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Abstract

In this report we shall introduce q-series and we shall discuss some of their appli-

cations to the integer partitions, the sums of squares, and the binomial coefficients. We

will present the basic theory of q-series including the most famous theorems and rules

governing these objects such as the q-binomial theorem and the Jacobi’s triple identity.

We shall present the q-binomial coefficients which roughly speaking connect the binomial

coefficients to q-series, we will give the most important results on q-binomial coefficients,

and we shall provide some of our new results on the divisibility of binomial coefficients.

Moreover, we shall give some well-known applications of q-series to sums of two squares

and to integer partitions such as Ramanujan’s modulo 5 congruence.

Keywords: q-series, q-binomial coefficients, binomial coefficients, integer partitions,

sums of squares, q-analogues.
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Chapter 1: Introduction

The study of q-series has a long history which dates back into the famous mathematicians

Euler and Gauss from the 18th century. The first result of Euler indicating his interest in

q-series is referred to as Euler’s pentagonal theorem and it states that

∞

∑
n=−∞

(−1)nq
n(3n−1)

2 = (q;q)∞ :=
∞

∏
j=1

(1−q j).

Euler was also first to notice the connection between q-series and the function p(n) of

integer partitions as he proved that

∞

∑
n=0

p(n)qn =
1

(q;q)∞

=
∞

∏
j=1

1
(1−q j)

.

As to Gauss, among his results in this direction we find

∞

∑
n=0

(−1)nqn2
=

(q;q)∞

(−q;q)∞

=
∞

∏
j=1

1−q j

1+q j ,

which also has an interpretation in terms of integer partitions. Famous mathematicians

from the 19th and 20th centuries who used q-series in their research include Jacobi, Rie-

mann, Rogers, Jackson, and Ramanujan. Many of the work on q-series which has been

provided by the mathematicians in the past was for the purpose of application to other

branches of mathematics such as elliptic functions, differential equations, and combina-

torics. The real study of q-series and hypergeometric series for their own as independent

research topics started in the 20th century with very important contributions of Askey and

Andrews along with their students and collaborators. Currently, q-series and hypergeo-

metric series form a very active research area which attracts many mathematicians and

researchers around the world. They have applications in many branches of mathematics

and physics. In this report we shall introduce q-series and we shall discuss some of their
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applications to the integer partitions, the sums of squares, and the binomial coefficients.

In chapter 1, we will present the basic theory of q-series including the most famous the-

orems and rules governing these objects such as the q-binomial theorem and the Jacobi’s

triple identity. To prepare the ground for the following chapters, we shall also briefly

discuss integer partitions, the divisor functions, and the sums of squares. In chapter 2

we shall present the q-binomial coefficients which roughly speaking connect the binomial

coefficients to q-series, we will give the most important results on q-binomial coefficients,

and we shall provide some of our new results on the divisibility of binomial coefficients.

Finally in chapter 3, we shall give some well-known applications of q-series to sums of

two squares and to integer partitions such as Ramanujan’s modulo 5 congruence.
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Chapter 2: Q-Series, their properties, and some related arithmetic
functions

In this chapter we will introduce the notion of q-series along with their properties. These

properties include the q-analogue of the binomial theorem and the Jacobi’s identities. We

will also introduce briefly the functions which we are going to study through q-series in

the following chapters. The results in this chapter are all known and can be found in

the standard literature on q-series such as Andrews [1], Berndt [3], and Gasper and Rah-

man [7].

2.1 Q-series

Definition 2.1.1. For any fixed complex number q, any complex number a, and any non-

negative integer n we let

(a;q)0 = 1 and (a;q)n = (1−a)(1−aq)(1−aq2) · · ·(1−aqn−1) =
n−1

∏
j=0

(1−aq j).

Accordingly, we let

(a;q)∞ =
∞

∏
j=0

(1−aq j) = lim
n→∞

(a;q)n.

If no confusion arises, we shall sometimes write (a)n and (a)∞ rather than (a;q)n and

(a;q)∞ respectively.

A q-series is any series which involves expressions of the form (a;q)n and (a;q)∞.
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Theorem 2.1.1. Let q and z be complex numbers such that |q| and |z|< 1. Then

∞

∑
n=0

(a;q)n

(q;q)n
zn =

(az;q)∞

(z;q)∞

. (2.1)

Proof. Let

F(z) :=
(az;q)∞

(z;q)∞

=
∞

∑
n=0

Anzn. (2.2)

It is clear that F(z)converges uniformly on compact subset of |z|< 1, and so it represents

an analytic function on |z|< 1. We have

(1− z)F(z) = (1− z) · (az;q)∞

(z;q)∞

= (1− z) · (1−az)(1−azq)(1−azq2) · · ·
(1− z)(1− zq)(1− zq2) · · ·

=
(1−az)(1−azq)(1−azq2) · · ·
(1− zq)(1− zq2)(1− zq3) · · ·

= (1−az) · (aqz;q)∞

(qz;q)∞

= (1−az)F(qz).

Then, the following are equivalent

(1− z)
∞

∑
n=0

Anzn = (1−az)
∞

∑
n=0

Anqnzn,

∞

∑
n=0

Anzn−
∞

∑
n=0

Anzn+1 =
∞

∑
n=0

Anqnzn−
∞

∑
n=0

Anaqnzn+1,

∞

∑
n=0

(An−Anqn)zn =
∞

∑
n=0

(An−Anaqn)zn+1.
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That is,

An−Anqn = An−1−An−1aqn−1,

or equivalently

An(1−qn) = An−1(1−aqn−1),

and so,

An =
1−aqn−1

1−qn An−1, n≥ 1. (2.3)

Iterating (2.3) and using the fact that A0 = 1, we get

An =
(a;q)n

(q;q)n
, n≥ 0,

which substituted in (2.2) gives the result.

Note that setting in the previous theorem a = qa and then taking the limits as q→ 1 one

gets

∞

∑
n=0

a(a+1) · · ·(a+n−1)
n!

zn =
1

(1− z)a ,

which is the classical binomial theorem. This is the reason why Theorem 2.1.1 is often

referred to as the q-binomial theorem. The following result is due to Euler.

Corollary 2.1.2. Let q and z be complex numbers such that |q|< 1.
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(a) If |z|< 1, then

∞

∑
n=0

zn

(q;q)n
=

1
(z)∞

. (2.4)

(b) If |z|< ∞, then

∞

∑
n=0

(−z)nq
n(n−1)

2

(q;q)n
= (z)∞. (2.5)

Proof. (a) Setting a = 0 in (2.1) we get,

∞

∑
n=0

(0;q)n

(q;q)n
zn =

(0 · z;q)∞

(z;q)∞

,

Then,

∞

∑
n=0

zn

(q;q)n
=

1
(z)∞

.

(b) To get this part replace a by a/b and z by bz in (2.1).

∞

∑
n=0

(a/b;q)n

(q;q)n
(bz)n =

(az)∞

(bz)∞

. (2.6)
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Notice that,

lim
b→0

(a/b;q)n bn = lim
b→0

(
1− a

b

)(
1− aq

b

)
· · ·
(

1− aqn−1

b

)
bn

= lim
b→0

(b−a)(b−aq) · · ·
(
b−aqn−1)

= (−a)(−aq)
(
−aq2) · · ·(−aqn−1)

= (−a)n q1+2+···+n−1

= (−a)n q
n(n−1)

2 .

Now equality (2.5) follows by letting b→ 0 and setting a = 1.

Definition 2.1.2. Ramanujan’s general theta function f (a,b) is defined by

f (a,b) :=
∞

∑
n=−∞

an(n+1)/2bn(n−1)/2, |ab|< 1. (2.7)

We list some properties of the theta function in the following theorem.

Theorem 2.1.3.

(a) f (a,b) = f (b,a),

(b) f (1,a) = 2 f (a,a3),

(c) f (−1,a) = 0,

(d) f (a,b) = an(n+1)/2bn(n−1)/2 f (a(ab)n,b(ab)−n), n ∈ Z.



8

Proof. (a) This part follows by letting m =−n in the series below:

f (a,b) =
∞

∑
n=−∞

an(n+1)/2bn(n−1)/2

=
∞

∑
n=−∞

b−n(−n+1)/2a−n(−n−1)/2

=
∞

∑
m=−∞

bm(m+1)/2am(m−1)/2

= f (b,a).

(b) We have

f (1,a) =
∞

∑
n=−∞

a
n(n+1)

2 =
∞

∑
n=−∞

a
2n(2n+1)

2 +
∞

∑
n=−∞

a
(2n+1)(2n+2)

2

=
∞

∑
n=−∞

an(2n+1)+
∞

∑
n=−∞

a(n+1)(2n+1)

Changing the variable in the last summation with m := n+1, we find,

f (1,a) =
∞

∑
n=−∞

an(2n+1)+
∞

∑
m=−∞

am(2m−1)

Next expand f (a,a3) and f (a3,a),

f (a,a3) =
∞

∑
n=−∞

a
n(n+1)

2 a
3n(n−1)

2 =
∞

∑
n=−∞

a2n2−n =
∞

∑
n=−∞

an(2n−1)

and,

f (a3,a) =
∞

∑
n=−∞

a
3n(n+1)

2 a
n(n−1)

2 =
∞

∑
n=−∞

a2n2+n =
∞

∑
n=−∞

an(2n+1)
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Now we deduce as f (a,b) = f (b,a) by part (a) that,

f (1,a) = f (a3,a)+ f (a,a3) = 2 f (a,a3).

(c) To prove this part, we work with modulo 4,

f (−1,a) =
∞

∑
n=−∞

(−1)
n(n+1)

2 a
n(n−1)

2

=
∞

∑
n=−∞

(−1)
4n(4n+1)

2 a
4n(4n−1)

2 +
∞

∑
n=−∞

(−1)
(4n+1)(4n+2)

2 a
(4n+1)(4n)

2

+
∞

∑
n=−∞

(−1)
(4n+2)(4n+3)

2 a
(4n+2)(4n+1)

2 +
∞

∑
n=−∞

(−1)
(4n+3)(4n+4)

2 a
(4n+3)(4n+2)

2

=
∞

∑
n=−∞

a2n(4n−1)−
∞

∑
n=−∞

a2n(4n+1)

−
∞

∑
n=−∞

a(2n+1)(4n+1)+
∞

∑
n=−∞

a(2n+1)(4n+3)

We have,

2(−n)(4(−n)+1) = (−2n)(−4n+1) = 8n2−2n = 2n(4n−1),

and so,

∞

∑
n=−∞

a2n(4n−1)−
∞

∑
n=−∞

a2n(4n+1) = 0.

Similarly,

(2(−n−1)+1)(4(−n−1)+1) = (−2(n+1)+1)(−4(n+1)+1)

= 8(n2 +2n+1)−6(n+1)+1 = 8n2 +10n+3

= (2n+1)(4n+3),
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and so,

∞

∑
n=−∞

a(2n+1)(4n+3)−
∞

∑
n=−∞

a(2n+1)(4n+1) = 0.

(d) Let n be an integer. Then

an(n+1)/2bn(n−1)/2 f
(
a(ab)n,b(ab)−n)= an(n+1)/2bn(n−1)/2

∞

∑
m=−∞

a((m(m+1)(n+1)−nm(m−1))/2b(m(m+1)n+m(m−1)(1−n))/2

=
∞

∑
m=−∞

a(n+m)(n+m+1)/2b(n+m)(n+m−1)/2.

Now replace n+m by k in the previous series to obtain the desired identity.

The following result is often referred to as Jacobi’s Triple Product Identity.

Theorem 2.1.4. Let q and z be complex numbers such that z 6= 0 and |q|< 1. Then

∞

∑
n=−∞

znqn2
= (−zq;q2)∞(−q/z;q2)∞(q2;q2)∞. (2.8)

Proof. Replace q by q2 and z by −zq in equation (2.5) to deduce that

(−zq;q2)∞ =
∞

∑
n=0

(zq)n(q2)
n(n−1)

2

(q2;q2)n
=

∞

∑
n=0

znqn2

(q2;q2)n

=
∞

∑
n=0

znqn2 (q2n+2;q2)∞

(q2;q2)∞

=
1

(q2;q2)∞

∞

∑
n=0

znqn2
(q2n+2;q2)∞

=
1

(q2;q2)∞

∞

∑
n=−∞

znqn2
(q2n+2;q2)∞.
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We start the sum from n =−∞ in the last step, since (q2n+2;q2)∞ = 0, when n is negative

integer. In (q2n+2;q2)∞ apply (2.5) again with q replaced by q2 and with z = q2n+2. Then,

(−zq;q2)∞ =
1

(q2;q2)∞

∞

∑
n=−∞

znqn2
∞

∑
r=0

(−1)r(q2n+2)r(q2)
r(r−1)

2

(q2;q2)r

=
1

(q2;q2)∞

∞

∑
n=−∞

znqn2
∞

∑
r=0

(−1)rq(2n+2)r+r2−r

(q2;q2)r

=
1

(q2;q2)∞

∞

∑
r=0

(−1)rqr

(q2;q2)r

∞

∑
n=−∞

znqn2
q2nr+r2

=
1

(q2;q2)∞

∞

∑
r=0

(−1)rqrz−r

(q2;q2)r

∞

∑
n=−∞

zn+rq(n+r)2

=
1

(q2;q2)∞

∞

∑
r=0

(−q/z)r

(q2;q2)r

∞

∑
n=−∞

znqn2

=
1

(q2;q2)∞(−q/z;q2)∞

∞

∑
n=−∞

znqn2
,

when the last identity follows by (2.4) with z replaced by −q/z and q replaced by q2.

Then we obtain:

∞

∑
n=−∞

znqn2
= (−zq;q2)∞(q2;q2)∞(−q/z;q2)∞.

Note that in Ramanujan’s notation (2.7), the Jacobi’s triple product identity takes the

shape

f (a,b) = (−a;ab)∞(−b;ab)∞(ab;ab)∞. (2.9)
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To see this, put a = zq and b = q
z . Then,

f (a,b) =
∞

∑
n=−∞

(zq)
n(n+1)

2 (
q
z
)

n(n−1)
2

=
∞

∑
n=−∞

z
n(n+1)

2 − n(n−1)
2 ·q

n(n+1)
2 +

n(n−1)
2

=
∞

∑
n=−∞

znqn2

= (−zq;q2)∞(−q/z;q2)∞(q2;q2)∞

= (−a;ab)∞(−b;ab)∞(ab;ab)∞ .

The following three functions are among the most common examples of theta functions:

Definition 2.1.3.

(a) ϕ(q) := f (q,q) := ∑
∞
n=−∞ qn2

,

(b) ψ(q) := f (q,q3) := ∑
∞
n=0 qn(n+1)/2,

(c) f (−q) := f (−q,−q2) := ∑
∞
n=−∞(−1)nqn(3n−1)/2.

Corollary 2.1.5. We have

(a) ϕ(q) = (−q,q2)2
∞(q

2;q2)∞,

(b) ψ(q) = (q2,q2)∞

(q,q2)∞
,

(c) f (−q) = (q,q)∞.

Proof. (a) Letting a = b = q in (2.9) gives:

ϕ(q) = f (q,q) = (−q;q2)∞(−q;q2)∞(q2;q2)∞

= (−q;q2)2
∞(q

2;q2)∞.
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(b) We have

ψ(q) = f (q,q3) = (−q;q4)∞(−q3;q4)∞(q4;q4)∞,

by (2.9) applied to a = q and b = q3.

Next,

(−q;q4)∞(−q3;q4)∞ = (1+q)(1+q4+1)(1+q2∗4+1)(1+q3∗4+1) · · ·

(1+q3)(1+q4+3)(1+q2∗4+3)(1+q3∗4+3) · · ·

= (1+q)(1+q2+1)(1+q2∗2+1)(1+q3∗2+1) · · ·

= (−q;q2)∞.

Also,

(q4;q4)∞ = (1−q4)(1−q8)(1−q12)(1−q16) · · ·

= (1+q2)(1+q4)(1+q6)(1+q8) · · ·

(1−q2)(1−q4)(1−q6)(1−q8) · · ·

= (−q2;q2)∞(q2;q2)∞.

Now combining gives:

ψ(q) = (−q;q2)∞(−q2;q2)∞(q2;q2)∞.
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Further,

(−q;q2)∞(−q2;q2)∞ = (1+q)(1+q2+1)(1+q2∗2+1)(1+q3∗2+1) · · ·

(1+q2)(1+q2+2)(1+q2∗2+2)(1+q3∗2+2) · · ·

= (1+q)(1+q2)(1+q2+1)(1+q2+2) · · ·

= (−q;q)∞.

Also, we have

(−q;q)∞ = (1+q)(1+q2)(1+q3) · · ·

=
(1−q2)(1−q4)(1−q6) · · ·
(1−q)(1−q2)(1−q3) · · ·

=
(q2;q2)∞

(q;q)∞

=
(q2;q2)∞

(q2;q2)∞(q;q2)∞

=
1

(q;q2)∞

.

Finally, we find

ψ(q) = (−q;q)∞(q2;q2)∞ =
(q2;q2)∞

(q;q2)∞

.

(c) To get this part, set a =−q, b =−q2 in (2.9). Then, from Definition 2.1.3 part (3),

f (−q) = f (−q,−q2) = (q;q3)∞(q2;q3)∞(q3;q3)∞

= (1−q)(1−q4)(1−q7)(1−q10) · · ·

(1−q2)(1−q5)(1−q8)(1−q11) · · ·

(1−q3)(1−q6)(1−q9)(1−q12) · · ·

= (q;q)∞.
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The formula in the following theorem is often called Jacobi’s identity.

Theorem 2.1.6. We have

∞

∑
n=0

(−1)n(2n+1)qn(n+1)/2 = (q;q)3
∞ (2.10)

Proof. In (2.8), replace z by z2q to deduce that

∞

∑
n=0

z2nqn2+n = (−z2q2;q2)∞(−1/z2;q2)∞(q2;q2)∞. (2.11)

Divide both sides of (2.11) by 1+1/z2 to find that

∑
∞
n=0 z2n+1qn2+n

z+1/z
=

(−z2q2;q2)∞(−1/z2;q2)∞(q2;q2)∞

1+1/z2

=
(−z2q2;q2)∞(1+1/z2)(1+q2/z2)(1+q4/z2) · · ·(q2;q2)∞

1+1/z2

= (−z2q2;q2)∞(−q2/z2;q2)∞(q2;q2)∞

(2.12)

Observe that by theorem 2.1.3 part (c),

f (−1,−q2) =
∞

∑
n=−∞

(−1)n(n−1)/2(−q2)n(n+1)/2

=
∞

∑
n=−∞

(−1)n(n−1)/2(−1)n(n+1)/2qn2+n

=
∞

∑
n=−∞

(−1)n2
qn2+n

=
∞

∑
n=−∞

(−1)nqn2+n = 0.

(2.13)
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Thus, letting z→ i in (2.12), using (2.13), and applying L’Hospital’s rule, we find that

L.H.S : lim
z→i

∑
∞
n=0 z2n+1qn2+n

z+1/z
= lim

z→i

∑
∞
n=0(2n+1)(z)2nqn2+n

1−1/z2

=
∑

∞
n=0(2n+1)(i)2nqn2+n

1−1/(i)2

=
1
2

∞

∑
n=0

(−1)n(2n+1)qn(n+1).

R.H.S : lim
z→i

= (−z2q2;q2)∞(−q2/z2;q2)∞(q2;q2)∞ = (−(i)2q2;q2)∞(−q2/(i)2;q2)∞(q2;q2)∞

= (q2;q2)∞(q2;q2)∞(q2;q2)∞

= (q2;q2)3
∞.

So,

1
2

∞

∑
n=−∞

(−1)n(2n+1)qn(n+1) = (q2;q2)3
∞. (2.14)

Dividing the sum into two part:

1
2

∞

∑
n=−∞

(−1)n(2n+1)qn(n+1) =
1
2

(
−1

∑
n=−∞

(−1)n(2n+1)qn(n+1)+
∞

∑
n=0

(−1)n(2n+1)qn(n+1)

)
.

In the prior sum, replace n by −n−1 and simplify, so the sum become:

1
2

(
2×

∞

∑
n=0

(−1)n(2n+1)qn(n+1)

)
=

∞

∑
n=0

(−1)n(2n+1)qn(n+1).

Finally, we complete the proof by replacing q2 by q in (2.14):

∞

∑
n=0

(−1)n(2n+1)qn(n+1)/2 = (q;q)3
∞.
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2.2 Integer partitions, divisor functions, and sums of two squares

We now discuss briefly the arithmetic function which we would like to investigate later in

Chapter 3 using the theory of q-series. For more details about these functions we refer for

instance to Andrews [1], Berndt[3], and Williams [14].

Definition 2.2.1. Let n be a nonnegative integer. The integer partition function is the

function p(n) which counts the number of ways n can be written as a sum of positive

integers where the order of the summands is not important. For example p(4) = 5 since

4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1. Note that by convention we have p(0) = 1.

Euler in [5] stated that

∞

∑
n=0

p(n)qn =
1

(q;q)∞

=
∞

∏
j=1

1
(1−q j)

.

Noticing that the factor (1+qk+qk+k+qk+k+k+ · · ·) represents the number of summands

k in a partition of n Euler’s proof proceeded as follows:

∞

∑
n=0

p(n)qn = (1+q1 +q1+1 +q1+1+1 · · ·)(1+q2 +q2+2 +q2+2+2 + · · ·)

(1+q3 +q3+3 +q3+3+3 + · · ·) · · ·

=
∞

∏
j=1

(1+q j +q j+ j +q j+ j+ j + · · ·)

=
∞

∏
j=1

(1+q j +q2 j +q3 j + · · ·)

=
∞

∏
j=1

1
1−q j

=
1

(q;q)
∞

.

For a rigorous proof and other facts on integer partitions we refer to Andrews [1]. We

introduce some divisor functions which will be needed in later applications.
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Definition 2.2.2. Let n be a positive integer. The the function σ(n) denotes the sum of

the positive divisors of n. That is

σ(n) = ∑
d|n

d.

It is well-known that the generating function for σ(n) is

∞

∑
n=1

σ(n)qn =
∞

∑
n=1

nqn

1−qn ,

which can be seen as follows:

∞

∑
n=1

σ(n)qn =
∞

∑
n=1

qn
∑
d|n

d

=
∞

∑
d=1

d ∑n : d | nqn

=
∞

∑
d=1

d ∑n = 1∞qdn

=
∞

∑
d=1

dqd

1−qd .

Definition 2.2.3. For any positive integer let

di,4(n) = ∑
d|n: d≡i(mod4)

1.

It is well-known that the generating functions for d1,4(n) and d3,4(n) are respectively given

by

∞

∑
n=1

d1,4(n)qn =
∞

∑
n=1

q4n−3

1−q4n−3 ,
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and

∞

∑
n=1

d3,4(n)qn =
∞

∑
n=1

q4n−1

1−q4n−1 ,

see for instance Berndt [3, Page 58].

Definition 2.2.4. If n is a nonnegative integer, let

r2(n) = #{(x1,x2) ∈ Z2 : x2
1 + x2

2 = n}.

So, r2(0) = 1 and r2(1) = 4 since 1 = (±1)2 + 02 = 02 +(±1)2. Further, it easy to see

that the generating function of r2(n) is given by

∞

∑
n=0

r2(n)qn =

(
∞

∑
n=0

qn2

)2

. (2.15)
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Chapter 3: Some New Formulas Involving Binomial Coefficients

In this chapter we shall give a variety of new congruences for the binomial coefficients

and we shall evaluate an alternating sum of binomial coefficients. While the results in

section 1 are well-known, section 3 consists of some of our new work which can be found

in [4]. As to section 2 we do not know whether the main result exists or not. The ideas of

the proofs are in terms of the q-binomial coefficients for which we will devote section 1

of this chapter. We refer to Andrews [1] and Berndt [3] for more details about q-binomial

coefficients.

3.1 The q-binomial coefficients

In this section we will introduce the q-binomial coefficients along with their important

properties.

Definition 3.1.1. Let n be a nonnegative integer. The q-number and the q-factorial are

respectively given by

[n] =
1−qn

1−q
,

[n]! =
(q)n

(1−q)n =
n

∏
j=1

[ j].

Accordingly, if n and m are nonnegative integers such that n ≥ m, then the q-binomial

coefficient is defined by

[
n
m

]
=

[n]!
[m]![n−m]!

=
(q)n

(q)m(q)n−m
.



21

Note that

lim
q→1

[n] =
−n
−1

= n,

lim
q→1

[n]! =
−1
−1
· −2
−1
· · · −n
−1

= n!,

and therefore

lim
q→1

[
n
m

]
=

(
n
m

)
.

For instance, from the previous identity we see that the q-binomial coefficients extend

the usual binomial coefficients. Note also that [n]! is a polynomial in q. However, it

is not clear from the definition that the q-binomial coefficient
[n

m

]
is a polynomial in

q. Among other things, this fact will be proved below in Theorem 3.1.2. Besides, just

as the binomial coefficients appear in many combinatorial applications the q-binomial

coefficients have also a variety of combinatorial interpretations. We refer to Satnley [12]

for more information on the matter. By way of example we mention here without proof

the following interpretation which is related to integer partitions, refer to [1, Theorem

3.1].

Theorem 3.1.1. For nonnegative integers M, N, and n let p(N,M,n) denote the number

of partitions of n into at most M parts each ≤ N and let G(N,M;q) be the generating

function for p(N,M,n), that is,

G(N,M;q) =
∞

∑
n=0

p(N,M,n)qn.

Then G(N,M;q) =
[M+N

M

]
.

We now list some important facts on the q-binomial coefficients.

Theorem 3.1.2. Let m and n be nonnegative integers such that n≥ m. Then
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(a)
[n

0

]
=
[n

n

]
= 1.

(b)
[n

m

]
=
[ n

n−m

]
.

(c)
[n

m

]
=
[n−1

m

]
+qn−m[n−1

m−1

]
.

(d)
[n

m

]
=
[n−1

m−1

]
+qm[n−1

m

]
.

(e)
[n

m

]
is a polynomial in q of degree m(n−m).

Proof. (a)
[n

0

]
= [n]!

[0]![n]! =
1

1·1 = 1 =
[n

n

]
.

(b)
[ n

n−m

]
= [n]!

[n−m]![n−n+m]! =
[n]!

[n−m]![m]! =
[n

m

]
.

(c)

[
n
m

]
−
[

n−1
m

]
=

(q)n

(q)m(q)n−m
− (q)n−1

(q)m(q)n−1−m

=
(q)n−1

(q)m(q)n−m

(
(1−qn)− (1−qn−m)

)
=

(q)n−1

(q)m(q)n−m

(
qn−m−qn)

=
(q)n−1

(q)m(q)n−m
qn−m(1−qm)

= qn−m (q)n−1

(q)m−1(q)n−m

= qn−m
[

n−1
m−1

]
.

(d) Replace m by n−m to get

[
n

n−m

]
=

[
n−1

n−m−1

]
+qn−m

[
n−1
n−m

]
,

which by part (b) is equivalent to:

[
n
m

]
=

[
n−1

m

]
+qn−m

[
n−1
m−1

]
.
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(e) We proceed by induction on n. n= 1,
[1

0

]
=
[1

1

]
= 1, which is a polynomial of degree 1.

Suppose now that the statement is true for
[n

m

]
. Then by virtue of part (d) we find

[
n+1

m

]
=

[
n

m−1

]
+qm

[
n
m

]
,

which is clearly a polynomial in q of degree m(n+1−m).

Because of Theorem 3.1.2(e) the q-binomial coefficients are also referred to as Gaussian

polynomials.

Theorem 3.1.3. For all nonnegative integers m and n we have

n

∑
j=0

q j
[

m+ j
m

]
=

[
n+m+1

m+1

]
.

Proof. We proceed by induction on n. If n = 0, we have

q0
[

m+0
m

]
=

[
m+1
m+1

]
.

Suppose that the statement holds for n. Then with the help of Theorem 3.1.2(c) we find

[
n+m+2

m+1

]
=

[
n+m+1

m+1

]
+qn+1

[
n+m+1

m

]
=

n

∑
j=0

q j
[

m+ j
m

]
+qn+1

[
n+m+1

m

]

=
n+1

∑
j=0

q j
[

m+ j
m

]
.
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Corollary 3.1.4. For all nonnegative integers m and n we have

n

∑
j=0

(
m+ j

m

)
=

(
n+m+1

m+1

)
.

Proof. Letting q→ 1 in theorem 3.1.3 we obtain

lim
q→1

n

∑
j=0

q j
[

m+ j
m

]
=

n

∑
j=0

(
m+ j

m

)
= lim

q→1

[
n+m+1

m+1

]
=

(
n+m+1

m+1

)
.

Theorem 3.1.5. If n is a nonnegative integer, then

n

∑
j=0

(−1) j
[

n
j

]
z jq

j( j−1)
2 = (z;q)n.

Proof. By the q-analogue of the binomial theorem, see Theorem 2.1.1,

n

∑
j=0

(q−n;q) jqn j

(q;q) j
z j =

∞

∑
j=0

(q−n;q) j

(q;q) j
(qnz) j

=
(z;q)∞

(qnz;q)∞

= (z;q)n
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Then for |z|< 1,

(z;q)n =
∞

∑
j=0

(1−q−n)(1−q−n+1) · · ·(1−q−n+ j−1)

(q;q) j
qn jz j

=
∞

∑
j=0

q−n(qn−1)q−n+1(qn−1−1) · · ·q−n+ j−1(qn− j+1−1)
(q;q) j

qn jz j

=
∞

∑
j=0

(−1) jq
j( j−1)

2

(
(1−qn−( j−1)) · · ·(1−qn)

)
z j

(q;q) j

=
n

∑
j=0

(−1) jq
j( j−1)

2 z j (q)n

(q) j(q)n− j

=
n

∑
j=0

(−1) j
[

n
j

]
q

j( j−1)
2 z j.

Theorem 3.1.6 (The q-Chu-Vandermonde Sum). For all nonnegative integers m,n and h

we have

h

∑
k=0

[
n
k

][
m

h− k

]
q
(n−k)(h−k)

=

[
m+n

h

]
.

Proof. By Theorem 3.1.5 we have

m+n

∑
h=0

(−1)h
[

m+n
h

]
zhq

h(h−1)
2 = (z;q)m+n

= (z;q)n(zqn;q)m

=
n

∑
k=0

(−1)k
[

n
k

]
q

k(k−1)
2 zk ·

m

∑
j=0

(−1) j
[

m
j

]
qn j+ j( j−1)

2 z j

=
m+n

∑
h=0

zh
h

∑
k=0

(
(−1)kq

k(k−1)
2

[
n
k

]
(−1)h−kqn(h−k)+ (h−k)(h−k−1)

2

[
m

h− k

])
=

m+n

∑
h=0

zh(−1)hq
h(h−1)

2

h

∑
k=0

[
n
k

][
m

h− k

]
q(n−k)(h−k).
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Then the desired identity follows by comparing the coefficients of z.

Corollary 3.1.7 (Chu-Vandermonde Sum). For all nonnegative integers m,n and h we

have

h

∑
k=0

(
n
k

)(
m

h− k

)
=

(
m+n

h

)
.

Proof. Letting q→ 1 in Theorem 3.1.6 gives:

lim
q→1

h

∑
k=0

[
n
k

][
m

h− k

]
q
(n−k)(h−k)

=
h

∑
k=0

(
n
k

)(
m

h− k

)
= lim

q→1

[
m+n

h

]
=

(
m+n

h

)
.

3.2 An alternating sum of q-binomial coefficients

It is easy by logarithmic differentiation applied to the identity (1− z)n = ∑
n
k=0(−1)n−kzk

to check that

m−1

∑
j=0

(−1)m−1− j
(

n
j

)
=

(
n−1
m−1

)
. (3.1)

In this section we provide q-analogue for this formula.

Theorem 3.2.1. If m and n are positive integers such that m≤ n, then

[
n
m

]
=

1
m

m−1

∑
j=0

(−1)m−1− jq
j( j−1)−m(m−1)

2

[
n
j

]
1−q(m− j)n

1−qm− j .

Proof. We assume throughout the proof that |z| < 1 and |q| < 1. Let F(z) = (z;q)n =



27

∏
n−1
j=0(1− zq j) and write

F(z) =
∞

∑
j=0

A( j)z j.

Then

logF(z) =
n−1

∑
j=0

log(1− zq j) =−
n−1

∑
j=0

∞

∑
m=1

qm j

m
zm

=−
∞

∑
m=1

zm

m

n−1

∑
j=0

qm j =−
∞

∑
m=1

1−qmn

1−qm
zm

m
.

Differentiating both sides with respect to z and then multiplying by z gives

zF ′(z) =−F(z)
∞

∑
m=1

1−qmn

1−qm zm

=−

(
∞

∑
m=0

A(m)zm

)(
∞

∑
m=1

1−qmn

1−qm zm

)
,

and so we get the recurrence relation

mA(m) =−
m−1

∑
j=0

A( j)
1−q(m− j)n

1−qm− j . (3.2)

On the other hand, by Theorem 3.1.5

A( j) = (−1) jq
j( j−1)

2

[
n
j

]
.

Substituting this in the formula (3.2) we obtain

m(−1)mq
m(m−1)

2

[
n
m

]
=

m−1

∑
j=0

(−1) j+1q
j( j−1)

2

[
n
j

]
1−q(m− j)n

1−qm− j ,
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or equivalently,

[
n
m

]
=

1
m

m−1

∑
j=0

(−1)m−1− jq
j( j−1)−m(m−1)

2

[
n
j

]
1−q(m− j)n

1−qm− j .

This completes the proof.

Note that letting q→ 1 yields

(
n
m

)
=

n
m

m−1

∑
j=1

(−1)m−1− j
(

n
j

)
,

and hence

(
n−1
m−1

)
=

m−1

∑
j=1

(−1)m−1− j
(

n
j

)

which is the formula (3.1).

3.3 Divisibility of binomial coefficients

Throughout the set of polynomials in q with integer coefficients will be written Z[q]. The

following fact is easily checked and we record it as a theorem for further reference.

Theorem 3.3.1. Let n, a, and b be a positive integer such that a ≥ b. If 1−q
1−qn

[a
b

]
∈ Z[q],

then
(a

b

)
is divisible by n.

Proof. Simply let q→ 1.

We now give a result which enables us to generate new congruences involving binomial

coefficients from old ones.

Theorem 3.3.2. Let a1, . . . ,ar, b1, . . . ,br, c1, . . . ,cs, d1, . . . ,ds and n be positive integers

such that a j ≥ b j for all j = 1, . . . ,r, c j ≥ d j for all j = 1, . . . ,s, and max{a j : j =
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1, . . . ,r} ≥max{c j : j = 1, . . . ,s}. Then

1−q
1−qn

∏
r
j=1
[a j

b j

]
∏

s
j=1
[c j

d j

] ∈ Z[q]

if and only if

1−q
1−qn

∏
r
j=1
[a j+k jn

b j+l jn

]
∏

s
j=1
[c j+u jn

d j+v jn

] ∈ Z[q]

for all integers k1, . . . ,k j, l1, . . . , l j, u1, . . . ,u j, v1, . . . ,v j such that a j +k jn≥ b j + l jn≥ 0,

c j+u jn≥ d j+v jn≥ 0 for all j = 1, . . . ,r, and max{a j+k j : j = 1, . . . ,r}≥max{c j+u j :

j = 1, . . . ,s}.

Proof. The implication from the right to the left is clear. Assume now that

A(q) =
1−q
1−qn

r

∏
j=1

[a j
b j

][c j
d j

] ∈ Z[q].

By the well-known identity

qm−1 = ∏
d|m

Φd(q),

where Φd(q) is the d-th cyclotomic polynomial in q, we obtain

A(q) =
max{a1,...,ar}

∏
d=2

Φd(q)ed ,

where

ed =−χ(d | n)+
r

∑
j=1

(⌊a j

d

⌋
−
⌊

b j

d

⌋
−
⌊

a j−b j

d

⌋)
−

s

∑
j=1

(⌊c j

d

⌋
−
⌊

d j

d

⌋
−
⌊

c j−d j

d

⌋)
,
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with χ(S) = 1 if S is true and χ(S) = 0 if S is false. As A(q) is a polynomial in q and

Φd(q) is irreducible for any d we must have ed ≥ 0 for all d = 2, . . . ,max{a1, . . . ,ar}. As

to B(q) = 1−q
1−qn ∏

r
j=1

[a j+k jn
b j+l jn

]

[c j+u jn
d j+v jn

]
, we have

B(q) =
max{a1+k1n,...,ar+krn}

∏
d=2

Φd(q)ed ,

where

ed =−χ(d | n)+
r

∑
j=1

(⌊
a j + k jn

d

⌋
−
⌊

b j + l jn
d

⌋
−
⌊

a j−b j +(k j− l j)n
d

⌋)

−
s

∑
j=1

(⌊
c j +u jn

d

⌋
−
⌊

d j + v jn
d

⌋
−
⌊

c j−d j +(u j− v j)n
d

⌋)
.

Then clearly ed ≥ 0 unless d | n. But if d | n, then

r

∑
j=1

(⌊
a j + k jn

d

⌋
−
⌊

b j + l jn
d

⌋
−
⌊

a j−b j +(k j− l j)n
d

⌋)
=

r

∑
j=1

(⌊a j

d

⌋
−
⌊

b j

d

⌋
−
⌊

a j−b j

d

⌋)

and

s

∑
j=1

(⌊
c j +u jn

d

⌋
−
⌊

d j + v jn
d

⌋
−
⌊

c j−d j +(u j− v j)n
d

⌋)
=

s

∑
j=1

(⌊c j

d

⌋
−
⌊

d j

d

⌋
−
⌊

c j−d j

d

⌋)

and therefore ed ≥ 0 by assumption, implying that B(q) is a polynomial in q. This com-

pletes the proof.

In our first application of Theorem 3.3.2 we will need the well-known fact that the q-

Catalan number

Cn(q) =
1−q

1−qn+1

[
2n
n

]
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is a polynomial in q with nonnegative coefficients for all nonnegative integer n. See for

instance [2].

Theorem 3.3.3. (a) For any positive integer n we have

2n(2n+1)
∣∣∣( 6n

2n−1

)
.

(b) For any positive integer n we have

3n(3n+1)
∣∣∣( 12n

6n−1

)
.

(c) For any nonnegative integer n we have

(3n+1)(3n+2)
∣∣∣(12n+4

6n+1

)
.

Proof. (a) Combining Theorem 3.3.2 with the fact that Cn(q) ∈ Z[q] yields that

1−q
1−qn+1

[
2n+(n+1)

n

]
=

1−q
1−qn+1

[
3n+1

n

]
∈ Z[q]

and therefore by Theorem 3.3.1 we find that

n(n+1)
∣∣∣(3n+1)

(
3n

n−1

)
.

Observe now that if n is even, then gcd(n(n+1),3n+1) = 1 and thus

2n(2n+1)
∣∣∣( 6n

2n−1

)
.
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(b) By a similar argument of part (a) we get

1−q
1−qn+1

[
2n+2(n+1)

n+n+1

]
=

1−q
1−qn+1

[
4n+2
2n+1

]
∈ Z[q],

which by Theorem 3.3.1 and the basic properties of the binomial coefficients yields

n(n+1)
∣∣∣(4n+1)

(
4n

2n−1

)
.

But if n≡ 0 (mod 3), then gcd(n(n+1),(4n+1)) = 1 and therefore we find

3n(3n+1)
∣∣∣( 12n

6n−1

)
,

as desired. (c) This part follows in a completely the same way as part (b) by taking n≡ 1

(mod 3) instead of n≡ 0 (mod 3).

We will now apply Theorem 3.3.2 to some results of Guo and Krattenthaler in [8].

Theorem 3.3.4. (a) For any positive integer n we have

3n(6n−1)
∣∣∣( 6n

3n−1

)
.

(b) For any positive integer n we have

(6n+1)(12n−1)
∣∣∣(12n−1

6n−1

)
.

Proof. (a) Guo and Krattenthaler in [8, Theorem 3.1] proved that 1−q
1−q6n−1

[12n
3n

]
∈ Z[q] for
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all positive integer n. Then by Theorem 3.3.2 we find that

1−q
1−q6n−1

[
12n− (6n−1)

3n

]
=

1−q
1−q6n−1

[
6n+1

3n

]
∈ Z[q],

from which it follows by Theorem 3.3.1 that

3n(6n−1)
∣∣∣(6n+1)

(
6n

3n−1

)
.

As gcd(3n(6n−1),6n+1) = 1, the previous relation implies

3n(6n−1)
∣∣∣( 6n

3n−1

)
.

(b) Similarly we find

(6n−1)
∣∣∣(6n+1

3n+1

)
=

6n+1
3n+1

(
6n
3n

)
=

2(6n+1)
3n+1

(
6n−1
3n−1

)
,

which implies that

(3n+1)(6n−1)
∣∣∣2(6n+1)

(
6n−1
3n−1

)
.

Now the desired result follows since gcd((3n+1)(6n−1),2(6n+1)) = 1 for even n.

Theorem 3.3.5. (a) For any positive integer n we have

4n(6n−1)
∣∣∣( 6n

4n−1

)
.
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(b) For any positive integer n we have

(18n−1)(6n+1)
∣∣∣(18n−1

6n−1

)
.

(c) For any nonnegative integer n we have

(18n+11)(6n+5)
∣∣∣(18n+5

6n+3

)
.

Proof. (a) Guo and Krattenthaler [8, Theorem 3.1] showed that 1−q
1−q6n−1

[12n
4n

]
∈Z[q] for all

positive integer n. Then by Theorem 3.3.2 we have that

1−q
1−q6n−1

[
6n+1

4n

]
∈ Z[q],

which by Theorem 3.3.1 implies

4n(6n−1)
∣∣∣(6n+1)

(
6n

4n−1

)
.

Since gcd(4n(6n−1),6n+1) = 1 we get

4n(6n−1)
∣∣∣( 6n

4n−1

)
.

(b) Similarly using the basic fact that
[12n

4n

]
=
[12n

8n

]
, see Theorem 3.1.2, we have

(6n−1)
∣∣∣(12n−6n+1

8n−6n+1

)
=

(
6n+1
2n+1

)
=

3(6n+1)
2n+1

(
6n−1
2n−1

)
.
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But gcd((2n+1)(6n−1),3(6n+1)) = 1 if n≡ 0 (mod 3) and hence

(18n−1)(6n+1)
∣∣∣(18n−1

6n−1

)
.

(c) This part follows by the same argument of the previous part by taking n≡ 2 (mod 3)

rather than n≡ 0 (mod 3). This concludes the proof.

We will now apply Theorem 3.3.2 to a polynomial in Z[q] which is related to a result of

Sun in [13]. We first need a lemma.

Lemma 3.3.6. For all nonnegative integer n the function

f (q) =
1−q

1−q2n+1

[6n
3n

][3n
n

][2n
n

]
is a polynomial in q with integer coefficients.

Proof. It is easily seen that

f (q) =
6n

∏
d=2

Φd(q)ed ,

where as before Φd(q) is the d-th cyclotomic polynomial and

ed =−χ(d | 2n+1)+
⌊

6n
d

⌋
+
⌊n

d

⌋
−
⌊

2n
d

⌋
−
⌊

2n
d

⌋
−
⌊

3n
d

⌋
,

with χ(S) = 1 if S is true and χ(S) = 0 if S is false. If d - 2n+1, then
⌊2n

d

⌋
=
⌊2n+1

d

⌋
and

by Sun’s inequality [13, Theorem 10] we have

⌊
6n
d

⌋
+
⌊n

d

⌋
−
⌊

2n
d

⌋
−
⌊

2n
d

⌋
−
⌊

3n
d

⌋
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=

⌊
6n
d

⌋
+
⌊n

d

⌋
−
⌊

2n
d

⌋
−
⌊

2n+1
d

⌋
−
⌊

3n
d

⌋
≥ 0.

If d | 2n+1, then
⌊2n

d

⌋
=
⌊2n+1

d

⌋
−1 and by Sun’s inequality [13, Theorem 10] we have

⌊
6n
d

⌋
+
⌊n

d

⌋
−
⌊

2n
d

⌋
−
⌊

2n
d

⌋
−
⌊

3n
d

⌋

=

⌊
6n
d

⌋
+
⌊n

d

⌋
−
⌊

2n
d

⌋
−
⌊

2n+1
d

⌋
−
⌊

3n
d

⌋
+1≥ 1.

So in both cases ed ≥ 0 and therefore f (q) ∈ Z[q].

Theorem 3.3.7. For any nonnegative integer n we have

(2n+1)
(

6n+1
3n+1

)∣∣∣(10n+1
5n+1

)(
5n+1
3n+1

)
.

Proof. By Lemma 3.3.6 and Theorem 3.3.2 we have

1−q
1−q2n+1

[6n+2(2n+1)
3n+2n+1

][3n+2n+1
n+2n+1

][2n+2(2n+1)
n+2n+1

] =
1−q

1−q2n+1

[10n+2
5n+1

][5n+1
3n+1

][6n+2
3n+1

] ∈ Z[q].

Then

(2n+1)
(

6n+2
3n+1

)∣∣∣(10n+2
5n+1

)(
5n+1
3n+1

)
,

or equivalently,

2(2n+1)
(

6n+1
3n+1

)∣∣∣2(10n+1
5n+1

)(
5n+1
3n+1

)
,

which gives the desired identity after dividing both sides by 2.
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Chapter 4: Applications of q-series to Sums of Squares and Partitions

The number of ways a nonnegative integer can be expressed as a sum of squares have been

extensively studied in the past. For instance, Jacobi was the first to give such formulas for

sums of two squares and sums of four squares. Many different methods have been found

to derive Jacobi’s formulas. In this chapter we shall see how q-series can be used to give

Jacobi’s formula on the representation of a nonnegative integer as a sum of two squares.

Other elementary methods based on Liouville’s sums can be found in Williams [14, Chap-

ter 9]. We will provide a recurrence relation for the partition function p(n) in terms of the

divisor function σ(n). Finally, we shall see an application of q-series to prove one of the

most famous congruences for integer partitions which is due to Ramanujan.

4.1 Sums of two squares

In this section we will use the approach of Hirschhorn [9] to derive Jacobi’s formula for

the function r2(n) of the sum of two squares.

Theorem 4.1.1. If n is a positive integer, then we have

r2(n) = 4(d1,4(n)−d3,4(n)).

Proof. Replace z by −a2q in the Jacobi’s triple identity Theorem 2.1.4 to get:

∞

∏
n=1

(1−a2q2n)(1−a−2q2n−2)(1−q2n) =
∞

∑
n=−∞

(−1)na2nqn2+n.
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Then replace q2 by q:

∞

∏
n=1

(1−a2qn)(1−a−2qn−1)(1−qn) =
∞

∑
n=−∞

(−1)na2nq
n2+n

2 .

Taking one factor out, we get:

(1−a−2)
∞

∏
n=1

(1−a2qn)(1−a−2qn)(1−qn) =
∞

∑
n=−∞

(−1)na2nq
n2+n

2 .

Multiply be a:

(a−a−1)
∞

∏
n=1

(1−a2qn)(1−a−2qn)(1−qn) =
∞

∑
n=−∞

(−1)na2n+1q
n2+n

2 .

Now work with modulo 2 to obtain

(a−a−1)
∞

∏
n=1

(1−a2qn)(1−a−2qn)(1−qn)

=
∞

∑
n=−∞

(−1)na2n+1q
n2+n

2

=
∞

∑
n=−∞

a4n+1q2n2+n−
∞

∑
n=−∞

a4n−1q2n2−n

= a
∞

∑
n=−∞

a4nq2n2+n−a−1
∞

∑
n=−∞

a4nq2n2−n

= a
∞

∑
n=−∞

a4nqn(q2)n2
−a−1

∞

∑
n=−∞

a4nq−n(q2)n2

= a
∞

∑
n=−∞

(a4q)n(q2)n2
−a−1

∞

∑
n=−∞

(a4q−1)n(q2)n2

= a
∞

∏
n=1

(1+a4q4n−1)(1+a−4q4n−3)(1−q4n)

−a−1
∞

∏
n=1

(1+a4q4n−3)(1+a−4q4n−1)(1−q4n).
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Differentiating the left hand side with respect to a, gives

(1+
1
a2 )(

∞

∏
n=1

(1−a2qn)(1−a−2qn)(1−qn))+(a−a−1)(
∞

∏
n=1

(1−a2qn)(1−a−2qn)(1−qn))′,

which if a = 1 becomes

2
∞

∏
n=1

(1−qn)3.

Next differentiating the right hand side with respect to a yields

∞

∏
n=1

(1+a4q4n−1)(1+a−4q4n−3)(1−q4n)

+a
∞

∏
n=1

(1+a4q4n−1)(1+a−4q4n−3)(1−q4n)

×
∞

∑
n=1

(4a3q4n−1(1+a−4q4n−3)−4a−5q4n−3(1+a4q4n−1))

(1+a4q4n−1)(1+a−4q4n−3)

+a−2
∞

∏
n=1

(1+a4q4n−3)(1+a−4q4n−1)(1−q4n)

−a−1
∞

∏
n=1

(1+a4q4n−3)(1+a−4q4n−1)(1−q4n)

×
∞

∑
n=1

(4a3q4n−3(1+a−4q4n−1)−4a−5q4n−1(1+a4q4n−3))

(1+a4q4n−3)(1+a−4q4n−1)
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which if a = 1 becomes

∞

∏
n=1

(1+q4n−1)(1+q4n−3)(1−q4n)×

(
1+4

∞

∑
n=1

q4n−1(1+q4n−3)−q4n−3(1+q4n−1)

(1+q4n−1)(1+q4n−3)

)

+
∞

∏
n=1

(1+q4n−3)(1+q4n−1)(1−q4n)×

(
1−4

∞

∑
n=1

q4n−3(1+q4n−1)−q4n−1(1+q4n−3)

(1+q4n−3)(1+q4n−1)

)

=
∞

∏
n=1

(1+q4n−1)(1+q4n−3)(1−q4n)×

(
1+4

∞

∑
n=1

q4n−1

1+q4n−1 −
q4n−3

1+q4n−3

)

+
∞

∏
n=1

(1+q4n−3)(1+q4n−1)(1−q4n)×

(
1−4

∞

∑
n=1

q4n−3

1+q4n−3 −
q4n−1

1+q4n−1

)

= 2
∞

∏
n=1

(1+q4n−3)(1+q4n−1)(1−q4n)×

(
1−4

∞

∑
n=1

q4n−3

1+q4n−3 −
q4n−1

1+q4n−1

)

Now combining these facts we get

∞

∏
n=1

(1−qn)3 =
∞

∏
n=1

(1+q4n−3)(1+q4n−1)(1−q4n)×

(
1−4

∞

∑
n=1

q4n−3

1+q4n−3 −
q4n−1

1+q4n−1

)
.

(4.1)

Next divide both sides of (4.1) by:

∞

∏
n=1

(1+qn)2(1−qn) =
∞

∏
n=1

(1+qn)(1−q2n) (4.2)

Then the left hand side becomes:

∞

∏
n=1

(1−qn)3

(1+qn)2(1−qn)
=

∞

∏
n=1

(
1−qn

1+qn

)2

,

and the right hand side becomes:

(
1−4

∞

∑
n=1

q4n−3

1+q4n−3 −
q4n−1

1+q4n−1

)
,
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as we can rewrite the equation (4.2) as following:

∞

∏
n=1

(1+qn)2(1−qn) =
∞

∏
n=1

(1+q2n−1)(1+q2n)(1−q2n)

=
∞

∏
n=1

(1+q2n−1)(1−q4n)

=
∞

∏
n=1

(1+q4n−1)(1+q4n−3)(1−q4n).

So we have,

∞

∏
n=1

(
1−qn

1+qn

)2

=

(
1−4

∞

∑
n=1

q4n−3

1+q4n−3 −
q4n−1

1+q4n−1

)
.

Now,

∞

∏
n=1

1−qn

1+qn =
∞

∏
n=1

(1−q2n−1)(1−q2n)

(1+qn)

=
∞

∏
n=1

(1−q2n−1)(1−qn)

=
∞

∏
n=1

(1−q2n−1)(1−q2n−1)(1−q2n)

=
∞

∑
n=1

(−1)nqn2
.

Then we have:

(
∞

∑
n=1

(−1)nqn2

)2

= 1−4
∞

∑
n=1

(
q4n−3

1+q4n−3 −
q4n−1

1+q4n−1

)
.
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Further, replace q by −q in the previous identity to get

(
∞

∑
n=1

qn2

)2

= 1−4
∞

∑
n=1

(
−q4n−3

1−q4n−3 +
q4n−1

1−q4n−1

)

= 1+4
∞

∑
n=1

(
q4n−3

1−q4n−3 −
q4n−1

1−q4n−1

)
= 1+4

∞

∑
n=1

(d1(n)−d3(n))qn,

which by virtue of (2.15) means that

∞

∑
n=0

r2(n)qn = 1+4
∞

∑
n=1

(d1,4(n)−d3,4(n))qn.

Thus

r2(n) = 4(d1,4(n)−d3,4(n))

which is the desired formula.

4.2 Application to integer partitions

We start by a recurrence relation for p(n) in terms of the divisor function σ(n) := ∑d|n d

which is due to Euler.

Theorem 4.2.1. For each integer n > 1,

np(n) =
n−1

∑
j=0

p( j)σ(n− j). (4.3)
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Proof. Let,

F(q) =
∞

∑
n=0

p(n)qn =
1

(q;q)∞

=
1

(1−q)(1−q2)(1−q3) · · ·
. (4.4)

Put logarithm on both sides:

logF(q) = log
1

(1−q)(1−q2)(1−q3) · · ·

=− log((1−q)(1−q2)(1−q3) · · ·)

=−
∞

∑
n=1

log(1−qn)+C.

Then differentiate both sides,

F ′(q)
F(q)

=−
∞

∑
n=1

−nqn−1

1−qn =
∞

∑
n=1

nqn−1

1−qn .

The denominator is a geometric series so we can write,

F ′(q)
F(q)

=
∞

∑
n=1

nqn−1
∞

∑
m=0

qmn.

Multiply both sides by q to get,

q
F ′(q)
F(q)

= q
∞

∑
n=1

nqn−1
∞

∑
m=0

qmn =
∞

∑
n=1

nqn
∞

∑
m=0

qmn.
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Then expand the summation,

q
F ′(q)
F(q)

=
∞

∑
n=1

nqn
∞

∑
m=0

qmn

= q(1+q+q2 + · · ·)+2q2(1+q2 +q4 + · · ·)+3q3(1+q3 + · · ·)

+4q4(1+q4 + · · ·)+ · · ·

= (1)q+(1+2)q2 +(1+3)q3(1+2+4)q4 +(1+5)q5 + · · ·

= σ(1)q+σ(2)q2 +σ(3)q3 +σ(4)q4 +σ(5)q5 + · · ·

=
∞

∑
n=1

σ(n)qn.

Differentiating both sides of equation (4.4), and multiplying by q, gives:

qF ′(q) = q
∞

∑
n=1

np(n)qn−1 =
∞

∑
n=1

np(n)qn =
∞

∑
n=0

np(n)qn.

Then,

q
F ′(q)
F(q)

=
∞

∑
n=1

σ(n)qn,

or

qF ′(q) = F(q)
∞

∑
n=1

σ(n)qn.

Then,

∞

∑
n=0

np(n)qn = F(q)
∞

∑
n=1

σ(n)qn =
∞

∑
n=0

p(n)qn
∞

∑
n=1

σ(n)qn
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Finally we deduce that,

np(n) =
n−1

∑
j=0

p( j)σ(n− j).

In the following result we present the method of Hirschhorn [11] to reproduce one of

Ramanujna’s famous congruence involving the partition function p(n).

Theorem 4.2.2.

p(5n+4)≡ 0 (mod 5).

Proof. Remember that Jacobi’s identity 2.1.6 states that

(q;q)3
∞ =

∞

∑
n=0

(−1)n(2n+1)qn(n+1)/2.

The coefficient (−1)n(2n+1) is congruent to 0,±1 or±2 modulo 5. Specifically, (−1)n(2n+

1) ≡ 1 if and only if n ≡ 0 or 9 (mod 10), (−1)n(2n+ 1) ≡ −1 if and only if n ≡ 4 or

5 (mod 10), (−1)n(2n+ 1) ≡ 2 if and only if n ≡ 1 or 8 (mod 10), (−1)n(2n+ 1) ≡ −2

if and only if n ≡ 3 or 6 (mod 10), and (−1)n(2n+1) ≡ 0 if and only if n ≡2 or 7 (mod

10). For example we can check that (−1)n(2n+1)≡ 1 (mod 5) if and only if n≡ 0 or 9

(mod 10) as follows:


n≡ 0 (mod 2)

2n+1≡ 1 (mod 5)

⇒


n≡ 0 (mod 2)

2n≡ 0 (mod 5)

⇒


n≡ 0 (mod 2)

n≡ 0 (mod 5)

⇒ n≡ 0 ( mod 10)
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and,


n≡ 1 (mod 2)

2n+1≡−1 (mod 5)

⇒


n≡ 1 (mod 2)

2n≡ 3 (mod 5)

⇒


n≡ 1 (mod 2)

n≡ 4 (mod 5)

⇒ n≡ 9 ( mod 10).

So, (−1)n(2n+1)≡ 1 iff n≡ 0 or 9 (mod 10).

Thus we work with modulo 5 and get,

(q,q)3
∞ ≡

∞

∑
n=0

q10n(10n+1)/2 +
∞

∑
n=0

q(10n+9)(10n+10)/2−
∞

∑
n=0

q(10n+4)(10n+5)/2

−
∞

∑
n=0

q(10n+5)(10n+6)/2 +2
∞

∑
n=0

q(10n+1)(10n+2)/2 +2
∞

∑
n=0

q(10n+8)(10n+9)/2

−2
∞

∑
n=0

q(10n+3)(10n+4)/2−2
∞

∑
n=0

q(10n+6)(10n+7)/2

≡
∞

∑
n=0

q50n2+5n +
∞

∑
n=0

q50n2+95n+45−
∞

∑
n=0

q50n2+45n+10

−
∞

∑
n=0

q50n2+55n+15 +2
∞

∑
n=0

q50n2+15n+1 +2
∞

∑
n=0

q50n2+85n+36

−2
∞

∑
n=0

q50n2+35n+6−2
∞

∑
n=0

q50n2+65n+21.

Then we have,

(q;q)3
∞ = X +2qY,

where each of X , Y is a series in powers of q5 since in the first four sums the powers of q

are ≡ 0 (mod 5), while in the latter four sums the powers of q are ≡ 1 (mod 5). Also,

(q;q)5
∞ =

∞

∏
n=1

(1−qn)5 =
∞

∏
n=1

(1−5qn +10q2n−10q3n +5q4n−q5n)

≡
∞

∏
n=1

(1−q5n)≡ (q5;q5)∞.
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Thus,

∞

∑
n=1

p(n)qn =
1

(q;q)∞

=
(q;q)9

∞

(q;q)10
∞

=
((q;q)3

∞)
3

((q;q)5
∞)

2 ≡
((q;q)3

∞)
3

(q5;q5)2
∞

≡ (X +2qY )3

(q5;q5)2
∞

≡ X3 +6qX2Y +12q2XY 2 +8q3Y 3

(q5,q5)2
∞

≡ X3 +qX2Y +2q2XY 2 +3q3Y 3

(q5,q5)2
∞

.

We observe that the last expression on the right when expanded in q will not contain any

fourth powers. In other words,

∞

∑
n=1

p(5n+4)q5n+4 ≡ 0 (mod 5).

Similar proofs also exist for the following results of Ramanujan.

Theorem 4.2.3.

(a) p(7n+5)≡ 0 (mod 7)

(b) p(11n+6)≡ 0 (mod 11)
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