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Abstract

In this thesis we developed a numerical method for solving a class of
nonlinear fractional boundary value problems using the fractional order Legendre
Tau-path following method. Theoretical and numerical analyses are presented. The

numerical results showed that this method works properly and efticiently.

Keywords: Nonlinear Fractional Boundary Value problems, Caputo

derivative. Tau method. path-following method, fractional order Legendre functions.
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Chapter 1: Introduction

In this thesis, we discussed a numerical technique for solving a class of

fractional boundary value problems of the form:

Dfy=f(x,»y).xe]-Ll[,l<a<?2 (
»(-1)=». and »(1)=y, (

f—
~—

(3]
~

where y_and y, are constants and f € C? ([-1.1]xM x9). The fractional derivative

1s described in the Caputo sense. [62].

Fractional calculus is a branch of Mathematics that deals with generalization
of the well-known operations of differentiations and integrations to arbitrary non-
integer orders. Fractional derivative provides an excellent instrument for the
description of memory and hereditary properties of various materials and processes.
This is the main advantage of fractional derivatives in comparison with the classical
integer-order models, in which such effects are in fact neglected. The idea of
modelling dynamic systems by fractional deferential equations can be used in many
fields of Science and engineering including electrochemical process [27] and [32],
dielectric polarization [26], earthquakes [30]. fluid-dynamic traffic model [31], solid
mechanics [51], bioengineering [41-43], and economics [7]. Fractional derivative
and Fractional integrals also appear in theory of control of dynamical systems when

control system and the controller are described by fractional difterential equations.

In the recent years, a number of methods have been proposed and applied
successfully to approximate various types of fractional differential equations. The
most used methods are Adomian Decomposition Method [20] and [45-46],

Variational Iteration Method [14,56,60,63,64], Homotopy Perturbation Method [44]
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and [6] . Homotopy Analysis Method [29]. Fractional Differential Transform

Method[4-5]. [13]. and [21-22]. Power Series Method [47] and other methods [15-

17]. [35] and [40].

Recently. wavelet based operational matrix has been also applied for the
solutions of the fractional differential equations. In 2010, Li et al. [39] constructed
Haar wavelet operational matrix of fractional integration with the use at Block plus
functions and successtully applied for getting solution of special type of fractional
difterential equation. In the same year Li [38] used another operational matrix based
on chebyshev wavelet for the same problem. In 2011. Saadatmandi and Dehghan
[52] used the concept of orthogonal polynomial and constructed for Legendre
operational matrix of differentiation for solving such problems. Bernstein
polynomials have been used for solving numerically partial differential equations [8].
More recently Bernstein approximation have used for stable solution of problems of
Abel inversion [54-55] and generalized Abel integral equations arising in classic

theory of elasticity [48].

To identify the difficulties of this problem, we first apply our approach on the
ordinary derivative whena =2 . This issue is presented in chapter two. In addition, it
starts from the linear problem. Then, there is a discussion on the solution of non-

linear problem. Examples and conclusions are presented is this chapter.

In Chapter Three, we present our approach for solving problem (1)-(2). As
we did in chapter two, we start from linear fractional boundary value problem. We
present some of our experimental examples to explain how our approach works

efficiently. Furthermore, some conclusions will be drown.
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When we apply Tau method to solve non-linear fractional boundary value
problems. the result is a non-linear system of equations. The classical methods for
solving such problems are Newton and Secant methods. However, the necessary
condition for these methods to converge to the exact solution is to start with a "good"

initial guess. But such initial guess is not always available. For this reason, most of

rescarches do not use the Tau method for this purpose.

Siyyam and Syam, [62]. used the path- following method to trace implicitly
defined curves. This thesis tries to relate the Tau-method and the path-following
method. In this approach, the initial guess is avoided for solving the non-linear

system.

The rest of this chapter will be organised as follows; in Sectionl, there is
some historical information about the spectral methods. The idea of the Tau method
will be presented in section 2. In section 3 we talk about the fractional derivatives.
Section 4, has the main properties of the Legendre polynomials that are used
hereafter. Finally, section 5 presents the idea of the path-following method.

1.1 Spectral Methods
Spectral methods may be viewed of an extreme development the class of

discretization schemes for differential equations, of the form L(V)=F, known

generically as the Method of Weighted Residuals (MWR).

The key elements of the MWR are the trial functions and the test functions.
The first set of functions used as the basis functions for a truncation series expansion
for the function. The second set of functions is used to ensure that the differential

equation L(V)=F is satistied with minimum error as possible as we can by the
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approximate solutionv,, . It can be got that by minimizing the residual L(V,)-F.
1.e. the remainder when substituting the approximate solution in the differential
equation. This is equivalent to force the residual to be orthogonal with respect to the
test functions.

The choice of the trial functions is one of the main points that distinguish
spectral methods from the finite difference methods and the finite elements methods.
These functions have usually infinitely many derivatives on the real line such as the
Legendre. Laguerre and Chebyshev polynomials. On the other hand in the finite
element methods the domain is divided into subdomains which means that the trial
functions is specitied in each element. So. the trial functions are local in character. In
the finite difference methods the trial functions are likewise local.

The choice of the test functions distinguishes between the three most famous
Spectral methods which are Galerkin, Tau and Collocation methods. In the first
method. the test functions are the same as the trial functions which implies that each
function must satisfy the boundary conditions. Also, in this method we force the
residual to be orthogonal with every trial function. In the Tau method, none of the
test functions should satisty the boundary conditions. Hence, supplementary
equations are used to apply the boundary conditions. In the Collocation approach, the
test functions are chosen to be the translated Dirac delta functions centered at special
points. Usually, these points are chosen to be the extreme of some orthogonal
polynomials such as the Legendre, Laguerre and Chebyshev polynomials. In this
approach the differential equation is forced to be satistied exactly at the collocation
points.

In 1934, Slater, [58], found and used the collocation method. This method

was the first to appear because it was the simplest Spectral methods. In 1937 Frazer
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[23]. developed it and used in the ordinary differential equations. In 1938. Duncan
[18]. established for the first time that the proper choice of trial functions and test
functions and he found that it is crucial to the accuracy of the Solution. This method
was reviewed in 1959 by Shuleshko [53] and in 1966 by Pomraning [49]. These
studies discussed some solutions for initial value problems. In 1966. Kaplan [33).
developed this method for the boundary value problems. In 1970. Hall [28]. used
Spectral Collocation methods to find the Fourier and pseudospectral methods.
The first series application of spectral method to partial differential equations
was the Galerkin method in 1938 by Duncan [19]. It became practical for high
resolution calculations of such nonlinear problems after transformation methods; it

was developed in 1970 by Fuller [24].

The Tau method is a modification of the Galerkin method which is applicable
to problems with non-periodic boundary conditions. In 1938, Lanczos [36],
developed the Spectral Tau method although it is too difticult to apply to non- linear

problems.

The first unifying mathematical assessment of the theory of Spectral methods
was contained in the monograph by Gattlieb and Orszay [25]. Since then. the theory
has been extended to cover some of the problems. For more historical details, see

[26].

1.2 Tau method for solving Boundary Value Problem
This section discusses the idea of Tau method for solving boundary value

problem (BVP). Let us consider the following BVP

y'=f(x). xelab] (1.2.1)



where y_, ..« and b are constants.

N
Let us assumes that {(0,}':0 be a complete set of linearly independent orthogonal

function with respect to weight function w(x) on [a.b] such that

Then the residual is
R(Fy)=7% =y (x).
The second derivative of y,, is given by
N
=2 (%)
k=0

The idea of Tau method is to select the undetermined coefficients 3, .y, .... ¥y, such

that
(R(5u)os) = [ 1 (IR (T () e =0

tfor J=0,1,..N-2. Thus

Z\:ykf (x)oi (x)w (X)dr=fJT(p3(x)w(x)dr (1.2.2)

for J=0,1,..N—-2. From the boundary conditions, the following equations are

generated:
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Y :Z}’k(l’k (@) . :Zyk(/’k (b) (1.2.3)
k=0 k=0

EEquations (1.2.2) and (1.2.3) imply the following (N +1)x(N +1) linear system

AY =X
where
( b b b
‘ '[ PoPawdx _[ Qpwdx '[ Yo wdx
b b b
J' P pawdx J Qpwde - J P pnwdx
A =
b b b
J Py Powedx J. Pyapwdx - J Pr P vx
¢ (@) oila) = onla)
(oo(h) D (b) Y (b)
™ ) ,
* j;J¢§1t'(x)dY
VY a
b
A J prw(x)dx
i X =
b
y fzv-zj(ﬂinzw(x)dr
N-2 )
YN-1 )
L In | | Y.

For more details, see [10] - [12] - [25] and [57].



1.3 Fractional Derivatives

Recently, many papers on fractional boundary value problems have been
studied extensively. Several forms of them have been proposed in standard models.
and there has been significant interest in developing numerical schemes for their
solutions. Several numerical techniques are used to solve such problems such as
Laplace and Fourier transforms Adomain decomposition and variational iteration
methods. eigenvector expansion. differential transform. finite differences methods.
power series method. collocation method. and wavelet method. Many applications of
fractional calculus on various branches of science such as engineering. physics. and
economics are investigated. Considerable attention has been given to the theory of
fractional ordinary differential equations and integral equations. Additionally, the
existence of solutions of ordinary and fractional boundary value problems using

monotone iterative sequences has been investigated.

Definition (1.3.1): The Riemann-Liouville fractional integral operator /“of order

I 1 fO
[(a)y =i

a >0 on the usual Lebesgue space L, [0,1] is given by [ f(x) =

I°f(x)= f(x), where T'(£) = Jlg"e"'dl is the Euler Gamma function.
Forany f e L [O, l],a,,ﬁ’ 20, and y>-1, the following properties hold:
(1) I"exists forany xe [0,1],
@) P =12,
3) IF'P =1F1r,

@) I°)X =[(y+D)/T(a+y+D)x*7.



Definition (1.3.2): The Caputo fractional derivative of order « is defined by

" = IS T
D*f(x)=1"°D"f(x)= : .
s Sx) I'(h—a) J‘(x—t)"‘"'"

0
provided that the integral exists, where n=[a]+land [a] is the integer part of the

positive real number a . x>0.

The Caputo fractional derivative satisfies the following properties for / € L, [O.I]

and a.f >0.

(1) DI f(x) = f(x),
n-|\

(2) 1“D°f(x)= f(x)= D SM O )x* 1k,
k=0

(3) D* D” f(x)=D’ D f(x)=D"" f(x),x>0,

() D%c =0, where c is constant,

0, <a,y€{0,1,2,...
5) Dx" = y<ayel |
(T(y+H/T(y —a+1))x""%, otherwise

(6) D"(Zc,f,(x))= Zc}D"f,(x), where ¢,,¢,,¢,,....C,, are constants.

1=0 1=0

For example, let us compute D" °x’. Let f(x)=x".Then

I )

D f(x)= :
U T(n—3/2)¢ (x=1)**™"

0

where n = [%] +1=2. Then,

. =L L) T _ ZhiT_ShE

372 . dt = = = :
D7) r(1/2)l(x—t)”2 "“Ta/2) o r1/2) Jr
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1.4 Properties of Legendre Polynomials

This section mentions the definition of one type of the orthogonal polynomial
which is the Legendre polynomials. It also states some properties of these

polynomials which are used hereafter.

Definition (1.4.1): The lLegendre polynomials {Pk(x),k =0.1........ }are the Eigen-

functions of the Singular Sturm-Liouville Problem
((1=2) P (x)) +k(k+1) P (x)=0

Among the properties of the Legendre Polynomials the following three

properties are listed:

0 ifnzm

JR,(.\')PM(.r)drz{(" (1.4.1)

forn,m=0

2n+1 P (x n

ey (x).n>1, (1.4.2)

P.(x)=

n—1

n+1

where Py(x)=1 and P,(x)=x, and the endpoint relation

P (x1)=(£1)", n>0. (1.4.3)

This thesis studies the relation between the coefticients of the Legendre
series expansion of a given function and the coefticients of the Legendre series

expansion of its first and second derivatives.
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\ 2 m g : . . B 5
Suppose that f(x)ec’[—11] and f™(x) is a piecewise continuous function on

[-l,l]. To approximate the first and second derivative of 1. let

1 (x) =< 7 (x),

for ¢ =1.2, then
AR R AR
n=0

which converges uniformly on [—l, l], where

D =(2n+1) Z Vi (1.4.4)

p=n+l
p+nodd

co

2 :(”_+_0_5) Z [p(p+l)—n(n+1)]fp,(1.4.5)

p=n+2
p+neven

and

1
fu=(n+05) [ f(x) By(x)dx.
5 (14.6)

For more details, see [61].

If the domain is [0,]], the shifted Legendre polynomials are used and will be

defined by:

S,(Z)’; Pl(zz—])

Using the change of variable x=2z-1, S, (z) has the following properties:
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2i
2i+1 i
2)S,,,(z)=——(2z-1)S (z)— z), foriz
(2)5.0(2) = 22 22-1)5, ()~ L5, (2). fors
(3)‘8‘1(0) S‘l(l)zl
The closed form of S, (z) is given by
n 1+ (1+j)' Z}

5,(2)=2(-1)

-

n

(=)
—_

=Y

One of the efficient methods for solving fractional differential equations of order

!
a > () is using the series expansion of the form chl"’. For this reason: this study
=0

defines the fractional-order Legendre function by F*

of variable z=1%. one can show that

@F  — ()=~ 1)
(3)F (¢)=1and F*
(4) £,
1
a a a 1 S , Lyl
(S)l:E (I)FJ (I)w([)dt—mouuherew(t)—l ,te(O,l),

Using properties of Caputo fractional derivative one can get

; 1'+* (i+k)!  T(ka+l) =
= (i=k)(A)T((k=1)a+1)

where m = [a] +1. In the next theorem, we state one of the results which we will use

in this thesis.
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Theorem (1.4.1): for any nonnegative integers p and q.

BOREY Ak rul)
where

Ay, =((2p+2q—4k+1)(2k)!(2p—2k)b<(2q—2k)!2"*"‘*((p+q-k)!)z)
x(zl’ﬂl

Proof: For any nonnegative integers p and g,

[(p+q/2)]

P/(Y)[:(Y): Z 4ulpr+4—“(x)’

k=0
where

Ay =((2P+29 =k +1)(2K) (2 p = 2k) % (29 = 2k ) 127 ((p +q — k)!)?)

x(2p+"_k(2p+2q—2k+])(k!)2x((p—q)!)z((q—k)!)2(2p+2q—2/()!)".
For the proof of this case, see [l4]. Using the change of variables

x=2z—land z=1t%, we obtain the result of the theorem.

Theorem (1.4.2): LetueC[O,l]and u'(t)be a piecewise continuous function on

[0.1]. Then, u(r)can be written in the infinite expansion as u(r)

u(t)=> wuF (1),
where

21+1 w dt and w(t) =
k
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Proof: If weC[-1.1]Jund u(x) is a piecewise continuous function on [-1.1].
Zzovkpk(x) converges uniformly to u(x) on[-1.1]. see [12] and [21-22]. Let
h:[0.1] > [-1.1] byh(r)=21"~1. Since h(r) is a bijective continuous function.
D LT FZ (1) converges uniformly to u(r) on[0.1]. The values of u, follows from
the orthogonality relation of {F," (r):i=0.1 2} with respect to the weight function

w(r)=1"" on[0.1]. Theorem (1.4.3) gives the relation between the coefficient of the

series solution of D”u(r) and the coefficient of the series expansion of u (/).

Theorem (1.4.3): let e C? [O,I] and u"'(l) be a piecewise continuous function on

[0.1]. Then Z::“uﬁ_")Fk" (1) converges uniformly on [0.1] 10 D“u(t) where

(@ _ %
a
W = E a,u,

e k=01,2, ., j=k+lk+2...
a, =(2k+1)a[ D F? (1)w(t)dr.
0

Proof: let S"(1)=Z:=Ou,‘F‘."(t) for n=0,1,2,.... From Theorem (1.4.2). S, (1)

Converges uniformly tou(r) on [0,1]. Since weC?[0,1] and u"(r) is a

d’ . . (d°
piecewise continuous function on [1,0], F(Im]sn(t))zllm(—sn(r)] and
C n—w

n—»o ,2

(a’z/drz)sn (1)converges uniformly to(dz/dlz)u(t) on [0,1]. Thus,

j'(s;(r)/(x—r)a)d! converges uniformly to J(u"(l)/(x—!)a)dr on [0.1] which
0

0

gives the result of the theorem. The value of a, follows from the orthogonality



relation of {E"(I):i=0,l.2,...} with respect to the weight function
w(r)=1" on [0.1].

As a result of the last two theorems. one can show that for

_ m_ N
a=1, u'= Z“,k“,

J=k+1

|
where ay =2k + 1) [ FE ()FE (1) w(e) e

0
for k=0,1,2,..., j=k+Lk+2,..

1.5 Path- following methods

In this section, we give an idea about the path- following methods. for
solving linear and nonlinear systems, that will be very helpful in this thesis.

Path-following methods have long served as useful tools in modern
mathematics. Their use can be traced back at least to 19" Century. The use of
deformations to solve nonlinear systems of equations may be traced back at least to
80 years ago. The classical embedding methods may be regarded as a forerunner of
the Predictor-Corrector methods.

Suppose one wish to obtain a solution to a system of # nonlinear equations
in n variables, say F(x)=0, where F: " ->W". For purposes of beginning a
discussion. we will assume that F is smooth. When saying a map is smooth, it shall
mean that it has as many continuous derivatives as the subsequent discussion
requires. This is done to make the statements less cumbersome. Let us consider the
situation in which very little a priori knowledge concerning zero point of Fis

available. Certainly, if on the contrary, a good approximation x, of a zero point X of
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F'is available. it is advisable to calculate X via a Newton-type algorithm defined by

an iterative formula such as
Xin =% —AF(x;),i=0,1,.... (1.5.1)
where A is some reasonable approximation of the inverse Jacobian of the F’(xi).

Since we assume that such a priori knowledge is not available. the iteration (1.5.1)

will often fail. because poor starting values are likely to be chosen. As a possible

remedy. one defines a homotopy or deformation:
MR [O. 1] —> R"

such that:

Hiw,0) =Gx), H{xgd) = Fix),
where G:W" —>WN" is a trivial smooth map having known zero point, say Xx,.
Then H is also smooth. Typically, one may choose a convex homotopy such as

H (x.4)= AF (x)+(1-2)G )
and attempt to trace an implicitly defined curve ¢(S)e H™' (0)from a starting point

(x,,0) to a solution point (¥,1). If this succeeds, then a zero point Xof F is
obtained. Several questions will immediately arise.
1) When is it assured that a curve ¢(S)e H™'(0) with (x,,0) e range (C) exist

and is smooth?
2) How can we numerically trace such a curve?

To answer the first question we need the following

Definition (1.5.1): Let fZ‘.R" — N7 be a smooth map. A point X € *R”is called a

regular point of f if the Jacobian f'(x) has maximal rank, i.e.; min {p.q}. A
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value y € R? is called a regular value of f if X is a regular point of f for all

xef" (»). Points and values are called singular if they are not regular.

Also, we need the following theorem.

Theorem (1.5.1) (Implicit Function Theorem): Let /7 : RV 5 9R"¥be a smooth
map such that 0 € range(H). Then
M= {x e W% . H(x)=0,x is a regular point of H}
is a smooth K -dimensional manifold .
Here, the Implicit Function Theorem is applied with k =1. Now, the first

question is answered by the Implicit Function Theorem, namely if (x,.0) is a regular
zero point of H, ie. the Jacobian H'(x,,0) has full rank N, then a curve
c(S)e H™'(0) with initial value C(S)=(%,,0), and tangent C'(0) =0 will exist at
least locally, i.e. on some open interval around zero. Furthermore, if zero is a
regular value of H , i.e. all zero points of H are regular points, and then the curve is
diffeomorphic to a circle or the real line. This can be seen by a more sophisticated
application of the Implicit Function Theorem as given by Milnor (1969).

The curve C, now parameterized with respect to arc length §, may be
regarded as the solution of an initial value problem which is obtained by differen-
tiating the equation

H(c(s))=0 (1.5.2)
with respect to s . Thus,

H'(C)C' =0, |C'| =1, C(0)=(x,0). (1.5.3)
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Now it is clear that methods for numerically solving initial value problems
may be applied to (1.5.3). However, one may suspect that this is an unnatural
approach, since (1.5.3) seems to be a more complicated problem than to solve
(1.5.2). In fact, we should not lose sight of the fact that the solution curve cconsists
of zero points of //, and as such it enjoys powerful local contractive properties with
respect to iterative methods such as those of Newton-type. Hence, one is led to

numerically integrate (1.5.3) very coarsely and then locally use an iterative method

for solving (1.5.2) as a stabilizer. For more details, see [27].

Next, we give an idea about the basic principles of path-following methods

and the predictor-corrector (PC) methods.

Definition (1.5.2): Let 4 be an nx(n+l)matrix with rank (A4) =#n. The unique

vector ((A) e N satisfying the three conditions:

(1) Ar=0;
) =
(3) a’et(;{;] > 0;

is called the tangent vector induced by 4.

Definition (1.5.3): Let 4 bea nx (n+l)matrix with maximal rank. Then the Moore-

Penrose Inverse of A is defined by

A =AT(AAT)_1
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Now assume that A4 be an nx(n+1)matrix with rank(4)=n. and that a

decomposition

is given, where () isan (n+1)x(n+1) orthogonal matrix. and R is a non-singular
nxn upper triangular matrix. If Z denotes the last column of Q. then 4Z =0 and

||Z|| =1 . the remaining task is to choose the sign of Z so that

A
det(zr]>0.

Now

implies
A
det[ZT]: det(AT,Z) =det(Q)det (R).

Hence. t(A) =*Z according as the determinant is positive or negative.

A — ’ld /1—' R ,0 Q .

One can easily show that



oo™

OT
Next assume that:

. cran+l o
1y H:iR®" 5% 52 smooth map ;
2) Thereis a point # € R™' such that:

1) H(u)=0;

if) The Jacobian matrix H'(«) has maximum rank i.e. runk(H'(u)) =n

Then it follows from the Implicit Function Theorem that: there exists a smooth curve

C :.JJ —R""'for some open interval | containing zero such 'that foralla e J :

1) c(a)=u;
2) H(c(a))=0
3) Rank (H'(c(a)))=n:

4 c'(a)#0
By differentiating equation (2) it follows that the tangent ¢’ (a) satisfies the equation
H’(c(a))c'(a) =0

and hence, ¢'(a) is orthogonal to all rows of H'(c(a)). This study use the

Predictor- Corrector path-following method to numerically trace the solution curve C

. The Predictor step will be used is called the Euler -predictor which is given by:

14 :u+h((H'(u)) (1.5.4)
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where ¢ is a point lying along the solution curve C, #( H'(u)) is the tangent atu, and

h > Orepresents a step size. The corrector iteration in this study is called the Gauss-

Newton Corrector which is given by solving the equation
H'(v)(w-v)==H(v) (1.5.5)

for w. In this approach only the tixed step size is used throughout the path-following
technique. This study uses a particular version of the predictor-corrector method
incorporating with an Euler predictor step. and the solution of the Gauss-Newton

corrector (1.5.5) as follows
w=v-— H'(v) *H (V).

as a corrector step. Note that the traversing is stopped when reaching the level A =1.

For more details, see [22] and [8].



Chapter 2: Second Order Ordinary Boundary Value Problem
In this chapter, the Tau-method is used to solve problem (1)-(2) when a = 2.
This chapter is divided into two sections. In section one, the case is studied when the

differential equation is linear while in section two, the nonlinear case is discussed.

2.1 Numerical Technique for solving linear boundary value problems
This section presents a numerical technique for solving the following

problem
y'=a(x)y' +b(x)y+c(x) (2.1.1)
y(-)=y_,y(D)=y, (2.1.2)
where y_ and y, are constantsand a(x), b(x).c(x)eC[-11].

Approximate y(x) interms of the Legendre polynomials as follows

N+2

yy(x)= ;yipi(x)'

Then, yy and y§ can be written as

N+1

Yo (x)=> ", (%),
i=0
and
- ()
yo (x)=>3"p (%)
=0

For yy. the residual is given by



o
(FS]

R()’.\'): hus —a(x)yf\- —b(x)y\. —Cy (r)

where

CN(x)chipi(x)

is an approximate function to ¢(x). Thus

i=0

Z}’ (- 21,“)61 —“ y,b(x)p,(x)—Zc,p,(x).

Orthogonalize the residual with respect to j” Legendre polynomials,

as
1
(R P,(0) = [ R(yy)P, (x)dx =0 (2.1.3)
-
for j=0.1.2...., N. This implies that

V+1 +2
(j+0.35) ¥ Za,,. Z v=c,(j+05) @14
where

1

il — Ja(.r)p,(.r)pj(.r)dt. b,/ = Jb(x)p,(x)pj(x)dr, andj =0,1,2,...,N.

4

Let

Y = [yo Yy Yrar ]l s Y(l) [y(l) ,“) ...... y}vlll
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where ¢ means the transpose of the given vector, we can rewrite Equation (2.1.4) in

the matrix form as
A:Y'z’—A,Y'”—AoYzF (2.1.5)
where A, , 4, and Ajare (N+1)x(N+1),(N+1)x(N+2).(N+1)x(N+3)

matrices. respectively. such that

s &7 #O.5)" i j
* o Jifi
A,=a, and 4, =b,.

From Equations (1.4.4) and (1.4.5) there exist two matrices B, and B, of orders

(N+2)x(N+3) and (N +1)x(N +3). respectively. such that

P& - B
Yy =8Y.
Thus, system (2.1.5) becomes
(AzBZ—AlBl—AO)Y:F. (2.1.6)
By the endpoint relations we see that
N+2 N+2 ;
y=y(l)= 2 vm(-1)= 2 -1} %
=0 i=
and
N+2 N+2
ye=y()=2 yip(1)=2
Let

be 2x (N + 3) matrix. Then,



[
hn

s
B3 Y:L) } (2.1.7)

Combine systems (2.1.6) and (2.1.7) together to get
QY=R (2.1.8)

where

o

A7Bv—AlB|“A0 :
Q= °~° RK=|y, |
B,
. .
Since the original ordinary boundary value problem has a unique solution. Q is

nonsingular. The major problem of the system (2.1.8) is that the matrix Q 1is ill

conditioned matrix. The sensitivity of the linear system will be measured by the

condition number k (Q) = ||Q||||Q" || This thesis uses the co—norm which is given by

N+3
”Q” = maX{Z|c,J|:i= 1: N+3}. The sensitivity of the system (2.1.8) will not make

=il
Gauss-elimination is a good method to solve such problems. Iterative methods such
as Jacobi, Gauss Seidal and SOR method need a “good " initial guess which is not

available. For this reason, this thesis uses the path- following method to solve the

system (2.1.8). The function G:R""x[0.1] > R"* is defined by G(})=QY -R.
Then, define the convex homotopy H :‘.RN"SX[O,]]—> w3 byH(Y,,l)=QY—/1R,
Then, Z,=(0,0)is a zero for H with a%y:Q is a nonsingular matrix. Thus,

using the technique described in section(1.5), it will generate a sequence of points
Zy,Z,,.... We stop our iteration method when the last component of Z,,, is greater

than 1 while the last component of Z, is less thanl. In this case, Y will be the first
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(N +3) components of Z,. The following two examples explain how our approach
works efficiently.
Example (2.1.1): Consider the following linear boundary value problem
V' +(cosmx)y +(zsinzx)y=-z’cosax,—l<x<l
y(=)=~1, »(1)=-L.
The exact solution is }'. 4. (r) = Cos(ﬂx). Table (2.1.1) gives the relation between

the size of the matrix Q and its condition number.

N Cond (Q)
4 53.1

6 404.2

8 2982.1
10 2.21%10°
12 1.62 * 10°
I3 128 E N0
16 8.84 x 10°
18 6.63%10’

Table 2.1.1.Relation between the size of the matrix €2 and its condition number

Graphs of (N, Cond(Q)) and (N, log(cond(Q)))are given in figures 2.1.1 and 2.1.2

respectively. From these figures, it is clear that the condition number of Q grows
exponentially. Thus, system (2.1.8) is ill conditioned when N is large. Next, the
path—following method will be used for solving the same system.

Table 2.1.2 gives the relation between the size of the matrix Q and the max point-

wise error €y using different step sizes #=0.01,0.001,0.0001, respectively, where

i max{lymc, —yy|ixe {—1,—0.9,....,1}}.






N h=0.01 h=0.001 h=0.0001
4 13*10™ 12*107" 1.3 10"
6 2.1 %10° 20%10° 1.7 %10 °°
8 33107 32% 107 3.1 %107
10 41107 27%10° 2.1 %107
12 6.6%10 " 44 + 30" 42 107"
£l 14*10" 1.1+ 107" LI =00
16 M [ 17 %10 % 1.5 pg e

Table 2.1.2:The error in the approximate solution for different values of 4

One can see that the step size i dose not effects too much in the linear case since the

tangent vector is fixed during all iterations. For this reason it is enough to choose

reasonable small step size such as/=0.01. It is easy to see that the path—following

method is working efficiently.

Figure 2.1.1: Graph of ( N, Cond (€2) )

I Conai YY)

18

sl

Figure 2.1.2: Graph of ( N, In (Cond (€2))
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2.2 Numerical technique for solving nonlinear boundary value problems
This section. presents a numerical technique for solving the following boundary

value problem (BVPs) of the form
V' = f(xaw ) . xe(-11) (2.2.1)
y(-D)=y_, y(1)=y, (2.2.2)

where ) and y, are constants and [ € ¢’ ([—l,l]x‘)?x‘.ﬂ). We approximate /(x)

in terms of the Legendre polynomials as we did in the linear case. Hence. the residual

is given by
R(yy)=yi—f(x.yn: V)

Orthogonalize the residual with respect to the Legendre polynomials as

1

(R(w)-P(x))= [ R(w) B, (x)x =0 (22.3)
-1

For j=0,1....., N. Hence, Equation (2.2.3) leads to
5 1 N+2 N+l 1)

(j+0.5) yﬁ’) = IP/ (x)f(x, yiP(x), ) v ,P,]dx. (2.2.4)

i i=0 i=0
N+2 N +1

, ' 1 1
Simple calculations imply that Z yp; =D -and Zy'( )p, :DZY( )
=0 1=0

where

D, = [po p1 - Pn+2) and D, =1[po P1 - Pn+1)-



zﬂ*;d; 'lh;lﬁl-' T P
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From Equation (1.4.4) there exists a matrix B, of order (N +2)x(N +3) such that

Y® = py.
Thus

N+l

> yUp =D,BY
1=0

1
Equation (2.2.4) becomes _)'52] =(/7+0.5) j p,(x)f (x.D)Y,D,BY)dx.
4

Let

g (r)=(j+0.5) [ p,(x)f (x.DY.D,BY)dx.

|

Then
ﬂ”=gKY) for j=0,l.....N.

We can rewrite last equation in the matrix form as

Y® =G(Y)
where
g,(¥)
G(Y)= g‘{y) ,
gy (Y)

From Equation (1.4.5), there exists a matrix B, of order (N +l)x(N +3) such that






T hus.

B)Y =G(Y).

¥ =RY,

By the endpoint relations we see that

where

Combine systems (2.2.5) and (2.2.6) to get

where

QY =R(Y)

o~ 5]

The matrix Q is non-singular. Example for N =5,

e == =]

_ 0 OO o oo

3 0 10
0 15 0
0 0 35
0 0 O
0 0 O
0L BORS 80
i 1
} =1 i

G(Y)

and R(Y)=|y,

Y-

o
o
(93]



=
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the condition number of Q is k(€)= 186.7133. To solve system (2.2.7) we apply the

path following method as described in section 2.1. Next. we present two examples.

Example (2.2.1): Consider the following nonlinear boundary value problem

y”+xe"‘y(x)y’(x)+(l+x2)_r=(2+x+x2)e’
y(-1)=e' . »(1)=e
Where the exact solution is y(x)=e*. In Table 2.2.1 we present the relation
between the number of terms N in the approximate solution y, (x) and the max

point-wise error in the approximate solution e, using the step size #=0.001.

N ey

6 1.321 %1077
8 3.529* 107
10 4423 * 10"
12 5.681 *10 7"
14 I 320 i
16 9.725* 10"
18 2.486* 10"

Table 2.2.1: The error in the approximate solution in Example (2.2.1).
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Example (2.2.2): Consider the nonlinear boundary value problem

9

y"(x) +xy'(,r)+(y(x))' =x?+x.

Then. the exact solution s X. We make an entirely analogous analysis to that of

Example (2.2.1). the result is presented in Table 2.2.2.

N ey

4 3218* 107
6 6.923* 107"
8 2:451 * 1674
10 1.976* 1077
12 1.721 #1077
14 1.123 *107°

Table 2.2.2: The error in the approximate solution in Example (2.2.2).

From Tables 2.2.1 and 2.2.2 it is clear that the proposed method works properly and

efficiently.
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Chapter 3: Fractional Boundary Value Problems

In this chapter, the Tau-method is used for solving problem (1)—(2) when

l<a <2. This chapter i1s divided into two sections. The first one, it studies the
linear case while the second one, it studies the nonlinear case.
3.1 Linear fractional boundary value problems

In this section. a numerical approach is presented for solving the following class

of fractional linear BVP’s

Dy =a(x)y" +b(x)y+c(x).xe(0,1).l <a<2 (3.1.1)
y(0)=y. , y(1)=y, (3.1.2)
where y_ . y, are constantsand a.b,c eC[—l.]].

Approximate y(x),a(x),b(x) and ¢(x) in terms of the fractional-order Legendre

functions as:

N+2
Y, (x)= F7(x),ay(x)= ZakF” (x).by Zb F7 (>
k=0 k=0 k=0
,and
N
Sl=0k GER()
k=0
N+l (
Thus, D®y(x)and y'(x) canbe approximated by DYy Zy “FZ(x) and
N+1
Yv Zy’((l)ﬂa

For Y, the residual is given by
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R(Y,)=D"Y, -a,(x)Y, (x)=by (X)), (x)=c, (x)

—Z)i")F“(x (ia F*( r))(i}f'F" X)j“

k=0 k=0

(ihﬂ" (x)](k‘ Wy (X)J_k’;ck )

=0

or

Using Theorem (1.4.1), the residual can be written as

(@) N+ k(K12 (1)
R Z}’k F, Z Z Aw“ Y- , )F;:iZI (r)
k=0 k=0 ;=0 /=0
IN+2 k [K2] N
- Z Azzb Y-y k 2/ Z
k=0 ;=0 /=0

where

a,=0,b,=0,y,=0,c,=0 for j2N+2 and
yﬁ“) 0 forj=N.

Since the focus is on the first n terms only, the higher order terms are ignored and

the residual will be written as R(Y, Z,B,(F" chF"
Orthogonalize the residual with respect to the fractional order Legendre function to

getJ‘R )E7 (x)w(x)dx=0, j=0:N.Thus f, =¢, fork=0:N.
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Let
5 Gy
B = :3' and R = :C'
By B
Then.
B=R (3.1.3)

Following the procedure described in section (2.1) and the properties of the
Fractional-order Legendre functions mentioned in section (1.4), we can rewrite
equation (3.1.3) as

AY =R

1

where A is (N +1)(N +3)matrix and

Yo
34!

yN+2

From the boundary conditions, one can see that

N+2 N+2

a k
y. =Y (0)=Y 3 F(0)= D> (-1) w»
k=0 k=0
N+2 N+2
. =Y()=2nF (1)= 2 »
k=0 k=0
Thus,
A -
Y=|y 3. 1.4)
Wik

b
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where

Thus, system(3.1.4) can be written as

OY =8 (3.1.5)
where Qand Bare (N +3)(N +3)and (N +3)x1matrices. The major problem in
system (3.1.5) is that the matrix €2 is ill conditioned matrix. The path-following
method will be used as we did in section (2.1) to overcome this problem. The
following are two examples to show the efticiency of the proposed method.

Example (3.1.1): Consider the following linear fractional boundary value problem of

the form

D%y+2y'+3y=3xz+4x+3\/;+3, 0<x<l
/4

=l =2

The exact solution is y_ ., (x)= x* +1. Approximate the solution by
N+2 3/
()= » F (x).
k=0

Let ey = max {|ymu(x)— Yy (x)|:x=0,0. l,...,l}. Then the errors for different values

of N are given in Table 3.1.1.

N B

4 3.1x107*
6 7.8%107"°
8 5.2%107"°
10 BBy

Table 3.1.1: The error in the approximate solution in Example (3.1.1).
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From Table 3.1.1. we see that Y, 1s an accurate approximation to y, JO0. It is

worth to mention that #=107 is used in the path following method.
Example (3.1.2): Consider the following linear fractional boundary value problem of
the form

D y+x*y = f(x), O<x<l
y(0)=1, y(l)=e

2 2 . ~ .
where f(x)=x"E, ,, +x°¢" and E, j(z) is the two parameter function of Mettag-

leftler type. The exact solution is y, ., (x) =e". Approximate the solution by

N+2
@) =D 1 F2 ().

k=0

Then the errors for different values of N are given in Table 3.1.2.

N ey

6 4.3%107°
8 7.6%107°
10 3.5%107°
12 2.9%107"°
14 1.8%107"
16 2.7%107"

Table 3.1.2: The error in the approximate solution in Example (3.1.2).

From Table 3.1.2, we get an accurate approximation to y,,.(x). In this
example. #=107 isused for the path following method.
Example (3.1.3): Consider the following fractional linear boundary value problem

[50] and [37].

3xa+1

R M PP
57T (a +2)

D*y(x)+ Y57 0(x) =x



1




38

1

y(0)=0. y(l)s ———
ST (@ +2)

a+l

The exact solution is Ve (X) = .
e T(a+1)

In this example: we will compare our

results with Rahman and khan results [S0]. Wu and Li results [37], where the first
researchers were used wavelet operational matrices for the solutions of the fractional
differential equations. while the others were used reproducing kernel method.

Approximate the solution by

N+2

Vo= 3 3 F ).
k=0

a=1.2 a=1.2 a=1.2
= In[50], n=32 In[37], n=10 our method (n=10)
0.1 1.53 x 107° 5.41 x 107® 3.13 x107°
0.2 1.52x 1077 2.87x107° 2.14 x 107°
0.3 8.08 x 1077 7.77 x 1077 9.21 x 10710
0.4 6.31 x 1077 4.76 x 1077 8.75 x 10~10
0.5 5.19 x 1077 1.76 x 1077 6.32 x 10710
0.6 1.83 x 107® 7.03 x 107° 5.98 x 10710
0.7 2.43 x 107 1.67 x 1077 3.67 x 10710
0.8 3.12 x 107 ¥ 30 X 1077 1.71 x 10710
0.9 4.00 x 107 2.75 x 1077 2.39 x 10710

Table 3.1.3: Comparison between the errors in the proposed method and the errors in

[37], [50].
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Example (3.1.4): Consider the following fractional linear BVP 591
D''y(x) = XV (x)+ (1+ x)p(x) - f(x), 0<x<l
»0)y=1 , y1)=5
where the function f is chosen such that the exact solution is
Y(x)=x" +x°% +14+3x=Tx +4x° +x*.

In this example, we will compare our results with Stynes [59] results.  Who was

used finite difference method. Approximate the solution by

yu(x)= ﬁfn e 2
par

N €v in[59]

64 1.464x10™

128 7.547x107?

256 3.843x107?

512 1.941x1072

1024 9.761x10
2048 | 4.895x107

Table 3.1.4: The errors in results of [59]
However, for N =10, the error in our results is3.2x107".
3.2 Nonlinear fractional boundary value problems

In this section, we discuss the solution of problem (1) and (2) forl <a <2, xe(0,1).

We approximate y(x)in terms of the fractional-order Legendre functions as

N+2

Y, (x)= Z Y F (x).
K=0
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Then.
N+l
DYy (x) =)y F(x)
k=0
and
N+l
Y'(x)= D nF ().
k=0
et
Yo »” »
(a) (1)
y=|2t | r@=| ] and yo |2
Y _yfva) il _}’211 |

Now. the residual is given by
Ry Y=y =% Ty 1)

Orthogonalize the residual to get
1
j R()F* (x)w(x)dx=0 for j=0:N.
0

Thus,

N+2

! N+l
(j+0.5)"y? = j Fox) f(x, ). y,Fo(x), > yOF® (x)hw(x)dk.
0 1=0 1=0

One can see that

N+2 N+l
S ¥EYx)=DY and Y Y F(x)=D,1'"
1=0 1=0

where

D, =|:Foa”'F:+2] and D, =|:Ft)a"'E\(11+|:|-

5 e 1 (a)
From section (1.4), we can rewrite TR 1






Y®=BY and Y'* = B)Y
where B, and B, are (N +2)x (N +3) and (N +1)x(N +3) matrices.
Thus.

B)Y =G(Y) (3.2.1)
where
1
g, =0 +0.5)J'Fj"(x)f(x. D\Y. D,B Y )w(x)dx
0

for j=0:N and

&)
Gary=| B
gy(¥)
Using the boundary conditions, we get
B,(Y) =B} (32.2)

where

From equations (3.2.1)and (3.2.2), we get
Gy
B, . (¥)
% 2 b
Vi

or

QY = R(Y) (3.2.3)
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where

G(Y)
BZ
Q={ J and R(Y)=|y. .

y

+

To solve system (3.2.3). the path-following method is applied as described in section
(2.1). Now. here are two of our examples.

Example (3.2.1): Consider the following tractional nonlinear equation
(] 2 8 15 6
D7 wx)=2y +—\/Tx -y O<x<l
T

#O)=1, y(l)=2.

The exact solution is y(x) = X+, Approximate the solution by
N+2
yN (I) = Z'Vk }il ‘(.\' )
k=0

Using the proposed technique with /#=0.01. For the path-following and N =4,

for the Tau method. we get

Vo =1.66666667
y,=0.5

y, =1.33333334
Vsi=Yi=Ys=Ys=0

Thus,

y(x)= % Fz' 5(x)+—12—FII 5(x)+ —i— =x’ +1. Then, we get the exact solution.
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Example (3.2.2): Consider the following fractional Bratu-type equation
D*y(x)=2®, 0<x<l|

E0) =104yl = k5.

=

Approximate the solution by y,(x)= by,‘F,,'s(x). Using #=0.01 and N =6. the

k=

o

first few values of y, are given below

Vi
0.107243
0.165249

0.0621845

0.00528223

0.00124226

0.000142879
3.45414 « 107
+1.23296 = 107

8 8.21974 + 1078
Table 3.2.1: The values of the coefticients yy

| W|IN|[—= O |

N | N

Thus.

Ye(x) = 0.107243F *(x)+ 0.165249F" * (x) + 0.0621845 F; *(x)
+0.00528223F®(x)+0.00124226 F *(x)+ 0.000142879 F *(x)
+3.45414x 10 F3(x) +1.23296x10° F *(x) +8.21974x 107 ' *(x).

Figure 3.2.1 represents the graph of the approximation solution.






N

"

0.30
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Figure 3.2.1: Graph of the approximate solution
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3.3 Conclusions

In this thesis, we modified the Tau-method for the solution a class of non-
linear fractional BVPs. We also succeed to find the relation between the coefficient
of the series solution of a given function and the coefficient of the series expansion
of its fractional derivative. The proposed method is based on the Tau Legendre and
path -following methods. Numerical and theoretical results are presented. The
numerical results give an evidence of the accuracy of the approximate solution of
fractional boundary value problems. We compare our results with others researchers

and the comparison shows that our technique works more faster and more efficiently.
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