-plane p < 0. Thus any errors in the numerical method

will be rapidly damped out. Unfortunately the numerical solution can decay even if

p ≥ 0, so that neutral or growing terms in the underlying solution can be damped

out as well. This is a source of (potential) long term error, especially in Hamiltonian

problems [7]. Implicit Euler method has order one this means the local truncation error

Figure 3.3: Stability region for the Implicit Euler method

(defined as the error made in one step ) is o(h2) the error at a specific time t is O(h)

Global error→ EN(h) = O(h)

In general, for a first order method we reduce the time step h by a factor of 2 the

global error EN(h) = O(h) decreases only by a factor of 2 we like to have higher order

method.
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3.6 Symplectic Euler Method

pn+1 = pn−hHq(pn+1,qn) or pn+1 = pn−hHq(pn,qn+1)

qn+1 = qn−hHp(pn+1,qn) qn+1 = qn−hHp(pn,qn+1)

are symplectic methods of order 1. The method is stable and can be used for non-

separable systems [3]. This method will be discussed in detail later.

3.7 Trapezoidal Rule

yn+1 = yn +h[ f (yn)+ f (yn+1)]

The trapezoidal rule is based on :

∫ h

0
f (y(t + τ))dτ =

1
2

h[ f (y(t))+ f (y(t +h))]+O(h3)

The trapezoidal method is an implicit method. This method is also symmetric, i.e. if

you know yn and you want to find yn+1 with step-size h then this is the same method

for finding yn given yn+1 with step-size −h, This property is important for finding

approximations to the solutions equations such as ÿ+ y = 0 which are the same both

forwards and backwards in time.

The Local Truncation Error:

εh = O(h3)

The Global Error EN(h) = O(h2) is of second order.

3.8 Implicit Midpoint Method

The implicit midpoint rule is a symmetric Runge-Kutta method closely
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related to the trapezium rule. It is given by

yn+1 = yn +h f
(

yn + yn+1

2

)
.

The quadrature rule is defined as:

∫ h

0
f (y(t + τ))dτ = h

[
f (

y(t)+ f (y(t +h)
2

)

]
+O(h3)

When applied to the linear ODE ẏ = Ay the method gives exactly the same sequence of

iterates as the trapezium rule. Thus its stability properties are identical to the Trapez-

ium Rule and hence are optimal. Like the Trapezium Rule the global error of the

Implicit Midpoint Rule varies as h2 and a function solve is required to find yn+1.

The Implicit Midpoint rule is the simplest example of a sequence of implicit Runge-

Kutta methods called Gauss-Legendre methods. The solution by using this method will

be very accurate for long times with excellent stability, but regardless of cost. Implicit

midpoint is a symplectic method of order 2.

3.9 Störmer-Verlet Method

The Störmer-Verlet Method is explicit for separable Hamiltonian problems. The

method is given by

pn+1/2 = pn−
h
2

Hq(pn+1/2,qn)

qn+1 = qn +
h
2
(Hp(pn+1/2,qn)+Hp(pn+1/2,qn+1))

pn+1 = pn+1/2−
h
2

Hq(pn+1/2,qn+1)

(3.16)
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and also it can be written as [3]:

qn+1/2 = qn +
h
2

Hq(pn,qn+1/2)

pn+1 = pn +
h
2
(Hp(pn,qn+1/2)+Hp(pn+1,qn+1/2))

qn+1 = qn+1/2−
h
2

Hq(pn+1,qn+1/2)

(3.17)

We will discuss this method in detail later.

3.10 Runge-Kutta Methods

Definition 3.10.1. Let ai j,bi (i, j = 1, .....,s) be real numbers and let ci = ∑
s
j=1 ai j. An

s-stage Runge-Kutta method is given by

ki = f (to + cih,yo +h
s

∑
j=1

ai jk j), i = 1, ....,s

y1 = y0 +h
s

∑
i=1

biki.

In this case we will have a full matrix with a non zero coefficients, so the slopes ki can

no longer be computed explicitly and even sometimes do not exist [3].

In a Butcher table the coefficients are usually displayed as follows: The

Table 3.1: Runge-Kutta method

c1 a11 . . . a1s
. . .
. . .
. . .

cs as1 . . . ass
b1 . . . bs

number of stages s and the constant coefficients {bi}, {ai j} completely characterize a

Runge-Kutta method. In general, such a method is implicit and leads to a nonlinear

system in the s internal stage variables yn.
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Definition 3.10.2. A Runge-Kutta method (or a general one-step method) has order p,

if for all sufficiently regular problems ẏ = f (t,y) , y(to) = yo, the local error y1−y(to+

h) satisfies

y1− y(to +h) = O(hp+1) as h→ 0.

To check the order of a Runge-Kutta method one has to compute the Taylor

series expansions of y(to +h) and y1 around h = 0.

The algebraic conditions for the coefficients for orders 1,2 and 3:

1. ∑i bi = 1 for order 1

2. ∑i bici =
1
2 and ∑i bic2

i =
1
3 for order 2

3. ∑i, j biai jc j =
1
6 for order 3.

The Runge-Kutta method of order 4 is given by the following equations:

yn+1 = yn +
1
6

h(k1 +2k2 +2k3 + k4)

tn+1 = tn +h

where the yn+1 is the approximation of y(tn+1) and

k1 = f (tn,yn)

k2 = f (tn +
1
2

h,yn +
1
2

hk1)

k3 = f (tn +
1
2

h,yn +
1
2

hk2)

k4 = f (tn +
1
2

h,yn +
1
2

hk3)

(3.18)

It can be shown that there is a value C which depends on f in a complex
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Table 3.2: Runge-Kutta method of order 4

.

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

way such that a local truncation error E = |y(t +h)− yn+1| is bounded by:

E ≤Ch5.

Over a large number of steps these errors accumulate as before to give a global error ε

of the form:

ε ∼ (eLT −1)h4.

The error is proportional to h4; hence the name of an order 4 method. The

error for a given h is much smaller than for the explicit Euler method.

Runge-Kutta is very famous and widely favoured because:

• It is a one step method.

• It is easy to start and code.

• It is easy to use and no equation needs to be solved at each stage.

• It is highly accurate for moderate h values.

• The method is stable.

However, this method has some disadvantages. When the function is hard to evaluate

it will be difficult to evaluate it 4 times each iteration, errors accumulate rapidly as t

increases and for some kinds of problems it can not be used unless h is very small.
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3.11 Partitioned Runge-Kutta Methods

We consider differential equations in the partitioned form:

ẏ = f (y,z), ż = g(y,z)

where y and z may be vectors of different dimensions.

The idea is to take two different Runge-Kutta methods, and to treat the y-variables with

the first method (ai j,bi), and the z-variables with the second method (âi j, b̂i).

Definition 3.11.1. Let bi,ai j and b̂i, âi j be the coefficients of two Runge-Kutta meth-

ods. A partitioned Runge-Kutta method for the solution of the above equation is given

by [3]:

ki = f (yo +h
s

∑
j=1

ai jki,zo +h
s

∑
j=1

âi jl j)

li = g(yo +h
s

∑
j=1

ai jki,zo +h
s

∑
j=1

âi jl j)

y1 = yo +h
s

∑
i=1

biki, z1 = zo +h
s

∑
i=1

b̂ili

Methods of this type have originally been proposed by Hofer (1976) and

Griepentrog (1978). Their importance for Hamiltonian systems has been discovered

only very recently.

An interesting example is the symplectic Euler method, where the implicit Euler method

b1 = 1, a11 = 1 is combined with the explicit Euler method b̂1 = 1, â11 = 0. The

Stormer-Verlet method can be written in the previous form by the coefficients given in

Table(3).

Table 3.3: Stormer-Verlet as a partitioned Runge-Kutta method

0 0 0
1 1

2
1
2

1
2

1
2

1
2

1
2 0

1
2

1
2 0
1
2

1
2
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3.12 Splitting and Composition Methods

These methods can exploit the natural decomposition of Hamiltonian systems and have

been used with great success in studies of the solar system and of molecular dynamics

(see for example [10]). The main idea behind splitting methods is to decompose the

discrete flow ψh as a composition of simpler flows:

ψh = ψ1,h ◦ψ2,h ◦ψ3,h . . .

where each of the sub-flows is chosen such that each represent a simpler integration

of the original. A geometrical perspective on this approach is to find useful geometric

properties of each preserved under combination, symplecticity is just such a property,

but we often seek to preserve reversibility and other structures. Suppose that a differ-

ential equation takes the form:

du
dt

= f = f1 + f2

Here the functions f1 and f2 may will represent different physical processes in which

case there is a natural decomposition of the problem (say into terms to kinetic and

potential energy).

The most direct form of splitting methods decompose the equation into two problems:

du1

dt
= f1 and

du2

dt
= f2

chosen such that these two problems can be integrated in closed form to give explicity

computable flows ψ1(t) and ψ2(t). We denote ψi,h the result of applying the corre-

sponding continuous flows ψi(t) over a time t. A simple (first order) splitting is then
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given by the Lie-Trotter formula

ψn = ψ1,h ◦ψ2,h

Suppose the original problem has Hamiltonian H = H1+H2 then we can say the com-

position of two problems with respect to Hamiltonian H1 and H2. The differential

equation corresponding to each Hamiltonian leads to an evolutionary map ψi(t) of the

form described above.

The Lie-Trotter splitting introduces local errors proportional to h2 at each step and

more accurate decomposition is the Strang splitting given by

ψn = ψ1, h
2
◦ψ2,h ◦ψ1, h

2

This splitting method has a local error proportional to h3.

Example 3.12.1. Suppose that a Hamiltonian system has a Hamiltonian which can be

expressed as a combination of kinetic energy and a potential energy term as follows:

H(u) = H1(u)+H2(u) = T (p)+T (p)

d p
dt

=−∂H2

∂q
,

dq
dt

=
∂H1

∂ p

This splitting of H is usually referred to as a separable or P-Q splitting, we immediately

have that

ψ1,h = I−hH2,q and ψ2,h = I +hH1,p

Where I represents the identity mapping. Applying the Lie-Trotter formula directly to
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the splitting gives the symplectic Euler method

pn+1 = pn−hH2,q(qn) and qn+1 = qn +hH1,p(pn+1).

3.13 Backward Error Analysis

Consider an ordinary differential equation

ẏ = f (y)

and a numerical method φh(y) which produces the approximations yo,y1,y2, . . .

A forward error analysis consists of the study of the errors y1−ϕh(yo) (local error) and

yn−ϕnh(yo) (Global error) in the solution space. The idea of the backward analysis is

to search for a modified differential equation ˙̃y = fh(ỹ) of the form

˙̃y = f (ỹ)+h f2(ỹ)+h2 f3(ỹ)+ . . . (3.19)

such that yn = ỹ(nh) considering the difference of the vector field f (y) and fh(y). This

will give a good indication of the behaviour of the numerical solution and the global

error with the full awareness of the converges issues.

For computation of the modified equation ẏ = f (y) we put y := ỹ(t) for a fixed t and

we expand the solution into Taylor series

ỹ(t+h)= y+h( f (y)+h f2(y)+h2 f3(y)+...)+
h2

2!
( f ′(y)+h f

′
2(y)+. . .)( f (y)+h f2(y)+. . .)+. . .

(3.20)

Then we assume that the numerical method φh(y) can be expanded as

φh(y) = y+h f (y)+h2 j2(y)+h3 j3(y)+ . . . (3.21)
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where the functions ji(y) are composed of f (y) and its derivatives. For example, the

explicit Euler method gives ji(y) = 0 for all i≥ 2. In order to get ỹ(nh) = yn for all n,

we must have ỹ(t + h) = φh(y). By comparing like powers of h in expressions (3.20)

and (3.21) will give us a recurrence relation for the functions fi(y)

f2(y) = j2(y)−
1
2!

f ′ f (y)

f3(y) = j3(y)−
1
3!
( f
′′
( f , f )(y)+ f

′
f
′
f (y))− 1

2!
( f
′
f2(y)+ f

′
2(y)+ f (y))

(3.22)

Theorem 3.13.1 ([3]). Suppose that the method yn+1 = φh(yn) is of order p

φh(y) = ϕh(y)+hp+1
δp+1(y)+O(hp+2)

where ϕt(y) denote the exact flow of of ẏ = f (y) and hp+1δp+1(y) the leading term of

the local truncation error. The modified equation then satisfies

˙̃y = f (ỹ)+hp fp+1(ỹ)+hp+1 fp+2(ỹ)+ . . . , ỹ(0) = yo

with fp+1(y) = δp+1(y).

Proof. The construction of the functions fi shows that fi(y) = 0 for 2 ≤ i ≤ p if and

only if φh(y)−ϕh(y) = O(hp+1). A first application of the modified equation (1) is

the existence of an asymptotic of the global error .Indeed, by the nonlinear variation

of constants formula, the difference between its solution ỹ(t) and the solution y(t) of

ẏ = f (y) satisfies

ỹ(t)− y(t) = hpep(t)+hp+1ep+1(t)+ . . . .
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Since yn = ỹ(nh)+O(hN) for the solution of a truncated modified equation, this proves

the existence of an asymptotic expansion in powers of h for the global error yn−y(nh).

Example 3.13.1. Consider the Lotka-Volterra equations

q̇ = q(p−1), ṗ = p(2−q). (3.23)

Now we apply explicit Euler method, and the symplectic Euler method,both with con-

stant step size h = 0.1. The first term of the modified equations are

a.

q̇ = q(p−1)− h
2

q(p2− pq+1)+O(h2)

ṗ =−p(q−2)− h
2

p(q2− pq−3q+4)+O(h2)

b.

q̇ = q(p−1)− h
2

q(p2 + pq−4p+1)+O(h2)

ṗ =−p(q−2)− h
2

p(q2− pq−5q+4)+O(h2)
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Chapter 4: Geometric Integration

Geometric integration is the numerical integration of a differential equation with

the goal of preserving certain geometric properties; Thee geometric properties to be

preserved are, usually, preservation of energy, momentum, angular momentum, phase

space volume, symmetries, time-reversal symmetry, symplectic structure and dissipa-

tion. To see this, consider the initial value problem

ẏ = f (y), y(0) = y0 (4.1)

The aim is to compute the solution of (4.1) as efficiently as possible. The

type of method used, its order, local error and choice of time steps are all tailored to

this end [11] By exploiting the structure of the problem, the application of a geometric

integrator would allow us to fix a larger than normal time step and compute very long

orbits without compromising the emerging phase portrait. Here we concentrate on

Hamiltonian systems and on methods that preserve their symplectic structure, first

integrals, symmetries, or phase-space volume. Note that no method can preserve both

energy and symplecticity at the same time (in general).

Theorem 4.0.2 (Conservation of Linear Invariants). All explicit and implicit Runge-

Kutta methods conserve linear invariants. Partitioned Runge-Kutta method conserve

linear invariants if bi = b̂i for all i, or if the invariants depends only on p or only on q

[3].

Proof. Let I(y) = dT y with a constant vector d, so that dT f (y) = 0 for all y. In the
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case of Runge-Kutta method we thus have dT ki = 0, and consequently

dT y1 = dT yo +hdT (
s

∑
i=1

biki) = dT yo.

The statement for partitioned methods is proved similarly.

Now we will consider differential equations of the form

Ẏ = A(Y )Y (4.2)

where Y can be a vector or a matrix.

Theorem 4.0.3. If A(Y ) is skew-symmetric for all Y (i.e. AT =−A), then the quadratic

function I(Y ) = Y TY is an invariant. In particular if the initial value Y0 consists of

orthonormal columns (i.e.Y T
0 Y0 = I), then the columns of the solution Y(t) of equation

(4.2) remains orthonormal for all t.

Proof. The derivative of I(Y ) is I′(Y )H = Y T H +HTY. Thus, we have

I′(Y ) f (Y ) = I′(Y )(A(Y )Y ) = Y T A(Y )Y +Y T A(Y )TY

for all Y which vanishes because A(Y ) is skew-symmetric.

Example 4.0.2 (Rigid Body [3]). The motion of a free rigid body, whose center of

mass is at the origin, is described by the Euler equations

ẏ1 = a1y2y3, a1 = (I2− I3)/(I2I3)

ẏ2 = a2y3y1, a2 = (I3− I1)/(I3I1)

ẏ3 = a3y1y2, a3 = (I1− I2)/(I1I2)

(4.3)
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where the vector y = (y1,y2,y3)
T represents the angular momentum in the body frame,

and I1, I2, I3 are the principle moments of inertia. This problem can be can be written

as:


ẏ1

ẏ2

ẏ3

=


0 y3/I3 −y2/I2

−y3/I3 0 y1/I1

y2/I2 −y1/I1 0




y1

y2

y3

 (4.4)

which is of the form (4.2), with a skew-symmetric matrix A(Y ). By theorem (2) y2
1 +

y2
2 + y2

3 is an invariant and a second quadratic invariant is

H(y1,y2,y3) =
1
2
(
y2

1
I1

+
y2

2
I2

+
y2

3
I3
)

which represents the kinetic energy.

In [3], the authors applied the implicit midpoint rule and the explicit Euler method

to the rigid body problem which illustrates very well the advantages of a geometric

integrator in comparison with a classical integrator. As shown in Figure (4.1) below

the sphere will be represented with some of the solutions of corresponding to I1 = 2,

I2 = 1 and I3 = 2/3. They lie on the intersection of the sphere with the ellipsoid given

by H(y1,y2,y3) = Const. The implicit midpoint rule was applied (30 steps) with step

size h= 0.3 and initial value y0 = (cos(1.1),0,sin(1.1))T . It stays exactly on a solution

curve. This follows from the fact that the implicit midpoint rule preserves quadratic

invariants exactly.

On the right side of the picture from figure (1), the explicit Euler method was used for

320 steps with h = 0.05 and with the same initial value. As the authors conclude in [3],

we can see that the numerical solution has a wrong qualitative behaviour (it should lie
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on a closed curve). The numerical solution even drifts away from the sphere.

Figure 4.1: Solution of the Euler equations for the rigid body [3].

4.1 Symmetricity and Reversibility

In this section we will talk about symmetric methods and how they play an im-

portant role in geometric integration of differential equations. We will discuss also

reversible differential equations and reversible maps, and then explain the relation be-

tween symmetric integrators and reversible differential equations.

4.1.1 Reversible Differential Equations and Maps

Conservative mechanical systems have the property that inverting the initial direction

of the velocity vector and keeping the initial position does not change the solution

trajectory, it only inverts the direction of motion. Such systems are said to be reversible.

Definition 4.1.1. Let ρ be an invertible linear transformation in the phase space of

ẏ = f (y). This differential equation and the vector field f (y) are called ρ-reversible if

ρ f (y) =− f (ρy) ∀y. (4.5)

This property is illustrated in the picture on the left side of figure(4.2). For
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Figure 4.2: Reversible vector field and reversible map [3]

ρ-reversible differential equations, the exact flow ϕt(y) satisfies:

ρ ◦ϕt = ϕ−t ◦ρ = ϕ
−1
t ◦ρ, (4.6)

as seen in figure (4.2), on the the right side. The identity is a consequence of the group

property ϕt ◦ϕs = ϕt+s and the left identity follows from:

d
dt
(ρ ◦ρt)(y) = ρ f (ϕt(y)) =− f ((ρ ◦ϕt)(y))

d
dt
(ϕ−t ◦ρ)(y) =− f ((ϕ−t ◦ρ)(y)),

because expression (4.6) satisfy the same differential equation with the same initial

value, (ρ ◦ϕo)(y)= (ϕo◦ρ)(y)= ρy. Now we can get a new definition from equation(4.6).

Definition 4.1.2. A map φ(y) is called ρ-reversible if

ρ ◦φ = φ
−1 ◦ρ

Example 4.1.1. An important example is the partitioned system:

u̇ = f (u,v) v̇ = g(u,v), (4.7)
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where f (u,−v) =− f (u,v) and g(u,−v) = g(u,v). Here the transformation ρ is given

by ρ(u,v) = (u,−v). If we call a vector field or a map reversible (without specifying

the transformation ρ), we mean that it is ρ-reversible with this particular ρ .

It’s always true that ü = g(u) is a reversible system when u̇ = v and v̇ =

g(u).

Definition 4.1.3. A numerical one-step method φh is called symmetric or time re-

versible, if it satisfies

φh ◦φ−h = id

or equivalently φh = φ
−1
−h . With the definition of the adjoint method (φ∗h = φ

−1
−h ) the

condition for symmetry reads φh = φ∗h . A method y1 = φh(yo) is symmetric if exchang-

ing yo↔ y1 and h↔−h leaves the method unaltered.

Theorem 4.1.1. If a numerical method, applied to a ρ-reversible differential equation

satisfies

ρ ◦φh = φ−h ◦ρ (4.8)

then the numerical flow φ f is a ρ-reversible map if and only if φh is a symmetric

method.

Proof. As a consequence of equation (4.8), the numerical flow φh is ρ-reversible if and

only if φ−h ◦ρ = φ
−1
h ◦ρ . Since ρ is an invertible transformation, this is equivalent to

the symmetry of the method φh.

It is also true that a symmetric method is ρ-reversible if and only if the

condition (4.8) holds, that is automatically satisfied by most numerical methods.

Let us discuss the validity of (4.8) for the different classes of methods [3]:
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• Runge-Kutta methods (explicit or implicit) satisfies (4.8) if (4.5) holds. In par-

ticular, the proof for the explicit Euler method φh(yo) = yo +h f (yo) is:

ρ ◦φh(y0) = ρ(y0 +h f (y0))

= ρ(y0)+ρh f (y0)

= ρ(y0)−h f ρ(y0)

= φ−h(ρy0)

(4.9)

• Partitioned Runge-Kutta Methods applied to a partitioned system satisfy the con-

dition (4.8) if ρ(u,v) = (ρ1(u),ρ2(v)) with invertible ρ1 and ρ2. The proof is the

same as for Runge-Kutta methods. Notice that the mapping ρ(u,v) = (u,−v) is

of this special form.

• Composition methods. If two methods φh and ψh satisfy (4.8), then so does the

adjoint φ∗h and the composition φh◦ψh. Consequently, the composition methods,

which compose a basic method φh and its adjoint with different step sizes, have

the property (20) provided the basic method φh has it.

• Splitting methods are based on a splitting ẏ = f [1](y)+ f [2](y) of the differential

equation. If both vector fields, f [1](y) and f [2](y), satisfy (4.5), then their exact

flows ϕ
[1]
h and ϕ

[2]
h satisfy (4.6). In this situation, the splitting method has the

property (4.8).

4.1.2 Symmetric Methods

The explicit and implicit Euler methods are not symmetric methods.

The following methods are symmetric:

• Midpoint Rule:

yn+1 = yn +h f
(

yn+1 + yn

2

)
. (4.10)
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By exchanging h↔−h and (n+1)↔ (n) we will get:

yn = yn+1−h f
(

yn + yn+1

2

)
yn+1 = yn +h f

(
yn+1 + yn

2

) (4.11)

So midpoint rule is a symmetric method.

• Trapezoidal Rule:

yn+1 = yn +
h
2
((yn)+ f (yn+1)) (4.12)

By exchanging h↔−h and (n+1)↔ (n) we will get:

yn = yn+1−
h
2
((yn+1)+ f (yn))

yn+1 = yn +
h
2
( f (yn)+ f (yn+1))

(4.13)

So trapezoidal rule is a symmetric integrator.

Theorem 4.1.2. The Störmer-Verlet Method given by

pn+1/2 = pn−
h
2

Hq(pn+1/2,qn)

qn+1 = qn +
h
2
(Hp(pn+1/2,qn)+Hp(pn+1/2,qn+1))

pn+1 = pn+1/2−
h
2

Hq(pn+1/2,qn+1)

(4.14)

is a symmetric method.
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Proof. By exchanging (n)↔ (n+1) and h↔−h we get:

pn+1/2 = pn+1 +
h
2

Hq(pn+1/2,qn+1)

qn = qn+1−
h
2
(Hp(pn+1/2,qn+1)+Hp(pn+1/2,qn))

pn = pn+1/2 +
h
2

Hq(pn+1/2,qn)

(4.15)

then we have

pn+1 = pn+1/2−
h
2

Hq(pn+1/2,qn+1)

qn+1 = qn +
h
2
(Hp(pn+1/2,qn)+Hp(pn+1/2,qn+1))

pn+1/2 = pn−
h
2

Hq(pn+1/2,qn)

(4.16)

Theorem 4.1.3. The adjoint method of an s-stage Runge-Kutta method is again an

s-stage Runge-Kutta method. Its coefficients are given by

a∗i j = bs+1− j−as+1−i,s+1− j, b∗i = bs+1−i. (4.17)

If

as+1−i,s+1− j +ai j = b j ∀ i, j (4.18)

then the Runge-Kutta method is symmetric.[3]

Proof. Exchanging yo↔ y1 and h↔−h in the Runge-Kutta formula yields

ki = f (yo +h
s

∑
j=1

(b j−ai j)k j), y1 = yo +h
s

∑
i=1

biki. (4.19)
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Since the values ∑
s
j=1(b j− ai j = 1− ci appear in the reverse order, we replace ki by

ks+1−i in (28) and then we substitute all indices i and j by s+ 1− i and s+ 1− j,

respectively, this proves (4.17).The assumption (4.18) implies a∗i j = ai j and b∗i = bi, so

that φ∗h = φh.

Explicit Runge-Kutta methods cannot fulfill condition (4.18) with i = j and no ex-

plicit Runge-Kutta can be symmetric. Now, consider diagonally implicit Runge-Kutta

method for which ai j = 0 for i < j, but with diagonal elements that can be non-zero.

In this case condition (4.18) becomes:

ai j = b j = bs+1− j for i > j, a j j +as+1− j,s+1− j = b j (4.20)

The Runge-Kutta table of such a method is thus of the form (for s = 5), with a33 =

c1 a11
c2 b1 a22
c3 b1 b2 a33

1− c2 b1 b2 b3 a44
1− c1 b1 b2 b3 b2 a55

b1 b2 b3 b2 b1

b3/2, a44 = b2− a22 and a55 = b1− a11. If one of the bi, vanishes, then the corre-

sponding stage does not influence the numerical result. This stage can therefore be

suppressed, so that the is equivalent to one with fewer stages.

4.2 Symplectic Transformation

The basic objects to be studied are two-dimensional parallelograms in R2d . We sup-

pose the parallelogram to be spanned by two vectors

ξ =

ξ p

ξ q

 , η =

η p

ηq

 in the (p,q) space (ξ p,ξ q,η p,ηq ∈ Rd) as

P = {tξ + sη |0≤ t ≤ 1,0≤ s≤ 1} (4.21)
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In the case d = 1 we consider the oriented area:

or.area(P)= det

ξ p η p

ξ q ηq

 =ξ pηq−ξ qη p

as seen on the left picture of figure (4.3). In higher dimension, we replace this by the

sum of the projections of P onto the coordinates planes (pi,qi), i.e. by

ω(ξ ,η) :=
d

∑
i=1

det

ξ
p
i η

p
i

ξ
q
i η

q
i

=
d

∑
i=1

(ξ p
i η

q
i −ξ

q
i η

p
i ) (4.22)

This defines a bilinear map acting on vectors of R2d , which will play a central role for

Hamiltonian systems. In matrix notation,this map has the form

ω(ξ ,η) = ξ ∗T Jη with J =

 0 I

−I 0

 (4.23)

Figure 4.3: Symplecticity (area preservation) of a linear mapping

Definition 4.2.1. A linear mapping A : R2d → R2d is called symplectic if

AT JA = J

or equivalently, if ω(Aξ ,Aη) = ω(ξ ,η), ∀ξ ,η ∈ R2d .
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In the case d = 1, where the expression ω(ξ ,η) represents the area of the

parallelogram P, symplecticity of a linear mapping A is therefore the area preservation

of A, as we can see in figure (4.3). In the general case d > 1, symplecticity means that

the sum of the oriented areas of the projections of P onto (pi,qi) is the same as that for

the transformed parallelograms A(P).

We now turn our attention to nonlinear mappings. Differentiable functions can be

locally approximated by linear mappings. This justifies the following definition.[3]

Definition 4.2.2. A differentiale map g : U → R2d (where U ⊂ R2d is an open set) is

called symplectic if the Jacobian matrix g′(p,q) is everywhere symplectic, i.e., if:

g′(p,q)T Jg′(p,q) = J or ω(g′(p,q)ξ .g′(p,q)η) = ω(ξ ,η)

Theorem 4.2.1. Let H(p,q) be a twice continuously differentiable function on U ⊂

R2d , then for each fixed t, the flow ϕt is a symplectic transformation whenever it is

defined [3].

Theorem 4.2.2. The symplectic Euler methods

pn+1 = pn−hHq(pn+1,qn) or pn+1 = pn−hHq(pn,qn+1)

qn+1 = qn−hHp(pn+1,qn) qn+1 = qn−hHp(pn,qn+1)

are symplectic method.

Proof. Consider the Hamiltonian problem

ṗ = −Hq(p,q)

q̇ = Hp(p,q).
(4.24)
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We consider symplectic Euler is given by

pn+1 = pn−hHq(pn+1,qn)

qn+1 = qn +hHp(pn+1,qn)

(4.25)

Differentiating (34) with respect to (pn,qn),

∂ pn+1

∂ pn
=

∂ pn

∂ pn
−h
(

Hqq
∂qn

∂ pn
+Hqp

∂ pn+1

∂ pn

)
= I−hHqp

∂ pn+1

∂ pn

∂ pn+1

∂qn
=

∂ pn

∂qn
−h
(

Hqq
∂qn

∂qn
+Hqp

∂ pn+1

∂qn

)
=−hHqq−hHqp

∂ pn+1

∂qn

∂qn+1

∂ pn
=

∂qn

∂ pn
+h
(

Hpq
∂qn

∂ pn
+Hpp

∂ pn+1

∂ pn

)
= hHpp

∂ pn+1

∂ pn

∂qn+1

∂qn
=

∂qn

∂qn
+h
(

Hpq
∂qn

∂qn
+Hpp

∂ pn+1

∂qn

)
= I +hHpq +hHpp

∂ pn+1

∂qn

Noting that Hqp = HT
pq, we can write the above in matrix form as follows

 I +hHqp 0

−hHpp I


 ∂ pn+1

∂ pn

∂ pn+1
∂qn

∂qn+1
∂ pn

∂qn+1
∂qn

=

 I −hHqq

0 I +HT
qp

 (4.26)

and thus

 ∂ pn+1
∂ pn

∂ pn+1
∂qn

∂qn+1
∂ pn

∂qn+1
∂qn

=

 I +hHqp 0

−hHpp I


−1 I −hHqq

0 I +HT
qp

 (4.27)

Next we need to show that

 ∂ pn+1
∂ pn

∂ pn+1
∂qn

∂qn+1
∂ pn

∂qn+1
∂qn


T

J

 ∂ pn+1
∂ pn

∂ pn+1
∂qn

∂qn+1
∂ pn

∂qn+1
∂qn

= J
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where J =

 0 I

−I 0

 i.e.

 I −hHqq

0 I +HT
qp


T  I +hHqp 0

−hHpp I


−T

J

 I +hHqp 0

−hHpp I


−1 I −hHqq

0 I +HT
qp

= J

which is equivalent to showing that

 I +hHqp 0

−hHpp I

J−1

 I +hHqp 0

−hHpp I


T

=

 I −hHqq

0 I +HT
qp

J−1

 I −hHqq

0 I +HT
qp


T

.

Because Hpp and Hqq are symmetric matrices, and using J−1 =−J the last expression

can be written as

 I +hHqp 0

−hHpp I

J

 I +hHT
qp −hHpp

0 I

=

 I −hHqq

0 I +HT
qp

J

 I 0

−hHqq I +Hqp


which is fairly easy to verify.

Theorem 4.2.3. The implicit midpoint rule

yn+1 = yn +hJ−1
∇H(yn+1 + yn)/2) (4.28)

is a symplectic method.

Proof. let yn+1 = φn(yn) we need to show that

φ
′T
n Jφ

′
n = J



47

By differentiating 4.28 we get:

φ
′
n =

∂yn+1

∂yn
= I +hJ−1

∇
2H
(

yn+1 + yn

2

)(
1
2

)(
∂yn+1

∂yn
+1
)

φ
′
n =

∂yn+1

∂yn
=

(
I− h

2
J−1

∇
2H
)−1(

I +
h
2

J−1
∇

2H
)

So φ
′T
n Jφ ′n = J means:

(
I +

h
2

J−1
∇

2H
)

J
(

I +
h
2

J−1
∇

2H
)T

=

(
I− h

2
J−1

∇
2H
)

J
(

I− h
2

J−1
∇

2H
)T

Since H is symmetric so (∇2H)T = ∇2H. And (J−1)T =−J−1 = J.

We get (
I +

h
2

J−1
∇

2H
)T

= I− h
2

∇
2HJ−1

(
I− h

2
J−1

∇
2H
)T

= I +
h
2

∇
2HJ−1

Then

(
IJ+

h
2

J−1
∇

2HJ
)(

I− h
2

∇
2HJ−1

)
=

(
IJ− h

2
J−1

∇
2HJ

)(
I +

h
2

∇
2HJ−1

)

J− h
2

J∇
2HJ−1 +

h
2

J−1
∇

2HJ− h2

4
J−1

∇
2HJ∇

2HJ−1

= J+
h
2

J∇
2HJ−1− h

2
J−1

∇
2HJ− h2

4
J−1

∇
2HJ∇

2HJ−1

And we find

hJ∇
2HJ−1 = hJ−1

∇
2HJ
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−J∇
2HJ =−J∇

2HJ

So the implicit midpoint rule is symplectic.

Theorem 4.2.4. The Störmer-Verlet method is a sympletic method of order 2.

4.3 Conservation of the Hamiltonian

We know that the Hamiltonian H(p,q) is constant along the exact solutions of the

Hamiltonian system. Since the local error of the rth order integrator is of size O(hr+1),

now if we have

H(pn+1,qn+1)−H(pn,qn) = O(hr+1)

By taking the summation of these error, we obtain

H(pn,qn)−H(p0,q0) = O(nhr+1 = O(thr), t = nh

Since no cancellation of errors can be expected for general integrators. For symplectic

integrators, however, we have the much more favourable estimate:

H(pn,qn)−H(p0,q0) = O(hr) f or nh ≤ T (4.29)

With an extremely large T, provided that the numerical solution stays in a compact set.

We will use the error in the Hamiltonian equation 4.29 in chapter 5.
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Chapter 5: Examples

In this chapter we will numerically solve three well known problems using symplectic

methods as well as the classical methods. We perform a comparison between the

methods and then decide which of these methods give the better solution. For the

case when the Hamiltonian is non-separable we will use a splitting method.

5.1 The Mathematical Pendulum

A classic example is the pendulum, it is a two-dimensional system with phase space

R2 having the Hamiltonian

H(p,q) =
1
2

p2− cosq, (5.1)

so that the equations of motion are

ṗ =−sinq, q̇ = p (5.2)

where p is the angular momentum and q is the angle of the pendulum. Here are some

Figure 5.1: Mathematical Pendulum

of the properties of the pendulum:

• It conserves the total energy H. That is, its flow stays on the level sets are curves
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in the plane.

• Being a Hamiltonian system, its flow is symplectic. For two-dimensional sys-

tems, this is equivalent to being area-preserving.

• The symmetry, (p,q) 7→ (−p,−q), maps the system into itself; while the revers-

ing symmetry (p,q) 7→ (−p,q) maps the vector field into minus itself.

Because this is such a simple system, preserving any of these three properties gives a

geometric integrator with good long-time behaviour for almost all initial conditions.

We apply the above numerical methods to the pendulum equations. We consider the

intial conditions (0,1) with time step h = 0.1. Observe that the numerical solutions

of the explicit Euler and the implicit Euler methods (see figs) spiral outwards or in-

wards. The symplectic Euler shows the correct qualitative behaviour of the problem.

The energy (Hamiltonian) even though is not exactly conserved by symplectic Euler,

oscillates in certain limits, while both the explicit and implicit Euler go away from the

value of the hamiltonian as is we expected.
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Conservation of energy: symplectic Euler

5.2 Kepler’s Problem

Kepler’s problem describes the motion in a plane of a material point that is attracted

towards the origin with a force inversely proportional to the distance squared. The

Hamiltonian of the system is [3, 13]

H(p,q) =
1
2

pT p− 1
‖q‖

, (5.3)

or equivalently

H(p1, p2,q1,q2) =
1
2
(p2

1 + p2
2)−

1√
q2

1 +q2
2

, (5.4)

where the first term of the Hamiltonian is the kinetic energy and the second the poten-

tial. The equations of motion are

ṗi =−
qi

(q2
1 +q2

2)
3/2 , qi = pi, i = 1,2. (5.5)

The trajectory in the plane is a closed curve, given by an ellipse, i.e., the solution is

periodic. Since the problem is autonomous, the Hamiltonian (energy) H is a conserved
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quantity. For this we choose the initial conditions p = (0,1)T and q = (1,0)T , with

time step h = 0.01. The behaviour of the energy when we apply the three different

methods is different. As in the previous example, the energy although is not exactly

conserved by symplectic Euler, oscillates in certain limits, even in the long term. How-

ever with explicit Euler, it diverges without a limit, going away from the value of the

Hamiltonian. We remark that the angular momentum L(p,q) given by

L(p,q) = q1 p2−q2 p1, (5.6)

is exactly conserved by the symplectic Euler.
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5.3 The Restricted 3-Body Problem

This is a special case of the 3-body problem. A detailed derivation of this problem

can be found in [13]. The idea is to consider two bodies with masses µ and 1− µ

respectively where µ ∈ [0, 1
2 ]. Both bodies are moving under the influence of their

mutual gravitational attraction in a circular orbit. The heavier of these two bodies is

called the primary and the other one the secondary. To complete the picture, a third

body is introduced with a negligible mass that will not affect the motion of the primary

and the secondary bodies moving under the influence of their gravity. The Restricted

3-body problem has the Hamiltonian:

H(p,q) =
1
2
‖p‖2−qT Jp− µ

r1
− 1−µ

r2
(5.7)
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where q, p ∈ R2 represent the position and momentum,

K =

 0 1

−1 0


and ri the distance from the infinitesimal body to the ith primary,

r2
1 = (q1−1+µ)2 +q2

2, r2
2 = (q1 +µ)2 +q2

2

To simplify matters, we consider a limit case of the restricted 3-body problem known

as Hill’s lunar problem. This problem was introduced by G. Hill in [6] as an approxi-

mation of the Moon-Earth-Sun system, in order to study the motion of the Moon under

the influence of the Earth and perturbed by a distant Sun. A full derivation of this prob-

lem can be found in [15]. Hill’s problem is defined by the (normalised) Hamiltonian

H(p,q) =
1
2
‖p‖2−qT K p− 1

‖q‖
+

1
2

qT Aq (5.8)

where

A =

 −2 0

0 1

 . (5.9)

The equations of motion are given by

ṗ =K p−Aq− q
‖q‖3 =−Hq

q̇ =p+Kq = Hp

(5.10)

where q = (q1,q2)
T and p = (p1, p2)

T . Notice that unlike the restricted problem, the

normalized form of HillâĂŹs equations are parameterless
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5.3.1 Application of Symmetric and Non-Symmetric Methods

The Runge-Kutta method of order 4

To Apply the Runge-Kutta algorithm to Hill’s problem, put y=(q, p)T and f =(Hp,−Hq)
T .

This gives

k1 = h f (yn)

k2 = h f (yn +
1
2

k1)

k3 = h f (yn +
1
2

k2)

k4 = h f (yn +
1
2

k3)

(5.11)

The updated position is then obtained from

yn+1 = yn +
1
6
(k1 + k2 + k3 + k4). (5.12)

Symplectic Euler Method

The general symplectic Euler method can be chosen as [3]

qn+1 = qn +hHp(qn, pn+1)

Pn+1 = pn−hHq(qn, pn+1)

(5.13)

Substituting the equations of motion (5.10) we obtain

pn+1 = pn−h
(

KT pn+1 +Aqn +
qn

‖q‖3

)
qn+1 = qn +h(pn+1 +Kqn)

(5.14)

where the matrices K and A are defined in (5.9) above. Notice that at this stage, al-

gorithm (5.14) is implicit. However, It can be made explicit by determining pn+1 as



55

follows:

pn+1 = pn−hKT pn+1 +h
(
+Aqn

qn

‖q‖3

)
⇒ pn+1 +hKT pn+1 = pn−h

(
+Aqn

qn

‖q‖3

)
⇒
(
I +hKT) pn+1 = pn−h

(
Aqn

qn

‖q‖3

)
⇒ pn+1 =

(
I +hKT)−1

[
pn−h

(
Aqn

qn

‖q‖3

)]
(5.15)

The inverse of
(
I +hKT) is non-singular and is given by

(
I +hKT)−1

=
1

1+h2

 1 h

−h 1

 . (5.16)

Störmer-Verlet Method

We show that the Störmer-Verlet Method for Hill’s problem can be expressed explicitly.

The Störmer-Verlet algorithm is given by [3]

pn+1/2 = pn−
h
2

Hq(qn, pn+1/2)

qn+1 = qn +
h
2
[
Hp(qn, pn+1/2)+Hp(qn+1, pn+1/2)

]
pn+1 = pn+1/2−

h
2

Hq(qn+1, pn+1/2)

(5.17)
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We proceed as follows. Substituting equation (5.10) into (5.17), we can determine the

half step pn+1/2 as follows:

pn+1/2 = pn−
h
2

(
KT pn+1/2 +Aqn +

qn

‖qn‖3

)
⇒ pn+1/2 +

h
2

KT pn+1/2+= pn−
h
2

(
Aqn +

qn

‖qn‖3

)
⇒
(

I +
h
2

KT
)

pn+1/2 = pn−
h
2

(
Aqn +

qn

‖qn‖3

)
⇒ pn+1/2 =

(
I +

h
2

KT
)−1[

pn−
h
2

(
Aqn +

qn

‖qn‖3

)]
(5.18)

Similarly, we can determine the full step qn+1 as follows:

qn+1 = qn +
h
2
(

pn+1/2 +Kqn + pn+1/2 +Kqn+1
)

⇒ qn+1−
h
2

Kqn+1 = qn +
h
2
(
2pn+1/2 +Kqn

)
⇒
(

I− h
2

K
)

qn+1 =

(
I +

h
2

K
)

qn +hpn+1/2

⇒ qn+1 =

(
I− h

2
K
)−1[(

I +
h
2

K
)

qn +hpn+1/2

]
(5.19)

Finally, collecting the results of (5.18) and (5.19), the method described in (5.17) can

be written as

pn+1/2 =

(
I +

h
2

KT
)−1[

pn−
h
2

(
Aqn +

qn

‖qn‖3

)]
qn+1 =

(
I− h

2
K
)−1[(

I +
h
2

K
)

qn +hpn+1/2

]
pn+1 = pn+1/2−

h
2

(
KT pn+1/2 +Aqn+1 +

qn+1

‖qn+1‖3

) (5.20)

Here the non-singular matrices
(

I +
h
2

KT
)

and
(
I− h

2K
)

are given by

(
I +

h
2

KT
)−1

=

(
I− h

2
K
)−1

=
1

4+h2

 2 h

−h 2


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The method outlined in (5.20) above is the Störmer-Verlet for Hill’s problem. Notice

that the method is explicit making for easy implementation.

Splitting the Hamiltonian

The Hamiltonian of Hill’s problem H(p,q) defined by equation (5.8) can be efficiently

split into linear and nonlinear parts

H [1] =
1
2
‖p‖2−qT K p+

1
2

qT Aq

H [2] =− 1
‖q‖

(5.21)

with equations of motion

H [1] :

 ṗ

q̇

= Ω

 p

q

 (5.22)

H [2] :

 ṗ

q̇

=

 q
‖q‖3

0

 (5.23)

where

Ω =

 K −A

I K

=



0 1 2 0

−1 0 0 −1

1 0 0 1

0 1 −1 0


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The equations of motion can be solved exactly to give

H [1] :

 p

q

=exp(Ωt)

 p0

q0



=



2− cos t 3t−2sin t 3t− sin t 1− cos t

−sin t 2cos t−1 cos t−1 −sin t

sin t 2−2cos t 2− cos t sin t

2cos t−2 4sin t−3t 2sin t−3t 2cos t−1


 p0

q0



and H [2] :

 p

q

=

 p0− t q0
‖q0‖3

0


(5.24)

Denoting the flows of these two systems by ϕ
[1]
t and ϕ

[2]
t , we solve the system using

the second order composition with h = ∆t

Φh = ϕ
[1]
h/2 ◦ϕ

[2]
h ◦ϕ

[1]
h/2 (5.25)

which is the Strang splitting giving the algorithm

(pn+1/2,qn+1/2) =exp(
h
2

Ω)(pn,qn),

p̄n+1/2 =pn+1/2−h
qn+1/2

‖qn+1/2‖3 ,

(pn+1,qn+1) =exp(
h
2

Ω)(p̄n+1/2,qn+1/2).

(5.26)

The method is equivalent to the Sẗormer-Verlet scheme (5.17). It is symplectic and

symmetric and, as can be seen, explicit. At each step, the term exp(h
2Ω) can be reused,

so we only need one evaluation at the first step. Using the symmetric composition

(5.25), we can easily construct the higher order symmetric composition methods which

is beyond the limits of this thesis.
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5.4 Numerical Experiments

To evaluate the quality of our numerical solutions for Hill’s problem, we look to the

Hamiltonian (energy) H(p,q) which is constant along exact solutions. For symplectic

integrators, it can be shown [3] that H(pn,qn−H(p0,q0) =O(hr), where r is the order

of the integrator. To this end we measure the performance using the relative error in

energy given by

E =
|H(pn,qn−H(p0,q0)|

|H(p0,q0)|
(5.27)

The initial conditions we use are p0 = (0,0.509080) and q0 = (0.50908,0), obtained

from [5] and which are known to generate stable Hill orbits of family type g′. In all our

experiments we integrate from t = 0 to t = 100, and we use step-sizes ranging from

h = 0.01 to h = 10−5. In figure 5.2, we plot the relative error in energy as a function
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Figure 5.2: Relative error in energy versus time (left) for h = 10−4, and the maximum
relative energy versus a range of h (right), both for the second order splitting (S1) and
the standard Störmer-Verlet (SV).

of time for the standard Störmer-Verlet (SV) (5.20) and the second order composition

(S2) (5.25) for h = 10−4. We also plot the maximum relative energy over the full

range of h. It is clear that S2 has a better performance in terms of precision though

we observe from figure 5.3 that is only slightly faster. Here we emphasise that we are

not particularly interested in the overall evaluation time for a particular method, but

rather in the differences in evaluation time between methods. Also for h < 10−4 we
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Figure 5.3: Evaluation time versus a range of h for the second order composition (S2)
and the standard Störmer-Verlet (SV).

found no real improvement. To complete our comparison, we attempted to include the

results of the standard fourth-order Runge-Kutta method. However, The method failed

to compute the correct orbits despite using a variable step-size and a very low relative

tolerance. This shows that one has to be careful when selecting appropriate methods

to integrate Hill’s problem.
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Chapter 6: Conclusion

In this thesis we applied numerical integration methods to Hamiltonian systems. We

showed that some of the classic well known integrators, such as explicit Euler and

Runge-Kutta, do not produce good numerical results in the long term in the sense

that the trajectories are distorted and the hamiltonian function isnâĂŹt conserved. By

contrast we showed that geometric integrators such as the popular Symplectic Euler

and the Stormer-Verlet methods when applied to Hamiltonian systems, give accurate

results over a long period of time as our experimants showed. Amongst several ex-

amples we considered, a procedure for explicitly integrating Hill’s equations was pre-

sented using a Strang splitting method. Our computational results reveal that new the

proposed method is efficient and simple to implement. Using this idea it is anticipated

that higher order symplectic methods could be constructed by composition techniques

with the midpoint rule and Störmer-Verlet as the base methods. This class of methods

could be developed to efficiently solve many problems involving dynamical systems

in general.
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Appendix

function Y = EulerExplicit(odefun,tspan,y0)

%

% The function implements the forward Euler method of order 1.

%

h = diff(tspan);

if any(sign(h(1))*h <= 0)

error(’Entries of TSPAN are not in order.’)

end

y0 = y0(:); % Make a column vector.

neq = length(y0);

N = length(tspan);

Y = zeros(neq,N);

Y(:,1) = y0;

for i = 1:N-1

Y(:,i+1) = Y(:,i) + h(i)*feval(odefun,Y(:,i));

end

function Y = EulerImplicit(odefun,tspan,y0)

%

% The function implements the Implicit Euler method of order 1.

%

global yold h

h = tspan(2)-tspan(1);

y0 = y0(:); % Make a column vector.

neq = length(y0);

N = length(tspan);

Y = zeros(neq,N);

yold = y0;

for i = 1:N-1

yold = mynewton(@Jfun_pend,yold);

Y(:,i+1) = yold;

end

return

function [q,p] = SymplecticEuler(dqdt,dpdt,tspan,q0,p0)

%

% Symplectic Euler function, explicit method.

% solves Hamilton’s equations dq/dt = T’(p), dp/dt = - V’(q)

%

neq = length(q0);

N = length(tspan);
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h = diff(tspan);

q = zeros(neq,N); q(:,1)=q0;

p = zeros(neq,N); p(:,1)=p0;

for i = 1:N-1

p(:,i+1) = p(:,i) + h(i) * feval(dpdt,q(:,i));

q(:,i+1) = q(:,i) + h(i) * feval(dqdt,p(:,i+1));

end

function [G,dG] = Jfun_pend(x)

global yold h

G1=x(1)-yold(1)+h*sin(x(2));

G2=x(2)-yold(2)-h*x(1);

G=[G1;G2];

dG1dx1= 1;

dG1dx2 = h*cos(x(2));

dG2dx1 = -h;

dG2dx2 = 1;

dG = [dG1dx1 dG1dx2;dG2dx1 dG2dx2];

function x = mynewton(Jfun,x0,xtol,ftol,maxit,verbose,varargin)

%

% newtonSys Newton’s method for systems of nonlinear equations.

%

if nargin < 3 | isempty(xtol), xtol = 5e-5; end

if nargin < 4 | isempty(ftol), ftol = 5e-5; end

if nargin < 5 | isempty(maxit), maxit = 15; end

if nargin < 6 | isempty(verbose), verbose = 0; end

xeps = max(xtol,5*eps); feps = max(ftol,5*eps); % Smallest tols are 5*eps

if verbose, fprintf(’\nNewton iterations\n k norm(f) norm(dx)\n’); end

x = x0; k = 0; % Initial guess and current number of iterations

while k <= maxit

k = k + 1;

[f,J] = feval(Jfun,x); % Returns Jacobian matrix and f vector

dx = J\f;

x = x - dx;

if verbose, fprintf(’%3d %12.3e %12.3e\n’,k,norm(f),norm(dx)); end

if ( norm(f) < feps ) | ( norm(dx) < xeps ), return; end

end

warning(sprintf(’Solution not found within tolerance after %d iterations\n’,k));

function F = pend(y)

p=y(1); q=y(2);

F = [-sin(q);p];

function out = pend_qt(p)

p=p(:);
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out = p;

function out = pend_pt(q)

q=q(:);

out = -sin(q);

function F = kepler(y)

p1=y(1); p2=y(2); q1=y(3); q2=y(4);

F = [-q1/(q1^2+q2^2)^(3/2);-q2/(q1^2+q2^2)^(3/2);p1;p2];

function out = kepler_qt(p)

p1=p(1); p2=p(2);

out = [p1;p2];

function out = kepler_pt(q)

q=q(:);

out = -q./(q’*q).^(3/2);

%run_pend.m

clear

close all

% Time span.

t=0:.01:30;

% Initial conditions.

p0=0; q0=0.7; y0=[p0,q0];

% Euler explicit

y1 = EulerExplicit(@pend,t,y0);

p2=y1(1,:); q2=y1(2,:);

H1 = 1/2*p2.^2-cos(q2);

% Euler implicit

y2 = EulerImplicit(@Jfun_pend,t,y0);

p3=y2(1,:); q3=y2(2,:);

H2 = 1/2*p3.^2-cos(q3);

% Euler symplectic

[q1 p1]=EulerSymplectic(@pend_qt,@pend_pt,t,q0,p0);

H3 = 1/2*p1.^2-cos(q1);

% plot results

plot(p2,q2,’r’,’linewidth’,3)

xlabel(’p’)

ylabel(’q’)

title(’explicit Euler’)

print -depsc p1.eps

figure

plot(p3(2:length(p3)),q3(2:length(q3)),’r’,’linewidth’,3)

xlabel(’p’)

ylabel(’q’)

title(’implicit Euler’)



67

print -depsc p2.eps

figure

plot(p1,q1,’r’,’linewidth’,3)

xlabel(’p’)

ylabel(’q’)

title(’symplectic Euler’)

print -depsc p3.eps

figure

plot(t,H1,’r’,’linewidth’,2)

xlabel(’t’)

ylabel(’H’)

title(’Conservation of energy: explicit Euler’)

print -depsc h1.eps

figure

plot(t(2:length(t)),H2(2:length(H2)),’r’,’linewidth’,2)

xlabel(’t’)

ylabel(’H’)

title(’Conservation of energy: implicit Euler’)

print -depsc h2.eps

figure

plot(t,H3,’r’,’linewidth’,2)

axis([0 30 -0.77 -0.76])

xlabel(’t’)

ylabel(’H’)

title(’Conservation of energy: symplectic Euler’)

print -depsc h3.eps

% run_kepler

clear

close all

% Time span.

t=0:.01:100;

% Initial conditions.

p0=[0,1]; q0=[1,0]; y0=[p0,q0];

% Euler explicit

y = EulerExplicit(@kepler,t,y0);

p1=y(1,:); p2=y(2,:); q1=y(3,:); q2=y(4,:);

H1 = 1/2*(p1.^2+p2.^2)-1./(q1.^2+q2.^2).^0.5;

% Euler symplectic

[v u]=EulerSymplectic(@kepler_qt,@kepler_pt,t,q0,p0);

u1=u(1,:); u2=u(2,:); v1=v(1,:); v2=v(2,:);

H2 = 1/2*(u1.^2+u2.^2)-1./(v1.^2+v2.^2).^0.5;

% plot results

figure

plot(t,H1,’r’,’linewidth’,2)

xlabel(’t’)

ylabel(’H’)
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title(’Conservation of energy: explicit Euler’)

print -depsc h1_kep.eps

figure

plot(t,H2,’r’,’linewidth’,2)

axis([0 30 -0.77 -0.76])

xlabel(’t’)

ylabel(’H’)

title(’Conservation of energy: symplectic Euler’)

axis([0 100 -0.5002 -0.4998])

print -depsc h2_kep.eps

% Runge-Kutta applied to Hill’s problem

function rk45 = rungekutta45(eta0,h,tmax)

% Matlab’s ODE45

global J A

tic;

%t = [0:h:tmax];

etai = eta0;

Hi =1/2*norm(etai(1:2))^2 - etai(3:4)’*J*etai(1:2)+1/2*etai(3:4)’*A*etai(3:4) - 1/norm(etai(3:4));

%Integration

options = odeset(’RelTol’,1e-22,’AbsTol’,[1e-22 1e-22 1e-22 1e-22]);

[t,eta] = ode45(’phi’,[0 tmax],eta0,options);

H = zeros(length(t),1);

E = zeros(length(t),1);

for j=1:length(t)

H(j)=1/2*norm(eta(j,1:2))^2 - eta(j,3:4)*J*eta(j,1:2)’+1/2*eta(j,3:4)*A*eta(j,3:4)’

- 1/norm(eta(j,3:4));

E(j)= abs((Hi-H(j))/Hi);

end

Emax = max(abs(E));

inttime = toc;

rk45 = [t eta H E];

end

% Hill-Stormer

clear

close all

tic

% Parameter set

J = [0 1;-1 0];

A = [-2 0;0 1];

I = eye(2);

% Initial data at t=0 (set A):

p=[0,0.509080];



69

q=[0.50908,0];

% Perform the Stormer-Verlet method

tmax=30; % the time limit

h=10^(-3); % the step size

tspan=0:h:tmax; % the number of steps

NT = length(tspan);

neq = length(p);

P = zeros(neq,NT);

Q = zeros(neq,NT);

H = zeros(NT,1);

H(1)=0;

L = [2 h; -h 2];

P(:,1)=p; Q(:,1)=q;

H(1) = 1/2*norm(P(:,1))^2 - Q(:,1)’*J*P(:,1) - Q(1,1)^2 + 1/2*Q(2,1)^2 - 1/norm(Q(:,1));

for i = 1:NT-1

Ph = 2/(4+h^2)*L * ( P(:,i) - h/2 * (A*Q(:,i) + Q(:,i)/norm(Q(:,i))^3) );

Q(:,i+1) = 2/(4+h^2)*L * ( (I+h/2*J)*Q(:,i) + h*Ph );

P(:,i+1) = (I-h/2*J’)*Ph - h/2*(A*Q(:,i+1) + Q(:,i+1)/norm(Q(:,i+1))^3);

% evaluate Hamiltonian

H(i+1) = 1/2*norm(P(:,i+1))^2 - Q(:,i+1)’*J*P(:,i+1) -Q(1,i+1)^2 + 1/2*Q(2,i+1)^2

- 1/norm(Q(:,i+1));

HE(i+1) = abs((H(1)-H(i+1)))/H(1);

end

toc

% strang splitting

function S2 = Splitting2nd(eta0,h,tmax)

%2nd order splitting

global J A L

tic;

t = [0:h:tmax];

etai = eta0;

H = zeros(length(t),1);

E = zeros(length(t),1);

%etao = zeros(length(t),4);

Hi =1/2*norm(etai(1:2))^2 - etai(3:4)’*J*etai(1:2)+1/2*etai(3:4)’*A*etai(3:4)

- 1/norm(etai(3:4));

v = expm(h/2*L);

%Integration

for i=1:length(t)

eta1 = phi1(etai,v);

eta2 = phi2(eta1,h);

etai = phi1(eta2,v);

H(i) = 1/2*norm(etai(1:2))^2 - etai(3:4)’*J*etai(1:2)+1/2*etai(3:4)’*A*etai(3:4)
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- 1/norm(etai(3:4));

E(i)= abs(Hi-H(i))/abs(Hi);

% etao(i,:) = etai;

end

Emax = max(E);

Eav = mean(E);

inttime = toc;

S2 = [h Emax Eav inttime];

%S2 = [t’ etao H E];

end

function F = phi1(eta,v)

F = v*eta;

end

function F = phi2(eta,t)

F=[eta(1:2)-t*eta(3:4)/norm(eta(3:4))^3;eta(3:4)];

end
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