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b tract 

Pr tein chain arc generally I ng and onsist of mUltiple d main . 0 mam 

are the oa ic elements of prokin tructure that can exi t, evohe. and functi n 

independentl;. fhe a curate and reliabl identification of protein domain and their 

intera tions ha vcr} important impacts in everal protein re earch area'. The 

accurate prediction of protei n d main i a fundam ntal tage in b th experim ntal 

and computational proteomic . rhe kno\\ledge of domains i an initial tage of 

protein tertiary tructure predicti n \\hich can give insight into the \Va)- in \\hich 

proteins \\ork. The kn wledge of domains is al 0 useful in classifying proteins, 

under tanding their tructure, function and evolution. and predicting protein­

protein int raction (PPl). Ilo\\e\er. predicting tructural domain within proteins is 

a challenging task in computational biolog . A promi ing direction of domain 

prediction i detecting inter-domain li nker and then predicting the reign f the 

pr tein equence in \\hich the tructural domains are located accordingly. 

Protein-protein interaction occur at almo t e ery level of cell function. The 

identiiication of interaction among proteins and their associated domain pro i de a 

global picture of cellular fun tions and bi ological processe . It is al 0 an essential 

tep in the con truction of PPJ networks for human and other organism . PPJ 

prediction has been considered as a promising alternative to the traditional drug 

de ign techniques. The identification of pos ible viral-host protein interactions can 

lead to a better understanding of i nfection mechanisms and, in tum. to the 

development of everal medication drugs and treatment optimization. 

In this work, a compact and accurate approach for inter-domain linker 

prediction is de eloped ba ed solely on protein primary tructure infornlation. Then, 



vii 

inter-domain linker knov, ledge is u ed in predicting structural domains and detectino C> 

PPJ. The research \\.ork in this dis ertation can be summarized in three main 

c ntributi n . The first contribution is predicting prot in inter-domain linker regions 

b) intr ducing the concept of amino acid compo itional index and refining the 

prediction b) using the imulated nnealing optimization technique. The second 

contributi n i identifying structural domains ba ed on inter-domain linker 

knoVvledge. The inter-domain linker kIlOwledge. represented by the compositional 

index, is enhanced by the incorporation of biological kIlO, ledge, represented by 

amino acid physiochemical properties, to develop a well-optimized Random Forest 

cIa ifier for predicting no el domain and inter-domain linkers. In the third 

contribution, the domain infom1ation knowledge is utilized to predict protein-protein 

interaction . This is achieved by characterizing structural domains within protein 

equences. analyzing their interactions, and predicting protein interactions based on 

their interacting domains. The experimental studies and the higher accuracy achieved 

i a valid argument in favor of the proposed framework. 

Keywords: Protein domain identification, domain-linker prediction, compositional 

index. physiochemical properties, protein-protein interaction prediction, PPI, domain­

domain interactions. 
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Chapter 1: Introduction 

In this chapter, I provid an \'ervi w of this \v rk in ectlon 1.1 followed 

by the outline of tbe eli. sedation in S etion 1 . 2 .  I providc a 1 ackground 011 pro­

tein strnctnr ill cction 1 . 3. discuss th problem stat ment and motivation of 

the overall research ill ctiOll 1 .4 ,  illustrate our reo earch objecti\'es in ection 

1.5, and discus. tIlE' technical hallenges in Section 1.6. 

1.1 O verview 

Protein ar es ential for c lIs of all living organism . The primary struc­

ture of a protein is th lin car sequenc of its amino acid (A  ) units. Protein 

have e\'eral e ential biological function including catalysis of 111 tabolic l' ac­

tion . make up the tructure of tissues nerve tran mission, muscle contraction, 

cell motility. blood clotting immunologic d fense , working as hormones and reg­

ulatory molecule . and transport of vitamins, minerals. oxyg n, an 1 fuels [1]. 

The basic functional uni ts of proteins are protein domains. S veral do­

mains arc joined togrtlwl" in c liffrrrnt combinatiolls  formillg multi-domain pro­

teins [2, 3]. Each domain in a protein sequ nce has it own function and can 

work with it neighboring domains to perform certain tasks. Ther fore, the dC\'el­

opment of accurate computational method for splitting proteins into tructural 

domains is vital in protein research [4] . 

Inter-domain linkers ti neighboring domains and support inter-domain 

communications in multi-domain proteins. They also provide sufficient fi xibility 

to facilitate domain motion and regulate the inter-domain geom try [5]. Pre­

dicting int r-domain linkers has a great importance in precise identification of 

structural domains within a protein. A promising direction of domain prediction, 

which will be further investigated in this dissertation, is detecting inter-domain 
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lillkC'fS and then predicting the location of stru ural domain accordingly. Thi do­

main knowlccig can th Il b used to understand protein structure, . function and 

('\·olution. and to pr dict protein-protein int ractions (PPI) . Th term "linker" 

and "inter-domain linker" will b tl. ed inter hangeably in th dissertation. 

prot in interacts with oth r protein in ord .r to perform certain tasks. 

Protein-protein interactions (PPI) occm at almost every I vel of cell functions. 

Thp identification of interactioll� among proteins provide a glohal picture of 

pllular fUllcti ns and bi logical processes. Since most biological processes involve 

OIl(' or ll10rt' PPJs, the accurat e iclrllt.ificatioll of t be set of interact ing proteills in 

an organism is very useful f r deciphering the molecular mechanisms underlying 

given biological functions and for assigning functions t.o unknown proteins based 

on their interacting partners [6. 7, ]. Therefore, the development of accurate 

and reliable methods for identifying PPJ has very important impacts in several 

protein research areas and pharmaceutical industry. 

The interaction between two proteins usually involves a pair of constituent 

domains, one from each protein. Therefore, understanding protein interactions at 

the domain level is crucial to discov r unrecognized protein-protein interactions 

and to enhance drug development [9, 10, 11, 1 2] .  

In this work, I u e the knowledge of structural domains in predicting 

protein-protein int ractions. However, predicting structural domains is a chal­

lenging task in computational biology. A promising direction to predict the loca­

tion of tructural domain is through predicting inter-domain linkers. Ther fore, 

I propose a novel approach for predicting inter-domain linker regions within pro­

teins u ing only amino acid sequenc information. This is achieved by introducing 

tIw concept of amino acid (AA)  compositional index. The linker knowledge is 

thrn used to identify structural domains . Once structural domains are ident.ified 

within two protein sequences. I can predict whether these two proteins interact 

or not by analyzing the interacting structural domains that they contain. 
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1 . 2  D i  sertation O ut l i ne 

This dis, C'rtatioll is structured as f llows. In th r t of this chapt r. 

I prO\'id0. Hn oYC'rview of prot in structure in chon l . 3 .  discuss the problem 

tatcm Ilt alld motinl ion of th "erall research in e tion 1.4. illustrate om 

research ohj('ctivps ill ection l . 5 ,  and discuss th te hnical challenges in Section 

l .6 .  

haptrr 2 inwstigates, cat gorizes, and c mpares most of the state-of-the­

art ompuLational approaches in linker predi tion, domain prediction, a.nd PPI 

prediction. Chapter 3 provid sa. comprehen ive yiew of our research methodology 

in addition to the used data ets and evaluation measur s. 

Chapt rr ,1 dis(,l1ss(,� om first contribution which is domain-linhr prediction 

11 ing AA compo iLional in l x and simulated annealing. Section 4.1 introduces 

the propo 'eel formula for AA compositional index. Section 4 .2  describ the u e of 

imulated annealing algorithm to refine the domain-linker prediction by detecting 

the optimal hreshold value of AA compositional index. 

Chapter 5 describes our econd contribution which is the d velopment of 

a Random Forest ma hine-learning approach for identifying tructural domains 

based on linker knowledge. Chapter 6 describes our third contribution which 

is about pr eli ting protein-protein interaction by analyzing their interacting 

domains. 

In chapter 7, I ummarize this dissertation and comment on po sible future 

\york. 
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1 . 3  Background 

Prot ('ill' lun"c sc" era l  esscntial biological fun ti 11S in all living organisms 

illcludillg catalysis of metabolic rpactions, lllak up th s ructure of tis ues, nerve 

transmiSSIon, musc!p contracLioll, cell motility, 1 lood clotting, immunologic de­

fenses, working aB hormones and regulatory mol cules, and transpor of vitamins, 

millrrals, oxygen, and fuels [1] . Ther are four I vels of protein structure which 

play important r Ie in protein functions. These levels are primary secondary. 

tertiary, and quaternary stl'll tures. 

Th primary stru tur of a protein is th linear s quence of its amino acid 

) units. Ithough prot in chains can becom cross-linked, mo t polypep-

tides are un-branched polymers, and therefore, their primary structure can b 

presented by the AA sequence along their main chain or 1 ackbone [ 1 3] . 

AAs consist of carbon, hydrogen, oxygen, and nitrogen atoms that ar 

clustered into functional groups. Each amino acid has a ntral carbon atom 

called th alpha (a)-carboll where four cliffel"nt groups are attached to it as 

shown in Figure 1 . 1 .  The e groups are th amino group ( H2) an 1 the carbo).,),l 

group (COOH), a hydrogen atom (H), and a distinctive side chain (R)-group. 

All amino acids have the same general structure, but ea h has a different R-group. 

The side chains (R) are th major determinants of the structure and properties 

of th AA. The physiochemical characteristics of the amino-acid side chains have 

important role in the folding and functions of proteins [ 1 4] . 

There are over three hundred naturally occurring AAs on earth, but the 

number of lifferent AAs in proteins i only twenty. These twenty amino acids 

ar Alanine, Arginine. As] aragine, Aspartic acid, Cysteine, Glutamic acid. Glu­

tanline Glycine, Histidine, Isoleucine, Leucine, Lysine, 1Iethionine, Phenylala­

nine, Proline, Serine Threonine, Tryptophan Tyrosine, and Valine repres nted 

by one-letter abbreviation as A, R ,  N, D, C, Q, E. G, H, I, L, K ,  11, F, P. S, T, 
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Figure 1 . 1 :  Amino acid t ructure [ 1 ] .  
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Amino acid are conn cted to make I rotein by a chemical react ion in 

\\'hich a molecule of water i removed . leaving two amino acid re idues connected 

by a pept ide bond [ 1 3] a ShO\\"11 in Figure 1 .2 .  Connect ing mult iple AAs in t ill 

,,'ay produce a polypeptide as hown in Figure 1 .3. This react ion leaws th C 

of t he carbo:x.o-yl group direct ly l inked to t he , of t he amino group. The t art ing 

end of t he protein with a free amino group is known a t he amino terminal 

( X-terminal) where a t he ending end with a free carboxyl group i known a 

t he carboxyl t erminal (C-t erminal) .  Polypept ides can be t hought of as a string 

of alpha carbon alt mat ing with pept ide bonds. Since each alpha carbon i 

attached to  an R-group. a given polypept ide is di t ingui hed by t he sequence of 

it R-groups. 

The econdary tructure of a protein is t he general t hree-dimen ional form 

of i t  local part s. The most common se ondary st ructures are alpha (a)  helice 

and beta (B) she t . The a-helix. is a right-handed spiral array while the (3 sheet 

i made up of bet a strand connected cro swise by two or more hydrogen bonds. 

forming a twi ted pleated sheet . The e econdary t ructur are l inked together 

by t ight t urns and 100 e flexible loops [ 1 5] as hown in Figure 1 . 4 .  
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Figure 1 . 2 :  P pt ide bond format ion and h -clrol.\' i [ 1 4] .  

Figure 1 .3: Schemat ic diagram of an extended polypeptide chain [ 1 -1] . 
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Figur 1 . -1 :  Prot in secondary t ructures . 
(ht tp. : //\\'\\T\\· .o f.berkeley.edu/a i geljpostsj?author= l&.:paged=-1) 

The tert iary t ruct ure of a protein i it t hr e-climen ional folded and bi-

ologically a t i \'e conformat ion which reflect the ov raIl hape of the mol ules. 

Th t rt iary structure of proteins is d termined by X-ray rystallography and 

I1ud ar magn t ic re onance (\,� lR )  pectro copy [ 1]. Domain are the ba. i c  func-

t ional unit of I rot in tertiary t ructur . A protein domain is a con erwd part 

of a protein that can evolve. funct ion . and exi t independent ly. 

Quaternary t ructure refers to a complex or an a ernbly of two or more 

eparate pept ide chain t hat are held toget her by non-covalent or. in . orne case , 

cO\'alent interact ions. � 10  t protein con i t of more than one chain and are 

referred to a dimeric. t rimeric . or rnult irneric protein [ 1 ] .  Figure 1 . 5 i l lu trate 

t he four le\'el of protein t ructure. 

Alt hough many prot ins ar omposed of a single structural domain. mo t 

protein are built up from tv,,'O or more domains joined tog t her in different om-

binat ion [2 . 3]. Each domain in a mult i-domain protein ha it own fun t ion 

and can work with i ts neighboring domain t o  p rform cert ain t a  k . One domain 

may exi t in a variety of different proteins. The fun t ion of the ent ire protein 

is determin d by t he propert ie of it domain . Domain vary in length from 25 
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Figure 1 . 5 :  Primary. secondary. tert iary. and quaternary t ructure of a pro­
tein . (A )  Th primary t ruct me i the l inear equence of amino a id 
re idue . (B) The secondary st ructure indicate t he local SI atial ar­
rang ment of polypept ide backbone yielding an xtended a-helical or 
J- he t . (C)  Th t rt iary t ructm i I ln t rate the thr e-dimen ional 
onfonnat ioll . (D )  The quat mary structure indicate t he a mbly of 

mult iple polypept ide chain [ 1 ] . 

Interface 

P rotomer 1 Protomer 2 

Figure 1 .6 :  Protein-protein interact ion (PDB :  l LFD chain A&:B) [ 1 6] .  
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Figur 1 .5 :  Primary. sccon lary. t ert iar)'. and quaternary t ructures f a pro­
t in .  (A)  Th primar)' . t rue-t ur i::, tb  l in ar :-.equen of amino acid 
re ldllc, . (B )  The ::3 condary stru tmc indicate t h  local . pat ial ar­
rang ment of poln) pt id back] on )'i 1 ling an xtended o-h lieal or 
3-:-.h t:-. .  (C)  The t rt iary :-.t rllct ur il lu t rat s t h  t hre -dim nsional 
conformat ion . (D )  Th quat mary trllctur indi at s t he a scmbl)' of 
mult iple pol)'pept id chain [ 1 ] . 
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Figme 1 . 6: Protein-protein intera t ion (PDB :  l LFD hain Ai:B) [ 16] . 
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Figure 1 .5: Primary, �econdary, tert iary, and quaternary t ructure of a pro­
tein .  (A)  The primary � t ruct ure i t h  l inear sequen e of amino acid 
re'idu . .  (B )  The 'ondary t ruct me indicate t he local patial ar­
rang ment of polypept ide backbone yielding an xt nded a-h lical or 
8- heet . (C )  The tert iary st ructme illu t ra e t he t hree-dimen ional 
conformat ion. (D )  The quaternary tructure indicate t he a s mbly of 
mult ipl polypept ide chains [ 1 ] .  
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Figure 1 .6: Protein-protein interact ion (PDB :  l LFD chain A&B) [ 16] .  
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Figure 1 . 5 :  Primary. �econdary. tert iary. and quaternary t ructure of a pro­
t in. (A )  TIl primary t ructnre i t he lin ar sequence of amino acid 
re idue . (B )  The econdary t ructure indicates t he local patial ar­
rangement of polyp pt id backbone yielding an extended a-helical or 
J- heet . (C)  The tert iary t ructur illu t rates t he thr -dimen ional 
conformat ion. (D )  The quat mary tructure indicate t he a sembly of 
mult iple polypept id hains [ 1 ] .  
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Figure 1 .6 :  Protein-protein interact ion (PDB :  1 LFD chain A&:B) [ 1 6] .  
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to  500 amino acid ' [ 1 7] .  lnt r-domain l inker ti n ighboring domains and _ up­

port inter-domain cOI l l l l lunicat ions in multi-domain protein.' .  They also provide 

�l lfiici(,l1t flexibi l i ty t fa ' i l i tat uomain mot ions and regulat t he inter-domain 

gf'O l l l  i r,\' [5] . 

Pr dieting prot ein functions t i lr  ugh prot in structure is a compl x ta k . 

As a result .  several I lwthocb have r c nt ly been cl veloped to predict prot in nmc­

l ions using PPI. PPI refers to intent ional phy ical contacts established between 

t.wo or more proteins through bio hemical events and/or electro tat ic fore s. A 

protein int ract with ot her proteins, as i l lustrated in Figure 1 .6 .  in  order to 

per£ I'm certain tasks. PP Is occur at almost every level of cell function . ::\10 t 

hi logical proc ses involve one or more PPls. lost protein sequence contain 

multi-domains and t he interaction between two proteins usually involves a pair 

of constituent domains.  on from each protein .  



1 . 4  P roblem Statement and Mot ivat ion 

10 

The d('\'C'lopm nt of an accurate and r l io.bl method for identifying pro­

t C ' l T I dOI l 1<1ins and t h  ir int eract ions he very important impacts i l l  everal protein 

research CU(,<1S . The knowl dge of domain is an initial stag f protein tertiary 

�trl lctur(' plwliction which can gi,'e insight into the 'vay in which proteins work. 

The knowledgc' of domains i al '0 useful in classifying I roteins, und rstanding 

th('ir st rnct 1 l l'C's, function ' and evolution , and predicting PP Is .  How vel', pre­

did ing st ruct ural domain i a challenging task in computat ional biology. A 

promi. ing di rect ion to  predict the location of structural domain is t hrough the 

prec l icti 11 of the of the inter-domain l inkers. Ther fore, the accurate predic­

t ion of pr tein inter- i main l inkers is an in itial stage in both xperimental and 

cOl l l Putational proteomics. 

ince mo't biological processes involve one or m re PPIs ,  the accmate 

iuel ltificat ioll of t he et of interac t ing protein in  an organism is very u eful for 

deciphering the molecular mechanisms underlying given biological functions and 

for a'signing functions to  unknown proteins ba ed on their interacting partners 

[ , 6, 7J . Protein interaction prediction is also a fundamental step in the con­

struction of PP I  networks for human and ther organisms. PP I  prediction has 

b en con'id red a a 1 romising alternative to the traditional drug design tech­

niques. Th identification of possible viral-host protein interactions an lead to 

a better understanding of infection mechanisms an 1. in turn, to the dev lopment 

of 5e\' ral medicat ion drugs and treatment optimization . I n  addition, Abno[mal 

PP I ' have impl ications in several nemological ii order such as Creutzfeld-Jacob 

and A lzheimer [ 1  ! 19 ,  20J . 
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1 . 5  Re earch O bj ect ives 

I n  t his work . a 1 10vel and simpl method i!-i propo d for predict ing int r­

domain l inkrr n)gioll� wit hin proteins. This j • achieved by introducing the concept 

of AA compositi onal index.  The compo 'itional ind x is deduced from the protein 

�cql1( 'nCe clat aset of domains and link r egm nt . The composit ional index i 

then enhanced by comhining biological knowledge and amino acid physiochemi­

cal pr per ties to const ruct a l l lachin learning-base 1 la  ifier for pr die ing 1 10\-el 

:c;t ructural domain and intrr-domain l inker . Once tructural domains are iden­

t ifi d within t wo protein ::;equence. , it can predict ed whether these two protein 

int ract or not by anal 'zing t he interacting structura l  domains th y contain .  

Th main research obj tiv of the thi work can be summarized as fol low: 

• Developing a novel method for identifying domains and int r-domain l inkers 

wi th in protein sequences. This is achiev d through th following steps: 

( 1 )  Pr dicting protein  int er-domain l ink r regions by util izing the on­

cept of AA compo i t ional index and refining the predict ion using an opt i­

mization technique namely imulated Anneal ing_ 

(2) Identifying tructural domains based on l inker knowl dg . The 

l in ker knowledge, - pre�ented by the compositional ind x, is enhanced by 

injecting biological knowledge, r presented by AA physiochemical proper­

t ic. ) t o  COI L't ruct a l lovd protein profile_ The prot e i l l  profi le i� t hr l l  used 

t o  t rain a R andom Forest classifier for predicting novel domain and inter­

domain l inkers . 

• Developing a PP I  prediction method through the following steps : 

( 1 )  Characterizing domains within protein sequences_ 

(2) Identifying interacting domains _ 

(3) Pr dicting prot in  interactions based on their interacting domains. 
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1.6 T chnical C hallenges 

Ttl(> proposed met h c l  in this d issertation al lows a biologi t to gain knowl­

edge> related to inter-domain l ink rs, ·t ru tural domain and eventually the PPI  

solpl,v from th protein sequenc , Howrver, there are s veral challeng s arisf' from 

t he prot i l l  s )quence itself. First ,  thrre have heen a huge amount of 11f'wly eli -

covered prot ein sequen es in t he l ost genomic era. Second, protein chain ar 

typically large and ont ain mult iple domain which are difficult to  charactpriz 

by experimental methods. Third , the avai labi l ity of large, comprehen iv , and 

'1 curate bel lchmark datasets i required for the training and evaluation of pre­

dict ion 11 1 thods. Fourth, c mputational methods are based on exp rimentally 

collect ed e lata, ami therefore any ( 'rror i l l  t i l l '  ( 'xperiuH'nt al dat a  will affect the 

computational pr dictions. 

One of the challenges of predi t ion methods is the protein representation.  

Th mo, t and simplest model of a prot in is its entire amino acid sequence. How­

ever, this approach doesn t work well when the q l l  Ty protein doe not have high 

quence similarity to any known protein [2 1 ] .  Several statistical-based models 

were propose 1 .  Th implest statistical mod I is has d n the protein AA compo­

si t ion which is the normalized occurrence frequencies of the twenty amino acids 

in a protein .  However, all the sequ nee-order knowledge will b lost using this 

repre entation which , in turn ,  will negat ively aff t the prediction accuracy [2 1 ] .  

ame appro ache u e amino acid flexibility such as CHOPnet [22] , gene ontology, 

solvent accessibility information and/or evolutionary inf rmation such as DOJ\ I­

pro [23] . Protein secon lary structure information has al 0 been broadly used in 

everal domain-linker prediction such as SSEP-Domain [24] and PP I  prediction 

approaches such as PrePP I  [25] . However, extracting a curate secondary struc­

ture  information by itself is anoth r chall nge. Protein secondary structure are 

normally predicted by SSpro [26] which is an 80o/c accurate tool so the incorrectly 
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pn'(lict pel secondary . t ruct ur s may lead to mod 1 mi. -la' i fical iol l . t. I any prot in 

prediction approach s such as Dom. t [3J . PPR DO [27J . and DROP [2 J l lses 

t he Posit lOl l  I ceifi c 1'e )' Iatrix ( P  S 1 )  which r quirc a h igh c mputaL ional 

cost to be gen rat ed . v re I approaches have u ed the 3-D coordinates of I rotein 

struct.nre [2.J.J . 

Thcr are \"Cuiou ' chal lenge that fac ma hine-Iearning prot i n  pr dic­

tion I1 lel hod�. Select ing th best mach ine le'uning approach is a gr at challenge. 

There is a variety of t chni lue. that div rs in a cum y, robustness. compl x­

ity. cO] J l pu t at ional  cost \ dat.a d i versi t.y, over-fi t t i n g ,  and dea l i ng 'wi t h  m issi I lg  

att rihutes and c l iff rent features. I\lo t machin - 1  arning approaches of protein 

sequence predict ion me computat ionall ' expensive and often lack high predic­

t ion accuracy. Th y ar further susceptible to overfitt ing.  I n  other words, after 

a cert ain point, adding n w f atures or new training examples can reduce the 

prediction quality [29J . Furthermore, protein chain data are im] alanced as do­

main regions are much longer than l inker regions, and non-interacting prot in 

pair' are much more t han i nt eract i ng pairs and therefore, classifi rs wil l u 1..1-

ally be bia ed towmds the majorit ' class. This rai e t he challeng of choosing 

the appropriate valuation metrics. For example, a technique that fails to pre­

dict any l inker in a protein sequence which has respectively 95% and 5o/c of its 

amino acid as domains and l inkers, achieves a h igh prediction accuracy of as 

much as 95%. I n  addition, since highly imbalanced di tributions usually lead to 

large c lat asrts.  m OTe efficient prec l ict ion l l 1rthods, algor i t l 1 l nic opt i l l l izat ions and 

continued improv ments in hardware performance are required to handle such 

challenging tasks .  

Some issues for possible further improvements incl udes capturing long­

term AA dependencies and developing a more suitable I' presentation of protein 

equence profiles that includes volutionary information . Most of the exist ing 

approache showed a l imited capabi lity in exploit ing long-range interactions that 
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exbt among amino a id and participa te  in the format ion of protein econdary 

and t rt iary struct ure. R sidurs an 1 adja ent in 3D space while locat ed far 

apart i l l  t he AA sequence. [3, 30] . 

One reason b hind the l imit d capability of multi-domain protein pr dic­

t or:-; is t he e l i. agn '< ' u H ' u t  of domai l l  assigl l l l l t 'nL wit h i l l  d i ff< 'H'l l L  protein datalms('s. 

The ngreement bet woen domain databases covers about 0% of single domain 

prot eins and only about 66% of mult i  -domain proteins [3 1 ] .  This e l i  agre ment 

j due to the variance in th exp riment.al met.hods used in domain assignment. 

The most predominant techniques us d to xperimentally determine prot in 3D 

struct l lIrs are X-ray cry tallography and nu lear magn t i  resonance spectroscopy 

( :\ I R ) .  To determine til conformation of a protein with X-ray , the protein must 

be in t he form of a rystal with a strictly ordered structure. The cr ' 'tallized pro­

te in is then irradiated. with -rays . Protein crystallization is th slowest and 

mo..:-t challenging stage in X-ray tructural analysi . Some proteins are relat iyely 

a� y to  cry talliz \\' ithin few days, others can take several months or even years, 

,,-hi le many prote ins such as cell membranes proteins sti l l cannot be crystallized 

[32] . On the other hand .  � I R  i s  based on the fact that som atomic nud i ,  such 

a hydrogen, al'(' intri l lsically magnd ic . III a maglH'tic fidel,  t hese magnet ic uu­

cl i can adopt t ate  of d jff r nt energy. Applying radio-frequency radiation an 

indu e the nuclei to flip between the e energy states, which ca.n be measured and 

depicted in t he form of a p ctrum [33] . X-ray diffra · t ion has no size l imi t ation 

and provide more precise atomic detail while information about the dynamic of 

the m 1 cule may be l imit d. ::,r I R  is the best when no protein crysta.ls can be 

obtained but it produces low r resolut i  n structures and is generally l imited to 

mall molecular weights [34] . This variance in experimental methods of domain 

as ignm nt can establish an upper l imit for domain- l inker prediction accuracy. 
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amI t e'rt iary l'it rucl ure. Residues can I e adja ent in 3D space whil located far 

apart in t he A s qu nee. [3, 30] . 

ne reason beh ind the l imi t  cl capabil ity of multi-domain protein pr dic-

t or:-; il'i t I H '  d i:-..agrc '( ' l l lt 'l l t  of domain assigl l l Twllt  wit  h i l l  d i ffC 'H' l lt .  prot ('i n  database's. 

The agrcDl 1 1ent between lomain lat abas s covers about 80o/c of single domain 

prot rins and onl�' about 66% of mul t i  -domain prot eins [3 1 ] .  This c l isagr ement 

is c lue lo the variane in th xperimental m thod ' us d in domain assignment . 

Th most pI' dominant techn iques used to experimentally d termine protein 3D 

st ructures are X-ray cryst.allography and nu lear magnetic resonance spectroscopy 

( N � I R ) .  To cle tennin the conformati n of a prot.ein with X-rays, the protein must 

be in t he form of a crystal with a trictly order d structure. The crystallized pro­

t ein is t hen i rr adiated with X-rays. Protein crystal l ization is the slow t and 

mo t challenging stage in X-ray structural analysi . Some proteins are relat ively 

ea y to crystallize \yithin few days, other can take several months or even years, 

while many proteins such a cell meml ranes proteins stil l cannot be crystall iz d 

[32] . On the other hand .  � I R  i '  based on the fact that som atomic nuclei , ucb 

as hydrogen,  arC' i I ltr ill ' ieal! r magn et ic . I I I  a m agnet ic fidd, t hese' magnct i C ' 11n­

clei can adopt t at e  of different energy. Applying radio-frequency radiat ion can 

i nduce the nuclei to fli p  between the e energy states, which can be mea ured and 

depicted in the form of a spec t rum [33] . X-ray diffract ion has no size l imitation 

and provide mor precise atomic detail while information about the dynamic of 

the molecule may be l imited .  1 1 1R is the best when no protein crystal can be 

obtained but it produces lower resolution structures and is generally l imited to 

mall molecular weights [34] . This variance in experimental methods of domain 

a signment can establish an upper l imit for domain-l inker prediction accuracy. 
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Chapter 2 :  Related -Work 

This chapt C'r l l 1YC':-- t igat C':-- , c1a:ssifie ' ,  'Olnd compares mosl of th htate-of-t he­

art COl l 1pl l  a t ional approach ' in domain ' ncl l inker pI' dict ion and PP I  prediction . 

l I l t  r-domai l l  l inker prediction ap! roaches are discus d in Se tion 2. 1 ,  tructural 

domain prediction a Pr r a 'hes are dis uss�c1 in S ction 2 .2 ,  and PPI  predic ion 

approache' arc di:-;cussed in ction 2 .3 .  

2 . 1  I nt e r- D o m a i n  L i n ker P red i c t i o n  

cv ral impressive protein inter-domain l inker and domain boundary pre­

d ict ion methods have b en developed and can be c1as i fied into stati tical-ba d 

and ;" lach ine-Learning (I\ IL )-bt ed m thods. 

2 . 1 . 1  Stat ist ical Methods 

tat i ' t ical-ba ed m thods use 'tat i t ical features f protein such AA fre­

quencl ' and AA composition to pr dict domain-l inker r gi ns. Examples of thes 

method are DomCut [ 1 7] and GlobP lot [35] . 

DomCut:  

DomCut I [ 1 7] i one of the typical early day 's statistical-based m thods. 

Domcut predict · domain l inker regions based on t he differences in AA composi­

tion between domain and l inker regions in a protein sequen e. I n  their research, 

a region or egment in  a quence is considered a l inker i f  i t  is in the range from 

1 0  to 1 00 residue , connecting two adjacent domains, and not containing mem­

brane panning regions. To represent the prefer nce for AA residues in l inker 

1 http://\'vww.bork.embl.de/ suyama/domcut/ 



1 6  

n giOl l: .  t he}' d<>fin('d L lw l inker ind x as 1 1)(' rat io of t he frequency of AA residue 

i l l  dOl l la i l l  regions l o  that i l l  l inker regions: 

f1mkf'r 
L = -In (  1 ) (2 1 )  ' f,non lmkcr . 

wh ro f/,nkt r and f:101l ImAn are t ho 1'1' qu n ies of amino acid resi In l in l inker 

and nOll-linker regiotl::> res!) ct i \' ly. 

,\ linker preferellce profile wa g nerat eu by plotting t.he averaged l inker 

index \'alu s along a l l  'equ nco using a siding window of siz 15 AAs. A 

l inker was pr dieted if thcr waS ' l  trough in the l ink r region and the averaged 

l inker index nllll at the minimum of the trough was lower than the threshold 

\'(" t lue .  At t he t hreshold \'alue of 0 .09, the sen itivit.y and sel ctivity of Dom­

ut \\'ere 53 .5o/c and 50. 1 %, re pec t ively. Despit the fact that Domeut showed 

gl impse of potentia l  success, i t  was reported by Dong e t  al. [36] that Domeut. 

h3  � 1m\' ensit ivity and . pecificity in  comparison t o  other recent method8. Ho\\,-

ver, integrat ing more biological evidenc s with the l inker index could enhance 

t he preuiction and therefore, the idea of Domeut was later uti l ized by several 

re�earcher such a Zaki ct al. [37] and Pang et al. [3 ] .  

G lobPlot : 

Linding e t  al. [35] propo ed another statistical method called GlobPlot2 

based on protein econdary structure information. GlobPlot al lows users to plot 

the tendency within protein sequences for exploring both potential globular and 

di ordered/fiexibl region._ in proteins ba ed on t heir AA sequence, and to ident.ify 

inter-domain segments contain ing l inear motifs .  

Other statistical-based methods are Udwary et  al. [39] which predicts the 

locations of l inker regions \vithin large multi- functional proteins and Armadillo 

[40] which predicts domain l inkers by using AA composit ion . 

2 http:// globplot.embl .de 
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2 . 1 . 2 M ach i n  L arni ng Met hod s  

;\ lachi J lP learning (l\IL )  ha  ed met hods ar t h most ommonl)' us d ap­

proarl\('s i n  int er-dom a i n  l ink r predi t iO I l .  l\ Iost of t h  recent � I L  approach 

C'l l lploy C'i l lwr Arl ifi ial eural ::\ tworks (A T . ) or upport V ctor l\ lachines 

( T� [ ) .  :-J approa hes in Iud PPRODO [27] , Dom N t [3] , and handy H I ] .  

' \'� l approa b(" i l l  Iud DoBo [42] , and D R O P  [2 ] .  

P P R O D O :  

-' im t al. [27] int roduc d PPRODO as an A 1 a  ifier that wa train d 

l lsiug- [t 'at mes oht c"l i l l( ,c l from t l l( '  Posit ion Spccific Scoring- l\ L-tt rix (PSS 1 )  gC'llcr­

ated hy PSI-BL T. The training dataset contain d 522 contiguous two-domain 

proteins wa' obt mned from the tructural classification of prot eins (SCOP) database, 

release \"cr'i n 1 .63 H3] . 'Yhen t ste 1 on 4 newly adde 1 non-homologous pro­

teins in COP version 1 .65 and on P5 targets , P P RODO achieved 65 .5% of 

pr dict ion accu["l,cy. Onc of the l imitati n of thi method is the high computa­

tional co t to  g nerate PSSl\ I .  

DomNet : 

Yoo t al. [3] introdu d Dom et ( Protein Domain Boundary Predic­

t ion sing Enhanced General Regre sion Network and :;'-Jew Profile ) 'which \Va 

t rained using a compact domain profile. secondary structure, olvent accessibil­

ity information . inter-domain l inker index . evolutionary information and PSSl\ 1 

to  ident ify possible domain boundarie for a target equence. The authors pro­

po d a emi-parametric model that uses a nonlinear auto-associativ Enhanced 

General Regression :'\eural network (EGR T ) for fi lt ring noi e and Ie discrimi­

nativ features. The performance of DomNet was evaluated on the Benchmark2 



1 "  

and A 'P7:� dat asct s i l l  t rI l l' uf a cma .\', ):; n it ivity, 'pe i ficlty. and currelatIOn 

( (wffic i C'nt . Dom0Jet aeh)C '\· d an etccura \' of 7 1  % for domain b undarv det ermi-. . 

nat ion il l mult i-doll lains prot eins using Benchmark2 data  'et . 

011(' of t he ad\'ant ages of t hil-, approach is that EG R .  addresses the draw­

bacb of t I le' Gpl lC'ml Regre "ion . eural net.work (GR "  N )  [-1�1 t chn ique . G R 0J"N 

is a non-paramet ric mod I that requi res ext ensive computer resources by per­

forming vcry large computat ions and it suffers [rom overfi t t ing and burden f 

c i i l l lC'llsionali t '. 

On th ot her hand, alt hough using structural information could ach.ieve 

good predict ion r '  ult8 , finding the �tructural informat ion by itself is another 

challenge. The method requires the computational cost to generate PS 1 1  and 

to predict secondar.\' structur information for each protein .  

DROP :  

Ebina e t  al. [ 2  ] de\'eloped Domain l inker pRedi t ion using OPtimal fea­

ture ( DROP) u' iug a SY I ,  Kith an Radia l  Basis Function (RBF) kernel .  inter-

domain l inker predictor trained by 25 optimal features . The optimal combinati n 

of feature was elected from a et of 3000 features using a random forest algo­

rithm, which calculates th T\ Iean Decrea e Gin i  Ind x (:i\ IDG I ) ,  compl mented 

with a tepwi 'e feature selection . The selected feature \ver primarily related to 

econdary tructur 5 ,  P S:-' 1 elements of hydrophi lic residues and prolines. 

For each residu . a 3000-dimensional real-valued feature vector was ex­

tracted. These feature are as fol lows. 544 A A  indices describing physicochemical 

propertie , 20 P � 1  elements, three Probabi l ities of Secondary Structure (PSS) , 

two a.-helix/ B-sheet core propensities ,  one sequentia l  hydrophobic elu ter i ndex, 

equence complexity a::, defined by Shannon entrop , one expected contact or­

der, 20 e1 ments of AA compositions. three domain/coil/link r propensity indices, 

3http://predictioncenter.org/casp7 
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two linker l ikelihood score, and Lhree 1 1  wly d fined ,rore quanh[ving t h  AA 

composit ion similarity between domain and l ink r regions . V ctor lements w re 

a\" 'rag('(i with window of 5, 1 0  15 or 20 residue around the considered residue 

to include local (ulc i semi-local informat ion into the ve tors. The total numbpr of 

ycctors f r l inkers and d mains were 2230 and 52335 , respectivel . 

The a cure cy of DROP \Vat; \"aluated by t.w domain l inker data..set. s ;  D '­

All [ 1 5 ,  46] , < tne l  CA P FM 1 .  DS- II contain ' 1 69 protein sequen es, with a 

maximum scqucl lce identity of 2 .6o/c, and 201 l inkers .  D ROP achieved a pI' e l i  -

t ion sensitivity and precit;ion of 4 1 .3o/c and 49 .4%, respectiv ly, with more than 

1 9 . (',� improvement by the optimal f atures . D ROP does not us 'equence simi­

larity to domain databa ' .  One of the advantages of this approach is the use of 

random fore 't approach for f ature lection . I nstead of exhaustively searching all 

feature  combination random forest is based on ran 10m sampling which I rovides 

a quick and inexpen ive creen ing f r the optimal features . However, DROP 

o\'erpredict domain l inkers in ingle-domain targets of  Benchmarking DataSet 

(BDS) [46] and CAFASP45 , This can be decrea ed b increas ing the d fault 

thre hold le\'el or by including n n- local feat.ures su h foldability index. In  addi­

tion to  t hat the method requires the computat ional co t to generate PSS� 1 and 

to predict secondary tructure information for each protein. 

Table 2 . 1 summarize the above mentioned pred iction approaches and com­

pares them. � lost of the d iscu ed methods have, in general ,  the following limi­

tation : 

• Although m thods that use structural information could achieve good pre­

diction result . finding the tructural informat ion by itself is another hal­

lenge .  

� http://predictioncenter.org/ casp / 

G ht tp://www.cs.bgu.ac . i l/ dfischer/CAFASP4/ 



A pproach 

Dom 'ut 
( nyama and 

Ohara 2003) 
GlobPl t 

(Lineling t al. 2003) 
PPRODO 

2005 ) 

200 ) 

DROP 
(Ebina t al. 20 1 1 ) 

Extract d Features Technique/Tool Datasets 

AA composit ion Linker index Swi s-Prot 

P 1 

condary stru t ures, 
01, nt acces.ibil ity, 

linker index, PSSM 

econdary st ructures, 
P 1\ 1 

A 

PSI-BL  

EGRN 

T 

Random Forest , 

SV11 

SCOP 1 . 59 

OP 1 .65 
CASP5 

Benchmark_2 
A P7 

SCOP 1 . 65 
CASP5 

Table 2. 1 :  Domain-linker pr dict ion approaches . 
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• � Iost of the mentioned met.hods are computationally expensiv a they re-

quire he comput''ltional cost to generate PSStvI and/or predict secondary 

st ruct ur information for each prot in .  

• ome m thods are evaluat ed based on th overall prediction accuracy only. 

This may not effectively reflect the i, snes f the uuhalan 'iug problem of 

protein domain l inker data. 

In the fir t ontril ut ion of thi work, I develop an effective m thod for 

int r-domain l inker prediction olely from AA sequence information. Domain-

l inker region are determined using AA compositional in lex and then a simulated 

anneal ing algorit hm is employed to enhanc the predi tion by finding th optimal 

threshold yalu that eparates domains from l inkers. 
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2 . 2  Domain P rediction 

,' t n H't nral domai l l  predict ioI l  m et  b ods Cal l h e  clevsified i l lto  hOl T lo]ogy­

ba:-;('d , and � r L- ba 'cd I I I  t hods. 

2 . 2 . 1 H01110logy- B a  ed Methods 

Homology-bas d mct hod' search the target sC'quences hrough known pro­

tein st rn t urc l ibraries using ali nment , H idden f\ Iarkov l\ Iodels (Hl\.r �I) , or PSI­

BLA T techniqu s.  Exampl s of homology-l a 'ed methods ar HOP [22] , S oby­

Domain [4.7] , DOf\ I l ro [23] and F IEFDOl\ I  [4 ] and PFam [49] . Although 

homology-based methods can achieve high prediction accurac sp cially when 

cIo 'e template' are retriey d, th ac uracy often decreases pi rcingly wh n the 

, qu nce id ntit ' of the target and templat i low [50] . 

DOMpro: 

DOf\ I pro [23] is a t 'pical alignment/homolog -based m thod which r -

qUIr ' the u e of PSI-BLAST [5 1 ]  t o  generat evolutionary and homology in­

format ion i n  t h  form of profil . DO� Ipro \Va i ndependently evaluated along 

with 12 other predictor in the Crit ical A 's ssment of Fully Automated Struc ure 

Prediction J (CAFASP--l) [52 ,  53] where it was ranked among the top ab initio 

domain predictor . 

Scooby-Domain :  

equenCe hydrOphOBicitY predicts DO::- IA INs (Scooby-Domain) web ap­

plicat ion wa d v loped by George e t  at. [47] and extended by Pang et  al. [3 ] to 

vi ually identify foldable regions i n  a protein sequence. Scooby-Domain uses the 

eli tribution of observed lengths and hydrophobicities in  domains with known 3D 

tructure to predict novel domain and th ir  boundarie i n  a protein sequence. It 
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lit i l izes a l I lult i l( 'V( I .'moot hing ,,-indow to detrrmine th percentage of hvdropho­

bic ,\As wi thi 1 1  a pl l t at i \' c lomain-siz d r gion in a seql1 nce. Each smoot hing 

wl l ldow calculat('s t h fraction of hy lrophobic r sidues i t  en apsl1late along a 

s qu < ' I l  ('E' . and places t he value at it central po it iol l _  This reates a triangular­

shape 2D mat rix wh rc t he va lue at cell ( i , j )  is the average hydrophobicity en­

capsulat C'd by H wind \V of size j that is ceIltered at residuc position i. � latrix 

y,t/ues are cOllH'rt pd to probability scores by r f rring t o  th observed distribution 

of domain sizes and hydrophobicit ie ' .  Using the observ d distril ution of domain 

lengt hs and perccnt ag hydrophobiciti es ,  the probabil i ty t hat the region can fold 

int o a domain or b unfolded is th n calculated . 

cooby-Domain employs an A * search algorithm to s arch through a larg 

l lumber of alternative domain annotations . The * earch algorithm considers 

mbil lat ion ' of differ nt domain iz . ) using a heuristic funct ion to  conduct the 

search . The corresponding equence tr �tch for th first pI' diet d domain i. 

remoy cl from th  sequenc . The search process is repeated until ther are less 

than 3-1, residues remaining, which is th size of the smallest domain; or until th re 

are no probabil it ie greater t han 0 .33, whi h is an arbi t rary cutoff. to prevent 

non-domain r gion from b iug predicted as a domain .  

Two l inker prediction scoring system , Domcut [ 1 7] and PDL I  [36] , w re 

used eparately t o  compl ment Scool y-Domains prediction. The performance 

of cooby-Domain wa e\'aluated with the inclusion of homology information. 

Homologues of the query sequence were d tected using PSI-BLAST [5 1 ]  searche 

of the \nSS-PROT database [54] and Multiple Sequence Alignments ( IS A ) 

,,-ere g nerated using P RALINE [55] . On a test set of 1 73 proteins with consensus 

CATH [56] and SCOP [-1,3] domain definit ions, Scooby-Domain has a sensitivity 

of .50% and an accuracy of 29%. 

The advantag s of Scooby-Domain inc lude its abili ty to predict cliscon­

t inuous domains and successful predictions are not l imited by th length of the 
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querY ·(>(1'1('11C(' J\ + srarch j ,' a ycry fl xible meL hod ,  and it may b asil)' adapt ed 

amI  i l l l  proy d t o  include morE-' sophist icat ion in i t s  predict ions. How y r,  A * 

search algor i t hm ha.s a n  ('xpollcnt ial col l l put.at ional t ime omplexity in it worst 

cast' [:-7, 5 ] .  Fur t hermorc. d mains t hat are connected by sl1lall l inkers may not 

bc i c i ( ' l l 1 . i fia h Ie hv \ { )oby- DOl l lH i u  bccallse w i l l e in\\' cLwraging l l l ay lose any signal 

at t he' l inker. 

F I EDom: 

Bondugula et a i .  H::J] presentecl Fuzzy In tegration f Extracted Fragments 

for Domain (FIEFD m ) as a method to I redict domain b undaries of a multi­

domain protein from it  AA scqu nee using a Fuzzy t. l ean Operator (Ft.l0 ) . Using 

t he non-r clu l ldant (nr) 'equ nee database together with a reference protein set 

(R P  ) containing k nown domain boundaries, the perator is used to assign a 

l ikelihood yalu  f r each residue of the query sequence as belonging to a domain 

boundary. F)' IO repre ents a "pecial case of the fuzzy nearest neighbor algorithm 

[59] with th number of cla ses s t to one. The approach is a thr e-step proceclure .  

Fil"t ,  the PSS)' 1  of the query sequ nc is  generated using a large database of 

know l l  sequcllC(,S .  ('cou e l ,  the gC' l l C ' rat ( 'd profile is nsed to search for similar 

fragment in the R P  . Third ,  the matches with the proteins in RPS ar par ed , 

and t he domain Boundary Propensity (PB ) of the query protein is predicted u ing 

a F)' IO .  For COP 1 . 65 datas t with a maximal sequence identity of 30o/c. the 

a\,'erage domain pr diction accuracy of F IEFDom is 97% for one domain proteins 

and 5 % for mult i-domain prot in . 

The advantage of F:' IO include i ts simplicity, ease of updating, and its 

a ymptotic error bounds. The choice of the program to de ignate a region as a 

domain boundary can be trac d back to all proteins in the 10 al databas that 

contributed to the decision . The model doesn't  need to be trained or tuned 

whenever new examples of domain boundaries become availabl . In addition, the 
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1 1.'81. can hoos t he domain d finiL lOlls such a t TH [56] and .'COP [43] , L o 

, \ l i t  t ll ( ' ir n cds by r placing the R f r ncc Protf'in 'rt ( RP ) .  F IEFDom work 

w('ll for prot in s qu n 8S with many cl se homologs and that wi t h only remot 

homolog '. On thr oth r hane l ,  t his approach did not address the is u of pre­

dict ing domains wi t h  non- ont iguous sequence ancl therefore it d iscarded such 

prot < > ins .  

Thr eDom: 

Xue ct al .  [ 0 ]  introduc d ThreeDom based on multiple threading align-

111 nts using a domain conservation scor that combines information from tem­

plate domain ,truc ures and terminal and internal al ignment gaps . The three ding 

f t he targ t equen e for st ru t ural t emplate ident i fi ations through the Protein 

Dat a Bank (PDB) is performed by LOJ\ IETS [60] ""hi h is a local meta-thr ading­

serycr for protein structure predict ion . 

Al t hough homology-ba ed methods an achieve h igh prediction accuracy 

specially when close templates are retrieved , the accuracy often de reases p1erc­

ingly when t he equence id ntity of th target and t mplate is low . 

2 . 2 . 2  Machi ne Learn i ng Methods 

Beside the homology-based methods, there are several "tvI L-based methods 

f r predict ing tructural domains within proteins. Chatterjee et aZ. [6 1 ]  and Li 

et  aZ. [62] are examples of such M L-basecl method ' .  

Chatterjee et  al. :  

Chatterjee e t  aZ. [6 1 ]  employed a V l\ I  classifier with three kernel func­

t ion ; l inear , cubic polynomial, and RBF .  Th feature set consists of six different 

feature : predicted secondary structure pr dieted solvent accessibility, pI' dicted 

conformat ional flexibil i ty profile, AA composition, PSSM,  and AA physicochem-
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ieal propert i s .  A window of 13 long is l ided over th prot i l l  hain ewry 

,ime by one AA posit IOn.  The ac uracy of this approa h was \'aluated on C TH 

clat ascts [56] . Tll ( '  \'1\1 classifier wit h a ubi polynomial k mel hac !  shown the 

best P 'rforInanc('s in t rms of a curacy and precisi n. Th S8 lwo measure,' were 

76A6Yc and "6, 2o/c respect i,' 1y. 

Li et al. : 

Li ct al. [62] proposed a domain pr diction method basec l on combing 

t he techniques of Random Fore t, mR).r 1 R  (ma..ximum relevan minimum redun­

dancy ) ,  and I F  ( i n  r m nta1 feature election) and i n  orporating the f atmes 

of physicochemical and bioch mica1 properties ,  equence conservation, residual 

d i�Ol'der, condary structure, and solvent acc ssibil ity. The performance of th is 

approach wa eva1uat d on UniProt/Swi s-Prot datal ase (version 20 10_06) [63] 

and achie\'ed 6.J .3C'� sensit iv i ty and 0. % specificity. 

Although using structural information could achie\'e good prediction re­

u l t  . finding t he 'tructura1 informat ion by i t  elf is another challenge. The above 

mention d method require the computational cost t o  generate P S1'. l  and to 

predict secondary structnr informat ion for each protein .  

Table 2.2 summarize the above mentioned prediction appr aches and com­

pare� t hem, ?\ lost of the di cus d methods have, in general , the fol lowing limi­

tation,,: 

• Although many 1\ l L-l ased domain predictors have been developed and 

shown good predictlon performance in single-domain protei ns ,  they have 

ho\\'n l imit d capaJ i 1 i ty in  multl-domain proteins [3] . 

• Although homology-l a ed methods can achieve h igh prediction accuracy 

specially when close templates are retrieved, the ac macy often decreases 

piercingly when the equence identity of the target and template is low [50] . 



2006) 

'cooby-Doma i l l  

(Georg ct al. 2005 , 

Pang ct al. 200 ) 

F I  FDom 

(Bondugula  ct al. 
20(9) 

ThrceDoIl l  

(Xuc ( t  at. 2( 1 3 )  

Chat t eljee c t  at. 
(2009) 

Li t at. (20 1 2) 

homology informat ion 

Domain 1 ngths and 

hyc l ropho bici t ie 

�'mplate domain 

t.t rnct nr('s, t rminal and 

phy icochemical and 

bio h mical prop rt ies 

S qu nc con ervation 
resiclual disorder, 

'erondary st ructure, 

soh'ent a . ibi l i ty 

*-search 

F I 

l I ult ipl 

t hreading 

alignments 

VI\ I  

Random Forest, 

mR l\ l R , 

IFS 

Table 2 .2 : Domain pr dict ion approaches . 

Datasets 

CAFA P-4 

w iss-Prot 

SCQP 1 . 65 

CASP 

CASP9 

CASP I O  

CATH 

UniProt / 
Swiss-Prot 
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• Although methods that u e structural information could achieve good pre­

diction result , finding th tru t ural informat ion by i tsel f  is anoth r chal-

lenge. 

• ome method are computationally eXI ensive a they require the computa-

t ional co t to generate PSS:'- l and/or pr d ict secondary structure informa-

tion for each prot i n .  

I n  the econd contribut ion o f  this work, I d velop a simple and effective 

approach for predicting stru tural domains using inter-domain l inker knowledge. 

I nter-domain l inkers ar generally shorter than domains and can be r cognized 

more 'imply and fficiently. Recognizing a l inker can th n lead to discovering two 

adjacent domains. 



2 . 3  P rote i n- P rot i n  I nteract ion P rediction 

PPI  pred ict i (  n has bee l l ,t udi c l  xt  n ively by s v ral research rs and a 

l arge' m U l 1brr of approach :-; have b n proposed . The 'e approach s can b clas-

::;ificd into I hy. i )('hcmi al experim nl al and computational approaches. Phy ­

iorhrl l l ical ex]) rim ntal te hniques identify the physiochemical interact ion b -

tw en proteins which, in turn, are u ed to  predict the functional r lationships 

bctwc 11 them . These techniqu s include y ast two-hybrid based m thods [64] , 

ma�� �pe t romet ry [65] , Tand 111 ffinit); Pur i ficat ion [66] , protein chip [67] , and 

hybrid approaches [6 ] .  Although th t chniqucs have su ceeded in identifying 

'everal impor t ant interacting protein in sev ra! speci s uch as Y a. t ,  Drosophila 

awl I I C ' ! icobac ( er-p)'lori [69] , t l le'Y are computat ionally ( 'xprllsiv( '  and signi ficantly 

t ime consumi ng, and so far the predicted PPls  hav covered onl ' a small portion 

f t he complet PPI  network. As a result ,  the need for computat ional tools has 

been incr as d in order to val idate physiochemical experimental results and to 

predict non-discovered PPIs  [ , 70j . 

veral computat ional method hay been propo ed for PPI  pr diction and 

can be cla ified a cording to the used protein feature i nto sequence-based and 

tructur -base 1 m thod . equence-based methods uti l ize AA features and can 

be further cat gorized into stat i t ical and � I achine Learning ( � I L)-based m th­

od . The struct ure-based method u thre -dimensional structural features [71 ]  

and can be categorized into template-be ed . statist ical and l\ IL-based methods. 

Thi section provid an overview and discus ion of ome of the current compu-

t at ional sequ nce-bas d and structur -based PP I  prediction approaches . 

2 . 3 . 1  Sequence- B ased Approaches 

Sequ nce-based PP I  prediction methods uti l ize AA f atures such as hy-

drophobicity. phy iochemi a1 properties, evolu t ionary profiles, AA composition, 
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A m('H l J ,  or w ightcd avcrage O\'er a sliding window [7 1 ] .  equenc -ba..'3 d m th­

( le I '  can bp catcgorizpd into statist ical amI :' Iachine L arning ( I L )-bas d m th­

uds. This s 'ct i c ) ] )  present s  and valuat es me of th xisting quenc -bas d 

approaches. 

tati  t ical Sequenc - Based Approaches 

This S CtiOll prescnt ' and describ s scveral exist ing stat i t ical ' qucnce­

hased PPI  pred i bon approaches. 

l i rror Tr Iethod: 

Pazos and alencia [72] introdu d th Mirror Tr e }.. Iethod bas d on the 

comparison of t he e\'olutionary distanc s between th equen es of th associat d 

protein fami lies and using tOI logical s imilarity of phylogenetic trees to predict 

PP I .  Tb se di t an e' were calculat ed as t he average value of the residue simi lar­

i t i  taken from the l\ IcLachlan amino acid homology matrix [73] . The similarity 

between tre s was calculated as the correlation betw en the distan e matrices 

u 'ed to  build the trees . The l\ I i rror Tree � l ethod does not require the creation of 

the phylogen t ic tre but onl r the underlying distance matI-ic are analyzed , and 

therefore thi approach is independent of any given tre -construction method . 

Although t he m irror tree method doe not require the pre ence of fully sequenced 

genomes, it require th pre ence of the orthologou proteins in all the species 

tmder consideration . As a result ,  when more pecies genomes become avai lable, 

fewer proteins could be appli d .  In addit. ion to that, t .he method is re tricted to 

cases where at least eleven sequences were collected from the same species for 

both proteins. This minimum l imit  was set empirically as a compromis betw en 

being ufficiently small to provide enough cases and large enough for the m at ric s 

t o  contain uffici nt information . The approach can b improved by increa ing 

the number of po sible interactions by collecting sequences from a larger number 
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( [ g<'I lOl I lf'S. Fur !  her. since t h di tanc mat ric . are not a perf ct repre. entat ion 

of th correspond i ng phylogenetic tr s. it is possible that some inac ura i , are 

i l l! roduccd b)' comparing dis! anc mat rices inst ad of th real phylogenetic t rees . 

P I P  

Pi t r  ct al. [74] inL roc l uc d P I PE (Protein-prot ein Interaction Predic­

t iOI l  Engine) to  pstimat the l ikdihood of interactions 1 ct\veen pairs of th y ast 

'acci laromvc('s c('rc\' isiae proteins u' ing protein primary stru tur e  information . 

P IPE  is ba 'cd on t he a umption that int.eractions 1 et\.yeen proL ins occur by a 

fini tp  number of short polyp ptide s quen es observed in a databas of known 

interacting protein rairs. Th e sequences are typically shorter than th clas­

�ical domains and r oc ur in different proteins within the cel l .  P IPE  estimat s 

the l ikel ihood of a PPI  by measuring the reoccurrence of these short polypep­

t ides within known interacting prot ins pairs. To determin  whether two pro­

teins A and B interact , t he two query proteins are scann d for similarity to a 

databa e of known interact ing proteins pairs .  For each known interacting pair 

(X. } ' ) . P IPE use,' l iding windows to compares the AA residues in pr tein A 

against that in X and protein B against Y ,  and then 1 11 asur s how many t imes 

a win 0.0\\' of prot in A find a mat h in  X and at the same t ime a window in  

protein B matches a window in  Y .  The 'e matches are counted and added up in  

a 2D matrix .  A po i t i\' protein interaction i s  predicted when the reoccurrenc 

COUl l t  i l l  ( 'crt ain ('db of t h e  matrix excecd a prcdefiued t hreshold valuE'. P IPE  

wa evaluated on a randomly selected set of 1 00 interacting yeast protein pairs 

and 1 00 non-interacting proteins from the database of interacting proteins (D IP )  

( http ://dip .doe-mbi . ucla.edu) [75] and l I PS [76] database . P IPE  showed a pr -

dict ion ensi tivity of 0 .6 1  and specificity of O .  9 .  Since P IPE is bas d on protein 

primary st ructur information without any previous knowledge about the h igher 

structure) domain composition) evolutionary cons rvation or the function of the 
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t argpt prot i ns .  I t  can i lrnt ify int era t i  m; of prot ein pairs for which l imited 

:t ruet ural informat ion i:-; <,wailabl<.'. TIl l imi tat ions of P IPE  are a,' follows. P IPE 

i s  cOlnput atioI1c 11y int nsiy(' an 1 r ql 1 i rcs hours of computat ion p r prot in pair 

a." i t  scans the int rract. ion library r peat cll,\' ever)' t ime. S coml ,  P IPE , ho\\'f' 

wrakl lrss in d trct ing novel intrractiom; among g nome wide large- 'cal de tasets 

as it reported a larg mUll  brr of false posi ti ve'.  Third, P IPE  \Va." evaluated on 

uncerta in data of int eract ions that were determined using several methods, each 

having a l imitpel nccuracy. 

P i t re et ai. [77J t h( , 1 1  dpveloped PIPE2 as an improved and l I l Ol'(' dli-

nt version of P IPE  which , how d a sp 'cificity of 0 .999. P IPE2 repre nts AA 

, equellce in  a binary code which speeds up earching t h  similarity matrix. Un­

l ike th  original P I PE t hat , cans the interaction database repeatedly every t im , 

P IPE2 pre-comput s all window comparisons in  advance and 'tores th 1 1 1  on a 

local disk. 

Al though P IPE2 achieve a high 'pecificity, i t  ha a large number of false 

po it i\' with a sensit iv i ty of 0 . 1 46 only. False positives rate can be reduced 

by incorporating other information about the target protein pairs including sub­

cellular localization or functi 1 1a l  annotation .  A major l imitation of P IPE2 is 

that it relies exclu ivel,\' on a database of pre-existing interaction pairs for the 

i dent ificat ion of r -occurring short polypept ide sequence and in t he absence of 

sufficient data, P IP E2 wil l  be ineffectiye. P IPE2 is also less effective for mo ifs 

that pan discontinuous primary sequenc as it does not account for gaps '''' ithin 

the hort polypeptide sequences . 

Co-evolut ionary Divergence: 

Liu et  al. [7 J introduced a sequence-based co-evolution PPI prediction 

method in t he human protein�. The authors d fined the co-evolut ionary diver­

g nce (CD) based on two assumptions . First ) PP I  pairs may have similar substi-
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t l l t io l l  rat >s. cone I ,  protein int raction is more l ikely to on e1"ve acros' rela ed 

, PC'CIC'S. D is definrd as t h  a1 olut \'alu of the substi tu tion rate cliff rC'l1ce 

l)('twc : 1 1  two proteins. CD an b 1.1 d t o  predi t PPI as t he CD values of in-

teract ing protein pair ' ar exp d to be smaller than thos of non-interact i l lg 

pairs .  The 111 thad was evaluat. d using 1 72 33 protein s quenc S obt.ained from 

Evola dat abase [79] for Homo sapiens and th i r  rthologou protein sequenc : in 

th i rt een differ nt wrtebrates .  The PPI dat aset was downloaded from the Human 

Prot ( in R f ren e Dat.abas [ 0] . Pairwise al ignm nt of the orthologous proteins 

\\'as mad with Clu 'tal\\,2 softwar . The a1 olute value of substitution rate ( l i f­

ference b tween two proteins was used to mea ure the CDs of protein pairs which 

\\"E)re tll n 1red to onstruct the l ikel ihood ratio t.able of interact. ing protein pair . 

The CD m thod combines co-evolutionary information of intera t ing pro­

tein pairs from l l l any specie . The m thod does not use multiple alignments, thus 

t aking less t ime than other al ignm nt methods such as he mi rror tree method . 

The met.hod i not l imited to  proteins with orthologou across all p cies un­

der consideration. However, incr i ng the number of species will provide more 

information t improve the accuracy of t he co-e\'olutionary divergence meth U .  

Although thi method could rank the l ikelihood of interaction for a giv n pair of 

prot ein . i t  did not infer pecific featuf of intera t ion such a t he int ract ing 

re idu s i n  the interfaces . 

Table 2 .3  ummarizes the e statist ical equence-based approaches includ­

ing t he features that are used, th technique and/or the tool applied , and the 

\'alidation data ets used. 

l\ Iachine-learn ing sequence-based P P I  pred ict ion approaches . 

This section describes several exist i ng � I L  sequence-based PP I  prediction 

approaches. 



\ I irror Trc 
( Pazos and 
VaicIl in 200 1 ) 
PIPE ( Pit re et 0/. 
LOOG . 200 ) 

D i vergcl l (' 
(Liu l of. 20 13 ) 

Ex racted 

t rees 

'hart A A  

informat ion , 

Technique/Tool 

Ev lllt ionary dist anc , 
McLachlan AA 

homology mat rix 

imilarity mea�ure 

Pairwise alignm nt , 

ClustalW2 

Datas t 

Eschericll lQ  co17 
protein (Dandekar 
ct at. 1 99 ) 
YeN t protein 
(D IP  and I I PS) 

32 

Human protein 

(� Ial suya ct aZ .  200 , 
Prasad t al. 2009) 

Tabl 2 .3 :  t a b  ' t ical equ nce-based PP I  prediction appr aches. 

Auto Covarian 

Gno c t  al. [ 1 ] propo'ed a equenc -based m thod using Auto Covari­

ance ( C) and npport eCl or Iachines (SVT\ I ) . AA residues were represented 

by sewn physicochemical properties. These propertie ar hydrophol icity hy­

drophi l i  i ty. \'olumes of side chains, polarity, polarizabil ity, solvent-accessible sur-

fa area, and net che rge ind x of AA side chains. AC counts for the interac ions 

between re'idue ' a certain d i  tance apart in th sequ nce. AA physico hemical 

propert ie \vere analyz d by C based on the alculat ion of covariance. A protein 

nequen e \ya characterized by a series of ACs that covered the information of in-

t eractions between each AA residue and its 30 vicinal residues in the s quence. 

F inally. a VT\ I  model with a Radial Basis Fun tion ( R BF) k mel was constructed 

u i ng the vectors of A yariables as input. The optimization experim nt demon-

trat d that t he interact ions of one AA residue and it 30 vi inal A As would 

contribute to charact r iz ing the PPI  information . The software and datasets are 

ayailable at. http ://www .sctlcic . cn/Pred icLPPI /index.htm. A datas t of l l .c!7c! 

yeast PP I  pairs extract d from D I P  [82] was used to evaluate t he model and the 

average prediction accuracy, sensitivity, and precision achieved ar respectively 

O. 6, O. 5. and O. 7. 

One of the advantages of this approach is that AC includes long-range 

interac t ion informat ion of AA residues which are important in PP I  identification. 

The use of V)' l  as a predictor is another advantage. SVJ'v I is the state of the art 
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':\ I L  l C 'd1 l l iquc and ha!-. mallY ben fiL and v rcome many l imit at ions of ot her 

t dll l iq l. l(,s. , \ri d has strong foundation� in tat ist i al 1 arning theory [ 3] and 

ha:-- heen 'uccc!:lsfnlly applir 1 i l l  \'ariOllS la s i fi ation probl ms [ 4 ] .  SV.:\I  off rs 

b('\'f'ral H'lntec l  comput at ional advantages , uch a '  the lack f local minima in the 

opt imizat ion [ 5] . 

Pairwi e S imi lar i ty: 

Zaki ct  al. [ ]  prop08ed a PPI PI' dictor based on pai rwise similarity of 

protein primary 't ructur . Ea h protein sequ nee We r presented by a vector of 

pain\'ise simih.ri t i e  against. large AA subsequences created by a sliding window 

which passes over concat nated protein t raining sequenc s .  Each coordinate of 

t his \'ect or i the E-va1 1.1 of t h  Smith-\\'aterman (SvV) score [ 6] . These vectors 

were then used to comput the kernel matrix which was exploited in conjunction 

with a RBF-kernel ), 1 .  Two protein8 ma) interact by the means of the score 

imilarit ies they produce [ 7 , ] .  Each equence in the testing set was aligned 

against each sequ nee in the training set , count d the number of posit ions that 

hay ident ical residue , and then divided by the tot al length of th alignm nt . 

The method was evaluated on a dataset of yeast Saccharomyces reT' vzsiae 

protein created by Chen and Liu [ 9] and contains 49 1 7  interacting protein pairs 

and 4000 non-interact ing pair . The m thod achieved an accuracy of 0 .7  , a 

�en i t ivity of O. 1 .  a specific i ty of 0.7-14 , and a ROC of O .  5 .  

\\' alignment scor provides a relevant measure of s imilar ity betw en pro­

tein . Therefore protein sequ nee similarity typically i mplies homology, which in 

turn may imply structural and funct ional s imilarity [90] . SW scores param ters 

have been optimized over the past two decades to  provide relevant measures of 

imi larity betw en sequences and they now represent core tools in computational 

biology [9 1 ] .  The use of SV)' I as a predictor is another advantage. This work can 

be i mproved by combining knowledge about gene ontology, i nter-domain l inker 
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A Compos i t ion :  

34 

Roy (t  (II. [92J ('Xami l ll 'd the role of amin acid composition ( AC) in 

PPJ pr diction and its performan e against \vell-known f atur s such as domains, 

tuple' feature, and signatur proc lu l [ aLure .  Every protein pair was r pr nted 

by A A  ' and domain feature ' . A was r presented by monomer and dimer fea-

t ures . � Ionom('1' features capture comp sit ion of individual amino acids. whereas 

d im('1' feature: capture omposition of pai rs of c nsecutive AAs .  To generate 

t he mOll m r fe atures , a 20-dim n5ional vector representing the normahzed pro­

portion of the 20 A s in a protein  was cr ated . The real-valued composition 

was then eli cretized into 25 bit producing a set of 500 binary features. To 

g nerate th u imer features, a 400-dimensional vector of all possibl AA pairs 

were xU'acted from the protein equence and d iscretized into 1 0  bits producing 

a set of 4000 binary features . The domains were repre ented as binary features 

with each feature ident ified by a domain name. To compare AAC against other 

non-domain sequence-ba ed f ature , tuple features [93J and signature product 

[9-1J w re obtained . The tuple feature� wer created by grouping AAs into six 

categorie based on their biochemical properties ,  and th n creating all possible 

'trings of length -1 u ing the e categories. The s ignature product were obtained 

by fir t e)..-t ract ing ignature of length 3 from t he individual protein sequences. 

Each :-.ignat nr(' cOllsi. t!:, of a m iddle letter and two fLmking AAs rrpre:ellted i l l  

alphab t ical order. Thus t wo 3-tuples with the first and third amino a id 1 t­

t er permuted haw the same s ignature. The signatures w re used to construct a 

signat ure kernel specifying the inner product between two proteins. 

The proposed approach was examined using three machine learning classi­

fiers ( logi t ic regression , SVM. and t he Taive Bayes) on PPI clatasets from yeast , 

worm and fly. Three datasets for yeast S. cerevisiae \\'ere extra 'ted from the 
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G l lC'ral R<>posi t ory for I nt eract ion Dal as t s  (G R I D ) database [95] , T\YOHYB 

(Y('a-.t Two-hyhrid ) . FF:\ 1  (Affinity pull c lm\'n \\ i th  ma s sprctrometn-) , and 
p I ( protpin complem nt a t iol l assay) .  I n addit ion to that, a data.s t each for 

w r1 1 1 .  C. cl(gan:; (Bio�r id c latas t )  [96] and fly, D. m cianoga. t r [95] were used . 

TI l , authors rC'ported tbat AA features performed ( lmost C'quivalent contribu­

t ion as domam knowledge across different dat aset s and lao sifier which indicat d 

that . .  \C apl me '  significant informat i n for ident i fying PP I . AAC i a impl 

featurC', compl l tat ionall)' chC' p,  appl icable to any protein sequenc , and can be 

usod WhOll t here is lack of domain infonl lHtion. A C can b combined with oth r 

features t o  e1 1 l1'1n e PPI  pre l iction. 

AA Triad: 

Yu et ai. [97] propo ed a probabil ity-based approach of est imating triad 

�ignificanc to alleviat t he effect of AA di tribution in  nature. The r laxed vari­

able k rnel density e t imator (RVKDE ) [98] was mplo ed to predict P P I  bas d 

on AA t riad inf rmation. Th method is summarized as follows. Each prot in 

'equence w a  repre ent d as AA t riads by con idering every three continuou 

re idue in the protein 'equence a a unit . To r duce feature dimen ional ity vec­

tor ,  the 20 AA types \v re categ rized into even groups based on their d ipole 

trength and id chain volumes [69] . The tr ia Is were then scanned one by one 

along t h  sequence . and each scanned triad is counted in an occurrence vector 

O. Sub .'cqnel l t ly, a , ignifical l ( , ( ,  v('ct or .  S, was propo ed to represent a protein 

equence by e t imating t he probabil i ty of observing less occurrences of each triad 

than the one that i actually observed in  O. Each PP I  pair was then ncoded as a 

feature vector by concat enat ing the two significance vectors of t he two individual 

protein . F inally. the feature vector was used to train a RVKDE PP I  predictor. 

The method was evaluated on 37,044 int racting pairs within 9 44 1 proteins from 

t he H uman Protein Reference Dat abase (HPR D ) [99, 100] . Datasets with differ-
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ellt ] >osil i \" - to-Iwgal iv rat i s ( from 1 : 1  t o  1 : 1 5) w re general d with the sam 

posit iw inst anc s and el i . t inct n gat i" set s ,  \\'b ieb are obtained by randomly 

sampling from th lwgat ive inst anc s. The aut hors ( 'oucludecl that the degree 

of dat asf't imbalan is import ant to PPI pr dictor behavior. \\, i t 1 1  1 : 1  posit ivc­

t ( )- l l ('�<l,( IV( '  rat io ,  t I l < '  proposed l l H't 1 10d ach ieve's C l . t  1 sCllsit  iv it)', 0 .70 sp('c i J ic it y, 

0 . 7< PITcision , and O.  F-measure. These evaluation measur s drop a s  the data 

gets more imha lan d t o  reach 0.39 ::;ensit. iv i ty, 0.97 spc ifi ity, 0.495 precision , 

and 0 .4 F- lllcasnre \\' ith 1 : 1 5 posit i v  - to-negat ive l":tt io. 

RVKDE i '  a 1-. I L  algorithm that const ructs a R BF neural network t o  ap­

proximate t he probabil ity density fun t ion of each class of objects in  th training 

data 'ct. One main d istinct feature of R KDE is that i t  takes an average time 

complexity of O(nlogn )  for th mod I training procC'ss , where n is the number 

of in "t ances in the t raining et. In order t improve the predict ion efficiency, 

RYKDE con ider only a l imited number of nearest instances within the training 

dataset to compute the kern I density e timator of each class. One import ant 

ad\'ant age of RVKDE,  i n  c mparison with SVM, is t.hat the learning algorithm 

generally take far Ie s training t ime with an ptimized parameter setting. In  

addit ion to that, the number of  training samples remaining after a data reduc­

tion m chanism is applied is quite clo. e to the numb r of support vectors of SV1-. I 

algorithm. Un li ke SV I ,  R KDE is capable of classifying data with more than 

two cla'ses in one ingle run [9 ] .  

UNISPPI :  

Valente et al. [ 1 0 1 ]  ( 20l3 )  i ntroduc cl UNISPPI  (Universal I n  S il ico Pre­

dictor of Protein-Protein  I nteractions) . The authors examined both the frequ ncy 

and composition of the physicochemical properties of the twenty protein  AAs to 

t rain a deci ion tree PP I  clas i fier. The frequen y feature set indud s the percent­

ages of each of the 20 AA in th protein sequenc . The composition feature set 
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wa ' ubl ainrd by grouping each A of a prot in into onr of t hree differC'nt group 

rdatrc l to seve11 ph�'�i ochemical propert ie and calcu lat ing the p rccntagc of 

ea h group f r cach feat ure cne l ing up 1 y a tot.al of 2 1  composit ion features. The 

sen 11 ph\'sicoclwmical propert ies are hydropho 1 icity, normalized \'an del' \ Vaa1s 

volum . polarit) , polarizabil ity. harg , secondary structure, and sol v 11 acccs­

�ihiht�r. \\'hen t ested 01 1  a dataset of PPI  pairs of twenty differ nt eukaryotic 

�pccic: including eukaryot s ,  pr karyotes, \'irus S, and parasite-host asso iations 

el l PP I  carre t 1y lassi fied 0. 79 of known PPI  pairs and 0 . 73 of n011-PP I  pairs. 

The aut h ors COl lc l l 1 (kd t hat I ls ing only tho A frequcncics \yas suffi ciel lt. t o  pre­

e l i  t PPI . Th y furt her concluded that the AA frequencies of sparagin s ( . ) , 

C�' tein (C) ,  and Isoleucin ( I ) are important features for d istinguishing between 

int racting and non- interacting protein  pairs. 

The main advantages of VI ISP P I  are its simplicity and low computational 

co t a mall am unt of features were used to t rain the decision t r  cla' i fier. 

Deci ion t ree clas�ifier i fa t to build and ha few parameter t o  tune. Decision 

tree can be ea i ly analyzed and the features can be rank d accord ing to th i r  

capabil it ies of di tinguishing PPIs  from non-PPls .  However decision tree classi­

fiers normally suffer from ov( 'rfit t ing. 

ETB-Viterbi :  

Kern et  al. [ 1 02] proposed the Early Traceback Viterbi (ETB-Viterbi ) 

a a decoding algorithm with an early traceback mechanism in ipHl\ Ii\ Is ( Inter­

action Profile H idden larkov l\, lodels) [ 1 03] which was design d to optimally 

incorporate long-di t ance correlation between interacting AA residues in input 

equence . The method was evaluated on real data from the 3DID clatabas [ 1 04] 

along with simulated data generated from 3DID data contain ing different de­

gree. of correlation and reversed sequence orientation . ETB-Viterbi was capable 

to capture the long-dist ance correlations for improved prediction accuracy and 
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\\'ft.' not much a(fcct cd b .. !-icqucnce on ut ati m .  Hidcl n i\. larkov model (Hl\ [ \ I )  

arC' po\\'t'rfnl probabi l ist ic mod l ing t ool [or analyzing and simulat ing equence. 

of symbols that arc mittccl [ro I l l  underlying tates and not dir ctl r observable 

PO!)] . Th(' \'iterhi algori thnl is a dynam ic programm ing algor i t hm for findinj:!, t he 

most l ik l�' scqu n e of h iddell stat . Hov; ver, th iterl i algorithm is exp nsive 

in t erms of memory and computing t im . The H }' [ \ l  training involves repeat d 

i ( !'rnt iol1s of the \ itcrbi algor ithm which mak it  quit low. H 1 }' 1  }' loclel may 

noL COIW rge to a truly optimnl param tel' set f r a giv n training et as it can 

he t ra ppC'd i l l  local l l la.,'{i l l l <l . etnd can suffer from ovcrfit t i l lg [lOG, 1 07, 1 08, 1 0�] . 

Tabl 2 .4  summariz s these ML sequence-based approache and compared 

t hem in term' of f atures, t e  hniques. tools, and val idation datasets. 

Approach Extracted Technique/Tool Datasets 
Features 

Auto ovariance AA phy icochemical Auto covariance, Yeast protein 

(G uo et al. 200 ) properties tv1  (DIP and :Y I IP  

Pairwi e Similarity Pairwi e similarity V I Yeast protein 

(Zaki et al 2009) 

A A  Compo i t ion AAC Logist ic regression, Yeast protein, 

(Roy c t  al. 2009) 1\ 1 .  Naive Baye worm protein, 

fly protein 

AA Triad A A  triad RVKDE Human protein 

(Yu ct al.  201 0) information (HPRD) 

C,\I PPI Frequ ncy and Deci ion t rees Twenty different 

(Valente et al. 20 1 3) composition of eukaryotic species 

AA physio hemical 

propert ies 

ETB-\ i terbi AA residue HMI\ I ,  Early 3D ID database 

(Kern et al. 20 13)  Traceback Viterbi 

Table 2 . -1 :  :\ lachine-learning sequence-based PP I  pred iction approaches. 

2 . 3 . 2  St ruct u re- Based Approaches 

tructure-based PP I  pr dict ion methods use three-dimen ional structural 

feature such as domain information olvent acc ssibility, secondary structur 

stat :' ,  and hydrophobic and polar surfac locations [7 1 ] .  Structure-based PP I  
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prwlid ioll met hods 'an b at egorized int o template-based , stat istical, and I\ l L-
1>(1.'<; cl l l let hod�. This section pI' sents and valnates SOl l le of t he tat  -of-th -art 

struct urC'-bc1..s d appr aches . 

Templat t ructur -Ba ed Approach 

EXilmplrs of t emplate structurr-based approaches are P R IS 1 and Pr PPL 

P RI  1 :  

Tuncbag e t  ai. [ 1 1 0] d velop d PRISI\ l  a a template-based PP I  predic­

ti 11 met hod 1 a 'cd on information regarding the int raction surface of crystal l ine 

complex stru t ur es .  The two ides of a t.emplate interface are compared with 

t he 'urface of two t arget monomers by stru tural alignm nt . If regions of the 

target surface ' are s imi lar to th complementary sides of the template inter­

face, t hel l these two targets are predicted to interact with each other through 

the t emplate interface architecture. The method can 1 e ummarized as fol lows. 

F irst , interact ing surface r idues of target chains are extra ted using acc ss 

[ 1 1 1] .  econd , complementary chain of templat interfaces are separated and 

tructural ly compared with each of the targ t urfaces by u i ng I\ I ult iProt [ 1 1 2] .  

Third, t he trn tural al ignment r u l t  are filtered ac ording a threshold val­

ue . and the result ing t of target surface is transformed into the corresponding 

template interfaces t o  form a complex. Finally. the Fiber-Dock [ 1 1 3] algorithm is 

U' ed to refine t he i nteract ion to int roduce flexibility, ompute t he global energy 

of t he complex, and rank the olutions according to their energies . \iVhen the 

computed en rgy of a protein pai r  i Ie s than a thr shold of - 1 0 kcal/mol the 

pair is determined to i nteract .  

P RISM has been applied for predicting PP I  in a human apoptosis pathway 

[ 1 1 4] and a p53- protein-related pathway [ 1 1 51 ,  and has contributed to the und r­

standing of the structural mechani ms underly ing some types of s ignal transduc-
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t io ] } .  PI1 IS� l oht a i IWcl a prC'ci.'ion f 0 .23 1 when appli r l  t o  a human apoptosi 

pat hway that consist d of 57 prot in ' .  

Pr P P I :  

Zhang ct at. [25] p ropm,ed Pr('PP I  (Pr d i  hng Protein-Prot in Int rac­

tions) as a st rn t um l  a lignment  PPI  pr e l i  tor based on geom tric relat ionships 

I t wcen s condnry st ruct ur(' i u formation. Gi,'en a pair of quer.y proteins A and 

B ,  reprcscntatiw struct ures for the individual subunits ( l. 1A , l. lB ) ''[re taken from 

the PDB (Protl'in Dat a Bal lk)  [ 1 1 6] or from the l\ lodBase [ 1 1 7] and SkyBa e [ 1 1 ] 

hom logy model dat aba.se' . I 'e and remote structural neighbors are found for 

each subunit .  t mplate  for the interaction exists i f  a PDB or PQS (Prot in Qua­

t ernary truct ure) [ 1 1 9] contains int ra t ing pairs that are structural neighbors 

of /1 1.1 and l'\IB . A model is constructed by superposing th individual subunits, 

J 1A and j\IB on their corresponding structural neighbors. The l ikelihood for each 

model to  repre ' nt a true interaction is then calculated u ing a Baye. ian Network 

trained on l 1 ,  5 1  yeast interaction and 7 ,409 human interactions datasets . Fi­

nally the structure-derived core is comb in d with non-structural information, 

incl l lding C'o-l'xprCSSioll and fHllct iollal t,imilar ity i n t o  a naive Daves classifier. 

Although t emplate-based method can achieve h igh prediction accuracy 

v,'hen close t emplat are retrie\'ed, the ac uracy significantly decreases \Vh n the 

equence identity of target and template i low .  

Stat ist ical Structure-Based Approaches 

Thi section de crib 

diction approache . 

PID Matr ix Score: 

everal exist ing statistical structure-Base PPI prc-

Kim et al. [7] presented the Potential ly Interacting Domain pair (P I D ) 
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mat rix a.s a dOl l lain-ba,-;('d PPI  pr dict ion algorithm . The P I D  matrix score was 

('011 t rl lc t ed a:-; H mcasnH' of i I lt ('ract abil i ty ( int ract ion prohabilit�, )  between do­

I l la ins .  Ti l  algori t 1 1m analysi \\'a .. '3 bru ed on the D IP  (Databa.c:;e of Interact ing 

Pro tein. ) which ('ont ains more than tcn thousand of mostly xp rimentally \'er­

i fi l 'd i l l !  < 'ract iug prot ( ' iu  petirs . Domain iu formatiol l was < 'xtract ee l from I l l1< 'rPro 

[ 1 20] which is an intcgraL d c lataba'c of protein fami lies , domains and functional 

s i t (', . Cross " al i e la t iol l \\'a.<; performed with 'ubset ' of D IP lata (positive datasets) 

and randomly g(' l 1crated prot i l l  pai rs fr I I I  TrEl\ I BLj wissProt database (neg­

at iw dn.t a.'d s ) .  T h e  l l lct hod ;-tcb i 'wc l 0.50 sel ls it ivity al ld 0.9 ) specificity. The 

aut hors repOl ted that the P I D  matrix can also be used in t.he mapping of the 

g nome-wie le int eraction n t.works . 

P reS P I :  

Han e t  al. [ 1 2 1 .  1 22] propo ed a domain combination-based method which 

con id r8 all possible domain combinations as the basic units of protein int rac­

t ion · .  The domain combination interaction probabil ity is based on the number of 

interacting protein pairs containing the domain combination pair and th numb r 

of domain combinations i n  each protein .  The method considers the possibility of 

domain combination appearing in  both interacting and non-interacting sets of 

protein pair . The rank ing of multiple protein pai rs were decided by the inter­

acting probabil it ies computed through the interact ing probabi l i ty equation . 

The method was evaluated using an interacting set of protein pairs i n  yeast 

acquired from D I P  database [75] , and a randomly generated non-interacting set 

of protein pair . The domain information for the proteins was extracted from the 

PDB6 [ 1 20, 1 1 6] .  PreSPI  ach ieved a sen itivity of 0.77 and a specificity of 0 .95 .  

PreSPI  suffer from several l imit ations. Fir t ,  this method ignores other 

domain-domain interaction i nformation between the protein pairs. Second, it 

6 http://www.ebi .ac .uk/proteome/ 



a�sum 'S t hat onc domain combinat ion is in c lep ndent of anoth r .  Third . the 

mrt hod i� computat ionally ('xpensiY as all po sible domain combinat ions are 

cOl lsid r d .  

Domain Cohe ion and oupl ing :  

. l ang U al. [ 1 23] pro! osec l a domain ohesion and upling (D  C)-based 

PP I  pred ict ion met hod using ( 1 1 ( ' information of intra-prot.ein domain interact.ions 

and iut r-prot in domain interactions. The m t hod aims to id ntify vyh ich do­

mains are im'oh' d in a PP I  by d termining th probabil ity of the domain ausmg 

the proteins to intera t i rrespective of th number of participating domains. The 

coupling po\\'ers of all domain interaction pairs are stored in an in tera tion signif­

icance ( I  ) mat rix which i used to predict P P I .  The m thod was valuated on S .  

ere\' lsiae proteins and a h ie\'ed O .  2 sensi t ivity and O. 3 specificity. The domain 

informat ion for t he proteins was ext racted from Pfam (http://pfam.sanger. a  · . uk) 

[-19] , which is a protein domain fami ly database that contains multiple sequence 

alignment of common d main famil ies .  

MEGADOCK: 

Ohue et aZ. [ 1 2-!] developed :\ I EGADOCK as a protein-protein docking 

oftware package using the real Pairwi e Shape Complementarity (rPSC) score. 

Fir t .  t hey conduct ed r igid-body docking alculat ions based on a simplified en­

ergy function consid ring shape complementaries, ele trost atics. and hydrophobic 

interactions for all possible binary combinations of prot ins in the targ t set . Us­

ing this proce' . a group of h igh- coring docking complexes for each pair of pro­

teins were obtained. Then . ZRA� K [ 1 25] was applied for more advanced binding 

energy calculation and re-ranked the docking results based on ZRANK energy 

score . The deviation of the selected docking scores from the core distribution 

of h igh-ranked complexes was determined as a standardized score (Z-score) and 



.13 

W<1.'> us d to a�s ss p ,sible inlera t ions. Pot ent ial complexes t hat had no ot her 

higlH.;coring int prad ioll nearby \\' re r jocted using structural di ffer nces. Thus 

bindi l lg pai r '  t hat had at least. ne pOJ ulated area of high-scoring structur 

W01'(' consider d. � I EG DOCK has b en appl i d for PP I  pr d ict ion for 1 3  pr -

l eins of (\ bact erial chemot axis pathway [ 1 26 1 27] and obtain d a precision of 

OA .  i\ IEGADO K is avai lable at ht tp ://w\yw.bi .cs . t it ch.ac.jp/megadock . 

ne of t il l imitat ions of thi " approach is the demerit  of generat ing fabe­

po.' i t i \' s for the ases in which n similar st. ruct.ur s are seen in known complex 

st.rue( urc databases. 

leta A pproach: 

Ohlle et al. [ 1 2  ] propos d a PPI prediction approach based on combining 

template-based and docking method . The approa h applies P R IS]'v l  [ 1 1 0] as 

a templat -mat.ching method and lEG DOCK [ 1 2.1] a: a docking method.  A 

protein pair is considered to be interacting i f  both PR IS1 I and ?--. I EGADO K 

predict t hat this protein pair interacts . "When appl ied to t.he human apoptosis 

signaling pathway, t.he method obtained a precision of 0 .333, which is h igher 

than that achieved using individual meth ds (0 .23 1 for P R IS I and 0. 145  for 

)' IEGADOCK) .  whil maintain ing an F 1  of 0.2 5 comparable to that obtained 

u ing individual method (0 . 296 for P R IS1 I ,  and 0 .220 for 1 IEGADOCK ) . 

)' Ieta approaches have already been used in the field of protein tert iary 

st ructure prediction [ 1 29] , and crit ical experiments have demonstrated improved 

performance of Meta predictors when compared with individual methods . The 

)' Ieta approach has also provided favorable results in  protein domain  predict ion 

[53] and the prediction of disordered regions in proteins [ 1 30] . Although some 

true po, i t ives may be dropped by this method, the remaining predicted pairs are 

expected to have higher rel iabi l ity because of the consensus between two predic­

t ion methods t hat have different characterist ics .  



:0. .1ach in  L arn ing ructur - Bas d Approach 

Exampl s of � l L  st ruc tur -based approaches ar Maximum Likel ihood E -

t i l l lat ioll [ 1 3 1 ] .  R and I I I  Forest [ 9] . 'lncl I'u t2 t .  

ILE :  

Deng d al. [ 1 3 1 ]  d veloped the  I aximmn Likelihood Estimation ()"1LE ) 
l l let hod \yhich is bas c l  on the assumption that two proteins int ract if at least 

one pa ir of domain ' of t h  two proteins intera t .  It infers domain int ractions by 

ll l cl.'cimizing the l ikeEhood of the observ d protein interaction data. The probabil­

i t ies of int ra Uon b tw en tw domains (only singl -domain pair is considered ) 

al' opt imiz d u ing the xpe t at ion-maximization (E1 1 ) algorithm. They used 

a mhin d interact ion data which wa experimentally obtained through two hy­

brid assay on accharomyces cerevisiae by Uetz et al. [ 1 32] and It t al. [ 1 33] . 

Th protein domain inf rmat ion were collected from Pfam database [ 1 34] . 

The basic a umption of th is method ignor th following 1 iological fac­

t OL' . Fir 'L the method assume independence of domain-domain interaction . 

Howey 1" , t he fact that two domains interact or not may depend on other do­

main in  t he am pr tein or other environmental conditions. S cond, although 

the method id nt ified domain that coexi t in prot ins and merged them as one 

domain, there certainly exist many domains who e fun tions depend on other do­

main in t he same protein .  Third, the idea of using domain-domain intera t ions 

t o  predict protein-pr t ein interactions assumes that some ubunits with special 

tructur ar essential to protein-protein interactions. These su1 units may be 

di ffC'n'nt from PFA1 1  domains obtained through multiplp alignments. Fourt 1 1 ,  

the method used P FAl\1-B domains in  the sam level a the PFAM-A domain . 

However. PFA� l -B domain ar shorter and les known than PFAM-A domains 

and ther fore. their roles in protein-protein interactions may not be the same. 
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R andom For t :  

'hell aI ld Li l l  [ )9] intr oue cl a domain-bas d Random For t PPI  pr dic­

tor .  Protein pairs wcre charactcrjz d 1 )' t h  domains pxist ing in ach pr tein .  The 

prot ein domain information wcr coIl ct c l  from Pfam databas [ 1 34] . Each pro­

t ein pair was repr sel lt d by a vector of feat ures wh r each f ature orr sponds 

to a PEam domain .  I f  a domain exists in both proteins. th  n the as oeiated fca­

t nrc \'alue i 2 . If (,he domai l l  exists i l l  one of t h  tv;o proteins, hen i ts associat d 

feature value is 1 .  I f  a domain does not. cxists i n  both proteins, then th fea­

t ure "alue is O. Th 'e domain f atur s wcr used to train a Random Forest PPI  

I e  s.1fi 1' . Th random d ci8io11 forest const ruct many I cision trees and each is 

grown from a different ub et of t raining samples and random ubset of f atur 

and t he final las ificat ion of a given protein pair is determined by majority vot es 

among t i l  classe 1 c ided by the for st of trees . 

\\'hen evaluated on a dat a et containing 9 34 yeast protein interaction 

paIr among 371 3  proteins. and 000 negat ive randomly gene rat d samples, the 

method achieved a n i t ivity of O. and a specificity of 0.64 . . Yea t PPI  dat a was 

coIl cted from the D IP  [75 . "2] , Deng et  aZ. [ 1 3 1 ] , chwikowski et  al. [ 1 35] . The 

dat.a et of Deng et aZ. is a combin d interaction data experimentally obtained 

through two hybrid a says n accharomyc cerevisiae by Uetz et aZ. [ 1 32] and 

I t o  et ai. [ 1 33] . Schwikowski et a l. gather d their data from y a t two-hybrid, 

biochemical and genetic data. 

R andom FOl' ( , -t das - i fi ( 'l' has s( ,vcral advantages. I t  is relat. ively fast ,  sim­

ple, robust to out l iers and noise, easi ly paral lelized , avoids ov rfitting, and per­

form wel l  in many clas ification prol 1ems [ 1 36, 1 37] . Random Forest show a 

ignificant performance improvement over t he ingle t ree classifier . It interprets 

th importance of t he features using measures such as decrease mean accuracy 

or Gini importance [ 1 3  ] .  RF b nefit from the randomization of decision tress a 

they have low-bias and high varian e .  R andom For st has few parameters to tune 
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awl less c i<>pcnclel lt on t uning param t rs [ 1 3  . 1 40] . How ver. the computat i  nal 

cost of Ran I 1 1 1  Forest increas s a.s the number of g 1 1  rat d t ress increase::;. OI le 

of t he '  l imi t ations of t his approach is that PPI prediction lepend on domain 

kI IOWl('c lgt' so prot ins \yithout domain informat ion 'cumot provid any us ful in­

format ion for predict ion .  Therefore. the mcthod exclud d the pairs where at least 

one of the proteins has 110 domain information. 

Struct2Net : 

Singh ct al. [ 1 4 1 ]  introduced truct2::-J t as a structure-based PPI  predic­

t r .  The met hod pred icts intcractions by threading each pair of protein sequence 

int potential stru ture in the Prot in Data Bank (PDB) [ 1 1 6] .  GiYen two pr -

tci l l  ::; quences (or one sequence against all sequences of a species ) ,  Struct2Net 

thread ' t he equcnce to all th pr tein complexe in the PDB an 1 then chooses the 

be ·t potent ial match . Based on th is match , it u es logistic  r gression t chnique 

to preclict \"hether the two proteins interact. 

Later on.  i ngh et  al .  [ 1 42] i ntro luced Struct2 et as a web server with 

mult iple querying options which is ayai lal le at http: //struct2net.csai l .mit .edu.  

l,-::;( 'rs C<111 rrt ri ('V( ' Yeast . fly, and human PPI prcdicL iOllS b y  gCl l t '  name or iden­

t ifier while th y can query for proteins of other organisms by AA sequenc in 

FA TA format . truct2 t returns a list of interacting proteins i f  one protein 

equence is provided and an interaction prediction i f  two sequen es are provided . 

\YI H'l l  ('valuatrc l OIl yea't ,md flv prot ei l l  pairs, St ruct 2Net a ·hiC'\,es a rf'call of 

O. a with a precision of 0.30. 

A common l imitation of al l  structure-based PPI prediction approaches i 

the low coverage as the number of known protein structures i much maIler than 

the number of known protein sequences, and t herefore, such approaches fai l  when 

there i no structural template available for the queried protein pair .  Table 2 .5 

summar izes these structure-based approaches and compared them in terms of 
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Human Protein 
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Ba t rial protein 

(Ohu et aZ.  20 1 2 ,  
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D I P, Deng et al . . 
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Table 2 . 5 :  Structure-bas d PPl  prediction approaches . 

Several approaches for predict ing interactions between human and H lV 

proteins have been proposed. Tastan et  ai. [ 143] proposed a random for t 

cia ificat ion mod I for predicting H lV- 1 -human PPI . Dyer et ai. [ 1 44] proposed 

a SV11-based approach for predicting physical i nteractions betweel l  human and 

HlV proteins. 1 I ukhopadhyay et al. [ 1 45] proposed an as ociation rule mining 



t cchuiqu for cl isco\'Cring a s t f rul " among human and HJ\·- l pr teins. 

:\ lost of th d is('u-..; cl PPJ prediction m thods have th f llowing limit a-

tions: 

• Thoy ctfC bas d on previotdy idcnt i fioc l domains, and t herefore t hey cannot 

br applied when domain knowledge is not avai lable. 

• lt hough protein domains are highly informative for PPI  pr d iction , ot lwr 

sequence parts such as l inkers can a lso ignifical lt ly cont ribute t.o PPI pr-­

diction . 

• They have, in g neral , l imit. d apal i l i t ies to detect nov 1 interactions and 

to c liff rentiate t hem from false po i tj -ves [ 1 46, ] .  

I n  thi work ,  I d velop a compact and accurate approach that integrates 

domain-l inker predicti on with PP I  prediction based solely on protein primary 

'tructure information. This is achieved through introducing the con ept of amino 

acid (AA) compo it ional i ndex. The compositional index is deduced from the 

protein s quence data et of domain-l ink r 'egmcnts. Th compositional ind x is 

t hen c mbined with physiochemical prol rties to onstrnct a novel AA profile. 

A l iding window of variable length is used to extract the information on the 

dependencie of each AA and its neighboring residues . The ext racted informa­

t ion i then used to  train a machine-l arning classifier to predict novel domains 

and l inker . On e domain are ident ified within protein , protein int era tion 

can be predicted by analyzing their interacting domains. The proposed approach 

effi 'ient ly proce ses h igh-dim nsional multi-domain protein data with a more ac­

curate predictiv performance than exi t ing approach s. 



Chapter 3 :  Research Methodology 

Thi. chapter PI' yid s an Ycrvi w of t he r s arch method in e t ion 

3. 1 .  c l 'scribes t h  data e t · 1 l l  d'ct ion 3 . 2  and lefin s t 1 1  evaluation measures in 

'ec t ion 3.3 

3 . 1 Met h o d  O verview 

In  th i  work ,  I lev lop a compact and accurat approach that in t  grat s 

'tructural domain and i l lt er-domain l inker pI' dicti n with PPI  prediction based 

solely on protein primary structur information. The approach consists of two 

main stages: identify ing structural domains within protein sequences and predict­

ing P P I .  The fir t st age include. t wo main ontr ibutiolls. The first ontribut ion i 

predicting int r-domain l inker regions 1 y introducing t he conc pt of AA ompo­

'it ional ind x and refining Lh pr dict ion using S imulated Ann al ing. The com­

po i t ional i ndex of an amino acid represents the preference of this AA t app ar 

in  l inker region ba ed on it  frequencie in l inker and domain regions . The ec­

ond contr ibution is identifying structural domains based on inter-domain l inker 

knowledge by construct iag a protein profile that combines ;-u l l i l lO a i c l  COl l lpO­

sitional i ndex and ph)' iochemical properties and developing a machine-learning 

clas i fier for predicting novel domain and l inkers. In the econd tage w predict 

P P I  1 y characterizing tructural domai ns within proteins and analyzing their 

domain-domain int ractions. An overview of the m thod is i l lustrated in F igure 

3. 1 .  

Th two main tage of thi work, which are al igned to our main objective , 

can b summarized as fol lows: 

• Developing a novel method for identifying structural domains within protein 

sequ nces . This is achieved through the fol lowing st ps: 
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( l )  Predict ing prote ' in domain-l inker reglOlll:> by int roducing t h  ('011-

('( 'pI of AA composi t ional index and refining t.he pr d iction by Simulated 

Anl lcal ing. 

(2)  Dewdoping Ct machine- learning approach for predi t ing novel do­

mains and l ink rs : 

( i ) To include' mor biological k110wledg . t he composit ional index i 

('ombin('d wit.h AA physiochemical propcrtie t o  on, tru t a prot ein profile. 

( iz )  A l it l ing wind \V techniqu is applic I to extract the information 

on the dCI ndenci s of a h AA an 1 i t. neighbors. 

( w ) A Random Forest clas ifi r is developed to di t inguish 1 etween 

domain and inter-domain l inker r gions . 

• Dev loping a 11o\'el PP I  predictor : 

( 1 ) Charact rizing structural domains within prot in sequences. 

(2 )  IJentify ing interacting domains. 

(3) Pr dieting protei n  i nteract ions based on analyzing th ir interacting 

domain . 

To evaluate the p rformance of our proposed method and to compare our 

experimental re ult with other approach s ,  w used benchmark datasets along 

with ' tandard evaluat. ion measure . These datasets and evaluation measur s are 

de 'Cribed in fol lowing sections . 



3 . 2  D atasets 

3 . 2 . 1 t r u c t u ral Don�ains and I nter- D o ma i n  Li nker P re-

d i c t i o n  

To <.�nl luat e the per£ nnal lCC of the inter-domain linker prediction and 

,t nt hlrnl domain predict ion approach , two protein quell e datas ts were us d. 

The first dat aset is D '- 1 1 [45, 4G] which was u ed t valuat DROP [2 ] .  A ll the 

.'equenee ' in D - 1 1  wer cxtracLed from the non-redundant Protein Data Bank 

( nr-PDB) chain et 1 and contains 1 2 protein s quenc s including 2 1 6  l inker seg-

m nt '. By examining ach sequence arefully, we found that the assignment of 

domain '  in D -All dataset i inconsistence with the ones in  PDB.  vVe thus val i-

dated the domain and inter-domain l inker according to N CBI conserved domains 

databa e2 and nded up v,ith 1 40 sequences including 334 domains and 1 3 l inker 

egment' . The a\'erage numbers of AA residues in l inker segments i 1 2 . 7  with 

a tandard deviation of 13 .  and the average numbers of  AA re idue in domain 

egment are 1 ':1:7. 1 with a tandard deviat ion of 90. 1 .  

The protein sequences in th second set were extracted from the W I SS-

Prot databa e [54] and have te.� ted by uyama and Ohara [ 1 7] to evaluat the 

p rformance of DomCut . This dataset contains 273 non-redundant protein e-

quenee' including ':I: 6 l inker and 79-1 domain segment . The average numl ers of 

A A  re idue in l inker egments is 35. with a standard deviation of 26 . 7  and the 

average number of AA r sidues in domain segments are 1 22. 1 with a standard 

deviation of 1 36 .3 .  Therefore, about 5% (79-1 x 1 22 . 1 )  of the total AA r idue 

exi t in domain egments and only 1 5o/c (':I: 6 x 35 .5 )  are in l inker segments. The 

hvo datasets are summarized in Table 3. 1 .  

1 http://www.ncbi .nlm.nih .gov/Structure/VAST/nrpdb.html 

2 http://www.ncbi .nlm.nih .gov/protein 
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Data �et DomCut/ wiss-Prot 

11 fcrcl l(,c 

umber of protei l ls 

• UI l l  her of l inkNs 

• TumhC'r of domains 

A \'('[agr numher of AAs in l inkers 

140 

1 3 

3' 1 
13  

147  

t a 1 .  [45 , 4G] Suyama and Ohar [ 1 7] 

273 

.J. 6 

794 

36 

1 22 

Table 3 . 1 :  ' u1 1unary of lomain-l inker data ets . 

Tool 

PFam 

Re ource 

TIl Protein fam ily 

dat aha 'e 

Website 

http://pfam.xfam .org/ 

BI  The " ational C nt r for http: //www.ncbi .nlm .nih .gov / 

B iotechnology I nformati 11 

RC BjPDB PI' t in Data Bank http ://w\\.w .rcsb .org/pdb/home/home.do 

Table 3 .2 :  Protein 'D ols. 

Tahle 3.2 ummarize the protein resource and tool that we U d in val-

idating domain and l inker prediction .  

3 . 2 . 2  PPI P re d i c t i o n  

To eyaluate the performance o f  our PPI  predic ion approach , we used a 

dat aset containing 4 ,9 1 7  yeast Saccharomyces cerevisiae protein interaction pairs 

among 3 ,7 13  protein , and 4 000 negative randoml r-generated samples. Yeast 

PP I  data was collected from the D IP  [75, 82] ' Deng et ai. [ 1 3 1 ] Schwikowski e t  

ai. [ 1 35] . The datas t of  Deng et  ai . i s  a combined interaction data experimentally 

obtained through two hybrid assay on Saccharomyces cerevisiae by Ue z et ai. 

[ 1 32] and Ito et ai. [ 133] . Schwikow ki et  ai. gathered their data from yeast 

two-hybrid, biochemical and genetic data. As non-PPI  data are unavailable the 

negative samples were randomly generated. A protein pair is con idered to be 
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non-PP I  if i t  c loe,' not exi 't in t ll(' interact. iol l set . This data<;et was gat hered and 

us d bv ' lWll and L in [ ] .  Both the> posi t i \' and. negat iy  PP I  examples w 1'e 

( l ividcd evenly int o t rain ing and test ing data..'Sel s. 

We obt ain cl t 1 1(' domain informat ion of tllf protein pairs from the Pfam­

A reI ase 27.0:1 [ 1 47] using the ;.JCBI  BLA T OAp 1  [ 1 4  , 5 l .  149] s quence 

si l l l ilari ty scar 11 t ool .  

To yal ida! � our PP I  prcdi l ion , we used thr e Domain-Domain Intera tiOll 

(DDI )  dnt abatlcs; DO?\ I I NE, I D D I ,  anci 3did . DOJ\ I I  E5 [ 1 50, 1 2] is a databa..-; 

of domain i I l t ract ions inferr u fr m experim ,ntally characterized high-resolution 

3D st ructur ' in t he Pr tein Data. Bank (PDB)6 ,  ill aud ition to predicte 1 domain 

interact ion b ·  thirteen d iffercnt computational approaches u::,ing Pfam domain 

uefinit ion::,. D I\ I L  E cont ain a tot al of 26,2 1 9  D D I  pairs among .5AlO domains, 

out of which 6 ,634 are iuferred from PDB entries ,  and 2 1 ,620 are predicted by at 

lea t one computat ional approach . 

The integrated domain-domain interaction analysis system ( IDDI ) 7  [ 1 5 1 ] 

prmide 204 ,7 1 5  unique DDI  pairs with different reliabil ity ore::,. The reliability 

of t he predicted DDI pair ar determined by on idering t he confidence cor of 

t he prediction method , the indep ndence scor of t he predicted clat as ts, and the 

D D I  prediction score mea ured by different prediction methods. 

The database of 3D interacting domains (3did)8 [ 1 52] is a collection of 3D 

'tructure of domain-based interact ions in  t he PDB based on domain definitions 

from Pfam release 27 .0 [ 1 47] .  The 3did database contain ,65 1 DDI  pair . Table 

3http://pfam.sanger.ac.uk 

4 http://wv..·w.ebi .ac .uk/Tools/webservices/services/sssjncbi_blasLsoap 

5http://domine.utdal las.edu 

6http://www.ncbi .n lm.nih .gov /Structure/VAST jnrpdb .html 

' http://pcode.kaist . ac.kr jiddi/ 

http://3did . irbbarcelona.org 



: 3 . :3 SHIl l l l l  'Hizes t 11e .. e D D I dat abase . 

3did 

umber of DDI  pai r 

26 ,2 19 

20·l,7 1 r: 

.G r: l 

htt p:// e lomine . l l tdal la.c; .edu 

http://pcoel . kc'1i 't .ac .kr /iele l i/ 

htt p://3dic l . i rbbar :elona.org 

Tabl 3 .3 :  DDI dat aba '88. 

3 . 3  Evaluat ion Meas ures 

5 

Tb mo. t c mmonly u eel eyalua t ion met ri s in general classificat ion t a  'k 

an' accuracy (Ac) , r call ( R) precision ( P) , specificity (Sp) ,  F-mea nre , and 

Receiver Operat ing Characteristi ( RO ) . 

Ac = TP + TN 

TP + TN + F  + FP 

TP 

R = 
TP + F  

P =  TP 

TP + FP 

T iV  Sp = 
T + FP 

(3. 1 ) 

(3 .2 ) 

(3 .3 ) 

(3A) 

where T P. T IV, F P, and F N represent true positive, true negative, false positive ,  

and false negative, re  pect ively. 

The F-measure ( F l )  is an evaluation metric that combines pr cision and 

H)call into a :ingl(' value. It is defined a t lw harmonic mean of precision and 

recall [ 1 53 . 1 54] : 

2PR 
Fl = 

P + R  
(3 .5 ) 
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Tlw Rf'c('iv r Operat ing Chara t cristic ( ROC) is a graphical plot t hat 

i l lust rat e':' t he dclssifier performanc . The curYe is (Tpated hy plot t ing t he t rue 

pOSI t IVe' ra t p  (sC ' l lsit ivity ) against the false posit iv rate ( I-specificity)  at various 

th l' shold s( 't t ings. The' ROC curve is t hus t he sen ' i t iv i ty as a funct ion of false 

posi t iw rat C' . Each predi t iOl l  l'C 'sult or inst ance reprC'sf'nts one point in th ROC 

space. The' bC'st possible prediction method would yield a point in the upper left 

corner of t he RO spa e,  r I resent ing 1 00% s n itivity (no false negatives) and 

100(�f .' l)('c ificity (no false po i ive ) . Classifier accuracy is measured by the area 

under t he R mv (A  C) ,  and ther for(', AUC is us d in model comparison. 

An ':trcn of 1 represents a perfe t t t while an area of 0 .5 represents a worthless 

t e�t. [ 1 55] . 

,y u cd recall ,  preci ion , F-mea ure, and AUe to evaluat our first and 

second contributions of domain and l inker predict ion approaches. Our third con­

tribut ion i evaluated and compare 1 with existing PPI pr dict. ion approaches 

u ing ben i t ivity ( 1' call ) and specificity. 

In t he proceeding chapters the proposed method will be d iscussed in de­

taib.  Chapter 4 pre ent our first contribution in domain-linker prediction u ing 

AA compo i tional index and Simulated Annealing. Se tion 4 . 1 introduces the 

propo ed formula for AA compo itional index. Section 4 .2 describes the use of 

imulated Annealing algori thm to refine the domain-linker prediction by detect­

ing the optimal thre hold values of AA composit ional i ndex. Chapt r 5 presents 

our econd cont ribution in developing a machine- learning approach for predicting 

novel domains and l inkers. Chapter 6 presents our third contribution which is 

predicting protein-protein interactions based on their ident i fied domains. 
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CIS A :  Inter- Domain Linker 

Prediction Using Composi­

tional Index and Simulated 

A nnealing 

In  thi' chapter. we i l ll rodu ur approach for predict i ng domain-linker 

region ' u ' ing A Composit i nal Index Hnd imulated Anneal ing which we call 

it I A .  CI A consists of two main st ps ; calculating the AA comp sitional in­

dex (eI )  for the protein s quence of int rest and then applying th simulated 

Annealing ( A) algor i thm t o  r fine th I r dict ion by detecting t h  optimal et 

of thr shold value' that d istinguish b tween lomains and l inker regions. I n  the 

fir. t . t pp ,  l inker and domain sq!,llll ' l l t s ruT ext ract ed from t he proteiu SC'qUC'l lU' 

data et and the frequencies f AA appearances in  l inker segments and non-l inker 

segments are computed. Then , t he A compo ition of the query protein sequence 

i� omI uted , and finally t he AA compo i t ional i ndex i cal ulated . I n  the second 

t-tcp. A i s  appl ird to find the opt imal s d  of t hreshold val l le's t hat. separate' l i l l ker 

�egment from non-l inker egment through t he compo i t ional index profile. An 

overview of CISA is i l lustrated in F igure 4 . 1 .  Both steps ar described in the 

pr ceeding ection . 

4 . 1  Composit ional I ndex 

From each protei n  sequence S i  in the protein sequ nces database 3 *, known 

l inker segments and domain segments are extracted and saved in two data ets Sl 

and 32 , respectively. The comI ositional index Ct of the amino acid i is calculated 

to represent the preferenc of this amino acid residue to appear in l inker segments: 



Prote i n  seq uence dataset 

1 ! 
Ext ract l i n ke r  Extract struct u ra l  

segments doma in  segments 

1 1 
Ca l cu late the com posi t iona l  i ndex (CI ) }-

! 
F i nd  the opti ma l  set of t h reshold va lues  

us ing  SA 
! 

Pred ict l i n ke r  segments 

Figure 4 . 1 :  CIS OVC1"Vlew . 

ffinker k 
c - -In(  ) . ( - ) 1 - fdomam a 

! I 

5 

Query p rote i n  

sequence 

Compute the 
Amino Acid 

Composit ion 

( .1 . 1 ) 

v,'her ffmka and fldomam are t he frequencie of amino acid residue i in l inker and 

domain r gion , re p ctively. This is in pi red by Dom ut method [ 1 7] which was 

discus 'ed in ection 2 . 1 . 1 .  How ver, th information encoded in the l inker in lex 

(L I )  i '  in ufficient to preci �ely predict link r egm nts .  Therefore, we used the 

compo i t ional index proposed by [ 1 56] in which AA compo itional knowledge was 

combined . The typical AA Composition (AAC) contains 20 components each of 

",hie h reflec t ,  t h(' normalized occnrrenc( '  fr( 'ql l C ' l lcy for 011 ( '  of t h(' 20 natural A s 

in  the query sequenc . The A AC in  this case is denoted by a1 • Since domain 

region' ar usually longer than l inker regions, AA for th AA residue ar mar 

l ikely t o  appear in domains is expected to be greater than those of linkers . So 

multiply ing L I  by AAC as in [37] wil l scale l inker regions les than domain regions . 

In contrast, LI  is now multiplied by .!. ,  where k is a constant and therefore, LI  a, 

of l inker regions will be scaled up greater than LI of domain regions. In this 
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en:-! ' l inker region:" will han> de per trough ' in ( he c mpo - i l ional mdex profile 

t ha I !  ot l H 'r r gions. Each r sidu in th query prot ein sequC'nce is represent d 

h.\' i t s corresponding composit ional index Ct . ubscquently, the incl x va l ll  s are 

ct\'C'rngt'd owr a window t hat sli< 1(,8 al ng t he length of the sequen ' . To calC'ulat 

(. 1 1  awrage com posi t iona l index value T i l) at posit ion j in a protein scquen e s of 

length L residues, l lsing a ::;lidi ng window of size t i ' ,  we followed [ 1 56] and applied 

t.he following forl l lula :  

1 � j � ( w - 1 )/2 

",J+(u-- l ) !2 . 
� ' =J - (U' - I )/ 2 � ." 

J+ (w-l )/2 (w  - 1 ) /2 < j � L - (w - 1 )  /2 ( � , 2 )  

L J + l+(w 1 )/2 L - ( w - 1 ) /2 < j � L 

where L is the length of th protein  and 31 is the amino acid at position i 111 

protein  equence s .  

ince u iug a fLxed sliding window size could be biased towards a fixed 

l ink r region length ,  various odd window izes ar examined. The averaging is 

also carried out over t his range according to the fol lowing formula: 

",, (p-b)/2 H2l 
0 [= 0 rll) . rnJ = 
( (  - b) /2 ) + 1 ' J = l , . . . , L  

\Vh re b and e are odd averaging window sizes, and 3 � b < e .  

( 4 .3) 
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4 . 2  D et ct i ng the O p t i mal S t o f  T h reshold Val­

u es Using S im u lated A n n ea l i ng 

Simulated l l lwaling is a simple easi ly-applicabll' optimization t echniqu 

int rodu 'pel bv Kirkpat rick t aZ.  [ 1 57J as a comput ational analogous to t he an­

nraling procc.'s whi h is lh h aUng and control led ooling of a metal to in rease 

t he sizc of it cry 'tal and reduce th ir d fe ts .  The function to  b ptimized in 

is called the en rgy, E(.r) , of th tate X ,  and during that ,  a param ter T, the 

computati onal t mperature, is lowered throughout th I roce s .  SA is an iterati\'(' 

t rajectory de cent alg rithm that ke ps a ingle candidate solution at any t ime 

[ F  , 1 5 ] .  

The major advantage of A is its al i l ity to avoid being trapped in local 

opt ima because th algorithm appl ies a random earch which does not only ac­

cept change that improve th objective functioll ,  but also some changes that 

temporarily \yor 'en it [ 1 60 ,  1 6 1 J .  Geman and G man [ 1 62J presented evid nee 

that A guarantees t o  converge to the global optimum if the cooli ng s hedule 

is adequately '1 \\'. On th other haneL alamon et aZ. [ 1 63] and I ngber [ 1 64] 

reported through experience that A shO\\'s a very' effe t iYe optimization perfor­

mance even with relati\'ely rapid cooli ng schedule [ 1 65J . The run t ime of SA has 

the compl xity of 0(n2 log n ) )  [ 1 66J . 

A i commonly found in  industry and I rovides good optimization results 

[ 1 5  . 1 59J . It has been examined and showed \\' 1 1  performances in a variety 

of ingle-obj ctive and multi-objectiv optimizat ion applications as reported J y 

se\'eral 1'e ear'chers. Som of the e applications are wir 1 ss t el communication 

network [ 1 65 ,  1 59, 1 67] ' nurse scheduling problems [ 1 6  J .  h igh-dimensional and 

complex nanophotonic engineering problems [ 1 69] . pattern det ction in seismo­

gram [ 1 70] . dynamic pathway identi fi at ion from gene expression profil s [ 1 7 1 ] ,  

eukaryotic c 1 1  cycle regulation [ 1 72] , g ne network model optimization [ 1 73] , 
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bid l ist ('ring of g<>n exprc'ssion lat a [ 1 7  elJ . and multiple biological sequence al ign­

l I lent [ 1 75. 1 7  , 1 77J . H '" vrr ,  examining in prot in structure problems i '  

I lot well addrrssC'd in the l i terature. Due to this r ason , in addit ion to t he pr -

viou 'ly rncntiOlwd , f a ture , \\'e ha\'e de id d to examine 

PI' d iction. 

in domain-linker 

J\S I I I  ntiol lcd arli 1' , a dynamic threshold value is r qui red to separate 

domains from l ink r r gion, . In our case, the compositional index values m W  , J '  

are used in conjunction wit.h ' algorithm. This is done by first dividing ach 

prot in sequence into chunk . tart ing from a random seed 50 which is a s t of 

t hreshold " alues of tbe compositional index of these cbunk , SA will attempt to 

s i l l lultaneously ma.ximize both pr diction recall R(5) and precision P(5) , which 

can be consider d as a multi-objective optimization problem with both R(5) and 

P( ) are the fitness functions and the et of threshold values , 1  the andidate 

solution 'pace, or indiyidual representat ion . That is : 

mCL\: y = 1(5)  == (R(5)  and P(5) )  (4 . 4 )  

Preci ion and recall hould be l1lCLximized simultan ously. A perfect pre-

C1 'IOn core can be achi yed by simply assigning » domain" to all the prot in 

�equence residues (F  P = 0) , and a perfect recall score can be simply achieved by 

a 'signing " linker" to all residues (F  = 0) . How ver a truly accurate predictor 

should as ign the correct categories and only the correct cat gories by maximizing 

precision and recall at th ame time, and accordingly, maximizing the F l  score. 

In our case, SA will accept a transit ion from state 51 to another state 52 

i f  52 dominate 51 , that is i f  52 i not worse for all objectives than 51 and wholly 

b tter for at 1 a.st one objective. In other '>vords, SA will accept a transition 

that leads to one of the following three conditions: an increase in both re all 

and precision , an increase in recall i f  precision is not changed, or an increase in 

preci ion i f  recal l  i not changed . That i : 
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or (4 .5 )  

' A  wi l l  also accepL a t ransition from st at.e Sl  t o  S2 i f  S2 do s not domi­

na t e 1 with a probabil i ty of (' ( :c,.f/T) where 6J = f(S2 )  - f(Sl ) and T is the 

( emp rat.nrC' paramet r which expect d to  b reduced over t ime during t.he pro­

cess and ther fore, the poosibil ity of accepLing such transit ions is decreased . The 

l l lCt hod is summariz cl in Algorj thm l .  



Algor ithm 1 In ter-Domain Linker Pr diction Optimization 
'c( So 'l� an in i t ial andicla te  solution : 

Diyidc t he PI' t ' in s quel lce into chunks 
l\ssign a random in i  tial threshold of ach chunk 

'alc ulat r I 
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' l assif)' acll A as l ink 'r ( 1 )  or domain (0)  according to its CI valu with 
respect to the COlTl'SP nding chunk threshold 

alculat c> t he fit ness fUl lct ions R(So )  and P(So )  
To f--- 1 1 1 1  t ial t mpc rat u re 
(l f--- Temcrature decay 
� 1 a.ximize the fit ness function : 
for 71 = 1 t o  Sumbcr of Chunk do 

T f--- Temp rat u re 
repeat 

:' 1ake a transit ion 1\': 
randomly inc I '  ase or decrease threshold of n 
S f--- Tr(So)  

Clas. i fy each A A  as l inker or  domain 
Calculate R(. ) and P(s) 

�R ___ R(S) - R( 0 ) and 6P f--- P(S) P(So)  
i f  (�R > 0 and 6P 2: 0) or (6P > 0 and 6R 2: 0) then 

accept tram:iition 
else if random [O ,  1 )  < exp( _ 6Ri�P ) then 

accept transit ion 
end i f  
T f--- Q x T  

u nt i l  stopping cri teria i met 
end for 
ret urn S as the set of optimal threshold values for the pro ein sequence chunks 

return R(S) and P(S) as the final recall and precision resp ctively 
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1 0  i l l l l:";( l'rlt ( '  t l ic i l l J pl m"( ' l T l C ' l l t  or our l l lodified 'ol J l } Josi t io l lal  i ndex OVf'I' 

hot 11 t he linkcr ind x of [ 1 7] and t lK' composit ional index of [ 1 56 ,  37] , three 

profilC's of c prot ein I m1 7.-A are plot t c l  as ShmYl l  i l l  Figur �1 .2 ,  The lau7.-A 

prote i l l  sequcllcc of hain A ,  Pit - l  f\ I ut antD A mplex has 1 .J6 A r � idues 

and cont ain::) an actual domain l inker located in the positions from 74 t o  1 09 

as r t rie\'ed from t he 1 at ional nter for Bi te hnology Information ( CBI ) 1 

nnd indicat ed by t he horizont al arrow in the figure. The figure shows that t h  

modifi d composit ional i ndex can separate linker regi ns from domain region 

more accurat ly and 'harply than thos of [ 1 7] and [37] . F igur 4 .2(c) how 

how the t rough in  t he l inker region is deep r than those of Figure 4 .2(a) and (b) , 

respectively. \Ve can al'o not ice that the profile in Figure 4 .2(b)  ha a second 

t rough indicat ing a false l i nker in t he r ight ide of t he profile whi h i deeper t han 

t he actual inker \; trough . 

Another example i i l lustrated in Figure 4 , 3  based on the I f6LC protein 

which ha 2 1 0  AA re idu and one l inker as retri ved from NCBI and indicated 

by the horizontal arrow. Figure 4 .3 (a) ( he l in ker i ndex of [ 1 7] )  and 4 .3(b) ( the 

compo it ional index of [37] ) how more than one trough indicating false l ink rs 

and the index values of these fal e l inkers are less than those of the actual l inker. 

However , F igure 4.3 (c)  clearly how that, according to our proposed modifi d 

formula, the re idue i n  the actual l ink r region have lower index values than 

those of o ther residu s which allmv to ea ily find a separation thre hold. 

A hown in  Figur s 4 . 2  and 4 . 3 ,  having a tatic threshold cannot precisely 

separate l inkers from domain regions , and ther fore, a dynamic thr . hold is 

r quired . \Ye applied t he SA t echnique to detect the optimal et of thre hold 

value' that will separates l inkers from domain regions along the pr tein s quenc . 

1 http://www.ncbi ,n lm.nih .gov / 
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Figur C! . 2 :  mpari on bet\veen (a) l inker index of [ 1 7] ,  (b) compositional in-
dex f [37] . and (c) t he l l10difi d composi tio l lal index profiles for 1au7  � 
prot ein .  
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F igur 4 .3 :  Comparison between (a) l inker index of [ 1 7] ,  (b) compositional in­

dex of [37] , and (c) the modified compositional index profile for l f6LC 
protein .  
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,Yr ya lnatrd th p rfonnanc f CI A u, ing DomCutl wi. '-Prot protein 

dat aset which wa pr par d by [ 1 7] using on -again t-all cro s validat i  n and ex-

plorcd diff<'l'ent chunk �iz � {:"". 10 .  1 ' . 3G } \\"h re 36 is th  av rag linker size 

wit hl l l  the dat aset . C I  \\'nh able to arhi \"€ an average r call o f  O. 9 .  preri i n 

of O. 0 and Fl -m asurc f O.  �4 on a Kin do\\' iz of 25 r sidu s and a chunk of 5 

r , icluE's Figure 4 .-1  pres nts t h  s valuat ion m t ries at differ nt chunk iz s .  

T 

0 9  -- PrecIsion .., ____ : ____ 
-=-+-F1 

0 85 

0 8  

o 75� 

0 7  

0 .65 

5 1 0  

• 

20 
Chunk size 

25 30 35 40 

Figure 4 ..J: :  Recall . preci -ion, and F l-measur at a window ize of 25 and at 
different chunk ize (5 to 36) using D mCut/Swi -Prot dataset . 

In the econd experiment . w valuated t he performance of our method 

on 1 5 1  protein equence of DS-All data et including 1 2 l inker and 332 domains. 

In t his experim nt DomCut data et was u ed to  generate the linker ind x of each 

AA before u ing them to predict t he domain-l inker region in DS-All dat aset . 

eyeral odd liding "'indow ize w in  th range of 5 to  25 AA are explored for 

comput ing t he composit ional index m�J according to  equat ion 4 . 2 .  It wa not iced 

that t he be t re ults were achieyed when w � 1 9  a hown in Figure 4 . 5 .  Further. 

we t . ted the averaging n1J over a range of 5 to  25 AA according to equat ion 4 .3 .  

Thi  proce t ake a longer computat ional t ime without a significant improvement 

in the predict ion accuracy as hown in F igure 4 . 5 .  A a result . we decided to  et 

w to  25 in a l l  of our experimental work . To opt imize t he scaling con t ant k .  
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We' e'xcull i lWd three \"alue { L  1 0 . lOa} .  Ba d n Equat ion 4 . l .  we found that 

Fl-i'cOH' is .'light ly higher wh n k = 1 00 t han k = 10, and ignificant l�' higher 

t han that C1t k = 1 .  

0 65 

0 6  

0.55 

0 5  

0 45 

- Recall 

0 4  -+- F1 

-- PrecIsion 

0.35 ---
5 

� 
7 9 1 1  1 3  1 5  1 7  1 9  2 1  23 25 avg 

Sliding window size w 

Figur 4 .5 :  R call . pre i8ion and Fl-measure ba ed on D -All data et by [45] 
and [4G . The slidino' ,,,indow ize w is et in the range of 5 to 25 AA . 
The awrage value of t he �liding windm,- izes (a vg) i al 0 included. 

\\'e hal' al 0 xplored sey ral chunk ize { 5 . 10 .  l 3 } ,  where 1 3  i t he av-

erage linker ize among t he data et . Figure -l .G present t hese evaluat ion metrics 

at different chunk ize�. \Ve were able to achie" e an average predict ion recall of 

0 . 7 , pr ci ion of 0. 79 and F 1-mea ure of 0 . 79 when t he chunk size wa et to  5 

AA long. 

A lthough our algorit hm elect a random chunk in t he init ial iteration. it 

can be ea i ly modified to  can t he prot in sequence from left to right in order 

to cowr t h  ''''hole chunk aero s t he chain. One of t he challenges t hat ,\'e faced 

during t he evaluat ion tep of t he algorithm is t he divi ion by zero during t he 

calculat ion of t he preci ion . Thi i normally happen at the early stage \" here 

no AA regions are predicted a linkers and. t herefore , the t rue po i t ive (TP) 

and fal e posit ive (FP) are zeros. To overcome t hi chal lenge. we designed t he 

algorithm in a wa ' to  reject such t ate and immediately performs a new t ran i t ion. 

Another challenge i t he fact t hat t he recal l  R(S)  and preci. ion P(S) are 
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Figure -1 .6 :  R cal l .  pr ci ion and F l-mea 'ure at a window 1Z of 25 and at 
differrnt hunk 'iz :: base 1 on D -All data,et . 

not cont inuou' fUl lct ions. In other 'words, a chang I II S (t h  e t  o f  t hre hold 

,"alue' ) lllay cau:;c a j ump in  t h  " alues of R ( S) and P(S) .  or it may cause no 

chang in both ,"alue . At t he ame t ime t he t ran i t ioll . t:"S hould be maint ained . 

\\"hich i '  a change in  a t hre hold o f  one hunk. wit h in a rea onabl range t hat we 

set to be 110 of t he cOlllpo� i t i  nal index range. Therefore. t he algorit hm should 

p rform �e" eral t ransi t ion t il l  i t  pa e from tat Sl to  a more dominant tate  

2 .  HO\yeyer. \"hi le performing. t he e t ran it ions. t:"R and t:"p wi l l  be  zero while 

t he algor i thm ha' not yet com: rged to t he global max imum. Therefore. ""e did 

not con -ider having � R  = 0 and :::"P = 0 a a topping criteria. In t ead , we et 

t he number of i terat ion to 20 per chunk . 

One of t he SA algorit hm i ue we had t o  deal with i t he random eed. or 

in i t ializat ion i ue. Depending on t he init ial tate. SA performs different ly and 

return different output . This is ue can be addre ed by set t ing a predefined 

in i t ial t hre'hold ,-alue for t he whole input equence re idues . \\ e set t his init ial 

t hre hold to be t he average val ue of t he CI as t his a'" rage value i omehow in  t he 

middle of t he CI profile which can help SA to  converge more efficient ly by eit her 

'tepping-up t he t hreshold i n  l inker egment or tepping-down t he t hre hold in 

domain egment . 
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Ba� d on t he D. - 1 1  datas L th  P rfonnanc of I A '\"a compared to  

t he current ly a\'aila bl domain l ink r pred ict ion approa 1 1  a Shm\"ll in Figur 

. f .  wa - ablr t o  outpc>rform 6 of t he .tat -of- th  -art domain-linker predi -

t ion approach s in t rm� of r calL pre i ion and F I -�c r . A shown in Table 4 . 1 .  

t he performance' of I A ""a ' a1. 0 com par d t t h  r cent pr diet or de\' loped 

by [ 1 7  J and DomCut based on t he \\'i s-Prot /DomCut dataset . CIS A Ka also 

able to 'h ,\' considerabl improvement in predict ion accura y. 

0 8  

0 7  

0 6  

0 5  

0 4  

0 3-

0 2  

0 1  

o elSA DROP 

_ Recall 
_ PreCIsion 
_ F1 

Figure 4 . 7: CI A performance compar d to t he t ate-of-t he-art pr di t or. 
ba ed on t he DS-A1 1  data et . 

Method 

CI A 

hatnawi and Zaki [ 1 7  

DomCut 

Recall Precis ion F l  

0 .56 

0 .54 

O. 4 

0 .50 

0 .67 

0 .52 

Table 4 . 1 :  CI  A performance comparison u ing S'\'i -Prot/DomCut data et . 

4 . 3 . 2  B i o logical Relevance 

To demonstrate t he performance of CISA. Figure 4 .  (a ) show t he compo-

i t iona1 i ndex profile for lau7...A protein equence in DS-All data et which contains 
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146 AA re�idu " and ha t,,'o domain and a domain-l inker in t h  region from ".f 

to  109, The figm a1. 0 sho\\' th opt imal thr hold valu achie\'ed b�' CI A. It i 

shown t hat t Il(> compo 'it ional ind x t hr • hold \'a 1 1.1e8 at l inker s gm nt a1' rai ed 

by thr algorithm \\'hile t hr shold valu of domajn are r duced . In t hi ca� t he 

composit ional ind x \'alu of a l inker region \Yi l l  b 10\\'e1' t han jt" a 0 iated 

t hr shold \'alne \\'hile t h  compo'it ional index valnes f a domain region \\'i l l be 

higher t han it - a�. 0 iat d threshold . and this, in t urn, improv the prediction. 

Thr three dim nsional 'truct ure of thi protein i shown in F igure. 4 .  (b) whi h 

�hOin, t h two domain" in red and green ret ri "ed from � CBI2 .  

[a] 

)( Ql o 
� 
iii c: 

1 8  

1 4  
' 2  

g 0 8' 
in o g- 0 6  
o J 0 4  

02  
01-

- Averaged composrtlonal ,ndex 

_ DynamiC threshold 

-0 2  5 10 1 5  20 25 30 35 40 45 50 55 60 65 70 75 So 85 90 915 100 1 05 1 1 0  1�5 l�O 125 1 30  135 140 145 
Ammo aCid residues 

Figure 4 .  : Protein l au7...A in  DS-All dataset which ha 146  AA re idues 
containing two domain . (a )  The composit ional index (CI )  profil (blue) 

and t he opt imal t hre hold values returned by t he algorithm (red ) .  (b) 
The 3D t ructure for th i  protein showing t he two domains. 

2http://Kww.ncbi . nlm,nih.gov / 
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l et nt in at ion of domain l ink r5 I cat ions i oft n the fir t t P in prot 1 1 1  
folding an I fUllct i n C1nnotat i  n� .  Anothcr exampl tha i l lu trate h '" CI A 

C111 1  furt h(,1'morp a. j. b in det ct ing imp rt ant d main.' by id nt ifying linkers i 

t Il<' d t cct ion of th1'c imp rt ant l lser\'at ive domain in t he brea cancer typ 

I (BR A I ) .'u�c('pt ibility pr tri l l  isoform .J [Homo �apien 1 which con. i. t of 759 

• s. Figurc .J .9  pI' scnt s t he composit i  nal index profile for t hi. prot in and t h  

t hr('shold "aluc. achi \' cl by CI A .  I i ' "hO\yn t hat the pro} 0 d alg rit hm can 

accurat e!\" d t eet t he domain l ink rs \\'hich 1 ads t t h  ident ificat ion of three im-

pOl·t ant domains. The first domain i R l X  G-finger domain whi 'h i a sp cializ d 

t"p of Zl l-fing r t hat 1 ind two atome of zin , in\'olv d in m diat ing protein-

protein int ract iOlL. and ident ified in protein \\'it h a ,vide range of funct ion. 

,'uch a "iral replicat ion. 'ignal t ran duct ion. and d ,·elopment . Thi domain is 

locat d at po it ions 23 to 6 . The ot her two domains are Brea t Cancer Suppre -

sor Protein (BRCA l ) carboxy-term inal domain ' .  They are found within many 

DXA damage repair and cell ycle checkpoint protein . .  Thes t ,,,o domain are 

10 ated in po�it ion from 5-16 to 620 and from 659 to 73 . r p ct i ,·ely. 
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- DyNlmic thr.ohold 
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Figure -1 .9 :  The CI profile ba ed on t he Brea t cancer type 1 u cept ibility 
prot in is hown in blue and t he opt imal t hre hold value achi ved by 
ClSA are hown in red. The t hree domains according t o  the :\CBI "s 
con efwd domain databa e are repre ented by t he green boxe . 
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Random Forest Approach for 

Domain and Linker Predic­

tion 

I I I  this chapter w pres nt our se ond contributi on which is id ntifying 

:Lrnclural domains ba,'ccl on l inker knowledg . To include hi logical knowledge to 

the compositional incl x which wa introduced in hapt r 4 "ve combine the com­

posit ional index "'i t ll se\'eral A phy ioch mical propertie to construct a novel 

protein profile . This profile is th n u 'ed to  build a ma hine learning classifier to 

predict 1 10\' 1 domains and l inkers. \\'e uti l iz a nature- inspired machine-learning 

rn d 1 call d Random Forest .  ection 5 . 1 de 'cri1 es the feature xtra t ion stage 

while ection 5 .2  describes th  R andom Forest model . Experimental r suIts are 

pres ntcd and discu ed in Section 5 .3 .  

5 . 1  Feat ure Ext ract ion 

To extract AA feature from a protein ,  a sl iding window t clmiqu is used . 

For each equence in  the protein data et . we l id an averaging window across the 

s quen e from the 1 -terminal to the C-terminal . A number of important features 

of a protein ,  located within the l iding window, are extra ted. These features are 

the compo it ional index which was introduced in Sect ion 4 . 1 ,  AA hydrophobicity, 

and other AA physiochemical propertie i ncluding side-chain charge, si le-chain 

polarity, aromaticity, size and electronic properties. 



73 

5 . 1 . 1  H yd roph b i  ity P rofi le  

I Iydrophobici ty  is a phy 'kal pr  perty of  a 'ubst an to  repel water and i t  

is a major fador in prot01n �t1'tbility. The hydrophobi effect play a key rol in 

t h0 spol lt aneous folding o[ proteins. I t  can be defined as the fr e en rgy required 

l o  ( ransfC'l' amino-a i e i  sic iC'-chains [rom cyclohcxane to wat r [ 1 79] . Table 5. 1 

il lust rat ('� hydroph bic i ty index in k ilo-calories ppr mole fOT ach of he twenty 

A s of I rot ('ins at a pH o[ 7. v ral research rs s lected hydrophobi i ty as 

the main feature among l l lal lY oth r properties in pI' t in structure pI' dict ion 

[ 1 7  , 1 0 ,  1 1 ,  1 2] . 

A mino H drophobic ity Ami no Hydrophobicity 
acid i ndex ac id i ndex 

I 4 . 92 Y -0 . 1 4  
L 4 .92 T -2.57 
V -1 .0-1 S -3 .40 
P 4 .04 H --1 .66 
F 2 .9 Q -5 .54 
:- 1  2 .35 K 5.55 
\y 2.33 N -6.64 
A 1 .  1 E -6 .  1 
C 1 . 28 D - . 72 
G 0.94 R - 1 4 . 92 

Tabl 5. 1 :  Hydrophobicity index (kcal/mol ) of amino acids in  a d istribution 
from non-polar to polar at pH=7 [ 1  2] . 

I n  l i terature, various hydrophobicity scale have been thoroughly exam­

ined for protein equellC' cIa sification and pr dict ion tasks. David [ 1  3] con-

eluded that the Ro e cale [ 1  4] was superior to all others when used for protein 

'tructme prediction . The Rose cale in  Table 5.2 is correlated to the average area 

of buried AA in globular proteins. However, Korenberg et al. [ 1  1] pointed out 

everal key drawbacks with Rose scale. Since it is not a one-to-one mapping, dif-

fprC' l l t  aUl ino-aciel S< ' C jUC ' I l C < 'S cal l have' id  ' l 1tical hydrophobicity profi les; the scale 

overs a narrow rang of valu s while causing some AAs to be weighted more 



A mino H drophobic ity Amino Hydrophobicity 
ac id ind x ac id index 

A 0 . 74 L 0 .  5 
R O .  :.1 K 0 .52 
)J 0 .63 :\ 1  0 .  5 
D 0 .62 F 0 .  
C 0 .9 1 P 0 .6el 
Q 0 .62 0.66 
E 0 .62 T 0.70 
G 0 . 72 W 0.85 
H 0 . 7 Y 0.76 
I 0 .  V 0. 6 

TahIr 5 .2 :  R se hydrophobicity scale . The 'cal is correlated to th averag 
area of buried in gl bular PI' t ins [ 1 2] . 

A mino H ydropho bic i ty Amino H ydrophobic ity 
acid i ndex acid index 

C 1 , l .0 0 ,0  G 0,0,0,- 1 - 1  
F 1 .0 , 1 ,0 , 0  T 0,0,- 1 ,0 ,- 1  
I 1 ,0 ,0 , 1 .0 S 0,0 .- 1 - 1  ° 
V 1 ,0 ,0 ,0 , 1 R 0,- 1 ,0 0,- 1 
L 0, 1 , 1 ,0 ,0 P 0,- 1 ,0 , - 1 ,0 

\y 0 , 1 ,0 , 1 .0 N 0,- 1 ,- 1 ,0,0 
� I  0 , 1 .0 ,0 , 1  D - 1 ,0 0,0 - 1  
H 0,0 , 1 , 1 , 0 Q - 1 ,0,0 ,- 1 ,0 
Y 0 ,0 , 1 ,0 , 1  E - 1 ,0 ,- 1 ,0,0 
A 0 ,0 ,0 , 1 , 1  K - 1 ,- 1  0 ,0,0 

Table 5 .3 : SARAH 1 hydrophobicity scale. Each AA is as igned a five-bit 
code in  de cending order of the binary value of the corresponding code 
where the right-half is the n gative mirror imag of the left-half. The 1 0  
m o  t hydrophobic residues are p o  it ive, and the 1 0  least hydrophobic 
residues are negative [ 1 2] . 
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]H'R\-ily t han other.'. To overcorn this prol l l l IS .  the ARAH 1 scale was intro­

dm f'd ) 1 J .  A 11 I I I  assigns t o  ach . A a unique fiY -bit sign d c de, wh re 

( 'xact ly lwo bi t s  ::1 1'( ' nOl l-zero, as i l lus rat cl i l l  Tabl 5 .3  wh re til right-half is 

t he IH'gat i vc mirror l l l lag of t Iw left-half. The t n most hydrophobic r sidu s are 

posit iw whilc the t ( l I 1  ICC1.st h.vdrophobi residues arc negativ . 

In t his work . We' xperimentally tested t I l  thre abm-e mentioned hy­

drophohicity scales wher 'AR H I  scc Ie show d a slightly I tt r predict ion ac­

curacy. Thus. \YC' l lsrd SARAH 1 in th con truct.ion of our AA featme set. 

5 . 1 . 2 P hysiochen1.ical P ropert ies 

In addi t ion t hydrophobicity, \V c nsidered several phy iochel l 1 ical prop­

C'rties of . As as f atures including electric charge, polarity, aromaticity, size, and 

electronic pr perty. AAs are categorized according to each physiochemical prop­

ert.v as in Table 5 .4  [ 1  5, 1 6. 1 7J . Each physiochemical pr p rty of an AA is 

based on its ' ide-chain propensity and ha it  own characteristics. Physiochem­

ical proper t ie play important role in r cognizing the b havior of the AAs and 

it interaction ' wit h  other AA . These interact ions have ignifi ant impact on 

the formation. fold ing. and stabil ization of protein 3D structures. For example, 

polar and charged AA ar able to form hydrogen bonds, and thus, they cov r 

the molecule surface and are i n  contact with solvent . Positively and nega­

tively charg d amino acids form alt bridges. Polar amino acids are hydrophi l ic .  

wh reas non-polar amino acids are hydrophobic, which ar used to twist prot in 

into useful shapes [ 1  ] .  

5 . 1 . 3 P rote i n  Sequence Representat ion 

Each equence in t he dataset is replac d by i ts corresponding properties; 

compositional index, hydrophobicity, charge, polarity, aromaticity, size, and el c-



Prop rty Value Amino acids 
Charge Posit ive H , K R 

Negativ D , E 
eutral 

Polat ity Polar C ,  D ,  E ,  H ,  K ,  :-J ,  Q, 
R ,  S ,  T,  Y 

on-polar A, F, G, I ,  L 1'. 1 ,  P, V, \V 
liphaticj Aromatic Aliphatic I , L, V 

romatic F H ,  VV , Y 
utral A, C, D, E ,  G, K , 1'. 1 ,  

N ,  P, Q R ,  S ,  T 
ize mall , G, P S 

I dium D. T 
Large C E, F, H I ,  K ,  L ,  

1'. 1 ,  Q, R V ,  'vV , Y, 
El ctronic trong dOllar A, D, E , P 

\ eak donor I, L, V 
eutral C, G, H ,  S ,  'vV 

\ \'eak acceptor F ,  i\ 1 ,  Q, T, Y 
trong acceptor K ='J, R 

Table 5 . 4 :  Amino a id  cla 'ificat ion ac ording to their phy ioch mical prop­
ert ies [ 1  5. 1 6, 1 7] . 
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t ronic prop n y. T11 s \"aln : are t h  n an'rag d oy r a "'indo\\' t hat slid along 

t h ll'ngt h of ach prot 111 qu nce . t art ing from t Il S-t rmillal t owards t h  

C-t rminal.  To calculat t h0 ayeragc feat m ,'alue. _\./ ' a t  p it ion j in a I rot eill 

:-. qu 11( '  . w.,ing H sliding "'indo",,' of ,.ize 1( ' .  we map feat ure '"Hlue' into number 

and t 11r11 apply t he fol lowing formula:  

1 '5: j '5: ( u - 1 )/2 

, ' U' _ '>. j 
"J +lU' - 1 )/2 
� 1 -C)- ( u'- l )/2 I" 

j (U'- l )/2 ( U '  - 1 )/2 < j '5: L - ( u - 1 )/2 ( ,5 . 1  ) 

L-;+l + ( u'- 1 )/2 L - ( u '  - 1 ) /2 < j '5: L 

\\'h r L i t he lengt h of t he prot ein equ0nce and l's! i t he f at ille yector for t he 

AA r sidue i "'hich i locat d at posit ion i in t he I rotein equence S. Figure 5 . 1 

depicts t he prot ein sequence repr ent a t ion by t he amino acid f at ures and t h  

liding ,,·indow . 

Protein Sequence Representation slidinc window 

Residue 

CO-"1posi tiona.l 
Inde.x 

SARAJil-llydro 

Polarl.ty 

ArOl!latic 

Size 

... A L f T V Q P l T V E D L C S T E E  I E Q C V L S G I P A N E M H K V Y C D P W T . . .  
______ domain _+ __ ... hnker _ ______ + domain ______ .. 1 { C O �l 0 1 -I 0 1 0 0 1 -I -I 0 1 0 0 -I -1 1 1 0 0 -I 0 0 1 1 1 -I 1 1 0 0 0 1 0 0 0 -I 0 0 ·1 1 0 1 ·1 0 0 0 

o ! 0 0 0 0 -I 0 1 0 0 0 0 1 1 0 0 0 0 0 0 -I -I 0 -I 0 0 0 0 0 1 0 1 0 0 0 ·1 0 ·1 0 1 0 ·1 0 0 1 0 ·1 1 a 
o ::. -1 ·1 a 0 0 0 1 -I 0 -I 0 1 0 -I  ·1 -1 -I 0 0 0 -I 0 0 0 0 0 ·1 0 0 0 1 -I 0 0 0 0 -1 -1 0 1 0 a 1 0 0 0 0 -1 

1 0 0 0 0 -1 -! !. 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 -1  1 0 1 0 -1 0 0 0 -1 '1 1 -1 1 0 0 0 1 0 0 0 0 0 ·1 1 0 

1 0 0 ·1 1 0 0 0 0 -1 ! 0 -1  0 0 0 ·1 0 0 1 0 -1 0 -1 0 1 1 0 0 0 0 1 0 0 -1 0 0 1 0 0 1 0 0 1 1 0 -1 0 0 -1 
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Figu re 5. 1 :  R epre ent at ion of prot in sequence by AA feat ure and sliding 

window . E ach protein i replaced b '  its corre ponding AA composi­

t ional and phy iochemical propert ies. The e property value are t hen 

averaged oYer a '\vindmv t hat l ide along t he lengt h of th prot ein se­

quence. 
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5 . 2  Random Forest Model 

R and m For s t  ( R F ) [ 1 36] i s  a n  en ' mble If'arner t hat o n  t ruct a mult i-

t ud of dC' i ion t 1' cs \\'it h randomly elect d f at me. during t raining t im and 

out put s t he cla. s t hat is th mod of t h  l a  s out put by incli\'idual t rees. Each 

cleri. ion t ree grow a' foll \\'s: f r a t raining et of X ('a and jJ \·a.rial Ie . am-

pIc Il  cas s \\-it h repla ment fr m t he original dat a to gro,,' t he t ree. A number 

171 « .\ 1 i 'P cified such t hat at each nocle m \'ariabl are 1 eted randomly 

to b('�t spl it t he nod . Each t Ie grows a large a pos ible. The rror of R F  

depC'l1ds o n  t h  .'t r  ngt h o f  e a  h individual t r  e and t he corr lat ion bet\\' e n  t h  m 

[ l c  ] .  R F  algorit hm i '  d pict d in Figu.re 5 .2 .  

c 

c 

Begi n 

Chose trai n i ng 
data s u b set 

top cond,tion 
rolds at each 

rode? 

,.. 
E n d  

Y e s.  

C h o se vari a b le 
s u b set 

y 
Sample data ( 1 )  

Chose th e best 
sp lit 

Figure 5 .2 :  R a ndom Fore t A lgori t h m  

D ue t o  i t  averagll1g t rat egy. R F  c l a  ifier i robust t o  out liers and noise . 

avoid ov rfit t ing.  i relatively fast . simple. easily parallelized , and performs w 1 1  

in  many cla sificat ion problems [ 1 36 .  1 37] . RF hows a significant performance 
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imprm' III nt o\"(�r t h inglf' t r  la�'�ifi 1-- . uch as CART and C.J . 5 .  R F  model 

intcrpr t t he import an 'c of the f atur USl l1g mea ur uch a de Tea 'e mean 

cH Turan' or GllI I import ance [ 13  :)] . R F  hen fit from the randomizat ion f d ci ion 

tn\ :-;  as t 11<')' hm' 1 ,,,-bia and high ,'arian e .  R F  ha f w parameter to tune 

anel 1 s. c1 p nd nt on tun ing parameter [ 139 .  1 .J0] . 

EILemble 111 t hods including R F . bagging, and 1 00 t ing hay b en in­

C1' nsingl\' applied to bioinf rmat ic , \\Then compared to bagging and boo t ing 

1 1-; 1 11hlc 1 1 1  t hods . R F  ha a unique advantage of u ing mult iple feature ub­

s h ,\'hich is well 'uited for high-dimen ional dat a a demon trated by everaJ 

hi informat ic studies [ 1 90] . Lee t al. [En] compared t he en emble of bagging, 

hoost ing and R F  using t he ame xperiment al et t ing and found that R F  is t h  

most succes�ful 011 . The experim nta1 re ults t hrough ten microarray dat a ets 

in [ 1 92] report d t hat R F  i' able to  pre erve predict ive accuracy whil yi Iding 

smaller gene �ets ompared to  diagonal l inear di 'criminant analy i . k�::\ .  S\,;-' 1 .  

�hrullken centroids ( C) .  and k::\::\ with feature sele tion. Oth r ad\'ant ages of 

RF  such a robu tne to  110i e .  lack of dependence upon t uning parameter . and 

t he computat ion peed hm'e been verifi d by [ 1 39] in cla i fying SELDI-TOF 

prot omic data .  \\TU et at. [ 1 93] compared the en mble methods of bagging. 

boo t ing. and RF to  individual cla ifier of LDA. quadrat ic di criminant analy-

i . k::\::\.  and S\,\1 for \ IALDI-TOF (matrix as i t ed la er de orpt ion/ ionizat ion 

with t ime-of-flight ) data cla ificat ion and reported t hat among all methods R F  

give t he lowe t error rate with t he mallest variance. R F  also ha bet ter g ner­

alizat ion ability t han Ababoo t en emble [ 1 94] . 

Recent ly. R F  ha been ucce sfully employed to  a wide range of bioin­

formatic problem including protein-prot ein binding i te [ 195] . prot in-protein 

interact ion [ 9 . 1 96] . protein di ordered region [ 1 97] . t ran membrane helix [1 ] .  

re idue-re idue contact and helL x-helix interact ion [ 1  9] , and solvent acces ible 

surface area of T;" 1 helix re idue in membrane protein [ 1 9 ] .  
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In our a . t he f atm y ctor const ru t d in he la t �ect ion i � u, d to 

tn-lin the RF ·la�. ifier . At ach node f \' ry t r  . a munb r of f atmec ar 

ralldomh' . leetoo and th f at m \\'hich an bet t r plit the dat a et i ho n 

among them. "'c � t th  numb r of sel c t  1 f at ures at ach node for building th  

t ree:::. . m .  to ( lo.CJ2 ( l l umber of aUribuf s )  + 1 ) a r commended by [ 1 36] . Dming 

t8�t i l lg. each test I oint i ,imult an 1.1 'l.Y pUc h d t hrough all t r  unt i l  i t  reache 

the COlTc"ponciing 1 aye \\'hich can b eit h r domain or l inker and . in t urn .  R F  

choo,(',' th  clas�ifieat ion wit h the mo t \' t s from all t he t r  ' 

5 . 3  Exp eriment a l  Res u lts and D iscussion 

Each AA re,idue in e\' ry protein s quence i represented by it corre-

ponding featur \'alues. Th . e feature are t he compo i t ional index that was 

int roduced in ect ion -± . l .  AA hydrophobicity. and oth r AA phy iochemical 

prop nie including ide-chain charge . ide-chain polarit I .  aromat icity. ize. and 

electronic propert ie . The \'alue are t hen ct"v raged OY r a window that lide 

along t h  length  o f  each protein 'equence according to Equat ion 5. 1 .  

To find t he opt imal averaging window size . we t e  ted odd " 'indo\\, lze 1 11 

t he range of 7 to -15 re-idue at randomly selected 50 protein equence from D -

Al l  data� t [2 1 and anoth r randomly elected 50 protein e luenc s from D mCut 

dataset [ 1 7] .  and t hen compar d t he predict ion performance at these windo"v' 

in  t erms of recal l .  preci ion . and F 1 - core. Figure 5 .3 depict t h  performance 

mea 'ure at different liding window when applied to t he 50 prot ein e IU n e 

of D -All data et . Figure 5 . -1 how t hese predict ion m a me at different l iding 

,,'indow when applied to the 50 protein qu nce from DomCut data et . A en 

in  th  se t,,·o figure . t he window ize of -1 1 howed th  highe t recall . preci ion 

and F-mea me on both dat aset . \\'e thu t t he averaging window ize to  .,1 1  to  

obtain the  final experimental re  u l t  . 
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\\'C' . t the numbC'r of "el ('ted feat ur " at ach nod for building the t ree" 

TIl . to ( /ogA n u rn bc r oj at t r ibute5) + 1 )  a '  recommended by [ 1 3 ] .  \Y examined 

!:'('yc>ral \'al 1l('>� for th  l lumbC'l' of g n rat d cl ci ion tree , Stre , '  in t he range of 

10 and 500 and found that th  pr dict i n ac  urac�' increa 'e a Xtru: _ innea e as 

:-hu\\,1 1  in Figure 5. - . Ho\\'('w'r. the improv m nt in predict ion \\'hen .Ytr€e� exceed 

200 1: not con idcrabl \\'h n compar d with the increa e in computat ional t ime 

and lllC'mory. Ther fore. we s t Xtref: ' to 200 in all the conduct d experim 11t . 

Thb also agrees wit h recent empirical tudies [ 1 99, 200] which report d that e11-

::;(,111bl(,8 of ize 1 S' r qual to  1 00 are too small for approximat ing t he infinite 

ens('lllhie predict ion. 
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Figme 5 .3 :  Recal l ,  preci ion , F- l1lea me. and AUC of random forest da sifier 

at different awraging window izes with fifty protein equence from 

DS-All data et . 
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The experim 11tal re ult hov:ed that t he propo d approach is u eful 

for t he domain and link r ident ificat ion of highly imbalanced single-domain and 

mult i-domain protein . Clearly. t here are several advantage of the propo ed ap-

proach. Fir t .  t here are only few RF  parameter that need to be tuned. Second . 

t he bet ter predict ive performance of t he proposed approach wa achieved on the 

imbalance domain-link r without applying any das weights or dat a re- ampling 

techniques. In other words. t he propo ed approach is not biased toward the 
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Figure 5 .5 :  ::\umber of  generated t ree opt imizat ion . Re all .  preCISIon, and 
F-mea ure at different number of generated t ree performed on DS-All 
data et . 
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l llajori ty c1a�. l ik 1110 ·t oth r :- I L  mod Is. To eompar R F  p rformane to  \ ,:\ 1  

and �� la'  ' ifi rs. \\" t rain d a \ ':\ 1  and A � �  cla ifier with th . ame pro­

tein dat a and fOllI ld that ooth da' ifi d the ,\'hol protein qu nee a lomains. 

ThL can 1 e explained h.\' the fact that the training of uch m t hod i. ba ed 

011 adju. t ing the mod 1 parameter. that maximiz th clas ifieat ion aceura y (by 

minimizing t he error rat ) '\'hieh i not a . uee S 'ful t rat gy in as of highly im­

balanc d data .  Third . I hysiochemical prop rt ie that are u ed in thi appro a h 

play import ant role in f rming the behavior of amino acid and their int rac­

t ion. \\'it 11 other amino acid, and t hes interact ion hal' ignificant impact on th 

fonnati n .  folding. and st abilizat ion of prot in 3D t ructure . Th ref reo th 

prop rt ies are import ant feature' to di t inguish t ructural domain from link­

er�. Fourth .  t he primary tru t ure featur that are u. ed in t hi approach can 

b extracted "'i th a low computat ional co t \vhen compared to ext ract ing other 

features , uch a PS � I  and protein econdary tructure that are u ed in most of 

t he current approach '. Generat ing PSS:-I and predict ing econdary t ructure 

feature are computat ionally expen ive and t ime con uming. � Ioreo\'er. protein 

secondary t ructure� are normally predicted by SSpro [26] which reache an ac­

curacy of 0% only. 0 t he incorrect ly predicted econdary t ructures may lead 

to model mi cIa ificat ion. 

To tudy the import ance of feature by finding which feature contribute 

mo t to t he predict ion .  we perform a feature elect ion procedure as follow . Fir L 

we mea ure the I nformat ion Gain ( IG )  of each feature and order t he feat ure ac­

cording t o  t heir IG .  Then, we remove the features one by one start ing with the 

one that ha lea t IG and find its effect on the predict ion and pre ent t he re­

sults in Table 5 .5 . I t  i found t hat AA compo it ional index and hydrophobicity 

contribute t he mo t while AA polarity and electric charge contribute les than 

ot her feature . 



Polarity 

Charge and Polarit�, 0 .6.,15 

ize and al l  t he al ow, 0.602 

El c tronic and all t h  ab " e  0 . .,155 

Aromat icity and all t he abO\'e 0 .325 

Hydrophobicit�· and all the abo\'e 0. 1 69 

0 .9 -1 
0 .9  3 0 .77 

O.  0 0 . 74 

0 .96 -, 0 . 6 19  

0 .916 0 ..1 0 

0. 20.,1 0. 1 5 

Table 5 .5 :  Predict i n 1 1 1  a, ur ' aft r remo\'ing feat ure that ha'"e Ie , infor­
mat ion gain u ing D -All dat a t .  

5 . 3 . 1 Performance Comparison 

Based n he D -All data t .  ,;<,-it h 10-fold ero validat ion. we achie\'ed 

t he a,"erag predi t ion r cali of 0 .6 . preci ion of 0 .99. and F-m a ure of O. O .  

The eompari OIlS of our approa h with exi t ing domain and l inker predict ion ap-

pr ach ' [2 1 011 D -Al l  dat a et are ummarized in Figure 5 .6 .  Clearly, t he pro-

po ed approach outperform d t he xi t ing predictor in t erm of recalL pr ci ion. 

and F -measm . 

To prow the u efulne of our approach. it wa again t e  t d on DomCut/Swi -

Prot protein equence data et . Our approach again outperformed ShatnaKi and 

Zaki ' predictor [ 1 7  1 a \yell a DomCut [ 1 7] wit h  awrag recall of 0.65. a pr ci-

ion of 0 .9  . and an F-mea ure of 0 . 7  a hown in  Tabl 5 .6 .  

Approach Recal l Prec ision F l  
O ur  Approach 0 . 71  

Shatnav.:i and Zaki  ( 20 1 3 )  0 . 56 

DomCut 0 .54 

Table 5 .6: Recall .  preci ion . and F-mea ure u ing Swi -Prot/DomCut data et 
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Figur 5 .6 :  RecalL PI' cision. and F-m a ur of ix current 1:' m"ailable domain 
bOllndary/l inker pre li tors comI ar d to our approach perf rmed with 
D -Al l  dat as t .  

5 . 3 . 2  B iological R elevance 

D demon�trat t he performance of our m th  d in predi t ing important 

domain' . i t  \\-a applied on t he FA - as ociated d ath domain protein ,  FADD_Human. 

(PDB Acce ion number Q 1 3 1 5  ) which ha 20 residue ,,-ith  tv,,-o domain and 

one domain- linker locat d in t he int rval between 3 and 96 re idue according to 

t he Prot ein Data Bank (RC  B PDB) 1 [1 l 6] .  Our method ucceeded in pr dieting 

t he e two domain a indicated by t he orange bar in Figure. 5 . 7. 

Gene names F�DD �'ORTl GIG3 
ength 208 

"'0 80 90 !OO 1 10 12(; l� 140 150 16') PO lBO 190 � 
I I I I I I I I I I I I I I 

,-

Figure 5 . 7: FA -a sociated death domain protein - Q 1 3 1 5  (FADD_HU�lA:\) .  
The protein contains 20 re  idu and has two domain and a linker 
according to RCSB-PDB.  Our method ucc ded in predict ing t he e 
two domains a indicated by t he orange bar . 

1 http://v.-w,\- . rcsb .org/ pdb/protein/Q131.5 



noth r ('xamplc i i l lu-;trat d in Figure . .  - .  of t h  B- lnnpho �·te ant i­

g n DE)  (CD19 .BU\ I  .:\ ) .  ( PDB Ac . 'ion number P l .539 1 ) \\'hich ha .556 

re 'idll(>::i with t ,,'o nomain: and one domain-link r a cording to th R s ar  h Col-

lal oraton' for t ruct ural B ioinformatic - Protein Data Bank (RC B PDB ) . Our 

met h )ci 'ucce ded in predi t ing these two immunoglobul in domaiw a .. indicat d 

by t 11 orange bar. . Immunoglobulin domains may be inyol" d in proteinpro­

t in and proteinligan 1 interact i 11. . Th immunoglol ulin up rfamily domains 

arc illY h' d in the recognit i n ,  binding. or adhesion proces e of cells .  They ar 

coml11onl�' a �ociated with  r les in the immune y tem [20 1 ] .  

CDl .. KUM .... 

'" .'" 200 "'" lOO "" "'" "" "'" I I I I I I I I I 

a= _01 t 
...-t:l--tn- l 

, T T .... 
qT , , , , " s -

- - • 
- ... - - - .... - .. -- .-. .. • - eo - -

... - - em • COl .. ..-oft HIt. - JO..11. co' .. ..... n C01 .... .- MI14 111-t1l COl". em co, .. ""' .. . COl" COlO COl COl CO, .. co,. 

Pred.aed unker Predlmd Domain 

Figure 5. ' : B-Iymphocyt ant igen CD 1 9  - P 1 5391 (CDI9_H !\ lA\i") .  The pro­
t in contaiw 556 re idue and ha two domains and a l inker according 
to RC B-PDB . Our method ucceeded in predict ing the e two domain 
a indicated by t he orang bar . 

"" 
I 

Figure 5 .9 pre nt the izumo p rm-egg fu ion l .  i oform CRA_c [HaIno 

apien ] protein \\'hich contain 194 re idues and has one domain (PF15005) ac­

cording to ::\CB 1 2 . Our method ucceeded in predict ing thi domain a indicated 

by the orange bar. Th izumo perm-egg fu ion domain i import ant in fert i l iza­

t ion and e ent ial for perm-egg pIa ma membrane binding and fu ion [202, 203] . 

2http://www .ncbi .nlm.nih .gov /protein/1 195 727 2 
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Figure 5 .9 :  Izumo p nn- gg fu ion protein. The protein contain 19..J: residue 
and ha' one domain according to :;CBI .  Our method su c eded in  
predict ing t hi domain a indicated by t he orang bar. 
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Chapter 6 :  P P I  Prediction 

Thi:-. chapt r prr:-: l lt s  our t hird ont ribut ioll "'hich i pr dkt ing prot iu­

prot ill  int cra t ion bas d on analyzing t h  ir int eract ing t ru t mal d main . The 

met hod b d ticrib d in ti n 6 . 1 and experim lltal re'ult ar pr nted and 

eli. cu:-.sed in ect ion 6 .2 .  

6 . 1 Method 

Follo\\'i ng t he t ruct ural domain ident ification.  \ye determine t hat two pro­

t in� int eract by t he m aIr of int raet ing domain bot h cont ain.  The val idat ion 

is d n by searching t he id nt ifi d domain in a b nchmark domain-domain in­

t eract ion (DDI )  dat aba . Thi i achieved. a illust rat d in Figur 6. 1 .  t hrough 

t he follmYing t ep : 

• Each of t h  predict ed domain wit hin a giyen prot ein pair i. earched in 

t he F fam domain dat aba e to find it Pfam ID (Acce ion � umber) by 

employing t he Xeedleman- \Vunsch ( :-.l \V )  global alignment algorit hm.  

• Ba ed on t heir Ffam Acc ion � umber . domain interact ion are earched 

in t hree benchmark DDI dat aba es. 

• \Ye conclude t hat t \\'o protein int era t if  t h  Y cont ain one or mor int eract­

ing domain available from t he DDI dat aba e. 

The det ail of each tep i explained t hrough t he proceeding ect ion . 

6 . 1 . 1  P fam Search 

Each of t he predict d domains i earch d to find i ts  Ffam Acres ion 1\ um­

ber. Thi. is performed by applying a global equenc alignment of t he predicted 
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Do m a i n  a n d  Li n ker  P red ict ion 

�Doma," 2m � e-1 Domain 21 � Domain 22 ?-. -+ Domain 2n � 

[ ____ .-____ �--------�p-fa-m--D-o-m--a i-n-L-i-br-a-r�y------------------� 
! ! + 

PF ID 1 1  I I PF 10 12  i PF ID 1m I PF 10 21 I I PF 10 22 PF 10 2n 

L ...-----,-----1 0-01 oa--'------L"'-�1 
8 G B  . 

( Interactin� protein ) 
Pair 

D'i and D,k 
Interact 

Non-interacting 
Protein Pair  

F igme 6 . 1 :  O\'elTiew of t he P P I  predict ion proce • .  

domain ,yit h  e\'ery ent ry in Pfam relea e 27.0 [ 1 -.±7] u ing t he \"eedleman-\Yun ch 

(\" \\') algorit h m  [20-'±] and ret urning t h  Pfam ent r�' t hat ha t he high st align-

ment core. 

Pfa m  is a large collect ion of protein familie , each repre ent ed by mult iple 

equ nce a lignm nt and H:\ed . The Pfam dat aba e consist of t wo component : 

Pfam- A and P fam-B .  Pfam-A ent rie are high quality. m anually cmated families 

and cover a large proport ion of t he equence in t he underlying equence dat abase . 

Pfam- B ent rie are aut omat ically generat ed and of 10l�'er quality and can b u eful 

when no Pfam-A ent rie are found. \\-e u e Pfam-A 27.0 [ 147] which i t he late t 

Pfam relea e. P fam-A cont ain 14 .  30 prot ein familie \\'it h 10 .626,097 domain 

nt ri 

The \" \\' algorit hm [204] i a dynamic programming algori thm t hat mea­

ure t he imilarit ' scor between t wo equences b a global gapped alignment 
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aud gnarant C'('s I ( ) find t h( '  b '�l alignmenL .  The algorithm provide. a meL hud of 

fi l l  ding t he opt imal gl hal al ignmC'nt f t wo sequrnce by ma...ximizing t he number 

of amino acid mat ches awl minimizing the number of gaps n ce:sary to align the 

t wo � 'qUC' 1 l  S [205] . 

\\7 algori t hm COllst ructs a two-dimensional matrix in  which on of the 

sequC'llces t o  b aligl lcd n ms down th v rtical axis and the other along t he hori­

zontal a,.'(is. The algori t h m  finds t he be. t a lignment. by using opt imal aligl lments 

of s l l lall r ul  scqu neC's. The optimal path an then be determin d by incrc-

1 1 1  nt al xtcnsion of the optimal suh-paths. All possible comparisons between 

a l lY number of A pairs are given by pathways through the array and are scored . 

The alignment is grown from the C-terminus towards the - terminus and all pos­

sible alignm nt at each step arc rejected except the one with the b st scor [206] . 

The , \1\- algor i t hm consists of t hree teps ; s ore matrix i n i t i al i zat ion , matrix fi l l­

ing with ma.ximum 'cores, and residues traceback for appropriat.e alignment. 'V 

algorithm i described in Algorithm 2. Regarding its complexity gi\-en two se­

quences of length m and n .  the )J \Y algorithm p rforms the a lignment with a 

t ime complexi ty of O(m n )  and a space complexity of O(mn) [205] . 



Algorithm 2 • eec llcl l l Cll l-\\'unsch global al ignment . 
i nput t \vo prot ein scquCl1 os X and } '  
in i t ia l izat ion:  
et F( i , O) = - I . (i for a l l  i = 0, 1 . 2 , . . .  n 
et F(O, j ) = -j.d f r all j = 0 . 1 ,  2 ,  . . .  , m, 

for 7 = 1 to n do: do 
for j = 1 to m do: do { F(i - 1 , j  - 1 )  + 8 (X1 ' YJ ) 

( t  F( i , j ) : =  nWl' F ( I - 1 , j ) - cl 
F( i , j - 1 ) - d 

et backtrace T( i ,  j )  t o  the maximizing pair ( i' ,  j') 
end for 

end for 
core a : =  F(n ,  m ) 

, et ( i .  j) : =  ( /1 , 711 ) 
repeat 

if T (i , j ) = ( ( i  - 1 j - 1 )  t hen 
pr int (Xl ' YJ ) 

el e i f  T( i , j) = ( ( i  - l , j ) t hen 
print (Xi , - )  

else 
print ( - ' Yi ) 

end i f  
t ( i , j )  : =  T( i , j )  

unt i l  ( i . j ) = (0 . 0) 
return optimal alignment and score a 

9 1  

(6 . 1 )  
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6 . 1 . 2  D D I  Database Search 

Domain-Domai l l  I ntera t i  ns (DDI ) 0 cur wh n two globular domains 

form it st, bl int rface. Til assumption that protein interact with each other 

through their doma ins is widC'ly a epted [ 9] . Und rstanding protein interact ion 

at t i l (' domain l('\'cl provides valuabl informat ion about binding mech'misms and 

functional contribnli n t o  prot ein interactions [ 1 5 1 ] .  Th init ial source of DDI  

information i s  the 3D strnctur r  o f  protein campi x s but due to the l imited avail­

abi l i ty of 3D t ruct ur 's, DDI  pr dict ion 1 1 1  thods or t heir predict d datasets are 

usC't \ as an alternative source [ 1 5 1 ] .  

I n  t hi work \\' use t hree D D I  databases; DO:\n E,  IDD I ,  and 3did. 

DO� I L  El [ 1 50, 1 2] is a database o f  domain interaction inferred from experi­

m ntally characteriz cl high-resolution 3D st 1'u tU1'es in the Protein Data Bank 

(PDB)2 . in addi t ion to precli te 1 domain interact ion by thirtC'en different com­

pntational approadH's u, iug Pfal l l  domain defi l l i t ions. DO?\ l I N E  cOl l tai w :; a t otal 

of 26 , 2 19  D D I  pair. among 5A 10  domains ,  out of which 6 634 are inferred from 

PDB entries. and 2 1 ,620 are predicted b ' at least one computational approach . 

The integrat d domain-domain interaction anal)' is ystem ( IDDI )3 [ 1 5 1 ]  

provides 204 , 7 1  unique D D T pairs with different r l iabil i ty score . The reliability 

of t he predicted DDT  pair are determined by can idering t he confiden e score of 

the prediction method, the independence core of the pr dieted data ets. and the 

DDT  prediction core m a ured by different predi tion method . 

The databa e of 3D interacting domains (3did) 4 [ 1 52] is a coIl ction of 3D 

, t ru( 'tur s of domain-based int�ract ions i n  t h( '  PDB based on d0 1 l 1clin c lefin it ions 

from Pfam relea e 27 .0 [ 1 47] . 

1 http://domine.utdal las.edu 

2 http://www.ncbi .nlm.nih .gov /Structure/VAST /nrpdb.html 

3http://pcode.kaist .ac .kr /iddi/ 

4 http://3did . i rbbarcelona.org 
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To ('\'alua tr  t h  pcrformanc of our P P I  predict ion approach . \ve us d a 

< I nt a ct of yeast (ltthnronz yc Ii cerevlszae containing 4 ,9 17  protein int raction 

pairs among 3 ,7 1 '  prot r ins , auel .. 1 .000 rand l l l ly-generated non-intera ling pro­

t ein pairs. The dat a  was col lected from t he D I P [75, 2] , D ng t al. [ 13 1 ] , 

cl lWiko\yski ct al.  [ 1  0] . The dab t of D ng t al. is exp rimentally ohtained 

through two hyhr id c1.<;says n acchaTomyccs c revisiae by Uetz et al. [ 1 32] and 

I t o  ( t  al . [ 1 33] . chwikow 'ki ct al. gathered their data from yeast \Vo-hybrid , 

biochemical and geneti elata. A' non-interacting protein data ar unavailahle, 

t he negat iye sample' were randomly generated . A protein pair is considered to 

h '  a 11  g''ltive sampl if the pair do s not exist in the interaction s t. Thi dataset 

was gathered and used by Chen and Liu [ 9] . Both th positive and negative PPI  

xClmple were divided evenly in to training and testing dataset . vVe obtained 

t he domain information from the Pfam-A rel ase 27.0 5 [ 1 47] . 

Onc('  prot (' iu domain. arc identified , our r r I  prrdictiol l  l1 lrthod achir\' d 

a pr dict ion accuracy of 97o/c, sensitivity ( recall ) of 96o/c, precision of 9 o/c, and 

peci fic i ty of 9 %. The comparison of our I I I  tho 1 to the exi t ing PP I  pr dict ion 

approache are ummarized in F igure 6 .2  which clearly shows that the prop ed 

method outperformed the exi t ing PPI  predictors in terms of sen itivity and 

specifici ty. 

I n  term, of the prediction performanc of the whole proce s of domain 

identificat ion and PP I  predict ion ,  we achi ved a predict ion a curacy of 7f)o/c, 

:,en:,ih"ity of 60o/c preci ion of 9.J%, and speci ficity of 96o/c. This reduct ion in 

predi ·t ion performance is due t the fact that some of the predicted domains in 

fe\v proteins are either shorter or longer than the actual domain or the fact that 

our method ometimes predicts several hort domains in a location that contains a 

5 http://pfam.sanger.ac.uk 
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Figure 6. 2 :  Accurac�'. ensit ivit),. and specificity of t he state-of-t he-art P P I  
predict or. compar d t o  our approach. 

long act ual domain,  and t her fore. t hes predict ed domains do not exact ly match 

'wi th  domains in t he Pfam dat abase. To overcome t hi issue. we follmved DomCut 

[ 1 7] ,\"her t h :,>' con'ider t he domain linker to be in t he range of 10 and 100, and 

t Im '" extended t he domain predict ion stage 1 y adding a po t -proce ing step 

"'here if  seyeral adj acent domain are ident ified and t hey are a part by Ie t han 

10 AA residue . t hey ,,,ill  be concat enat ed into a i ngle domain.  A a re ult . t he 

0\' rall predict ion accmacy i impro\'ed t o  90%. 

Alt hough t hi approach achie\'ed \'ery high P P I  predict ion accuracy. t he 

P P I  predict ion performanc i t rongly dependent on domain predict ion accuracy 

and if domain are not accurat el ' id nt ified. P PI predict ion will be negativ ly 

affected.  O ne of t he limit a t ion of t hi approach is t he comput at ional t ime of 

t he equence alignment step as t he :\ \Y algorit h m  is aI plied to calculate the 

alignment core for each ident ified domain again t all t he 10 ,626,097 P fa m  domain 

entrie . 

To demon t rat e t he effect ivene of t he propo ed met hod in ident ifying 

domain and predict ing prot ein interact ions, let u t ake YCR077C and YDL 160C 

a an example of interact ing protein pair according to our benchmark dat a t .  As 

Shm\'11 i n  Figure 6 .3 .  t wo domain are ident ified in t he fir t protein in t he regions 



)-224J i1nd [24 1 - 7  J alld t wo domain- ar id nt ifi d in t he � cond prot in in t he 

regioll ' [71 -23.5J and [303-37 J .  Th Pfam a c ssion number for t h  e domain are 

PF09770. PF09770 . PF00270. and PF0027 1 .  r c pect i \'el:v. \\'hen t he. domain 

i1rc .' arched t hrough t h  DDI dat aba e . . it i onfinn d by 3did t hat PF09770 

int eract wit h PF00270. A · a re ult . t he mod 1 r port t hat t he 1\'"0 protein-

int eract . 

he T I l  frQrn 25 61 - .YDL160t" DHH1 SGDI D : S  n02 3 1 9 . C h r  IV f roll' 1 1 1 93 1 -

1 7 0 1 1 1 . revet � complemen� . Ver l f l�d ORF 
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F igure 6.3 :  PPI predict ion for YCR077C and YDL 1 60C prot eins. 
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il1lilark YDR-177\Y and YER027C r pr sent anoth r example of inter­

act ing protein pairs. A. shown in Figur 6 . -1 .  t\\'o domain are ident ifi d in t he 

fir...; \ prot ein in t h  r gions [.55-306] and [34-1-3 '9] and one domain i ident ified 

ill t lw s cond prot in in th region [306--1 1 5] .  ThE' Pfam acces ion numb r f r 

t h  two domain f th first pr t ein are PF00069 and PFO 5 7 .  and the Pfam 

(lcc(' sion numb r of t he domain in t h  econd protein i PF04739. \\11en th  e 

oomains ar(' ,('arch d through th DDI iat abaLe . it i confirmed by IDDI  t hat 

hot h PF00069 and PFO �5 "7 int ract wit h PF04739 and r t rieyed by 3did t hat 

PFO '5 7 int ract ' \\'ith PF0-1739. a result . the mod 1 report t hat t he two 

proteins interact . 

YDRO-1-1\\T and YCR01 .JC repre ent an xample of non-interact ing pro­

tein pairs. As sho\\"11 in Figure 6 .5 .  one domain i ident ified in t he fir t protein in 

th region [l-!-327] and t hree domain are ident ified in t he econd protein in t he 

region [ 1  u-253] . [326--107] . and [5 1 7-574] . The Pfam a ce ion number for t he 

domain of t he fir t protein i - PF0 1 2 1  and the Pfam acce- ion number for t hr 

domain in t he uecond protein are P F 1 4716 .  PF14792. and PFl -179 1 .  \" hen t he e 

dOl1lain� are em'dled t hrough t he DDI  dat abases. no interact ing domain were 

found. As a result . t he model report t hat t he two proteins are not interact ing. 
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Chapter 7 :  Concl usions and Future Work 

Directions 

In thi� r sf'arch work \V emplo ' titrucl ural domain and inter-domain 

l inker prediction mt o pr('dict ing PP ls .  \V(' propos a nov I method for pr diet ing 

int cr-d ) l llain linkers wit hin prot ins. This is a hicved through introducing the 

COlle pt )f . A compositi( nal ind x .  The linker knowl dge, repres nted by AA 

composit iOlnl index. i s  then enhanc d by biological knowledg through combin­

ing it with AA physio hemical pr pertie to dev lop a R andom Forest classifier 

for pr elieting no\' 1 domains and l inkers . Following the structural domain iden­

t ificat lOll step, we predict whether two prot �in interact or not b analyzing the 

int racting tructural domains that they contain.  

The three main contributions of this work can b summarized as follows; 

I I I  t I l ( ' first cont ributiol l .  W(' ( iewloped elSA as a l l letllOd for kt('cting protein 

domain-l inker region ba 'ed on AA compositional index and imulated nneal­

ing. EXI erimental r ult howed that this m thod outperformed the currently 

a\'ailabl approache' of domain-link r pr diction in terms of recall precision and 

F l-score. It was also shown that ClSA i capable of pr dicting n v 1 l inkers .vhich 

could lead to t he identification of crucial tructural domains uch as R I  G-finger 

and carboxy-terminal domains . The main reasons b hind the considerable accu­

ra y achieved by C I  A i the improvement in th concept of AA compositional 

index and the adopt ion of the SA algorithm to refine the prediction 1 y finding 

th optimal set of threshold values that separate domain from link r regions. 

CI A has a potential to perform wel l  if it i appli d to human proteins where 

novel domain l inker could be recognized .  

Alt hough SA has signifi antly improved the prediction, additional tun­

ing could i-lcC 'omplish more dfC'C 'tive and f lexible predict ion .  One of t h cs(' CU l l ing  

strategies is  th u of dynamic chunk sizes which could, in turn, obtain better 
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opt im izHl ion and more accurate predictiol l .  This \York can be xtenrl cl by explor­

ing ot hC '[" ompo:-;i t ional inclC'x model' such 8.-; t h  \\'eight ed sum or the weight ed 

product of l inker index and A composit ion , and elI lploy S to find the opt i­

mal wC 'ighl s along wi t h  t l10. opt imal t hrf'sllOlcl t hat  :::;eparat linker r gions from 

domai n  n�gions. Furt hermol'<" ot h r opt imiz 'ltion Lechniques such Cl.'S Geneti AI­

gori thm can be ('x<uninpd and compar c l  to SA in lomain l inker predi tion, or 

bot h t echniques could be combined in a hybrid appr ach . 

I n  t.he second contribution , \V d vel ped a novel machine-learning ap­

proach t o  pI' dict novel domains and l inkers . Thi ' is ach ieved by combing the 

composit ional index with AA ph . io hemical properties to construct a novel pro­

tein profile . A sl iding win low technique is appl ied to extract and normalize the 

AA feature ' and t ake into consid ration th d pendences of each AA with i ts 

n ighborhood. Then a wel l-opt i m ize 1 R andom Forest domain- l inker classifier i 

const ructed and t rained by these protein features. The uti l ity of the proposed ap­

proach is i llustrated on two well-knmvn benchmark datasets by achi ving a high 

prediction accuracy and outperformi ng th , state-of-the-art domain predictors in  

t erms of  recall . precision. and F l-score . The propo ed  approach ucce fully 

el iminates ome of the data pre-processing steps uch as cla s weights or data 

re-'ampling techniques, and pro\'es t hat the model can handle imbalanced data 

and is not bia ed towards t he majority elas . 

Although various l IL-ba'3ed domain prediction approaches have been d -

\' loped . they have shown a l imi ted capabil ity in  multi-domain protein prediction. 

Capturing long-term AA dependencies and d "eloping a more suitable representa­

t ion of protein equence profiles t hat inelud s evolutionary information may lead 

to better model performance. Exi t ing approaches showed a l imited capability in 

exploiting long-range interactions that exist among amino acids and participate 

in the formation of protein secondary structures. Residues can be adjacent in 3D 

pace while located far apart in th AA sequence . [3 30] . 
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Hpgarding prol f'i l 1  s<'< }n n e profile r pr sen t at iol1 . ( h  propo;,ed input pro­

fill', I I I  l l lO�t  domai l 1 - l i l 1kpr predictor t i l l  proYides insufficient st ructural informa­

t ion to reach th maximum accuracy. On reason behind the l imited capabil ity 

of l l lUl t  i-domain prot C i l l  predictors is the d isagr emcnt of domain assignment 

wit h i l l  di I[cH'l l t prot ( ' in d"lL -l1>ctS('S. Thl' agn'( ' l lH'ut 1 ) ( 'tW( '( ' l 1 dOl l l e-un c iat aba: ('s 

con'n ... about "'OC'{ of single domain prot ins and about 66% of multi -domain 

protrins only [ , 1 ] .  This d isagre ment is elu to th varian in the experimental 

l lwthods II 'ed in domain assignment . The most predominaut techniques used to 

expf'riml'ntally determine pr tein 3D structur s are X-ray crystallography and 

nuclear magnetic r sonance spectroscopy (1 1>. I R) .  However. t heir conformational 

re, ults of domain assignment vary in about 20o/c so that the upper l imit accuracy 

for such domain- link r pred ict ion ta k could be about 0%. 

This approach an be extended 1 y examining long r averaging window 

SIze in  order to capture long- range interactions that exist among amino acids 

and partic ipat in t he formation of protein secondary and tertiary st ructures. 

Residues can be adjacent in 3D space while locat d far apart in th AA sequence. 

The a\'eraging window formula can al 0 be improwd to a weighted average so that 

the closer AA neighbor to the central residue can take higher weights than far­

t her one . Alt hough the proposed approach successfully handles t he imbalanced 

protein data, data balancing techniques uch as re-�ampling can b integrated and 

te t ed for further i l l 1proYement of the model performance. Comparing the perfor­

mance of RF in domain predict ion with other ensemble method such as bagging 

and b o 't ing is 011 of the future work direct ions. Emerging ensemble met hods 

'uch as ensemble of support vector machines meta-en emble, and ensemble of 

heterogeneou da ification algorithms are promi ing direct ions. 

In t he third contribution, we developed a novel PPI prediction approach 

based on characterizing stru tur al domains within proteins and analyzing their in­

teractions. Each of th predicted domains within a given protein pair is search d 
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I I I  t hI' Pfam domain dat a\ )as( ' t o  find its Pfam Ac es lOn �umber by employ­

i l lg the - c ell 1 1 1  1 1-\Vul lsch ( \ \' ) global a lignment algorithm. B a.<:> d on t heir 

Pfam Ace s ion " umbers . domain interactions are search d in thr e \ enchmark 

domain-domain i l l t  rad ion dat abases . \Ve det rmine that two proteins interact 

if rl domain i l l  t he '  f i n.,\ prot pin is i l lt 8racl inl!; wit h a dOl l la iu  in t he f.,( 'COlH l  prot ein 

a:-i confirmed by at least 011('  of the benchmark DDI  clataba e" . \Vhen te ted on 

a data�et f a cch a7wTlYcc. CCl" vi we protein pairs, the method showed a \'Pr�r 

high capabil i ty of pred i t ing PP ls Olltp rf r I l l ing several existing pr clictors . One 

of our fut ur goals is to develop a web server that enables users to enter a protein 

pairs and return their struct ural domains and wh th r they are interacting or 

not . 

One of the l imitati ns of this approach is the computational t ime of th 

sequence alignm nt step as the i \V algorithm is appl ied to calculate the al ign­

Illent s ore for each ident i fied domain again t ach of the Pfam domain entries. 

Therefor , the :'-J\\' alignment can be a further research area for parallel comput­

ing. Although this approach achieved very high PP I  prediction accuracy, the PPI 

prediction performance i s  strongly dependent on domain prediction performance. 

If domains are not accural ely ident i fied, PPI  prediction will be IH'gat . iwly af­

fected .  Therefore, an ' improvement in  our previous contributions of domain and 

l inker prediction can lead to improvement in PPI  prediction. One of the po si­

ble fut ure directions is to include more DDI  databases in order to ha\'e b tter 

validation and to search an<l include validated non-DDI  databases to validate 

non-interacting protein pai rs. 
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