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Abstract 

 

Traffic congestion in urban areas is an increasing problem around the world. 

Traffic incidents (such as accidents) are considered as the major source of traffic 

congestion. Traffic incidents have negative impacts on traffic flow, air pollution and fuel 

consumption. As a result, increasing interest in finding new techniques to deal with this 

issue has been shown. Traffic incident-management systems can decrease the effect of 

such events and keep roads capacity as close as possible to normal levels. Incident 

detection system is an important part of any incident management system.  

This thesis proposes a new approach to incident detection in urban traffic networks 

using fuzzy logic theory with the objective of reducing traffic delays and increasing road 

safety. The proposed detection system can be then integrated with a traffic incident 

management system to reduce traffic congestion related to non-recurrent incident 

situations. A methodology has been established based on fuzzy logic for detecting incident 

status in urban areas using detector accumulative count differences. Three fuzzy models 

were developed and evaluated using simulated data (generated using the commercia l 

software: PTV VISSIM by PTV Group). The fuzzy models can detect incident status on 

a regular basis (every minute). Performance measures were introduced to capture the 

capabilities of the suggested models in detecting incidents. The dissertation concludes 

with a summary of the major findings, recommendations and future research. 

 

Keywords: urban traffic networks, incident detection, traffic incident-management 

systems, incident detection system, fuzzy logic, performance measures. 
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Title and Abstract (in Arabic) 

 

 المدن تطبيق المنطق الضبابي في اكتشاف الحوادث المرورية في

 الملخص

 وتعتبر الحوادثمشكلة متزايدة في جميع أنحاء العالم. دن في الم يالمرور الازدحاميعد 

ة على حرك يةادث المرورللحو سلبيةالثاار لا تقتصر الآ. لازدحامهذا ال ا  رئيسي ا  مصدر يةالمرور

 ناكلذلك، أصبح هكنتيجة . غيرهاتلوث الهواء، واستهلاك الوقود، وبل تمتد لتشمل ، فحسب المرور

 .مشكلةنيات جديدة للتعامل مع هذه اليجاد تقلإاهتمام متزايد 

 والحفاظ على حوادثمن تأثاير مثل هذه ال التقليل يةالمرور وادثحال إدارةم ايمكن لنظ

 من هاما   ا  ادث جزءونظام الكشف عن الحويعد  لمستويات العادية.ل ما يمكنأقرب  الطرق استيعاب

 .يةالمرور وادثحالدارة لإأي نظام 

 يهدف هذا البحث للحد من تأخير حركة المرور وزيادة السلامة على الطرق باستخدام طريقة

 .(Fuzzy Logic) الضبابيمنطق النظرية  المدن عن طريقفي  المرورية ادثولكشف الح ةجديد

متكاملة مع نظام إدارة الحوادث المرورية للحد من  المقترح بعد ذلك أن يعمل بطريقة نظامويمكن لل

 الاختناقات المرورية. 

ا هذيقوم إذ  في المدن يقدم هذا البحث وصفا  لطريقة بناء نظام لكشف الحوادث المرورية

لنظام ل . وقد وضعت ثالاثاة نماذجفي قراءات العدادات اتالفروقويستخدم المنطق الضبابي  النظام على

 .(PTV VISSIM) المحاكاة رنامجبنفذت بواسطة  سيناريوهات باستخدام ييمهاتقتم و المقترح

 قييم أداءتم تقد ل و )كل دقيقة(. ةمنتظم فتراتعلى  شارعلالكشف عن حالة ا المقترحةنماذج ويمكن لل

لأبحاث ل اقتراحاتوصيات وملخص للنتائج والتب تم هذا البحث. وخباستخدام قياسات التحقق النماذج

 .المستقبلية

، نظام إدارة الحوادث المرورية، حوادث المرورية، المنطق الضبابي: المفاهيم البحث الرئيسية

 .قياسات التحقق
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Chapter 1: Introduction 

 

This chapter introduces the research problem. It presents the objectives of this 

study. It also discusses the challenge and the expected impact of this work. Finally, it 

outlines the organization of this thesis. 

1.1 Research Problem 

Traffic incident in urban networks is one of the most critical issues in 

transportation systems, especially with the continuous growth in the number of vehicles 

on the roads. Traffic incidents can be defined as the non-recurring events that result in 

traffic congestion such as accidents, stalled vehicles, load spills and other unusual events 

affecting roadways. Urban streets capability is highly affected by the traffic incident s 

because they lead to reduction of roadway capacity and increase the queues, which 

consequently result in more delays. Moreover, traffic incidents have an important impact 

on safety, pollution, and the cost of travel. Previous studies show that incidents are one of 

the main causes of time and money waste in transportation networks. “According to the 

Roads and Transport Authority (RTA), Dubai’s economy was set back by Dh 2.9 billion 

in terms of loss in working hours, time and fuel in 2013. A simple division of the annual 

loss with the total length of roads in Dubai, which is 3,760.63 centerline kilometers, shows 

a loss of Dh 771,147.388 per kilometer” (Shahbandari, 2015). 

Incident detection is considered an essential part of traffic incident-management 

systems. The better the incident detection technique, the better the overall performance of 

the traffic incident-management system in all. Therefore, it can be said that a successful 

traffic incident-management system is highly dependent on the identification of urban 
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incidents. Nowadays, there is an increasing interest in developing effective incident 

detection techniques. Quick and reliable incident detection helps to reduce congestion, 

delay and secondary incidents. This research proposes a new approach for incident 

detection in urban traffic networks using fuzzy logic theory. 

1.2 Research Objectives 

The main objective of this research is to present a methodology for developing an 

automated system for incident detection in urban areas based on fuzzy logic. The 

suggested system will utilize the detectors’ accumulative counts differences to identify 

the incident patterns. It aims at increasing the safety of the urban streets, avoiding the 

secondary accidents and congestions, reducing the amount of delay experienced by the 

road users, and restoring the normal status of the controlled intersection as fast as possible.  

1.3 Challenges 

The first challenge in this work was in the process of collecting data. There are 

two main sources for traffic data, real data source and simulated data source. For this 

research, beside the information about the intersection under study, it was necessary to get 

detailed information about the incidents such as their locations and durations. This is 

because the models developed depend heavily on traffic within individual lanes and the 

location of incidents compared to the various upstream, midstream and downstream 

counters. Real traffic data is hard to collect. It is also a time and money consuming process. 

Moreover, the available real traffic data does not have the details needed for each incident. 

To overcome these difficulties, simulated data source was selected in this study. 
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The second challenge was in generating the fuzzy membership functions because 

the fuzzy set theory does not confine the shape and the width of a fuzzy membership 

function to any specific form. Finally, another challenge was in setting the number of 

inputs because it can lead to an exponential increase in the number of generated rules. For 

example: if the number of inputs is nine with three membership functions per input and 

there is one output with two membership functions, then the total number of rules will be 

(39*2 = 39366 rules). If the number of input variables is reduced to six with three 

membership functions per input and there is one output with two membership functions, 

then the total number of rules will be (36*2 = 1458 rules). 

1.4 Expected Impact of this Work 

The expected impact of this research can be summarized in the following: 

1. Reduction of the number of secondary incidents. 

2. Reduction of the travel time delays. 

3. Quick restoration of the normal traffic situation. 

4. Possibility to warn approaching drivers. 

5. Possibility to recommend alternative routes. 

1.5 Thesis Organization 

This dissertation has been organized as follows:  

Chapter 1 (Introduction): The problem of urban traffic incident detection is discussed  

here. Research objectives, challenges and expected impact are also 

presented. 
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Chapter 2 (Literature review): Traffic incident related definitions are presented 

along with an overview of traffic incident management systems. Incident 

detection process and the traffic incident pattern are also presented, 

followed by, an overview of the fuzzy logic theory and fuzzy c-means 

clustering technique. Towards the end of the chapter, an overview of some 

of the previous incident detection algorithms/ methodologies is presented. 

Chapter 3 (Data collection): Presents the data source used and gives an overview of the 

simulation setup and parameters. It also discusses the generated traffic data 

used to develop the fuzzy models. 

Chapter 4 (Fuzzy models): The chapter starts by describing the development of three 

fuzzy models for incident detection in urban streets, including, the inputs 

and outputs of the proposed models.  

Chapter 5 (Results): Fuzzy logic process is discussed in detail and the results obtained 

from testing the developed models are presented. 

Chapter 6 (Conclusion): Includes a summary of this thesis and gives 

recommendations for future work.  
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Chapter 2: Literature Review 

 

This chapter discusses the areas of interest in literature. It starts with the definit ion 

of traffic incident and then presents an overview of the traffic incident-management 

system. Next, it discusses the incident detection process and presents an example of a 

traffic incident pattern. Furthermore, fuzzy logic theory and fuzzy c-means cluster ing 

technique are explained. Finally, it presents an overview of a few of the previous incident 

detection algorithms and models. 

2.1 Definition of Traffic Incident 

Different definitions have been introduced in literature for traffic incident. One of 

these definitions is "traffic incident is any non-recurring event that causes a reduction of 

roadway capacity or an abnormal increase in demand" (Farradyne, 2000). This definit ion 

includes traffic accidents, spilled cargo, disabled vehicles, reconstruction projects, 

maintenance works and special events such as concerts, ball games, or any other event 

that significantly affects roadway capacity. Another definition is "traffic incident is an 

unplanned randomly occurring traffic event that adversely effects normal traffic 

operations" (FHWA, 2013). This definition excludes planned activities such as roadwork 

or maintenance activities and special events. The second definition is considered in this 

thesis. 

2.2 Traffic Incident Management (TIM) System 

A TIM system consists of five steps: incident detection, verification, information 

dissemination, and response and incident clearance. Incident detection is the first step in 
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a TIM system. Its purpose is to get information about the existence of an incident. This 

can be achieved using either manual or automatic methods. The second step is verificat ion 

where the occurrence of the incident is confirmed. This step also includes important details 

about the incident such as its severity and location. The next step of a TIM system is 

information dissemination. In this step, the incident information is passed to the 

concerned authority that will be responsible for the next two steps of a TIM system, which 

are response and clearance. Distributing and sharing the incident information can be 

achieved in several ways such as radio broadcasts, mobile applications, Internet services, 

etc. Once the incident information is shared, the responsible agency is expected to respond 

by dispatching the team or person in charge to head to the incident location. The last step 

is clearance, which concerns removing obstacles that may disrupt the traffic flow such as 

vehicle parts or any other material left by the incident. A flow chart of a TIM system is 

shown in Figure 1. Different technologies are used in a TIM system such as roadside 

camera recognition, inductive loop detectors, radio wave or infrared beacons, Global 

Positioning System (GPS), wireless networks, mobile phone technology, etc. All these 

technologies play a vital role in improving the performance of a TIM system and 

accordingly they have a great impact on the incident recovery process. (Deniz, O.; 

Celikoglu, H. B., 2011) 
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2.3 Incident Detection 

Incident detection includes collecting and analyzing traffic data in order to 

determine the existence of an incident. Incident detection methods can be divided into two 

types: manual and automatic. Closed-circuit television (CCTV) cameras, phone calls from 

road users present at the incident location and routine police patrol belong to the manua l 

methods. On the other hand, automated methods are mainly based on traffic flow data 

collected using inductive loops or roadside detectors and include conventional algorithms 

and artificial neural network-based models. 

CCTV cameras can provide information about exact incident location and 

severity. It can also provide information about volume, speed, occupancy and headway 

data. CCTV cameras provide video images as a data, which can be processed manually 

by an operator or automatically by an image-processing algorithm to detect incidents. 

Figure 1: A flow chart of the TIM system 
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Loop detectors may provide traffic information such as volume, speed (with two 

detectors), occupancy, vehicle class and headway data. Mathematical models and 

algorithms can be used to detect incidents with data obtained using loop detectors. (Deniz, 

O.; Celikoglu, H. B., 2011) 

Both manual and automatic incident detection methods can be used in a TIM 

system concurrently where the automatic part is used to detect the presence of an incident 

and the manual part such as CCTV cameras is used to confirm the existence of an incident. 

Incident detection is a critical part of the incident management procedure. It is important 

to detect an incident as quickly as possible to guarantee the success of the entire procedure. 

Traffic congestion and long queues are inevitable if the incident detection was delayed 

which could lead to additional accidents. Quick and timely incident detection help in 

saving lives and money. 

Incident detection is facing three challenges: (i) surveillance problems, (ii) 

verification problems and (iii) algorithmic problems. 

2.3.1 Surveillance Issues 

Traffic surveillance can be defined as the process of collecting traffic flow data 

and sending it to the traffic operation center. There are different traffic sensors and 

technologies used to gather traffic data. Loop detectors are the most broadly used sensors. 

Table 1 summarizes the technologies that are used in traffic sensors (Ozbay, K.; Kachroo, 

P., 1999). Active sensors can transmit and receive signals. They transmit a signal toward 

a targeted object and measure its reflection, while passive sensors can only receive signals 

emitted from an object. 
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Table 1: Detector technologies 

Sensor Technology Active/ Passive How it  works 

Inductive loop technology Active Detect vehicles by responding to 

ferrous mass (vehicles) 

Magnetometer technology Passive Responds to ferrous mass 

(vehicles) 

Infrared technology Active or 

passive 

 Active infrared technology 

uses reflected signals 

 Passive infrared 

technology uses the 

contract in thermal 

radiation 

Acoustic detection 

technology 

Passive Detect vehicles using sound 

Ultrasonic detection 

technology 

Active Detect vehicles using reflected 

sound 

Charged coupled devices 

(CCD) camera 

Passive Detect vehicles using contrast in 

visible light 

Doppler radar detection Active Detect vehicles using frequency 

shift of reflected signal 

Pulsed radar technology Active Detect vehicles using reflected 

signals 
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There are few factors that are commonly considered when evaluating traffic 

sensors; they are reliability, data accuracy, performance under different environmenta l 

conditions, real-time performance and cost. It can be said that reliability is the most 

important factor since recurrent failures of sensors can seriously affect the performance 

of the entire TIM system. Data accuracy is another factor that depends on the calibrat ion 

of sensors. Both very high and very low sensor accuracies may lead to errors in incident 

detection. The third factor is the performance under different environmental conditions. 

Traffic sensors may perform differently under various environmental situations, and 

hence, it is essential to consider the environment when selecting specific types of sensors. 

The next factor is the real-time performance which has a great influence on detection time 

and accordingly on the decision making duration. The last factor is the cost where high 

cost is not desirable even if the sensor is rated for high performance in terms of all the 

aforementioned factors. Given all that, the selection of the traffic sensor should be 

performed very carefully due to its high impact on the incident detection process. (Ozbay, 

K.; Kachroo, P., 1999) 

2.3.2 Verification Issues 

Verification is about evaluating incident detection systems. Three main measures 

are used to evaluate incident detection algorithms, detection rate (DR), false alarm rate 

(FAR) and mean time to detect (MTTD). DR is evaluated by finding the ratio of the 

number of detected incidents to the actual number of incidents in the data set. FAR is 

calculated by dividing the number of incorrect detections by the total number of algorithm 

applications. MTTD is the average time needed for the algorithm to detect an incident. 
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One issue with these measures is the lack of a standard methodology to obtain them, which 

makes it difficult to compare the evaluation results among the different algorithms. 

Another issue is the dependency of these measures on each other. For example, longer 

detection time signifies fewer false alarms; however, it indicates that there is a tradeoff 

between loosing precision in time and lowering false alarm rates. (Ozbay, K.; Kachroo, 

P., 1999) 

2.3.3 Algorithmic Issues 

There are many algorithms presented in the literature for automatic incident 

detection. These algorithms can be divided into two categories: point based algorithms 

and spatial measurement based algorithms. Point based algorithms are based on traffic 

flow measurements made at one point. They use the following approaches to detect 

incidents on the freeways: comparative or pattern recognition, statistics, traffic model and 

theoretical algorithms and artificial intelligence based algorithms. Spatial measurement 

based algorithms make use of video cameras and image processing techniques. There is 

no one algorithm that can be applied anywhere or anytime. Each algorithm has its 

constraints and limitations which makes it challenging to select the finest algorithm. 

(Ozbay, K.; Kachroo, P., 1999) 

2.4 Traffic Incident Patterns 

Incident patterns can be affected by factors such as link volume, link length, 

incident duration, incident location and the green cycle of the traffic signal (Hawas, 2007). 
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Figure 2 shows an example of a traffic incident pattern presented using detector 

accumulative counts. 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Traffic incident detector counts pattern 
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This section presents a brief overview of the influence of traffic incident on the 

accumulative detector counts pattern. Figure 2 displays an example of the detector counts 

pattern for an incident of 10 minute duration. It started at minute 1 (60 seconds) and 

finished at minute 11 (660 seconds) where the total duration of the simulation was 20 

minutes. The link had three lanes of length 300 m. The green cycle of the traffic signal at 

the downstream was 30 seconds and the link volume was 1000 vph. Each lane was 

equipped with three detectors at 10 m, 150 m and 290 m (from the upstream starting line). 

The incident was introduced on the second lane at a distance of 75 m from the upstream 

starting line. 

 The incident was positioned in the middle of the distance between the second lane 

upstream (US2) and midstream (MS2) detectors, in order to have a clear effect on both 

detectors (see second lane detectors in Figure 2). The patterns of the first and second lanes 

are almost the same which is close to the no-incident pattern except that there are more 

vehicles served than in normal situations. The second lane detector readings show that it 

served less number of vehicles (during the incident duration) than the other two lanes. 

After the incident has been cleared, the second lane started serving more vehicles and 

returned to normal status (Hawas, 2007). 

2.5 Fuzzy Logic (FL) 

In 1965, Lotfi A. Zadeh of the University of California at Berkeley introduced and 

published the concept of "Fuzzy Sets" which was extended later to fuzzy logic (FL) theory. 

Zadeh had observed that computers could not handle data with vague or subjective 

concepts using conventional logic, so he came up with the idea of fuzzy logic to give 
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computers the ability to operate such data in a way similar to the process of human 

reasoning (Klir, 1995) (Zadeh, 2008). 

FL depends on the "degrees of truth" instead of the usual "true or false" 

Boolean logic. It includes 0 and 1 as extreme cases where 0 represents absolute falseness 

and 1 represents absolute truth. The rest of the truth values are indicated by a value in the 

range [0, 1]. FL works in a way similar to how our brain works. Fuzzy Logic System 

(FLS) is defined as the nonlinear mapping of an input data set to a scalar output data set. 

It consists of three main parts: fuzzifier, inference engine, and defuzzifier. FLS 

components are depicted in Figure 3.  

 

 

 

 

 

 

 

The initialization of the FLS involves defining the linguistic variables and terms, 

constructing the membership functions and the rule base. Subsequently, the process of FL 

starts with converting a crisp set of input data to a fuzzy set using fuzzy linguist ic 

variables, fuzzy linguistic terms and membership functions. This step is called 

fuzzification. Next, the fuzzy rules in the rule base are applied and the results of all rules 

are combined into one fuzzy output. In other words, the fuzzy input is converted to a fuzzy 

Figure 3: FLS components 
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output. This step is called fuzzy inference. In the last step, the resulting fuzzy output is 

mapped to a crisp output value using the membership functions, which is known as the 

defuzzification step (Bay, Y.; Wang, D., 2006) (Kaehler, 2003). 

2.5.1 Linguistic Variables 

Linguistic variables are the inputs and outputs of the FLS that are represented by 

words instead of numerical values. The range of possible values of a linguistic variable 

represents the universe of discourse of that variable. Each linguistic variable in the system 

is split into a set of linguistic terms. For example, if the temperature (t) is considered as a 

linguistic variable that represents the room temperature, then T(t) = {too_cold, cold, 

normal, hot, too_hot} can be the set of linguistic terms where each member of the set is 

called a linguistic term. Each linguistic term can cover a portion of the temperature 

universe. 

2.5.2 Membership Functions (MFs) 

A membership function (MF) is a curve that defines how each point in the input 

or the output space is mapped to a degree of membership (µ) between 0 and 1. MFs are 

used in the fuzzification step to convert the crisp inputs to fuzzy ones. They are also used 

in the defuzzification step to convert the fuzzy output to a crisp output. Each linguist ic 

variable is represented by a set of membership functions where each membership function 

represents a linguistic term. Figure 4 shows the membership functions for the linguist ic 

terms of temperature linguistic variable. Any input value can be fuzzified to one or more 
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membership functions. It means that the input value may belong to multiple membership 

functions (linguistic terms) at the same time. 

 

 

 

 

 

 

 

 

 

MFs can have different shapes; such as triangular, trapezoidal, Gaussian, 

generalized bell and sigmoidal. The selection of the best shape MFs for a specific 

application depends on the application itself and the user experience (MENDEL, 1995). 

Below is the mathematical representation of the triangular and the trapezoidal MFs which 

are used in this research. 

 Triangular MF: 

A triangular MF is defined using three parameters {a, b, c} as follows: 
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Figure 4: Temperature MFs or linguistic terms 
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Another expression for the previous equation is represented below: 

( ; , , ) max min , ,0
x a c x

Triangle x a b c
b a c b

    
   

   
 ………. Equation 2 

The parameters {a, b, c} (with a < b < c) define the x coordinates of the three corners of 

the underlying triangular MF. 

 Trapezoidal MF: 

A trapezoidal MF is defined using four parameters {a, b, c} as follows: 
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 ………. Equation 3 

Another expression for the previous equation is represented below: 

( ; , , , ) max min ,1, ,0
x a d x

Trapezoid x a b c d
b a d c

    
   

   
 ………. Equation 4 

The parameters {a, b, c, d} (with a < b < c < d) define the x coordinates of the four corners 

of the underlying trapezoidal MF. 

 

There are two main points to be considered when designing membership functions: 

 An overlap should exist only between the nearest neighboring membership functions.  

 The summation of the membership values for any input data should be 1 (or nearly). 
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2.5.3 Fuzzy Rules 

The fuzzy rules are the most important part of the FLS and generating these rules 

is usually the most difficult step in the design process. The fuzzy rules map the fuzzy (or 

linguistic) inputs to fuzzy (or linguistic) outputs and they are usually in the form of if-then 

statements. A fuzzy rule consists of two parts: an IF part (antecedent) that consists of a 

few combinations of inputs and a THEN part (consequent) that consists of output 

variables. Both parts (antecedent and consequent) may contain several linguistic variables 

or only one. 

Fuzzy rules give FLS the advantage of adding human- like subjective reasoning 

capabilities to machine intelligence, which are usually based on Boolean logic. Two 

methods can be used to construct fuzzy rules. The first one is based on expert knowledge. 

The second one is based on data input-output pairs. Fuzzy rules based on expert 

knowledge depend on observations by human operators. A trade-off between the 

complexity of the model and its clarity should be taken into consideration. Fuzzy rules 

based on data are also indirectly based on expert knowledge. This is because the selection 

of the data points and the variables is (preferably) performed by an expert. The step 

following the formation of if-then statements, is usually data clustering using a suitable 

clustering technique. In this research, fuzzy rules are constructed based on data obtained 

using a well-known traffic simulator called “PTV VISSIM”. 
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2.5.4 Fuzzy Inference Systems (FIS) 

There are two main types of fuzzy logic inference systems, Mamdani and Sugeno. 

Of these two types, Mamdani fuzzy inference system is selected in this research. 

Mamdani type is the most commonly used FIS. Ebrahim Mamdani proposed Mamdani 

fuzzy inference system in 1975 to control a steam engine and boiler combination. 

Sugeno type was first introduced in 1985. It works in a similar way to Mamdani type in 

fuzzifying the inputs and applying the fuzzy rules. The main difference between the two 

types is how to derive crisp output from fuzzy inputs. In Mamdani FIS, the resultant fuzzy 

output is converted to a crisp output using a defuzzification technique while in Sugeno 

FIS there is no need for the defuzzification process and the crisp output is computed using 

weighted average. Moreover, Mamdani FIS has output membership functions where 

Sugeno FIS has no output membership functions. (Kamboj, V.; Kaur, A., 2013) 

2.5.4.1 Comparison between Mamdani and Sugeno FIS 

Sugeno FIS is more flexible than Mamdani FIS as the former can be integrated 

with an Adaptive Neuro-Fuzzy Inference System (ANFIS) tool to optimize the outputs. 

Additionally, Sugeno type is more compact and computationally efficient when compared 

to Mamdani type. It is chosen over Mamdani type in control problems (especially dynamic 

nonlinear systems). This is because it works well with optimization and adaptive 

techniques that are useful in adjusting the membership functions to derive fuzzy system 

with best data models. On the other hand, Mamdani type permits to describe the expertise 

in more intuitive or more human-like manner and therefore, it is commonly used for 

capturing expert knowledge. (Kamboj, V.; Kaur, A., 2013) 
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The advantages of both Mamdani and Sugeno FISs are summarized below 

(MathWorks, Comparison of Sugeno and Mamdani Systems, 2015): 

Advantages of the Mamdani FIS: 

 It is intuitive. 

 It has widespread acceptance. 

 It is well suited to human input. 

Advantages of the Sugeno FIS: 

 It is computationally efficient. 

 It works well with linear techniques such as PID control. 

 It works well with optimization and adaptive techniques. 

 It has guaranteed continuity of the output surface. 

 It is well suited to mathematical analysis. 
 

Since Mamdani FIS allows describing the expertise in a human- like manner, and because 

the problem discussed in this study is a pattern recognition problem, Mamdani FIS is 

selected to be applied in this research. 

2.5.5 Fuzzy Set Operations 

Fuzzy set operations are used to evaluate the fuzzy rules and to combine the results 

of individual rules. Three fuzzy set operations commonly used: fuzzy intersection (using 

AND operator), fuzzy union (using OR operator) and fuzzy complement (using NOT 

operator). There is a clear difference between conventional and fuzzy operations although 

they use the same operators (AND, OR and NOT). Both fuzzy intersection and fuzzy 

union can be performed in various ways. The most used operation for AND operator is 
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MIN and the most used operation for OR operator is MAX. Table 2 shows few fuzzy set 

operations using AND and OR operators. Note that Aµ
 and Bµ

 are the membership 

functions for fuzzy sets A and B.  (Nedjah, N.; Mourelle, L., 2005) (Engin, 2010).  

Table 2: Fuzzy set operations 

AND (intersection) OR (Union) 

MIN  ( ), ( )A BMin µ x µ x   MAX  ( ), ( )A BMax µ x µ x   

PROD ( ) ( )A Bµ x µ x   ASUM ( ) ( ) ( ) ( )A B A Bµ x µ x µ x µ x    

BDIF  0, ( ), ( ) 1A Bµ x µx xMa    BSUM  1, ( ), ( )A Bµ x µM n xi   

 

Equation 5 is used for evaluating the complement (NOT). 

( ) 1 ( )AA
µ x µ x  ………. Equation 5  

Evaluating all the rules is followed by combining the obtained results into one fina l 

answer. This procedure is called inference. The results of individual rules can be combined 

using different aggregation methods (see Table 3). The maximum method is the one most 

used and it is the default method in MATLAB fuzzy logic toolbox. 

Table 3: Aggregation methods 

Operation Formula 

Maximum  ( ), ( )A BMax µ x µ x   

Bounded sum  1, ( ) ( )A Bµ xi µM n x   

Normalized sum   1, ( ), ( )A BMax µ xx µ xMa     
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2.5.6 Defuzzifcation 

The result obtained from the inference process is a vague or fuzzy value. This 

value should be converted to a crisp value to be used in real applications. The process of 

converting the fuzzy output to a crisp output is called defuzzification. There are different 

defuzzification techniques such as centroid method, mean of maximum (or middle of 

maxima) method, the height (or max-membership) method, etc. The selection of the 

defuzzification method depends on the application. The technique commonly used is 

centroid (also known as center of area or center of gravity) method and it is the one used 

in this research. 

2.5.6.1 Center of Gravity 

Center of gravity method was developed by Sugeno in 1985. It is the most 

frequently used technique. In this method, the center of gravity of the area under the output 

membership function is calculated. In other words, it finds the point where a vertical line 

would slice the aggregate output set into two equal masses. The only difficulty with this 

technique is that it is computationally difficult for complex membership functions 

(Sameena Naaz, Afshar Alam, Ranjit Biswas, 2011 ). The mathematical representation of 

the centroid defuzzification technique is presented in Equation 6. 

( )

( )

A

z
COG

A

z

µ z zdz

z
µ z dz





………. Equation 6 
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COGz : The crisp output 

( )Aµ z : The aggregated membership function 

z: The output variable 

2.5.7 Fuzzy Logic Advantages and Drawbacks 

Fuzzy logic is used to deal with enigmatic concepts but it is not the only method. 

It is usually preferred due to its great function approximation in control engineering. Fuzzy 

logic has many advantages that especially people who work in control engineering can 

make use of it. These advantages can be summarized in the following points (Albertos, 

P.; Sala, A., 1998): 

1. Simple base design with the same language used in control and supervision.  

2. Intuitive interface that can be used by experts and non-experts alike.  

3. Easy computations and easy access toolboxes. 

4. Fast self-learning and improved user interpretation. 

5. Fuzzy logic is perfect for interpreting ambiguous information and dealing with 

incomplete data that result in different actions based on probability. 

6. Fuzzy logic has implemented control schemas that combine regulation algorithms 

and logic reasoning. 

7. The model of soft computations has proved itself in other prototypes. 

8. Fuzzy logic control has universal approximation abilities that can be used to 

calibrate certain plant nonlinearities in conventional designs.  
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Fuzzy logic’s specific capabilities do not make it a perfect solution for all cases. 

There are certain drawbacks when using fuzzy logic. These drawbacks are as follows 

(Albertos, P.; Sala, A., 1998): 

1. Experimental and has a slow response even if applied before but in a different 

location. 

2. Other conventional controllers that are well-calibrated perform better than the 

intuitive fuzzy design. 

3. Fuzzy logic uses manual local parameters that consume a lot of time when 

calibrated. This feature is most suited for autonomous learning algorithms. 

4. System configuration may become confusing because of the many system options 

that need to be set: conjunction, disjunction and implication. 

5. The uses of non-standard file formats in commercial packages complicates simple 

applications. 

6. Difficult to estimate membership functions. 

7. There are numerous ways of interpreting fuzzy rules, combining the outputs of 

several fuzzy rules and defuzzifying the output. 

2.6 Fuzzy C-Means Clustering Technique 

Data clustering is a method of dividing data elements into clusters where items in 

the same cluster are as similar as possible, and the ones in various clusters are as differen t 

as possible. Items are placed into clusters depending on the aim of clustering and the 

nature of data. 
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Fuzzy C-Means (FCM) algorithm is one of the most commonly used fuzzy 

clustering algorithms. The FCM algorithm was firstly introduced by Ruspini. Then, it was 

extended by Dunn and Bezdek and has been broadly used in many applications such as 

cluster analysis, pattern recognition and image processing (Lu, Y.; Ma, T.; Yin, C.; Xie, 

X.; Tian, W.; Zhong, S., 2013). FCM allows data elements to be in two or more clusters. 

This algorithm assigns membership to each data point belonging to each cluster based on 

the interval between the data point and the cluster center. The closer the data is to the 

cluster center, the more it is a member of (membership) the cluster center. For each data 

point, the summation of its membership should be equal to one. FCM execute cluster ing 

by iteratively looking for a group of fuzzy clusters and the related cluster centers that show 

the frame of the data as good as possible. FCM depends on the user to determine the 

number of clusters in the data set.  The membership and the cluster center should be 

updated after each iteration. The following formula should be used for the updating: 

(2/ 1)

1

1/ ( / )
c

m

ij ij ik

k

d d 



  ………………………………. Equation 7 

1 1

( ( ) ) / ( ( ) ), 1,2,.......
n n

m m

j ij i ij

i i

v u x u j c
 

     ………….. Equation 8 

Where, 

n : The number of data points. 

jv :  Represents the jth cluster center 

 1,m  , m : Fuzziness index 

 c : Number of cluster center                   

ij : Membership of ith data to jth cluster center 
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ijd : Euclidean distance between ith data and jth cluster center 

Algorithmic steps for Fuzzy c-means clustering: 

Let  1 2 3, , ..... nX x x x x  be the set of data points and  1 2 3, , ,.... cV v v v v  be the set of 

centers. 

1) Randomly select “c” cluster centers. 

2) Calculate the fuzzy membership " "ij using: 

(2/ 1)

1

1/ ( / )
c

m

ij ij ik

k

d d 



   

3) Compute the fuzzy centers jv  using: 

1 1

( ( ) ) / ( ( ) ), 1,2,......
n n

m m

j ij i ij

i i

v x j c 
 

     

4)  Repeat steps 2) and 3) until the minimum “J” value is achieved or until

( 1) ( )|| ||k kU U      

Where, 

k : Iteration step 

 : Termination criterion in the interval [0,1]. 

 
*ij n c

U  : The fuzzy membership matrix 

J :  The objective function 
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2.6.1 Advantages 

1. Gives best results for overlapped data sets. 

2. Data point may belong to more than one cluster.  

(Balaji, K.; Juby, Z. N., 2007) 

2.6.2 Disadvantages 

1. The designer should specify the number of clusters. 

2. With lower value of β, better results are achieved but at the expense of more 

iterations. 

3. Euclidean distance measures can unequally weight underlying factors. 

(Balaji, K.; Juby, Z. N., 2007) 

2.7 Previous AID Algorithms and Models 

Many incident detection algorithms are presented in the literature but only a few 

of them focus on incident detection in urban areas. Detecting incidents in urban areas is a 

challenging task due to the high similarity between incident patterns and no-incident 

patterns when the link is congested. Another difficulty faced in studying incident detection 

in urban streets is the lack of real data needed for calibration and verification of the 

suggested models (Hawas, 2007) (Hawas, Y. E.; Mohammad, M. S., 2015). 

Different incident detection algorithms and models may use dissimilar traffic variables. 

For example, (Barria, A. J.; Thajchayapong, S., 2011) used some microscopic traffic 

variables and their variances to detect and classify traffic abnormalities. The variables 

used in the study were relative speed, inter-vehicle time gap and lane changing and it was 
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built based on simulated data. (La-inchua, J.; Chivapreecha, S.; Thajchayapong, S., 2013) 

proposed a Fuzzy Inference System (FIS) to classify traffic status as normal and abnormal. 

It used mean speed (macroscopic variable) and standard deviation of inter-arrival time 

(microscopic variable) as inputs to the FIS, after that, the majority voting was applied to 

the outputs of FIS to improve the system performance (detection rate and mean time to 

detection). This study also depended on simulated data that was generated using AIMSUN 

software. In (Yaguang, K.; Anke, X., 2006) , the algorithm used four input variables : 

queue length, travel time, speed and occupancy. Again, fuzzy logic and simulated data 

were employed in the study. In (Lee, S.; Krammes, R. A.; Yen, J., 1998), fuzzy logic was 

used to detect lane-blocking incidents. Simulated data was used. The model used queue 

length, speed and occupancy measures and their averages over five minute periods to build 

the proposed fuzzy model. In (Cano, J.; Kovaceva, J.; Lindman, M.; Brännström, M.), the 

algorithm established the core of a video-based automatic incident detection at system 

intersections. Both simulated and real data were used in the study. (Hawas, 2007) and 

(Ahmed, F.; Hawas, Y. E., 2012) used detector readings to characterize the different 

incident patterns. The two studies used simulated data and applied neuro-fuzzy logic 

models. 

All the previous mentioned studies focused on incident detection in urban areas 

and there are many more studies on freeway incident detection. 
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Chapter 3: Data Collection 

 

This chapter presents the first practical step of this thesis, namely data collection. 

The development of Intelligent Transportation Systems (ITS) requires high quality traffic 

information in real-time. Gathering data about traffic patterns is becoming more important 

each year, which is generating high demand for means to modernize and evolve existing 

data gathering methods. The first part of this chapter presents the selected data source and 

the reasons for choosing it over other sources. The second part overviews the simulat ion 

setup and the parameters used. The last part of this chapter discusses the generated traffic 

data which will be used to develop and validate the fuzzy models described in subsequent 

chapters.  

3.1 Data Source 

There are two main sources of traffic data. There is the real data that can be 

collected with cameras and sensors. The second – and the most widely used in research – 

is simulated data generated by traffic simulators. Since real traffic-data are limited and not 

easily reachable, simulated data source is used in this research. One advantage of using a 

simulator to generate the required data is its simplicity and flexibility. The Graphical User 

Interface (GUI) supports the simplicity of such simulators. Simulation runs can be 

performed any time of day and regardless of weather conditions. Furthermore, the use of 

a simulator reduces the needed resource cost and enables us to generate and analyze rare 

scenarios. Given the above-mentioned advantages, this research uses traffic data generated 

using the commercially available PTV VISSIM simulation software. PTV VISSIM is a 

microscopic simulator that is widely used for studying problems related to road traffic 
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control. In this research, the simulator is used to simulate incidents that arise as a 

consequence of a vehicle suddenly stopping in one of the simulated street lanes.  The 

generated traffic data are collected before and after the incident. 

3.2 Simulation Setup 

The case intersection considered in this study is a simple four approach-

intersection with the two intersection roads carrying vehicles in a single direction. The 

length of each approach is set to 300 m. The roads are generic three-lane roads with a 

width of 3.5 m per lane. Each lane is equipped with detectors in three different locations : 

upstream, midstream and downstream. The downstream detector is located at a distance 

of 10 m away from the stop line, the midstream detector is positioned at a distance of 150 

m from the stop line, and the upstream detector is placed at a distance of 290 m away from 

the stop line. The intersection is operated with pre-timed (fixed-time) traffic light signals 

and the intersection does not have any secondary entrances or exits of any sort. 

A layout of the described intersection is shown in Figure 5. 
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Since this research is concerned with presenting a methodology to develop fuzzy 

logic models for incident detection, data collected from one intersection approach will be 

used to develop the models and thereafter, the same steps can be repeated to build a 

complete fuzzy model for all intersection approaches. This can be generalized later to any 

intersection if the required data is available. Therefore, the work here is performed on a 

single approach that is equipped with nine detectors (three per lane). The single approach 

diagram is shown in Figure 6. 

Figure 5: A layout of the intersection 
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The following are the detectors named based on their location: 

1. US1: First lane upstream detector 

2. MS1: First lane midstream detector 

3. DS1: First lane downstream detector 

4. US2: Second lane upstream detector 

5. MS2: Second lane midstream detector 

6. DS2: Second lane downstream detector 

7. US3: Third lane upstream detector 

8. MS3: Third lane midstream detector 

9. DS3: Third lane downstream detector 

The simulator parameters are set as follows: 

 Period: 1200 Simulation seconds (20 min.) 

 Number of runs: 5 

 Simulation resolution: 10 Time steps/ Simulation Sec. 

Figure 6: A layout of a single approach 
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 Random seed: 42 

 Simulation Speed: Maximum 

 Number of cores: use all cores 

3.3 Generated Traffic Data 

The traffic data needed for this research are the readings obtained from the 

detectors. Those readings reflect different patterns in incident cases compared to the ones 

during regular traffic. Incidents considered in this study are the ones that can cause a lane 

blockage such as a stopped vehicle, traffic accidents, cargo spills, road maintenance, etc. 

In this research, the occurrences of incidents are analyzed one at a time where no more 

than one incident is assumed to happen at the same time. Various incident scenarios are 

generated using the pre-described intersection. The detectors’ data are obtained and used 

in developing the fuzzy logic models. The simulation period is 20 minutes (1200 seconds). 

It means that in real life, detectors should be reset every 20 minutes in order for this logic 

to be applicable. Incidents are simulated at different locations along the selected approach. 

The detectors are read every minute. The accumulative detectors’ counts are then used to 

develop the proposed logic. The simulation is run five times for each scenario and the data 

are obtained randomly from one of the runs. In all scenarios, the traffic signal cycle is kept 

fixed to 1 minute with each of the red and green cycles consisting of 30 seconds (0-30 

Simulation Seconds is red and 30-60 Simulation Seconds is green). Also, the speed limit 

is set to 60 km/ h and the vehicle type percentages are set to: 80% cars, 15% busses and 

5% trucks. The generated data sets are displayed in Table 4 below. 
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Table 4: Generated Datasets 

Dataset 

Name 
Volume 

Incident 

Duration 
 

Dataset 1c 1000 vph 10 min 
Datasets used for 

calibration 
Dataset 2c 1000 vph Varied 

Dataset 3c (1000, 500, 1300) vph Varied 

Dataset 1v 1000 vph 10 min 
Datasets used for 

validation 
Dataset 2v 1000 vph Varied 

Dataset 3v (1000, 500, 1300) vph Varied 

 

The table above contains six datasets. Three of the datasets are used to generate 

the fuzzy models and the rest are used during the validation process. It should be noted 

that the first dataset of each stage (Dataset 1c, Dataset 1v) has a fixed incident duration 

time of 10 minutes, whereas the other datasets simulate different incident durations. 

Another important point to note is that the third dataset of each stage (Dataset 3c, Dataset 

3v) has three different values for the approach volume. 
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Chapter 4: Fuzzy Models Development 

 

This chapter describes the development of fuzzy models for incident detection in 

urban streets. It presents the inputs and the output of the developed fuzzy models. It also 

presents the linguistic terms used. Moreover, it discusses the use of Fuzzy C-Means 

Clustering technique in data clustering and presents the procedure followed to create the 

fuzzy rules.  

Three fuzzy models are developed in this chapter. The models are generated using three 

different datasets (Dataset 1c, Dataset 2c and Dataset 3c). 

4.1 Fuzzy Model Inputs 

The first step in building a fuzzy model is to select and define the model’s base 

variables. As mentioned earlier (chapter 3), each lane is equipped with three detectors that 

count the number of passing vehicles (cars, buses and trucks) during the simulation period. 

Each record of the extracted data consists of the accumulative count of each of the nine 

detectors and the corresponding incident status (incident or no-incident). In order to 

reduce the number of inputs, and accordingly, simplify the derivation of fuzzy rules, the 

differences in the detectors’ readings are used as the model inputs. This will reduce the 

number of inputs from nine to six inputs and, as a result, it will also reduce the number of 

generated rules. Consequently, the inputs of the fuzzy models are as follows: 

 US1 – MS1 (Accumulative count of the first lane upstream detector – 

Accumulative count of the first lane midstream detector) 

 MS1 – DS1 (Accumulative count of the first lane midstream detector – 

Accumulative count of the first lane downstream detector) 
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 US2 – MS2 (Accumulative count of the second lane upstream detector – 

Accumulative count of the second lane midstream detector) 

 MS2 – DS2 (Accumulative count of the second lane midstream detector – 

Accumulative count of the second lane downstream detector) 

 US3 – MS3 (Accumulative count of the third lane upstream detector – 

Accumulative count of the third lane midstream detector) 

 MS3 – DS3 (Accumulative count of the third lane midstream detector – 

Accumulative count of the third lane downstream detector) 

4.2 Fuzzy Model output 

In this research, fuzzy models are developed to detect incident status from the 

model inputs, and classify the resultant output either as “incident” or “no-incident”. The 

models will result in an index value. As the index value increases, the probability of 

incident increases as well. The model resulted values are in the interval [0,1]. The values 

are then rounded to either “0” or “1” based on the output numerical value with “0” 

corresponding to a “no-incident” status and “1” corresponding to an “incident” status. 

4.3 Fuzzy Logic Model Structure 

This section describes the structure of the fuzzy logic models. This structure is 

shown in Figure 7. The fuzzy logic models use six inputs and one output. The inputs are 

(US1 – MS1), (MS1 – DS1), (US2 – MS2), (MS2 – DS2), (US3 – MS3) and (MS3 – DS3). 

The output refers to the incident_status (index).  
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The flow chart describes the steps performed from left to right, processing six 

inputs that will eventually produce a single output. One of the important properties of a 

fuzzy logic system is the parallel nature of the rules. It means that the fuzzy rules will fire 

in parallel during the fuzzy inference process. The parallel firing of the rules enables 

considering the entire information content simultaneously (Mohaghegh, 2000). The steps 

adopted to develop the fuzzy logic system including membership functions establishment 

and fuzzy rule base (or Fuzzy Inference System “FIS”) development are described in the 

following subsections. 

Figure 7: Fuzzy logic model structure 



38 
 

 

 

4.4 Fuzzy Model Development Process 

Fuzzy set theory does not confine the shape and the width of a fuzzy membership 

function to a single method; on the contrary, they can be determined using different 

methods, which means that there is no single method that should be adopted at all times. 

In general, a simple set of rules should be followed when creating membership functions 

for a fuzzy model. The set of rules are (Jantzen, 1998): 

 Each membership function should be wide enough to cover all possible input and 

output values. 

 An overlap should exist between the adjacent membership functions. 

 Since the triangular shape is the simplest form of membership functions and they 

are easy to design, it is a good idea to start building the fuzzy model using this 

shape. It can be modified later based on the system performance. 

The following steps describe the process followed to generate membership functions and 

if-then rules for the fuzzy models in this thesis: 

 Step 1: The inputs and output spaces are divided into several fuzzy subsets and 

linguistic terms should be assigned to them. 

 Step 2: The linguistic terms assigned in Step 1 are used in generating the fuzzy 

rules. 

 Step 3: Similar fuzzy rules are merged. 

 Step 4: The conflicting fuzzy rules are then counted and those with the highes t 

number of counts remain in the system; whereas others are deleted. 
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4.4.1 Development of Fuzzy Model 1 (FM1) 

PTV VISSIM was employed to generate about 30 different incident scenarios. 

These incidents were generated for a link length of 300 m, a volume of 1000 vph and an 

incident duration of 10 minutes. All scenarios were combined into a single dataset 

“Dataset 1c” to be used in the development process of FM1. Table 5 illustrates a sample 

of the entries in the combined data file. Each record of the dataset displays the values of 

the input variables and the corresponding output value. Output values are either “0” which 

represents a “no-incident” status or “1” which represents an “incident” status. 

Table 5: Sample of “Dataset 1c” entries 

Time 

(min.) 

US1-

MS1 

MS1-

DS1 

US2-

MS2 

MS2-

DS2 

US3-

MS3 

MS3-

DS3 

Incident 

Status 

1 0 2 1 1 1 0 1 

2 0 1 0 4 1 -5 1 

3 1 0 -1 5 1 -4 1 

4 -1 -1 2 6 2 -2 1 

5 -2 -4 4 6 3 1 1 

6 -2 -6 5 4 -1 3 1 

7 -2 -7 5 5 -2 5 1 

8 -2 -10 4 7 -1 6 1 

9 -3 -11 6 8 1 5 1 

10 -4 -15 8 10 0 10 1 

11 -5 -21 9 13 2 11 1 

12 -6 -24 8 15 0 11 0 

13 -6 -24 7 18 -1 14 0 

14 -4 -25 8 14 1 12 0 

15 -6 -22 9 12 1 12 0 

16 -5 -22 8 12 0 11 0 

17 -6 -22 7 13 0 12 0 

18 -6 -23 8 11 -1 12 0 

19 -5 -23 8 12 0 13 0 

20 -4 -24 8 11 -1 13 0 
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4.4.1.1 Generating Membership Functions (MFs) 

Developing a fuzzy model requires defining all input and output variables. The 

process includes the definition of the linguistic variables, linguistic terms and their ranges, 

and membership value, µ, where µ represents the degree of confidence that a specific 

value belongs to a particular linguistic term (Hawas, 2007). 

The definition of all input and output variables is displayed in Table 6. Real values 

were transformed into linguistic values that were represented by the linguistic terms. The 

values of each input variable (representing two detectors’ accumulative counts difference ) 

was divided into three linguistic terms; Zero, Positive and Very-Positive. The output 

variable (incident_status; represents an index to indicate the possibility of the incident) 

was divided into two linguistic terms; Low (low probability of incident) and High (high 

probability of incident). 

Table 6: Definitions of FL input / output variables 

Variable Type Variable Name Term Names Unit 

Input 1 US1-MS1 

Zero (Z) 

Vehicles Positive (P) 

Very-Positive (VP) 

Input 2 MS1-DS1 

Zero (Z) 

Vehicles Positive (P) 

Very-Positive (VP) 

Input 3 US2-MS2 

Zero (Z) 

Vehicles Positive (P) 

Very-Positive (VP) 

Input 4 MS2-DS2 

Zero (Z) 

Vehicles Positive (P) 

Very-Positive (VP) 

Input 5 US3-MS3 
Zero (Z) 

Vehicles 
Positive (P) 
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Very-Positive (VP) 

Input 6 MS3-DS3 

Zero (Z) 

Vehicles Positive (P) 

Very-Positive (VP) 

Output Incident_Status 
Low 

Index 
High 

 

After defining the linguistic terms for each variable, the range and membership 

value “µ” of each term should be defined. Fuzzy C-Means clustering technique was used 

with the help of MATLAB to split each input into three clusters: Zero (Z), Positive (P) 

and Very-Positive (VP). The following MATLAB command was used to cluster the first 

input “US1-MS1” into three clusters: 

 

 

 

This step produced three clusters with center values -13, 1, and 48. Each cluster 

was used to create a membership function. Cluster 1 represents the first membership 

function “Z”, cluster 2 represents the second membership function “P”, and cluster 3 

represents the third membership function “VP”. Since it is the simplest form of the 

membership functions to start with, triangular membership function shape was selected to 

represent all membership functions (Z, P and VP) and the center value of each cluster was 

used as a center value for its corresponding membership function. Then the shapes of “Z” 

and “VP” were changed to trapezoidal form to cover a wider range of input values.  

Table 7 shows the “US1-MS1” membership function and the corresponding ranges. 

I = importdata('US1-MS1.dat'); 

[center,U,obj_fcn] = fcm(I,3) 
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Table 7: Membership functions set for input “US1-MS1” with corresponding ranges 

 

 

Input Range MF 

US1-
MS1 

˂ 1 Z 

-13 to 48 P 

˃ 1 VP 

 

 

 

 

As mentioned earlier, the µ value represents the degree of confidence that a 

specific value belongs to a term; for example, for “US1-MS1” of 14 vehicles, µZ is 0, µP  

is 0.72 and µVP is 0.28. This indicates that the “US1-MS1” of 14 belongs to the term 

Positive with 72% confidence and to the term Very-Positive with 28% confidence. It can 

be observed that µZ + µP + µVP = 0 + 0.72 + 0.28 = 1. See Figure 8. 
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Figure 8: Derivation of µ value for “US1-MS1” of 14 vehicles 
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The same procedure was followed to create the membership functions for each 

input as shown in Table 8. 

Table 8: MFs for the rest of the inputs with the corresponding ranges 

 

 

Input Range MF 

MS1-DS1 

˂ 2 Z 

-23 to 17 P 

˃ 2 VP 

 

 

 

 

 

Input Range MF 

US2-MS2 

˂ -1 Z 

-37 to 50 P 

˃ -1 VP 

 

 

 

 

 

 

Input Range MF 

MS2-DS2 

˂ 0 Z 

-26 to 15 P 

˃ 0 VP 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

-34 -14 6 26M
em

b
es

hi
p
 

V
al

ue
, 

µ

"MS1-DS1" (Vehicles) 

MF1 (Z) MF2 (P) MF3 (VP)

0

0.2

0.4

0.6

0.8

1

1.2

-55 -5 45M
em

b
es

hi
p
 
V

al
ue

, 
µ

"US2-MS2" (Vehicles) 

MF1 (Z) MF2 (P) MF3 (VP)

0

0.2

0.4

0.6

0.8

1

1.2

-41 -21 -1 19M
em

b
es

hi
p
 
V

al
ue

, 
µ

"MS2-DS2" (Vehicles) 

MF1 (Z) MF2 (P) MF3 (VP)



44 
 

 

 

 

 

Input Range MF 

US3-MS3 

˂ 1 Z 

-31 to 53 P 

˃ 1 VP 

 

 

 

 

 

 

Input Range MF 

MS3-DS3 

˂ -1 Z 

-29 to 16 P 

˃ -1 VP 

 

 

 

 

The output variable (incident_status) was represented by two membership 

functions that were chosen to be of triangular shape. “LOW” membership function 

represents low probability of an incident and “HIGH” membership function represents 

high probability of an incident. Since the incident_status represents a probability of an 

incident, its value should be in the interval [0, 1]. Table 9 shows the membership functions 

set for the output variable; incident_status. 
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Table 9: MFs for the output “Incident_Status” with the corresponding ranges 

 

 

Input Range MF 

Incident_Status 
0 to 0.7 LOW 

0.3 to 1 HIGH 

 

 

 

 

 

4.4.1.2 Generating Fuzzy Rules 

The rule base is considered as the core of the fuzzy model since the quality of 

results in a fuzzy system depends mainly on these rules. To generate the fuzzy rules set, 

each numerical input and output was assigned to the membership function with the 

maximum membership grade (maximum µ value). For example, “US1-MS1” of 14 was 

considered to belong to membership function “P”, “MS2-DS2” of 10 to membership 

function “VP”, and “US3-MS3” of -39 to membership function “Z”. Table 10 shows a 

sample of the fuzzified data file “Dataset 1c”. 

Table 10: Sample of the fuzzified data file “Dataset 1c” 

US1-
MS1 

MS1-
DS1 

US2-
MS2 

MS2-
DS2 

US3-
MS3 

MS3-
DS3 

Incident 
Status 

P P P P P P HIGH 

P P P P P P HIGH 

P P P P P P HIGH 

P P P P P P HIGH 

P P P P P P HIGH 

P P P P P P HIGH 
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P P P P P P HIGH 

P P P P P P HIGH 

P Z P VP P P HIGH 

P Z P VP P VP HIGH 

P Z P VP P VP HIGH 

P Z P VP P VP LOW 

P Z P VP P VP LOW 

P Z P VP P VP LOW 

P Z P VP P VP LOW 

P Z P VP P VP LOW 

P Z P VP P VP LOW 

P Z P VP P VP LOW 

P Z P VP P VP LOW 

P Z P VP P VP LOW 

 

Now, a single rule was obtained from each input-output data pair. As such, each 

row represents “IF…AND…THEN…” rule. The “IF…AND…” part was generated from 

the input data, and the “THEN…” part was generated from the output data. For example, 

the rule represented by the highlighted row in Table 10 above was: 

IF 

“US1-MS1” is “P” 

AND 

“MS1-DS1” is “Z” 

AND 

“US2-MS2” is “P” 

AND 

“MS2-DS2” is “VP” 

AND 

“US3-MS3” is “P” 
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AND 

“MS3-DS3” is “VP” 

THEN 

“Incident_Status” is “LOW” 

The rules generated here were “AND” rules because of the dependency of the 

inputs on each other. A total of 600 rules were generated. Initial rules were generated in a 

similar fashion for all data pairs and they are given in Table 11. The last column “Count” 

shows how many times each rule was repeated throughout the dataset. 

Table 11: Initial rules generated from data file “Dataset 1c” 

US1-
MS1 

MS1-
DS1 

US2-
MS2 

MS2-
DS2 

US3-
MS3 

MS3-
DS3 

Incident 
Status 

Count 

P P P P P P LOW 10 

P P P P P P HIGH 144 

P Z P VP P P HIGH 6 

P Z P VP P VP LOW 16 

P Z P VP P VP HIGH 9 

P P P VP P P LOW 13 

P P P VP P P HIGH 15 

P Z P VP Z VP LOW 2 

P VP P VP Z P HIGH 1 

P P P VP Z P HIGH 1 

P P P VP Z Z HIGH 4 

P VP P VP Z Z LOW 9 

VP Z P VP P VP LOW 4 

VP Z P VP P VP HIGH 2 

VP Z Z VP P VP LOW 13 

VP Z Z VP P VP HIGH 4 

P P P P P VP LOW 12 

P P P P P VP HIGH 14 

VP Z P P P VP HIGH 3 

VP Z Z P Z VP HIGH 1 

VP Z Z VP Z VP LOW 19 

VP Z Z VP Z VP LOW 2 
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VP Z Z VP P P LOW 8 

VP Z Z VP P P HIGH 7 

VP P P P P P HIGH 1 

VP Z Z VP Z P HIGH 2 

VP P Z VP P P LOW 1 

VP P Z VP P P HIGH 5 

P VP P P P P LOW 4 

P VP P P P P HIGH 9 

P VP P Z P P LOW 20 

P VP P Z P P HIGH 8 

P VP P P P Z LOW 2 

P VP P P P Z HIGH 4 

P VP P Z P VP LOW 7 

P VP P Z P VP HIGH 5 

P P P Z P VP LOW 2 

P P P Z P VP HIGH 4 

Z VP P Z P VP LOW 4 

Z VP P Z P VP HIGH 1 

Z P P Z P VP LOW 1 

P VP VP Z Z VP LOW 18 

P VP VP Z Z VP HIGH 6 

P P P Z P P HIGH 1 

P P VP Z Z VP LOW 1 

P P VP Z Z VP HIGH 4 

Z P VP Z Z VP LOW 2 

Z P VP Z Z VP HIGH 7 

Z VP VP Z Z VP LOW 16 

Z VP VP Z Z VP HIGH 4 

P P VP P Z VP LOW 4 

P P VP P Z VP HIGH 1 

P P P Z Z VP HIGH 1 

P P P P Z P HIGH 1 

P P VP P Z P HIGH 2 

P VP VP P Z P LOW 3 

P VP VP P Z P HIGH 2 

Z VP VP P Z P LOW 1 

P P P VP P Z LOW 1 

P P P VP P Z HIGH 1 

P VP P VP P Z LOW 13 
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P VP P VP P Z HIGH 3 

Z VP P VP P Z LOW 13 

Z VP P VP P Z HIGH 6 

Z P P P P P HIGH 3 

Z VP P P P Z HIGH 6 

Z VP P VP VP Z LOW 5 

Z VP P VP VP Z HIGH 4 

Z VP P P VP Z LOW 4 

Z P P VP P P HIGH 1 

Z P P VP P Z HIGH 2 

Z P P VP VP Z HIGH 1 

Z VP Z VP VP Z LOW 10 

Z VP Z VP VP Z HIGH 2 

P P Z VP P Z HIGH 1 

P P Z VP VP Z HIGH 3 

Z P Z VP VP Z LOW 25 

Z P Z VP VP Z HIGH 4 

P P Z P VP P HIGH 1 

P P Z VP VP P HIGH 5 

Z P Z VP VP P LOW 1 

Z P Z VP VP P HIGH 4 

P P Z VP P P HIGH 1 

P Z P P P VP LOW 6 

P Z P P P VP HIGH 1 

 

From Table 10 and Table 11, it can be observed that there were many similar rules 

and many conflicting rules. Similar rules can be defined as the rules that have the same 

antecedents and consequents while conflicting rules can be defined as the rules that have 

the same antecedents but different consequents. Similar rules were replaced by a single 

rule. The conflicting fuzzy rules were counted and those with the highest number of counts 

remained in the system while others were deleted. For example, below are conflict ing 

rules extracted from Table 11. 
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P Z P VP P VP LOW 16 

P Z P VP P VP HIGH 9 

 

Both rules have same antecedents (IF “US1-MS1” is “P” AND “MS1-DS1” is “Z” 

AND “US2-MS2” is “P” AND “MS2-DS2” is “VP” AND “US3-MS3” is “P” AND 

“MS3-DS3” is “VP”) but different consequents (THEN “Incident_Status” is “HIGH”, and 

THEN “Incident_Status” is “LOW”). After counting, it has been found that the first rule 

was repeated 16 times through the dataset and the second rule was repeated 9 times only. 

This has led to favor the first rule over the second one. Therefore, the rule with “HIGH” 

probability of incident was added to the rule set and the one with “LOW” probability was 

deleted. It should also be noted that the rules that appear once were not taken in 

consideration because of their small effect. This procedure resulted in a minimized rules 

set (41 rules) as shown in Table 12. 

Table 12: Minimized rules set for FM1 

Rule # 
US1-

MS1 

MS1-

DS1 

US2-

MS2 

MS2-

DS2 

US3-

MS3 

MS3-

DS3 

Incident 

Status 

1 P P P P P P HIGH 

2 P Z P VP P P HIGH 

3 P Z P VP P VP LOW 

4 P P P VP P P HIGH 

5 P VP P VP Z Z LOW 

6 VP Z P VP P VP LOW 

7 VP Z Z VP P VP LOW 

8 P P P P P VP HIGH 

9 VP Z Z VP Z VP LOW 

10 VP Z Z VP P P LOW 

11 VP P Z VP P P HIGH 

12 P VP P P P P HIGH 

13 P VP P Z P P LOW 

14 P VP P P P Z HIGH 

15 P VP P Z P VP LOW 
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16 P P P Z P VP HIGH 

17 Z VP P Z P VP LOW 

18 P VP VP Z Z VP LOW 

19 P P VP Z Z VP HIGH 

20 Z P VP Z Z VP HIGH 

21 Z VP VP Z Z VP LOW 

22 P P VP P Z VP LOW 

23 P VP VP P Z P LOW 

24 P VP P VP P Z LOW 

25 Z VP P VP P Z LOW 

26 Z VP P P P Z HIGH 

27 Z VP P VP VP Z LOW 

28 Z VP Z VP VP Z LOW 

29 Z P Z VP VP Z LOW 

30 P P Z VP VP P HIGH 

31 Z P Z VP VP P HIGH 

32 P Z P P P VP LOW 

33 P Z P VP Z VP LOW 

34 P P P VP Z Z HIGH 

35 VP Z P P P VP HIGH 

36 VP Z Z VP Z P HIGH 

37 P P VP P Z P HIGH 

38 Z P P P P P HIGH 

39 Z VP P P VP Z LOW 

40 Z P P VP P Z HIGH 

41 P P Z VP VP Z HIGH 

 

The minimized rules of Table 12 were implemented with Fuzzy Logic Toolbox of 

MATLAB (MathWorks, Fuzzy Inference Process, 2015) using Mamdani inference 

mechanism. The results obtained with these rules are to be discussed in chapter 5 “Results 

and Discussion”. 
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4.4.2 Development of Fuzzy Model 2 (FM2) 

PTV VISSIM was used to generate a second set of incident scenarios (about 43 

scenarios). These incidents were generated for link length of 300 m, volume of 1000 vph 

and different incident durations. All scenarios were combined into a single dataset 

“Dataset 2c” to be used in the development process of FM2. 

4.4.2.1 Generating Membership Functions 

Membership Functions for inputs and output of FM2 are displayed in Table 13. 

Table 13: Membership functions for FM2 inputs and output with corresponding ranges 
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Input Range MF 

MS1-DS1 

˂ 1 Z 

-25 to 16 P 
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Input Range MF 

US2-MS2 

˂ 0 Z 

-36 to 58 P 

˃ 0 VP 

 

 

 

 

 

 

 

Input Range MF 

MS2-DS2 

˂ 0 Z 

-25 to 15 P 

˃ 0 VP 

 

 

 

 

 

Input Range MF 
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˃ 0 VP 

 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

-57 -7M
em

b
es

hi
p
 

V
al

ue
, 

µ

"MS2-DS2" (Vehicles) 

MF1 (Z) MF2 (P) MF3 (VP)

0

0.2

0.4

0.6

0.8

1

1.2

-72 -22 28M
em

b
es

hi
p
 
V

al
ue

, 
µ

"US3-MS3" (Vehicles)

MF1 (Z) MF2 (P) MF3 (VP)

0

0.2

0.4

0.6

0.8

1

1.2

-55 -5 45M
em

b
es

hi
p
 

V
al

ue
, 

µ

"US2-MS2" (Vehicles) 

MF1 (Z) MF2 (P) MF3 (VP)



54 
 

 

 

 

 

Input Range MF 

MS3-DS3 

˂ 0 Z 

-28 to 20 P 

˃ 0 VP 

 

 

 

 

 

Input Range MF 

Incident_Status 
0 to 0.7 LOW 

0.3 to 1 HIGH 

 

 

 

 

 

It can be observed that the membership functions (MFs) for both FM1 and FM2 

are very similar since the datasets used to develop these two models (Dataset 1c and 

Dataset 2c) had the same volume (1000 vph). Therefore, it can be said that the membership 

functions in the proposed methodology are highly dependent on the traffic volume. 
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4.4.2.2 Generating Fuzzy Rules 

The same process followed to generate the fuzzy rules set of FM1 was also 

followed to generate the rules set of FM2. The resulted minimized rules set for FM2 

consists of 51 rules displayed in in Table 14. 

Table 14: Minimized rules set for FM2 

Rule # 
US1-
MS1 

MS1-
DS1 

US2-
MS2 

MS2-
DS2 

US3-
MS3 

MS3-
DS3 

Incident 
Status 

1 P P P P P P HIGH 

2 P Z P VP P P HIGH 

3 P Z P VP P VP LOW 

4 P P P VP P P HIGH 

5 P P Z VP P P HIGH 

6 P P Z VP P Z HIGH 

7 Z P Z VP VP Z LOW 

8 Z VP Z VP VP Z LOW 

9 P P P P P VP HIGH 

10 P Z P P P VP LOW 

11 Z P P P P P HIGH 

12 Z P VP Z Z VP HIGH 

13 Z VP VP Z Z VP LOW 

14 P P P Z P VP HIGH 

15 P P Z Z P VP HIGH 

16 P Z P Z P VP LOW 

17 P P Z P P P HIGH 

18 VP P Z P P P HIGH 

19 VP P Z VP P P HIGH 

20 Z VP P P P P HIGH 

21 Z VP P VP P Z LOW 

22 Z VP P VP VP Z HIGH 

23 P VP Z Z P P HIGH 

24 Z VP P P P Z HIGH 

25 Z Z P VP P VP LOW 

26 P VP P P P P HIGH 

27 P VP P VP Z P HIGH 

28 P VP P VP Z Z LOW 
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29 VP Z Z VP P VP LOW 

30 VP Z Z P P VP HIGH 

31 VP Z Z VP Z VP LOW 

32 VP Z Z VP P P LOW 

33 VP Z Z VP Z P HIGH 

34 P VP P Z P P LOW 

35 P VP P P P Z HIGH 

36 P P P Z P P HIGH 

37 P VP P Z P VP HIGH 

38 Z P P Z P VP LOW 

39 Z VP P Z P VP LOW 

40 P VP VP Z Z VP LOW 

41 P P VP Z Z VP HIGH 

42 P VP P P Z P HIGH 

43 P VP VP P Z P LOW 

44 Z VP VP Z Z P LOW 

45 P VP VP Z Z P LOW 

46 P VP P VP P Z LOW 

47 Z VP P P VP Z LOW 

48 Z P P VP P P HIGH 

49 Z P P VP P Z HIGH 

50 P P Z VP VP P HIGH 

51 Z P Z VP VP P HIGH 

 

The minimized rules of Table 14 were implemented with Fuzzy Logic Toolbox of 

MATLAB (MathWorks, Fuzzy Inference Process, 2015) using Mamdani inference 

mechanism. The results obtained with these rules are to be discussed in chapter 5 “Results 

and Discussion”. 

4.4.3 Development of Fuzzy Model 3 (FM3) 

PTV VISSIM was also used to generate a third set of incident scenarios (about 40 

scenarios). These incidents were generated for link length of 300 m, volumes of (500, 
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1000 and 1300) vph and different incident durations. All scenarios were combined into a 

single dataset “Dataset 3c” to be used in the development process of FM3. 

4.4.3.1 Generating Membership Functions 

Membership Function sets for inputs and output of FM3 are displayed in Table 

15. 

Table 15: Membership functions for FM3 inputs with corresponding ranges 
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Input Range MF 

US2-MS2 

˂ 2 Z 

-29 to 71 P 

˃ 2 VP 
 

 

 

 

 

Input Range MF 

MS2-DS2 

˂ 1 Z 

-29 to 15 P 

˃ 1 VP 

 

 

 

 

 

Input Range MF 

US3-MS3 

˂ 0 Z 

-38 to 19 P 
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Input Range MF 

MS3-DS3 

˂ 1 Z 

-29 to 25 P 

˃ 1 VP 
 

 

 

 

 

Input Range MF 

Incident_Status 

0 to 0.7 LOW 

0.3 to 1 HIGH 

 

 

 

 

It can be observed from Table 15 above that the membership function sets 

generated for FM3 had different ranges than the ones obtained for FM1 and FM2. This 

was because of the different volumes (500-1000-1300) used in generating the dataset for 

this model. 

4.4.3.2 Generating Fuzzy Rules 

The minimized rules set for FM3 consists of 48 rules displayed in Table 16. 
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Table 16: Minimized rules for FM3 

Rule # 
US1-

MS1 

MS1-

DS1 

US2-

MS2 

MS2-

DS2 

US3-

MS3 

MS3-

DS3 

Incident 

Status 

1 P P P P P P HIGH 

2 P P P VP P P LOW 

3 P Z P VP P P HIGH 

4 P Z P VP P VP LOW 

5 P P Z VP VP P HIGH 

6 P P Z VP VP Z HIGH 

7 Z P Z VP VP Z LOW 

8 P P P P P VP HIGH 

9 P Z P P P VP LOW 

10 Z P P P P P HIGH 

11 Z P VP Z Z VP HIGH 

12 Z VP VP Z Z VP LOW 

13 VP Z P VP P P HIGH 

14 VP Z Z VP P P HIGH 

15 VP Z Z VP P VP LOW 

16 P VP VP Z Z VP LOW 

17 P P Z P P P HIGH 

18 P P Z Z P P HIGH 

19 P P P Z P VP HIGH 

20 VP P Z VP P P LOW 

21 VP P Z P P P HIGH 

22 P P P VP VP Z LOW 

23 P P Z P VP P HIGH 

24 Z P P VP VP Z HIGH 

25 VP P Z Z VP P HIGH 

26 VP Z P VP Z VP LOW 

27 Z VP P P P Z LOW 

28 Z VP P VP P Z LOW 

29 P Z P P VP P HIGH 

30 VP Z P P VP P LOW 

31 P VP P P P P HIGH 

32 P VP Z P P P LOW 

33 P Z P P P P HIGH 

34 Z Z P P VP P LOW 

35 P VP Z Z P VP LOW 
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36 P VP Z Z VP VP LOW 

37 P P Z Z VP VP HIGH 

38 VP P Z Z P VP HIGH 

39 VP VP Z Z P VP LOW 

40 VP Z Z Z VP P LOW 

41 P Z P VP Z VP LOW 

42 P P P P Z VP LOW 

43 P P P VP Z VP LOW 

44 P VP Z P P VP HIGH 

45 P VP Z P Z VP LOW 

46 Z VP Z P Z VP LOW 

47 Z P P VP P Z LOW 

48 Z Z VP VP VP Z LOW 

 

The minimized rules of Table 16 were implemented with Fuzzy Logic Toolbox of 

MATLAB (MathWorks, Fuzzy Inference Process, 2015) using Mamdani inference 

mechanism. The results obtained with these rules are to be discussed in chapter 5 “Results 

and Discussion”. 
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Chapter 5: Results and Discussion 

 

In this chapter, the fuzzy logic process will be discussed and an example from this 

thesis will be displayed in details. Next, the results of implementing three fuzzy models 

(FM1, FM2 and FM3) will be presented and discussed. Each model will be validated with 

a new dataset generated using the software “PTV VISSIM”. FM1, FM2 and FM3 will be 

validated using “Dataset 1v”, “Dataset 2v” and “Dataset 3v”, respectively. The models 

will be evaluated using three main measures: good_detection rate, no_detection rate and 

false_alarm rate. Finally, a comparison between the results obtained will be presented and 

an additional trial to improve the performance will be discussed. 

5.1 Fuzzy Logic Process 

In this section, an overview of the fuzzy logic process will be presented with a 

detailed example. A fuzzy logic process can be defined as a way of mapping an input 

space to an output space using a collection of fuzzy membership functions and rules. There 

are three main parts that make up the fuzzy logic process. These parts are: Fuzzification, 

Fuzzy Inference System (FIS), which includes the membership functions and the fuzzy 

rules, and De-Fuzzification. The fuzzy logic components are shown in Figure 9. (G. V. S. 

Raju, Jun Zhou , 1990) 

 

 

 

 

 Figure 9: Fuzzy logic process 
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The fuzzy logic process can be explained as follows: 

 The first step is to fuzzify the inputs, i.e., converting the crisp input values to 

linguistic values using fuzzy linguistic terms and membership functions. This step 

is called “Fuzzification”. 

 The second step is to apply the fuzzy rules to the inputs and find the resultant fuzzy 

output value. This step is known as the “Fuzzy Inference”. 

 The last step is to map the fuzzy value of the output to a crisp value, which is 

known as “De-Fuzzification”. 

Mamdani inference (Figure 10) was used in the designed systems (models). Since all 

inputs are dependent on each other, it is meaningful to use “AND” operator to combine 

the inputs. A single output was used in the system to return the incident_status every 

minute. The de-fuzzification process has resulted in a crisp index value that describes the 

probability of incident.  

 

 

 

 

 

 

 

  

In order to understand how the fuzzy logic works, the process is described in details in the 

following example. 

Figure 10: Mamdani FIS for the proposed models 
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In this example, FM1 is used and the following crisp input values are given: 

“US1-MS1” = -4, “MS1-DS1” = -24, 

  “US2-MS2” = 8, “MS2-DS2” = 11, 

“US3-MS3” = -1, “MS3-DS3” = 13 

5.1.1 Step 1: Fuzzify Inputs 

The first step is to convert crisp inputs to fuzzy. Each input in the previously built 

fuzzy model (FM1) has its own set of membership functions (each set consists of three 

membership functions: Z, P and VP). The given inputs in this example are compared with 

the related set of membership functions to determine the membership function that 

represents the crisp input. Each given input in this example may belong to one or two 

membership functions. “µ” value describes how strong each input belongs to each 

membership function. FM1 is built on 41 rules, and each of the rules requires converting 

the inputs into a number of different fuzzy linguistic terms. Before evaluating the rules, 

the inputs must be fuzzified according to each of these linguistic terms.  

From row 1 in Table 17, it can be seen that “US1-MS1” of “-4” belongs to two 

membership functions (Z and P) with different degrees, that is µz = 0.35 and µp = 0.65. 

Also, “MS1-DS1” of “-24” entirely belongs to one membership function (Z) which means 

it has µz = 1. Similarly, the rest of the inputs are assigned to their membership functions 

as shown in Table 17. The red lines on the figures show the derivation of “µ” values. 

Fuzzification step ends with all crisp inputs assigned to their membership functions 

required by the rules. 
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Table 17: “µ” values for each input 

Input 
Crisp 
Value 

µ values 

US1-MS1 -4 

µz = 0.35 
 
 

µp = 0.65 

µVP = 0 

MS1-DS1 -24 

µz = 1  
 

µp = 0 

µVP = 0 

US2-MS2 8 

µz = 0  
 

µp = 0.8 

µVP = 0.2 

MS2-DS2 11 

µz = 0 
 
 

µp = 0.3 

µVP = 0.7 

US3-MS3 -1 

µz = 0.1  
 

µp = 0.9 

µVP = 0 
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MS3-DS3 13 

µz = 0 

 

 

µp = 0.15 

µVP = 0.85 

 

5.1.2 Step 2: Apply the Fuzzy Operator (AND) 

After fuzzifying the inputs, the fuzzy operator “AND” is applied. The input to the 

fuzzy operator is six membership values from fuzzified input variables. Using “AND” 

operator results in selecting the minimum membership value of the antecedents. This 

truth-value represents the antecedents and it is then applied to the consequent membership 

function to get a single output fuzzy value.  

In this example, only three rules (rule 2, rule 3 and rule 32) will result in non-zero 

values because none of the membership values of the antecedents is zero. Figure 11 shows 

MATLAB-Rule Viewer which displays “AND” operator evaluating the antecedents of 

rules 2, 3 and 32.  
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MATLAB-Rule Viewer in Figure 11 shows all the 41 rules of FM1. Each rule is 

represented by its relevant inputs and output membership functions. For example, rule 1 

is represented by the input membership functions (P, P, P, P, P, P) and the output 

membership function (HIGH). Similarly, rule 2 is represented by the input membership 

functions (P, Z, P, VP, P, P) and the output membership function (HIGH). The colored 

Figure 11: Rules evaluation in MATLAB-Rule Viewer 
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parts of the membership functions represent the implementation of the fuzzy rules based 

on the given inputs in this example [-4, -24, 8, 11, -1 and 13]. In each rule, the involved 

parts of the input membership functions are yellow colored and the involved parts of the 

output membership functions are blue colored. By observing the blue colored parts in 

Figure 11, it can be noticed that only three rules from the set will contribute to the output 

estimation, namely, rule 2, rule 3 and rule 32 (Table 18). The implementation of the rest 

of the rules will return zero output. Now, for evaluating rule 2, the six inputs ((US1-MS1 

is P), (MS1-DS1 is Z), (US2-MS2 is P), (MS2-DS2 is VP), (US3-MS3 is P) and (MS3-

DS3 is P)) produce the fuzzy membership values 0.65, 1, 0.8, 0.7, 0.9 and 0.15, 

respectively. The fuzzy “AND” operator selects the minimum of the six values, 0.15, and 

the fuzzy operation for rule 2 is complete. The second rule to be evaluated is rule 3 where 

the six inputs ((US1-MS1 is P), (MS1-DS1 is Z), (US2-MS2 is P), (MS2-DS2 is VP), 

(US3-MS3 is P) and (MS3-DS3 is VP)) produce the fuzzy membership values 0.65, 1, 

0.8, 0.7, 0.9 and 0.85, respectively. The fuzzy “AND” operator selects the minimum of 

the six values, 0.65, and the fuzzy operation for rule 3 is complete. The last rule to be 

evaluated in this example is rule 32 where the six inputs ((US1-MS1 is P), (MS1-DS1 is 

Z), (US2-MS2 is P), (MS2-DS2 is P), (US3-MS3 is P) and (MS3-DS3 is VP)) produce 

the fuzzy membership values 0.65, 1, 0.8, 0.3, 0.9 and 0.85, respectively. The fuzzy 

“AND” operator selects the minimum of the six values, 0.3, and the fuzzy operation for 

rule 32 is complete. It should be noted here that all the selected rules are evaluated in 

parallel. Now, the application of the fuzzy operator step is complete and the next step of 

the fuzzy process can start. 
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Table 18: Rules selected by the given inputs 

Rule # 
US1-
MS1 

MS1-
DS1 

US2-
MS2 

MS2-
DS2 

US3-
MS3 

MS3-
DS3 

Incident 
Status 

2 P Z P VP P P HIGH 

3 P Z P VP P VP LOW 

32 P Z P P P VP LOW 

 

5.1.3 Step 3: Apply Implication Method   

An implication method specifies how the fuzzy logic model scales the membership 

functions of the output, based on the weight of the corresponding rule. Applying the 

implication method requires a predetermination of the rules’ weights. A rule weight is a 

number between 0 and 1. This weight is applied to the number resulted from the previous 

step (applying the fuzzy operator on the antecedents). A default weight of 1 is assigned to 

each rule that has no effect at all on the implication process. The rules weights can be 

modified, so they may have different influences on the output membership functions. 

However, in this model (FM1) and all the models built in this work (FM2 and FM3), all 

have the rules weight of 1. 

5.1.4  Step 4: Outputs Aggregation 

Aggregation is the process of merging the output membership functions that 

resulted from applying all the rules. All the consequents membership functions are 

combined into a single fuzzy set. This means aggregation process is done once for each 

output. 

In Table 19 below, the three rules are placed together to show how the consequents 

membership functions are combined into a single fuzzy set that represents the output. 
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Table 19: Aggregation of the output 

Rule 
# 

US1-
MS1 

MS1-
DS1 

US2-
MS2 

MS2-
DS2 

US3-
MS3 

MS3-
DS3 

Incident_Status 

2 
µp = 

0.65 

µz = 

1 

µp = 

0.8 

µVP = 

0.7 

µp = 

0.9 

µp = 

0.15 

 

µHIGH = 0.15 
 
 

 
 

 
 
 

 
 

 
 

3 
µp = 

0.65 

µz = 

1 

µp = 

0.8 

µVP = 

0.7 

µp = 

0.9 

µVP = 

0.85 

 

µLOW = 0.65 
 
 

 
 
 

 
 

 
 
 

 

32 
µp = 

0.65 

µz = 

1 

µp = 

0.8 

µp = 

0.3 

µp = 

0.9 

µVP = 

0.85 

 
µLOW = 0.3 
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Apply aggregation method (max): 

 

 

 

 

 

 

 

From Table 19, it can be seen that evaluating rule 2 results in “High” membership 

function with µHIGH = 0.15. Also, evaluating rule 3 results in “Low” membership function 

with µLOW = 0.65. The last evaluated rule was rule 32, results in “Low” membership 

function with µLOW = 0.3. The results of all three rules are then aggregated and the 

aggregated output is displayed in the last row of the same table. Figure 11 shows the 

aggregate output fuzzy set in solid blue which is the same result obtained in Table 19. 

Now, defuzzification process can start. 

5.1.5 Step 5: Defuzzification 

The fuzzy logic process ends with the defuzzification process. Defuzzification can 

be defined as converting the fuzzy output to crisp output. Although fuzziness is used to 

evaluate the rules, the fuzzy system produces a crisp number output, which is important 

for any further processing. The aggregate output fuzzy set is used as an input for the 

defuzzification process, which – in its own – produces a single number output. Although, 

several defuzzification methods exist, the centroid method (center of gravity method) is 

0

0.2

0.4

0.6

0.8

1

0 0.3 0.4 0.65 0.9 1

Aggregated output 
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the defuzzification method that stands out and it is the method used in all the models built 

in this thesis. It pinpoints the exact vertical line that dissects the aggregate output set into 

two equal areas. The centroid defuzzification method finds the center of gravity of the 

output fuzzy set, where the center is represented by a single scalar value. By default, in 

MATLAB, the selected defuzzification method is the center of gravity method. 

The centroid value in the given example is represented by a red line in MATLAB-Rule 

Viewer (Figure 11). This value represents the crisp output for the given inputs. 

The centroid method calculation is performed by computing the centroid of the 

aggregate fuzzy output area. The strength of each output membership function is 

multiplied by the center of the same membership function. Subsequently, the results are 

summed. Finally, the area is divided by the sum of the output membership functions 

strengths, and a crisp output is resulted. The formula shown in Equation 9 is the fuzzy 

centroid formula (Engin, 2010).  

1

1

( )
n

i ii

n

ii

Center Strength
Output

Strength









………. Equation 9 

Where n is the number of output membership functions involved. By using Equation 9, 

the result of the example’s set of inputs is shown in Equation 10. 

(( ( ) ( )) (( ( ) ( ))

( ) ( )

HIGH Center HIGH Strength LOW Center LOW Strength
Output

HIGH Strength LOW Strength

  



…Equation 10 

(0.65 0.15) (0.35 (0.65 0.3))
0.391

(0.15) (0.65 0.3)
Output

   
 

 
 

Figure 12 shows the result of the given set of inputs using MATLAB-Rule Viewer. The 

rule viewer result is approximately the same as the one obtained from the calculations. 
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The error between the calculated result and the MATLAB produced result is given by 

Equation 11. 

0.419 0.391 0.028Error    ………. Equation 11 

 

 

 

 

 

 

 

 

 

Figure 12: The result of the given set of inputs in the example using MATLAB-Rule Viewer 
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5.2 Proposed Fuzzy Models Results and Validation 

Three fuzzy models were developed in this work. Each model was validated with 

a new generated dataset. The models were evaluated using three main measures: 

good_detection rate, no_detection rate and false_alarm rate. In this case, time related 

issues were not considered in the validation process such as the lag between the actual 

incident and the detection. A resolution of 1 minute was used in the validation process. 

The difference between the actual and the detected incident_status of the same interva l 

was used to validate the proposed logic. The efficiency of the developed logic was 

evaluated by measuring the capability of the logic in detecting the incident status correctly. 

It means that the proposed logic results in “High” term when there is an actual incident 

and results in “Low” term when there is actually no incident. 

In order to validate the fuzzy models developed in this research, the following steps were 

followed: 

1. Generate new datasets (Dataset 1v,  Dataset 2v and Dataset 3v) using “PTV 

VISSIM”. 

2. Run each of the developed models (FM1, FM2 and FM3) on its validation dataset 

(Dataset 1v,  Dataset 2v and Dataset 3v, respectively). 

3. Round the crisp output (index) values to 0s and 1s: 

 If the resulted index is ˂ 0.5, it should be rounded to “0” which represents 

no_incident status. 

 If the resulted index is ≥ 0.5, it should be rounded to “1” which represents an 

incident status.  
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4. Compare the detected incident status with the actual one for the same interval by 

calculating the difference: (Actual status – Detected status) 

 The difference of “0” represents good_detection intervals. 

 The difference of “1” represents no_detection intervals. 

 The difference of “-1” represents false_alarm intervals. 

5. Find the percentages of good_detection intervals, no_detection intervals and 

false_alarm intervals compared to the total number of intervals of the particular 

simulation session. 

Using MATLAB, Simulink model was built for the purpose of validation. Figure 13 shows 

the built Simulink model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Simulink model 
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5.2.1 Fuzzy Model 1 (FM1) Results and Validation 

5.2.1.1 Trial 1 

FM1 was the first model developed in this work. It was built for a link length of 

300 m, volume of 1000 vph and incidents duration of 10 minutes. To evaluate FM1, “PTV 

VISSIM” was used to generate new incident scenarios and extract the corresponding 

detector counts. Collected data was then used to build a new dataset (Dataset 1v) for the 

purpose of validation. The new dataset was also built for a link length of 300 m, a volume 

of 1000 vph and an incident duration of 10 minutes. “Dataset 1v” contained six inputs 

(“US1-MS1”, “MS1-DS1”, “US2-MS2”, “MS2-DS2”, “US3-MS3” and “MS3-DS3”) and 

one output representing the actual incident_status. The evaluation of the FM1 was based 

on the application of the model to the validation dataset (Dataset 1v), which comprised 16 

incident scenarios. The evaluation gave an indication of the ability of the model in 

detecting incidents that the model had not previously seen. The comprised incident 

scenarios of (Dataset 1v) are displayed in Figure 14 below. 
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Figure 14: Actual incident_status for “Dataset 1v” 
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16 incidents with different locations and similar duration (10 minutes) are 

presented in Figure 14. The incidents were introduced over a period of 320 minutes. Figure 

14 shows the actual incident_status. FM1 was then applied to the six inputs and the 

detected incident_status was collected and presented in Figure 15.  

 

 

 

 

 

 

 

 

 

 

The values resulted using the model were within [0, 1] range. As the index value 

increases, the probability of incident increases as well. Actual output values less than 0.5 

were rounded to “0” which was an indication that no-incident has been detected, and 

values greater than or equal to 0.5 were rounded to “1” which signified that an incident 

has been detected. Figure 16 illustrates the detected incident_status crisp values before 

and after rounding. Figure 17 illustrates the rounded crisp values.  
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Figure 15: FM1 detected incident_status for “Dataset 1v” 
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The next step was comparing the actual values with the detected values of 

incident_status and then calculating the percentage of time where the two values matched. 
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Figure 16: Detected incident_status before and after rounding for “Dataset 1v” 

Figure 17: Predicted incident_status after rounding for “Dataset 1v” 
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The difference between the actual and the rounded values was calculated using Equation 

12 and the results were displayed in Figure 18. 

( _ ) (Pr _ )Error Actual Value edicted Value   ………. Equation 12  
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Figure 18: Difference between actual and detected incident_status for “Dataset 1v” 

  Figure 19: Actual and rounded detected incident_status for “Dataset 1v” 
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The application of Equation 12 resulted in values that varied between “1”, “-1” 

and “0”. The upper part of Figure 18 presents the undetected incident intervals where the 

result of Equation 12 was “1” which means that the fuzzy logic was not able to detect an 

existing incident. The lower part of the same figure shows the false detection interva ls 

where the result of Equation 12 was “-1” which indicates that the fuzzy logic was detecting 

an incident that did not exist (false). The zero difference between actual and detected 

incident_status reflects accurate detection intervals of the proposed fuzzy logic. It means 

that FM1 was detecting incidents where they really existed. 

The simulation was conducted over a period of 320 minutes and the proposed 

fuzzy logic model (FM1) was set to update its status every minute. Therefore, it can be 

said that FM1 has been tested 320 times. It is important to note here that the purpose of 

this system is to detect and return the incident status every minute, which means it is not 

to detect the presence of the incident as a whole. Over the period of 320 minutes, there 

were 176 incident intervals and 144 no-incident intervals. 254 intervals were detected 

properly as incident or no-incident intervals. 66 intervals returned inaccurate 

incident_status. Of those 66 intervals, there were 62 instances where the proposed system 

(FM1) failed to report an existing incident. In the remaining 4 intervals, the system falsely 

reported the occurrence of an incident. The verification measures were calculated using 

Equation 13, Equation 14 and Equation 15. It resulted in about 79% good_detection 

intervals, 20% no_detection intervals and 1% false_alarms. All calculations are presented 

below. The results indicate a good incident detection ability of the proposed fuzzy logic 

(FM1).   
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    "0"  
% _ 100

    

Count of all the difference intervals
Good Detection

Total count of simulation intervals
   …. Equation 13 

254
100 79

320
% _Good Detection    

    "1"  
% _ 100

    

Count of all the difference intervals
No Detection

Total count of simulation intervals
   ………. Equation 

14 

 
66

100% _ 20
320

No Detection    

    "-1"  
% _ 100

    

Count of all the difference intervals
False Alarms

Total count of simulation intervals
  ……. Equation 15 

 

5.2.1.2 Trial 2 

This trial was conducted to study the effect of changing the membership functions 

of the output. New limits were defined for the output membership functions as shown in 

(Figure 20). 
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The results of applying the modified FM1 on (Dataset 1v) are displayed in (Figure 21). 

 

 

 

 

 

 

 

 

 

 

The verification measures were calculated and listed below: 

% Good_Detection = 79 

% No_Detection = 20 

% False_Alarms = 1 

By comparing the results of the previous trials, it was noticed that the output in the second 

trial was in the range [0.1, 0.9] while it was in the range [0.3, 0.7] in the first trial. Although 

changing the limits of the output membership functions has affected the output values, it 

did not affect the overall performance of the model in the studied case. 
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Figure 21: Modified FM1 detected incident_status for “Dataset 1v” 
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5.2.2 Fuzzy Model 2 (FM2) Results and Validation 

5.2.2.1 Trial 1 

FM2 was the second model developed in this work. It was built for a link length 

of 300 m, a volume of 1000 vph and different incident duration. Similar to FM1, to 

evaluate FM2, “PTV VISSIM” was used to generate new incident scenarios and extract 

the corresponding detectors counts. Collected data was then used to build a new dataset 

(Dataset 2v) for the purpose of validation. The new dataset was also built for a link length 

of 300 m, a volume of 1000 vph and different incident duration that varied from 5 to 15 

minutes. Similar to “Dataset 1v”, “Dataset 2v” contained six inputs (“US1-MS1”, “MS1-

DS1”, “US2-MS2”, “MS2-DS2”, “US3-MS3” and “MS3-DS3”) and one output that was 

the actual incident_status. The evaluation of the FM2 was based on the application of the 

model to the validation dataset (Dataset 2v), which comprised 60 incident scenarios. This 

evaluation gave an indication of the ability of the model in detecting incidents that the 

model had not previously seen. The comprised incident scenarios of (Dataset 2v) are 

displayed in Figure 22. 
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Figure 22: Actual incident_status for “Dataset 2v” 
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60 incidents with different locations and different duration (5 to 15 minutes) are 

presented in Figure 22. They are introduced over a period of 1200 minutes. Figure 22 

shows the actual incident_status. FM2 was applied to the six inputs. The detected 

incident_status is collected and presented in Figure 23. 

 

 

 

 

 

 

 

 

 

 

The values resulted using the model were within [0,1] range. Output values were 

rounded to zeroes and ones similar to what was done in the previous section. Figure 24 

illustrates the detected incident_status crisp values before and after rounding. Figure 25 

illustrates the rounded crisp values.  
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Figure 23: FM2 detected incident_status for “Dataset 2v” 
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The next step was comparing the actual values with the detected values of 

incident_status and calculating the percentage of time where the two values matched. The 
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Figure 24: Detected incident_status before and after rounding for “Dataset 2v” 

Figure 25: Detected incident_status after rounding for “Dataset 2v” 
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difference between the actual and the rounded values was calculated using Equation 12. 

The results are displayed in Figure 26. 

 

 

 

 

 

 

 

 

 

 

Similar to FM1, the application of Equation 12 resulted in values that varied 

between “1”, “-1” and “0” where “1” represented no_detection intervals, “-1” represented 

false_alarm intervals and “0” represented good_detection intervals. 

This simulation was conducted over a period of 1200 minutes and the proposed fuzzy 

logic system (FM2) was updating its status every minute. Therefore, it has been tested 

1200 times. Again, the purpose of this system is to detect and return the incident status 

every minute not to detect the presence of the incident. Over the period of 1200 minutes, 

there were 628 incident intervals and 572 no-incident intervals. 780 intervals were 

detected properly as incident or no-incident intervals. 420 intervals returned inaccurate 

incident status. From the 420 intervals, there were 117 instances where the proposed 

system (FM2) failed to report an existing incident. In the remaining 303 intervals, the 
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Figure 26: Difference between actual and detected incident_status for “Dataset 2v” 
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system falsely reported the occurrence of an incident. The verification resulted in about 

65% good_detection intervals, 10% no_detection intervals and 25% false_alarms. 

Calculations were performed using Equation 13, Equation 14 and Equation 15 

respectively. The calculations are displayed below.  

780
10% 0 65

1200
_Good Detection    

117
100% _ 10

1200
No Detection     

303
100 25

120
_

0
% False Alarms     

5.2.2.2 Trial 2 

In this trial, the developed model (FM2) was tested on a different dataset (Dataset 

2v-a). The new dataset was extracted from the previous one (Dataset 2v) excluding the 

incidents scenarios that lasted less than 10 minutes. The extracted dataset comprised 41 

incident scenarios. This trial was executed to measure the performance of the proposed 

logic (FM2) in detecting incidents that were greater than or equal to 10 minutes in terms 

of duration. The comprised incident scenarios of (Dataset 2v-a) are displayed in Figure 27 

below. 
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41 incidents with different locations and different durations (≥ 10 minutes) are 

presented in Figure 27. They were introduced over a period of 820 minutes. Figure 27 

shows the actual incident status. FM2 was applied to the six inputs. The detected 

incident_status is collected and presented in Figure 28.  
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Figure 27: Actual incident_status for “Dataset 2v-a” 

Figure 28: FM2 detected incident_status for “Dataset 2v-a” 
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The values resulted using the model were within [0,1] range. Output values were 

rounded to 0s and 1s, similar to what was done earlier. Figure 29 illustrates the detected 

incident_status crisp values before and after rounding. Figure 30 illustrates the rounded 

crisp values.  
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Figure 29: Detected incident_status before and after rounding for “Dataset 2v-a” 

Figure 30: Deteted incident_status after rounding for “Dataset 2v-a” 



90 
 

 

 

The next step was comparing the actual values with the detected values of 

incident-status and then calculating the percentage of time where the two values matched. 

The difference between the actual and the rounded values was calculated using Equation 

12. The results are displayed in Figure 31. 

 

 

 

 

 

 

 

 

 

 

 

The simulation was conducted over a period of 820 minutes and the proposed 

fuzzy logic system (FM2) was updating its status every minute. Therefore, it has been 

tested 820 times. Over the period of 820 minutes, there were 477 incident intervals and 

343 no-incident intervals. 610 intervals were detected properly as incident or no-incident 

intervals. 210 intervals returned inaccurate incident status. From the 210 intervals, there 

were 96 instances where the proposed system failed to report an existing incident. In the 

remaining 114 intervals, the system falsely reported the occurrence of an incident. The 

verification resulted in about 74% good_detection intervals, 12% no_detection interva ls 
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Figure 31: Difference between actual and detected incident_status for “Dataset 2v-a” 
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and 14% false_alarms. All calculations were performed using Equation 13, Equation 14 

and Equation 15 respectively. The calculations are presented below. 

610
100 74

820
% _Good Detection    

96
100% _ 12

860
No Detection    

114
100% 14

82
 _

0
False Alarms     

From the results obtained in trial 2, an improvement of around 9% in detection 

was noticed. The no_detection rates were near in both trials (10% in the first trial and 12% 

in the second trial). Also, the false_alarm rate was reduced by 11%. These improvements 

show that FM2 works better in detecting longer duration incidents, which is meaningful, 

because longer duration incidents have clearer incident patterns than shorter ones, and 

thus make incident detection easier. 

5.2.3 Fuzzy Model 3 (FM3) Results and Validation 

5.2.3.1 Trial 1 

FM3 was the third model developed in this work. It was built for a link length of 

300 m, different volumes (500, 1000 and 1300 vph) and different incident duration. To 

evaluate FM3, “PTV VISSIM” was used to generate new incident scenarios and extract 

the corresponding detector counts. Collected data was then used to build a new dataset 

(Dataset 3v) for the purpose of validation. The new dataset was also built for a link length 

of 300 m, different volumes (500, 1000 and 1300 vph) and different incident duration. 
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Similar to “Dataset 1v” and “Dataset 2v”,  “Dataset 3v” contained six inputs (“US1-MS1”, 

“MS1-DS1”, “US2-MS2”, “MS2-DS2”, “US3-MS3” and “MS3-DS3”) and one output 

representing the actual incident_status. The evaluation of the FM3 was based on the 

application of the model to the validation dataset (Dataset 3v), which comprised 181 

incident scenarios. 

The simulation was conducted over a period of 3620 minutes and the proposed 

fuzzy logic system (FM3) was updating its status every minute. The results are 

summarized in Table 20 and the related figures are displayed in appendix A. 

Table 20: Evaluation of FM3 using “Dataset 3v” 

Simulation Period (minutes) 3620 

# Actual Incident Intervals 1903 

# Actual No-Incident Intervals 1717 

% Good_Detection 54% 

% No_Detection 9% 

% False_Alams 37% 

 

5.2.3.2 Trial 2 

In this trial, the developed model (FM3) was tested on a different dataset (Dataset 

3v-a). The new dataset was extracted from the previous one (Dataset 3v) excluding the 

incidents scenarios that last less than 10 minutes. The extracted dataset comprised 108 

incident scenarios. This trial was executed to measure the performance of the proposed 

logic (FM3) in detecting incidents that were greater than or equal to 10 minutes in terms 

of duration.  
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The simulation was conducted over a period of 2160 minutes and the proposed 

fuzzy logic system (FM3) was updating its status every minute. The results are 

summarized in Table 21 and the related figures are displayed in appendix A. 

Table 21: Evaluation of FM3 using “Dataset 3v-a” 

Simulation Period (minutes) 2160 

# Actual Incident Intervals 1300 

# Actual No-Incident Intervals 860 

% Good_Detection 63% 

% No_Detection 10% 

% False_Alams 27% 

 

From the results obtained in trial 2, an improvement of around 9% in detection 

was noticed. The no_detection rates were close in both trials (9% in the first trial and 10% 

in the second trial). Also, the false_alarm rate was reduced by 10%. Similar to trial 2 for 

“FM2”, these improvements show that FM3 works better in detecting longer duration 

incidents. 

5.2.4 Fuzzy Models Comparison 

 Five experiments were conducted in order to evaluate and validate the three fuzzy 

models (FM1, FM2 and FM3). The results obtained from these experiments are displayed 

in Table 22 and the properties of the validation datasets used are summarized in Table 23.  

It can be observed from Table 22 that the best performance was obtained using FM1 that 

was built for a single volume link and fixed incidents duration of 10 minutes. It resulted 

in about 79% good_detection, 20% no_detection and 1% false_alarms. In FM2, the 

performance was affected by the variety of incident durations used. It resulted in about 

65% good_detection, 10% no_detection and 25% false_alarms. A second trial was 
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conducted for FM2 but with incident duration greater than or equal to 10 minutes. The 

trial resulted in 74% good_detection, 12% no_detection and 14% false_alarms. The results 

show an improvement in both good_detection and false_alarm rates. The detection rate 

was improved by 9% and the false_alarms were decreased by 11%, which is considered a 

good improvement. FM3 was developed for different link volumes (500, 1000 and 1300 

vph) and varied incident duration. It resulted in 54% good_detection, 9% no_detection 

and 37% false_alarms. This was the poorest performance among all. In order to improve 

it, a second trial was conducted using incidents that have duration greater than or equal to 

10 minutes. The new trial resulted in 63% good_detection, 10% no_detection and 27% 

false_alarms. Similar to the second trial of FM2, an improvement in the FM3 performance 

was noticed. The detection rate was increased by 9% and the false_alarms were reduced 

by 10%. Hence, it can be said that the devised fuzzy logic is highly influenced by two 

main factors, namely, the link volume and the incident duration. It works better for single 

volume links (FM1 and FM2 have better results than FM3). It also performs better in 

detecting incidents with duration not less than 10 minutes (trial 2 in both FM2 and FM3 

have better results than trial 1). The link volume has a great effect on the range selection 

of the membership functions during the development of the fuzzy logic. The incident 

duration has a noticeable effect on incident patterns. In conclusion, the performance of the 

developed models are highly affected by the link volume and the incident duration which 

makes it essential to consider both of them when developing fuzzy models for incident 

detection using the proposed methodology.  
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Table 22: Summary of the results 

Table 23: Properties of validation datasets 
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5.2.5 Combined Fuzzy Models 

Since the volume is an effective factor in incident detection using the suggested  

fuzzy models, and since a single intersection may have different volumes throughout the 

day, it would be a good idea to include the volume in the process of incident detection. 

One of the trials conducted in this research to improve the performance of the proposed 

models was considering the volume as an input. In the trial, the volume had its own set of 

membership functions (low, medium and high) and it was involved in the rules of the 

fuzzy inference system. Unfortunately, the trial resulted in no significant improvement 

over the previously obtained results. A better suggestion was to use the volume to select 

the best fuzzy model to be implemented. The structure of the suggested model is displayed 

in Figure 32. The figure shows an additional step prior to the implementation of the fuzzy 

model. This step is to classify the volume of the link into, as an example, three. It uses the 

current volume as an input and classifies it based on few simple if-then conditions. The 

output of this step is a volume class (low, medium or high). Such classification can assist 

in choosing the best fuzzy model to be implemented so that the six inputs will enter the 

selected model and a decision on incident_status will be made based on the rules of that 

model.  

In order to study the effectiveness of this thought, the suggested model was built 

and tested. For developing this system, it was required to build a fuzzy model for each 

class of volume. So, three models were built, one for detecting incidents in case of low 

volume (<= 500 vph), a second model for medium volume (>500 vph and <1300 vph) and 

the last model for high volume (>= 1300 vph). In other words, several fuzzy models were 

built for different volumes and the best one was selected based on the required volume. 
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The previous model was built using three simulated datasets, one for each model. 

Another set was generated to test it. The dataset used for testing contained different 

incident scenarios under different volumes (500, 1000 and 1300 vph). All incident 

scenarios had a duration of 10 minute or more. The results obtained from applying the last 

suggested model are displayed in Table 24. 

Table 24: Evaluation of the combined models 

Simulation Period (minutes) 2400 

# Actual Incident Intervals 1420 

# Actual No-Incident Intervals 980 

% Good_Detection 65% 

% No_Detection 16% 

% False_Alams 19% 

 

Table 25: Comparison between the combined models and FM3 

 Combined Models FM3 

% Good_Detection 65% 63% 

% No_Detection 16% 10% 

% False_Alams 19% 27% 

Dataset used for 

testing 

Volume:  500, 1000 and 1300 vph 

Incidents Duration: >= 10 min. 

Volume:  500, 1000 and 1300 vph 

Incidents Duration: >= 10 min. 
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From the results displayed in Table 24 and Table 25, the combined models 

displayed a very small improvement in terms of good_detection rate when compared to 

FM3 but it had a good improvement in terms of false_alarms. In numbers, the 

good_detection was increased by 2% while the false_alarms were decreased by 8% (See 

Table 25). The reason of comparing the combined models with FM3 was that they were 

both designed to detect incidents under different volumes. 

From the previous discussed results, it can be concluded that using separate 

volume based models performs better than using a single set of rules to detect incidents 

under different volumes.  

5.2.6 Comparison with Other Work 

There are two main difficulties with comparing this work to other similar work. 

The first one was mentioned in the verification issues in chapter 2 where there is lack of 

a standard methodology to obtain the verification measures. This makes it difficult to 

compare the evaluation results using different algorithms. The second reason is that most 

of the incident detection methods available in the literature are detect the incident 

availability as a whole, while the proposed models in this work are used to detect and 

return the incident status every minute. 

In (Hawas, 2007), the developed system was able to detect the incident status every 10 

seconds and the verification measures were calculated in a way similar to this work. As a 

comparison, the detection rate in (Hawas, 2007) was better than the detection rate 

achieved in this research; however, FM1 developed in this research had a smalle r 
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percentage of false alarms. Fuzzy logic theory was implemented in this research because 

of its relative simplicity when compared to neuro-fuzzy used in (Hawas, 2007). The 

number of rules generated here did not exceed 51 rules while it reached 2625 rules in 

(Hawas, 2007). The simplicity of the system translates into easier rules track quick 

reconfiguration of the rules when needed.  
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Chapter 6: Summary, Conclusion and Recommendations 

 

This chapter presents a summary of the work completed in this thesis. It briefly 

presents the results obtained and concludes with suggestions for future work that can be 

pursued for further improvement. 

6.1 Summary 

Traffic incidents play a vital role in non-recurrent congestions that cause traffic 

delays in urban areas. Incident detection is the first step toward solving this issue. 

Detecting traffic incidents in urban streets will help to clear such incidents and accordingly 

can lead to increased safety for travelers and decreased overall traffic delays. In order to 

effectively achieve that, a methodology to develop fuzzy models for incident detection 

was presented in this thesis. 

In this thesis, traffic incident management system, incident detection and fuzzy 

logic were discussed. The structure of the suggested fuzzy models was presented first, and 

later, the fuzzy models were built, tested and evaluated. Finally, the results were displayed, 

evaluated and discussed.  

Three fuzzy models (FM1, FM2 and FM3) were developed for incident detection in urban 

areas. Each model had six inputs that represented detector count differences (“US1-MS1”, 

“MS1-DS1”, “US2-MS2”, “MS2-DS2”, “US3-MS3” and “MS3-DS3”) and one output 

that represented incident_status. Simulated traffic data were used to develop, test, and 

evaluate all three models. The simulated data were generated using the commercia l 

software “PTV VISSIM” simulator. Three different datasets (Dataset 1c, Dataset 2c and 

Dataset 3c) were used to develop the models and three additional datasets (Dataset 1v, 
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Dataset 2v and Dataset 3v) were used to test and validate them. The performance of the 

models was assessed using three measurements: good_detection, no_detection and 

false_alarm rates. A comparison of the three models performances was presented. Finally, 

a trial for improving the performance of detecting incidents under different volumes was 

conducted and its effectiveness was evaluated. 

6.2 Conclusion 

Several important observations can be drawn from the analysis of testing and 

validation results. Fuzzy models built for single volume (FM1 and FM2) displayed better 

performance than the fuzzy model built for multiple volumes (FM3). The best detection 

was obtained using FM1 that was developed for a single volume (1000 vph) and the 

poorest detection was using FM3 that was built for different volumes (500, 1000 and 1300 

vph). This suggests that there is no single set of rules that can fit all link volumes. It also 

shows the importance of considering the link volume when designing a fuzzy system for 

incident detection. Another important observation was the effect of the incident duration 

on the detection process. Incidents with duration of 10 minutes or larger were easier to 

detect than the ones with less than 10 minute duration due to their effect on the detectors’ 

count patterns. It is an important factor since the suggested models were able to detect 

incidents where they had clear influence on the detectors’ count patterns. In the combined 

models trial, there was a small improvement in the detection rate when compared to FM3. 

In the same trial, better results were obtained in terms of false alarm rate. The developed 

models displayed promising results and suggest that the detection of the suggested fuzzy 

models can be further improved.  
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6.3 Recommendations 

In this section, few suggestions are provided to extend and improve this work as 

listed below: 

 Use of real data to validate the models can give a more realistic indication of their 

incident detection ability. 

 Use of more than one data source such as CCTV cameras can aid in incident 

detection and improve efficiency. 

 Extend the ability of the suggested models to give additional information about the 

detected incident such as its location. 

 Implementing the fuzzy models on a FPGA: 

The design of an FPGA-based fuzzy model can be very simple. It consists of an 

FPGA, analog-to-digital (A/D) converters for the inputs, a digital-to-analog (D/A) 

converter for the output and a ROM chip (McKenna, M.; Wilamowski, B.M., 

2001). 

 The trial that included traffic volume wasn’t successful which led to having a 

separate model for each range of traffic volume and thence, three different models  

were introduced. Until now, no successful attempt has been made to accurately 

detect incidents using a single model for a relaxed range of traffic volumes. Even 

the models based on training, e.g., neural network based approaches, assume a 

relatively tight range of traffic volume similar to the ones used in this thesis. It 

would be worthwhile to investigate a new approach to develop a single model 

applicable to a wide range of traffic volumes. To date, no such work exists, but 
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based on the trials and models developed here, the following approach seems 

promising: The idea is to fuzzify the traffic volume to produce a volume indicator 

value (VIV) represented by a fraction between 0 and 1. In the simplest form, VIV 

can be set to the ratio of the traffic volume to the maximum traffic volume used 

during simulation to determine the fuzzy functions. During simulation, several 

volumes would be used to simulate incidents. Based on the mathematica l 

relationship observed relating traffic volume and fuzzy function limits (e.g., range 

of Z, P and VP functions), VIV can be used to set the limits of fuzzy function Z, P 

and VP. Although, the mathematical relationship that relates traffic volume to 

fuzzy limits is not know, it can be extrapolated and used to map a VIV (based on 

an appropriately chosen traffic volume) to fuzzy function limits (or center value 

of each of Z, P and VP). The general idea is graphically depicted in Figure 33. In 

addition to the function center values, the fuzzy inference rules need not be the 

same for the different volumes; hence, there a method is needed to choose fuzzy 

rules based on VIV. To choose fuzzy rules based on VIV may require a type of 

training (neural network or other methods).   

 

 

 

 

 

 

 

Figure 33: Graphical representation 
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Appendix A 

 

The following figures display part of the data (between minute 1800 and minute 2300) for 

trial 1 of FM3. 
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Figure 34: Actual incident_status for “Dataset 3v” 

Figure 35: FM3 detected incident_status for “Dataset 3v” 
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Figure 36: Detected incident_status before and after rounding for “Dataset 3v” 

Figure 37: Detected incident_status after rounding for “Dataset 3v” 
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Figure 38: Difference between actual and detected incident_status for “Dataset 3v” 
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The following figures display part of the data (between minute 1500 and minute 2000) for 

trial 2 of FM3. 
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Figure 39: Actual incident_status for “Dataset 3v-a” 

Figure 40: FM3 detected incident_status for “Dataset 3v-a” 
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Figure 41: Detected incident_status before and after rounding for “Dataset 3v-a” 

Figure 42: Detected incident_status after rounding for “Dataset 3v-a” 
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Figure 43: Difference between actual and detected incident_status for “Dataset 3v-a 
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