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Chapter 1: Introduction

Let p be a prime number. Cansider cyclic codes of length p* — 1 (primitive
cyclic codes) over a ring F, where F' is cither a field of characteristic p or the ring
Zpe (integers modulo p?). The extended cude is defined by adding an overall parity
check. The permutation group of the extended cyclic code contains the cyclic group
GLy(p") = F;» by definition. Let n = mt. Then the extended cyclic code may
admit the affine group Gp, = AGL,,(p') as a permutation group. The affine group
AGL,(p') is defined in the following way. Let 17 = F} be the additive group of a
finite field Fpn, and Fpe be a subfield of Fpn , n = mt. Consider V' us a vector space
over F,: of dimension m. Then G, = AGL,(pY) =V - Gl (0%

Codes invariant under the group G, are called affine-invariant codes. Mote
that all groups G,, contain the group G;. Our goal is to get full classification of
binary and quaternary #xtended cyclic codes that are invariant under the group G,
for small dimensions.

The problem is well studied in case of codes over a field. Extended cyclic
codes of length p™ that are invariant under the affine group G, = AGL,(p") were
characterized by Kasami, Lin and Peterson [16]. The general case is studied by
Delsarte [11]. He gave a necessary and sufficient condition for extended cyclic codes
of length p™ to be invariant under G,,. Berger and Charpin [9] reformulated this
condition in other terms and used it to calculate permutation groups of some codes.
These results are also described in the Handbook of Coding Theory [14].

In [3, 5] it is given one more necessary and sufficient condition for codes to
be invariant under G,,. Of course, it is equivalent to conditions of Delsarte, but it
looks much simpler. Moreover, this approach is generalized and applied to codes
over Zye (the ring of integers modulo p®). There is growing interest in such codes. In
particular, it turns out that codes over Z4 give a systematic way of constructing very

good binary codes. For example, the famous Kerdock and Preparata codes are non-



linear binary codes that contain more codewords than any comparable linear codes
presently known. Hammons et al. [13] showed that the Kerdock and Preparata codes
can be very simply constructed as binary images under a certain map, called the Grav
map. of linear codes over Z;. The Kerdock and Preparata codes, considered as codes
over Z,, are analogs of the classical Reed-Muller codes: they have length 2" and they
are invariant under the affine group G, = AGL;(2"). Recently connections of these
codes to mutually unbiased bases, association schemes, spherical configurations, te.
were discovered (see, for example, [4]). In case of e > 2 there are only a few more
works: the paper [10] deals with the case m = 1, e = 2, and the paper [12] deals
with the case m = 1, and ¢ = 2 or p = 2, with different approaches. On the other
hand, case of nonprimitive cyclic codes is considered in [6, 7, 8.

Despite the fact that in the general case there are necessary and sufficient
conditions for codes to be invariant under G,,, there are no appropriate enumerations
of such codes. Two important extremal cases, m = 1 and m = n, were studied in
detail in [1, 2]. In the current paper we present a full description of binary and
quaternary affine-invariant codes for n < 7.

The work is organized as follows. In Chapters 2 - 4 we recall basic notions
and theorems from coding theory [15, 17, 18, 19]. In Chapter 5 we consider binary

and quaternary affine-invariant codes and present our results.



Chapter 2: Basic properties of codes

Let F = {a1.az,--+,a,} be a set of size q. which we consider as a code
alphabet and whose eleménts are called code symbols. In our thesis F mostly will
be a finite field Fy of order g elements or ring Z; of integers modulo .

A g-ary word of length n over F is a sequence w = wyw,--- w, with each
w, € F for all 2. Sequence w may also be considered as the vector (wy, -, wn). A
g-ary liluck code of length n over F' is a nonempty set C of ¢-ary words with the same
length n. An element of ' is called a codeword in C. The number |C| of codewords
of C is called the size of C.

A code of length n and size & is called an (n, k)-code. The number (log, |C|)/n
is called the information rate of a code C of length n.

Codes over [, and Z, are called binary and quaternary codes, respectively.

2.1 Hamming distance

Let x = (z1,...,7,) and y = (y1, . - ., Yn) be n-tuples. The Hamming distance
or distance d (r,y), between r and y is the number of coordinates in which z and y
differ, so the distance between two codewords is the minimum number of transmission
errors required to change one codeword into the other. The minimum distance for
a code dmin is the minimum of all distances d(z,y), where z and y are distinct

codewords. We have
dizr,.y) =d{zx, 1)+ + i [Ty, tha)

where 7, and y; are considered as words of length 1, and

L & #F W
diz,, )= ; ‘l (2.1)

b, ==



Example. 1. Let z = 0101, y = 1101. z = 1000. over F,. Then

d(z,y) = 1.
d(y,z) =2,
d(z, o) =3.

2. Let = 123,y =132, z = 321 over Z,. Thsn

d(m,y) =2,
d(y,2) =3,
disy ) <2

Proposition 2.1.1 Let z,y.2z be words of length n over F. Then we have
1. < d(z'y) <n,
2. d(z,y) =0 if and only if x =y,
3. d(z,y) =d(y,x) ,
4. d(r,2) <d(z,y)+d(y, 2) (triangle inequality).

Therefore, F™ is a metric space with respect to distance d.

2.2 Nearest neighbour decoding

Suppose that codewords from a code C are being sent over a communication
channel. If a word z is received, the nearest neighbour decoding rule (or minimum
distance decoding rule) will decode = to c; if d(z,c;) is minimal among all the

codewords in C, i.e.,

d(z,c;) =min{d(z,c),c € C}



2.3 Distance of a code

Apart from the lingth and size of a code, another important and useful cha-
racteristic of a code is its distance. For a code C containing at least two words, the

(minimum) distance of C, denated by d(C). is

d(C)=min{d (r,y): r.y e C,r # v}

A code of length n, size Af and distance d is called an (n, M, d)-code. The
numbers n. M and d are called the parameters of the code.

Example. Let C = {00000.00101, 11100} be a binary code. Then d(C) = 2
since

d (00000, 00101) = 2.
d (00000, 11100) = 3.
d (00101,11100) = 3.

Therefore, C is a binary (5, 3, 2)-code.

It turns out that the distance of a code is related to the error detecting and
error-correcting capabilities of the code.

Let r be a positive integer. A code C is r-error-detecting if, whenever a code-
word incurs at least one but at most r errors, the resulting word is not a codeword.
A code C is exactly r-error-detecting if it is r-error-detecting but not (» + 1)-error-
detecting.

Example. 1. The binary code C = {00000,00101,11011} is 1-error detecting
since changing any codeword in one position does not result in another codeword.
In other words,

00000 — 00101 needs to change two bits

00000 — 11011 needs to change four bits

00101 — 11011 needs to change four bits

In fact, C is exactly 1-error-detecting, as changing the third and fifth position



of 00000 will result in another codeword 00101. So C is not a 2-error-detecting code.

2. The ternary code C = {00000000, 00001111. 11112222} is 3-error-detecting
since changing any codeword in one or two or three positions does not result in

another codeword. In other words.

00000000 — 00001111 needs to change four positions;

00000000 — 11112222 needs to change eight positions;

00001111 — 11112222 needs to change eight positions.

In fact, C is exactly 3-error-detecting, as changing each of the last four po-
sitions of 00000000 to 1 will result in the codeword 00001111 (so C is not 4-error-

detecting).

Theorem 2.3.1 A code C s r-error-detecting if and only if d (C) > r + 1. that is,

a code with distance d s an ezactly (d — 1)-error-detecting code.

Proof: If d(C) < r + 1, that is. d(C) < r, then there exist ¢;,c, € C such
that 1 < d(e1.c2) = d(C) < r. Therefore for the codeword ¢, it is possible that
d(C) < r errors produce a codeword ¢, € C. Hence, C is not an r-error-detecting
code.

Conversely, let d(C) > r+ 1. If c € C and z are such that 1 < d(c,z) <r <
d(C), then r ¢ C, hence, C is r-error-detecting. [J

Let r be a positive integer. A code C is r-error-correcting if minimum distance
decoding is able to correct r or fewer errors, assuming that the incomplete decoding
rule is used. A code C is exactly r-error-correcting if it is r-error-correcting but not

(r + 1)-error-correcting.

Theorem 2.3.2 A code C is r-error-correcting if and only if d(C) > 2r + 1, that
is, a code with distance d is an ezactly [(d — 1) /2]-error-correcting code. Here, [r] is

the greatest integer less than or equal to r.

Proof: Suppose that C is r-error-correcting. If d(C) < 2r + 1, then there
are distinct codewords ¢, ¢ € C such that d(c,¢’) = d(C) < 2r. Then there exists
word ¢” such that d(c,c¢”) < r and d(c,c"”) < r. Therefore, the word ¢” cannot be

decoded uniquely.
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Conversely. suppuose that d(C) > 2r+1. Let ¢ be the codeword sent and let =
be the word received. If r or fewer #rrors occur in the transmission, then d(r,c) < r.

Hence, for any codeword ¢ € C, ¢ # ¢, we have

d(z.c) 2 d(c,d) —d(z,c) >2r+1—r=r+1>d(z,c).

Therefore, z will be decoded (correctly) to ¢ by using the minimum distance decoding

rule. Hence C is r-error-correcting. U



Chapter 3: Linear codes

A linear code of length n over the finite field [, is simply a subspace of the
vector space . Since linear codes are vector spaces, their algebraic structures often

make them easier to describe and use than nonlinear codes.

3.1 Vector spaces over finite fields

Let F, be the finite field of order q. A nonempty set V', together with addition
operation, and scalar multiplication by elements of Fy, is called a vector space (or
linear space) over F, if it satisfies the following conditions: for all u,v,w € V and

forall A, eFy:
l. u+vevV;
2. (utv)+w=u+(v+w);
3. there is an element 0 € V' with the property 0+ v=v=v+0 for all v € V;

1. for each u € V there is an element of V| called —u, such that u+ (—u) =0 =

(—u) + u;
9. u+v=v+u;
6. \weV;
7. Mu+v) =M+ v, (A + p)u = du+ py;
8. (Ap)u=A(pu);
9. if 1 is the multiplicative identity of I, , then 1u = u.

Example. It is easy to verify that the following are vector spaces over the

field F,:



1. C, =F; and Cp = {0}.
2. C3={(a,...,a) :a € F,}.
3' C‘:{(O‘O'O'O)(1’0’1’0)'(011‘071))(1‘1111)} ‘q=2

4. Cy2 {(@,050), (00 120 (0,2, 1)1, ge=3;

A nonempty subset C of a vector space V is called a subspace of V' if it is

itself a vector space with the same vector addition and scalar multiplication as the

space V.

Let V' be a vector space over ;. A linear combination of v,....v, € V' is a
vector of the form A\jvy + ...+ A\v,, where \;,... )\, € [F, are some scalars.

Let V" be a vector space over F, . A set of vectors {v,...,v,} in V is called

linearly independent if

a\.|l"| = .. .'.-'ll.rlll|—|.|—1.-'~||— =II| =|.|

The set is linearly dependent if it is not linearly independent; i.e., if there are
A1, ... A € Fy, not all zero, such that A\yvy, + ...+ A\v, =0.
If S={vy,...,v,} is a collection of vectors, then the set (S) generated by S

is the set of all linear combinations of vy, ..., v,.

3.2 Linear codes

A linear code C of length n over F, is a subspace of 7. We consider below

some exampl €s.

1. C={(\A\,...,A): AeF,}. This code is called a repetition code.
2. C = {000,100,010,110}, ¢ = 2.

3. C = {0000, 1010, 2020, 2200, 1100, 0210, 2110, 1220, 0120}, q = 3.
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Let C be a linrar code in 7. Pord =(ay = TP Fpandy = (y1....,¥a) €

]F;‘ we define inner product
Lo =T + ..o+ Tulin

The dual code of C is C*, the urthogonal complement of the subspace C of

ct= {IE]F;‘|I-y=0f0r allcEC}
Dimension of the linear code C is the dimension of C as a vector space over I¥;.
Theorem 3.2.1 Let ' be a linear code of length n over F,. Then,
L. |C] = ¢@™ () 7., dim (C) = log,|C|.

2. C* 1s a limear code and dim (C) + dim (C*) = n.

A linear code C of length n and dimension k over F, is often called a g-ary
[n, k]-code or, if q is clear from the context, an [r, k]-code. It is also an (n, qk)—linear
code. If the distance d of C is known, it is also called an [n, k, d]-linear code.

Let C be a linear code. Code C is self-orthogonal if C C C*, and C is self-
dual if C = C*. The dimension of a self-orthogonal code of length n must be < n/2,

and the dimension of a self-dual code of length n is n/2 .

3.3 Hamming weight

Let z be a word in F7. The Hamming weight of z, denoted by wt (z), is
defined to be the number of nonzero coordinates in z; that is, wt(z) = d(z,0),

where 0 is the zero word.

For every element z € F, , we can define the Hamming weight as follows

b, G
wt () = d(z,0) = (3.1)
0 Az =00
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Then, writing = € F; as r = (21, 73,....2,), the Hamming weight of r can
also be equivalently defined as wt (2) = wt (z1) + wt (x2) + . .. + wt (z5).

For any prime power q and r,y € Fy we have

d(z.y) = wt(z —vy),

wt (r) + wt (y) > wt (z + y) > wt (z) — wt (y).

Let C be a code (not nicessarily linear). The minimum Hamming weight of

C, denoted wt (C), is ther smallest of the weights of the nonzero codewords of C.
Theorem 3.3.1 Let C be a lincar code over F, . Then d(C) = wt(C) .

Example. Consider the binary linear code C = (0000, 1101,0011,1110}. We
see that

wt (1101) = 3,
wt (0011) = 2,
ool | TVID) =.8;

Hence, d(C) = 2.

3.4 Bases for linear codes

A linear code is a vector space, all its elements can be described in terms of
a basis. Let A be a matrix over F, , an elementary row operation performed on A4 is

any one of the following three operations:

1. Interchanging two rows,
2. Multiplying a row by a nonzero scalar,

3. Replacing a row by its sum with the scalar multiple of another row.

The following are well known facts from linear algebra:
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1. Any matrix M over F, can be put in row echelon form (REF) or reduced row
echelon form (RREF ) by a sequence of elementary row operations. In other

words, a matrix is row equivalent to a matrix in REF or in RREF.

2. For a given matrix. its RREF is unique, but it may have different REFs.

Recall that the difference between the RREF and the REF is that the leading

nonzero entry of a row in the RREF is equal to 1 and it is the only nonzero

entry in its column.

Algorithm 1 (for finding a basis of a linear code)

Input: A nonempty subset S of F,
Output: A basis for C =< S >, the linear code generated by S.
Description: Form the matrix A whose rows are the words in S. Use elemen-

tary row operations to find an REF of A. Then the nonzero rows of the REF form

a basis for C.

Algorithm 2 (choosing basis elements from generating set)

Input: A nonempty subset S of F.

Output: A basis for C =< S >, the linear code generated by S.

Description: Form the matrix A whose columns are the words in S. Use
elementary row operations to put A in REF and locate the leading columns in the
REF. Then the original columns of A corresponding to these leading columns form

a basis for C.

Algorithm 3 (finding a basis of the dual code)

Input: A nonempty subset S of Iy
Output: A basis for the dual code C+, where C =< S >.
Description: Form the matrix A whose rows are the words in S. Use elemen-

tary row operations to place A in RREF. Let G be the & x n matrix consisting of all
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the nonzero rows of this RREF:

The matrix G contains & leading columns. Permute the columns of G to form
G'= (I | X),
where [, denotes the A x & identity matrix. Form a matrix H’ as follows:
H'= (=XT | L)

where X7 denotes the transpose of X. Apply the inverse of the permutation applied

to the columns of G to the columns of H’ to form H. Then the rows of H form a

basis for Ct.

3.5 Generator matrix and parity-check matrix

In coding theory, a basis for a linear code is often represented in the form of
a matrix, called a generator matrix, while a matrix that represents a basis for the
dual code is called a parity-check matrix.

A generator matrix for a linear code C is a matrix G whose rows form a basis

for C. A parity-check matrix H for a linear code C is a generator matrix for the

dual code C*t.

1. If C is an [n, k]-linear code, then a generator matrix for C must be a £ x n

matrix and a parity-check matrix for C must be (n — k) x n matrix.

2. Algorithm 3 can be used to find generator and parity-check matrices for a linar

code.

3. A permutation (different from the identity) of the rows of a generator matrix

also leads to a different generator matrix.
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4. The rows of a generator matrix are linearly independent. The same holds for
the rows of a parity-check matrix. To show that a k x n matrix G is indeed

a generator matrix for a given [n, k]-linear code C, it suffices to show that the

rows of G are codewords in C and that they are linearly independent.

Alternatively, one may also show that C is contained in the row space of G. A
generator matrix of the form (/i | X) is said to be in standard form. A parity-check

matrix in the form (Y| /,,_x) is said to bus in standard form.

Theorem 3.5.1 Let C be an [n, k]

Then v € Fy belongs to Ct if and only if v is orthogonal to every row of G, that
. v € C* < vGT = 0. In particular, given an (n — k) x n matric H, then H is a

parity-check matriz for C if and only if the rows of H are linearly independent and

HGT = 0.

Theorem 3.5.2 Let C be a linear code and let H be a parity-check matriz for C.

Then

1. C has distance = d if and only if any d — 1 columns of H are linearly indepen-

dent;
2. C has distance < d if and only if H has d columns that are linearly dependent.

Proof: Let v = (vy,...,v,) € C be a word of weight e > 0. Suppose the
nonzero coordinates are in the positions ij, ..., %, so that v; = 0if j ¢ {i1,. .. te}
Let ¢; (1 < i < n) denote the ith column of H. By Theorem 3.5.1 code C contains a
nonzero word (vi, . ..,v,) of weight e if and only if

0 T 0
OZT)H ='Ui1Cil+...+'Ui C‘i’

€ ‘e

this is true if and only if there are e columns of H that are linearly dependent.
To prove (1): the statement that the distance of C is > d is equivalent to
saying that C does not contain any nonzero word of weight < d — 1, which is in turn

equivalent to saying that any d — 1 columns of H are linearly independent.
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Similarly to prove (2): the statement that the distance of C is < d is equi-
valent to =aving that C contains a nonzero word of weight < d. which is in turn

equivalent to saying that H has < d columns that are linearly dependent. O

Corollary 3.5.3 Let C be a linear code and let H be a parity-check matriz for C.

Then the following statements are equivalent:
1. C has distance d;

2. any d—1 columns of H are linearly independent and H has d columns that are

Linearly dependent.

Theorem 3.5.4 IfG = (Ix | X) is the standard form generator matrir of an [n, k)-

code C. then a parity-check matriz for C is H = (= X7 | In_y) .
3.6 Encoding with a linear code

Let C be an [n, k, d]-linear code over the finite field F,. Each codeword of C
can represent one piece of information, so C can represent g* distinct pieces of infor-
mation. Once a basis {r,,...,r} is fixed for C, each codeword v, or, equivalently,
each of the ¢* pieces of information, can be uniquely written as a linear combination
v=wufy + ...+ wklx ywhere uy, ..., ux € F,.

Equivalently, we may set G to be the generator matrix of C whose ith row
is the vector r; in the chosen basis. Given a vector u = (uy,...,ux) € IF:, it is clear
that v = uG = uyry + ... + ukrk is a codeword in C. Conversely, any v € C can be
written uniquely as v = uG, where u = (uy, ..., ux) € ng.

Hence, every word u € IF'(; can be encoded as v = uG. The process of

representing the elements u of lF'; as codewords v = uG in C is called encoding.

Example. Let C be the binary (7, 3]-linear code with the generator matrix

1 30 ip 0™ [Nl
Gh== || 200=n S| (3.3)
0010110
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then the message x = 110 is encoded as

s e S
v=rG=(1100] 0 1 0 1 1 0 1 |=1110110 (3.4)
6 LIl @

Remark: Some of the advantages of having the generator matrix of a linear

cirde in standard form are as follows:

1. If a linear code C has a generator matrix G in standard form, G = (I | X),

then Algorithm 3 at once yields H = (—XT | 1) as a parity-check matrix for

C.

2. If an [n. k, d]- linear code C has a generator matrix G in standard form, G =
(I'] X), then it is trivial to recover the message u from the codeword v = uG
since

v =G =T | X) = lfay, wX)
3.7 Decoding of linear codes

Let C be a linear code of length n over Fy, and let u € Fy be any vector of

length n, we define the coset of C determined by u to be the set
Ctu={v+tu:weC}.

We note that, under the vector addition, Fy is a finite abelian group, and a
linear code C over F, of length n is also a subgroup of Fy. The coset of a linear code
defined above coincides with the usual notion of a coset in group theory.

Example. Let ¢ = 2 and C = {0000,0101,1010,1111}
C + 1000 = {1000, 1101,0010,0111}

C + 0100 = {0100,0001,1110. 1011}
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C + 0001 = {0001.0100, 1011. 1110}
Theorem 3.7.1 Let C' be an [n, k. d)-linear code over the finite field F,. Then
1. every vector of Fy 1s contained in some coset of C;
2, wfer all'w € I |C -a| =1CY)=Ity
3. for allu,v € Fy, u € C + v implies that C + v = C + v;
4. two cosets ure either identical or they have empty intersection,
5. there are q" % different cosets of C';

6. for allu,v € Fj. u—v € C if and only if u and v are in the same coset.

Example. The cosets of the binary linear code C' = {0000.1101,0011, 1110}

are as follows:

0000 + C = {0000, 1101,0011, 1110}
1000 + C = {1000, 0101, 1011,0110}
0100 + C = {0100, 1001,0111, 1010}
0001 + C = {0001, 1100,0010,1111}

The above array is called a standard array. A word of the least Hamming
weight in a coset is called a coset leader. In the previous example the first vectors

in cosets are coset leaders.

3.8 Nearest neighbour decoding for linear codes

Let C be a linear code. Assume the codeword v is transmitted and the word
w is received, then the error pattern (or error string) is e = w —v € w+C. Therefore
w—e = v € C, so, by part (6) of Theorem above, the error pattern e and the received

word w are in the same coset.
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Since error patterns of small weight are the most likely to occur. nearest
neighbour decoding works for a linear code C in the following manner. Upon re-
ceiving the word w, we choose a word e of least weight in the coset w + C and
conclude that v = w — e wns the codeword transmitted.

Example. Let ¢ = 2and C = {0000, 1101, 0011, 1110}. Decode the following

receivid words: (a) w = 1011 , (b) w = 1111. First. we write down the standard

array of C
0000 + C = {0000, 1101,0011,1110}
1000 + C = {1000,0101, 1011. 0110}
0100 + C = {0100, 1001,0111. 1010}
0001 + C = {0001, 1100,0010, 1111}
(a) w = 1011: w + C is the second coset. The word of least weight in

this coset is 1000 (note that this is the unique coset leader of this coset). Hence,
1011 — 1000 = 0011 was the most likely codeword transmitted.

(b) w = 1111: w + C is the fourth coset. There are two words of smallest
weight, 0001 and 0010, in this coset. If we are doing incomplete decoding, we ask
for a retransmission. If we are doing complete decoding, we arbitrarily choose one
of the words of smallest weight, say 0001, to be the error pattern, and conclude that

1111 — 0001 = 1110 was a most likely codeword sent.

3.9 Cyeclic codes

The linear code C of length n is a cyclic code if it is invariant under a cyclic

shift:
3] € C

i =
e = (g 1. 000+« O3 Ca1) € & =€ = (Cn—1400: €11 0240+ < B

Let F be a field. With every codeword ¢ = (cg, 1,2, - - . Gty Caet) ) 'E RN E
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associate the polynomial
elr) = o+ oyr + eax® 4 g o R I L - Flz|/ (=" — 1)

If ¢ is a codeword of the code C, then we call c(x) the associated code poly-

nomial. The shifted codeword ¢’ has associated code polynomial
d IJ-| = o1 + 4T 3§ 4._'“'.'."' L I'_l]"l 4 4 Can :_‘I’II | | = .I-j! IT" E |.|

Thus ¢(r) is equal to the polynomial zc(z) modulo (z" — 1). If C is closed
under the cyclic shift maps p(r) — z7p(z) then C is a cyclic code. Therefore a

linear code C' C F [1] /(2™ — 1) is cyclic if and only if C is an ideal of the quotient
ring F[r]/(z" —1).

Theorem 3.9.1 Let C be a cyclic [n, k] code over a field F with k > 0. Then there
is a unigue monic polynomial g(z) such that for every c(z) € F|x] with deg c(z) < n

b

we have

c(z) € C <= g(x)|c(x).

Proof. First, if g(z) exists then it must be a codeword of C (since obviously
g(x)|g(z) and it is unique (since it divides all other monic codewords in C).

Let g(z) be a monic nonzero codeword with a smallest degree in C (if nonzero
codeword with a smallest degree is not monic, we can make it monic multiplying by a
constant). For every u(z) € F[z] we have u(z)g(z) mod (z* — 1) € C. In particular,
for every u(r) € F[z], degu(z) < n — degg(z), we have u(z)g(z) € C. Therefore,
all the polynomial multiples of g(z) of degree less than n are codewords of C'.

Let ¢(z) € C and write c(z) = u(z)g(z) + r(z) where degr(z) < degg(z).
Since both ¢(z) and u(z)g(x) are in C then, r(z) = ¢(z) — u(z)g(x) € C. From the
minimality of deg g we get that r(z) =0, i.e., c(x) is divisible by g(z). O

The polynomial g(z) in Theorem 3.9.1 is called the generator polynomial of

the cyclic code C.
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Thewrem 3.9.1 states that a cyclic [n, k] code C can be written as
C = {u(z)g(z) | u(z) € Flz], degu(z) < n — degg(z)}.

where g(r) is the generator polynomial of C.

Theorem 3.9.2 Let f(r) be the generator polynomial of a cyclic [n, k] code over a

field F. Then

g(x)|z™ — 1.

Proof. Write 2" — 1 = h(z)g(z) + r(z), where deg r(z) < degg(z). We have
r(z) = —h(z)g(z) mod (z" — 1)

and, from the property of cyclic codes, it follows that r(x) € C. This means that
r(r) =0, since no other codeword in C can have degree smaller than degg. O
We can also state a converse to Theorem 3.9.2 : if g(z) is a polynomial over

F that divides 2™ — 1, then the set

C = {u(z)9(x) | u(z) € Flz], degu(z) < n — deg g(z)}

is a cyclic code .
Let C be a cyclic [n, k] code with a generator polynomial g(z). The check

polynomial of C, denoted as h(z), is the monic polynomial of degree k obtained by

Then
C = {c(z) | degc(x) < n, c(z)h(z) = 0(mod (z" — 1)) }.

Theorem 3.9.3 Let C be a cyclic n, k] code over a field F and let h(z) = 23;0 hjz?

be the check polynomial of C. Then the dual code of C is a cyclic [n,n — k| code over



F' whose generator polynomial is
- 1
L) — o) i k(-
g (1) = o Ezo he—j2? = hol- h(xr™h).

Therefore, gt (r) is a scaled reciprocal polynomial of hA(r).

21
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Chapter 4: Quaternary linear codes

Let Z; be the ring of integers modulo 4, n be a positive integer. and Z} be

the set of n-tuples over Z, | i.e.

Ly = (L5, To) |t E Ly fori= 1, n)

Any non-vmpty subset C of Z} is called a quaternary code or, simply and more
precisely, a Zj-code or a code over Z, , and n is called the length of the code.

The n-tuples in Z} are called words and n-tuples in a quaternary cods C are called

codewords of C.

For all (z,....,z,) and (y;....,y,) € Z% define a component-wise addition
Ty I )+ {Wp, yilin ) = ( Ty 4, o+ )

then Z} becomes an additive abelian group of order 4".
Any subgroup of Z7] is called a quaternary linear code, or simply, Z, -linear

code. For all (zy,...,z,) and (v1,...,ys) in Z} define
Ly, yE ) (e g Um) = T e Tl

which is called the inner product of  and y.

Let C be a quaternary linear code of length n. Define
Ct={re€Zz-y=0forallyeC}.

Then C* is a subgroup of Z}. Hence C+ is also a quaternary linear code, called
the dual code of C. If C C C* , C is called a self orthogonal code. If C = C*
then C is called a self-dual code. Two quaternary codes C; and C; both of length

n are said to be equivalent, if one can be obtained from the other by permuting the
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coordinates. Quaternary codes differ only by a permutation of coordinates are said

to be permutation-equivalent.

A quaternary cyclic code C of length n is a quaternary linear code C of length

n with the property

-;I.ﬂ' LS N |!| ': l'" = |,|'.._|..r||,i'|,.|".| !F = f_.l

As in the binary case, we hawve a bijection

= L, X]/(X" =1),

By - oty ) —F (Ep 4 o X + + o1 XY

A nonempty set of Z} is a Zj-cyclic code if and only if the image under the above

map 15 an ideal of the residue ¢luss ring Z,[.X]/(X™ - 1).

4.1 Generator Matrices

Let C be a Zs-linear code of length n. A (k x n)-matrix G over Zy, is called a
generator matrix of C if the rows of G generate C and no proper subset of the rows
of G generates C.

Any Z,-linear code C containing some nonzero codewords is permutation-

equivalent to a Z4-linear code with a generator matrix of the form
X = Rl (4.1)

where Iy, and I, denote the k; x k; and k; X k3 identity matrices, respectively, A
and D are Zy,-matrices, and B is a Zs-matrix. Then C is an abelian group of type

4k19k2 > contains 22K %2 codewords, and C is a free Zs-module if and only if k2 = 0.
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4.2 The Gray Map and the Lee weight
The Gray map ® is defined in the following way:
Y Z4 = 222,

0 — 00,
1 — 01,
2 — 11,
3 — 10.

The map ¥ is a bijection from Z; to Z2. But ¢ is not an additive group homomor-
phism from Z,; to 25, since x4+ y) & ¢{x) + ¢yl

The Gray map is very related to the Lee weight. The Lee weights of 0, 1, 2,
3 € Z, are defined as follows:

wip(0) =0, wtp(l)=1, witp(2) =2, wipl3) 1.

Then the Lee weight wt;(z) of z = (x1....,z,) € Z} is the sum of the Lee weights

of its components

n
wty(z) =Y wtp(zx).
k=1

Lee distance is defined by
wtr(z,y) = wtp(z —y).

It is easy to see that Lee weight of a quaternary codeword is equal to Hamming

(binary) weight of its Gray image.



4.3 The Quaternary Kerdock Codes

Let m be any integer > 2 and h (.X) be a basic primitive polynomial of degree
m over Zs such that h(.X)|(X?7"~! —1). The existence of such a polynomial h (X)
follews from the existence of the Hensel lift [19] of the binary primitive polynomial
h(X) of degree m. Let n = 2™ — | and g(X) be the reciprocal polynomial to
the polynomial (X™ —1) /(X — 1) & (X). The shortened quaternary Kerdock code
R’(m) is the quaternary cyclic code of length 2™ — 1 with generator polynomial
g(X). The positions of the coordinates of codewords of K’(m) are numbered as
0.1.2...., 2012,

The quaternary Kerdock code K" (m) is the code obtained from A”(m) by
adding a zero-sum check symbol to each codeword of A’(m) at position oo, which is
situated in front of the position 0. When m is an odd integer > 3, the binary image

of I\'(mm) (under the Gray map) is the binary Kerdock code 41 of length 2™+,

4.4 The Quaternary Preparata Codes

Let m is an integer > 2, h(X) is a basic primitive polynomial of degree m di-
viding X™—1in Z, [X], where n = 2™ —1, £isaroot of h (X) in a Galois ring GR (4"),
and g (X) is the reciprocal polynomial to the polynomial (X* —1) /(X —1)h (.X).
The Z,-cyclic code of length n with generator polynomial h (.X) is called the shor-
tened quaternary Preparata code [19] and denoted by P’(m). The Z,-linear code
obtained from P'(m) by adding a zero-sum check symbol to each codeword of P'(m)
is called the quaternary Preparata code and denoted by I’ (m). Code I”(m) has

parity check matrix

(1.£ 8%, i SE

P (m) is the dual code of K (m) and has parity check matrix
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Chapter 5: Affine-invariant codes

Let F, be a finite field of p™ elements, p be a prime number. An extended

cyclic code of length p™ is called affine-invariant if it is invariant under the action of

the affine group
Gy =AGL (p") = V . GL, (p").
It is a semidirect product of the additive group V' = F; and the multiplicative group

GL, (p*) = [} of the field F,.

Let 4 = F[V] be the group ring of the abelian group V' = F; over a ring F":

A = {Er X* | ag € f}
s}

Operations in 4 are given by:

Eu,..\;" FY bXY =Y (ay 4+ b)X?

|'Z B X" = E oeA s CEF,
LE .r..."{".] I[E b X J- = Z a b X4 = T (E 1 i ,,) AT

e
LB w

The element X° is the unity of the group ring A and A is a module over F of rank
p" with basis { X"V | v € V}.
We consider F-submodules of A as F-linear codes of length p™ based on the

alphabet F.

The affine group G, = AGL,(p") =V - GL,(p™) acts on A:
BX") = X", . wEl,

g(X")=X", g€F,
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G-invariant submodules of A are called affine-invariant codes, and G L (p")-invariant

codes in

A={) a,X"|a, € F}

v#£0
are cyclic codes. If C’ is a cyclic code in A’, then the extended cyclic code C is

obtained by embedding:

Z a, X" — (= Z ag) R Z a, X"

v#0 v#0 v#0

From a cyclic code C” one can construct an extended cyclic code C of length p™ . It
consists of codewords (cx, €g,C1. ..., cpm_3) € C , where (co,cy, ... Jen_3) € C and
CootCo+C1+...4 Cpnyg=0.

Invariance of a code (" C A under the action of the group V means that
C is an ideal in the group ring A. Therefore. the question of the classification of
affine-invariant codes is equivalent to classification of ideals in A, invariant under the

group GLi(p").

5.1 Defining sets

A cyclic code C’ of length p™ — 1 over a field F is an ideal of F[z]/(zP"~! — 1),
where the codeword

Cc = (Co, 5 TR Cpn_g) = C,

is represented by the class of polynomial
|'|_.F:I=r'.|+r':.l.' = T L™ "'-r"l"-l

Cyclic code C’ is uniquely determined by its generating polynomial f(z). Let w be
a primitive element of the field F,. Then the set 7" of all numbers s, such that
0<s<p*—1land f(w®) =0, is called the defining set of C’. So elements w*, s € T",

are all zeros of the polynomials of the cyclic code C’.



Consider the following F-linear map of A:

i }: a, X" | = ZII”H‘

i T'l

If C' C A’ is a cyclic code then

T = {s|ps(c) =0VYce C'}

i= the defining set of C” (see (1, 3, 5]). Then T U {0} will be the defining set of the

extended cyclic code C.

For 5, 0 < & < p" — 1, the p-adic expansion is
=}
s=) s, O<si<p-1)
nl
The partial order relation < on {0,1,...,p" — 1} is defined as follows:
Ve,re{0,1,...;p" - 1}: sr&=s<r, 0<i<n—1

Theorem 5.1.1 ([1, 3, 5, 9]) Let T be the defining set of an extended cyclic code
C. Then C is affine-invariant if and only if the condition s € T impliest € T for

any t < s.
5.2 Quaternary affine-invariant codes

Mow we consider extended cyclic codes of length 2™ over the ring Z, of integers

modulo 4. The ambient space will be

A= { E X" | a; € E.}

PN =Fyn

Let C be an extended cyclic code over Z; in A (i.e. invariant under GL,(2")).
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There are two canonical subcodes of C:

Ci=(C+2A4)/2A (residue code),

C;=CN2A={ceC |2 =0} (torsion code).

They can be considered as linear codes over Fo. We say that (T}, T3) is the defining

set of C if Ty and T3 are the defining sets of C; and C, respectively. Assuming that

C, is naturally embedded in .1 mod 2, we have

We will say that a quaternary code is affine-invariant if it is invariant under action

of the group AGL,(2").

The following theorem is the main tool for our investigation.

Theorem 5.2.1 ([1, 3, 5]) Let (T1,T2) be the defining set of an extended cyclic
code C of length 2™ over Zy. Then C is affine-invariant if and only if the following
two properties hold:

(i)seTy,r<s=>reT,ford=1,2;

(i) s=so+ +5-2240-2" 4+ 1.2 4+...€Th = s9+---+s5,-20+1-

2141 4 0. 242 4+ ... € Ty. (Subscripts and superscripts modn.)

Now we show that all known good series of quaternary codes [13] are affine-

invariant. Note that if s = sg-2045;-2'4- - -+8,_1-2""! € T, then s-2 mod (2" —1)

Sm1 294850 2' 4+ -+ 5p_2- 271 € Ty, so we will denote by Cl(so, 51, - - -, Sn—1)
Cl(so+ s1-2' + - -+ 5,-1-2""") the cyclotomic coset of the number s = so- 2045 -
9 4 ... 45, ;-2 that is, numbers s, s -2 mod (2" — 1), s - 22 mod (2" ~ 1),...,
s-2"1mod (2" — 1).

Preparata code is given by the defining set (71, 75), where

T, =T, = {CI(0, ...,0),CI(1,0,...,0)}.
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It is clear that conditions of Theorem 5.2.1 are satisfied. so this Z,-code is affine-
invariant. For odd n, the Gray image of the Z-Preparata code determines binary

n n+1 n—
(21,2277 7272 6) code [13]. (Gray map sends elements 0,1,2,3 of Z4 to the binary

combinations 00,01. 11, 10 respectively).

Kerdock code is the dual code to Preparata rode, considered as Z,-code.

It is given by the following defining set:

T =002, . 4= D\ IGT, . &), ET0

For odd n, the Gray image of the Z,-Kerdock code is binary (271, 47 2n — 2(»=1)/2)
code [13].

Quaternary Preparata and Kerdock codes are particular cases of quaternary

Reed-NMuller codes QRA(r, n), defined by
Tl =T2= {Cl(So,...,Sn_l) | SO A S n—1 —7‘}.

Quaterniary Reed-Muller codes are also affine-invariant. Codes QRM (n — 2,n) and
QRM (1.n) are Preparata and Kerdock codes respectively. Note that QRM(r,n)
is a lifted Reed-Muller code, in the sense that T} = T, and T, determines binary

Reed-Muller code RAM (7, n).

5.3 Binary affine-invariant codes for small dimensions

In this section we present a classification of binary affine-invariant codes of
dimensions < 7. (In fact, we have full description of codes for n = 8, but we decided
not put them in this thesis, since results take too much pages).

Tables 5.1, 5.4,5.7, 5.10 and 5.13 present structures of extended cyclic codes
in dimensions 3, 4, 5, 6 and 7 respectively. Here n-tuple (S0, S1,- - -, Sn—1) denotes
the cyclotomic coset Cl(so, $1,---,Sn-1) = Cl(s0 + 51 2V 4 . 485, - 2™71) of the
number s = sq - 2° + 51 2V 4. ..+ 8,_1:-2"L that is; numbers s, s-2 mod (2" — 13

s-22mod (2" — 1),..., s-2" ' mod (2" — 1). Using Theorem 5.1.1 we can find all
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n-tuples, corresponding to binary affine-invariant codes. They are presented in the

Tables 5.2, 5.5. 5.8, 5.11 and 5.14. We denote here
T = {C’(So ...... S n—l) ISO+"'+5n—1 < k},

so 7y determines Reed-Muller code RM(n — k — 1,n) for k < n (r, determines the

trivial code C'= 0). In our tables, we put a defining set T into a cell corresponding

tory if TCrpyand T € rp_;.
Now we explain how to construct codes from defining sets. Let’s consider the

defining =t generated by 5-tuple (11000). It contains all 5-tuples that are less than

(11000) with respect to the order <, that is,
T = (11000) = {(11000), (10000), (00000)} = {3,6,12,24,17,1,2,4,8.16,0} .
Then the affine-invariant code with the defining set T is

C = fa= Z ao X% | ps(a) =0 allse€ T}.
aEIFq
Other description is the following. Let w be a primitive element of the field

F,. Consider polynomial

glx) = (1 - Mz = o) =YYz — )z - w')

Az — w(x — Mz — )z — ™)z — w'T) € Falz].

The polynomial g(r) generates a cyclic code C’, and the extension of this code gives
ug an affine-invariant code C with defining set 7.

For n = 3 the defining set (100 | 100) determines Z4-Nordstrom-Robinson
code. It is simultaneously a Kerdock and Preparata code, and its Gray image is a

binary nonlinear (16,28, 6)-code.
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5.4 Quaternary affine-invariant codes for small dimensions

In this section we present a classification of quaternary affine-invariant codes

of dimensions < 7.

Using the classification of binary affine-invariant codes from the previous
=ection and with the help of Theorem 5.2.1 we can find all n-tuples, corresponding
to quaternury affine-invariant codes. They are presented in the Tables 5.3, 5.6, 5.9,
5.12 and 5.15, rorresponding to the cases n = 3, 4, 5, 6 and 7 respectively. We
presented "minimal’ defining sets (77,75) of quaternary affine-invariant codes, in
the following semse. If (77.73) is from our tables, 7V O Ty and T is a defining
set of some binary affine-invariant code, then (7",T3) is also the defining set of a
quaternary affine-invariant code (since in this case (7", T,) also satisfies conditions of
Theorem 5.2.1). The enumeration of the defining sets is organized in the following
way. We put a defining set (77, 7T3) into a cell corresponding to Ry if (T3 UT3) C 7y
and (TYUTy) € re—1.

As an example, now we show how to construct the quaternary affine-invariant
vode from the defining set T = (T, T) = (10100, 11000 | 11000). As in the previous

section, we have
T, = (11000) = {(11000), (10000), (00000)} = {3,6,12,24,17,1,2,4,8,16,0},

T, = (10100, 11000 = {(10100), (11000), (10000), (00000)}
= {5,10,20,9, 18,3,6,12,24,17,1,2,4, 8,16, 0} .

We compute polynomials
pa(x) = (x —w'Hz — )z - oMz — ) (x — &)

(2 — o)z — WPz —w)(x - )z - ') € Fals],
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and
iz} = (2 — w'){r — ) r —u*)x = "Wz = ")z = ')z — F)

A — ) = M) r — ") (x - Wah | -...'I"H.r — Y — " — ™) € Falr].

The polynomial g;(x) generates a cyclic binary code D}, we lift this code to
a quaternary code C] with the help of Hensel lifting and the extension of this code
denote by Cy. The polynomial g,(.r) generates a cyclic binary code D5, we lift this
code to a quaternary code C with the help of Hensel lifting and the extension of
this code denote by C,. Then our quaternary affine-invariant code with the defining
set T 18

C= Cl +202



Tablet 5.1: Binary codes for n = 3

111
110 |
100 |
000 |

Table 5.2: Defining sets of binary affine-invariant codes for n =3

ra/l Gha)
rz | (110)
ry | (100)
ra | (000)

Table 5.3: Defining sets of quaternary affine-invariant codes forn =3

g W T
R, | (110 110)
R, | (100 | 100)
Ro | (000 | 000)




Table 5.4: Binary codes for n = 4

1111
1110
1100 | 1010
1000

0000

Table 5.5: Defining sets of binary affine-invariant codes for n = 4

re | (1111)
ra | (1110)
ra | (1100.1010), (1100) . (1010)
r1 | (1000)
ra | (0000)

Table 5.6: Defining sets of quaternary affine-invariant codes for n = 4

R, 1101 | L1}
R, | (1110 [ 1110)
H, | (1100.1010 | 1100, 1010y,
(1100,1010 | 1100) , (1010, 1100 | 1010)
R, | (1000 [ 1000)
Ro | (0000 | 0000)




1

Table 5.7: Binary codes for n = 5

11111
11110
11100 | 11010
10100 | 11000 |
10000
00000

Table 5.8: Defining sets of binary affine-invariant codes for n =5

Fa
Fa

(
( ——
r3 | (11100, 11010) , (11100), (11010)
ro | (10100, 11000), (11000}, (10100}
(
(

T

To

Table 5.9: Defining sets of quaternary affine-invariant codes for n = i)

Rs | (11111 11111)

R, | (11110 [ 11110)

R, | (11100, 11010 | 11100, 11010}, (11100, 11010 | 11100),
(11010, 11100 | 11010)

Ra | (11000,10100 | 10100, 11000y, (11000, 10010 | 11000) ,
(10100, 11000 | 10100)

R, | (10000 | 10000)

Ttz | (00000 | 00000)




Te
Ts

Table 5.10: Binary codes for n = 6

= 111111 ¥l

111110

111100 | 111010 110110
111000 | 101100 | 110100 | 101010
101000 | 110000 100100

. 100000

| 000000

Table 5.11: Defining sets of binary affine-invariant codes for n = 6

111111) =

111110)

111100, 110110, 111010) (111100), (111010}, (110110)
111100, 111010) . (111100, 110110) , (111010, 110110},
111100, 110110, 101010) , (110110, 111000, 101010) ,

T3

110100, 101100, 111000, 101010}, (110100) , (101100)
111000) , (101010) , (110100, 101100) , (110100, 111000} ,
110100, 101010) , (101100, 111000) , (101100, 101010),
111000,101010) , (110100, 101100, 111000) ,

101100, 111000, 101010) , (111000, 101010, 110100) ,
101010, 110100, 101100) , (111000, 101010, 100100) .
(101010, 110000, 100100} , (111000, 100100) , (101010, 100100)

(
(
(
E
(111100, 101010), (110110, 111000}, (110110, 101010)
(
(
(
(
(
(

T

101000, 110000, 100100) , (110000} , (101000),
100100) , (110000, 101000} , (110000, 100100} , (101000, 100100}

o

(
(
(100000)
(000000)




Table 5.12: Diefining sets of quaternary affine-invariant codes for n = 6

Rg | (111111 ] 111111) -

s | (111110 | 111110)

Ity

iy

(

(

(111100.
(111100.
(110110,
(111100.
(111010.
(111100.
(110110.
(111100.
(
(
(
(
(
(
(
(

110110

110110.
111000.
110100.
111000,
110100.
110100.
110100.
101100.

(
(101100
(

101100.
111000.
101010.
111000,
101010.
111000.
101010,
101010.

111010, 110110 | ifllOO,lllOlO,llOllO),
111010 | 111100) ,(111010,111100, 110110 | 111010},

110110, 111010 | 111100, 110110) .
110110, 111100 | 111010, 110110) .
110110, 101010, 111010 | 111100, 110110, 101010)
111000, 101010, 111010 | 110110, 111000, 101010) ,
101010, 111010 | 111100, 101010) .

.111000, 111010 | 110110, 111000 .
)

101010, 111010 | 110110, 101010

101100. 110100, 101010 | 111000, 101100, 110100, 101010},
111000, 101010 | 1101 00) (101100, 110100 | 101100) ,
101100 | 111000) (101010, 110010 | 101010} ,

101100, 111000, 101010 | 110100, 101100)

111000, 101010, | 110100, 111000) .

101010, 111000, 110010 | 110100, 101010} .

111000, 110100 | 101100, 111000)

.101010, 110100 | 101100, 101010} ,

111000.
(110100,
(

101010, 101100 | 111000, 101010) .

101100, 111000, 101010 | 110100, 101100, 111000} ,
111000, 101010, 110100 | 101100, 111000, 101010},
101010, 110100, 101100 | 101010, 110100),
110100, 101100, 111000 | 101010, 110100, 101100},
101010, 101100 | 111000, 101010, 100100} ,
110000, 100100, 110010 | 101010, 110000, 100100,
101100, 101000 | 111000, 100100)
110010, | 101010. 100100},

110010 | 101010, 110000)

111010 | 110110, (111100,111010, 110110 | 111100, 111010) ,

H;

110000
100100
110000
101000

101000, 100100 | 110000, 101000, 100100},

.101000 | 110000} , (101000, 110000, 100100 | 101000)
-101000 | 100100} , (110000, 101000, 100100 | 110000, 101000)
1100100, 101000 | 110000.100100)

.100100, 110000 | 101000, 100100)

100000

| 100000)

000000

(
(
(
(
(
(
(
(110000.
(
(
(
(
(
(

[ 000000)

A48



Table 5.13: Binary codes for n =7

1111111
1111110
1111100 1111010 1110110
1111000 | 1110100 | 1101100 | 1011100 | 1110000
1110000 | 1101000 | 1011000 | 1010100 | 1100100
1010000 1100000 1001000
1000000

0000000

39



40

Table 5.14: Defining sets of binary affine-invariant codes for n = 7

r7

L FTREED

Te

1111110)

Ty

1111100, 1111010, 1110110 ., (1111100} , (1111010}

1110110) , (1111100. 1111010} , (1111100, 1110110) , (1111010, 1110110) ,
1111100, 1101010) , (1111010, 1101100) . (1110110, 1111000)

1111000, 1110100. 1101100, 1011100, 1101010y (1110100}, (1111000},
1011100) . (1101100} . <1101010).(1111000,1101100).(1111000‘1110100>,
1111000, 1011100) , (1111000, 1101010} , (1110100, 1101100) . (1110100, 1011100} ,
1110100, 1101010) , (1101100, 1011100} ., (1101100, 1101010) . (1011100, 1101010} ,
1111000, 1110100. 1101100) (1101100 1011100, 1101010} ,
1110100, 1101100, 1011100 ,

1101010, 1111000. 1110100) , (1011100, 1101010, 1111000} ,
1111000, 1110100, 1011100) , (1101100, 1110100, 1111000} ,
sl
i

1101010, 1110100. 1101100) . (1111000, 1110100, 1101100, 1101010} .

1110100.1101100.1101010,1011100), (1101100, 1101010, 1011100, 1111000} ,
1101010,1011100. 1111000, 1110100) , (1011100, 1111000, 1110100, 1101100) ,
1111000, 1010100} , (1111000, 1100100) , (1110100, 1011000) . (1101100, 1010100} ,
1101100, 1110000) , (1011100, 1101000) , (1101010, 1100100) . (1101010, 1110000) ,
1111000, 1010100, 1100100) . (1101100, 1010100, 1110000} ,
1101010, 1100100, 1110000) , (1101100, 1101010, 1110000) ,

B |

)
1101100, 1010100. 1111000 , (1100100, 1111000, 1101010} B
1110000, 1101000, 1011000, 1010100, 1100100) , (1110000), (1101000},
1011000) , (1010100) , (1100100} , (1110000, 1101000} .
1110000, 10110000) , (1110000, 1010100), (1110000, 1100100} ,
1101000, 1011000) , (1101000, 1010100) , (1101000, 1100100) .
1011000, 1010100) , (1011000, 1100100), (1010100, 1100100} .
(1110000, 1101000, 1011000) , (1101000, 1011000, 1010100 ,
(1011000, 1010100. 1100100} , (1010100, 1100100, 1110000) ,

(
{
(
(
(
(
(
(
(
(
(
2
(1110100, 1101100. 1101010} . (1011100, 1101010, 1110100} ,
(
(
(
(
(
(
(
(
(
(
(
(
(

) )
1100100, 1110000, 1101000) )
1101000, 1011000. 1100100) , (1011000, 1010100, 1110000} ,
1010100, 1100100, 1101000) , (1100100, 1110000, 1011000) ,

1110000, 1101000, 1011000, 1010100} , (1101000, 1011000, 1010100, 1100100) ,
1011000, 1010100. 1100100, 1110000) , (1010100, 1100100, 1110000, 1101000y ,
{

(
(

, (1110000, 1101000, 1010100} ,
(

1010100, 1100000) , (1100100, 1010000)

1100000, 1010000, 1001000) (1100000) , (10100000) ,
1001000) (1100000, 1010000) , (1100000,1001000),(1010000,IOOEPOQ)

1000000)

(
(
(
E
(1100100, 1110000, 1101000, 1011000} , (1110000, 1001000} ,
(
(
(
| (100
(

0000000)
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Table 5.15: Defining sets of quaternary affine-invariant codes for n =7

R; | (1111111 ] 1111111)

fty | (1111110 ] 1111110)

Rs | (1111100,1111010,1110110 | 1111100, 1111010.1110110),
1111100,1111010 | 1111100) . (1111010,1111100.1110110 | 1111010},

1110110,1111010 | 1110110), (1111100, 1111010,1110110 | 1111100, 1111010) ,
1111100,1110110,1111010 | 1111100,1110110),

1111010,1110110,1111100 | 1111010, 1110110},

1111100,1111010 | 1111100, 1101010),

1111010,1111100,1110110,1011010 | 1111010, 1101100) ,

1110110,1111000 | 1110110, 1111000}

o~~~ o~~~ A~




Table 5.16: Defining sets of quaternary affine-invariant codes for n = 7 (cont.)

Ry | (1111000,1110100,1101100,1011100,1101010|
1111000, 1110100, 1101100, 1011100, 1101010} ,
(1111000, 1110010 | 1111000), (1110100, 1111000, 1101010 | 1110100) .
(1101100, 1110100, 1011010 | 1101100), (1011100, 1101100, 1110100 | 1011100},
(1101010,1110010, 1101100 | 1101010) ,

(1111000, 1110100, 1110010, 1101010 | 1111000, 1110100) ,
(1111000.1101100,1110010,1110100,1011010| 1111000, 1101100) ,

(1111000, 1011100, 1101100, 1110100 | 1111000, 1011100} ,

(1111000, 1101010, 1110010, 1101100 | 1111000, 1101010) ,

1110100. 1101100, 1111000, 1101010 | 1110100, 1101100),

1110100, 1011100, 1111000, 1101010, 1101100 | 1110100, 1011100) ,

1110100, 1101010, 1111000, 1110010, 1101100 | 1110100, 1101010} ,

1101100, 1011100, 1110100, 1101010 | 1101100.1011100) ,

1101100, 1101010, 1110100, 1110010 | 1101100, 1101010) ,

1011100, 1101010, 1101100, 1110100 | 1011100, 1101010)

(1111000, 1110100, 1101100, 1011100, 1101010 | 1111000, 1110100, 1101100) ,
(1110100, 1101100, 1011100, 1111000, 1101010 | 1110100, 1101100, 1011100) ,
(1101100,1011100, 1101010,1110100 | 1101100, 1011100, 1101010) ,
(1011100,1101010,1111000, 1101100,1110100 | 1011100, 1101010, 1111000} ,
(1101010,1111000, 1110100, 1110010,1101100 | 1101010,1111000, 1110100} ,
(
(
(
(

P

1111000, 1110100, 1011100, 1101010, 1101100 | 1111000, 1110100, 1011100) ,
1110100, 1101100, 1101010, 1111000, 1110010 | 1110100, 1101100, 1101010),
1101100, 1110100, 1111000, 1011010 | 1101100, 1110100, 1111000) ,

1011100, 1101010, 1110100, 1101100, 1111000 | 1011100, 1101010, 1110100},

(1101010, 1110100, 1101100, 1110010, 1111000 | 1101010, 1110100, 1101100,

(1111000, 1110100, 1101100, 1101010, 1011100 | 1111000, 1110100, 1101100, 1101010)

(1110100, 1101100, 1101010, 1011100, 1111000 | 1110100, 1101100, 1101010, 1011100} ,

(1101100, 1101010, 1011100, 1111000, 1110100 | 1101100, 1101010, 1011100, 1111000} ,

(1101010, 1011100, 1111000, 1110100 | 1101010, 1011100, 1111000, 1110100},

(1011100, 1111000, 1110100, 1101100, 1101010 | 1011100, 1111000, 1110100, 1101100},

(1111000, 1010100, 1110010 | 1111000, 1010100},

(1111000, 1100100, 1011100 | 1111000, 1100100)

(1110100, 1111000, 1101010 | 1110100, 1011000)

(1101100, 1110100, 1011010 | 1101100, 1010100},

(1101100,1110100, 1011010 | 1101100, 1110000},

(1011100, 1101100, 1110100 | 1011100, 1101000} ,
(1101010, 1110010, 1101100, 1010100 | 1101010, 1100100)

(1101010, 1110010, 1101100 | 1101010, 1110000} ,

(1111000,1011100, 1101000 | 1111000, 1010100, 1100100) ,

(1101100, 1110100, 1010110 | 1101100, 1010100, 1110000) ,

(1101010, 1110010, 1101100 | 1101010, 1100100, 1110000),

(1101100, 1101010, 1110000 | 1101100, 1101010, 1110000) ,
(1101100, 1111000, 1011100, 1010110 | 1100100, 1111000, 1101010) ,

(1111000, 1101010, 1011100 | 1100100, 1111000, 1101010)




L

Table 5.17: D#fining sets of quaternary affine-invariant codes for n = 7 (more cont.)

fiy | (1110000, 1101000, 1011000, 1010100, 1100100 |
1110000, 1101000, 1011000, 1010100, 1100100} ,

(1110000, 1011000 | 110000} , (1101000, 1110000, 1001010 | 1101000 ,

(1011000, 11010000, 1100100 | 1011000) ,

(1010100, 1100100, 1011000 | 1010100} , (1100100, 1101000, 1001010 | 1100100)

(1110000, 1101000, 1011000, 1001010 | 1110000, 1101000) ,

(1110000. 1011000, 1101000, 1100100 | 1110000, 1011000 ,

(1110000, 1010100, 1011000, 1100100 | 1110000, 1010100 ,

| (1110000, 1100100, 1100010, 1101000, 1001010 | 1100100) ,

(1101000, 1011000. 1110000, 1001010, 1100100 | 1101000, 1011000) ,

(1101000, 1010100, 1110000, 1100100, 1011000 | 1010100)

(1101000, 1100100, 1110000, 1001010 | 1101000, 1100100

(1011000, 1010100, 1101000, 1100100 | 1011000, 1010100

(1011000, 1100100, 1101000 | 1011000, 1100100} ,

(1010100, 1100100, 1011000. 1101000 | 1010100, 1100100) ,

(

(

(

(

(

)
)

b

1110000, 1101000, 1011000, 1001010, 1100100 | 1101000, 1011000)
1101000, 1011000, 1010100, 1110000, 1100100 | 1011000, 1010100} ,
1011000, 1010100, 1100100, 1101000 | 1011000, 1010100, 1100100} ,
1010100, 1100100, 1110000, 1011000, 1101000 | 1010100, 1100100, 1110000) ,
1100100, 1110000, 1101000, 1001010, 1011000 | 1100100, 1110000, 1101000) ,
(1110000,1101000, 1010100, 1100010, 1100100 | 1110000, 1101000; 1010100) ,
1101000, 1011000, 1100100, 1110000, 1001010 | 1101000, 1011000, 1100100)
)

)

k)

(

(1011000, 1010100, 1110000, 1101000, 1100100 | 1011000, 1010100, 1110000) ,
(1010100, 1100100, 1101000, 1011000, 1110000 | 1100100, 1101000} ,

(1100100, 1110000, 1011000, 1101000, 1001010 | 1100100, 1011000},

(1110000, 1101000, 1011000, 1010100, 1100100 | 1110000, 1101000, 1011000, 1010100},
(1101000, 1011000, 1010100, 1100100, 1110000 | 1101000, 1011000, 1010100, 1100100} ,
(1011000, 1010100, 1100100, 1110000, 1101000 | 1011000, 1010100, 1100100, 1110000} ,
1010100, 1100100, 1110000, 1101000, 1011000 | 1010100, 1100100, 1110000, 1101000} ,
1100100, 1110000, 1101000, 1011000, 1001010 | 1100100, 1110000, 1101000, 1011000) ,
1110000, 1011000 | 1110000, 1001000} ,

1100100, 1101000, 1001010 | 110100, 1NEOOO0}

(
(
(
(1010100, 1100100, 1011000 | 1010100, 1100000) ,
(
(

1100000, 1010000, 1001000 | 1100000, 1010000, 1001000},

(1100000, 1010000 | 1100000} , (10100000, 1100000, 1001000 | 10100000),
1001000, 1010000 | 1001000) , (1100000, 1010000, | 1100000, 1010000),
1100000, 1001000, 1010000 | 1100000, 1001000},

R, | (1000000 | 1000000)

(
(
(1010000, 1001000, 1100000 | 1010000, 100100)
(
| {

fta | (0000000 | 0000000)
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