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Ab tract 

I n  thi the i we developed a numerical method for solvi ng a class of 

nonl inear fractional boundar alue problems using the fractional order Legendre 

Tau-path fol lowing method .  Theoretical and numerical analyses are presented. The 

numerical results sho\ ed that this method works pr perly and efficientl . 

Keywords: onl inear Fractional Boundary Value problems, Caputo 

derivati e, Tau method, path-fol lowing method, fractional order Legendre functions. 
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Chapter 1: Introduction 

I n  this the is, we d i  cussed a numerical technique for solving a class of 

fractional boundary value problems of the form : 

DfIy=f(x,y,i) ,xE]-l,l[ 1 <a�2 

y (-l)= y_ and y ( 1)= y+ 

( 1) 

(2) 

\ here y_uod )'+are constants andfEC2 ( [- 1 , 1 ) x�n �H). The fractional derivati e 

is described in  the Caputo sen e. [62 ] .  

Fractional calculus is  a branch of Mathematics that deals with generalization 

of the wel l -known operations of d ifferentiations and integrations to arbitrary non-

integer orders. Fractional derivative provides an excel lent instrument for the 

description of memory and hereditary properties of various materials and processes. 

This is  the main advantage of fractional derivatives in comparison with the c lassical 

integer-order models  in  which such effects are in  fact neglected. The idea of 

model l ing dynamic systems by fractional deferential equations can be used in many 

fields of Science and engineering inc luding electrochemical process [27 ]  and [32 ] ,  

dielectric polarization [26J , earthquakes [30 ], fluid-dynamic traffic model [ 3 1 ] , sol id  

mechanics [ 5 1 J ,  bioengineering [4 1 -43 ] and economics [7 ] . F ract ional derivative 

and Fractional integrals also appear in  theory of control  of dynanlical systems when 

control system and the contro l ler are described by fract ional d ifferential  equations. 

In the recent years, a number of methods have been proposed and app l ied 

successful ly to approximate various types of fractional d ifferential  equations. The 

most used methods are Adomian Decomposition Method [20] and [45-46J ,  

Variational I teration Method [ 1 4,56,60,63,64], Homotopy Perturbation Method [44] 
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and [6 ]  , Homotopy naly is 1ethod [29 ] ,  Fractional Differential Transform 

ethod [ 4-5 ] ,  [ 1 3 ] ,  and [ 2 1 -22 ] .  Power eries Method [47 ]  and other methods [ 1 5-

1 7 ] ,  [ 3 5 ]  and [ 40 ] .  

Recently, \ avelet ba  ed  operational matrix has been also appl ied for the 

olution of the fract ional di fferenti al equations. In 20 1 0, Li et al . [ 39 ]  constructed 

l I aar wavelet operational matrix of fractional integration with the use at Block plus 

Cunctions and successfu l !  appl ied for gett ing solution of  special type of fractional 

di fferential equation. In the same year Li [ 3 8 ]  used another operational matrix based 

on chebyshev wavelet for the same problem. In  20 1 1 ,  Saadatmandi and Dehghan 

[ 5 2 ]  used the concept of orthogonal pol nomial and constructed for Legendre 

operational matrix of d ifferentiation for solving such problems. Bernstein 

polynomi als have been used for solving numerical ly part ial different ial equations [ 8 ] .  

More recently Bernstein approximat ion have used for stable solution o f  problems of 

Abel in  ersion [ 54-55 ]  and general ized Abel integral equations arising in c lassic 

theory of e lastic i ty [48 ] .  

To identi fy  the d ifficult ies of this problem, we first apply our approach on  the 

ord inary derivat ive when a = 2. This i ssue is presented in chapter two. In addition, i t  

starts from the l inear problem. Then, there i s  a discussion on the solution of non­

l inear problem. Examples and conclusions are presented is this chapter. 

In Chapter Three, we present our approach for solving problem ( 1 )-(2). As 

we d id i n  chapter two, we start from l inear fractional boundary value problem. We 

present some of our experimental examples to explain how our approach works 

effic iently. F urthermore, some conclusions wi l l  be drown. 



When \\e appl)  Tau method to solve non-l inear fractional boundary value 

problems, the re ult  i a non-l inear s stem of equations. The c lassical methods for 

s Iving such problems are ewton and ecant methods. However, the necessar 

condi tion for these method to converge to the e act solution is to start with a "good" 

initial gue s. But such in i tial guess is not always avai l able. For thi s  reason, most of 

rescarche do not use the Tau method for this purpose. 

S iyyam and Syam, [62 ] .  used the path- fol lowing method to trace implicitly 

defined curv . Thi thesis tries to rel ate the Tau-method and the path-fol lowing 

method. In thi s  approach, the in i tial guess is  avoided for solving the non-l inear 

system. 

The rest of thi s  chapter will be organised as fol lows; in  Section 1, there is  

some historical information about the spectral methods. The idea of the Tau method 

\ i l l  be presented in  section 2 .  In  section 3 we talk about the fractional derivatives. 

ection 4, has the mai n  properties of the Legendre polynomials that are used 

hereafter. F inal l y, section 5 presents the idea of the path-fol lowing method. 

1.1 Spectral Methods 

Spectral methods may be v iewed of an extreme development the c lass of 

discretization schemes for d ifferential equations, of the form L(V) = F, known 

generi cal ly as the Method of Weighted Residual s  (MWR) .  

The key elements of the M W R  are the trial functions and the test functions. 

The first  set o f  functions used as the basis functions for a truncation series expansion 

for the func tion. The second set of functions is used to ensure that the d ifferenti al 

equation L(V) = F i s  satisfied with minimum error as possible as we c an by the 
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appro imate solution v\ . It can be got that by minimizing the re idual L(V\) - F, 

i .e .  the remainder \ hen substi tuti ng the approximate solution in  the differential 

equation. Th is is  equi alent to force the residual to be orthogonal with respect to the 

te t function . 

The choice of  the t[ial funct ions i s  one of the main points that distinguish 

spectral method from the finite di fference methods and the finite elements methods. 

The e functions have u ual\y infinitely many derivatives on the real l ine such as the 

Legendre, Laguerre and Chebyshev polynomials .  On the other hand in the finite 

elem nt methods the domain is divided into subdomains which means that the trial 

functions is speci fied in each element. So, the trial functions are local in character. In  

the finite d ifference methods the trial functions are l ikewise local. 

The choice of th test functions dist inguishes between the three most famous 

pectral methods which are Galerkin, Tau and Col location methods. In the first 

method, the test functions are the same as the trial functions which impl ies that each 

function m ust satisfy the boundary conditions. Also, in this method we force the 

residual to be orthogonal with every trial function. In the Tau method, none of the 

test functions should sati sfy the boundary conditions. Hence, supplementary 

equations are used to apply the boundary conditions. In the Col location approach the 

test functions are chosen to be the translated Dirac delta functions centered at special 

points. Usually, these points are chosen to be the extreme of some orthogonal 

polynomials such as the Legendre, Laguerre and Chebyshev polynomials .  In this 

approach the d ifferential equation is forced to be sat isfied exactly at the col location 

points. 

In 1 934, Slater, [58] ,  found and used the col location method. This method 

was the first to appear because it was the simplest Spectral methods. In 1 93 7  Frazer 
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[23 ] .  developed i t  and used in the ordinaIJ d ifferent ial equations. In J 938, Duncan 

[ J  8] establ ished for the first t ime that the proper choice of trial functions and test 

[unction and he found that it is crucial to the accuracy of the olution. This method 

\ a re iewed in 1 959  by huleshko [ 53 ]  and in 1 966 by Pomraning [49 ] .  These 

studi discu sed some solutions for init ial value problems. In 1 966, Kaplan [ 33 ] ,  

de °el ped this method for the boundary alue problems. In  1 970, Hal l  [ 28 ] ,  used 

pectral Col location methods to find the Fourier and pseudospectral methods. 

The first series appl ication of spectral method to part ial d ifferential equat ions 

was the Galerkin method in 1 93 8  by Duncan [ 1 9] .  It becanle practical for high 

resolution calculations of uch nonl inear problems after transformation methods; it 

was developed in 1 970 by Ful ler [24] .  

The Tau method is a modification of the Galerkin method which is appl icable 

to problems with non-periodic boundary conditions. In 1 938 ,  Lanczos [36J, 

developed the Spectral Tau method although it is too d ifficult to apply to non- l inear 

problems.  

The first unifying mathematical assessment of the theory of Spectral methods 

was contained in the monograph by Gattl ieb and Orszay [25 ] .  S ince then, the theory 

has been extended to cover some of the problems. For more h istorical detai ls, see 

[26 ] .  

1.2 Tau method for solving Boundary Value Problem 

This section d iscusses the idea of Tau method for solving boundary value 

problem (BVP). Let us consider the fol lowing BVP 

y" = f ( x) , X E [ a, b] ( 1 .2 . 1 )  
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where y_ ,y+, a and h are constants. 

Let u assume that {qJ/ } 1\0 be a complete set of l inearly independent orthogonal 

funct ion with re pect to weight function w (x) on [a. b] such that 

qJO'qJ,,·········qJ,\+2 EC2 (9t ) . These functions are cal led the trail functions. 

Appro imate y (x) and f (x) as 

\ 
J\ (x) = LakqJk (x) 

k=O 

Then the residual i 

The second derivative of Y1 i s  given by 

<\'+2 , Yv(x)= L YkqJk (x). 
k=O 

N 

YN(X) = LYkCP� (x). k=O 
The idea of Tau method i s  to select the undetermi ned coefficients Yo ' YI , . . .  YN' such 

that 

b 
(R(YN ) ,qJJ ) = f qJJ (X)R(YN )w(x)d-r = 0 

a 

for J = ° I, . .. N - 2. Thus 

V b b 

tYk f qJJ (x)rp; (x)w(x)dx = iJ f qJ; (x)w(x)dx 
k=o a a 

( 1 .2.2) 

for J = 0, 1 ,  .. N - 2. From the boundary condit ions, the fol lowing equat ions are 

generated: 



\ 

Y- = LYkqJk (0) 
k 0 

\ 

Y+ = LYkqJk (b) 
.4:=0 

( 1 .2 .3 ) 

Equat ion (1 .2 .2 ) and( 1 .2 .3 ) impl the fol lowing ( N + l )x( + 1 ) l inear system 

AY=X 
'Where 

h b b 

f CfJoCfJ;wd'C f CfJoCfJtwd, f CfJoCfJ,� wdx 
(} " a 

h h h 

f Cf11 CfJ;wd'C f CfJICfJtwdx f CfJICfJ� wd'C 
a " a 

A= 
b h b 

f CfJ'_ICfJ;·wdx f CfJ"'_ICfJI"wdx f CfJN-ICfJ� ·wdx 
a " " 

CfJo(a) CfJI (a ) CfJN (a ) 

CfJo(b) CfJI (b) CfJN (b) 

Yo 
b 

Iof CfJ;w(x)dx 
YI a 

b 

Itf CfJI2W( x) dx 
a 

y= 'x = 
b 

YN-2 fN-2f CfJ�_2w(x)dx 
a 

YN-I Y-
YN Y+ 

For more detail s, see [ 1 0] - [ 1 2] - [25]  and [57] .  

7 
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1.3 Fractional Derivative 

Recent! many papers on fract ional b undary value problems have been 

tudied extensivel y .  e eral fOnTIS of them have been proposed in standard models, 

and there ha b en signi ficant interest in developing numerical schemes for their  

solution . everal numerical techniques are used to olve such problems such as 

Laplace and Fourier transfonTIs Adomain decomposition and variational iteration 

method , e igen ector expan ion, d ifferential transform. finite differences methods, 

p v, r eries method, col location method, and \Va elet method. Many appl icat ions of 

fractional calculus on arious branches of science such as engineering, physics, and 

economics are inve t igated. Considerable attention has been given to the theory of 

fractional ordinary differential equations and integral equat ions. Addi tional l y, the 

e. i stence of solut ions of ordinary and fractional bow1dary value problems using 

monotone i terative sequences has been investigated. 

Definition (1.3.1): The Riemann-Liouv i l le fractional integral operator r of order 

a> ° on the usual Lebesgue space � [0,1] is given by r I(x) = _
1
_ } I(�-a dr, 

rea) 0 (x-t 

<Xl 1°/(x) = I(x), where r(4) = J t�-le-( dt i s  the Euler Gamma function. 
o 

For any I E � [0,1],a,,B � 0, and r> -1, the fol lowing properties hold: 

( 1 )  r exists for any x E [0 1], 



Definition (1.3.2): The Caput fractional derivative of order a is defined by 

1 t f(II)() DO f(x = ],,-0 D"f(x) = f t dl, 
r(n -a) 0 (x _t)0-n+1 

9 

pro\ ided that the integral exi t . where n = [ a] + 1 and [a] is the integer part of the 

posit ive real number a ,  x> 0. 

The Caputo fractional derivative sat is fies the fol lowing properties for f E � [0,1] 

and a, j3 �O. 

(1) Dar f(x) = f(x) 

II-I 
(2) r Daf(x) = f(x) - LPk)(O+)(xk / k!), 

�=o 

(-+) Da C = 0, where c i constant, 

( 5 )  Daxy = , {a, 
r < a,r E {0,1,2, . . . }} 

(r(r + l)/r(r -a + 1» xY-O, otherwise 

m In 
(6) Da (L c,J, (x» = L c,Do J, (x), where CO,c1 c�, . .. ,cm are constants. 

,=0 ,=0 

',� 2 � For example let us compute IY x . Let f(x) = x . Then 

1 Y f(II}(t) 
D3 If(x) -

f 
dt 

- r(n -3 / 2) 0 (x - t)3/2-n+1 ' 

where n = [%]+ 1 = 2. Then, 

1 fX 2 -1 2[ 112J'< 4Fx _ 4Fx 3,2 x - dt = 2 (x-t) = - -- . D f() - r(l/2) 0 (x-tYI2 r(1/2) 0 r(1I2) J; 
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lA Propertie of Legen dre Pol nomial 

This section mention the definition of one type of the orthogonal pol ynomial 

which is the Legendre polynomials .  I t  also states some properties of these 

polynomial \\ hich are u ed hereafter. 

Definition (IA.l): The Legendre pol ynomials {�(x), k = O, l ,  ... . . . .  } are the E igen-

[unctions of the ingular turm-Liouvi l le  Problem 

(( 1 - x�) P 'k (x))
' 
+ k (k + 1 ) � (x) = 0 , X E [-1, 1 ]. 

Among the properties of the Legendre Pol ynomials the fol lowing three 

properties are l i sted : 

f �(X)Pm(X)d\={(n
+ 0

. 5ti� n
= m 

-I 0 If n 7:- m 

forn m?O 

_ 2n + 1 
() 

n () > 
�+I (x) - -- X�, X --- �'_I X ,n _ 1 ,  

n+l n+l 

where Po (x) = 1 and � (x) = x, and the endpoint relation 

p,,(±l) =(±l)", n?O. 

( 1 .4 . 1 ) 

( 1 .4 .2) 

( l .4 .3) 

This  thesis studies the relation between the coefficients of the Legendre 

senes expansion of a g iven function and the coefficients of the Legendre series 

expansion of its first and second derivat ives. 
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· uppo e that f(x) Ec2[-1,lJ and fm(x)  is a piecewise continuous function on 

[-1, 1]. To approxi mate the fir t and second deri ati e of f, let 

dq 
ITf(x)=-f(x) dxq 

for q = 1,2, then 

TIf (x) = fJ,,(q) �J (x) 
11=0 

\\hich converge uni formly  on [-1 1) where 

00 

fY) =(2n+l) L fp' 
p=n+l 
p+nodd 

<XJ 

(1.4.4) 

f,,(2) =(n+O.S) L [p(p+l)-n(n+l)] fp' (1.4.5) 

and 

I 

p=n+2 
p+n even 

fn =(n+O.S) f f(X)Pn(x)dx. 
-l 

F or more deta i l s, see [61]. 

(1.4.6) 

I f  the domain is  [0 1], the shi fted Legendre pol ynomials are used and wi l l  be 

defined by: 

s, (z) = � (2z -1). 

Usi ng the change of variable x = 2z -1, S, (z ) has the fol lowing properties: 



(l) f. 
, (:::) SJ (::)dz = - 6 ,where 6 = -1 1 {I if i -j 

o 2i + 1 'J IJ 0 if i -;j:. j 

( ) ) 2i + 1 i 2 S/tI(Z = -. - (2z -1) S,(z) --. -S'_I ( Z ) , fori? l ,  1+1 1+1 
( 3 ) S, (0) = ( -1)' and , (1) = 1. 

The cio ed fom1 of S, (::) i s  given by 

, 1+) ( . · ) 1 J 
') _ _  "" /+J . Z , , ( � ) - Lj -1 ) 

C _ .) 1 ( . )2 . J:O / J . J! 

1 2 

One of the effic ient methods for solving fractional differential equations of order 

, 
a > 0 i u ing the series expansion of the form I c/a). For t ills reason: this study 

):0 

defin s the fractional-order Legendre function by F,a (t) = S, (f a). Using the change 

of variable z = ta, one can show that 

(1)( (I _tl+ a )F,a' (t))' +i(i + 1)a2ta-1F,a (f) = 0 t E (0,1), 
(2)F, a (t) = 2.

i + 1 (2ta -l)F, u 
(/)--. 

i
_ F,�1 (t),i ?1, 

/+ 1 z+l 
(3 ) Faa (t) = 1 and F,a (t) = 2ta -1, 

(4)F, a (0) =(-1)' and F,a(l)=l, 
1 1 (5)fFa(t)FJu(t)w(t)dt= 

(
. 

) 
6,) wherew(t) =ta-l,tE(O,l), 

o I 21+1 a 

(6)FU()-� (-l r k (i+k)! fa k 

I 
t -6 (i-k)! (k!) 2 . 

Using properties of Caputo fractional derivative one can get 

a a t _ ' _ l l+ k (i +k) ! r (ka+ 1 ) /k-1)k, D F, ()- �( ) (i-k)! (k!) r ((k-1 ) a+ 1 ) 

where m = [ a ] + 1. In  the next theorem, we state one of the results which we wi l l  use 

in this thesis. 



Theorem (1.4.1): for an) nonnegative integers p and q, 

""here 

A 2k = ( ( 2p + 2q - 4k + 1 ) ( 2k )!( 2p- 2k)!x ( 2q - 2k )!21'+Q-k ( (p+ q _k)!)2 ) 

x(2P+<I - k (2p + 2q -2k + 1 )  (k!/ x ((p -q) !)2 ((q -k) !)"(2p + 2q - 2k) !)-I . 

Proof :  F r any nonnegative integers p and q, 

where 

A2k = ( ( 2p + 2q -4k + 1 ) ( 2k )!(2p -2k )!x ( 2q -2k ) !2P+q- k ( (p + q -k)!)2 ) 

x( 2P+q- k ( 2p + 2q -2k + 1 ) ( k!)2 X ((p _q)!)2 ((q -k)!)2 ( 2p + 2q - 2k)!rJ. 

1 3  

For the proof o f  this case, see [ 1 4) .  Using the change o f  variables 

x = 2z -1 and z = fa, we obtain  the result of the theorem. 

Theorem (1.4.2): Let U E C [0,1 ] and u' (t ) be a piecewise continuous function on 

[0,1 ]. Then, U ( I ) can be written in the infinite expansion as U ( I ) 

where 

I 
Uk = ( 2i + l)a J u ( t�a (t ) w ( l ) dt, and w (t ) = ta. 

o 
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Proof:  If U E C [-1.1] and u (x) is a pIece WI e continuous function on [-1.1]. 

L� oVkPk (X) con erges uniformly to u(x) on [-1,I]. see [12] and [21-22]. Let 

h : [0.1] -) [ -1 , 1] b h (I ) = 2ta -1. ince h (l ) i a bijective continuous function. 

L;oU� �a (t) converges uniformly to u(t) on [O.1] . The values of Uk follow from 

the orthogonality relation f { F,a (I ) : i = 0, I, 2, . .. } with respect to the weight function 

W(f ) = ta-1 on [O,l]. Theorem ( l . 4 . 3 )  gives the relation between the coefficient of the 

eries olution of Da ll (t ) and the coefficient of the series expansion of U(f). 

Theorem (lA.3): let u E C1 [0,]] and um (l ) be a piecewise continuous function on 

U(a) = � a u k L.,; jk j, j=k+l 
1 

Gjk = ( 2k+ l)a J Da �a (t)w(t)dt, 
o 

k = 0,1 2, .. . j = k+ l k+2, ... . 

Proof: let SIl(t)= L:=oUk�a(t) for n=0,1,2, .... From Theorem (1.4.2). S,,(t) 

Converges uniformly to u(t) on [0,1]. Since U E C2[0 , l ] and u"'(t) is a 

d2 • • ( d2 J piecewise continuous function on [1,0 ], -2 ( hm s ll (t)) = 11m 
d 2 

Sn (l) and 
� ,,�oo ,,�oo t 

( d2 / dt2 ) s" (t) converges unifom11y Thus, 

x ;r 

J (s:(t)/(x-tf)dt converges uniformly to J (u"(t)/(x-tf)dt on [0,1 ] which 

o 0 

gives the result of the theorem. The value of Gjk follows from the orthogonality 
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relation of { �a (I) : i = O. L 2 .. . } with respect to the \veight function 

H·(t) = ler on [O,1J. 

where 

a result of the Ia t two theorems, one can show that for 

a=L 

I 

uP) = f. a II k L.. Jk J 
J=k+1 

aJk =(2k+l ) f �a' (I)Fxa (t)W(t)dl 
o 

for k=OJ 2, . .. , j=k+1,k+2, ... 

1.5 Path- following method 

In this section. \ e give an idea about the path- following methods. for 

olving linear and nonlinear ystems, that will be very helpful in this thesis. 

Path-following methods have long served as useful tools 10 modem 

mathematics. Their use can be traced back at least to 19th Century. The use of 

defoffilations to solve nonlinear systems of equations may be traced back at least to 

80 years ago. The classical embedding methods may be regarded as a forerunner of 

the Predictor-Corrector methods. 

uppose one wish to obtain a solution to a system of n nonlinear equations 

10 n variables, say F (x) = 0 where F: 9{" � 9{n. For purposes of beginning a 

discussion, we will asswne that F is smooth. When saying a map is smooth, it shall 

mean that it has as many continuous derivatives as the subsequent discussion 

requires. Tills is done to make the statements less cwnbersome. Let us consider the 

situation in which very little a priori knowledge concerning zero point of F is 

available. Certainly, if on the contrary, a good approximation Xo of a zero point :x of 
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F i available. it is advi able to calculate x yia a ev"ion-type algorithm defined by 

an iterative formula such a 

( 1.5.1) 

where � is orne reasonable approximation of the inverse Jacobian of the F' (Xi)' 
ince we as ume that uch a priori knO'.; ledge is not available, the iteration ( 1.5. 1) 

\ ill often fail, because poor tarting values are likely to be chosen. As a possible 

remedy, one define a homotopy or deformation: 

uch that: 

H(x O)=G(x),H(x, l )=F (x) 

where G: 9{1I � 9{1I is a trivial smooth map having known zero point, say xo ' 

Then H is also smooth. Typically, one may choose a convex homotopy such as 

H (x, A) = AF ( x ) + (1 - A) G (x) 

and attempt to trace an implicitly defined curve C (S) E H-J (0) from a starting point 

( xo 0) to a solution point (x, 1). If this succeeds, then a zero point x of F is 

obtained. Several questions will immediately arise. 

1) When is it assured that a curve C(S) E H-J (0) with ( xo, O )  E range ( C) exist 

and is smooth? 

2) How can we numerically trace such a curve? 

To answer the first question we need the following 

Definition (1.5.1): Let /: 9{P � 9{q be a smooth map. A point X E 91.P is called a 

regular point of / if the Jacobian /'(x) has maximal rank i.e.; min {p,q}. A 



17 

value Y E 9tq is called a regular alue of f if x is a regular point of f for all 

x E I-I (y) . Points and value are called singular if they are not regular. 

I 0, we need the following theorem. 

Theorem (1.5.1) (Implicit Function Theorem): Let H: ffi .... +k � 91\ be a smooth 

map such that ° E range(H). Then 

11 = {x E �WV+K : H(x) = O,x is a regular point of H} 

a smooth K -dimen ional manifold . 

Here, the Implicit Function Theorem is applied with k = 1. ow the first 

question i an wered by the Implicit Function Theorem, namely if (xo 'O) is a regular 

zero point ofH, i.e. the Jacobian H'(xo 0) has full rank N,  then a curve 

c (S) E H-l (0) with initial value C (s) = (xo '  0), and tangent C' (O):;f: 0 will exist at 

least locally , i.e. on some open interval around zero. Furthermore, if zero is a 

regular value of H i.e. all zero points of H are regular points, and then the curve is 

diffeomorphic to a circle or the real line. This can be seen by a more sophisticated 

application of the Implicit Function Theorem as given by Milnor (1969). 

The curve C, now parameterized with respect to arc length S, may be 

regarded as the solution of an initial value problem which is obtained by differen­

tiating the equation 

H(c(s))=O (1.5 .2) 

with respect to s . Thus, 

H'(C)C'=O, \\C'\\ = 1, C(O)= (xo ,O) . (1 .5 .3) 
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o\. .. it is c lear that methods for numerical ly solving initial value problems 

may be applied to ( 1 . 5 . 3) . However. one ma suspect that this i s  an unnatural 

approach, ince ( l . 5 .3) seems to be a more complicated problem than to solve 

( 1 .  � . 2). In fact, we should not lose sight of the fact that the solution curve c consists 

of zero points of H, and as such it enjoys powerful loca l contractive properties w ith 

respect to i terative meth ds such as those of Newton-type. Hence, one i s  led to 

numerica l ly  integrate ( 1 . 5.3) ver coarsely and then local ly use an i terative method 

for solving ( 1 . 5 .2) a a stabi l izer. For more deta i ls, see [27] . 

ext, " e gi e an idea about the basic princ iples of path-fol lowing methods 

and the pred ictor-corrector (PC)  methods. 

Definition (1.5.2): LetA be an nx(n+l)matrix ""rith rank (A) = n .  The u11lque 

ector ( (A) E �H"+I atisfying the three conditions: 

(1) At= O; 

(2) Iltll = 1; 
(3) del ( � J > 0 

i s  cal led the tangent vector induced by A . 

Definition (1.5.3): Let A be a n x (n + 1) matrix with maxima l  rank. Then the Moore-

Penrose Inverse of A is  defined by 
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� w as ume that A be an n x (n + 1) matrix with rank(A) = }1, and that a 

dec mpo ition 

is given, v.here Q is an (n + l ) x (n + l) orthogonal matrix, and R is a non-singular 

nx n upper triangular matrix. I f  Z denotes the last column of Q , then AZ = 0 and 

IIZII = 1 , the remaining task is to choose the sign of Z so that 

ow 

implies 

Hence, t (A) = ±Z according as the determinant is positive or negative. 

Since 

One can easily show that 



ext assume that : 

H · ,nn+1 _ ,, \n ll 
I ) . ;Jl -,. ;11 is  a mooth map ; 

2) There i a poiot U E 91,,+1 such that : 

i )  H (u) = O ' 

i i )  The Jacobian matrix H '  ( 1I )  has maximum rank i .e .  rank (H '  (u)) = n 

20 

Then it fo1 1o\\ s from the Impl ic i t  Function Theorem that : there exists a smooth curve 

C : J � �"+I for some open interval J containing zero such 'that for all a E J : 

I )  c (Q)  = u; 

2) H (c (a) ) = O 

3 )  Rank (H ' (c (a))) = 17; 

4) c ' (a) :;e O  

By d ifferent iat ing equation ( 2) i t  fol lows that the tangent c' (a) satisfies the equation 

H' ( c ( a ) ) c' ( a ) = 0 

and hence, c' (a) i s  orthogonal to a l l  rows of H' (c (a)) . This study use the 

Predictor- Corrector path-fol lowing method to numerical ly trace the solution curve C 

. The Predictor step wi l l  be used is called the Euler -predictor which is given by : 

v = u + ht (  H'(u)) ( 1 . 5 .4) 
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\\ here u i a point lying along the olution cun e C, t ( H ' ( u ) )  i s  the tangent at u ,  and 

h >  0 represents a st p size .  The corrector iteration in this study i s  cal led the Gauss­

c�Jton Corrector which is given by olving the equation 

H' ( v ) ( H' - V )  = -H ( \' )  ( 1 . 5 .5 )  

for w. I n  this approach on ly  the fixed step size is  u ed throughout the path-fol lowing 

technique. This stud uses a particular version of the predictor-corrector method 

incorporat ing with an Euler predictor step, and the solution of the Gauss-Newton 

corrector ( 1 . 5 . 5 )  as fol lows 

w = v - H' (v) +H (v) , 

as a corrector step. Note that the traver ing is stopped when reaching the level /l, = 1 . 

For more detai l s, see [22]  and [ 8 ] .  
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I n  thi chapter, the Tau-method is used to sol e problem ( 1  )-(2 when a = 2 .  

Thi chapter i divided into two section . In  section one, the case i studied when the 

d i fferential equation is l inear whi le  in section two, the nonl inear ca e i discus ed. 

2.1 umerica l Technique for olving linear boundary value problems 

This  section presents a num rical technique for solving the fol lowing 

problem 

y" = a ( x ) y' + b ( x ) y + c ( x ) (2 . 1 . 1  ) 

(2 . 1 .2) 

where y_ and y+ are constants and a(x), b(x), c(x) E C [- l , l ] .  

Appro i mate Y (x) i n  temlS o f  the Legendre polynomials as fol lows 

N+2 
YN (x) = L YiPi (x) . i=O 

Then, Y�r and YJ�r can be written as 

N+l 
y� (x) = L y,( l ) P, ( x) , 

1=0 

and 

N 
y� ( X ) = Ly,(2) P, (x) .  

1=0 

For YN ' the residual i s  given by 



R (y:-"  ) = y'(. - a (x y:\, -b ( x ) y \' - C \' ( x) 

wh re 

is an approximate function to c(x). Thus 

Orthog nal ize the residual with respect to iii Legendre polynomials, 

as 

1 
(R(y,y ), p/x)) = f R(Y,v )p;Cx)dx = O ( 2.1.3 ) 

- 1  

for j = OJ. 2, .. .  , N. This impl ies that 

v here 

Let 

\'+1 N+2 

( j  + O. Sfl y;2) -Ia/ jy/(I) - I b1 jy/ = C; (J + o. Sfl 
1=0 1=0 

1 1 

(2. 1.4) 

a' j = f a(x)p, (x)p/x)dx, bl) = f b(x)p, (x)Pj (X)dx, and j = 0,1 ,2 , . . . , N .  
-I  - I  

Y = [Yo YI . . . . . .  YN+j Y(I) = [y�l) l) . .. . .. y�:J 
Y(') = [y�') y?) .. . .y�) J' and F = [2C. ;c, � c, . . . . . . ( N + OSr' CN J 
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\\ here I means the transpose of the given ector, we can rewrite Equation (2 . 1 .4) i n  

th matrix form as 

(2 . 1 . 5 )  

vv here A} A and are ( + 1 ) x (N+ 1 ), ( N+ l ) x (  + 2), ( N+ 1 ) x ( N+ 3 ) 

matrice , respect ively, such that 

{eJ +O.Srl , if i = j 
A1 = - I}  0 , if i =P j, 

Fr m Equations ( 1 .4 .4) and ( l .4 .5 )  there exist two matrices B\ and B2 of orders 

e + 2) x ( N  + 3) and ( + l ) x (N + 3 ) , respect ively, such that 

Thu , system ( 2 . 1 . 5 )  becomes 

By the endpoint relations we see that 

and 

Let 

be 2 x (N  + 3) matrix .  Then, 

y(2) = B2Y 
y(l) = B1 Y. 

1 
- 1 

(2 . 1 .6) 



(2. 1 . 7) 

Combine ystems (2. 1 .6) and (2. 1 .7) together to get 

Q Y = R  (2. 1 .8) 

where 

i nce the original ordinary boundary value problem has a unique solution. 0 is 

non ingular. The major problem of the system (2. 1 .8) is that the matrix 0 is i l l  

cond it ioned matrix. The ensit ivi ty of the l inear system wi l l  be measured by the 

condit ion number k (0) = 1 1011 110-1 11 . This thesis uses the CX) - norm which is given by 

{,\+3 1 1011 = max �lcl'J I :  i = 1 : + 3 } . The sensi ti vi ty of the system (2 . L 8) wi l l  not make 

Gauss-e l imination is a good method to solve such problems. Iterative methods such 

as Jacobi, Gauss Seidal and SOR method need a "good " init ial guess which is not 

avai lab le. For this reason, tlus thesis uses the path- fol lowing method to solve the 

system (2. 1 .8). The function G :  �N+3 x [0, 1 ]  � �N+3 is defmed by G ( Y )  = O Y  - R. 

Then, define the convex homotopy H : �N+3 x [0, 1 ]  � �N+3 by H ( Y, A.. ) = Q Y - A.. R . 

Then, Zo = (0, 0) i s  a zero for H with 8o/ay = 0 is a nonsingular matrix. Thus, 

using the technique described in section ( 1 .5), it wi l l  generate a sequence of points 

Zo , Zl ' " ' '  We stop our i teration method when the last component of Zk
+
l is greater 

than 1 whi le the last component of Zk is less than l.  In this case, Y wil l  be the first 
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( j + 3 )  c mp nents of Zk . The fol lowing two examples explain how OUI approach 

works effic ient ly. 

Example (2.1 .1): Consider the fol lowing l inear boundary value problem 

y " + ( cos 7rx))" + (7r s in 7rx) }  = _7r2 cos 7rX , - 1  < x < 1 

(- 1 ) = - 1 , y ( I ) = - l . 

The exact o lution is Yexac{ ( x) = cos (7rx) .  Table (2 . 1 . 1 )  gives the relation between 

the ize o[ the matrix n and its condition number. 

N 
4 

6 

8 

1 0  

1 2  

1 4  

1 6 

1 8  

Cond (0) 
53 . 1 

404 .2 

2982 . 1 

2 .2 1 * 1 05 

1 .62 * 1 0  5 

1 .22  * 1 0 6 

8 .84 * 1 0 6 

6.63 * 1 0  7 

Table 2 . 1 . 1 . Relation between the size of the matrix  0 and its condition number 

Graphs of (N, cond (0 )) and (N, log ( cond (n))) are given in figures 2 . 1 . 1  and 2 . 1 .2 

respect ively. From these figures, i t  i s  c lear that the condition number of n grows 

exponent ial ly. Thus, system (2 . 1 . 8 )  is i l l  conditioned when N is l arge. Next, the 

path-fol lowing method w i l l  be used for solving the same system. 

Table 2 . 1 . 2 gives the relation between the size of the matrix Q and the max point-

wise error eN using different step sizes h = 0.0 1, 0.00 1, 0.000 1 ,  respectively, where 

eN = max { IYexac/ -YN I : X E {- I, -O.9, . . . .  , 1 }} .  
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X h = 0.0 1 h = 0.00 1 h = 0.000 1 

4 1 .3 * 1 0 -4 1 .2 * 1 0  - 4 1 . 3 * 1 0  -4 

6 2 . 1 * 1 0  -6 2 .0 * 1 0 -6 1 . 7 * 1 0 -6 

8 3 . 3  * 1 0  -7 3 .2 * 1 0  -7 3 . 1  * 1 0 -7 

1 0  4 . 1 * 1 0  -9 2 .7  * 1 0  -9 2 . 1 * 1 0 -9 

1 2  6 . 6 * 1 0 - 1 1 4.4 * 1 0  - I I  4 .2 * 1 0  - 1 1  

1 4  1 .4 * 1 0  - 1 3 
1 . 1  * 1 0 - 1 3 

1 . 1 * 1 0- 1 3  

1 6 2 . 1  * 1 0  - 1 5 1 . 7 * 1 0  - 1 5 1 . 5 * 1 0  - 1 5 

Table 2 . 1 .2 :The error in the approximate solut ion for d ifferent values of h 

One can ee that the step size h dose not effects too much in the l inear case since the 

tangent vector is  fixed dur ing all i terations. For this reason i t  is  enough to choose 

reasonable small step size such as h = 0.0 1 . It is easy to see that the path-fol lowing 

method is work ing efficiently. 

F igure 2 . 1 . 1  : Graph of ( N, Cond (n) ) 

t.;C«A>n.\ 
IS 

I� 

11 
10 

Figure 2 . 1 . 2 :  Graph of ( N, I n  (Cond (n) ) 
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2.2 umerical techniq ue for olving non l j near bou ndary value prob lem 

Thi section, presents a numerical technique for solving the fol lowing boundary 

value problem ( BVPs) of the fom1 

y" = f (x, } , } ' ) , x E (- l , l ) (2 .2 . 1 )  

(2 .2 .2 )  

where y_ and y+ are constants and ! E C2 ([ - l , l J x 91 X !H ) .  We approximate y(x) 

in t rm of the Legendre polynomials as we did in the l inear case. Hence, the residual 

is  given by 

Orthogonal ize the residual with respect to the Legendre polynomials as 

\ 
(R (YN ) ' � (X)) = J R (YN ) � (X)dx = O  (2 .2 . 3 ) 

- \  

For j = O, L. . . . .  , N. Hence, Equation ( 2 .2 .3) leads to 

N+2 N+l 
Simple calculations imply that L YiPi = DI Y and I y;l) PI = D2y(l) 

�o �O 

where 
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From Equation ( l .4 .4)  there exists a matrix Bj of order ( + 2 ) x (  + 3 ) uch that 

Thus 

N+I 
Ly,(i )p, = DzB1 Y 
/;0 

1 

Equation (2 .2 .4) becomes y�
2
) = (J  + 0 .5 )  f Pj (x )f ( x, D1Y, D2B1 Y ) d-r. 

Let 

Then 

- I 

j 

g, ( Y )  = (J + 0 .5) f PJ (x)f (x, Dj Y, D2Bj Y) d'C. 
-I 

for j = O, l , . . . . .  , . 

We can rewrite last equation in the matrix fonn as 

where 

yt2) = G(Y) 

go (Y )  

G ( Y) = gl �Y) 

gN ( Y) 

From Equation ( l A.5), there exists a matrix B2 of  order (N + 1) x (N + 3) such that 





'1 hus. 

By the endpoint relation we see that 

B,y = [�: ] 
\\ here 

B = [ 1 

3 1 - 1 

Combine systems (2 .2 .5 )  and (2 .2 .6)  to get 

QY = R (Y) 

" here 

The matrix n is non-singular. Example for N = 5, 

0 0 3 0 1 0  0 

0 0 0 1 5  0 42 

0 0 0 0 3 5  0 
n =  0 0 0 0 0 63 

0 0 0 0 0 0 

0 0 0 0 0 0 

1 1 1 1 1 1 

1 - 1  1 - 1  1 - 1 

3 0  

(2 .2 .5 )  

(2 .2 .6)  

(2 .2 .7)  

2 1  0 

0 8 1  

9 0  0 

0 1 5 4  

99  0 

0 143 

1 1 

1 - 1 





3 1  

the condit ion number of Q i k (Q )=  1 86 .7 1 33 .  To olve system (2 .2 .7 ) we apply the 

path fol lmv ing method as described in section 2 . 1 .  ext, v.. e pre ent two examples. 

E xample (2 .2 . 1 ): Con ider the fol lowing nonl inear boundary value problem 

y" + xe-'y (x ) y' ( x ) +  ( 1 + X2 )y = (2 +  x +  Xl ) ex 
y (- l ) = e- t , y ( I ) = e. 

Where the exact olution is y(x) = eX . In Table 2.2 . 1  we present the relation 

bet\\ een the number of tem1S in the approximate solution J\ (x )  and the max 

point-wise error in the approximate solution e" using the step size h = 0 .00 1 . 

N 

6 
8 
1 0  
1 2  
1 4  
1 6  
1 8  

eN 

1 . 32 1 * 1 0 -7 

3 . 529 * 1 0 -9 

4 . 1 23 * 1 0  - 1 1 

5 .68 1 * 1 0  - 1 2  

1 . 32 1 * 1 0- 1 4 

9 .725 * 1 0  - 1 5 

2 .486 * 1 0  - I S  

Table 2 .2 . 1 :  The error 111 the approxImate solutIOn 1 11 Example (2 .2 . 1 ). 





Example ( 2 .2 .2): Con ider the nonl inear boundary alue problem 

Y" (x) + xy' (x ) + (y (x) f = x2 + x. 

Then, the exact solut ion is x. We make an entirely analogous analysis to that of 

xample (2 .2 . 1 ), the result i s  presented in Table 2 .2 .2 .  

N eN 
4 3 .2 1 8  * 1 0  -'j 

6 6.923 * 1 0 -lU 
8 2 .45 1 * 1 0  -11 

1 0  l .976 * 1 0  - I ) 

1 2  l . 72 1 * 1 0 -j) 
1 4  l . 1 23 * 1 0-1) 

Table 2 .2 .2 : The enor in the approxImate sol utlOn 111 Example (2 .2 .2) .  

From Tables 2 .2 . 1 and 2 .2 .2  it is  c lear that the proposed method works properly and 

effic ientl y. 
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Chapter 3: Fractional Boundary Va lue P roblem 

In this chapter. the Tau-method is used for solv ing problem ( 1 )  - ( 2) \vhen 

1 < a < 2 .  This chapter is di ided into t',,\,o section . The first one, it tudies the 

l inear ca e ',,\ h i le th second one, it stud ies the nonl inear case. 

3.1 Linear fractional bou n d a ry value p roblem 

I n  thi sect ion, a numerical approach is presented for solving the fol lowing c lass 

of fractional l inear BVP' s .  

Day = a (x)y' + b (x )y + c (x ) , x  E ( 0, 1 ) , 1  < a < 2 ( 3 . 1 . 1 )  

( 3 . 1 .2) 

where y_ ' y+ are constants and a, b, c  E C [- l , l ] . 

Approximate y (x ) , a ( x ) , b  (x )  and c ( x ) in term of  the fractional -order Legendre 

functions as : 

,and 

N 
CN (x ) = I CkFt (X ) .  

k;Q 

N+l 
Thus Day (x ) and y' (x) can be approximated by DaYN (x) = Iyia)Ft (x )  and 

k;Q 

N+l 
Y� (x) = I Al)Ft (x ) . 

k=Q 

For I:v ' the residual i s  given by 





or 

� 2"� k 
R ( Y\ ) = Iyla)r:a (x ) - I Ia)Yl�/sa (X ) Fk�) (x )  k�O k=O )=0 
2 '1+2 k V 

- I Ib)Yk_) �a (x ) ��) (X ) - Ickr:a ( x ) .  k=O j=O k=O 

ing Theor m ( l A. 1 ) , the residual can be written as 

where 

,\ 2 V+1 k [k/2] 
R ( Y,, )  = I Aa)r:a ( x )  - I I I A�/ajy��)F)a (x ) r:�21 (x )  k=O k=O )=0 1=0 
2N+2 k [kn] N 

- I I I A2IbjYk_)��21 (x ) -IckFt (x) . k=O )=0 1=0 k=O 

a) = O, b) = O,y) = o, c) = 0 for j ?  + 2  and 

y;a) = ° for j ?  N. 
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Since the focus i s  on the first n terms only, the higher order terms are ignored and 

N N 
the residual wi l l  be wri tten as R ( YN ) = IfJkFt (x ) -IckFt (x ) . k=O k=O 

Orthogonal ize the residual with respect to the fract ional order Legendre function to 

I 
get f R (YN )JSU (x ) w (x)dx = O, j = O : N. Thus fJk = Ck for k = O : N. 

o 





et 

/30 Co 

/3 = /31 
and R = c1 

1 

/3, C ... 

Then, 

/3 = R) (3 . 1 .3 ) 

Fol lowing the procedure described 1 11 section (2 . 1 )  and the properties of the 

Fractional-order Legendre functions mentioned 1 11 sect ion ( 1 .4), we can rewrite 

equation ( 3 . 1 . 3 )  as 

A Y = R  1 

where A is ( + 1 )  ( + 3) matrix and 

Yo 

y = Yl 

From the boundary conditions, one can see that 

Thus, 

N+2 N+2 k 
Y_ = YN (O) = L hF,a (o) = L (- l ) Yk ' k=0 k=O 

N+2 N+2 
Y+ = YN ( l ) = L YkF,a ( l ) = L Yk ' k=O k=O 

(3 .  1 .4) 





v. here 

A = [ 1 - I " ' ( _ 1 )' +2 ]
. 1 1 . . . 1 

hus, y tem ( 3 .  1 .4 ) can be wri tten as 

0. Y = B. (3 . 1 . 5 )  
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\\ here 0. and B are ( + 3 )  ( 1  + 3 )  and ( N  + 3 )  x 1 matrices. The major problem III 

y tem (3 . 1 . 5 )  i that the matrix n i i l l  condit ioned matrix. The path-fol lowing 

method wi l l  be used as we did in section (2 . 1 )  to overcome this problem. The 

fol lowing are t\ 0 examples to show the efficiency of the proposed method. 

Example (3.1.1): Consider the fol lowing l inear fractional boundary value problem of 

the form 

3/ ) 2 I D 2 y + 2y' + 3y = 3x" + 4x + - v'x + 3, 0 < x  < 1  
1[ 

yeO) = 1 y( 1 )  = 2 .  

The exact solution is Yexoc/ (x) = x2 + 1 .  Approximate the solution by 

Let eN = max {IYexact (x) - .t:v (x) 1 : X = 0, 0 . 1 , . . .  , 1  } . Then the errors for d ifferent values 

of N are given in  Table 3 . 1 . 1 .  

N eN 
4 3 . 1 * 1 0-8 
6 7. 8 * 1 0-10 

8 5. 2  * 1 0-10 

1 0  l .3 * 1 0-10 
Table 3 . 1 . 1 :  The error in the approxImate solutIOn III Example (3 . 1 . 1 ) . 
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From Table 3 . l . 1 .  � e  see that Y\ is  an accurate approximation to Y"w..r ( x) ,  It i s  

w orth to mention that h = 1 0-2 i used in the path fol lowing method. 

Example (3. 1 .2): onsider the fol lowing l inear fractional boundar val ue problem of 

the fonn 

DI �Y + X2y' = f(x), O < x < l  
yeO) = 1 ,  y( 1 )  = e. 

vvhere f(x) = x2E1 • ...() 2 + x2ex and Ea.p (z )  is  the two parameter function of Mettag-

leffler type. The exact o lution is YexoLl (x) = e< . Approximate the solution by 

Then the errors for di fferent val ues of N are given in Table 3 . l .2 .  

6 
8 
1 0  
1 2  
1 4  
1 6  

eN 
4 .3 * 1 0-6 

7.6 * 1 0-8 
3 . 5 * 1 0-9 

2 .9 * 1 0- 10 
1 . 8 * 1 0-1 2  

2 .7 * 1 0-13 
Table  3 . l .2 :  The error in the approximate solutIOn In  Example ( 3 . 1 .2) . 

From Table 3 . 1 .2, we get an accurate approximation to Yexac( x). In  this 

example, h = 1 0-2 i s  used for the path fol lowing method .  

E xample (3. 1 .3): Consider the fol lowing fractional l inear boundary value problem 

[50J and [3 7J ,  





1 yeo)  = o . v( 1 )  = ---. 57r(a + 2 
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a+1 
The e, act o lution i \' I (x )  = 

x 
In  this e ample; we wi l l  compare our .Tc,u< rea + 1 ) 

resul t  v. ith Rahman and khan results [50] . Wu and Li results [37] ,  where the first 

researcher \ver used \\ avel t operational matrices for the solut ions of the fractional 

di fferential equations. \vh i l e the others were used reproducing kernel method. 

Appro imat the solution by 

.\ + 2  
)\ ( x ) = L Yk�a (x) . 

k=O 

a =  1 .2 a =  1 .2 (1 = 1 .2 x 
In[50 ] ,  n=32  In[37 ] ,  n=1 0  our method (n= 1 0 ) 

0 . 1 1 . 5 3  x 1 0 -6  5 .41  X 1 0 -6 3 . 1 3  X 1 0-9 

0 .2  1 . 5 2  x 1 0- 7  2 . 8 7  X 1 0 -6 2 . 1 4  X 1 0 -9 

0 .3 8.08 x 1 0 - 7  7 . 7 7  X 1 0 -7  9 .21  X 1 0 - 1 0 

0.4 6. 3 1  x 1 0 -7  4.76 X 1 0 -7 8.75 X 1 0 - 1 0 

0 .5 5. 1 9  x 1 0 - 7  1 . 7 6  X 1 0 -7 6.32 X 1 0 - 10  

0 .6  1 .83 x 1 0 -6  7 .03 X 1 0 -9 5 .98 X 1 0 - 10 

0 . 7 2.43 x 1 0 -6  1 .67 X 1 0 -7 3 .67 X 1 0 - 1 0 

0 .8 3 . 1 2  x 1 0 -6  1 . 3 0  X 1 0-7  1 .71  X 1 0 - 10 

0.9 4.00 x 1 0 -6  2 .75 X 1 0 - 7  2 .39  X 1 0 - 10 

Table 3 . 1 .3 :  Companson between the errors III the proposed method and the errors ill 
[ 37J ,  [50] . 





E xample (3.1.4): onsider the fol lowing fractional l inear BVP [59] ,  

Dl ly(X) = x2.} '(x) + ( 1  + x)y(x) - j (x) , 0 < x < 1 

yeO) = 1 y( l )  = 5 

where the fl.mction f is chosen such that the exact solution is 

-'9 

I n  th i  example, we wi l l  compare our results with Stynes [59] results. Who was 

u ed finite d itference method. pproximate the solution by 

N+2 
y\ (x) = L YkFt (X) . 

k=O 

64 

1 28 

256 

5 1 2 

1 024 

2048 

ev in[59] 

1 .464 x 1 0-1 

7 . 547 x 1 0-2 

3 . 843 x 1 0-2 

1 .94 1 x 1 0-2 

9 . 76 1 x 1 0-3 

4. 895 x l O-3 
Table 3 . 1 .4 :  The errors i n  results of [59] 

However, for N = 1 0 ,  the error i n  our results i s  3.2 x lO-7 . 

3.2 Nonlinear fractional boundary value problems 

In  this section, we discuss the solution of problem ( 1 )  and (2) for 1 < a < 2, x E (0, 1 ) .  

We approximate y(x) i n  terms of the fractional-order Legendre functions as 

N+2 
YN ex) = L YkFt (x) . 

K=O 





Then. 

\ +1 
Day" (x) = LyialF:a (x) 

k=O 

and 

\ +1 
Y'(x) = LyfIFt (X). 

k=O 

Let 

)'0 y�a) y�l ) 

Y =  YI y(a) = 
y�a) 

and y( l ) = y}l ) 
, 

Y.'·+2 yla) ( I ) .v YN+I 

0\ • the residual i s  given by 

Orthogonal ize the residual to get 

Thus, 

I 
f R(Y", )�a (x)w(x)dx = 0 for j = 0 :  N. 
o 

I N+2 V+l 
(j + O.Sr l y;2) = f �a (x)f(x, L y,F,a (x), Ly;l ) F,a (x))lV(x)d�. 

o ,=0 1=0 

One can see that 

N+2 
L y,F,a (x) = DIY 
,=0 

where 

N+ I 
and Ly,( I ) F,a (x) = D2y{l) 

,=0 

From section ( 1 .4), we can rewrite y(l ) and y(a) as 
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\'v hcre BI and B� are ( + 2 )  x ( N  + 3)  and ( + 1) x ( N  + 3) matrices. 

Thu , 

\'v here 

1 
g; (Y )  = (J + 0.5) f �a (x)f(x, D7, D2B7)1V(X)d-r: 

for j = 0 :  and 

o 

go ( Y) 
gl ( Y) 

G(Y) = 

U ing the boundary cond it ions, we get 

where 

B3 = 
[1 - 1  . . .  ( - 1  t+2 ] . 

1 1 . . . 1 

From equations (3 .2 . 1 )  and ( 3 .2 .2 ), we get 

or 

QY = R(y) 

·il 

( 3 .2 . 1 )  

(3 .2 .2) 

(3 .2 .3 )  





where 

n = [ !: ] and 
I G( Y) l R(y) = l�+ J 
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To solve system ( 3 .2 . 3 ), the path-fol lowing method is appl ied as described in section 

( 2 . 1 ) . ow. here are two of our examples. 

E xample (3.2 . 1 ): Con ider the fol lowing fractional nonl inear equation 

D' 5 .( ) _ I 2 � I 5 _ 2 6 .} X - �Y + j; x Y 0 <  x < 1  

yeO) = 1 , y( 1 )  = 2. 

The e. act solution is y(x) = x3 + 1 .  Approximate the solution by 

" + 1  
YN (X) = LYJ;;,l s ex ). 

k=O 

U ing the proposed technique with h = 0.0 1 . For the path-fol lowing and N = 4, 

for the Tau method, we get 

Thus 

Yo = 1 .66666667 

YI = 0 .5 
Y2 = 1 . 3 3 333334  

Y3 = Y4 = Y5 = Y6 = 0 

Y (x )  = .!.. FI 5 (x) + .!.. FJ 5 (x) + � = x3 + 1 .  Then we get the exact solution. 
4 6 2 2 1 6 





E �ample (3.2 .2): onsider the fol loviing fractional Bratu-type equat ion 

O < x < l 

yeO) = 0 , y( l )  = 1 . 5 .  

V + 2  
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Approximate the solution by }\ (x) = L YkF; 8 Cx ). Using h = O.O l  and = 6, the 
.=0 

first [e\v alues of J'. are given below 

Thus, 

k Yk 
0 0 . 1 0 7 243 

1 0. 1 65249 

2 0.062 1 845 

3 0 . 0 0 5 2 8 2 2 3  

4 0.0 0 1 24 2 2 6  

5 0 .0 0 0 142879 

6 3.454 14 * 1 0-6 

7 + 1 .2 3 2 9 6  * 1 0-6 

8 8.2 1 974 * 10-8 
Table 3 .2 . 1 : The values of the coefficients Yk 

Y6 (x) = 0. 1 07243Fo' 8 (x) + 0. 1 652491';' 8 (X) + 0.062 1 845F2' 8 (X) 

+0.005282231';' g (x) + 0.00 1 24226F;i g (x) + 0.000 1 42879P;'8 (x) 

+3 .454 1 4  x l  0-6 F61 g (x) + 1 . 23296 x 1 0-6 01 g (x) + 8 .2 1 974 X 1 0-8 F
g
' 8 (x) . 

Figure 3 .2 . 1  represents the graph of the approximation solution. 
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Figure 3 . 2 . 1 :  Graph of the approximate solution 





3 .3 ConcJu  ion 

In this the i , we modified the Tau-method for the solution a class of non­

l inear fractional BVP . We also succeed to find the relation between the coeffic ient 

of the series solution of a given function and the coefficient of the serie expansion 

of i t  fract ional derivative. The proposed method is based on the Tau Legendre and 

path -fol lowing methods. umerical and theoretical resul ts are presented. The 

numerical results give an evidence of the accuracy of the approximate sol ution of 

fractional boundary value problems. We compare our results with others researchers 

and the compari son sho\ s that our technique works more faster and more efficiently. 
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