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vision of Dr. Leonard Dăuş, in the College of Science at UAEU. This work has not

previously been presented or published, or formed the basis for the award of any aca-

demic degree, diploma or a similar title at this or any other university. Any materials

borrowed from other sources (whether published or unpublished) and relied upon or

included in my thesis have been properly cited and acknowledged in accordance with

appropriate academic conventions. I further declare that there is no potential conflict

of interest with respect to the research, data collection, authorship, presentation and/or

publication of this thesis.

Student’s Signature Date



iii

Copyright c© 2015 Wahdan Mohammad Yousef Abuziadeh
All Rights Reserved



iv

Approval of the Master Thesis

This Master Thesis is approved by the following Examining Committee Members:

1) Advisor (Committee Chair): Dr. Leonard Dăuş
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Abstract

In this thesis we study the behavior of direct sum decompositions in the category

of modules. We present some of the most important "classical" results involving direct

sum decompositions for modules (e.g. Krull-Schmidt theorem, decomposition theo-

rems for finitely generated modules over PID etc.). In the last part of the thesis we

obtain new results, namely isomorphic refinement theorems for direct sum decompo-

sitions of regular modules. We also obtain a link between regular modules and the

exchange property.
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Chapter 1: Introduction

The main purpose of this thesis is to study the direct sum decompositions of modules,

in general, and to obtain new results in the particular case of regular modules. Usually,

when we investigate complex algebraic structures, there are two important key steps:

1. we need to identify and to study the simplest constituents, the elemen-

tary pieces;

2. we have to analyze how these basic elements interact between them to

generate the more complicated structure.

In the case of a module, the elementary pieces are the indecomposable modules. Thus

the indecomposable modules can then be thought of as the "basic building blocks", the

only objects that sometimes need to be studied, since a module, under some particular

conditions, can be written as a direct sum of indecomposable submodules.

In Chapter 2, we present in a concise way some basic concepts related to the category

of (left) modules over an arbitrary ring, and we also recall fundamental theorems that

we will use in the later chapters.

The third chapter contains some of the most important "classical" results involving

direct sum decompositions for modules. The direct sum decomposition problem can

be traced back to the last decades of the 19th century: a well-known result of Frobenius

and Stickelberger states that every finitely generated abelian group is isomorphic to a

direct sum of primary cyclic groups and infinite cyclic groups, and this decomposition

is unique. The next step was done by Wedderburn, in 1909. He proved that any two

direct products decompositions of a finite group G into indecomposable factors

G = H1×H2×·· ·×Hr = K1×K2×·· ·×Ks

are isomorphic. Afterwards, in 1924 Krull and Schmidt extended this result to modules
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of finite length. This is a famous result known as Krull-Schmidt Theorem (Theorem

3.1.8). In 1950 Azumaya gave a strengthened form of the previous theorem to the

case of arbitrary direct sums of modules having local endmorphism ring. In the last

decades, the interest revived to determine new classes of modules and/or rings which

satisfy a Krull-Schmidt Theorem. Second section of this chapter is devoted to the

semisimple modules, while the last section deals with finitely generated modules over

principal ideal domains (PID). The structure theorem for finitely generated modules

over a principal ideal domain roughly states that finitely generated modules can be

uniquely decomposed in much the same way that integers have a prime factorization.

In the final chapter we study regular modules, a concept introduced by Zelmanowith in

1972. The first section introduces the regular modules following the elementwise defi-

nition of Zelmanowitz, but it also contains a new posibility to define regular modules as

a particular concept in the Theory of Generalized Inverses. A special attention is given

to the link between the regular modules and the notion of locally split (for homomor-

phisms or modules). In fact, locally split property represents an important toll in the

study of regular modules, finally leading to Theorem 4.1.7, showing that any finitely

generated submodule of a regular module is a dirrect summand. This theorem was first

obtained by Zelmanowith, but our proof is different and self-contained. The previous

theorem is also one of the key steps to obtain direct sum decompositions for regular

modules, which are given in the second section. One of the most important decompo-

sition problems for modules (or more general, for objects in Grothendieck categories)

involves two decompositions of a single module (object). In Theorem 4.2.2 we prove

that any two direct sum decompositions of a finitely generated regular module over an

arbitrary ring must have an isomorphic refinement. Last part of the fourth chapter is de-

voted to the exchange property for regular modules. This property, based on the direct

sums, was introduced by Crawley and Jonsson for a large class of algebraic structures,

called algebras in the sense of Jonsson-Tarski. We have to point out the contribution of

Warfield to the systematic study of modules with the (finite) exchange property. One of

his major contribution was to extend the Krull-Schmidt theorem, giving a proof based
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on the exchange property. Our main result in this part of the thesis is to prove that any

finitely generated module have the finite exchange property (Theorem 4.3.2).

As a special remark, we have to mention that all the results of the fourth chapter (ex-

cept those appearing in the first section and involving the notion of locally split) are

genuinly new. These results represent a part of the submitted article [11] and they

were presented with the occasion of the International Conference on Recent Advances

in Pure and Applied Mathematics, 3-6 June 2015, Istanbul, Turkey.
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Chapter 2: Module Fundamentals

Throughout this thesis (except Section 3.3), by R we denote an associative and unitary

ring, not necessarily commutative.

2.1 Basic Definitions and Examples

Modules are a generalization of the vector spaces of linear algebra in which the "scalars"

are allowed to be from an arbitrary ring, instead of a field.

Definition 2.1.1. Let R be a ring. A left R−module (or a left module over R) is an

abelian group M together with a scalar multiplication R×M→M denoted (r,m) 7−→

rm (sometimes we say that R acts on M) that satisfy the following axioms:

1. r(m1 +m2) = rm1 + rm2;

2. (r1 + r2)m = r1m+ r2m;

3. (r1r2)m = r1(r2m);

4. 1Rm = m,

for any r,r1,r2 ∈ R and m,m1,m2 ∈M.

Let R be an arbitrary ring and let Rop denote the same abelian group, but

with new multiplication · defined by r · s = sr, (where the multiplication on the right-

hand side of this equation is that of R). If M is a left R−module. Then we can view

M as a right Rop−module, by defining the right action on M by mr = rm (where the

multiplication on the right - hand side of this equation is the old action of R on M).

Similarly any right R−module can be viewed as a left Rop−module. In the special case

R is commutative ring, it follows Rop = R.
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Example 2.1.1. Let R be a ring. Then R itself is a left R−module, where the action of

R on itself is just the usual multiplication in the ring R.

Example 2.1.2. Let F be a field. Then each vector space over F is an F−module.

Example 2.1.3. Every abelian group M is a Z−module. Indeed we consider the scalar

multiplication defined as follows:

If n > 0, then nm = m+m+ · · ·+m (n times);

If n < 0, then nm =−m−m · · ·−m (−n times);

If n = 0, then nm = 0,

for all n ∈ Z,m ∈M.

Example 2.1.4. Let R be a ring, and let M = Mmn(R) be the additive group of all m×n

matrices over R. Then M is an R−module, where multiplication of the matrix A by the

scalar r means multiplication of each entry of A by r.

Example 2.1.5. If R is a ring. Then Rn = {(r1,r2, ...,rn) : ri ∈ R} is an R−module via

componentwise addition and multiplication by elements of R :

(a1,a2, ...,an)+(b1,b2, ...,bn) = (a1 +b1,a2 +b2, ...,an +bn)

where ai,bi ∈ R for all i ∈ N, and

r(a1,a2, ...,an) = (ra1,ra2, ...,ran),r ∈ R

The module Rn is called the free module of rank n over R.

Example 2.1.6. Let I be a left ideal of the ring R. Then I is a left R−module and the

scalar multiplication is just the multiplication of the ring R. Similarly, a right ideal is a
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right R−module, and a two-sided ideal is both a left and a right R−module.

Example 2.1.7. If R is a ring and I is an ideal. Then the quotient ring R/I is a left

R−module via the scalar multiplication:

R×R/I −→ R/I,(r1,r2 + I) 7−→ r1r2 + I.

Definition 2.1.2. Let R be a ring and M an R−module. A subset N ⊆M is called an

R−submodule of M if N is a subgroup of M which is closed under the action of ring

elements:

rn ∈ N for all r ∈ R,n ∈ N.

If V is a vector space over a field F. Then an F−subfield of V is called a

linear subspace of V.

Example 2.1.8. The left ideals of a ring R are considered as the R− submodules of the

R−module R.

Example 2.1.9. If M is any abelian group. Then M is aZ−module, and theZ−submodules

of M are just the subgroups of M.

Lemma 2.1.1. If M is an R−module and N is a nonempty subset of M. Then N is an

R−submodule of M if and only if an1 +bn2 ∈ N for all n1,n2 ∈ N and a,b ∈ R.

Lemma 2.1.2. Let M be an R− module and let {Nα}α∈A be a family of submodules of

M. Then N = ∩
α∈A

Nα is a submodule of M.

2.2 Quotient Modules and Module Homomorphisms

Definition 2.2.1. Let M be a left R−module and let N be an R−submodule of M. We

can form the quotient group M/N = {m+N : m ∈M} which becomes an R−module
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by defining r(m+N) = rm+N for all r ∈ R,m ∈M. We call M/N the quotient of M

by N.

Definition 2.2.2. Let M and N be left R−modules. An R−module homomorphism

from M to N is a map ϕ : M 7−→ N such that

1. ϕ(m1 +m2) = ϕ(m1)+ϕ(m2), for all m1,m2 ∈M; and

2. ϕ(rm) = rϕ(m), for all r ∈ R,m ∈M.

Equivalently, ϕ(r1m1 + r2m2) = r1ϕ(m1)+ r2ϕ(m2), for all r1,r2 ∈ R, m1,m2 ∈M.

The set of all R−module homomorphisms from M to N will be denoted

HomR(M,N).

If M = N, then a homomorphism from M→M is called endomorphism

of M. We denoted the set of all endomorphisms by End(M).

Remark. 1. If R is a field. Then R−module homomorphisms are called linear trans-

formations.

Definition 2.2.3. The Kernel of a homomorphism ϕ is Kerϕ = {m ∈M : ϕ(m) = 0} ,

and the Image of ϕ is Im(ϕ) = {n ∈ N : n = ϕ(m) for all m ∈M} .

Remark. 2. Kerϕ is a submodule of M, and Im(ϕ) is a submodule of N.

Example 2.2.1. The map π : M 7−→M/K defined by π(m) = m+K is an R−module

homomorphism. Obviously, π is surjective.

Example 2.2.2. Let R be a ring and let M = Rn. Consider a natural number n. For each

i ∈ {1,2, ...,n} , the projection map πi : Rn 7−→ R given by πi(r1,r2, ...,rn) = ri is a

surjective R−module homomorphism with Kernel equal to the submodule of n-tuples

which have a zero in position i.

Example 2.2.3. Z−modules homomorphisms are the same as abelian group homo-



8

morphisms.

Theorem 2.2.1. (First Isomorphism Theorem For Modules)

Let M,N be R−modules and let ϕ : M 7−→ N be an R−module homomorphism. Then

M/Kerϕ ' Im(ϕ).

Theorem 2.2.2. (Second Isomorphism Theorem For Modules)

Let S and T be submodules of an R−module M, and let S+T = {s+ t : s ∈ S, t ∈ T} .

Then S+T and S∩T are submodules of M and (S+T )/T ' S/(S∩T ).

Remark. 3. S+T is the smallest module that contains both S and T, and S∩T is the

largest module included in both S and T.

Theorem 2.2.3. (Third Isomorphism Theorem For Modules)

Let S and T be submodules of an R−module M, with S⊆ T ⊆M. Then

(M/S)/(T/S)'M/T.

Theorem 2.2.4. (Correspondence Theorem)

Let N be a submodule of the R−module M and π : M→M/N the natural projection

map. Then the function P 7→ P/N defines a one-to-one correspondence between the set

of all submodules of M that contain N and the set of all submodules of M/N.

2.3 Direct Sums

Definition 2.3.1. Let R be a ring and let (Mi)i∈I be an indexed family of left R−modules.

The direct product of the modules Mi denoted Π
i∈I

Mi is the cartesian product with co-

ordinatewise addition and scalar multiplication:

(m1,m2, ...,mn)+(m′1,m
′
2, ...,m

′
n) = (m1 +m′1,m2 +m′2, ...,mn +m′n)

r(m1,m2, ...,mn) = (rm1,rm2, ...,rmn)
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where r ∈ R and mi,m′i ∈Mi for all i ∈ I.

Definition 2.3.2. The (external) direct sum, denoted ⊕
i∈I

Mi, is the submodule of Π
i∈I

Mi

consisting of all elements Π
i∈I

mi such that only finitely many of the components mi are

nonzero.

Definition 2.3.3. Let M be a left R−module, and let N1,N2, ...,Nk be submodules of M.

We define M to be their (internal) direct sum M = N1⊕N2⊕·· ·⊕Nk if each m ∈M

can be written uniquely as m = a1 +a2 + · · ·+ak, where ai ∈ Ni for all i = 1,2, ...,k.

Proposition 2.3.1. Let N1,N2, ...,Nk be submodules of the left R−module M. Then the

following are equivalent:

1. The map π : N1×N2×·· ·×Nk → N1 +N2 + · · ·+Nk defined by

π(a1,a2, ...,ak) = a1 +a2 + · · ·+ak

is an R−module isomorphism.

2. N j∩ ( N1 +N2 + · · ·+N j−1 +N j+1 + · · ·+Nk ) = 0 for all j ∈ {1,2, ...,k} .

3. Every x ∈ N1 +N2 + · · ·+Nk can be written uniquely in the form

x = a1 +a2 + · · ·+ak

with ai ∈ Ni .

Proof: To prove (1) implies (2), suppose for some j that (2) fails to hold

and let a j ∈ N j ∩ ( N1 +N2 + · · ·+N j−1 +N j+1 + · · ·+Nk ) with a j 6= 0. Then a j =

a1 + · · ·+ a j−1 + a j+1 + · · ·+ ak, for some ai ∈ Ni, and (a1, ...,a j−1,−a j,a j+1, ...,ak)

would be a nonzero element of Ker π, a contradiction.

To prove (2) implies (3), assume that (2) holds. If for some module elements ai,bi ∈Ni



10

we have a1 + a2 + · · ·+ ak = b1 + b2 + · · ·+ bk, then for each j we have a j − b j =

(b1−a1)+ · · ·+(b j−1−a j−1)+(b j+1−a j+1)+ · · ·+(bk−ak). The left hand side is

in N j and the right hand side belongs to N1 +N2 + · · ·+N j−1 +N j+1 + · · ·+Nk . Thus

a j−b j ∈ N j ∩ ( N1 +N2 + · · ·+N j−1 +N j+1 + · · ·+Nk ) = 0. This shows a j = b j for

all j, and so (2) implies (3).

Finally, to see that (3) implies (1) observe first that the map π is clearly a surjec-

tive R−module homomorphism. Then (3) implies that π is injective, hence it is an

R−module isomorphism. �

Definition 2.3.4. The pair of homomorphisms M1
ψ−→M2

ϕ−→M3 is said to be exact

(at M2) if Im ψ = Ker ϕ.

Definition 2.3.5. Let R be a ring. A sequence of left R−modules and homomorphisms

· · · −→Mi−1
fi−→Mi

fi+1−→Mi+1−→ ·· · is said to be exact (at Mi) if Im( fi) =Ker( fi+1).

The sequence is said to be exact if it is exact at each Mi.

Proposition 2.3.2. Let M1,M2,M3 be left R−modules over a ring R. Then:

1. The sequence 0−→M1
ψ−→M2 is exact (at M1) if and only if ψ is injective.

2. The sequence M2
ϕ−→M3 −→ 0 is exact (at M3) if and only if ϕ is surjective.

Proof: (1) The sequence 0−→M1
ψ−→M2 is exact if and only if Im(0−→

M1) = 0 = Ker ψ if and only if ψ is injective.

(2) The sequence M2
ϕ−→M3 −→ 0 is exact if and only if Ker(M3 −→ 0) = M3 = Im

ϕ if and only if ϕ is surjective. �

Corollary 2.3.3. The sequence 0−→M1
ψ−→M2

ϕ−→M3 −→ 0 is exact if and only if

ψ is injective, ϕ is surjective, and Im ψ = Ker ϕ.

Definition 2.3.6. The exact sequence 0−→M1
ψ−→M2

ϕ−→M3 −→ 0 is called a short

exact sequence.

Example 2.3.1. Given modules M1 and M3, we can always form their direct sum
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M2 = M1⊕M3 and the sequence 0 −→ M1
ι−→ M1⊕M3

π−→ M3 −→ 0 where ι is

the inclusion map ι(m1) = (m1,0) and π is the projection map π(m1,m3) = m3 for all

m1 ∈M1 and m3 ∈M3 we have a short exact sequence.

Example 2.3.2. If ϕ : M1→M2 is a homomorphism we may form an exact sequence:

0→ Kerϕ
ι→M1

ϕ→ Im ϕ → 0

where ι is the inclusion map.

Definition 2.3.7. A short exact sequence

0−→M1
ψ−→M2

ϕ−→M3 −→ 0

is split if there exists a map ξ : M3 −→M2 with ϕ ◦ξ = 1M3 .

Proposition 2.3.4. If an exact sequence

0−→M1
ψ−→M2

ϕ−→M3 −→ 0

is split. Then M2 'M1⊕M3.

Proof: Since the exact sequence is split, there exists ξ : M3 −→M2 such

that ϕ ◦ ξ = 1M3. We want to prove that M2 = Imψ + Imξ . Let b ∈ M2, ϕ(b) ∈ M3.

We claim that b−ξ (ϕ(b)) is in Kerϕ since ϕ(b−ξ (ϕ(b))) = ϕ(b)−ϕ(ξ (ϕ(b))) =

ϕ(b)− (ϕ ◦ ξ )(ϕ(b)) = ϕ(b)−ϕ(b) = 0. But since Imψ = Kerϕ ( exactness at M2),

b−ξ (ϕ(b)) is in Imψ, it means there exists an a in M1 such that ψ(a) = b−ξ (ϕ(b)).

Then b = ψ(a)+ ξ (ϕ(b)); ψ(a) is obviously in Imψ, and ξ (ϕ(b)) is in Imξ . Hence

M2 = Imψ + Imξ .

Next we need to prove that this sum is direct, equivalently, the intersection of Imψ and

Imξ is 0. Assume that x ∈ Imψ ∩ Imξ , x = ψ(á) = ξ (c) for some á ∈M1 and c ∈M3,
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this implies that ϕ(x) = ϕ(ψ(á)) = 0 ( ψ(á) ∈ Imψ = Kerϕ ) and ϕ(x) = ϕ(ξ (c)) =

(ϕ ◦ξ )(c) = 1M3(c) = c. Hence x = ξ (c) = ξ (0) = 0. �

Definition 2.3.8. Let M and N be R−modules, and let ϕ : M 7−→ N be an R−module

homomorphism. The Cokernel of ϕ denoted by CoKer(ϕ) is the quotient module

N/Im(ϕ).

Definition 2.3.9. A nonzero R−module M is simple if the only submodules of M are

0 and M.

Definition 2.3.10. An R−module M is said to be indecomposable if whenever M =

N1⊕N2 for some submodules N1,N2, we have N1 = 0 or N2 = 0.

Remark. 4. Every simple module is indecomposable, but not-vice versa.

Lemma 2.3.5. Let M be a nonzero R−module and let N be an indecomposable R−module.

Suppose that f : M→ N and g : N→M be two R−module homomorphisms such that

g◦ f : M→M is an isomorphism. Then f and g are isomorphisms as well.

Proof: As g ◦ f is isomorphism we obtain that f is injective and g is sur-

jective. We have to prove that f is surjective and g is injective. Consider the two exact

sequences 0→M→N→CoKer( f ) =N/Im( f )→ 0 and 0→Ker(g) ↪→N→M→ 0,

these sequences are split. So N ' Ker(g)⊕M ' M⊕CoKer( f ). But by hypothesis

M is a nonzero R−module and N is an indecomposable R−module. It follows that

Ker(g) =CoKer( f ) = 0. Thus g is injective and f is surjective. �

Definition 2.3.11. A left R-module S is cyclic if there exists s∈ S with S= {rs : r ∈ R}.

If M is an R-module and m ∈M, then the cyclic submodule generated by m, denoted

by 〈m〉, is 〈m〉 = {rm : r ∈ R}. More generally, if X is a subset of an R−module M,

then we denote

〈X〉=

{
∑

f inite
rixi : ri ∈ R and xi ∈ X

}
,

the set of all R-linear combinations of elements in X . We will call 〈X〉 the submodule
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generated by X .

Definition 2.3.12. A left R−module M = 〈X〉 is finitely generated if X is a finite set.

Example 2.3.3. A vector space V over a field K is a finitely generated K−module if

and only if V is finite-dimensional.
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Chapter 3: "Classical" Direct Sum Decompositions

3.1 Krull-Schmidt Theorem

Definition 3.1.1. Let R be a ring and M be an R−module. We shall say that M is

Artinian if it satisfies any of the following two equivalent conditions:

1. The minimum condition, or min, if every nonempty collection of nontrivial sub-

modules of M has a minimal element. This means that if Γ is a nonempty family

of submodules, then there exists N ∈ Γ such that N contains no other elements

of Γ.

2. The descending chain condition, or D.C.C., if every descending chain M1 ⊇

M2 ⊇ ·· · of nontrivial submodules of M stabilizes, that is, for some r and all

n≥ 0, Mr = Mr+n.

It is easy to prove that the two conditions are equivalent. Suppose M satis-

fies the minimum condition and let M1 ⊇M2 ⊇ ·· · be a descending chain of nontrivial

submodules of M. Then the collection {M1,M2, ...} contains a minimal element, say

Mn, and the series stabilizes at n.

Conversely, suppose M satisfies D.C.C and let Γ be a nonempty collection of nontriv-

ial submodules of M. Choose M1 ∈ Γ. If M1 is not minimal, then there exists M2 ∈ Γ

with M1 ⊃M2. If M2 is not minimal, then we can find M3 ∈ Γ with M2 ⊃M3. Contin-

uing in this manner, we either find a minimal element of Γ or we construct an infinite

descending chain M1 ⊃ M2 ⊃ ·· · that does not stabilize, which a contradiction with

D.C.C.

Lemma 3.1.1. Let M be an R−module, and let N be a submodule of M. Then:
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1. M is Artinian if and only if both N and M/N are Artinian.

2. Suppose {Ni | i ∈ I} is a family of simple submodules of M and that M = ∑i Ni.

Then M is Artinian if and only if the index set I is finite.

Proof: (1) Suppose first that M is Artinian. Since any descending chain of

submodules of N is also a chain of submodules of M, it follows that N inherits D.C.C

from M, so N is Artinian . Now let π : M → M/N be the natural R−epimorphism

and let M′1 ⊇ M′2 ⊇ ·· · be a descending chain of submodules of M/N. If we denote

Mi = π−1(M′i), then π(Mi) = M′i and M1 ⊇M2 ⊇ ·· · is a descending chain in M. But

the latter chain must stabilize and hence, using π(Mi) = M′i , we conclude that the

original one does also. Therefore M/N is Artinian.

Conversely, suppose N and M/N satisfy D.C.C and let M1 ⊇M2 ⊇ ·· · be a descending

chain of submodules of M. Then

(M1∩N)⊇ (M2∩N)⊇ ·· · ⊇ (Mi∩N)⊇ ·· ·

is a descending chain of submodules of N and hence this chain must stabilize, say at

p. Furthermore,

(M1 +N)/N ⊇ (M2 +N)/N ⊇ ·· · ⊇ (Mi +N)/N ⊇ ·· ·

is a descending chain of submodules of M/N and hence this chain must also stabilize,

say at q. In particular, if t ≥ p,q, then Mt+1 ∩N = Mt ∩N and Mt+1 +N = Mt +N.

Thus since Mt ⊇Mt+1, the Modular Law implies that Mt = Mt+1 and we conclude that

the original series does indeed stabilize.

(2) If I is finite. Then M has only a finite number of submodules. Since in a

finite family of modules we may always find a minimum member, then M is Artinian.

On other hand, if I is infinite, then we can construct an infinite strictly descending

chain of submodules of M by deleting one summand at a time from the direct sum
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M = ∑i Ni. �

Definition 3.1.2. Let R be a ring and M be an R−module. We shall say that M is

Noetherian if it satisfies any one of the following two equivalent conditions:

1. The maximum condition, or max, if every nonempty collection of nontrivial sub-

modules of M has a maximal element. This means that if Γis a nonempty family

of nontrivial submodules, then there exists N ∈ Γ such that N is contained in no

other element of Γ.

2. The ascending chain condition, or A.C.C, if every ascending chain M1 ⊆M2 ⊆

·· · of nontrivial submodules of M stabilizes, that is, for some r and all n ≥ 0,

Mr = Mr+n.

To prove that the two conditions are equivalent, we first assume that M

satisfies the maximum condition and let M1 ⊆M2 ⊆ ·· · be an ascending chain of non-

trivial submodules of M. Then the collection {M1,M2, ...} contains a maximal element,

say Mn, and the series stabilizes at n.

Conversely, suppose M satisfies A.C.C and let Γ be a nonempty collection of nontrivial

submodules of M. Choose M1 ∈ Γ. If M1 is not maximal, then there exists M2 ∈ Γ with

M1 ⊂ M2. If M2 is not maximal, then we can find M3 ∈ Γ with M2 ⊂ M3. Continu-

ing in this manner, we either find a maximal element of Γ or we construct an infinite

ascending chain M1 ⊂M2 ⊂ ·· · that does not stabilize.

Lemma 3.1.2. Let M be an R−module, and let N be a submodule of M. Then:

1. M is Noetherian if and only if both N and M/N are Noetherian.

2. M is Noetherian if and only if its submodules are all finitely generated.

Proof: (1) This follows as in Lemma 3.1.2 (1).

(2) Assuming that M is Noetherian, then M satisfies max. We have to prove that every

submodule of M is finitely generated.
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Let N be a submodule of M. Since 0 is finitely generated submodule of N, it follows

from max that there exists a submodule N′ of N maximal with the property of being

finitely generated. But if n ∈ N, then N′+nR is also a finitely generated submodule of

N. Thus maximality of N′ implies that n ∈ N′and therefore that N′ = N.

Conversely, suppose that all submodules of M are finitely generated. We have to prove

that M is Noetherian.

Let M1 ⊆ M2 ⊆ ·· · be an ascending chain of nontrivial submodules of M. If N =

∪∞
i=1Mi, then N is a submodule of M and hence it is finitely generated. But each

generator of N is contained in some Mi and, by taking the largest of these finitely many

subscripts, we see that all generators of N are contained in some Mt . Thus N = Mt and

we conclude that the series stabilize at t. �

Definition 3.1.3. Let M be a module over a ring R. The length of M, written as `(M),

is the supremum of lengths n of chains N0  N1  N2  · · · Nn = M of submodules

Ni ⊆M. So `(M) ∈ N∪{∞}.

If `(M) is a finite number we say M has finite length, otherwise M has infinite length.

Example 3.1.1. 1. `(M) = 0 if and only if M = {0}.

2. An R−module M is simple if and only if `(M) = 1.

3. For m a positive integer, the Z−module M =Z/(m) has length equal the number

of prime factors (with multiplicities) of m.

4. Z has infinite length as a module over itself.

5. If V is a vector space over a field F . Then `(V ) = dimF(V ).

In the next theorem there are given some basic facts about the length of a

module. For the proof we recommend [19, Theorem 12.3].

Theorem 3.1.3. Let M be a module over a ring R.

1. M has finite length if and only if it is Artinian and Noetherian. In particular, R
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has finite length as a module over itself if and only if it is Artinian. (because an

Artinian ring is also Noetherian).

2. Let N ⊆M be a submodule. Then `(M) = `(N)+ `(M/N).

3. If M has finite length and N is a submodule of M. Then N has finite length as

well, and we have `(N) ≤ `(M).

Furthermore, if N is a proper submodule of M, then `(N) < `(M).

4. If M1,M2 are both indecomposable. Then `(M1⊕M2) = `(M1)+ `(M2).

Theorem 3.1.4. (Fitting’s lemma) Let M be an R−module and let ϕ ∈ End(M).

1. If M is Noetherian. Then there exists a positive integer n such that:

Kerϕ
n∩ Imϕ

n = 0.

2. If M is Artinian. Then there exists a positive integer n such that:

M = Kerϕ
n + Imϕ

n.

3. If M is a module of finite length. Then there exists a positive integer n such that:

M = Kerϕ
n⊕ Imϕ

n.

Proof: (1) Let M be a Noetherian module. Then we have Kerϕ ⊆Kerϕ2⊆

Kerϕ3 ⊆ ·· · and Kerϕn = Kerϕn+1 = · · · for some positive integer n. We have to

show that Ker ϕn∩ Im ϕn = 0. If x ∈ Ker ϕn∩ Im ϕn then x ∈ Ker ϕn and x ∈ Im ϕn,

this implies that ϕn(x) = 0 and there exist y ∈M such that x = ϕn(y). It follows that
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ϕn(x) = ϕ2n(y) = 0. So y ∈ Ker ϕ2n = Ker ϕn. Hence x = ϕn(y) = 0.

(2) Let M be an Artinian module. Then we have Imϕ ⊇ Imϕ2 ⊇ Imϕ3 ⊇ ·· · and

Imϕn = Imϕn+1 = · · · for some positive integer n. We have to show that M = Ker

ϕn + Im ϕn.

Let x∈M be arbitrary. As Imϕn = Imϕ2n, there exists y∈M such that ϕn(x) = ϕ2n(y).

Write x = (x− ϕn(y)) + ϕn(y). If we show that x− ϕn(y) ∈ Kerϕn then we done.

Indeed ϕn(x−ϕn(y)) = ϕn(x)−ϕ2n(y) = 0.

(3) By Theorem 3.1.3 (1) since M has finite length, M is Artinian and Noetherian.

Using now (1) and (2) we obtain the conclusion. �

Definition 3.1.4. Let R be a ring.

1. An element a ∈ R is called idempotent element if a2 = a.

2. An element a ∈ R is called nilpotent element if there exists n ∈ N∗ such that

an = 0.

Lemma 3.1.5. An R−module M is indecomposable if and only if the only idempotents

of the endomorphism ring of M are 0 and 1.

Proof Let e ∈ End(M) be idempotent element. Obviously M = e(M)+

(id− e)(M). We have to show that this sum is direct. In fact we have to show that

e(M)∩ (id− e)(M) = {0}.

Let x ∈ e(M)∩ (id− e)(M), then x ∈ e(M) and x ∈ (id− e)(M), this means that there

exist m1,m2 ∈ M such that x = e(m1) and x = (id − e)(m2) = m2− e(m2) this im-

plies that e(x) = e(m2− e(m2)) = e(m2)− e(e(m2)) = e(m2)− e(m2) = 0. But e(x) =

e(e(m1)) = e(m1) = x, hence x = 0. �

Lemma 3.1.6. If a is a nilpotent element of a ring R, then 1−a is invertible.

Proof: If a is a nilpotent, then an = 0 for some n > 0. But then

1−an = (1−a)(1+a+a2 + · · ·+an−1) = 1
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and so 1−a is invertible. �

Corollary 3.1.7. Let M be an indecomposable R−module of finite length. Then every

endomorphism of M is either nilpotent or isomorphism. In particular, the set of non-

invertible elements of End(M) is closed under addition.

Proof: Since M is of finite length, it follows, by part (3) of Fitting’s

Lemma, that M ' Ker ϕn⊕ Im ϕn. As M is indecomposable, either Ker ϕn = 0 and

Imϕn = M, or Ker ϕn = M and Imϕn = 0. In the first case, we already noticed before

that Kerϕ ⊆ Kerϕ2 ⊆ Kerϕ3 ⊆ ·· · ⊆ Kerϕn = 0, then Kerϕ = 0 and so ϕ is injective.

On the other hand we also noticed that Imϕ ⊇ Imϕ2 ⊇ Imϕ3 ⊇ ·· · ⊇ Imϕn = M, then

Imϕ = M and so ϕ is surjective. Hence ϕ is an isomorphism. In the later case (Ker

ϕn = M and Imϕn = 0) we have ϕn = 0 and hence ϕ is nilpotent. Now we have to

show that h= f +g is also a non-invertible element of End(M) for every non-invertible

f ,g ∈ End(M). Assume that h is invertible, so we obtain id = h−1 f + h−1g. As f is

non-invertible, so is h−1 f and by the first part of the corollary, h−1 f is nilpotent and

so h−1g = id−h−1 f is invertible (by the above lemma) so is g = h(id−h−1 f ) . But

we assumed that f ,g ∈ End(M) are non-invertible, so our assumption that h = f +g is

invertible was wrong, so h is non-invertible. �

Theorem 3.1.8. (Krull-Schmidt Theorem). Let M be a finitely generated R−module

and let

M =U1⊕U2⊕·· ·⊕Um 'V1⊕V2⊕·· ·⊕Vn

be two decompositions of M where U ′i s and V ′js are indecomposable R−modules. Then

m = n and after a rearrangement of indices we have Ui ' Vi for every i.

Proof: Let ϕ : U1⊕U2⊕·· ·⊕Um→ V1⊕V2⊕·· ·⊕Vn be an R−module

isomorphism. We prove the result by induction on m+n. If m+n = 2 then m = n = 1

and the conclusion is immediate. Let πi : U1⊕U2⊕·· ·⊕Um→Ui and π ′j : V1⊕V2⊕

·· · ⊕Vn → Vj be the canonical projections and let ιi : Ui ↪→ U1⊕U2⊕ ·· · ⊕Um and
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ι ′j : Vj ↪→V1⊕V2⊕·· ·⊕Vn be the canonical inclusions. Consider the endomorphisms

ρi j of Ui which is the composition of π ′j ◦ϕ ◦ ιi : Ui→ Vj and πi ◦ϕ−1 ◦ ι ′j : Vj →Ui.

We have two possibilities.

Case (1): If there exist two indices i and j such that ρi j is an isomorphism (say

i = j = 1) then we have the isomorphism π ′1 ◦ϕ ◦ ι1 : U1 ' V1 as well. We will prove

ϕ ′ := (⊕n
s=2π ′r)◦ϕ ◦ (⊕m

r=2ιs) : (⊕m
r=2Ur)→ (⊕n

s=2Vs) is an isomorphism.

For injectivity:

Suppose that (u2, ...,um) is in the kernel of this map. So π ′s(ϕ(0,u2, ...,um)) = 0

for all s = 2, ...,n, but π ′s : ⊕n
j=1Vj → Vs. Hence ϕ(0,u2, ...,um) = (v1,0...,0). It fol-

lows that ϕ(0,u2, ...,um) = ι ′1(v1). By applying the map π1 ◦ϕ−1 on both sides we

get 0 = π1 ◦ ϕ−1◦ ι ′1(v1). As π1 ◦ ϕ−1◦ ι ′1 is an isomorphism we obtain v1 = 0 so

ϕ(0,u2, ...,um) = (v1,0...,0) = (0,0, ...,0), and so (u2, ...,um) = (0, ...,0).

For surjectivity:

As ϕ ′ : (⊕m
r=2Ur)→ (⊕n

s=2Vs) is injective so `(⊕m
r=2Ur) = `(ϕ ′(⊕m

r=2Ur)) = `(⊕n
s=2Vs)

it follows that ϕ ′(⊕m
r=2Ur) =⊕n

s=2Vs, hence ϕ ′ is surjective.

Case (2): if for every j,ρi j is not isomorphism, then by previous corollary ρi j is nilpo-

tent and so ∑
n
j=1 ρi j is nilpotent as well. But ∑

n
j=1 ρi j = idUi, a contradiction. �

3.2 Semisimple Modules

A one-dimensional space is simple in the sense that it does not have a nontrivial proper

subspace. Thus any vector space is a direct sum of simple subspaces. Starting from this

idea, it is possible to consider a new class of modules, namely semisimple modules.

Theorem 3.2.1. Let M be a nonzero R−module. The following conditions are equiva-

lent.

1. M is a sum of simple modules;

2. M is a direct sum of simple modules;

3. If N is a submodule of M, then N is a direct summand of M, that is, there is a
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submodule N
′
of M such that M = N⊕N

′
.

Proof: (1)⇒ (2) Let M be the sum of simple modules Mi, i ∈ I. If J ⊆ I,

denote ∑ j∈J M j by M(J). By Zorn’s lemma, there is a maximal subset J of I such

that the sum defining N = M(J) is direct. We will show that M = N. First assume that

i /∈ J. Then N∩Mi is a submodule of a simple module Mi, so it must be either 0 or Mi. If

N∩Mi = 0, then M(J∪{i}) is direct, contradicting maximality of J. Thus N∩Mi =Mi,

so Mi ⊆ N. But if i ∈ J, then Mi ⊆ N by definition of N. Therefore Mi ⊆ N for all i, and

since M is the sum of all Mi, we have M = N.

(2)⇒ (3) This is essentially the same as (1) implies (2). Let N be a submodule of M,

where M is the direct sum of simple modules Mi, i ∈ I. Let J be a maximal subset of I

such that the sum N+M(J) is direct. If i /∈ J then exactly as before, Mi∩(N⊕M(J)) =

Mi, so Mi ⊆ N⊕M(J). This holds for i ∈ J as well, by definition of M(J). It follows

that M = N⊕M(J).

(3)⇒ (1) First we make several observations:

(a) If M satisfies (3), so does every submodule N. [Let N ≤M, so that M = N⊕N
′
. If

V is a submodule of N, hence of M, we have M =V ⊕W. If x ∈ N, then x = v+w,v ∈

V,w ∈W. So w = x−v ∈ N ( using V ≤ N ). But v also belong to N, and consequently

N = (N∩V )⊕ (N∩W ) =V ⊕ (N∩W ).]

(b) If D = A⊕B⊕C, then A = (A+B)∩ (A+C). [ If a+ b = a
′
+ c, where a,a

′ ∈

A,b ∈ B,c ∈C, then a
′−a = b− c, and since D is direct sum, we have b = c = 0 and

a = a
′
. Thus a+b ∈ A.]

(c) If N is a nonzero submodule of M, then N contains a simple submodule. [Choose

a nonzero x ∈ N. By Zorn’s lemma, there is a maximal submodule V of N such that

x /∈V. By (a) we can write N =V ⊕V ′, and V ′ 6= 0 by choice of x and V.

If V
′

is simple, we are finished, so assume that V
′

is not simple. Then V
′

contains

a nontrivial proper submodule V1, so by (a) we can write V
′
= V1⊕V2 with the Vj

nonzero. By (b), V = (V +V1)∩ (V +V2). Since x /∈V, either x /∈V +V1 or x /∈V +V2,

which contradicts the maximality of V.]

To prove that (3)⇒ (1), let N be the sum of all simple submodules of M. By (3) we
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can write M = N⊕N
′
. If N

′ 6= 0, then by (c), N
′

contains a simple submodule V. But

then V ≤N by definition of N. Thus V ≤N∩N
′
= 0, a contradiction. Therefore N

′
= 0

and M = N. �

Definition 3.2.1. A module M satisfying any of the previous three equivalent condi-

tions is called semisimple or completely reducible.

Proposition 3.2.2. Nonzero submodules and quotient modules of a semisimple module

are semisimple.

Proof: The submodule case follows from (a) of the proof of the previous

theorem.

Let N ≤M, where M = ∑i Mi with the Mi simple. Applying the canonical map from

M to M/N, we have

M/N = ∑
i
(Mi +N)/N.

By The Second Isomorphism Theorem, (Mi +N)/N is isomorphic to a quotient of

the simple module Mi. But a quotient of Mi is isomorphic to Mi or to zero, and it

follows that M/N is a sum of simple modules. By (1) of the previous theorem, M/N

is semisimple. �

Lemma 3.2.3. (Schur’s Lemma)

1. If f ∈ Hom(M,N) where M and N are simple R−modules. Then f is either

identically 0 or an isomorphism.

2. If M is a simple R−module. Then EndR(M) is a division ring.

Proof: (1) The kernel of f is either 0 or M, and the image of f is either

0 or N. If f is not the zero map, then the kernel is 0 and the image is N, so f is an

isomorphism.

(2) Let f ∈ EndR(M), f is not identically 0. By (1), f is an isomorphism, and therefore

is invertible in the endomorphism ring of M. �

Lemma 3.2.4. Let M be a semisimple R−module, and let A be the endomorphism ring
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EndR(M). [Note that M is an A−module; if g∈ A we take g•x = g(x),x∈M.] If m∈M

and f ∈ EndA(M). Then there exists r ∈ R such that f (m) = rm.

Before proving the lemma, Let’s look more carefully at EndA(M). Sup-

pose that f ∈ EndA(M) and x ∈M. If g ∈ A, then f (g(x)) = g( f (x)). Thus EndA(M)

consists of those abelian group endomorphisms of M that commute with every thing in

EndR(M). In turn, by the requirement that f (rx) = r f (x), EndR(M) consists of those

abelian group endomorphisms of M that commute with R, more precisely with multi-

plication by r, for each r ∈ R.

Proof: By Theorem 3.2.1 part(3), we can express M as a direct sum Rm⊕

N. Now if we have a direct sum U = V ⊕W and u = v+w,v ∈ V,w ∈W, there is a

natural projection of U on V, namely u→ v. In the present case, let π be the natural

projection of M on Rm. Then π ∈ A and f (m) = f (πm) = π f (m) ∈ Rm. The result

follows. �

To specify an R−module homomorphism ψ from a direct sum V ∗=⊕n
j=1Vj

to a direct sum W ∗ =⊕m
i=1Wi, we must give, for every i and j, the ith component of the

image of v j ∈ Vj. Thus the homomorphism is described by a matrix
[
ψi j
]
, where ψi j

is a homomorphism from Vj to Wi. The ith component of ψ(v j) is ψi j(v j), so the ith

component of ψ(v1 + ...+ vn) is ∑
n
j=1 ψi j(v j). Consequently,

ψ(v1 + ...+ vn) =
[
ψi j
]


v1

.

.

.

vn


. (1)

This gives an abelian group isomorphism between HomR(V ∗,W ∗) and
[
HomR(Vj,Wi)

]
,

the collection of all m by n matrices whose i j entry is an R−module homomorphism

from Vj to Wi. If we take m = n and Vi =Wj = V for all i and j, then V ∗ = W ∗ = V n,
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the direct sum of n copies of V . Then the abelian group isomorphism given by (1)

becomes

EndR(V n)'Mn(EndR(V )), (2)

the collection of all n by n matrices whose entries are R− endomorphisms of V. Since

composition of endomorphisms corresponds multiplication of matrices, (2) gives a ring

isomorphism as well.

Theorem 3.2.5. (Jacobson) Let M be a semisimple R−module, and let A be the endo-

morphism ring EndR(M). If f ∈ EndA(M) and m1, ...,mn ∈M. Then there exists r ∈ R

such that f (mi) = rmi for all i = 1, ...,n.

Proof: f includes an endomorphism fn of Mn, the direct sum of n copies

of M, via

fn(m1 + · · ·+mn) = f (m1)+ · · ·+ f (mn)

where f (mi) belongs to the ith copy of M. The matrix that represents fn is the scalar

matrix f I, where I is an n by n identity matrix. If B = EndR(Mn), then since a scalar

matrix commutes with everything, fn ∈ EndB(Mn). If m1, ...,mn ∈M, then by Lemma

3.2.5, there exists r ∈ R such that fn(m1 + · · ·+mn) = r(m1 + · · ·+mn). [ Note that

since M is semisimple, so is Mn]. This is equivalent to f (mi) = rmi for all i. �

Definition 3.2.2. For an R-module M, the set E ⊆M is a basis for M if:

1. E is a generating set of M (M = 〈E〉).

2. E is linearly independent, that is,

r1x1 + r2x2 + · · ·+ rnxn = 0

for x1,x2, ...,xn distinct elements of E implies that r1 = r2 = · · ·= rn = 0.

Corollary 3.2.6. Let M be a faithful (see Definition 3.3.6), simple R−module, and
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let D = EndR(M) (a division ring by the second part of Schur’s Lemma). If M is a

finite-dimensional vector space over D. Then EndD(M)' R, a ring isomorphism.

Proof: Let {x1, ...,xn} be a basis for M over D. By Theorem 3.2.5, if f ∈

EndD(M), there exists r ∈ R such that f (xi) = rxi for all i = 1, ...,n. Since the xi form

a basis, we have f (x) = rx for every x ∈M. Thus the map h from R to EndD(M) given

by r→ gr = multiplication by r is surjective. If rx = 0 for all x ∈M, then since M is

faithful, we have r = 0 and h is injective. Since h(rs) = gr ◦gs = h(r)h(s), h is a ring

isomorphism. �

3.3 Finitely Generated Modules over PID

We start with some definitions that will lead up to the notion of a Principal Ideal Do-

main PID .

Definition 3.3.1. A nonzero element a of a ring R is said to be a zero-divisor if there

exists a nonzero element b in R such that ab = 0.

Definition 3.3.2. An integral domain is a unitary commutative ring, which has no

zero-divisors.

Definition 3.3.3. A principal ideal domain (PID) is an integral domain in which

every ideal is principal, i.e. generated by a single element.

Proposition 3.3.1. If R is a P.I.D. Then every nonempty set of ideals of R has a maxi-

mal element and R is a Noetherian ring.

Proof: Since any P.I.D. R satisfies the second condition of the Lemma

3.1.2, it follows R is Noetherian. �

Definition 3.3.4. For any integral domain R the rank of an R−module M is the maxi-

mum number of R−linearly independent elements of M.

Proposition 3.3.2. Let R be an integral domain and let M be a free R−module of

rank n < ∞. Then any n+ 1 elements of M are R−linearly dependent, i.e., for any



27

y1,y2, ...,yn+1 ∈M there are elements r1,r2, ...,rn+1 ∈ R, not all zero, such that

r1y1 + r2y2 + · · ·+ rn+1yn+1 = 0.

Proof: The quickest way of proving this is to embed R in its quotient field

F (since R is an integral domain) and observe that since M ' R⊕R⊕ ...⊕R (n times)

we obtain M ⊆ F ⊕F ⊕ ...⊕F. The latter is an n−dimensional vector space over F

so any n+ 1 elements of M are F−linearly dependent. By clearing the denominators

of the scalars (by multiplying through by the product of all the denominators, for ex-

ample), we obtain an R−linear dependence relation among the n+ 1 elements of M,

which complete the proof. �

Definition 3.3.5. If R is any integral domain and M is any R−module. Then

Tor(M) = {x ∈M | rx = 0 for some nonzero r ∈ R}.

is a submodule of M (called the torsion submodule of M) and if N is any submodule

of Tor(M), N is called a torsion submodule of M (so the torsion submodule of M is

the union of all torsion submodules of M, i.e., is the maximal torsion submodule of

M). If Tor(M) = 0, the module M is said to be torsion free.

Definition 3.3.6. For any submodule N of M, the annihilator of N is the ideal of R

defined by

Ann(N) = {r ∈ R | rn = 0 for all n ∈ N}.

If for a module M we have Ann(M) = 0 (the ideal zero). Then M is said to be a faithful

module.

The following theorem plays a key role in the structure theory for finitely

generated modules over PID.



28

Theorem 3.3.3. Let R be a Principal Ideal Domain, let M be a free R−module of finite

rank n and let N be a submodule of M. Then

1. N is free of rank m, m≤ n and

2. there exists a basis y1,y2, ...,yn of M so that a1y1,a2y2, ...,amym is a basis of N

where a1,a2, ...,am are nonzero elements of R with the divisibility relations

a1 | a2 | · · · | am.

Proof: If N = {0}, the theorem is trivial. So we assume N 6= {0}. For each

ϕ ∈ HomR(M,R), the image ϕ(N) of N is a submodule of R, i.e., an ideal in R. Since

R is a P.I.D, this ideal must be principal, say ϕ(N) = (aϕ), for some aϕ ∈ R. Let

Σ = {(aϕ) | ϕ ∈ HomR(M,R)}

be the collection of the principal ideals in R obtained in this way from the R−module

homomorphism of M into R. Note Σ 6= 0 since (0) ∈ Σ. By Proposition 3.3.1, Σ has

at least one maximal element i.e., there is at least one v ∈ HomR(M,R) so that the

principal ideal v(N) = (av) is not properly contained in any other element of Σ. Let

a1 = av for this maximal element and let y∈N be an element mapping to the generator

a1 under the homomorphism v : v(y) = a1.

We now show the element a1 6= 0. Let x1,x2, ...,xn be any basis of the free module M

and let πi ∈ HomR(M,R) be the natural projection homomorphism onto the ith coordi-

nate with respect to this basis. Since N 6= {0}, there exists an i such that πi(N) 6= 0,

which in particular shows that Σ contains more than just the trivial ideal (0). Since (a1)

is a maximal element of Σ it follows that a1 6= 0.

We next shows that this element a1 divides ϕ(y) for every ϕ ∈ HomR(M,R). To see

this let d be a generator for the principal ideal generated by a1 and ϕ(y). Then d is
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a divisor of both a1 and ϕ(y) in R and d = r1a1 + r2ϕ(y) for some r1,r2 ∈ R. Con-

sider the homomorphism ψ = r1v+ r2ϕ from M to R. Then ψ(y) = (r1v+ r2ϕ)(y) =

r1a1 + r2ϕ(y) = d so that d ∈ ψ(N), hence also (d) ⊆ ψ(N). But d is a divisor of a1

so we also have (a1) ⊆ (d). Then (a1) ⊆ (d) ⊆ ψ(N) and by the maximality of (a1)

we must have the equality: (a1) = (d) = ψ(N). In particular (a1) = (d) shows that

a1 | ϕ(y), since d divides ϕ(y). If we apply this to the projection homomorphism πi

we see that a1 divides πi(y) for all i. Write πi(y) = a1bi for some bi ∈ R, 1≤ i≤ n and

define

y1 =
n

∑
i=1

bixi.

Note that a1y1 = y. Since a1 = v(y) = v(a1y1) = a1v(y1) and a1 is a nonzero element

of the integral domain R this shows that

v(y1) = 1.

We now verify that this element y1 can be taken as one element in a basis for M and

that a1y1 can be taken as one element in a basis for N, namely that we have:

(a) M = Ry1⊕Ker v, and

(b) N = Ra1y1⊕ (N∩Ker v).

To see (a) let x be an arbitrary element in M and write x = v(x)y1+(x−v(x)y1). Since

v(x− v(x)y1) = v(x)− v(x)v(y1)

= v(x)− v(x).1

= 0,

we see that x− v(x)y1 ∈ Ker v. This shows that x can be written as the sum of an

element in Ry1 and an element in Ker v, so M = Ry1 +Ker v. To see that the sum is

direct, suppose ry1 is also an element in Ker v. Then 0 = v(ry1) = rv(y1) = r shows

that this element is indeed 0.

For (b) observe that v(x
′
) is divisible by a1 for every x

′ ∈ N by the definition of a1
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as a generator for v(N). if we write v(x
′
) = ba1 where b ∈ R then the decomposition

we used in (a) above is x
′
= v(x

′
)y1 + (x

′ − v(x
′
)y1) = ba1y1 + (x

′ − ba1y1) where

the second summand is in the kernel of v and is an element of N. This shows that

N = Ra1y1 +(N ∩Ker v). The fact that the sum in (b) is direct is a special case of the

directness of the sum in (a).

We now prove part (1) of the theorem by induction on the rank, m, of N. If m = 0, then

N is a torsion module, hence N = 0 since a free module is torsion free, so (1) holds

trivially. Assume then that m > 0. Since the sum in (b) above is direct we see easily

that N∩Ker v has rank m−1. By induction N∩Ker v is then a free R−module of rank

m−1. Again by the directness of the sum in (b) we see that adjoining a1y1 to any basis

of N∩Ker v gives a basis of N, so N is also free (of rank m), which proves (1).

Finally, we prove (2) by induction on n, the rank of M. Applying (1) to the submodule

Ker v shows that this submodule is free and because the sum in (a) is direct, it is free

of rank n−1. By the induction assumption applied to the module Ker v ( which plays

the role of M ) and its submodule Ker v∩N ( which plays the role of N ), we see that

there is a basis y2,y3, ...,yn of Ker v such that a2y2,a3y3, ...,amym is a basis of N∩Ker

v for some elements a2,a3, ...,am of R with a2 | a3 | ... | am. Since the sums (a) and

(b) are direct, y1,y2, ...,yn is a basis of M and a1y1,a2y2, ...,amym is a basis of N. To

complete the induction it remains to show that a1 divides a2. Define a homomorphism

ϕ from M to R by defining ϕ(y1) = ϕ(y2) = 1 and ϕ(yi) = 0, for all i > 2, on the basis

for M. Then for this homomorphism ϕ we have a1 = ϕ(a1y1) so a1 ∈ ϕ(N) hence

also (a1) ⊆ ϕ(N). By the maximality of (a1) in Σ it follows that (a1) = ϕ(N). Since

a2 = ϕ(a2y2)∈ ϕ(N) we then have a2 ∈ (a1) and thus a1 | a2. This completes the proof

of the theorem. �

We recall from chapter two :

An R−module C is a cyclic R−module if there is an element x ∈C such that C = Rx.

We can then define an R−module homomorphism:π : R→C by π(r) = rx, which will

be surjective by the assumption C = Rx.

The First Isomorphism Theorem gives an R−module isomorphism : R/Kerπ 'C.
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If R is a P.I.D., Ker π is a principal ideal, (a), so we see that the cyclic R−modules C

are of the form R/(a) where (a) = Ann(C).

Theorem 3.3.4. (Fundamental Theorem, Existence: Invariant Factor Form)

Let R be a P.I.D. and let M be a finitely generated R−module. Then

1. M is isomorphic to the direct sum of finitely many cyclic modules. More pre-

cisely,

M ' Rr⊕R/(a1)⊕R/(a2)⊕·· ·⊕R/(am)

for some integer r ≥ 0 and nonzero elements a1,a2, ...,am of R which are not

units in R and which satisfy the divisibility relations

a1 | a2 | · · · | am.

2. M is torsion free if and only if M is free.

3. In the decomposition in (1)

Tor(M)' R/(a1)⊕R/(a2)⊕·· ·⊕R/(am).

In particular M is a torsion module if and only if r = 0 and in this case the annihilator

of M is the ideal (am).

Proof: (1) The module M can be generated by a finite set of elements by

assumption so let x1,x2, ...,xn be a set of generators of M of minimal cardinality. Let

Rn be the free R−module of rank n with basis b1,b2, ...,bn and define the homomor-

phism π : Rn → M by defining π(bi) = xi for all i, which is automatically surjective

since x1,x2, ...,xn generate M. By the First Isomorphism Theorem for modules we have

Rn/Ker π ' M. Now, by Theorem 3.3.3 applied to Rn and the submodule Ker π we
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can choose another basis y1,y2, ...,yn of Rn so that a1y1,a2y2, ...,amym is a basis of Ker

π for some elements a1,a2, ...,am of R with a1 | a2 | · · · | am. This implies M ' Rn/Ker

π = (Ry1⊕Ry2⊕·· ·⊕Ryn)/(Ra1y1⊕Ra2y2⊕·· ·⊕Ramym).

To identify the quotient on the right hand side we use the natural surjective R−module

homomorphism

Ry1⊕Ry2⊕·· ·⊕Ryn→ R/(a1)⊕R/(a2)⊕·· ·⊕R/(am)⊕Rn−m

that maps (α1y1, α2y2,...,αnyn) to (α1 mod (a1), ...,αm mod (am),αm+1, ...,αn). The

kernel of this map is clearly the set of elements where ai divides αi, i = 1,2, ...,m, i.e.,

Ra1y1⊕Ra2y2⊕ ...⊕Ramym. Hence we obtain

M ' R/(a1)⊕R/(a2)⊕·· ·⊕R/(am)⊕Rn−m.

If a is a unit in R then R/(a) = 0, so in this direct sum we may remove any of the initial

ai which are units. This gives the decomposition in (1) (with r = n−m).

(2) Since R/(a) is a torsion R−module for any nonzero element a of R, (1) immedi-

ately implies M is a torsion free module if and only if M ' Rr.

(3) This part is immediate from the definitions since the annihilator of R/(a) is evi-

dently the ideal (a). �

We shall shortly prove the uniqueness of the decomposition in Theorem

3.3.4, namely that if we have

M ' Rr
′
⊕R/(b1)⊕R/(b2)⊕·· ·⊕R/(bm′ )

for some integer r
′ ≥ 0 and nonzero elements b1,b2, ...,bm′ of R which are not units

with

b1 | b2 | · · · | bm′ ,
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then r = r
′
,m = m

′
and (ai) = (bi) ( so ai = bi up to units ) for all i. It is precisely the

divisibility condition a1 | a2 | · · · | am which give the uniqueness.

Definition 3.3.7. The integer r in Theorem 3.3.4 is called the free rank or the Betti

number of M and the elements a1,a2, ...,am ∈ R are called the invariant factors of M.

Theorem 3.3.5. (Fundamental Theorem, Existence: Elementary Divisor Form) Let R

be a P.I.D. and let M be a finitely generated R−module. Then M is the direct sum of

a finite number of cyclic modules whose annihilators are either (0) or generated by

powers of primes in R, i.e.,

M ' Rr⊕R/(pα1
1 )⊕R/(pα2

2 )⊕·· ·⊕R/(pαt
t )

where r ≥ 0 is an integer and pα1
1 , pα2

2 , ..., pαt
t are positive powers of (not necessarily

distinct) primes in R and called the elementary divisors of M.

Proof: Suppose M is a finitely generated torsion module over the Principal

Ideal Domain R. If for the distinct primes p1, p2, ..., pn occurring in the decomposition

in Theorem 3.3.5 we group together all the cyclic factors corresponding to the same

prime pi we see in particular that M can be written as a direct sum

M = N1⊕N2⊕·· ·⊕Nn

where Ni consists of all the elements of M which are annihilated by some power of

the prime pi. This result holds also for modules over R which may not be finitely

generated. �

Theorem 3.3.6. (The Primary Decomposition Theorem)

Let R be a P.I.D. and let M be a nonzero torsion R−module (not necessarily finitely

generated) with nonzero annihilator a. Suppose the factorization of a into distinct
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prime powers in R is

a = upα1
1 pα2

2 ...pαn
n

and let Ni = {x ∈M | pαi
i x = 0}, 1≤ i≤ n. Then Ni is a submodule of M with annihi-

lator pαi
i and is the submodule of M of all elements annihilated by some power of pi.

We have

M = N1⊕N2⊕·· ·⊕Nn.

If M is finitely generated. Then each Ni is the direct sum of finitely many cyclic modules

whose annihilators are divisors of pαi
i . The submodule Ni is called the pi-primary

component of M.

Proof: If M is finitely generated, we already proved. It is clear that Ni is a

submodule of M with annihilator dividing pαi
i , since (pαi

i ) ⊆Ann(Ni). We can modify

the proof of the Chinese Remainder Theorem to conclude M = N1⊕N2⊕·· ·⊕Nn and

this implies pαi
i = Ann(Ni). �

Notice that with this terminology the elementary divisors of finitely gener-

ated module M are just the invariant factors of the primary components of Tor(M).

We now prove the uniqueness statements regarding the decompositions in the Funda-

mental Theorem.

Note that if M is any module over a commutative ring R and a is an element of R then

aM = {am |m ∈M} is a submodule of M. Recall also that in a Principal Ideal Domain

R the nonzero prime ideals are maximal, hence the quotient of R by a nonzero prime

ideal is a field.

Lemma 3.3.7. Let R be a P.I.D. and let p be a prime in R. Let F denote the field R/(p).

1. Let M = Rr. Then M/pM ' Fr.

2. Let M = R/(a) where a is a nonzero element of R.
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Then

M/pM '


F, if p divides a in R,

0, if p does not divide a in R.

3. Let M = R/(a1)⊕R/(a2)⊕ ·· ·⊕R/(ak) where each ai is divisible by p. Then

M/pM ' Fk.

Proof: (1) There is a natural map from Rr to (R/(p))r defined by mapping

(α1, ...,αr) to (α1 mod (p), ...,αr mod (p)). This is clearly a surjective R−module

homomorphism with kernel consisting of the r−tuples all of whose coordinates are

divisible by p, i.e., pRr, so Rr/pRr ' (R/(p))r, which is (1).

(2) This follows from the Isomorphism Theorems: note first that p(R/(a)) is the image

of the ideal (p) in the quotient R/(a), hence is (p)+ (a)/(a). The ideal (p)+ (a) is

generated by a greatest common divisor of p and a, hence is (p) if p divides a and is

R = (1) otherwise. Hence pM = (p)/(a) if p divides a and R/(a) = M otherwise. If

p divides a then M/pM = (R/(a))/((p)/(a)' R/(p), and if p does not divide a then

M/pM = M/M = 0, which proves (2).

(3) This follows from (2) as in the proof of part (1) of Theorem 3.3.4. �

Theorem 3.3.8. (Fundamental Theorem, Uniqueness) Let R be a P.I.D.

1. Two finitely generated R−modules M1 and M2 are isomorphic if and only if they

have the same free rank and the same list of invariant factors.

2. Two finitely generated R−modules M1 and M2 are isomorphic if and only if they

have the same free rank and the same list of elementary divisors.

Proof: If M1 and M2 have the same free rank and list of invariant factors

or the same free rank and list of elementary divisors then they are clearly isomorphic.

Suppose that M1 and M2 are isomorphic. Any isomorphism between M1 and M2 maps

the torsion in M1 to the torsion in M2 so we must have Tor(M1) ' Tor(M2). Then

Rr1 ' M1/Tor(M1) ' M2/Tor(M2) ' Rr2 where r1 is the free rank of M1 and r2 is
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the free rank of M2 . Let p be any nonzero prime in R. Then from Rr1 ' Rr2 we obtain

Rr1/pRr1 ' Rr2/pRr2. By (1) of the previous lemma, this implies Fr1 ' Fr2 where F

is the field R/pR. Hence we have an isomorphism of an r1−dimensional vector space

over F with an r2−dimensional vector space over F, so that r1 = r2 and M1 and M2

have the same free rank. �
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Chapter 4: Direct Sum Decompositions of Regular Modules

In 1936, John von Neumann [21] defined a ring R to be regular if for any r ∈ R there

exists s ∈ R such that r = rsr. Motivated by the coordinatization of projective geome-

try, which was being reworked at that time in terms of lattice, von Neumann introduced

regular rings as an algebraic tool for studying certain lattices.

As generalizations of the concept of Von Neumann’s regular rings to the module case,

there have been considered three types of modules by David Fieldhouse [17], Roger

Ware [26] and Julius Zelmanowitz [30], each called regular. The Fieldhouse-regular

module was defined to be a module whose submodules are pure submodules and the

Ware-regular module was defined as a projective module in which every cyclic sub-

module is a direct summand.

4.1 Regular Modules

To introduce a regular module, Zelmanowitz followed the original elementwise defini-

tion of Von Neumann:

Definition 4.1.1. A left module M over an arbitrary ring R is called regular module

if for each element m ∈M there exists a homomorphism g ∈ HomR(M,R) such that

m = g(m)m.

Throughout this chapter by regular module we understand a regular mod-

ule in Zelmanowitz’s sense.

Remark. 5. As direct consequences of the previous definition we obtain:

1. A regular ring R is regular as left R−module.
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2. A submodule of a regular module is also regular. In particular, every left ideal of

a regular ring is regular module. This provides an ample suorce of regular mod-

ules which are not projective. Ware’s regular modules are "a priori" projective

modules.

3. The maximal regular ideal of an arbitrary ring is a regular module, as is any

regular ideal. (An ideal of an arbitrary ring is called regular ideal if all its

elements are regular.)

Remark. 6. Obviously, the concept of Von Neumann regular element in a ring extends

the notion of invertible element, and therefore, any field is a Von Neumann regular ring.

The following result is not only an equivalent definition of regular modules, but it also

shows how regular modules fit into the theory of generalized inverses:

Lemma 4.1.1. A left R−module M is regular if and only if for any homomorphism

f : R→M there exists a homomorphism g : M→ R such that f = f ◦g◦ f .

Proof: We first assume M is regular module. Let f : R→ M arbitrary

homomorphism of R−modules. It follows f (r) = r f (1) = rx0, for any r ∈ R, where we

denoted x0 = f (1)∈M. Since M is regular, it follows that there exists a homomorphism

g : M→ R such that x0 = g(x0)x0. Then we have:

f (g( f (r))) = f (g(rx0)) = g(rx0)x0 = rg(x0)x0 = rx0 = f (r),

for any r ∈ R, showing that f = f ◦g◦ f .

Conversely, let m be an arbitrary element of M. We consider the homomorphism f :

R→M, f (r) = rm for any r ∈ R. Then there exists a homomorphism g : M→ R such

that f = f ◦g◦ f . It follows f (g( f (1))) = f (1), which is equivalent with f (g(m)) = m

and therefore g(m)m = m. So M is a regular module. �

Let A, B be arbitrary sets and let f : A→ B, h : B→ A be two maps. We
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say that h is a generalized inverse of f if f = f ◦ h ◦ f and h = h ◦ f ◦ h (see [6] for

more details regarding the theory of generalized inverses). It is easy to see that the

homomorphism f : A→ B has a generalized inverse if and only if there exists a ho-

momorphism g : B→ A such that f = f ◦ g ◦ f . Indeed, an easy computation shows

that h = g ◦ f ◦ g is a generalized inverse of f . Thus, by the previous proposition we

immediately obtain the following corollary:

Corollary 4.1.2. A left R−module M is regular if and only if for any homomorphism

f : R→M has a generalized inverse.

In the paper [23], Ramamurthi and Rangaswamy introduced the notion of

a split submodule (by the name of strongly pure submodule) and they obtained the first

link between the notion of locally split and regular modules.

Definition 4.1.2. Let M, Q be left modules over the ring R and let h : Q→ M be a

homomorphism of R−modules. h is called locally split if for any x0 ∈ h(Q) there

exists a homomorphism q : M→ Q such that h(q(x0)) = x0.

Proposition 4.1.3. Let h : Q→ M be a locally split homomorphism of R−modules.

Then for any finite number of elements x1,x2, ...,xn ∈ h(Q), there exists a homomor-

phism q : M→ Q such that h(q(xi)) = xi, for all i = 1,2, ...,n.

Proof: We will prove by induction on n. Obviously, our assertion is true

for n = 1, by definition of a locally split homomorphism.

Consider now n > 1 and we assume the proposition holds for n−1. Then there exists

a homomorphism q1 : M→ Q such that h(q1(xi)) = xi, for all i = 1,2, ...,n−1. Since

xn−h(q1(xn)) ∈ h(Q), there exists a homomorphism q2 : M→ Q such that

h(q2(xn−h(q1(xn)))) = xn−h(q1(xn)).

We define

q : M→ Q,q = q1 +q2−q2 ◦h◦q1.
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Then, on one hand

h(q(xn)) = h(q1(xn))+h(q2(xn))−h(q2(h(q1(xn))))

= h(q1(xn))+h(q2(xn−h(q1(xn))))

= h(q1(xn))+ xn−h(q1(xn)) = xn,

and on the other hand

h(q(xi)) = h(q1(xi))+h(q2(xi))−h(q2(h(q1(xi))))

= xi +h(q2(xi))−h(q2(xi)) = xi,

for all i = 1,2, ...,n−1. Hence q is the requested homomorphism. �

Definition 4.1.3. A submodule N of a module M is called split in M if the inclusion

homomorphism i : N ↪→M is locally split, i.e. for any x0 ∈ N there exists a homomor-

phism j : M→ N such that j(x0) = x0.

Proposition 4.1.4. Let h : Q→M be a homomorphism of R−modules and let h̄ : Q→

h(Q) be the homomorphism satisfying h̄(x) = h(x), for any x ∈ Q. Then h is locally

split if and only if h̄ is locally split and h(Q) is a split submodule in M.

Proof: We first assume that h is locally split. Consider x0 an arbitrary

element in h(Q). Then there exists a homomorphism q : M→ Q such that h(q(x0)) =

x0. This yields that the homomorphism s = h̄◦q : M→ h(Q) satisfies s(x0) = x0, and

therefore h(Q) is a split submodule in M. Moreover, if we denote by q̄ : h(Q)→ Q the

restriction of q to h(Q), then we obtain h̄(q̄(x0)) = h(q(x0)) = x0, showing that h̄ is

locally split.

Conversely, we now assume that h̄ is locally split and h(Q) is a split submodule in M.

Let x0 an arbitrary element in h(Q). Then there exist homomorphisms q̄ : h(Q)→Q and

j : M→ h(Q) such that h̄(q̄(x0)) = x0 and j(x0) = x0. If we denote q = q̄◦ j : M→ Q,

it follows

h(q(x0)) = h̄(q(x0)) = h̄(q̄( j(x0))) = h̄(q̄(x0)) = x0,
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showing that h is locally split. �

The next theorem shows the link between the notion of locally split and

regular modules.

Theorem 4.1.5. Let M be a left R−module. Then the following assertions are equiva-

lent:

1. M is a regular module.

2. for any module Q, every homomorphism h : Q→M is locally split.

3. every homomorphism f : R→M is locally split.

Proof: (1)⇒ (2) Let x0 be an arbitrary element of h(Q). Then there exists

α0 ∈ Q such that h(α0) = x0. Since M is a regular module, then there exists a homo-

morphism g : M→ R such that g(x0)x0 = x0. Consider q : M→Q, q(m) = g(m)α0, for

any m ∈M. Obviously q is a homomorphism of modules and

h(q(x0)) = h(g(x0)α0) = g(x0)h(α0) = g(x0)x0 = x0,

which shows that h is locally split.

(2)⇒ (3) Clear.

(3)⇒ (1) Let x0 be an arbitrary element of M and consider f : R→M the homomor-

phism defined by f (r) = rx0. Since f is locally split, then there exists a homomorphism

g : M→ R such that f (g(x0)) = x0. It follows

x0 = f (g(x0)) = g(x0) f (1) = g(x0)x0

and thus M is a regular module. �

As a direct consequence of the implication (1)⇒ (2), and of Definition

4.1.3, we have the following
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Corollary 4.1.6. If M is a regular module. Then any submodule N of M is split in M.

Theorem 4.1.7. If a left R−module M is regular module. Then every finitely generated

submodule of M is a direct summand of M.

Proof: Let N be a finitely generated submodule of M. Then there exist

x1,x2, ...,xn ∈ N such that

N = Rx1 +Rx2 + · · ·+Rxn.

By the Corollary 4.1.6, since M is a regular module, then N is split. Therefore, by

using Proposition 4.1.3 for the inclusion map i : N ↪→M, we can find a homomorphism

s : M→ N such that s(xi) = xi, for i ∈ {1, ...,n} . Since N is generated as R−module

by the elements x1,x2, ...,xn, it follows s(x) = x, for all x ∈ N. This implies that N is a

direct summand of M. �

4.2 Isomorphic Refinement Theorem for Regular Modules

Proposition 4.2.1. Let M1,M2, ...,Mn be regular modules over an arbitrary ring R

and let N be a finitely generated submodule of M1⊕M2⊕ ·· ·⊕Mn. Then, for every

i ∈ {1, ...,n}, there exist decompositions Mi = Mi1⊕Mi2 such that

M1⊕M2⊕·· ·⊕Mn = N⊕M12⊕M22⊕·· ·⊕Mn2

and

N 'M11⊕M21⊕·· ·⊕Mn1.

Proof: We proceed by induction on n.

For n = 1, N is a finitely generated submodule of M1, which is a regular module. By

Theorem 4.1.7 it follows N is a direct summand of M1. Threfore there exists M12 such
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that M1 = N⊕M12 and we denote M11 = N.

Consider n > 1 and we assume the proposition is true for n− 1. We consider the

canonical projections

π1 : M1⊕M2⊕·· ·⊕Mn→M1

and,

π2 : M1⊕M2⊕·· ·⊕Mn→M2⊕·· ·⊕Mn

Since π2(N) is a submodule of M2⊕ ·· ·⊕Mn, it follows π2(N) is a regular module.

But π2(N) is also finitely generated module, therefore π2(N) is projective module (ac-

cording [30, Corollary 1.7]). Thus the following short exact sequence

0−→ N∩M1 −→ N −→ π2(N)−→ 0

splits, so N ' (N ∩M1)⊕π2(N). If we denote M11 = N ∩M1, then M11 is a finitely

generated submodule of the regular module M1, hence it is a direct summand of M1:

M1 = M11⊕M12, for a submodule M12 of M1.

Since π2(N) is a finitely generated submodule of M2⊕·· ·⊕Mn, by the induction hy-

pothesis, for every i ∈ {2, ...,n} we obtain the following decompositions Mi = Mi1⊕

Mi2 such that

M2⊕·· ·⊕Mn = π2(N)⊕M22⊕·· ·⊕Mn2

and

π2(N)'M21⊕·· ·⊕Mn1.

We remark that

M11⊕M21⊕·· ·⊕Mn1 ' (N∩M1)⊕π2(N)' N.

But π2(N) = (Id−π1)(N) is a submodule of N +M1, hence M2⊕·· ·⊕Mn = π2(N)⊕



44

M22⊕·· ·⊕Mn2 is a submodule of (N +M1)+(M22⊕·· ·⊕Mn2), and hence

M1⊕M2⊕·· ·⊕Mn = (N +M1)+(M22⊕·· ·⊕Mn2). (4.1)

Since M1 = M11⊕M12 is a submodule of N +M12, relation (4.1) yields

M1⊕M2⊕·· ·⊕Mn = N +(M12⊕M22⊕·· ·⊕Mn2).

We denote Q = N∩(M12⊕M22⊕·· ·⊕Mn2) and we want to prove Q = 0. Remark that

π2(Q)⊆ π2(N)∩π2(M12⊕M22⊕·· ·⊕Mn2) = π2(N)∩ (M12⊕M22⊕·· ·⊕Mn2) = 0.

Therefore Q⊆ Kerπ2 = M1, so

Q⊆ N∩M1 = M11. (4.2)

On the other hand, since Q⊆M1, we obtain

Q = π1(Q)⊆ π1(M12⊕M22⊕·· ·⊕Mn2) = M12. (4.3)

By (4.2) and (4.3) it follows Q⊆M11∩M12 = 0, so

M1⊕M2⊕·· ·⊕Mn = N⊕M12⊕M22⊕·· ·⊕Mn2

and the induction is now complete. �

We are now in the position to prove the main result of this section, namely

the isomorphic refinement theorem for finitely generated regular modules:

Theorem 4.2.2. Let M1,M2, ...,Mn,N1,N2, ...,Nk be finitely generated regular modules
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over an arbitrary ring R such that

M1⊕M2⊕·· ·⊕Mn ' N1⊕N2⊕·· ·⊕Nk.

Then for every i ∈ {1, ...,n} there exist decompositions

Mi = Mi1⊕·· ·⊕Mik

such that

M1 j⊕·· ·⊕Mn j ' N j

for j ∈ {1, ...,k}.

Proof: By induction on k.

If k = 1, it is enough to consider Mi1 = Mi, for all i ∈ {1, ...,n}.

For k = 2 we have the following isomorphism M1⊕M2⊕ ·· ·⊕Mn ' N1⊕N2. Then

there exist the modules N′1 ' N1 and N′2 ' N2 such that M1⊕ ·· · ⊕Mn = N′1⊕N′2.

For every i ∈ {1, ...,n}, by Proposition 4.2.1, there exists a direct sum decomposition

Mi = Mi1⊕Mi2 such that

M1⊕·· ·⊕Mn = N′1⊕M12⊕·· ·⊕Mn2

and

M11⊕·· ·⊕Mn1 ' N′1 ' N1.

We now assume the theorem holds for k− 1, where k is an arbitrary integer > 2. By

the case k = 2, for each i ∈ {1, ...,n} , there exists a direct sum decomposition Mi =

Mi1⊕Qi such that

M11⊕·· ·⊕Mn1 ' N1
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and

Q1⊕·· ·⊕Qn ' N2⊕·· ·⊕Nk.

Using the inductive hypothesis for k−1, there exist decompositions Qi = Mi2⊕·· ·⊕

Mik, for every i ∈ {1, ...,n} , such that

M1 j⊕·· ·⊕Mn j ' N j,

for each j ∈ {2, ...,k} .

To complete the proof, we have to remark that

Mi = Mi1⊕Qi = Mi1⊕Mi2⊕·· ·⊕Mik,

for every i ∈ {1, ...,n} . �

Notation: If M and N are two R−modules such that M is isomorphic with

a submodule of N (i.e there exists a submodule M′ of N such that M 'M′). Then we

denote: M . N.

Corollary 4.2.3. Let M1,M2, ...,Mn,N1,N2, ...,Nk be finitely generated regular mod-

ules over an arbitrary ring R such that

M1⊕M2⊕·· ·⊕Mn . N1⊕N2⊕·· ·⊕Nk.

1. Then for every i∈ {1, ...,n} there exist decompositions Mi = Mi1⊕·· ·⊕Mik such

that

M1 j⊕·· ·⊕Mn j . N j

for j ∈ {1, ...,k}.

2. Then for every j ∈ {1, ...,k} there exist decompositions N j =N j1⊕·· ·⊕N jn such
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that

Mi ' N1i⊕·· ·⊕Nki

for i ∈ {1, ...,n−1} , and

Mn . N1n⊕·· ·⊕Nkn.

Proof: By [30, Theorem 2.8], the set of all regular modules of an arbitrary

ring is closed under finite direct sums, so N1⊕·· ·⊕Nk is a regular module. On the other

hand, since M1, ...,Mn are finitely generated modules, it follows that M1⊕·· ·⊕Mn is a

finitely generated module. Hence M1⊕·· ·⊕Mn is isomorphic with a finitely generated

submodule of the regular module N1⊕ ·· ·⊕k. Therefore, according Theorem 4.1.7,

M1⊕·· ·⊕Mn is isomorphic with a direct summand of N1⊕·· ·⊕Nk :

M1⊕·· ·⊕Mn⊕Mn+1 ' N1⊕·· ·⊕Nk,

for some finitely generated module Mn+1.

(1) By Theorem 4.2.2, for every i ∈ {1, ...,n+1} there exists decompositions Mi =

Mi1⊕·· ·⊕Mik such that

M1 j⊕·· ·⊕Mn+1, j ' N j

for j ∈ {1, ...,k} , and thus

M1 j⊕·· ·⊕Mn j . N j

for j ∈ {1, ...,k}. �

4.3 The Exchange Property for Regular Modules

In paper [8], Crawley and Jonsson introduced the concept of exchange property:

Definition 4.3.1. A module M has the (finite) exchange property if for any (finite)



48

index set I and any two direct sum decompositions

L = M′⊕N =⊕i∈INi,

with M′ 'M, there exist submodules N′i ⊆ Ni such that

L = M′⊕
(
⊕i∈IN′i

)
.

They used this concept to prove theorems on isomorphic refinement of

direct decompositions for modules. In fact, Crawley and Jonsson’s results were proved

for a large class of algebraic structures, namely for algebras in the sense of Jonsson-

Tarski. The systematic study of modules with the finite exchange property was initiated

by Warfield in papers [27] and [28]. Using the exchange property, Warfield gave a

strengthened form of the Krull-Schmidt theorem (see [27, Theorem 1]).

Remark. 7. Definition 4.3.1 is equivalent to the following:

The module M has the exchange property if and only if for any direct sum ⊕i∈INi

which contains M as a direct summand, then there exist submodules N′i of Ni, for each

i ∈ I, such that

⊕i∈INi = M⊕
(
⊕i∈IN′i

)
.

Remark. 8. By the previous remark it follows that, if M is a finitely generated module,

then the finite exchange property is equivalent to the exchange property for any cardinal

number.

Nicholson [22], introduced the class of suitable rings and he also gave the

connection between the finite exchange property of a module and the "suitability" of

its endomorphisms ring.

Definition 4.3.2. (see [22, Proposition 1.1] and [22, Definition 1.2]) A ring R is called
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suitable if each element x ∈ R satisfies the following equivalent conditions:

1. There exists e2 = e ∈ R with e− x ∈ R
(
x− x2).

2. There exists e2 = e ∈ Rx and c ∈ R such that (1− e)− c(1− x) ∈ J(R).

3. There exists e2 = e ∈ Rx such that R = Re+R(1− x).

4. There exists e2 = e ∈ Rx such that 1− e ∈ R(1− x).

5. If x,y ∈ R, with x+ y = 1, then there exist a,b ∈ R such that ax+ by = 1 and

ax,by are idempotents.

Theorem 4.3.1. ([22, Theorem 2.1]) If R is a ring and M is a left R−modules. Then

the following conditions are equivalent:

1. M has the finite exchange property;

2. the endomorphism ring End(M) is suitable.

To prove that any finitely generated regular module has the exchange prop-

erty, we will use the following notions:

Definition 4.3.3. Let R be a ring and let X be an additive subgroup of R. We say the

idempotents can be lifted modulo X if, given x ∈ R with x− x2 ∈ X , there exists an

idempotent element e ∈ R such that e− x ∈ X .

Definition 4.3.4. For a ring R, the Jacobson radical of R is the intersection of the

annihilators of all simple left R−modules and it is denoted J(R):

J(R) =
⋂

M simple module

Ann(M)

Definition 4.3.5. We call a ring R semiregular if R/J(R) is von Neumann regular and

idempotents can be lifted modulo J(R), where J(R) is the Jacobson radical of the ring
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R.

Theorem 4.3.2. If M is a finitely generated regular module. Then M has the exchange

property.

Proof: If M is a finitely generated regular module, then the endomorphism

ring End(M) is von Neumann regular ring (see [30, Corollary 4.2]). Hence End(M)

is a semiregular ring. By [22, Proposition 1.6], it follows End(M) is a suitable ring.

Using now Theorem 4.3.1, we obtain that M has the exchange property. �



51

Appendix

Zorn’s Lemma

Zorn’s lemma is a result in set theory that appears in proofs of some non-constructive

existence theorems throughout mathematics.

Definition .0.6. A partial ordering on a (nonempty) set S is a binary relation on S,

denoted ≤, which satisfies the following properties:

1. for all s ∈ S, s ≤ s,

2. if s≤ s
′
and s

′ ≤ s then s = s′.

3. if s≤ s
′
and s

′ ≤ s
′′

then s≤ s
′′
.

When we fix a partial ordering ≤ on S, we refer to S (or, more precisely,

to the pair (S,≤)) as a partially ordered set. It is important to notice that we do not

assume all pairs of elements in S are comparable under ≤: for some s and s
′

we may

have neither s≤ s
′
nor s

′ ≤ s. If all pairs of elements can be compared (that is, for all s

and s
′
in S either s≤ s

′
or s

′ ≤ s) then we say S is totally ordered with respect to ≤ .

Example .0.1. The usual ordering relation on N,Z,Q,R or in Z+ is a partial ordering

of these sets. In fact it is a total ordering on either set. This ordering on Z+ is the basis

for proofs by induction.

Example .0.2. On Z+ , declare a≤ b if a | b. This partial ordering on Z+ is different

from the one in the previous example and is called ordering by divisibility. It is one of

the central relations in number theory.

Unlike the ordering on Z+ in the previous example, Z+ is not totally ordered by

divisibility: most pairs of integers are not comparable under the divisibility relation.

For instance, 3 doesn’t divide 5 and 5 doesn’t divide 3. The subset {1,2,4,8,16, ...} of

powers of 2 is totally ordered under divisibility.
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Example .0.3. Let S be the set of all subgroups of a given group G. For H,K ∈ S ( that

is, H and K are subgroups of G), declare H ≤ K if H is a subset of K. This is a partial

ordering, called ordering by inclusion. It is not a total ordering: for most subgroups H

and K neither H ⊂ K nor K ⊂ H.

In these examples, only the first example is totally ordered. This is typical:

most naturally occurring partial orderings are not total orderings. However (and this is

important) a partially ordered set can have many subsets that are totally ordered.

Definition .0.7. An upper bound on a subset T of a partially ordered set S is an s ∈ S

such that t ≤ s for all t ∈ T. When we say T has an upper bound in S, we do not assume

the upper bound is in T itself; it is just in S.

Example .0.4. In R with its natural ordering, the subset Z has no upper bound while

the subset of negative real numbers has the upper bound 0 (or any positive real). No

upper bound on the negative real numbers is a negative real number.

Example .0.5. In the proper subgroups of Z ordered by inclusion, an upper bound on

the set {4Z,6Z,8Z} is 2Z since 4Z,6Z and 8Z all consist entirely of even numbers

(Note 4Z⊂ 2Z, not 2Z⊂ 4Z.)

Definition .0.8. A maximal element m of partially ordered set S is an element that is

not below any element to which it is comparable: for all s∈ S to which m is comparable,

s≤ m.

Equivalently, m is maximal when the only s ∈ S satisfying m ≤ s is s = m. This does

not mean s ≤ m for all s in S since we don’t insist that maximal elements are actually

comparable to every element of S. A partially ordered set could have many maximal

elements.

Example .0.6. If we partially order the proper subgroups of Z by inclusion then the

maximal elements are pZ for prime numbers p.
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Theorem .0.3. ( Zorn’s lemma ). Let S be a partially ordered set. If every totally

ordered subset of S has an upper bound, then S contains a maximal element.
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