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Abstract 

ignaling pathwa contro l l ing biotic and abiotic stress re ponses may interact 

) ncrgistica l l  or  antag ni  t ical ly .  To identify the s imi larit ies and di fferences among 

re pon e to diverse tresse , v e analyzed previously publ i  hed m icroarray data on the 

tran, criptomic re pon es of Arabidop i thaliana to infection with Botryfis cinerea ( a  

bioti 'tre,),  and to cold, drought, and ox idat ive stresses (abiotic stresses). Our analyses 

ho\\ ed that at early tages after B. cinerea inoculation, 1 498 genes were up-regulated 

(B. cillerea up-regulated genes; BUGs) and 1 ] 38  genes were down-regulated ( B. 

cinerea down-regu lated genes; BDGs) .  We showed a unique program of gene expression 

\\ a activated in re ponse each biotic and abiotic stress, but that some genes were 

im i l arl i nduced or repressed by al l of  the tested stresses. Of the identified BUGs, 25%, 

6°'0 and 1 2°1, \vere a lso i nduced by cold, drought and oxidative stress, respective ly; 

\vherea 33%, 7% and 5 .5% of the BDGs were a lso down-regu lated by the same abiotic 

tresses. Coexpression and protein-protein  interaction network analyses revealed a 

dynanlic range in  the expression Ie e ls  of genes encoding regulatory proteins. Analysis 

of gene expression in response to electrophi l ic oxy l ipins suggested that these compounds 

are i nvolved in mediat ing response to B. cinerea infection and abiot ic stress through 

TG transcription factors. Our results suggest an overlap among genes i nvolved in the 

response to biotic and abiot ic stresses in A. thaliana. Changes in the transcript levels of 

genes encod ing components of the cyclopentenone signal ing pathway in  response to 

biotic and abiotic stresses suggest that the oxy l ipin signal transduct ion pathway plays a 

role in  p lant defense. I dent ify ing genes that are commonly expressed in  response to 
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em i ronmentaJ tre � , and fuliher analyzing the functions of thei r encoded products, 

wi ll increase our under tand ing f the plant  stress response. This informat ion could 

ident if, target for genetic modi ficat ion to improve plant resi tance to mUlt ip le stresse . 

Ke) \-ord : abiotic tre , Arahidopsis Ihaliana, Bolrytis cinerea, defense response, 

coexpre sion, tran criptome. TGA tran cription factor, B. cinerea up-regulated genes, B. 

cinerea down-regu lated genes. 
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Tit le  a n d  Ab tra ct ( io Ara b ic) 

&-"4-.0 � � 0A .illj..,9 ���..,9 �I �I �1j.b...J10A JS.l �I A.s� �� r:.P u..::.sJ1 
c)l�\ �\ � J)G. RNA 

(gene regulat ion) �I �I � ..) dl.J� �I w�1 t1ylJ .)1..lc.1..)c upl J::...i lJA 

tYJ � J,..l..c ..}A YS'1 �I 4.S.y..:;..., w�1 �y....o J.:..I ..}AJ o�1 :i;"2.'11 J..,1y.ll wl,Ul1 ua� s:.ltiI 
�I � � ( m icroana ) tfl)JfoWI 0"'� lJA :;�'pL. �L �lij J;h:i r:i ,�I �I I� 

(cfY--"'- .)�!) BOlryti cinerea � �Lo� �k.:i.....,'11 ,,\...lJI Arabidopsis thaliana w� w� �\ 
�Lo'j ')J' I �lyJI ..) <GI \.j:j)4b.:i W..l......c.J.lll ,(tfY--"'- � .)�!) u�IJ o..l.o.oS\rlj o.)jy}1 J..,lyJ -ill�J 

� 1138j ( 
:i..Jl:U..... '11 s:.\...lJ1 ,- wlllli . I \.....a.., I L.ll.u j.JWI . I' ')1 1- ( RNA � � . li.:;.jl) .' . .  . . . � . u _ _. _ U l.Y' � � j . _ I..,? 0'" � � 
wlllli . - � _ ,<II I · ,;. � I I . \ "�W . . I.:.i wLll.:..-illlli. w.ilS, :,. 11 ." . �II . 1.lJ . I' �L.; . IY"'.YJ (:� J � � '"G-:' � _ .  � � � _YJ � . y. 

B. cinerea � �Lo '1\ � cii yJl �I wlJ� wl,Ul1 w� t� lJA . . .Jfii.JI o�1 J,..lyJl � 

J,..k J..i! w ji=..:i %6 ' �I 0.) jy}1 J..,k � �i w ji=..:i � w�1 o� lJA %25 JI..,.". dllli. ulS , 
� '- ; � : .11 . ,l:..,�1) wi � wlllli wLll.:.. t . L.,i , -- .11 o..l.o.oS\r1 . \ k w" - 0/12 ,-- .1) u\.i:JI � I-""""" J . _ . � l.Y' . � l.}A � /0 J � . 

�i w�i u"=·.'''U�I .J'11 w� lJA %5.5 J %7 ,%33 JI..,.". dllli. ulS.lli B. cinerea � :i..JLo)l1 

.�.Ji11 ..)c o..l.o.oS�IJ u�1 ,o.)Jy]1 J..,IJC lJA J5J � � I� 

ul (coexpres ion)  YL......JI �I wl�1 t=-"� w)4b.:ij �Jy' -�Jy' Jc\.ii w)4b.:i '-".'�l 
.) .b. ' � I) : .. II .. , - �II wl.J - . l..JS.J...lil.ll1 \jLb..i dJ.t.,,:; �I wllli . . 1) . lij'1 0 ; � . II wl.i...=J1 J � .  cf � � -� � - - - - - - J.Y.-' C . � --

�...,)l1 w��'1 �I �\ w)4b.:i w�i laS .(LS�I..., LS�I �I �I wy� 

�� 1 -ill�J B .  cinerea � �Lo� wl,U11 ��I w4i= ..) �L:i wl,6yJI o� ui (oxyJip in )  

. (TGA transcription factor) tfi � � .)I.J}I �I J..,k 0:..;b LP -ill�..., tfY--"'- �I .)�)l1 J,..lyJ 

o�1 J..,1y.ll ��'1\ w4i= ..) 4.S..JL;..JI w�1 � ( overlap) �..., J;;..bi dllli. ui .)1 �lij y..:;:; 

�...,'11 o..J�! �ji .JL.. ui .)! �\.:i:JI � laS .L-�...,�I..J'1 1 wlU � ��I �..., �y=J\ 

.).PJ.)I .)� 1i.\.J' wl,U11 � tl.!..l.ll w4i= ..) I..J...,.) � ( oxy l ip in s ignal transduction pathway ) 

4....U.bJ1 uji.i.,JI wl,6y wU.�! .JL.. oy..:J 4..1,l.:J1 w� ( t ranscripts) �I wy� � wl� 

.��I �J��I.)�)l1 J..,lyJ��'11 s:.\...lJi � ( cyc lopenenone s igna l ing pathway) 
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Chapter 1: In trodu ct ion 

Plant are frequent! exposed to en i ronmental stres es  that occur ei ther 

imul taneously r in u ce ion .  Depending on the pathogen or the type of abiotic stress, 

plant attune their re pon e to activate r si tance pathwa s (11. In nature, plants exposed 

to abiotic stre s ma, how enhanced resistance to pathogens, a phenomenon known as 

cro -to leran e [21. This i ndicate that there is ome crosstalk between signal ing 

pathways mediating the responses to biot ic  and abiot ic stress. Some studies ha e 

demon trated that there are d ist inct pathways regulat ing plant re ponses to each 

indi\ idual  tress, whi le others have shown that there i s  some coord ination among plant 

re ponses to pathogen and abiotic tresse [3-6). I n  general, d ifferent biotic and abiot ic 

stre s respon e can be activated by unique or 0 erlapping signa l ing pathways [6-81. 

Many studies have focused on the plant response to individual stresses. The 

biotic stress response has been studied in the Arabidopsis thaliana-Botrylis 

cinerea pathosystem [4, 8-111. A necrotrophic pathogen that has a broad host range, 

inc l uding the model p lan t  A. thaliana, causing yie ld losses for many spec ies [121. A. 

rhaliana i nfected with B. cinerea develop lesions, but do not mount a systemat ic  acquired 

re i stance response. Analyses of the A. rhaliana transcriptome or proteome during the 

defense re ponse to B. cinerea i nfection have revealed up-regulation of genes encoding 

defense-re lated and regulatory proteins [s. 9. 13-151. Simi larly, there have been large- cale 

analyses of change i n  the A.  thaliana transcriptome i n  response to cold,  drought, or 

ox idati ve stresses [16- 181. These studies usual ly identified the role  of ome prote ins that 

encoded by genes in responding to necrotrophic  pathogens [4.8-10]. 
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Plant re pon e to mult ip le em i ronmental stre es d iffers from the response to an 

indi idual stre . Microarra) analy es ha e re ealed that plants expo ed to combinations 

of biotic or abiotic tre e how a tran criptional re pon e d i fferent from that induced 

by each ind ividual stre s [19 21. 221 . Both tobacco ( icotonia attenuate) and A. thalianu 

sh wed d i fferent tran criptional respon es to mult ip le insect herbivores than to a si ngle 

pe t [21. 2J) ddit iona l l , the respon e ofA.  thaLiana to a combination of drought and heat 

tres \vas found to be distinct from that of plants subjected to only drought or heat stress 

[20), Therefore, M ittler and Blumwald proposed that a combination of stresses, rather 

than an individual tress, should be tudied to understand the molecular mechanism of 

plant sense. transduce, and adapt to mul t ip le en i ronmental condit ions. U l t imately, this 

wil l al low us to develop tolerant crops to mUlt ip le stresses (24) . 

P lants exposed to a pathogen can become more susceptible to danlage by 

subsequent abiot ic stre ses. I n  rice, cyst nematodes (Heterodera sacchari) i ncreased the 

effects of drought and drought-related losses [251 .  S imi larly, long-term abiotic stress 

\\ eaken plant defenses and i ncreases su cept ib i l i ty to pathogens [241. A few studies have 

focused on the transcriptional regulation of responses to mult iple biotic and abiotic 

stresses, and on the genes that are comm only i nduced by d i fferent stresses. A m icro array 

analysis showed a d ist inct progranl of gene activat ion i n  response to s imultaneous water 

deficit  and nematode infection i n  A .  thaliana [221. Furthermore, most transcriptome 

changes that result from combinations of flage l l i n  ( bacterial e l i c i tor), cold, heat, high­

l ight, and sal t  stress treatments, cannot be predicted from the response to each i ndiv idual 

stress treatment (26) . To date. there has been no report of a transcriptome analysis of 

p lants s imul taneously exposed to B. cinerea and abiotic stresses. 
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enetic tudie on A. thaliana and tomato (Solanum fycopersicum) have shoVvn 

that ab 'ci ic ac id (ABA)  r gulate abiotic tress respon es [3. 6J, while jasmonate (JA)  

and ethylene ( T) are key regu lators of defense responses against necrotrophic 

infections [9, 27-29J. Recent ly,  two cyc lopentenones, 1 2-oxo-phytodeniec ac id ( OPDA) and 

ph) topro tane' ( PP ""ere reported to accWTIulate after infection by various pathogens [4. 

30-321 and in  respon e to abiotic tresses [18. 33J. Phytoprostane ( PP)  is produced 

nonenzymatical l from a- l inolenic ac id via a free radical-catalyzed pathway . OPDA ( the 

1 precursor) i s  produced enz matica l ly from a-l i nolenic ac id and ul t imately forms lA 

and/or i t  conjugates via the act iv i ty of OPDA reductase (OPR3)  fol lowed by three 8-

oxidation steps [341. Studies have pro ided that OPDA functions d ist inctly from lA. I n  A. 

lhaliana respon e to wound, s ignal ing pathway functions independent of lA [35]. 

Addi t iona l l  , mutations i n  OPR3 and expansin-like A 2  (EXLA2)  genes can modulate 

gene expression through cyc1opentenone/COI  1 ,  i ndependently of lA, under biotic 

stress [4. 361. However, l itt le is known about the role  of e lectroph i l ic oxyl ipins OPDA or 

phytoprostane A I ( PP  A I ) i n  the plant response to B. cinerea infection. 

Analyses of the molecu lar mechanisms i nvolved in  tolerance to pathogens and 

abiot ic stress have generated large amounts of data. However, l it t le is known about how 

individua l  biological processes function in the context of the entire ce l l ular network. I n  

the l ast decade, the i ntegrat ion of microarray data and coexpression network and 

protei n-protei n  i nteraction ( PPI ) data has ident ified coregulated genes and/or protein 

complexes [37-391. These studies, which aimed to identify d i fferent ia l ly expressed genes 

and to determine their functions, have provided new insights into the basic mechanisms 

contro l l ing cel l u l ar processes i nvolved in tolerance to extreme conditions and 

pathogens in planta. 



tudics on p lant respon e to individual tres es ha e re ealed the genes and 

path\\ ay that are acti ated during peci fic tress re pon es 140]. However, it is important 

to compare man d i fferent stress responses to identif the genes and pathways that are 

comm nly induced b d iver e tres es 120. 241. Thi could identify targets for genetic 

engineering to produce p lants with toleran e to mult iple stresse . 

I Iere, \\ e analyzed previou I publ ished data sets [4 IJ to ident ify stress-regulated 

gene ill\'olved in mUlt i}J le tress responses, and to identif the components that regulate 

an oYerlap b tween biotic and abiotic stress responses. We perfOlmed a large-scale 

comparat i \  e transcriptomic anal  s is  using publ ic ly avai lable microarray data. These data 

were obtained in  tudies on  the transcriptomic response of A.  thaliana to  B .  cinerea, cold, 

dr ught . and oxidative stress. Our analyses revealed the genes expressed uniquely in 

re pon e to each stress, and those expressed commonly in the responses to B. cinerea and 

other abiotic stresses. We identified the genes that were up- or down-regulated in a l l  

c lasses of tresses studied. A gene co-expression network analysis identi fied c lusters of  

stress-responsive genes, which encoded regulatory proteins, i n  t ightly co-expressed 

modules. The results of th is study w i l l  help us understand the key genes, which are 

involved in plant-pathogenesi s  and abiotic stress-related defense mechanisms using A.  

thaliana as  a host. Th i s  leads to a better understanding of the crosstalk between biotic 

and abiotic stresses in crops in the Uni ted Arab Emirates. We have generated promising 

data, which wi l l  lead researchers in  deve loping genet ical ly mod ified crops that 

conferring resi stance to env i ronmental i nsults, mainly B. cinerea cold, drought and 

oxidative stress. 
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Chapter 2: Materia l a n d  Methods 

2.1 Data ourcc and anal 

Data et were n t ubjected to any additional normal izat ion, as a l l  had been 

nom1ali.led \-\ 'hen VvC obtained them. We do\! n loaded "signal" data from N CArrays 

[affy .arabidopsis .info/link_to_iplant .shtm l] [41 ] for each stress; where only the "shoots" 

c Ia s \i as anal zed. The r f rence numbers are as fol lows : contro l ,  NASCAlTays- 1 37; 

c ld tre s, 'Arra) s- 1 3 8 ;  drought stress, A CArrays- 1 4  L oxidati e stress, 

Arrays- l,n: and B. cinerea, ASCAalTays- 1 67.  Comparison scatter plots were 

generated to detect the effect of B. cinerea infection at 1 8  bpi or speci fic abiotic stress 

treatment at _4 hpt on gene expres ion. Three replicates from 80 biological ly different 

samples \ ere compared. There were 228 1 0  genes in each sample .  In a l l  samples, probes 

having negative or zero e_ pression signal values were removed . At the tested time point, 

the overa l l d ifference in gene expression between non-treated/non-inoculated (contro l )  

and treated/ inoculated samples was determined by  pairwise comparison. The 

nonnalized-fold change value for each gene was calculated by d ividing the expression 

l evel in a treatedlinocu lated sample by the expression level in a non-treated/non­

i noculated sample.  A two-fold or hal f- fold (unless otherwise stated) difference in 

expression level bet\. een treatedlinocu lated and non-treated/non-inocu lated samples 

at P�0.05 was et as the thresho ld for considering a gene be up-regulated or down­

regulated, respecti e ly .  The cutoffs of the fold  change and p-value were chosen to fi l ter 

fal se positives and to compare our data analyses with those in  the microarray literatures. 

ing the Arabidopsis I n formation Resources (TA I R; www .arabidopsis .org), the 
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ident i t ie of gene aero m lcroarray data s ts were establ ished. We used microarray 

data from eedl ing' treated \ ith OPO and PP I obtained in prev iou studies [32,351. 

2.2 III I'itro a ay for cold, drought, and oxidative tres 

We analyzed data from an original stud on the responses of A .  thaliana to 

\ arious str s cond it ions 1411. In that study, the experi ments were conducted as described 

in th fol lowing paragraphs. 

eed were surface-steri l i zed in 70% ethanol for 2 mm then in 30% C lorox 

o lution containing 0.0 1 % Tween for 1 0  min .  The seeds were rinsed five t imes in steri le 

\\ 'at r and then own on medium conta in ing M ura h ige and koog ( M S) salts, 2% 

ucrose and 0 .7% (w/v) puri fied agar, unless otherwise stated. P lates were kept at 4°C 

for 48 h to ynchronize germinat ion, transferr d to growth chambers with fluorescent 

l i ghts. and maintained under the environmental cond it ions as descr ibed in [421 with some 

modifications. 

tress treatments were appl ied in in vitro condit ions using I I -day old seedl ings 

as the p lant materia l .  For drought stress, seedl ings were kept under a dry air  stream 

(c lean bench)  for 24 h, unt i l 1 0% of the fresh weight had been lost. For the cold-stress 

treatment, seedl ings were placed on ice to cool rapidly and then kept at 4°C for 24 h in  a 

cold room. For the oxidat ive stress treatment, seed l ings were exposed to I 0 �M paraquat 

( methy l viologen )  for 24 h. For the contro l ,  the seedl ings were treated with l iquid-MS 

med ium (contro l ) .  Al l  treatments and preparations were conducted using the same batch 

of seedl ings, as described in  [41]. 
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We anal zed data [rom an original tudy on A.  thaliana plants (ecotype 01-0) 

in[e ted V\.ith B. cinerea (41J. I n  that tudy, the experimental condit ion were as 

fol low : A. Ihaliana l eave \. ere inoculated by plac ing four 5- , .. t.i drop of a 5x 1 05 spore 

o lution onto each leaf. ontrol leaves were sported with droplets of potato dextrose 

broth med ium (24 g L-I . The re ponses to B. cinerea i nfect ion were assayed at 18 and 

48 hpi of adult  lem e . 

For the qRT-PCR anal SIS, the B. cinerea strain B05- 1 0  was grown on 2xV8 

agar ( 3 6% V8 juice. 0 .2% CaC03,  2% Bacto-agar). To in it iate and maintain fungal 

cu l ture . p ieces of agar contain ing myce l i um were transferred to fresh 2 x V8 agars and 

in ubated at 20-25°C. Conidia were col lected from 1 0-day-old cu l tures as described 

in [9]. Five \ .  eeks old plants grown in soi l  were spray- inoculated with 3x l 05 spores 

m L-1 B. cinerea spore su pensions, using a Pre al sprayer ( Valve Corp. ,  Yonkers, N Y  

U ) . The contro l  p lants were sprayed with 1 % Sabouraud maltose broth buffer. To 

e tab l i sh d isease, plants were kept under a sealed transparent cover to maintain high 

humidity i n  a growth chamber under the fol l owing condit ions: 2 1 °C day/ 1 8°C n ight 

temperature. 1 2-h l ightJ 1 2-h dark photoperiod. 

2..t RNA extraction and expression analysis 

RNA e ·traction and qRT-PCR expression analyses were performed as described 

previously [4J. The qRT-PCR was performed using gene-spec i fi c  primers, with A.  

thalania AClin2 (AtAclin2) as the endogenous reference for normal izat ion. Expression 

l evels were calculated by the comparat ive cycle threshold method, and normal izat ion to 

the control was perfonned as described previously [43]. Three technica l  repl icates of the 
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qRT-PCR a ay were u ed 11 r each ample \\ith a mjnimwn of two biological repl icate . 

Primer equences ar hown in Table 1 .  

Table 1 :  Li t [ primers ( equ nee 5' t 3 ' )  that used in this study . 
� Description Left primu sequence Right primu sequence 

A r.tc! ill.? GT GTACAACCGGT TTGTGCTG CCTCTCTCTGTAAGGATCTT ATGAG -
Atlg�J-I8{) CTTTTCCTCCTCCTTCCGTTTCG GGAGACCAAACCTTCCTCTCTTG 

CORI3 AGATAAACAATAACCCTCCGACAGT CTTTCAGAAAACTCTGCCTCTTATC 

RD]O TCCTTGGGAGACIT T AAGGGA IT GTAACGTAGCTGAACGCTAAGTTTATG 

AI.?gJY-/.?O TGTATGAAGTTGCATCTAGTTCGGA AACAGTCTCGATAITCTCTGGTGTC 

EXO CIT TI' CCTCACTC CACACACTT GCGAGTTTGTAGTAITTTT TGTGG 

DRE826 CTTTGATGGGATCTTTTGTGGACAA GCTCCATTATCAAACAAGAACATCC 

CA-I AAGATATCACCTGTACCG AGCTG GAAGTGAGTTGCTTTTGTTCGAAGA 

DJC_-I CAAGAG TC A TCAGCIT ACCGG GTGGATCTTCATGAAATCGTCCG 

At':g:?06-0 CTCTAGACACCTAAGAGATGTCGC TCTATAAATTCGTGITCCCCTGCAG 

DREB2A AGAGTGGAGATAGAAACAGAACACA TCCATCTCTTTAATCTCTCAGCCAC 

P\fZ GCAAATATTGTGGAGTCAAGTT TG AACTCAAAGCTTCCATAAACCTCTC 

RHL-II TTGAAGAAATCTAGCAGTGGGAAGA ATAAACTGTTCTTCCAAGCTCCAAC 

REF TTGGTTATCTTCCGITGGTTCCTGT CTTTCTTTCCAGCCGTATCCCCTCC 

BAPI CCCAACGAATGATTTCATGGGAAGG TGACGATCCCACACTTATCACCAAA 

L'ClJ8S TTAAAGAGAGGACAACAGGGAAAGG AATGAGTCACAAATCCTCCAATTGC 

HSpr -I GGAAGTAAAGGCGAGTATGGAGAAT TTAACCAGAGATATCAACGGACTTG 

CPX6 GTTGACAAAGATGGAAATGTTGTCG TAAGCAGTAACTCCCAACAACTTCT 

AtSgJS�JS ACCATCATCCTCTCTATTGTCAACA CCAAGAAAGATGAGGATCCCAATGT 

Atlg60 30 AATATGGAATCAGGTATGCAGAGGG GGCAACATCTACTCGCATTAAACTA 

CSTL'25 GTAATCCGGTATGTGAATCACTCAT GAGCTCTTTGGTAAGGATCAGAAG 

CST]] CSTU-I AAGTTCAAGTGAGAGAAAGAGAGGTC GCCATCTCAACTCTACGAGTAAAAG 

,HDR-I ACGCTCTTTCTTGTAGTCTTTTGTAGC ATATTGAGAACTTGTCCTCCTGTGTAG 

EU3-2 GGAAGTATGATAGGAGGGATAAAAGAG CATAATCGGCAGAGATAAGCTCAAT 

PDRJ2 GTTTCTTGAGTTTCCAGAGGAGTTTC CCAAGCGAGTCCTAGTATGAGAAGAAA 

PADJ AACTTGTGTGTCAAGAAACTCTCTG CGATACGACACACTATATTTCCGACTA 

Op71OAl TTGAACCACCTCGTACTCTTCATTG TATAGTAGGGCAGTACACGATCTCA 

A1Sg()3-190 TGTTATTGTTGCCGGGAACTAAATC AAGTCAAGTAGAGGAAGTAAGTGGC 

ACAJ2 CTCTTTGGCTCTAACACCTACCATAAG AGACCAACAAGATCAAGATGGTTAG 

A!lg�2900 TCAGGGTAACTACTTTGAAAGCCA AGCAGAACCTTTTGCTTCTTGAGA 

SCP2 CGAATCAACAATCTAAGGAACAGAG CCAGGAGTACAAGCAACGATTCTA 

At5g22860 GAGAAGAATCGTCGTTAGACTCTGAT AATACCTATGCTCTATGTAGACGAGGA 

RD2 AGTACAGTTTCAGGGAAGTAGTGTTG ACATCTCTTCCTCTTCTCCTCTCTC 

A!Sg6S300 ACAGAGGAGTTTGTCCTTGTTGTTT GGATGAAGAAGAAGAAGATCTGTGA 
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2.5 A. tholiono P PJ databa e 

The i1. Ihaliana PPI data et (-96,22 1 PP Is  as of AtP] -relea e 8 )  was obtained 

from ( AtP] ; http://oinfo.esalg .usp.brlatp iniatpin .p l ) ,  which refer to the A. 

IhalionCl pr te in interaction network . The AtPI inc l ude the public databases of the A. 

Iho/;ol1o Protein I nteractome Database ( AtPI D),  the Predicted I nteractome for A.  

Iho/ania, and A. Ihu/on;o protein-protein interaction data curated from the literature by 

TAIR curator , BlOGR I D, and I ntAct. I n fonnation obtained [rom AtPI inc ludes 

experimental ly  identified and computat ional ly predicted protein interactions in A. 

{holianC/o We used Cytoscape 2 . 8 . 3  ( http://cytoscape.org) to isualize the PPI  network 

obtained from the tPI network [441. The open ource software platfonn, Cytoscape, 

\\ 'a used to vi ualize molecular in teraction networks and integrate gene expression 

profile . Data \\1" re integrated with the network using attributes to map nodes or edges to 

pecific data values of gene coexpression Ie e ls  or protein functions [441. odes in  the 

nehvork correspond to genes/proteins and the edges/lines between the nodes represent 

the interaction between these nodes. The shape and width of the edges indicate 

coexpre ion interaction or PPJ  on the exported network (Figure 1 ) . 
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F igure 1 :  Co-expression network of common B. cinerea and abiotic stress-regulated 

genes. 

1 0  

odes of commonl y  up-regu lated genes (ye l low boxes) and down-regulated genes ( red 

boxes) by B. cinerea, cold, drought, and oxidative stresses. Nodes of co expressed 

neighboring genes are shown in gray c irc les. B l ue l ines are edges that have direct 

i nteraction with the common regu lated gene; b lack l ines are the interaction between 

neighboring genes. Edges starting and ending at the same node represent 

homodimerization of proteins "se lf- loops". Experimental and predicted interactions are 

found in (http://journal s.plos .org/plosone/art ic le?id= 1 0 . 1 3 7 1 /journal .pone.0 1 1 3 7 1 8#s6 

Table S4) .  
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Th net\vork \\ a mod i fied to improve c larit by edi t ing, resIzmg. and coloring the 

common up-regulated and down-regulated genes and the first interacting nodes/genes. 

u i ng the Cytoscape plugin V izmapper [45 .  46].  sing the graphical properties of the 

e lected node . the node ize value v;as recolored accordingly .  Common up-regulated 

and dO\\ n-regulated gen were colored e l lo\ and red. respectively ( Figure 1) .  The 

network \\'a further analyzed u ing the Cytoscape plugin.  Network Analyzer [47]. The 

em ork Anal zer re u l t  showed the attributes of the nodes and edges in the 

corre ponding network. The results showed nodal and edge attributes such as Central ity 

mea ure . C lustering Coefficient, Topological Coefficient (TC), umber of Directed 

and ndirected edges. and umber of self-loops present in the network 

( http;, journals.plos.org/plosone/artic le?id= l O . 13 7 1/joumaLpone.O 1 1 3 7 18#s6 TableS4) .  

Based on these results. the net\�ork was then s impl i fied by removing the nodes with a 

TC value of zero ( that i . nodes/genes that are not a part of the coregulated network. and 

are considered as ingle i nteracting genes). The range of the TC values was from 0 to 1. 

Except for our genes of interest ( 'HX2 and EXO), nodes with dangl ing edges ( i. e. only 

one edge. and no second neighbor) were deleted from the network. 
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Chapter 3 :  Res u lts  

3 . 1  I d entification o f  d i ffel'entially expre ed gene i n  variou tre re po nses 

Pre\ iou tudie on the gene ex pre ion profiles dur ing the plant re ponse to B. 

cinerea and other abiotic tre e focused on i ndi  idual stresses [9. -11. 421.  In this study, we 

aimed to ident ify compon nts of the regulatory nen orks i n  o lved in the response to B. 

cinerea infection and major abiotic stresses i n  A .  thaliana. A ful l  microarray-based 

analysi  of an A. lhaliana whole-genome Affymetrix gene chip ( ATH l ), representing 

approximately  25 .000 genes. wa do\',;nloaded from the ASC repository [-111 .  We 

analyzed this data et to identify gene i nduced by B. cinerea infect ion and by abiotic 

stre se ( cold. drought and oxidative stre s) .  F i rst, we identified the d ifferentia l ly 

expre sed gene by comparing the expression profi les between non-inoculated and B. 

cinerea-inoculated t issues ( Figure 2A)  and between non-treated or abiotic stress-treated 

wi ld-type p lants ( Figure 3A-C) .  For each gene. the fold change in expression was 

calculated by dividing the normal ized gene expression l evel i n  the B. cinerea- infected or 

abiot ic  stressed wi ld-type sample b that i n  the corresponding control ( no infection, no 

treatment) .  

We selected genes that were d ifferent ia l ly expressed by  a t  least two-fold a t  1 8  

( hp i )  i n  B. cinerea-infected plants, or at 24 hours post-treatment ( hpt ) i n  wi ld-type plants 

subjected to abiotic stress (Chapter 2 ) .  Based on their transcriptional Ie els in the 

relevant t issues, B. cinerea-up-regulated genes ( B UGs) and B. cinerea-down-regulated 

genes CBDGs) were identified . Overa lL  1 498 genes were up-regulated and 1 1 38  genes 

were down-regu lated 111 response to B. cinerea infection 

( http://joumals .plos .org/plosone/artic l e? id= 1 0 . 1 3 7 1 1journal .pone.0 1 1 3  7 1 8#s6 Table  S 1 ) . 
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I n  t tal .  1 248.  25 1 .  and 288 gene \�ere up-regulated. and 1 747. 302, and247 were 

down-regulated in respon e to cold. drought. and oxidative stress. respect i  e l  

( http: journal .plo .orgplosone/art ic le?id= 1 0. 1 3 7 1 1journal .pone.O l ] 37 1 8#s6 Table  S2) .  
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Figure 2 :  Scatter-plot comparisons of gene expression and functional c lasses of BUGs 

and BDGs. 

( A )  ormal ized expression a lue for each probe set in wild-type plants infected with B. 

cinerea at 1 8  hpi ( Wt- 1 8 ) is plotted on Y-axis ;  value in wi ld-type plants sampled before 

B. cinerea treatment (0  hpi; WT-O) is plotted on X-axis .  ( B )  B UGs; and (C)  BDGs at 

1 8  hpi compared with 0 hpi in wi ld-type. Gene identifications for 1 498 B UGs and 

1 1 3 8BDGs ere entered for this analysis .  Error bars are SD.  GO categories significant ly 

over- or under-represented at p<O.05 are shown in  black. Normal ized frequency of genes 

to the number of genes on the microarray chip was determined as described 

e lsewhere [481 . 
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F igure 3 :  Scatter-plot compari sons of gene expression and functional c lasses of abiotic 

stre s-regulated. 

1 -+ 

onnalized expression value for each probe set in  stressed plants with cold (A) ;  

drought ( B ) ;  or  oxidative stress (C )  a t  24 hpt i s  plotted on  Y-axis; value in  wi ld-type 

p lant sampled before abiotic stress treatment (0  hpt; WT-O) i s  p lotted on X-axis. C D) 

Cold-up-regulated genes; and ( E )  cold-down-regulated genes at 24 hpt compared with 0 

hpt i n  wild-type. Gene identifications for 1 248 cold-up-regulated and 1 747 cold-down­

regulated genes were entered for this analysis. Error bars are SD.  GO categories 

significantly over- or under-represented at p<O.OS are shown in black. Nonnal ized 

frequency of genes to number of genes on the microarray chip was determined as 

described elsewhere [48 ] .  
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To val idate the data t and to better understand the regulation of gene expre sion 

during B cinerea i nfection, we grouped B Gs or BDG based on the functional 

im i larit) of their encoded product . The functional cIa s i fication of BUGs and BDGs 

howed that ignal ing pathwa s, and cel l ular activi t ies and components were associated 

v. i th the re pon e to this pathogen in A. lhaliana. AOI locu identifiers were cateuorized e 

i nto -1- - functional group , and were then assigned i nto three main gene ontology ( 00) 

categorie : biological process, molecular function, and cel lu lar component ( Figure 2B,  

) .  The dominant ubcategory ' signal transduction' ia plant hormones is  a key 

component \\1th plant defense again t pathogens. For example, the effector genes plant 

defensin PDFI. 2 (AI5g'/'/-I20) and thionin Thi2. 1 (All  g72260) which have antimicrobial 

propert ies, were i nduced by ETIJA [9] and by B. 

cinerea (http:/ joumals .plos.org/plo one/art ic Ie?id= l 0 . 1 3 7 1  Ijoumal .pone.0 1 1 37 1 8#s6 

Table S l ) . Addit ional ly ,  the ABA i nsensit i  e L A Bll (Ar./g26080), that is i nvolved i n  

ABA signal transduction, was up-regu lated by the same pathogen.  This suggests that 

the e p lant hormones are t ight ly assoc iated with defense against B. cil7erea. The ' k inase 

act iv i ty '  and ' ce l l  wal l '  terms were a lso dominant subcategories i n  B UGs ( Figure 2 B ). 

The ce l l  wal l -associated k inase, WAKI (A llg2 1 250), was also i nduced by B. cinerea 

( http: joumals.plos.org/plosone/art ic le? id= 1 0. 1 3  7 1  Ijoumal .pone.O 1 1 3 7 1 8#s6 Table S 1 ) . 

There were a lso many genes i n  the ' responses to abiotic and biotic stimulus' , ' receptor 

act iv i ty ' ,  and ' endopl asmic ret icu lum' subcategories (Figure 2 B ). The receptor- l ike 

k inase, RP Kl (At  1 g69 2 0), which is a regulator of the ABA signal transduction 

pathway, was up-regulated upon B. cinerea attack .  The BDGs contained d ifferent 

domi nant 00 terms.  For example, the major subcategories in the biological processes 

were associated with 'e lectron transport or energy pathways' ,  and 'ce l l  organization and 
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biogene i ' (F igure 2 ) ; and the dominant GO ternlS in  the molecular function were 

. tructural m lecul act iv i ty '  and ' enzyme activ i ty ' .  ' Rjbo orne' and ' p la t id '  were the 

dominant ubcategorie in the cel l u lar component. Thi sugge t a rapid repre ion of 

gen i nvolved in plant metabol i  m upon inoculation with B. cinerea. consistent with 

pr \'iou findings 113J. Few of the BUGs and BDGs were in the ' unknO\ n biological 

proce s ' ,  ' nucleic acid  b ind ing ' ,  and ' unknown cel l ular components' subcategories 

( Figure 2B ,  C) .  The GO analysis indicated that many of the ident ified BUGs and BDGs 

were a sociated with biological process and cel lu lar components, respect ively, upon B. 

cinerea attack. These findings are consistent with prevlOUS repOlis that B. 

cinerea induces/suppresses a number of gene encoding regulatory, developmentaL 

organizational and structural proteins in plan/a [9. 1 0. 13] indicating potential connections 

benveen gene expression pattern and responses underly ing plant resi stance to B. 

cinerea. 

Plants perceive cold, drought. and oxidative stress via cel l membrane receptor . 

A signal i s  then in i t iated to activate cold-, drought- or oxidative stress-responsive genes 

and transcription factors that mediate stress tolerance [-12. 49-5 1 ] .  We ident ified clear 

overlaps of the biological processes, molecular functions, and ce l lu lar components 

among the up-regulated or down-regulated genes in the responses to a l l  three abiot ic  

stresses ( Figure 3 D, E ;  F igure 4) .  The spec ific ity of biotic and abiotic stress responses is 

contro l l ed by a range of molecular mechan isms that may act together i n  a complex 

regulatory network. This suggests that there i s  common regul ation of the responses to B. 

cinerea infection and abiotic stresses. 
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Figure 4 :  Functional c lasses of drought and oxidati e stress-regulated genes. 

1 7  

Genes up-regu lated by (a)  drought and (c )  oxidati e stress; and genes down-regulated by 

(b )  drought and (d )  oxidative stress at 24 hpt compared with 0 hpt in wi ld-type. Gene 

ident ifications for 25 1 and 302 drought- and oxidative stress-up-regulated and 288 and 

247 drought- and oxidative stress-down-regulated genes, respectively, were entered for 

this analysis .  Error bars are SD.  GO categories significantly  over- or under-represented 

at p < 0.05 are shown in black. ormal ized frequency of genes to number of genes on 

the microarray chip was determined as described e lsewhere (48) 



3.2 Highly con en'ed expre ion tatu of gene com m on to B. cinerea and abiotic 

tre re pon e 

1 8  

compared th normal ized tran cript level of a l l  of the genes i nduced by B. 

cinerea \\ ith th ir re pecti \' level In plant subjected to abiotic stres es. We 

onstructed catter plot In which gene expre sion in response to B. cinerea was 

ompared with that i n  re pon e to drought. cold. or oxidat ive stress ( Figure SA-C ) .  

Direct compari on of gene e 'pre sion level s  after infect ion by B. cinerea at 1 8  hpi and 

abiot ic tre ( cold. drought or oxidative tress) at 24 hpt revealed remarkably s imi lar 

expre ion pattern betv,;een these part icular biotic and abiotic stresses. These results 

indicate that some genes may be i nvol ed i n  processes that are common among 

re pon es to d ifferent stresses. 

We con tructed a Venn diagram to i l lustrate which genes were induced by single 

tres es and which were i nduced by multiple stresses ( Figure S D-E) .  Spec ifical ly ,  we 

looked for relationships among sets of genes i nduced under diverse conditions. I n  

looking a t  groups of genes i nduced under the four condit ions, we detected large 0 erlaps 

in gene expre sion among the biotic stress response (B. cinerea) and the abiot ic  stress 

response. For example. comparing B. cinerea-i noculated and cold-stressed p lants. there 

were 3 73 commonly up-regu lated genes, and 377 commonly dovm-regulated genes. 

i mi larly. 92 genes were i nduced by B. cinerea infection and by drought treatment, and 

77 were repressed i n  both of these treatments. Comparing B. cinerea- i noculated and 

oxidati ve stress-treated plants, there were 1 76 commonly up-regulated genes, and 63 

commonly  down-regulated genes. These resul ts h igh l ight overlaps i n  the responses to 

d ifferent stresses. and identify genes that showed up-regul at ion or down-regulation in a l l  
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Figure 5 :  Scatter-plot comparisons of gene expression and number of BUGs and BDGs 

affected by abiotic stress. 

ormal ized expression value for each probe set in wi ld-type plants infected with B. 

cinerea at 1 8  hpi (B. cinerea- l 8 ) is plotted on X -axis; val ue in stressed plants with cold 

(A) ;  drought ( B ); or oxidat ive stress ( C )  at 24 hpt i s  plotted on Y-axis. Venn diagram 

showing the number of (D)  BUGs and ( E )  BDGs at 1 8  hpi that are also affected by cold, 

drought. and oxidative stress at 24 hpt . 
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fhe data set analyzed here were obtained fr m prevIOUS tudies on seed l ings 

subjected t r ur tre e ;  B. cinerea, cold, drought, and 0 idative stress. ine and 28 

gene \\ i th in  r a ed and decreased xpression leve ls, re pectively, w re shared among 

all four stre s respon es ( Figure 5D, E). A detai led l ist of genes showing a l tered 

expre ion in response to B. cinerea, cold, drought, and oxidative stress treatments i s  

pro\ ided i n  Table ( 2 ) . 

Enz mes (e .g . ,  hydro la  es, e terases), interact ing kinases, and heat-shock 

protei n  are known to regulate pathogen defense responses and abiotic stress tolerance. 

We found that 1 fLY2, which encodes an a+/H+ antiporter, was induced by a l l four 

tre es. SLAH3 was repressed under a l l  four stresses. These findings indicate that 

channe lsltransporters are i nvol ed in stress and defense responses. The up-regUlation 

of SNZ and the down-regulat ion of AIYB '"'7, W RK Y 22, and bZlP 1 supported that 

transcription factors i n  the A P2 domain, M Y B, WRKY, and BZI P  fam i l ies p lay 

important roles i n  mediating the responses to B. cinerea i nfection and abiot ic stresses. 

Clearl , man di fferent stresses regulate regulatory and structural genes i nvolved in  the 

p lant defen e response. We selected the top-ranked commonJy regulated genes in the 

responses to B. cinerea, cold, drought, and oxidat ive stress for coexpression and PPI 

network v i  ual ization analyses. Four commonly up-regulated and 1 2  commonly down­

regulated genes were mapped to neighboring nodes and arranged accord ing to their 

i nteractions ( Figure 1 ) . The i nput data for the PPI network inc luded experimental ly 

identi fied and computat ional ly predicted i nteractions 

( http://journals .plos.org/plosone/art ic le?id= l 0 . 1 3  7 1  /journal .pone.O 1 1 3 7 1 8#s6 Table  S4). 

We avoided d isplaying coexpressed gene pai rs with a low topological coefficient (TC) .  

The TC is  a re lat ive measure of the extent to  which a node shares neighbors wi th  other 
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Tabl 2 :  hange in expres ion of  up- r dov,;n-regulated gene during B. cinerea infection and 

. enc  ID 

AIIg�3.f80 
A l..fg3.f980 

.tr{�l3600 

Arlg333< 0 
.1 f3g0S030 
AlIg-J380 
Arlg39.J20 
Arlg392 -0 
Atlg.f I )�O 
Ar5g6.fS �O 
A L-gS -S60 
Ar5g.f9FO 
A15g.f .f30 

Ar -g.fl080 

A ISgl.f030 
A ISgI9 1.!O 
A r3g59900 
Af3g50S60 
A r3gS0060 
Ar3g.f 360 
A f.fgF6JO 
Af.fg2 1  -0 
A I.fgll.f 0 
At.fgO 950 
AI.fgO]J30 
At.JgO J250 
AtlgJl190 
A.tlg ��060 
A IIg�3830 
A12g.f3610 

Atl g2191 0 

in .l 1 .  tha/iana plants. 

Gene ra m i l) 

H)- drola e 

lIbt i l is in- l ike erine protease 2 ( L P2)  
oronat ine induced I ( OR(3 )  Ja monic acid 

re ponsi e 2 ( J R 2 )  
Re p n i v e  t o  desiccat ion 2 0  ( R D20) 

od ium proton exchanger :2 ( I I  2 )  
Unk.novv n 
Esterase l i pa e th ioe terase 

chnarchzapfen ( Nl)  
Remorin 
Beta-x} los idase 4 ( B  L4/XY L4 )  
Touch 4 ( TCH4) 
Ba ic leucine-zipper I (Bli  P J )  
A part ic-tjpe endopeptida e, pepsin 
G Iycerophosphory Idiester phosphodiesterase 
(GDPD2) 

LAC I homolog 3 ( LA H 3 )  
A part ic-type endopeptidase/pepsin 
U nk.nown 

hort-chain dehydrogenase/reductase ( D R )  
M Y B77 
BTB and TAl domain protein 2 ( BT2 ) 
BTB and T AZ domain protein 5 ( BT5)  
26 .5  kDa P-related heat shock (H P26.5-P)  
pEA R L I  I 

Exordium ( EXO) 

P M E PCRB;  pect inesterase 
W RKY22 
RAP2.4 

erine-t) pe endopept idase inh ib itor 
BR enhanced expression 3 ( BE E 3 )  

G lycoside hydrolase fami ly 1 9  

Dehydration response element-binding 
( DR E B26) 

Probe 
et 

245734 
2532 1 8  

254232 

255795 
25908 1 
260450 
266977 
2670 1 0  
267538 
247266 
247925 
248606 
248703 

249337 

249765 
249923 
25 1 436 
252 1 67 
252 1 93 
252367 
25306 1 
254 "' 84 
254805 
255064 
255524 
255568 
255926 
256337 
260070 
260557 

260856 

B. 
ci1lerea 

2.37 
2.09 

24.8 1 

5 . 1 5  
2.63 
2 .24 
3 .72 
2.4 1 
2.54 
-2.35 
-2.63 
-2.94 
-2.08 

-2. 1 9  

-2.65 
-2.08 
-2.88 
-5 .2 t 
-3 .0 1 
-4. 5 8  
-4.75 
-2. 1 8  

-8 .34 
-8 .78 
-3 .96 
-2. 1 5  
-3 .84 
-4.22 

-2.33 
-2. 3 8  

-5.69 

A biotic t re 

Cold 

1 5 .39 
3 .02 

5 . 84 

1 3 .8 1 
2.2 1 
2 .05 
2 .05 
4.98 
3 .3 5  
- 1 7. 1 8  
-6.42 
- I I .  97 
-2.96 

- 1 4 .76 

-4.89 
-20.05 
-2.59 
-4.99 
-5 .28 
-3 .5 1 

- 1 8 .55  
- 1 2 .29 
-7.40 
- 1 8 .67 
-2. 1 0  
-4.90 
-6.58 
- 1 6.92 
-8 .34 
-3.48 

-30.89 

Dro ug h t  

2.07 
2.96 

3 .90 

5 .24 
2.56 
2. 1 1 
3 .23 
2 .02 
3 .20 
-3.23 
-7.02 
-2.80 
-2. 1 2  

-5 .96 

-2.86 
-3 . 1 7  
-6.24 
-2.52 
-3.68 
- 1 2.42 
-3 .69 
-3.75 
-2 1 .24 
-3 . 1 2  
-6.02 
-4.45 
-3 .00 
-4.37 
-3 .52 
-2 .56 

- 1 4.22 

Oxidat h e  
t ress 

2 .33  
2 .64 

2 .0 1  

3 .30 
2 . 1 1 
2 .02 
2 . 1 2  
2 .37 
2 .45 
-2.08 
-3.73 
-2.73 
-3 .56 

-5 . 1 4  

-2.03 
-2.46 
-2.89 
-2 .58 
-2. 1 4  
-4.07 
-3 .24 
-2.75 
- 1 0.28 
-2. 1 1 
-4.98 
-2.98 
-2.20 
-3 .63 
-3 .39 
-2.92 

-9.53 

Atlg /SSSO Gibbere l l in 3-ox idase I (GA30, 1 ;  GA4 ) 26 1 768 -2.86 -4.50 -2.47 -2.24 

A tlgl6586 Unkno\\ n 263268 -2.20 -6.36 -2.94 -2.4 1 
At]gJ �880 0 A J protein  C24 ( DJC24) 264788 -2.33 -2. 1 0  -2 .38  -3 .00 
A ll gl.f530 Transdllcin/WD-40 repeat 265028 -4.69 -5 .24 -6.87 -3.66 
A llgl06 �() Unknown 265387 -4 .33 -23 . 1 0  -3 .75 -3.27 
A Ilgl6980 CBL-interact ing protein k inase 3 ( C I PK3) 2663 1 3  -3 . 1 8  -5 .60 -4 .0 1 -2.06 

Fold change i n  expression for each gene was calculated by dividing i ts e pression l evel i n  B. 
cinerea- inoculated/abiotic-stressed sample by that 10 a non-inoculated/non-stressed sample 

(Chapter 2). A 2-fold change in expression represented up-regulated genes, and O .5-fold change in 

expression represented down-regulated genes. 



I '  

nodes. Thi val ue \ a obtained uSl l1g  the Cytoscape plugin, etwork Analyzer. I n  

add it ion t o  the interactions between common up-regulated o r  down-regulated genes \ ith 

the fi r 1 n ighboring gene , we sho\ ed the edges bet\ een interact ing neighboring genes 

( Figure 1). The coexpre sion and PPI network analyses produced a large subset of 1 17 1 3  

node and 94048 edges 

ing this approach, we grouped genes i nto c lo ely correlated modules ba ed on their 

coexpre ion und r various e peri menta l conditions. The computed coexpression 

relationsh ips bet\ een B. cinerea and abiotic stress- induced genes/nodes identified four 

gene : NHX2, Alg3 9-120 (esterase), SLP2, and CORJ3. The whole genome c lu  tering 

( grouping) revealed less compl icated genetic network i nteract ions than those of the 

repressed gene coexpression networks. Stress-re lated coexpression re lat ionsh ip rel iably 

identi fied candidates that were robu tty i nduced/ repressed upon B. cinerea attack and 

abiotic stress treatment .  

3.3 Validatio n  o f  expre sion profIles o f  co m m o n  genes to B. cinerea i n fection 

To conflim the results of the previou ly pub l i shed m icroarray analyses, we 

perfom1ed q RT-PCR on A .  tha/iana l eaves infected with B. cinerea at 1 8  hpi .  We 

quant ified the transcript levels of n ine genes that showed changes in  expression In 

response to the stress treatments, and compared the resul ts with those obtained m 

m icroarray analyses ( Figure 6) .  A lthough there were some d ifferences between the q RT­

PCR resul ts and the micro array resul ts in terms of the magnitude of fold changes, a l l  of 

the tested genes (4  up-regulated; 5 down-regulated) showed s imi lar trends in transcript 
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accumulati n in  the qR f-P R and mi roarra analyse . Therefore. the qRT-P R re u l t  

were con i tent v. ith the r suIt fr m the microarray analysis. 

A t2g20670 

DJC24 

t-h 

GA41GA30x 

DREB26 

£XO 

1 

A t2g39420 

RD20 
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A t1g 73480 
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Figure 6 :  Expre ion of B. cinerea- and abiotic stress-regulated genes i n  response to B. 
cinerea. 

Relat ive expression level s  obtained by q RT-PCR for selected common B. cinerea- and 

abiotic tre s-up-regulated or -down-regulated genes obtained from Table ( 2 )  i n  

response to  B. cinerea i nfection a t  1 8  hp i  ( Chapter 2 ) .  Expression of B. cinerea­

i nducible or -repressed genes was quant ified relat ive to control condit ions ( no infection), 

and corrected for expression of control gene (AtA ctin2).  Error bars for qRT-PCR val ues 

are standard de iations (n23 ) .  
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3 .... Regulation of cyclopentenone-induced gene during B. cinerea infection and 

abiotic tre . 

The c c lopentenoneoxy l ipin  , OPOA and PP " are formed ia the enzymat ic 

J path\vay and/or non-enzymatic free rad ical -catalyzed pathway, respecti ely [52. '3J. 

V e earched the B. c inerea-regulated genes 

( http://joumal .plos.org/plo one/art ic le?id= 1 O. 1 3 7 1 1joumal .pone.O 1 1 37 1 8#s6 Table S 1 )  

to ident it)  gene re pon i ve to OPOA and/or PPA 1 by comparing BUGs and BDGs \ ith 

gene reported to be i nduced in OPO - and/or PPA 1 -treated A.  thaliana plants. Table 3 

hO\\ gene induced b OPDA treatment lJ5J and by B. cinerea attack;  these genes were 

de ignated as OPO B. cinerea-up-regulated genes ( OBUGs). The identi fied OBUGs 

\\ ere i nduced more than two-fold by both OPDA treatment and B. cinerea infection. Of 

the OPOA-up-regulated genes ident ified [35J. approximately half of them ( 35/74) \ ere 

al 0 up-regulated by B. cinerea i nfection ( Table 3 ) .  The OBUGs encoded a subset of 

proteins i nc lud ing t ransporters. zinc-finger, U OP-glycosy ltransferase, heat shock, ABA­

re ponsive proteins, and other re lated proteins .  one of the OPDA-down-regulated 

genes were repressed by B. cinerea i nfect ion.  The previously identified abiot ic stress-

responSIve genes 

(http://joumals.plos.org/plosone/article?id= l O . 1 3 7 1 /joumal.pone.O 1 1 37 1 8#s6 Table  S2) 

were further analyzed in order to determine which ones were i nduced by OPDA 

treatment and which were induced by infection with B. cinerea. Two-fold i nduction wa 

set as the threshold value for i nduction. Of the 3 5  OBUG identi fied above, 9 ( 25 . 7%)  

were a lso i nduced by  cold stress, and 1 7(45 .5%) were also i nduced by oxidat ive stress 

(Table 3 ) .  Three of the OPDA-down-regulated genes were repressed by cold, drought or 

oxidati e stress (Table 4 ) .  
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'r able : Gene up-regulated b PP I , OPD . B. cinerea inoculation and abiotic stres es and 
dependent on TGA2/5/6. 
\ rra) G e n e  Locu 

E le m e n t  

ORCG 

2-19-1 r al 

25078 1 at �g054 1 0  

2565 6 Lit ,t l3g:! 2 1 0  

2-1 �655 at A f5g5 9 20 

25 1 336 Of A I3g6 1 1 90 

_ 65-199 01 A I2g /5-1S0 

2525 1 - 01 A f3g-l6230 

r -I 90 at 4.t-lg 1 1 600 

26-1929 Of A t /g60 -30 

PBUGs 

2625 r at A t lgJ 7 /  0 

26626 - al A f2g29-160 

266 -52 at 4. t2gFOOO 

25622 1 at A t lg56300 

252984 at A 14g3 ry990 

Descript ion orm a l ized Fold I n d uction a 

Calc ium-binding EF-hand fam i ly pr tein 

Dehydration-responsi e element-b inding N 

( DR E B2A) 

Zinc-finger prote in ( P M Z )  N 

Z inc- finger protein (ZA T 1 2/R H L4 1 ) N 

Rubber e longat ion factor ( RE F )  N 

BON l -associated protein I ( BAP I )  N 

U DP-glucose transferase ( UGT73 B 5 )  N 

Heat-shock protein  1 7 .4 ( H S P I 7 .4)  N 

Glutath ione peroxidase 6 (GPX6)  N 

Auxin- i.nduced protein N 

Aldolketo reductase (NADP activity) N 

G TU25 1 7  

GSTU4/GST22 3 .7  

Mu l t idrug-resistant ABC transporter 8 .7  

( M DR4)  

DNA] heat shock 3 . 5  

C i nnamyl-alcohol dehydrogenase 1 5  

(CADB2)/ E l i c itor act ivated gene ( EU 3 -

2 )  

2 .8  

4.4 

1 7 .4 

3 .5  

2 .0  

2 .5  

6 .7  

1 2 .4 

3 .2 

3 .4 

4 .6 

N 

N 

N 

N 

N 

2.2 

po A biotic 

�. tressd 
� 

� 

3 .4 C,Ox 

7.9 C,Ox 

3 .6 C,Ox 

3 . 5  C 

2.6 C 

3 . 1  Ox 

3 .3 Ox 

5 .2 C 

1 2.3 C,Ox 

5.4 Ox 

1 0. 8  Ox 

9.3 Ox 

6.6 Ox 

26.7 C 

75.2 Ox 

( Table cont inues on fol lowing page) 
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Table 3 :  ( continued from the pre iOlls page) .Gen up-regulated by PPA , .  OPD . B. cinerea 
In culation and abiotic stre e and dependent on TGA2- 5 6 .  

\ rra) Gene Locu Desc r i p t i o n  orm a l ized F o l d  I nd uct io n ' 
E le m e n t  

..., � A b iotic 
C') " stressd )- S-f") '" C; .., '" "'-

PBDe 

]56r5 at A t3g1 2 1 1 0 ACT I I -3.6 N -4.2 C 

OBCe a n d  PBUe 

261 �63 at A t lg/55l0 A BC tran potter ( PDR 1 2 ) 24.5 1 8. 7  P 22.6 Ox 

]58r� at A I3gl6 30 Phy toa le ' in deficient 3 ( PAD3)  9.6 7.9 1 8.3 Ox 

]-199-12 at A I5g22300 N itri lase 4 ( N I T4 )  9.3 6.6 P 4 . 1 

]66995 af A t2g3-1500 Cy tochrome P450 fam i ly (CY P7 1 OA I )  5 .8  3 .8 9.3 Ox 

2509 3 01 A t5g0] �80 Glutath ione transferase lambda I 5 .2  3 P 5 ,4 

(G TL l ) ; ln2- 1 

]5892 1 at A t3g/ 0500 AC domain contai n in g  protein 53  4 .7  2 . 1 P 3 . 1  

(A AC05 3 )  

]6 � 1 6 �  al A t2g3 'j � -0 Aldo/keto reductase ( A K R4C9) 4.4 3 .7  P 7.9 

2509-18 at A t5g03-190 U DP-glucoronos) L U DP- 3 . 7  2 . 5  P 2 .4 D,Ox 

glucosy Itransferase 

l5 1 1  �6 at A t3g63380 Calcium-transporting ATPase ( ACA 1 2 )  3 .5  5 .9 P 20.4 Ox 

1589r at A t3g0 / -I20 A lpha-dioxygenase 1 (ALPHA-DOX l )  3 .4 2 . 1 27.9 

2599 1 1  at At /g72680 Cinnam) I a lcohol dehydrogenase 3 .3  2 P 2.9 

(CA D I )  

262381 at A t /g�l900 Disease resistance protein (TI R-NBS .., .., 3 .7  P 4 . 1 OX J .J 
c lass) 

26260- al A t lg 1 3990 Expressed protein 
.., 3 P 4 . 1 J 

1-160-12 at Al5g1 9-1-10 A lcohol dehydrogenase 2.9 2 ,4 3 .2 

16 1 95 - 01 A 1 1g6-1660 meth ion ine gamma-lyase ( MG L )  2 .8 6 .5  3 .9 

( Table continues on fo l lowing page) 



Table .., :  (continued fr m the previou page) .Gene up-regulated by PP I , OPDA, B. 
cinerea inoculation and abiotic tre ses and dependent on TGA2 5, 6. 

A rra) Gene Locu I orm a l ized Fold I n d uc t io n ' 
E l e m e n t  

-l � A biotic 
C) .., stre d ;.. ":;:. n � C) "' 

� � � 

15 �Q5 1 at 4 13g_ 1 -00 GTP binding ( G P2 )  2 . 7  2.3 4.7 Ox 

2 -19860 tit Af5g22860 er carboxypeptidase 28 fami ly 2 .7  3 .4 P 6.5 Ox 
l635 r at A t2g2 1 6_ 0  Re ponsi e to desiccat ion 2 ( RD2) 2 . 7  2 . 1 P 5 .5  C,Ox 

262-1,'2 af A t lg r020 enescence-related gene I ( RG J )  2 ,4 2.6 52 .7  

25005-1 tit A t5gF 60 Calcium exchanger 7 (CAX7) 2 .3  3 .9 2 .3 

2605 -I at A Cg.f35 1 0 Trypsin inh ibitor protein (T l  I )  2 .3 7 .3 4.6 

2-15 -6, til A f /g33590 Di ease resistance L R R  protein-related 2.3 2 .5  P 3 .3  

266000 at Af2g_ .f I 0 Cytochrome P450 monooxygena e 2 . 1 2 2.9 

(CYP7 I B6)  

J r r �  at A t5g65300 Expressed protein 2.2 2.5 P 5 .0 C,Ox 

a onnal i zed fold  i nduction = nonnal ized OPDA/PP A 1 treatment, B. cinerea i noculation or abiot ic 

stres / nonnal ized no OPDAIPPA I treatment, no B. cinerea inoculation or no abiotic stress. 

b om1al ized-fold i nduction of genes by PPA 1 and/or OPDA (75  11M ). Threshold value for 

TGA2/5/6-dependent up-regulation was two-fold i n  A .  Ihaliana wi ld-type plants re lative to 

contro ls  but no induction i n  Iga2 5/6. OPDA-up-regulated genes data were obtai ned from [35]  at 3 

hpt . PPA , -up-regu lated genes data were obtained from [32] at 4 hpt. PPA , - and OPDA-induced 

genes data were obtained from [32] at 4 hpt. 

c onnal ized fold induction of genes by B. cinerea. Threshold value for up-regulation was at least 

twofold in A. fhaliana wi ld-type plants re lative to contro ls .  B. cinerea-induced genes data were 

obtained at 1 8  hpi l4 ' ] (http://joumals .plos.org/plosone/art ic le?id= 1 O. 1 3 7 I 1joumal .pone.O 1 1 3 7 1 8# 6 

Table 1 ) . 

d omlal ized fold i nduction of genes by cold, drought, or oxidative stresses. Threshold value [or 

up-regulation was at l east two fold i n  A. thaliana wi ld-type plants re lative to controls .  Abiotic 

stress-induced genes data were obtained at 24 hpi [4 l ) ( F igure 1 ) . 

N.  not expressed ; P. Present; -, down regulation. 
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We al 0 compared the B. cinerea-regulated genes with PPA I -responsive 

gene 132 1; thi gr up was de ignated a PPA l/B. cinerea-up-regulated genes (PBUGs) .  

A de cribed above, two-fold induction \Va set as the threshold val ue fOf up-regulation. 

[ the 73 gene i nduced by PPA I 1 32 J , 29 ( 39 .7%)  were also induced by B. cinerea (Table 

3 ) .  n anal i of the functions of the genes induced by PPA I/B. cinerea showed 

that PBUGs encoded proteins re lated to detoxi fication or to stress re ponses. These 

proteins inc luded cytocl lfome P450, g l utathione S-transferases, ABC transporters, and 

heat shock factors/proteins .  Only three PBUGs (A l lg56300, Af2g2 1 620 and A f5g65300) 

were induced by cold (Table 3 ) .  Our analyses indicate that most of these genes are 

transcriptional ly regu lated during the plant response to PPA I , B. cinerea, and oxidat ive 

tress. urprisin gly ,  the only PBUG (AI5g03-/90), which was also induced by drought 

tress. encodes an UDP-gl ucoronosy lfUDP-glucosyltransferase enzyme. One 

gene, Actl J (A t3g12 1 1 0) ,  was repressed by PPA I treatment and by B. cinerea infection, 

was also down-regu lated by cold. Regard less of the regulation by B. cinerea i nfection, 

the l ist of genes that were induced/repressed by OPDA and/or PPA I and by cold, 

drought or oxidative stress wa shown i n  Table 4. Together, the resul ts of these analyses 

suggest that B. cinerea and oxidat ive stress responses are mediated by the non­

enzymatic oxy l ipin-dependent pathway . 



rable 4 :  Regu lat ion of gene by PP ] and/or OPDA treatment and abiotic stress. 
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Gene 

locu 

Norm alized fold in duction* 
De cription 

2 1  12-t) pe l inc-finger prote in  re lated ( FZF)  
I 7 . 6 - k O  heat-shock prote in ( 1 - 1 56 )  

C ia ' I I  heat- hock prote i n  

I lcat--hock prote i n  1 7 .6 ( T- H P I 7 . 6 A )  

I leat- hock protein fam i  I)' 

l i t chondrion- Ioca l ized sma l l  heat-shock 

prot i n  

) (oc !1rol1le P450,  putat i ve (CYP72 1 5 ) 

G ly cos) I h) drola e fam i l) I 

eriThr k ina e- l ike prote in  

opperlzinc sllperoxide d ism uta e ( C S 0 2 )  

opper C haperine for 00 1 ( C S )  

C) iochrome P45 0, plltat i\  e 

G l utath ione S-transferase (G TU24)  

Cia  I mal l  heat hock (H P I 7 . 6 )  

TOLB protein-related 

P- I g- H 3  domain-conta in ing proteinffasc ic l in 

doma in-conta i n i ng prote i n  

TlIbuJ i n  P - 8  chain  ( TU B B 8 )  

F a  c ic l i n- l i ke arabinogalactan protein ( FL A 2 )  

Endo-x) loglucan transfera e ( TC H 4 )  

g lyco ide hydrolase fam i l  2 8/polygalacturona e 

( pect ina e )  fam i ly 

A12g2./500 

A 1 1g535..fO 

A l5g 12020 

AI5g12030 

A I5g3 76 0 

Al..fg25200 

A 13R l..f690 

At2g..f..f..f60 

A I..fg23 1 90 

A I2g2 1 90 

A I  19l 2520 

A13g 1 4690 

A l lg l  1 70 

A t2g29500 

At..fg0 1 8 70 

A 13g 1 1 00 

A 15g23860 

A I..fg1 2  30 

A /5g5 560 

A13g06 770 

N 
N 
N 
N 
N 
N 

N 
N 
N 
N 
N 

1 1 . 1  

6 1 . 7 

5 7 . 8  

20. 1 

- 5 . 1 

- 3 . 8  

- 5 . 1 

- 5 . 1 

-4 . 1 

O P DA§ 

3 . 1  

1 3 .5  

1 2 . 5  

1 3 .2 

3 .0 

2 . 2  

4 . 0  

6 . 1 

-3 .3  

- 2 . 5  

-2 .5  

N 
N 
N 
N 
N 

N 
N 
N 
N 

Ox 

Ox 

Ox 

Ox 

Ox 

Ox 

o 
C,O,Ox 

C 

C 

Ox 

Ox 

Ox 

C 

C 

C 

C,D 

C 

E L I 3 - 1 A f..fgJ 7980 2.2  2 . 7  D 

* oID1a l ized fold  induction = nonnal ized PPA ] or OPDA t reatment and abiotic 

stress/nom1al ized no PPA] or OPDA treatment and no abiotic stress. Threshold value for 

i nduction/repression was at least two fold i n  A.  thaliana WI plants re lative to control . Fold 

i nduction by PPA] and OPDA (75 � M )  of at l east twofold i n  A. Ihaliana plants re lative to 

control but no i nduction in tga2/5/6 at 4 hpt[32 1 . 
§OPDA or PPA I -upregulated genes data were obtained from [35] at 3 hpt or [32J at 4 hpt, 

respectively.  

tCold ( C ), drought (D) or oxidative stress (Ox)-unregulated genes data were obtained from 

this stud at 24 hpt. 

, not expressed; - ,  down regulat ion. 
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3.5  Regulation of OBUG and PB UG by TGA tran cription factor 

) c !openten ne may function independent! [rom JA [32. 54 1 . any genes containing a 

T A-m t i f  (TGACG) in the 500 bp upstrean1 of their promoters contain binding si tes 

for TG tran cript ion factors [ 5 5 1 .  We detem1ined whether genes commonly induced in 

the re p nse to B. cinerea and to PP  ) and OPD were regulated by TG transcription 

fa t r b) analyzing th i r  expres ion Ie e ls in a Iga2/5/6 mutant. For this analysis, we 

u ed data r p rted bv Muel ler et a1 . (2008 ) [32 1 .  We set our analysi at 1\ o-fold up­

regulation for the induction by PPA ) and OPDA treatments, B. cinerea infection, and 

abiotic _tre s. Of the 27 g nes up-regulated by P PA )  and OPDA that were dependent on 

the presence of TGA 2 516 [32 1 , 1 4  ( 5 1 . 8%) were also induced by B. cinerea (Table 3 ). Of 

the e OBUGs/PBUGs that were TGA-dependent, 7 were a lso induced by oxidative 

tress: very few genes were a lso induced by cold or drought .  Thus, in A. lhaliana, B. 

cinerea induces many genes that are also induced by treatments with PPA ) and OPDA. 

Together. these data uggest that there i s  a common pathway, which i nvol es TGA 

transcript ion factors, invol ed in the B. cinerea and oxidative stress responses. 

3.6 Validation of cyclopentenone-inducted genes by B. cinerea 

ext, we verified the m icroarray data and compared the genes induced by B. cinerea, 

abiotic stresses. and OPDA and/or PPA J [32, 35 ] .  We evaluated changes in gene transcript 

level s  in response to B. cinerea i nfection by q RT-PCR analysis (Figure 7). We analyzed 

the t ranscript levels of genes encod ing zinc fi nger transcription factor DNA-bind ing 

prote ins .  PAiZ and RHL -I l were rapidly induced by OPDA (Table 3 )  and were up­

regulated by B. cinerea ( F igure 7 A) .  DREB2A that encodes a D RE B  subfami ly  A-2 

protein (an E RF/ AP2 tran cription factor) was induced by cold stress [ 56] and by B. 
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cinerea. pon B. cinerea i nfection, three DBUGs ( G T"3B5, H. P 1 " . -1  and GPX6) were 

up-regulated . a demonstrated by the q RT-PCR resul t  ( F igure 7A) and the m icroarray 

data (Table 3 ) . The induction of GSTU-I, G TU25, A-fDR-I, and EL13-2 by B. cinerea 

uggest that the e regu lators p ia a role in stress responses. Expression of the 

detoxify ing gene PDR J 2 ( A BC transpol1er) was al 0 induced by B. cinerea. Except for 

, GP2, a l l  of  the other DBUGs or PBUGs analyzed showed simi lar patterns of 

e. pre si n i n  both the microarray data sets (Table 3) and the qRT-PCR analyses ( Figure 

7B) .  Our analy es suggest that oxy l ipins modulate gene expression i n  response to B. 

cinerea i n fection, and that the e responsive genes are d i fferential ly regulated depending 

on the tress. 



F igure 7 :  Expres ion of OBUGslPBUGs and abiotic stress-regu lated genes to B. cinerea 

i nfection. 

Relative expression level obtained by q RT-PCR for common (A )  OBUGs or PBUGs 

and abiotic stress-up-regulated genes; and ( B )  OBUGs/PBUGs and abiotic stress-up­

regulated genes after infection with B. cinerea at 1 8  hpi (Chapter 2 ). Gene expression 

of OBUGs or PBUGs was normal i zed re lative to control condit ions ( no infection), and 

corrected for expression of contro l  gene (A tActin2) .  Error bars for qRT-PCR values are 

standard dev iat ions (n�3) .  Data shown i n  ( A )  and ( B )  were obtained from Table 3 .  
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Cha pter 4 :  D i  c u  s i o n  

There hm e been man tudies on large- cale tran criptom ic changes in  re ponse 

to the necrotrophic fungal pathogen B. cinerea [5. 9. 13-15J and abiotic stresses [16--18). I- Jere, 

\\ e in\ ,estigated in deta i l  the A. rhaliana response to B. cinerea i nfection and 

em i ronmental stre'ses b analyzing previously pub l i  hed data sets. These data sets 

represented the tran criptomic di fferences between A. thaliana leaves i noculated/treated 

\\ ith B. cinerea/abiotic tress ( cold,  drought, or oxidat ive stress) and non­

i nocu lated/non-treated lea es. We in i t ial l assured that the transcript responses we 

detected to the four ingle stresses were comparable  to those described by others. This 

" green l ighC permitted us to further analyze the transcript profiles respond ing to these 

tre e .  Thus, we record a couple of potential  l im itations that are associated with the 

tre s appl ications i n  thi research a \ e l l  as other studies. F i rst, we analyzed 

transcriptome data of  shoot t issues only after individual stress treatments at a single t ime 

poi nt based on previous studies. As a result ,  we were not able to detect the temporal 

pattern of plant  responses to single stresses. I n  our attempts to detect plant responses 

caused spec i fica l ly  by the en i ronmental stress and to e l im inate any ind i rect 

consequences of the part icular stress, we chose a sampl ing t ime point prior to the 

appearance of vis ib le stress symptoms .  Second, we did not deternli ne the re lative 

in tensit ies of the individual stresses assessed . Regardless of these caveats, we ant ic ipate 

that our t ranscriptome data analyses can be a valuable source for researchers to 

understand the complex regulatory pathways and to further ident ify  genes l i nked to 

environmental i nsult .  
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We identi fied that 1 498 ( 6 .6% of the transcriptome) and 1 1 38  ( 5%) genes were 

up-r gulal d ( BL'G 0 ) and do\,m-regu lated ( BDGs), respectively, b B. cinerea i nfection 

at 1 8  hpi . We elected 1 8  hpi a the b st t ime point to compare d ifferences in gene 

expre ion, because i t  \,\Ia reported that mo t change in  gene expres ion occur between 

1 8  and 30 hpi [9. I J I .  ccord ing t the 0 cla s i fications ( Figure 2 ), the BUGs and BDGs 

encode proteins re lated to plant re ponse to st imul i  and stresses, transport and energy 

pathway , and other cel l ular, metabol ic  and biological processes. This resul t  confirms 

that the BUGs and BDGs encode proteins with roles in  signal transduction pathways and 

re i stance to B. cinerea (9. 13. 141. The d ifferent expression leve ls  of BUGs and BDGs in  

d i fferent subcel lu lar locat ions i n  the cyto 01  and the ce l l  wal l  i s  consistent wi th  the role 

of xtracel lu lar and i ntracel lu lar components i n  activat ing gene expression i n  the 

re pon e to B. cinerea attack .  

We also identi fied 1 248 ( 5 . 5%), 25 1 ( 1 . 1 %),  and 288 ( 1 .3%) up-regulated genes 

and 1 747 ( 7 . 7%), 302 ( 1 .3%),  and 247 ( l . 1  %) down-regulated genes in response to cold 

drought, and oxidati e stresses. respect ive ly at 24 hpt . These findings suggest that a 

uruque program of gene expression is  activated i n  response to B. cinerea or abiotic 

stress. We also compared the genes induced by B. cinerea and the varIOUS abiot ic 

stresses to determi ne which were speci fi c  to each stress response. and which were 

common among the stress responses. Approximately 25%, 6%, or 1 2% of the 

1 498 BUGs were also induced by cold, drought, or oxidat ive stress, respectively .  About 

3 3%, 7%. or 5 . 5% of the 1 1 38  BDGs were repressed by cold, drought, or oxidative 

stress, respectively . I n  genera l ,  gray mold, the d isease caused by B. cinerea. occurs 

under diverse production conditions, even at 0- 1 0°C storage, and causes sign ificant 

y ie ld losses. The EXLA 2 transcript levels decreased when A. thaliana plants were 
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expo d to B. cinerea i n fecti n, but incr a ed i n  re pon e to cold and sal t  treatments [4 1 . 

I n  a prc\ iou study, the B. cinerea- u ceptible mutant bas I howed impaired tolerance 

to drought, a l i n i ty ,  and oxidative stress' the to lerance to these stresse was shown to be 

mediated by the reacti oxygen intemlediates generated in  the plant re ponse [ 1 0 1 . The 

impaired tolerance of the bas 1 mutant to B. cinerea and abiotic stresse can be attributed 

to the hared responsi e gene among B. cinerea and abiotic stress responses. Among a l l  

of the  BUGs. n ine were i nduced by a l l  of the tested stresses ( Figure SD) .  Among a l l  of  

the  BDG , 28 were repre ed by a l l  of the tested stresses ( F igure S E) .  im i lar analyses of 

biotic and abiotic stress responses i n  rice C Oryza saliva) [38] have ident ified a simi lar set 

of commonly up-regulated and dowTI-regulated genes to those ident ified in A. thaliana. 

Plant hormones p ia  central roles i n  mul t i -environmental stress responses. 

Depending on the nature of the pathogen,  i nduced resi stance responses are mediated by 

various ph tohomlones, i nduding sal icy l i c  ac id ( SA) ,  lA, ET, and A BA [57.591 . While  

several studies have suggested that biotrophic pathogens commonly activate the SA­

dependent defense response, others showed a l i m i ted role of SA and SA-dependent 

defense responses against B. cinerea in A. thaliana [ 1 0, 1 1 ] . Necrotrophic  pathogens, 

inc luding B. cinerea, activate JAiET -dependent s ignal i ng pathways [ 58 1 . A BA is a major 

regulator of the p lant response to abiotic stress, and i t  a lso regulates d isease 

re i stance [60.631 . Together, SA, ET/JA. and ABA act together or antagonist ical ly to 

regulate p lant responses to pathogens and abiotic stress factors [ 59. 64 1 . One of the 

commonly i nduced genes was CORJ3IJR2, which encodes cyst ine lyase, an enzyme that 

generates an ET precursor. In another study, COR I 3IJR2 transcript levels  were e levated 

in response to the hemibiotrophic pathogen P eudomonas syringae, wounding, and 

lA [65.67 1 . I n  A. thaliana, the ABA-induced gene RD20, which encodes a member of 
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caleosin fami ly .  i al i nduced by drought and B. cinerea [68 J .  The microarray data and 

our q RT-P R anal) si demon trated that ORJ3 and RD20 were i nduced by B. cinerea 

attack and by cold, drought, and oxidative tresses. Three of the BDGs 

were GDPD2, H. P26. 5-P and At2g20670, con istent with the resu l ts of a previous study 

on B. cinerea [ I 3 J .  The e three BDGs \ ere also down-regulated by cold, drought, and 

oxidative tress. Our anal ses sugge t that each indiv idual stress treatment induces a 

unique et of d i fferential ly e pressed genes, but that a subset of n ine genes i s  i nduced in  

re ponse to B .  cinerea and co ld ,  drought, and oxidat ive tress. However, the thresholds 

l ected to repre ent induction (2 -fo ld )  or repression (O .5 -fo ld)  of gene expression were 

high: therefore, there may be more genes that are commonly induced by several stresses 

than 'were detected in this study . 

We conducted coexpression and PP I  network analyses using Cytoscape software 

to identi fy  genes i nvolved i n  the defense response to B. cinerea infection and abiotic 

stresses. This analysis aimed to ident ify  potential key regulators of the defense response 

and to pred ict regulatory i nteractions/relat ionships. As wel l  as showing the novel ty of 

each response, the analysis a l lowed us to v isual i ze the PPI network and mult iple 

dynamic gene coexpression networks to further understand plant responses to mult iple 

stresse . Overa lL  the microarray and coexpression network analyses i ndicate that there i s  

a complex response to mul t ip le  stresses. Thi s  response involves overlapping among 

di fferent pathways and the synergist ic and antagon ist ic regulation of biotic and abiotic 

stress response pathways. 

We examined whether the genes up-regU lated by PPA 1 and/or OPDA [32, 35) also 

showed changes i n  expression i n  response to B. cinerea and abiotic stresses. 

E lectroph i l ic oxy l ipins accumulate in plants dur ing pathogen infection ( i nc lud ing B. 
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cinerea) and abi t ic tre s [30. I I .  I t  wa reported that 38% of the genes in A.  thaliana are 

induced by PP I and B. cinerea [32 J .  Anal ses of the microarray data showed that �50% 

and -40% f the genes induced by OPO and PPA I were also up-regulated by B. 

cinerea, re pe t ively . mong the ther genes that responded to PPAl or 

OPO [ l2, 35 1 ,  PAlZ and RIlL-I J were also induced by B. cinerea ( F igure 7) .  This  

uggest that there i a common regulation between electroph i l i c  oxy l ipins and B. 

cineI' 'a. Due electroph l l ic ox l i p in accumulate in  plants during pathogen i nfection 

( i nc luding B. cinerea) and abiotic tre s [ 30. 3 1 ], we hypothesized that cyclopentenone 

levels and abiotic tre s are also co-regulated in  A. thaliana. To test this hypothesis, we 

extended our analyse to determine whether OBUGs or PBUGs were also induced by 

cold. drought and oxidative stress ( Table 3 ). Strik ingly,  most of the OBUGs and PBUGs 

were induced by oxidative stre s .  These results suggest that cyclopentenone levels and 

the abiotic  stress response are co-regulated in planta, consistent with the re ul ts of other 

reports [69. 70] .  

ext. we deteTI11 ined v, hether the regulat ion of OBUGs and PBUGs was 

dependent on TGA2, TGA5, and TGA 6. Even though we found a number of 

cyclopentenone- induced genes which were also i nduced by B. cinerea i nfection; about 

58 .2% of these OBUGs/PBUGs were dependent on TGA transcription factors, a result 

that was a lso a l idated by q RT-PCR.  I nterest ingly,  64% of the TGA-dependent OBUGs 

and PBUGs were induced b oxidative stress. A recent study on the ex/a2 mutant 

i l l ustrated an overlap an10ng its responses to B. cinerea, oxidat ive stress, and PPA I , but 

not JA [ 4 1 .  Our resul ts are consi stent with a previous report that the transcript Ie els of 

PAD3 and A CA 1 2 were strongly increased by B. cinerea i nfection [ 7 1 . 72 1 , possibly in  a 

TGA-dependent manner. More research is  required to test this hypothesi s .  
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Our anal) sc uggest that there i common regu lation of gene expression in the 

respon e to e lectroph i l ic oxyl ipins, B. cinerea, and oxidat ive tress. Thi s  study has also 

ident i fied potentia l l  new candidate gene function ing i n  plant defense. Re erse genetic 

.creening u i ng mutant l ines with deletions and/or 0 erexpression of the putat ive 

coexpre sed gene ( ident i fied from coexpression networks) wi l l  help to d isco er new 

gen that function i n  the defense response in pLanta. Transcriptome analyses can 

highl ight �hich gene how d i fferential expres ion under certain condit ions. However, 

changes in gene expression do not necessari ly mean that there wi l l  be changes in the 

abundance or a ti i ty of their encoded products. Therefore, in future research. it w i l l  be 

important to evaluate the imi lar i t ies and d i fferences in the proteome and in the act ivi ties 

of \'ariou proteins among d i fferent stre S re ponses. I denti fying key regulators of the 

cro sta lk between biotic and abiotic stress s ignal ing pathways is a basic prerequi site for 

de eloping crop plants tolerant to mUlt ip le stresses. 
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Cha pter 5 :  Co n c l u  IO n  

The re u l t  of the e anal ses ugge t that there i s  overlapping among genes or 

patlw" a s i 11 \  o lved 1 11 the respon es to biotic stresses and to abiotic stresses in A.  

thaliana. hang s 1 11 the tran cript le e ls  of genes encoding components of the 

C) c lop nten ne igna l ing pathway in  response to biotic and abiotic stresses uggest that 

the o. ) l ip in ignal t ran ciuction pathway plays a role i n  p lant  defense. I denti fy ing genes 

that are commonly e. pressed in response to mUlt ip le stre ses, and analyzing the 

functions of their encoded products, w i l l  increase our understand ing of the plant stress 

re pon e. This i n format ion could ident ify  targets for genetic mod ification to improve 

plant re i stance to mul t ip le stresses. 



40 

Bi b l iography 

1 .  leanr, R . ,  & Parker, lE .  ( 20 1 1 ). The impact of temperature on balanc ing 
immune re pon ivene s and growth in  Arabidopsis. Trend Plant Sci l 6 :666-675 .  

2 .  B wIer, . ,  & F luhr, R .  ( 2000) .The role of calcium and acti ated oxygen as 
ignal fi r ontro l l ing cros -tolerance.  Trends Plant Sci 5 :24 1 -246. 

3 .  buQamar. S . ,  L uo. H. ,  Laluk, K . ,  M ickelbart, M . ,  & Mengiste, T .  ( 2009) .  
rosstalk ben een biotic and abiotic stress responses is mediated by the tomato 
1 M l  tran cription factor. Plant J 58: 347-360. 

4. buQamar, . ,  Ajeb. . ,  Sham, .. Enan, M . R. ,  & I ratn i ,  R. (20 1 3 ) .  A mutation 

in  the expan in-like A_ gene enhances resi tance to necrotrophic  fungi and 

h per ensit ivity to abiotic stress in Arabidop is tha/iana. .!vIol Plant 

PathoI 1 4 : 8 1 3-827.  

5 .  ulema. l M . K. ,  & Denby ,  K . J .  (20 1 2 ) .  pat ial and temporal transcriptomic 

analy i s  of the Arabidop is thaficma-Botryfi cinerea i nteraction. �Mol Bio! Rep 

39:4039-4049. 

6 .  Fuj ita, M . ,  Fuj i ta, Y., Noutoshi,  Y . ,  ( . . .  ) ,  &Shinozak i ,  K .  ( 2006) .Crosstalk 

between abiotic and biotic stress responses : A current view from the points of 

convergence i n  the stress signa l ing networks. Curr Opin. Plant BioI 9:436-442 .  

7 .  Chen, H . ,  La i ,  Z . .  h i ,  J . ,  c .  . .  ) ,  & Xu ,  X .  (20 1 0 ) .  Roles of A rabi do psis WRKY I 8 , 

WRKY40 and WRKY60 transcription factors i n  plant responses to absc isic acid 

and abiotic stre s .  BMC Plant BioI ] 0:28 1 .  

8 .  La luk,  K . . AbuQamar, S . ,  & Mengiste. T ( 20 1 1 ) . The Arabidopsis mitochondria­

local ized pentatricopeptide repeat protein  PON functions in defense against 

necrotrophic fungi and abiot ic stress tolerance.  Plant PhysioI 1 56 :2053 -2068 . 

9. AbuQamar, S . .  Chen, x. ,  Dhawan, R.,  ( . . .  ) ,  & Mengiste, T ( 2006) .  Expression 

proftl ing and m utant analysis reveals complex regulatory networks involved i n  

Arabidopsis response to  Botrytis i nfection. Plant J 48:28-44.  

1 0 . Mengiste, T,  Chen, X . ,  Salmeron, l & Dietrich, R .  ( 2003 ) .  The BOTR YT1S 

SUSCEPTIBLE] gene encodes an R2R3 MYB transcription factor protein that is 



.+ 1  

required for biotic and abiotic stres responses 1 0  Arabidop 'is , Plant Cell 
] 5:255 1 -2565. 

1 1 . Verone e, P. , hen, X., B luhm, B., ( . . .  ) ,  & Mengiste T. (2004 . The BOS loci of 
Arabidop -is are required for resistance to Botrytis cinerea i nfection. Plant J 
-10:558-5 74.  

1 2 . lad. Y .  ( 1  97) .  Responses of plants to infection by BOflyti cinerea and novel 

means involved in reducing their usceptib i l i ty to infection .  Bio! Rev 72:3 8 1 -

422. 

1 3 . Windram, 0 . . Madhou, P . ,  McHattie, S . ,  ( . . .  ) & Denb , K J .  ( 20 1 2 ) .  Arabidopsis 

d [cnse against Botry!is cinerea: Chronol gy and regu lation dec iphered by high­

resolution temporal transcriptom ic anal s is .  Plant Cell 2-1: 3530-3 5 5 7 .  

1 4 . egarra, G. ,  antpere, G.,  Elena, G.,  & Tri l las, 1 .  ( 20 1 3 ) .  Enhanced Botrytis 

cinerea resistance of Arabidopsis plants grown i n  compost may be explained by 

i ncreased expression of defense-related genes, as revealed by microarray 

analy is .  PioS One 8(2) :e56075 . 

1 5 . Mulema J .M . K . ,  Okori , P . ,  & Denby ,  K . J . ( 20 1 1 ) . Proteomic  analysis of the 

Arabidop i thaliana-Botrytis cinerea i nteraction using two-dimensional l iquid 

chromatography. Air J Biotechnol J 0: 1 755 1 - 1 7563 . 

1 6 . Abdeen. A. ,  Schne l l ,  J . . & M ik i  B .  (20 1 0) .  Transcriptome analysis reveal s  

absence of unintended effects 111 drought-tolerant transgenic p lants 

overexpressing the transcription factor A B F3 .  BMC Genomics 1 1  :69.  

1 7 . Desikan, R. ,  A-H-Mackemess, S. ,  H ancock, J .T., & Nei l l ,  SJ. (200 1 ) . 

Regulat ion of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 

1 2 7: 1 59- 1 72. 

1 8 . Lee, B-h . ,  Henderson, D.A. ,  & Zhu, J -K .  ( 2005 ) .  The A rabidopsis cold­

responsive transcriptome and its regulat ion by I CE I .  Plant Cel! ] 7:3 1 55-3 1 75 .  

1 9 . Matsui, A . .  I sh ida, 1 . ,  Morosawa, T . ,  ( . . .  ) ,  & Seki ,  M .  (2008) .  Arabidopsis 

transcriptome analysis under drought, cold h igh-sa l in i ty and ABA treatment 

condit ions using a t i l ing array . Plant Cell Physiol -l9: 1 1 3 5-1 1 49 .  



42 

20. Rizh ky, L. ,  Liang, J I . J . ,  human, l, ( . . .  ) ,  & Mi tt ler, R.  ( 2004) .  When defense 
path\\ a col l ide. The response of Arabidopsis to a combinat ion of drought and 
heat tre . Plant PhysioI 13-1: 1 68"- 1 696. 

2 1 .  VoelckeL . , & Baldwin, I .T. (2004) .  Herbivore-induced plant accination . Part 
I I .  rray-studie  rev al the tran ience of herbivore-spec i fic transcriptional 
imprints and a d isti nct imprint from stress combinations. Plant J 38:650-663.  

22 .  tk in n, N.l,  L i l ley, C.J . ,  & Urwin,  P .E .  ( 20 1 3 ). I denti fication of genes 
involved in the re ponse of Arabidop is to s imultaneous biotic and abiotic 
tre ses. Plant Phy iol 1 62:2028-204 1 .  

23 .  De Vo , . ,  Van Oosten V .R . ,  Van Poecke, R .M.P . ,  C . . .  ) ,  & Pieterse, e . M.J .  

C:�005) .  igna l  signature and transcriptome changes of Arabidopsis during 

pathogen and in ect attack .  !'viol Plant-AJicrobe Interact 18: 923-93 7. 

24.  M i tt l er, R . ,  & B lum aid,  E .  ( 20 1 0) .  Genet ic  engineering for modem agriculture : 

cha l l enges and perspect ives.  Annu Rev Planl Bioi 6 1 :443-462. 

25 .  Audebert, A . ,  Coyne, D .L . ,  Dingkuhn, M . ,  & Plowright, R .A .  (2000). The 

influence of cyst nematodes CHeleroderasacchari) and drought on water re lations 

and growth of upland rice in Cote d' Ivoire .  Plant and Soil 220:235-2-12. 

26.  Ra mussen, S . ,  Barah,  P . ,  Suarez-Rodriguez, M .e . ,  ( . . .  ) & Mundy, l ( 20 1 3 ) .  

Transcri ptome responses to combinat ions of stresses i n  A rabidopsi . Plant 

PhysioI 1 6 1 : 1 783- 1 794. 

27 .  AbuQamar, S . ,  Chai, M-F . ,  Luo, H . ,  Song, F . ,  & Mengiste, T. (2008) .  Tomato 

Protein K inase 1 b mediates signa l ing of plant responses to necrotrophic fungi 

and insect herbivory . Plant CeIl 20: 1 96-1-1 983. 

28 .  Diaz, J . ,  ten Have, A . ,  & van Kan, lA.  (2002 ) .  The role of ethylene and wound 

signa l ing i n  resistance of tomato to Botrylis cinerea. Plant Phy 'iol 1 29: 1 34 1 -

1 3 5 1 .  

29. Thomrna BP. ,  Eggermont, K . ,  Tierens, KF . ,  & Broekaert, W.F .  ( 1 999) .  

Requirement of functional ethylene-insensitive 2gene for effic ient resistance of  

Arabidopsis to  infection by  Bolrylis cinerea. Plant Physiol 121 :  1 093-1 1 02. 



43 

30. B lock A . ,  chmelz, E . ,  Jone , J . B  . .  & Klee, I U .  ( 2005 ) .  Coronat ine and sai ic l ic  
acid :  The battle between Arabidopsi and Pseudomona. for phytohonnone 
contr l .  Alof Plant Pat/101 6: 79-83. 

3 1 .  Thoma, 1 . , Loeffler, C. ,  S inha .K. ,  ( . . .  ). & Muel ler J . M .  ( 2003 ) .  
yclopentenonei opro tanes i nduced by reactive oxygen spec ies trigger defense 

gene activation and phytoalexin acclU11Ulation in plants. Plant J 3-1:363-3 75 .  

32 .  l ue l l er. . ,  H i lbert, B . ,  Dueckershoff, K . ,  ( . . .  ) ,  & Berger, . (2008 ) .  General 
detox i fication and stress re ponses are mediated by oxidized l ipids through TGA 
transcription factors in Arabidopsis. Plant Cell 20: 768-785 .  

33 .  Janz. D . .  lautner . .  , Wi ldhagen, H., ( . . .  ) .  & Pol le ,  A .  (20 1 2) .  Sa l t  stress induces 
the formation of a no el  type of ' pressure wood ' in two Populus species. Ne1l ' 

PhylO/ogist 1 9-1: 1 29- 1 4 1 .  

34.  l uel ler, M J .  ( 1 997) .  Enzymes involved in  jasmonic acid biosynthesis .  Physiol 

Planl 1 00:653-663. 

'> - . Taki a aki -Sekimoto Y, Obayashi T, ( . . .  ) , & Ohata, H. ( 2005 ) .  1 2-oxo-

phytod ienoic ac id triggers expression of a d ist i nct set of genes and p lays a role in  

wound- i nduced gene expression i n  Arabidopsi . Plant Physiol 139: 1 268- 1 283 .  

36 .  R ibot. c . .  Zimmer l i ,  c . ,  Farmer, E .E .  Reymond, P . ,  & Poirier, Y .  (2008) .  

I nduction of the Arabidopsis P HO l;H 1 0  gene by 1 2-oxo-phytodienoic acid but 

not j asmonic acid via a CORONA TINE ! SENSITIVE1 -dependent pathway. 

Plant Phy iol 1 -1  :696-706. 

37 .  De Bodt, S . ,  Carvaja l ,  D . ,  Ho l lunder, 1 . ,  ( . . .  ) , & I nze, D. (20 1 0) .  CORN ET: A 

user-friendly tool for data min ing and integrat ion .  P lant Physiol 1 52 :  1 1 67- 1 1 79. 

3 8 .  Shaik R, & Ramakrishna W.  ( 20 1 4) .  Machine learning approaches dist inguish 

mul t iple stress condit ions using stress-responsive genes and identify candidate 

genes for broad resistance i n  rice. Planl Physiol 1 6-1:48 1 --495. 

39. Zhu. X., Gerste in ,  M . ,  & S nyder, M. (2007) .  Gett i ng connected : analysis and 

principles of biological networks. Genes Dev 2 1 : 1 0 1 0- 1 024. 

40. Atkinson, N .J . , & Urwin, P .E .  ( 20 1 2 ) .  The interaction of plant biotic and abiotic 

stresses: from genes to the field .  J Exp Bot 63(1 0) :3523-3543. 



4 1 .  ral gon. 0.1 . ,  lame . ,  Ok, ere. ( . . .  ), & May, . ( 2004) .  A CArray : a 
repo it 1) Ii r microarray data generated by C's transcriptomic erV lce .  
/ ucleic Acid Re.' 32: 05 75-0577. 

42 . Ki l ian .T , Whitehead O. l l orak 1 ,  ( . . .  ) & Harter, K .  (2007). The AtGen Express 
global tres e 'pre sion data set : protocol , evaluation and model data analysis of 

V-B l ight, drought and cold stress re ponses. Plant J 50(2) :347-363. 

43 . B luhm. B . H . ,  Woloshuk, C . P. ( 2005 ) .  Amylopect i n  i nduces fumonis in B l  
production b_ Fusarililn verticillioides during colonization of maize kernels. lvIol 

Plant-Microhe Interact 18: 1 3 33-1 339. 

44 .  moot. t E . ,  Ono, K . ,  Ru cheinski,  1 . ,  Wang, P .L . ,  & I deker, T. ( 20 1  1 ) . 

)'to cap 2 . 8 :  New features for data integration and network v isual ization. 
Bioill{ormatics 2 '7(3) :43 1 -432.  

45 .  Wi l l iams. E.1 .B . ,  & Bo\ les, 0.1 .  (2004) .  Coexpression of neighboring genes in  

the genome o f Arabidopsis thaliana. Genome Re 1 ,,/: 1 060- 1 067. 

46. Shannon, P . ,  Markie l ,  A . ,  Ozier, 0. ,  ( . . .  ), & Ideker T. (2003 ) .  Cytoscape : a 

software environment for i ntegrated models  of biomolecular interaction 

networks. Genome Res 13:2498-2504. 

47. Doncheva N .T. ,  Assenov, Y . . Domingues, F .S . ,  & Albrecht, M. (20 1 2 ) .  

Topological analysis and i nteract ive v isual ization of biological networks and 

protei n  structures. Nat Protoe7: 670-685 .  

48 .  Pro art ,  . 1 . ,  & Zhu,  T. ( 2003) .  A browser-based functional classi fication 

SuperViewer for Arobidopsis genomics. Curr Comput .!'viol BioI 2003:27 1 -272.  

49. Barah, P . .  layavelu. N . D . ,  Rasmussen,  S. ,  ( . . .  ) ,  & Bones, A.M. (20 1 3 ) Genome­

scale cold stress response regulatory networks in ten Arabidopsis thaliana 

ecotypes. BlviC Genomic J 4: 722 

50.  Gruszka, O. ( 20 1 3 ). The brassi nosteroid signal ing pathway-new key players and 

i nterconnections with other s ignal ing networks crucia l  for plant deve lopment and 

stress tolerance. 1nt J MolSei 1 ../ :8740-8774. 

5 1 .  Xiong, L., Schumaker, K .S . ,  & Zhu, l-K.  ( 2002) .  Cell signal ing during cold, 

drought, and sal t  stress. Plan! CeZZ l .J(Suppl) : S 1 65-S 1 83. 



45 

52 .  1 uel ler. M .L & Berger. . ( 2009 ) .  Reactive e l  ctroph i l i c  oxy l ipins:  Pattern 
recognition and igna l ing .  Ph)'tochem "'0: 1 5 1 1 - 1 52 1 .  

5 3 .  chal ler. & . . t inzi  A. ( 2009) .  Enzyme in  jasmonate biosynthesis - structure. 
function, regulation. Phyrochem -0: 1 532- 1 538. 

54 .  Bottch r. c . ,  & Poll mann. . ( 2009 ) .  Plant oxy l ipins :  Plant responses to 1 2-oxo­
phytod ienoic ac id are governed by i ts spec ific structural and functional 
propert ie . FEK J 2 -6:4693-4704. 

55 .  Lam. E .. Benfey . P. .. G i l mart in .  P .M .. Fang, R .X. ,  & Chua, . H .  ( 1 989) .  Si te­
spec ific  mutat ions a l ter in vitro factor binding and change promoter expression 
pattern I transgenic plants. Proc all ..J cad Sci USA 86: 7890-7894. 

56. L iu. Q .. Kasuga. M . ,  akuma, Y . .  ( . . .  ) , & Shinozaki ,  K. ( 1 998) .  Two 

transcription factors, D REB 1 and DREB2,  with an EREBP/AP2 DNA bind ing 

domain separate two cel l u lar signal transduction pathways in  drought- and low­

temperature-responsi e gene expre sion, respect ively in Arabidopsis. Plant Cell 

1 0(8) : 1 39 1 - 1 406. 

� 7 .  udenaert, K .. De Meyer, G . B  .. & Hofie, M .M .  (2002) .  Abscisic acid  determines 

basal uscept ib i l i ty of tomato to BOlryfis cinerea and suppresses sal icy l ic  acid­

dependent signa l ing mechanisms. Plant PhysioI 1 28(2) :49 1 -50 1 .  

58 .  harma, R . ,  De V leesschauwer, D . ,  Sharma, M . K. ,  & Ronald, P.c. ( 2 1 03 ) .  

Recent advances i n  d issect ing stress-regulatory crosstal k  i n  rice. Mol Plant 

6:250-260. 

59 .  Thomma,  B . P . ,  Eggermont, K . ,  Perll1 in ickx, I .A . ,  C . . .  ). & Broekaert W.F .  ( 1 998) .  

Separate j asmonate-dependent and sal icylate-dependent defense-response 

pathways in A rabidopsis are essential for resistance to d istinct m icrobial 

pathogens. Proc atl A cad Sci USA 95(25) : 1 5 1 07-1 5 1 1 1 . 

60. Anderson, J . P . Badruzsaufari, E . ,  Schenk, P .M . ,  C . . .  ), & Kazan, K .  (2004) .  

Antagonist ic i nteraction between abscisic  ac id  and jasmonate-ethylene signa l ing 

pathways modulates defense gene expression and d isease resistance i n  

Arabidopsis. Plant Cell 1 6: 3460-3479. 

6 1 . Lee, S .c . .  & Luan, S .  ( 20 1 2) .  ABA signal transduction at the crossroad of biotic 

and abiotic stress responses. Plant Cell Environ 35: 53-60. 



46 

62. Lorenzo. . .  Chico. J .M . .  anchez- errano. J .1 . ,  & olano. R. ( 2004) .  
JAS',\,fO 'A TE-I rSEJ SIT/VE l  encode a M Y  transcription factor essential to 
di  criminate betwe n d i fferent ja monate-regulated defen e responses in  
Arahidopsis . Plant ell 16: 1 938- ]  950. 

63 . Mauch-Mani ,  B . ,  Mauch, F .  (2005) .  The ro le of ab c is ic ac id i n  plant-pathogen 
interaction . ClIr,. Opin Plan! BioI 8:409-4 1 4. 

64 . Ton. J., Flors. Y . . & Mauch-Man i .  B .  ( 2009) .  The mult i faceted role of ABA in  
di ea  e resistance. Trends Plan! Sci 1 -1:3 1 0-3 1 7 . 

65 . Lee . . . Roja , C .M . .  I shiga, Y .. Pandey, . .  & Mysore, K .S .  (20 ] 3 ) .  Arabidopsis 

heterotrimeric G-prote ins pia a crit ical role  i n  host and nonl10st resistance 

again t Pselldomona syringae path ogens. PLoS One 8(12):e82445 .  

66 .  Suza, W.P . ,  & taswick. P .E .  ( 2008) .  The role of JA R ]  i n  jasmonoy l -L :  -

i so leucine production during Arabidop is wound response. Planla 22 7(6) : 1 22 1 -

1 232 .  

67 .  eo, 1 .S  . .  Koo. Y . 1 . ,  Jung, C . ,  C . . .  ) ,  & Choi, Y .D .  ( 20 1 3 ) .  I denti fication of a 

novel j asmonate-responsive e lement i n  the AtJ}VfT promoter and its bind ing 

protein for A !JMT repression. PLoS One 8(2) :e55482. 

68 .  Aubert, Y . ,  Leba, L .1 .  Che aI ,  C . ,  C . . .  ) ,  & Galaud, J -P .  ( 20 1 1 ) . I nvolvement of 

RD20, a member of  caleosin fami ly ,  i n  ABA-mediated regulation of genninat ion 

in Arabidopsis tha/iana. Plant Signal Behav 6(-1) :538-540. 

69. Baerson. .R .. Sanchez-Moreiras, A . ,  Pedro l -Bonjoch, . ,  ( . . .  ) , & Duke, S .O.  

( 2005 ) .  Detoxi fication and transcriptome response i n  A rahidopsis seedl i ngs 

expo ed to the a l le lochemical benzoxazo l i n-2(3 H )-one. J BiolChem 280:2 1 867-

2 1 88 l .  

70. Grun, G. ,  Berger. S . ,  Matthes, D. ,  & M uel ler M .1 .  ( 2007) .  Early accumulation of 

non-enzymatica l ly synthesized oxy l ipins i n  Arabidop is thaliana after infection 

with P eudomonas syringae. Funcl Plant Biol 3-1:65-7 1 .  

7 l . Wang, H . ,  Nagegowda. D.A. ,  Rawat, R . ,  ( . . .  ) .  & Chye M.L .  ( 20 1 2 ) .  

Overexpression of Bra.s·sica juncea wild-type and mutant H MG-CoA synthase 1 

i n  Arabidopsis up-regulates genes i n  stero l  biosynthesis and enhances sterol 

production and stress tolerance. Plant Biotechnol J 1 0: 3 1 -42. 



4 7  

72 .  la. . .  Gong. Q. , & Bohnert, H . J .  ( 2006) .  Dissecting a l t  stre s pathways. J Exp 

B t 57( 5 ) :  I 097- 1 1 07. 



48 

L i  t of P u b l ic a t i o n  

. ham, A.  A I - zzm 1 ,  . A l -Ameri, B .  Al-Mahmoud, F .  Awwad, A.  l -Rawashdeh, R. l ratni & . F.AbuQamar(20 1 4 ) .  Tran criptome analysis reveals  genes commonly i nduced by BOlr.Vli. cinerea i nfection, cold, drought and oxidative stresses I II Arabidapsis. PLo E. 9( 1 1 ) : e 1 1 3 7 1 8 . doi : l 0 . 1 3 7 1 1journaI .pone.O l 1 3 7 1 8. 



48 

L i  t of P u b l i c a t i o n  

. , ham, . A I - Z7aWl ,  I -Ameri ,  B .  I-Mahmoud, F. wwad, . A I -Rawashdeh, R. I ratn i & .F .AbuQamar( 20 1 4 ). Transcriptome anal sis re eal genes common] i nduced by BOll),!i cinerea i nfection, cold, drought and oxidat i e stresses 1 11 Amhidopsis. PLo . 9( 1 1 ) : e l 1 3 7 1 8 . doi : l 0. 1 3 7 1 1jolima l .pone. 0 1 1 3 7 1 8. 


	United Arab Emirates University
	Scholarworks@UAEU
	5-2015

	Transcriptomes Analysis Reveals Genes Commonly Induced By Botrytis Cinerea Infection, Cold, Drought and Oxidative Stresses in Arabidopsis Thaliana
	Ahmed Dawood Al-Azzawi
	Recommended Citation


	0001
	0003
	0005
	0007
	0009
	0011
	0013
	0015
	0017
	0019
	0021
	0023
	0025
	0027
	0029
	0031
	0033
	0035
	0037
	0039
	0041
	0043
	0045
	0047
	0049
	0051
	0053
	0055
	0057
	0059
	0061
	0063
	0065
	0067
	0069
	0071
	0073
	0075
	0077
	0079
	0081
	0083
	0085
	0087
	0089
	0091
	0093
	0095
	0097
	0099
	0101
	0103
	0105
	0107
	0109
	0111
	0113
	0115
	0117
	0119
	0121
	0123
	0125
	0127
	0129

		2016-02-24T14:21:26+0100
	Shrieen




