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Abstract

Pratein chains are generally long and consist of multiple domains. Domains
are the basic elements of protein structures that can exist. evolve. and tunction
independently. The accurate and reliable identification ot protein domains and their
interactions has very important impacts in Several protein research areas. The
accurate prediction of protein domains is a fundamental stage in both experimental
and computational proteomics. The knowledge of domains is an initial stage of
protein tertiary structure prediction which can give insight into the way in which
proteins work. The knowledge of domains is also usetul in classifying proteins.
understanding their structures. functions and evolution. and predicting protein-
protein interactions (PPl). However. predicting structural domains within proteins is
a challenging task in computational biology. A promising direction ot domain
prediction 1s detecting inter-domain linkers and then predicting the reigns osf the
protein sequence in which the structural domains are located accordingly.

Protein-protein interactions occur at almost every level of cell tunction. The
identification of interaction among proteins and their associated domains provide a
global picture of cellular tunctions and biological processes. It is also an essential
step in the construction of PPl networks for human and other organisms. PPI
prediction has been considered as a promising alternative to the traditional drug
design techniques. The identification ot possible viral-host protein interactions can
lead to a better understanding of inftection mechanisms and. in turn. to the
development of several medication drugs and treatment optimization.

In this work, a compact and accurate approach for inter-domain linker

prediction is developed based solely on protein primary structure information. Then,
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inter-domain linker knowledge is used in predicting structural domains and detecting
PPI. The research work in this dissertation can be summarized in three main
contributioms. The first contribution is predicting protein inter-domain linker regions
by introducing the concept of amino acid compositional index and retining the
prediction by using the Simulated Annealing optimization technique. The second
contribution is identifying structural domains based on inter-domain linker
knowledge. The inter-domain linker knowledge. represented by the compositional
index. is enhanced by the incorporation of biological knowledge. represented by
amino acid physiochemical properties. to develop a well-optimized Random Forest
classifier for predicting novel domains and inter-domain linkers. In the third
contribution, the domain information knowledge is utilized to predict protein-protein
interactions. This is achieved by characterizing structural domains within protein
sequences. analyzing their interactions, and predicting protein interactions based on
their interacting domains. The experimental studies and the higher accuracy achieved

i= a valid argument in tavor ot the proposed tramework.

Keywords: Protein domain identitication. domain-linker prediction, compositional
index. physiochemical properties, protein-protein interaction prediction. PP, domain-

domain interactions.
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Chapter 1: Introduction

In this chapter. I provide an overview of this work in Section 1.1 followed
by the outline of the dissertation in Section 1.2. I provide a background on pro-
tein structure in Section 1.3, discuss the problem statement and motivation of
the overall research in Section 14, illustrate our research objectives in Section

1.5, and discuss the technical rhallenges in Section 1.6.

1.1 Overview

Protein= aret estential for cells of all living organisms. The primary struc-
ture of a protein is the linear sequence of its amino acid (AA) units. Proteins
have several essential biological functions including catalysis of metabolic reac-
tions. make up the structure of tissues, nerve transmission, muscle contraction,
cell motility. blood clotting, immunologic defenses, working as hormones and reg-
ulatory molecules, and transport of vitamins, minerals, oxvgen, anil fuels [1].

The basic functional units of proteins are protein domains. Several do-
mains are joined together in different combinations forming multi-domain pro-
teins (2, 3]. Each domain in a protein sequence has its own functions and can
work with its neighboring domains to perform certain tasks. Therefore, the devel-
opment of accurate computational method for splitting proteins into structural
domains is vital in protein research [4].

Inter-domain linkers tie neighboring domains and support inter-domain
communications in multi-domain proteins. They also provide sufficient flexibility
to facilitate domain motions and regulate the inter-domain geometry [5]. Pre-
dicting inter-domain linkers has a great importance in precise identification of
structural domains within a protein. A promising direction of domain prediction,

which will be further investigated in this dissertation, is detecting inter-domain



linkers and then predicting the location of structural domain accordingly. This do-
main knowledge can then b used to understand protein structures. functions and
evolution. and to predict protein-protein interactions (PPI). The term “linker
and “inter-domain linker™ will be used interchangeably in the dissertation.

A protein interacts with other proteins in order to perform certain tasks.
Protein-protein interactions (PPI) occur at almost every level of cell functions.
The identification of interactions among proteins provides a global picture of
vellular functions and biological processes. Since most biological processes involve
one or more PPIs, the accurate identification of the set of interacting proteins in
an organism is very useful for deciphering the molecular mechanisms underlying
given biological functions and for assigning functions to unknown proteins based
on their interacting partuners (6. 7. 8]. Therefore, the development of accurate
and reliable methods for identifying PPls has very important impacts in several
protein research areas and pharmaceutical industry.

The interaction between two proteins usually involves a pair of constituent
domains, one from each protein. Therefore, understanding protein interactions at
the domain level is crucial to discover unrecognized protein-protein interactions
and to enhance drug development [9, 10. 11, 12].

In this work, | use the knowledge of structural domains in predicting
protein-protein interactions. However, predicting structural domains is a chal-
lenging task in computational biology. A promising direction to predict the loca-
tion of structural domain is through predicting inter-domain linkers. Therefore.
[ propose a novel approach for predicting inter-domain linker regions within pro-
teins using only amino acid sequenci: information. This is achieved by introducing
the concept of amino acid (AA) compositional index. The linker knowledge is
then used to identify structural domains. Once structural domains are identified
within two protein sequences. I can predict whether these two proteins interact

or not by analyzing the interacting structural domains that they contain.



1.2 Dissertation Outline

This dissertation is structured as follows. In the rest of this chapter.
I provide an overview of protein structure in Hection 1.3, discuss the problem
statement and motivation of the overall research in Section 1.4. illustrate our
research objectives in Section 1.5, and discuss the terhnical challenges in Section
110G,

{“hapter 2 investigates, categorizes, and compares most of the state-of-the-
art cromputational approaches in linker prediction, domain prediction, and
prediction. Chapter 3 provides a comprehensive view of our research methodology
in addition to the used ilatnsets and evaluation measures.

Chapter 1 discusses our first contribution which is domain-linker prediction
using AA compositional inidex and simulated annealing. Section 4.1 introduces
the proposel formula for AA compositional index. Section 4.2 describes the use of
simulated annealing algorithm to refine the domain-linker prediction by detecting
the optimal threshold values of AA compositional index.

Chapter 5 describes our second contribution which is the development of
a Random Forest machine-learning approach for identifving structural domains
based on linker knowledge. Chapter 6 describes our third contribution which
is about predicting protein-protein interactions by analyzing their interacting
domains.

In chapter 7. I summarize this dissertation and comment on possible future

work.



1.3 Background

Proteins have several essential biological functioms in all living organisms
including catalysis of metabolic reactions, make up the structure of tissues, nerve
transmission, muscle contraction, cell motility, blood clotting. immunologic de-
fenses, working as hormones and regulatory molecules. and transport of vitamins,
minerals, oxygen, and fuels [1]. There are four levels of protein structure which
play important role in protein functions. These levels are primary, secondary.
tertiary, and quaternary structures.

Thit primary structuri of a protein is the linear siquence of its amino acid
[AA) units. Although protein chains can become cross-linked, most polypep-
tides are un-branched polymers, and therefore, their primary structure can b
presented by the AA sequence along their main chain or backbone [13].

AAs consist of carbon, hydrogen, oxygen, and nitrogen atoms that are
clustered into functional groups. Each amino acid has a e#ntral carbon atom
called the alpha (a)-carbon. where four different groups are attached to it as
shown in Figure 1.1. These groups are the amino group (N H;) and the carboxyl
group (COOH). a hydrogen atom (), and a distinctive side chain (R)-group.
All amino acids have the same general structure, but each has a ditferent I2-group.
The side chains (R) are the major determinants of the structure and properties
of the AA. The physiochemical characteristics of the amino-acid side chains have
important role in the folding and functions of proteins [14].

There are over three hundred naturally occurring AAs on earth, but the
number of different AAs in proteins is only twenty. These twenty amino acids
are Alanine, Arginine. Asparagine, Aspartic acid, Cysteine, Glutamic acid. Glu-
tamine, Glycine, Histidine, Isoleucine, Leucine, Lysine, Methionine, Phenylala-
nine, Proline, Serine, Threonine, Tryptophan, Tyrosine, and Valine represented

by one-letter abbreviation as A, R, N, D, C, Q, E. G, H, I, L, K, N, F, P. S, T,
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Hydrogen atom
H
- |
Basic HN — C — COOH Acidic
amino group | carbaxyl group
R
Side chain

Figure 1.1: Amino acid structure [1].

W. Y. and V. respectively.

Amino acids are connected to make proteins by a chemical reaction in
which a molecule of water is removed. leaving two amino acids residues connected
by a peptide bond [13] as shown in Figure 1.2. Connecting multiple AAs in this
way produces a polvpeptide as shown in Figure 1.3. This reaction leaves the '
of the carboxyl group directly linked to the & of the amino group. The starting
end of the protein with a free amino group is known as the amino terminal
(N-terminal) whereas the ending end with a free carboxyl group is known as
the carboxyl terminal (C-terminal). Polypeptides can be thought of as a string
of alpha carbons alternating with peptide bonds. Since each alpha carbon is
attached to an R-group. a given polypeptide is distinguished by the sequence of
its R-groups.

The secondary structure of a protein is the general three-dimensional form
of its local parts. The most common secondary structures are alpha (a) helices
and beta (8) sherts. The a-helix is a right-handed spiral array while the 3 sheet
1= made up of beta strands connected crosswise by two or more hvdrogen bonds.
forming a twisted pleated sheet. These secondary structure= are linked together

by tight turns and loose flexible loops [15] as shown in Figure 1.4.



amino Erminus
(N ferminus)

carboxyl terminus
(C terminus)

Figure 1.2: Peptide bond formation and hvdrolysiz [14].

Figure 1.3: Schematic diagram of an extended polypeptide chain [14].
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Figure 1.4: Protein secondary structures.
(https://www.ocf.berkelev.edu/asivgel /posts/?author=1&paged=4)

The tertiary =tructure of a protein i= it= three-dimensional folded and bi-
ologically artive conformation which reflects the overall shape of the molerules.
The tertiary structure of proteins is determined by X-rayv cryvstallography and
nuclear magnetic resonance (NNR) spectroscopy [1]. Domains are the basic func-
tional units of protein tertiary structuris. A protein domain is a conserved part
of a protein that can evolve. function. and exist independently.

Quaternary structure refers to a complex or an assembly of two or more
separate peptide chains that are held together by non-covalent or. in =oine cases,
covalent interactions. Most proteins consist of more than one chain and are
referred to ms dimeric. trimeric. or multimeric proteins [1]. Figure 1.5 illustrates
the four levels of protein structure.

Although many proteins are romposed of a single structural domain. most
proteins are built up from two or more domains joined together in different com-
binations [2. 3). Each domain in a multi-domain protein has its own functions
and can work with its neighboring domains to perform certain tasks. One domain
may exist in a variety of different proteins. The function of the entire protein

is determined by the properties of its domains. Domains vary in length from 25
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Figure 1.5: Primary. secondary. tertiary. and quaternary structures of a pro-
tein. (A) The primary structure is the linear sequence of amino acid
residues. (B) The secondary structure indicates the local spatial ar-
rangement of polyvpeptide backbone vielding an #xtended a-helical or
B-shevts. (C) The tertiary structure illustrates the three-dimensional
conformation. (D) The quaternary structure indicates the as=embly of
multiple polypeptide chains [1].

Interface

Protomer 1 Protomer 2

Figure 1.6: Protein-protein interaction (PDB: 1LFD chain A&B) [16].
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Figure 1.5: Primary. secondary. tertiarv. and quaternary structures of a pro-
tein. (A) The primary structure is the linear sequencs of amino acid
residues. (B) The secondary structure indicates the loial spatial ar-
rangement of polyvpitptide backbone vielding an #xtended a-helical or
B-shewets. (C) The tertiary structure illustrates the three-dimensional
conformation. (D) The quaternary structure indicates the assembly of
multiple polvpeptide chains [1].
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Figure 1.6: Protein-protein interaction (PDB: 1LFD chain A&B) [16].
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Figure 1.5: Primary. secondary, tertiary. and quaternary structures of a pro-
tein. (A) The primary structure is the linear sequence of amino acid
residues. (B) The =econdary structure indicates the local spatial ar-
rangement of polyvpeptide backbone vielding an extended a-helical or
B-sheets. (C) The tertiary structure illustrates the three-dimensional
conformation. (D) The quaternary structure indicates the assembly of
multiple polypeptide chains [1].
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to 500 amino acids [17]. Inter-domain linkers tie neighboring domains and sup-
port inter-domain communications in multi-domain proteins. Theyv also provide
sufficient flexibility to facilitate domain motions and regulate the inter-domain
geometry [5].

Predicting protein functions through protein structure is a complex tagk.
As a result, several methods have recently been developed to predict protein func-
tions using PPI. PPI refers to intentional physical contacts established between
two or more proteins through biochemical events and/or electrostatic forces. A
protein interacts with other proteins, as illustrated in Figure 1.6, in order to
perform certain tasks. PPlIs occur at almost every level of cell functions. Most
biological processes involve one or more PPIs. Most protein sequences contain
multi-domains and the interaction between two proteins usually involves a pair

of constituent domains, one from each protein.
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1.4 Problem Statement and Motivation

The development of an accurate and reliablir method for identifving pro-
tem domains and their interactions hues very important impacts in several protein
research areas. The knowledge of domains is an initial stage of protein tertiary
structure prediction which can give insight into the way in which proteins work.
The knowledge of domains is alsa useful in classifying proteins. understanding
their structures, functions and evolution, and predicting PPls. However, pre-
dicting structural domains is a challenging task in computational biology. A
promising direction to predict the location of structural domain is through the
prediction of the of the inter-domain linkers. Therefore, the accurate predic-
tion of protein inter-tlmain linkers is an initial stage in both experimental and
computational proteomics.

=ince most biological processes involve one or more PPIs, the accurate
identification of the set of interacting proteins in an organism is very useful for
deciphering the molecular mechanisms underlying given biological functions and
for assigning functions to unknown proteins based on their interacting partners
(8, 6, 7]. Protein interaction prediction is also a fundamental step in the con-
struction of PPI networks for human and other organisms. PPI prediction has
been considired as a promising alternative to the traditional drug design tech-
niques. The identification of possible viral-host protein interactions can lead to
a better understanding of infection mechanisims andl. in turn, to the development
of several medication drugs and treatment optimization. In addition, Abnormal
PPIs have implications in several neurological disorders such as Creutzfeld-Jacob

and Alzheimer [18, 19, 20).
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1.5 Research Objectives

In this work. a novel and simple method is proposid for predicting inter-
domain linker regions within proteins. This iz achieved by introducing the concept
of AA compositional index. The compositional index is deduced from the protein
sequence dataset of domains and linker segments. The compositional index is
then enhanced by combining biological knowledge and amino acid physiochemi-
cal properties to construct a machine learning-baseil ¢lassifier for predicting novel
structural domains and inter-domain linkers. Once structural domains are iden-
tified within two protein sequences, it can predicted whether these two proteins
interact or not by analyzing the interacting structural domains they contain.

The main research objietivis of the this work can be summarized as follow:

e Developing a novel method for identifying domains and inter-domain linkers

within protein sequences. This is achieved through the following steps:

(1) Predicting protein inter-domain linker regions by utilizing the con-
cept of AA compositional index and refining the prediction using an opti-

mization technique namely Simulated Annealing.

(2) Identifying structural domains based on linker knowledge. The
linker knowledge, represented by the compositional index, is enhanced by
injecting biological knowledge, represented by AA physiochemical proper-
ties, to construct a novel protein profile. The protein profile is then used
to train a Random Forest classifier for predicting novel domains and inter-

domain linkers.
e Developing a PPI prediction method through the following steps:
(1) Characterizing domains within protein sequences.
(2) Identifying interacting domains.

(3) Predicting protein interactions based on their interacting domains.



1.6 Technical Challenges

The proposed method in this dissertation allows a bhiologist to gain knowl-
cdge related to inter-domain linkers, structural domain and eventually the PPI
solely from the protein sequence. However, there are several challenges arise from
the protein sequence itself. First, there have bheen a huge amount of newly dis-
covered protein sequences in the post genomic era. Second, protein chains are
typically large and contain multiple domains which are difficult to characterize
by experimental methods. Third, the availability of large, comprehensive. and
accurate benchmark datasets is required for the training and evaluation of pre-
diction methods. Fourth, computational methods are based on experimentally
collected data, and therefore, anv error in the experimental data will atfect the
computational predictions.

One of the challenges of prediction methodls is the protein representation.
The most and simplest model of a protein is its entire amino acid sequence. How-
ever, this approach doesn’t work well when the query protein does not have high
sequence similarity to any known protein [21]. Several statistical-based models
were proposed. The simplest statistical model is based on the protein AA compo-
sition which is the normalized occurrence frequencies of the twenty amino acids
in a protein. However, all the sequence-order knowledge will be lost using this
representation which, in turn, will negatively affect the prediction accuracy [21].
Some approaches use amino acid flexibility such as CHOPnet [22], gene ontology.
solvent accessibility information, and/or evolutionary information such as DOM-
pro [23]. Protein secondary structure information has also been broadly used in
several domain-linker prediction such as SSEP-Domain [24] and PPI prediction
approaches such as PrePPI [25]. However, extracting accurate secondary struc-
ture information by itself is another challenge. Protein secondary structures are

normally predicted by SSpro [26] which is an 80% accurate tool, so the incorrectly
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predicted secondary structures may lead to model misclassification. Manyv protein
prediction approaches such as Dom&et [3]. PPRODO [27]. and DROP [28] uses
the Position Specific Scare Matrix (PSSM) which requires a high computational
cost to be generated. Several approaches have used the 3-D coordinates of protein
structure [24].

There are various challenges that face machine-learning protein predic-
tion methods. Selecting the best machine learning approach is a great challenge.
There is a variety of techniques that diverse in accuracy, robustness, complex-
ity, computational cost; data diversity, over-fitting, and dealing with missing
attributes and different features. Most machine-learning approaches of protein
sequence prediction are computationally expensive and often lack high predic-
tion accuracy. They are further susceptible to overfitting. In other words, after
a certain point. adding new features or new training examples can reduce the
prediction quality [29]. Furthermore, protein chain data are imbalanced as do-
main regions are much longer than linker regions, and non-interacting protein
pairs are much more than interacting pairs, and therefore, classifiers will usu-
ally be biased towards the majority class. This raises the challenge of choosing
the appropriate evaluation metrics. For example, a technique that fails to pre-
dict any linker in a protein sequence which has respectively 95% and 5% of its
amino acids as domains and linkers, achieves a high prediction accuracy of as
much as 95%. In addition, since highly imbalanced distributions usually lead to
large datasets. more efficient prediction methods, algorithimic optimizations and
continued improvements in hardware performance are required to handle such
challenging tasks.

Some issues for possible further improvements includes capturing long-
term AA dependencies and developing a more suitable representation of protein
sequence profiles that includes evolutionary information. MNost of the existing

approaches showed a limited capability in exploiting long-range interactions that
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exist among amino acids and participate in the formation of protein secondary
and tertiary structure. Residiws can lw adjacent in 3D space while located far
apart in the AA sequence. [3, 30).

One reason behind the limited capability of multi-domain protein predic-
tors is the disagreement of domain assignment. wit hin ditferent. protein databases.
The agreement between domain databases covers about 80% of single domain
proteins and only about 66% of multi -domain proteins [31]. This disagreciment
1= due to the variance in the experimental methods used in domain assignment.
The most predominant techniques used to experimentally determine protein 3D
structures are X-ray crystallography and nuclear magnetic resonance spectroscopy
(NMR). To determine the conformation of a protein with X-rays, the protein must
be in the form of a rrystal with a strictly ordered structure. The crystallized pro-
tein is then nradiated with X-rays. Protein crystallization is the slowest and
most challenging stage in X-ray structural analysis. Somnie proteins are relatively
easy to crystallize within few days. others can take several months or even years,
while many proteins such as cell membranes proteins still cannot be crystallized
[32]. On the other hand. NMR is based on the fact that some atomic nuclei, such
as hvdrogen, are intrinsically magnetic. In a magnetic field, these magnetic nu-
clei can adopt states of different energy. Applying radio-frequency radiation can
induce the nuclei to flip between these energy states, which can be measured and
depicted in the form of a spectrum [33]. X-ray diffraction has no size limitations
and provides more precise atomic detail while information about the dynamics of
the mulecule may be limited. NMR is the best when no protein crystals can be
obtained but it produces lower resolution structures and is generally limited to
=mall molecular weights [34]. This variance in experimental methods of domain

assignment can establish an upper limit for domain-linker prediction accuracy.
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exist among amino acids and participate in the formation of protein secondary
and tertiary structure. Residues can hwe adjarent in 3D space while located far
apart in the AA sequence. [3, 30).

Line reason behind the limited capability of multi-domain protein predic-
tors is the disagreement of domain assignment within different protein databases.
The agreement between domain databases covers about 80% of single domain
proteins and only about 66% of multi -domain proteins [31]. This disagreement
is due to the variance in the experimental methods used in domain assignment.
The most predominant techniques used to experimentally determine protein 3D
structures are X-ray crystallography and nuclear magnetic resonance spectroscopy
(NMR). To determine the conformation of a protein with X-rays, the protein must
be in the form of a crystal with a strictly ordered structure. The crystallized pro-
tein is then irradiated with X-rays. DProtein crystallization is the slowest and
most challenging stage in X-ray structural analysis. Some proteins are relatively
sy to crystallize within few days. others can take several months or even years,
while many proteins such as cell membranes proteins still cannot be crystallizid
[32]. On the other hand. MR s based on the fact that some atomic nuclei, such
as hydrogen. are intrinzically magnetic. In a magnetie field, these magnetic nu-
clei can adopt states of different energy. Applying radio-frequency radiation can
induce the nuclei to flip between these energy states, which can be measured and
depicted in the form of a spectrum [33]. X-ray diffraction has no size limitations
and provides mor# precise atomic detail while information about the dynamics of
the molecule may be limited. XMR is the best when no protein crystals can be
obtained but it produces lower resolution structures and is generally limited to
small molecular weights [34]. This variance in experimental methods of domain

assignment can establish an upper limit for domain-linker prediction accuracy.
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Chapter 2: Related Work

This chapter investigates, classifies, and compares most of the state-of-the-
art computational approaches in domain and linker prediction and PPI prediction.
Inter-domain linker prediction approaches are discussed in Section 2.1, structural
domain prediction apprioaches are discussed in Siction 2.2, and PPI prediction

approaches are discussed in Section 2.3.

2.1 Inter-Domain Linker Prediction

meveral impressive protein inter-domain linker and domain boundary pre-
diction methods have bren developed and can be classified into statistical-basid

and Machine-Learning (ML)-based methods.

2.1.1 Statistical Methods

Statistical-hased methods use statistical features of proteins such AA fre-
quencie= anil AA composition to predict domain-linker regions. Examples of these

methods are DomCut [17] and GlobPlot [35].

DomCut:

DomCut! [17] is one of the typical early day’s statistical-based methods.
Domecut predicts domain linker regions based on the differences in AA composi-
tion between domain and linker regions in a protein sequence. In their research,
a region or segment in a sequence is considered as linker if it is in the range from
10 to 100 residues. connecting two adjacent domains, and not containing mem-

brane spanning regions. To represent the preference for AA residues in linker

Thttp://www.bork.embl.de/ suyama/domcut/
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regions. they defined the linker index as the ratio of the frequency of AA residue

in domain regions to that in linker regions:

flmker
]

Ll:—ln(——__) 21
f’nonlmk(r ( )

where fimker and o mker e the frequencies of amino acid resiilue @ in linker
and non-linker regions, respectively.

A linker preference profile was ginerated by plotting the averaged linker
index values along an AA sequence using a siding window of sizit 15 AAs. A
linker was predicted if there was a trough in the linker region and the averaged
linker index value at the minimum of the trough was lower than the threshold
value. At the threshold value of 0.09, the sensitivity and selectivity of Dom-
Cut were 53.5% and 50.1%. respectively. Despitit the fact that DomCut showed
glimpse of potential success, it was reported by Dong et al. [36] that DomCut
has low sensitivity and =pecificity in comparison to other recent methods. How-
ever, integrating more biological evidences with the linker index could enhance
the prediction and therefore, the idea of DomCut was later utilized by several

researchers such as Zaki et al. [37] and Pang et al. [3#].

GlobPlot:

Linding et al. [35] proposed another statistical method called GlobPlot?
based on protein secondary structure information. GlobPlot allows users to plot
the tendency within protein sequences for exploring both potential globular and
disordered/flexible regions in proteins bazed on their AA sequence, and to identify
inter-domain segments containing linear motifs.

Other statistical-based methods are Udwary et al. [39] which predicts the
locations of linker regions within large multi-functional proteins and Armadillo

[40] which predicts domain linkers by using AA composition.

Zhttp:// globplot.embl.de
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2.1.2 DNlachine Learning Methods

Machine learning (ML) based methods are the most rommonly used ap-
proaches in inter-domain linker prediction. Most of the recent ML approaches
employ either Artificial Neural Networks (ANN) or Support Vector Machines
(SVM). ANN approaches include PPRODO [27], BomNet [3]. and Shandy [41].
SVM approaches invlude DoBo [42], and DROP [28].

PPRODO:

Sim ¢t al. [27) introduced PPRODO as an ANN classifier that was trained
using features obtained from the Position Specific Scoring Matrix (I’'SSM) gener-
ated by PSI-BLAST. The training dataset contained 522 contiguous two-domain
proteins wis obtained from the structural classification of proteins (SCOP) database,
release versiim 1.63 [43]. When tested on 45 newly added non-homologous pro-
teins in SCOP version 1.65 and on CASP5 targets, PPRODO achieved 65.5% of
prediction accuracy. One of the limitatiims of this methods is the high computa-

tional cost to generate PSSNI.

DomNet:

Yoo rt al. [3] introdured DomMNet (Protein Domain Boundary Predic-
tion I'sing Enhanced General Regression Network and New Profiles) which was
trained using a compact domain profile. secondary structure, solvent accessibil-
ity information. inter-domain linker index. evolutionary information, and PSSM
to identify possible domain boundaries for a target sequence. The authors pro-
posd a semi-parametric model that uses a nonlinear auto-associative Enhanced
General Regression Neural network (EGRN) for filtering noise and less discrimi-

nativie features. The performance of DomNet was evaluated on the Benchmark2



I

and CASP 7 datasets in terms of accuracy, sensitivity, s ificity. and correlation
coefficient. DomNet achieved an accuracy of 71% for domain boundarv determi-
nation in multi-domains proteins using Benchmark? dataset.

One of the advantages of this approach is that EGRN addresses the draw-
backs of the General Regressiom Neural network (GRNN) [14] technique. GRNN
is a non-parametric model that requires extensive computer resources by per-
forming very large computations and it suffers from overfitting and burden of
dimensionality.

On the other hand, although using structural information could achieve
good prediction results, finding the structural information by itself is another
challenge. The method requires the computational cost to generate PSSM and

to predict secondary structure information for each protein.

DROP:

Ebina et al. [28] developed Domain linker pRediction using OPtimal fea-
tures (DRODP) using a SVM, with an Radial Basis Function (RBF) kernel. inter-
domain linker predictor trained by 25 optimal features. The optimal combinatiin
of features was selected from a set of 3000 features using a random forest algo-
rithm, which calculates the Mean Dhrresise Gini Index (MDGI), complemented
with a stepwizge feature selection. The selected features were primarily related to
secondary structures, PSSN elements of hydrophilic residues and prolines.

For each residus. a 3000-dimensional real-valued feature vector was ex-
tracted. These features are as follows. 544 A A indices describing physicochemical
properties, 20 PSSM elements, three Probabilities of Secondary Structure (PSS).
two a-helix/B-sheet core propensities, one sequential hydrophobic cluster index,
sequence complexity as defined by Shannons entropv, one expected contact or-

der, 20 elements of AA compositions. three domain/coil/linker propensity indices,

3http://predictioncenter.org/casp?
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two linker likelihood scores and three newly defined scores quantifving the AA
composition similarity between domain and linker regions. Vector elements were
averaged]l with windows of 5, 10, 15 or 20 residues around the considered residue
to include local and semi-local information into the vectors. The total number of
vectors for linkers and domains were 2230 and 52335, respectively.

The accuracy of DROP was evaluated by twi domain linker datasets; Ds-
All [45, 46]. and CASPS FM'. DS-All contains 169 protein sequences, with a
maximumn sequence identity of 28.6%, and 201 linkers. D ROP achieved a prodie-
tion sensitivity and precision of 41.3% and 49.4%, respectively, with more than
19.8% improvement by the optimal features. DROP does not use sequence simi-
larity to domain databasi=. One of the advantages of this approach is the use of
random forest approach for feature selection. Instead of exhaustively searching all
feature combination, random forest is based on random sampling which provides
a quick and inexpensive screening for the optimal features. However, DROP
overpredicts domain linkers in single-domain targets of Benchmarking DataSet
(BDS) [46] and CAFASP4®. This can be decreased by increasing the default
threshold level or by including non-local features such foldability index. In addi-
tion to that, the method requires the computational cost to generate PSSN and
to predict secondary structure information for each protein.

Table 2.1 summarize the above mentioned prediction approaches and com-
pares them. Most of the discussed methods have, in general, the following limi-

tations:

e Although methods that use structural information could achieve good pre-
diction results. finding the structural information by itself is another chal-

lenge.

‘http://predictioncenter.org/casp8/

Shttp://www.cs.bgu.ac.il/ dfischer/CAFASP4/



Approach
Domf ut
(Suyama and

Ohara 2003)

Extracted Features

Technique/Tool

AA composition

Linker index

Datasets

Swiss-Prot

GlobPlist

(Linding et al.2003)

Becondary strictures

AA propensity

SCGOP 1-59

PPRODO PSEM ANN SCOP 1.65
{Sim ef al 2005) PSI-BLAST CASP5S

Do Nt Hecondary structures, EGRN Benchmark_2
{Yoo ot al. 2008) =olvent accessibility, CASP7

linker index, PSSM
Secondary structures,
PSSM

DROP
(Ebina et al. 2011)

SCOP 1.65
CASP5

Random Forest,
SVM

Table 2.1: Domain-linker prediction approaches.

e \ost of the mentioned methods are computationally expensive as they re-
quire the computational cost to generate PSSM and/or predict secondary

structure information for each protein.

e Some methods are evaluated based on the overall prediction accuracy only.
This may not effectively reflect the issues of the unbalancing problem of

protein domain linker data.

In the first contribution of this work, I develop an effective method for
inter-domain linker prediction solely from AA sequence information. Domain-
linker regions are determined using AA compositional index and then a simulated
annealing algorithm is employed to enhance the prediction by finding the optimal

threshold value that separates domains from linkers.



2.2 Domain Prediction

Structural domain prediction methods can be classified into homology-

based, and ML-based misthods.

2.2.1 Homology-Based Methods

Homology-based methods search the target sequences through known pro-
tein structure libraries using alignment. Hidden Markov Models (HMNMI), or PSI-
BLAST techniques. Examples of homology-lused methods are ("HOP [22], Scooby-
Domain [47]. DOMpro [23], and FIEFDOM [48], and PFam [49]. Although
homology-based methods can achieve high prediction accuracy specially when
close templates are retrieved. the accuracy often decreases piercingly when the

sequence identity of the target and template is low [50)].

DONIpro:

DOMpro [23] is a typical alignment/homology-based method which re-
quires the use of PSI-BLAST [51] to generate evolutionary and homology in-
formation in the form of profiles. DOMpro wiis independently evaluated along
with 12 other predictors in the Critical Assessiment of Fully Automated Structure
Prediction 4 (CAFASP-4) [52. 53] where it was ranked among the top ab initio

domain predictors.

Scooby-Domain:

SequenCe hydrOphOBicitY predicts DOMAINs (Scooby-Domain) web ap-
plication was developed by George et al. [47] and extended by Pang et al. [38] to
visually identify foldable regions in a protein sequence. Scooby-Domain uses the
distribution of observed lengths and hydrophobicities in domains with known 3D

structure to predict novel domains and their boundaries in a protein sequence. It
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utilizes a multilevel smoothing window to determine the percentage of hvdropho-
bic AAs within a putative domain-sized region in a sequence. Each smoothing
window calculates the fraction of hydrophobic residues it encapsulates along a
sequence. and places the value at its central position. This creates a triangular-
shape 2D matrix where the value at cell (7, j) is the average hydrophobicity en-
capsulated by a window of size j that is centered at residue position . Matrix
values are converted to probability scores by referring to the observed distribution
of domain sizes and hydrophobicities. Using the observed distribution of domain
lengths and percentage hydrophobicities, the probability that the region can fold
into a domain or bit unfolded is then calculated.

Scooby-Domain employs an A* search algorithm to search through a largy
number of alternative domain annotations. The A* szearch algorithm considers
combinations of different domain sizes, using a heuristic function to conduct the
search. The corresponding sequence streteh for the first predicted domain is
removed from the sequence. The search process is repeated until there are less
than 34 residues remaining, which is the size of the smallest domain; or until there
are no probabilities greater than 0.33, which is an arbitrary cutoff. to prevent
non-domain regions from being predicted as a domain.

Two linker prediction scoring systems, Domcut [17] and PDLI [36], were
used =eparately to complement Scooby-Domains prediction. The performance
of Scoobv-Domain was evaluated with the inclusion of homology information.
Homologues of the query sequence were detected using PSI-BLAST [51] searches
of the SWISS-PROT database [54] and Multiple Sequence Alignments (MSA)
were generated using PRALINE [55]. On a test set of 173 proteins with consensus
CATH [56] and SCOP [43] domain definitions, Scooby-Domain has a sensitivity
of 50% and an accuracy of 29%.

The advantages of Scooby-Domain include its ability to predict discon-

tinuous domains and successful predictions are not limited by the length of the



23
query sequence. A* search iz a very flexible method, and it may be easily adapted
and improved to include more sophistication in its predictions. = However, A*
search algorithm has an exponential computational time complexity in its worst
case [57, 58]. Furthermore, domains that are connected by small linkers may not
be identifiable by Seooby-Domain because window averaging may lose any signal

at the linker.

FIEDom:

Bondugula et al. [48] presented Fuzzy Integration of Extracted Fragments
for Domains (FIEFDom) as a method to predict domain boundaries of a multi-
domain protein from its A A sequence using a Fuzzy Mean Operator (FMQO). Using
the non-redundant (nr) sequence database together with a reference protein set
(RPS) containing known domain boundaries, the operator is used to assign a
likelihood valus for each residue of the query sequence as belonging to a domain
boundary. FNMO represents a special case of the fuzzy nearest neighbor algorithm
[59] with the number of classes set to one. The approach is a three-step proceclure.
First, the PSSM of the query sequencs is generated using a large database of
known sequences.  Second. the generated profile is used to search for similar
fragments in the RPS. Third, the matches with the proteins in RPS ars parsed,
and the domain Boundary Propensity (PB) of the query protein is predicted using
a FMO. For SCOP 1.65 datasct with a maximal sequence identity of 30%. the
average domain prediction accuracy of FIEFDom is 97% for one domain proteins
and 58% for multi-domain proteins.

The advantages of FMO include its simplicity, ease of updating. and its
ngymptotic error bounds. The choice of the program to designate a region as a
domain boundary can be traced back to all proteins in the local database that
contributed to the decision. The model doesn’t need to be trained or tuned

whenever new examples of domain boundaries hecome available. In addition, the



users can choose the domain definitions such as CATH [56] and SCOD [43], to
suit their needs by replacing the Reference Protein Set (RPS). FIEFDom works
well for protein sequences with many close homologs and that with only remots
homologs. On the other hand, this approach did not address the issue of pre-
dicting domains with non-contiguous sequences and therefore it discarded such

proteins.

ThreeDom:

Xue et al. [50] introduced ThreeDom based on multiple threading align-
mi'nts using a domain conservation score that combines information from tem-
plate domain structures and terminal and internal alignment gaps. The threading
of the target =equentes for structural template identifications through the Protein
Data Bank (PDB) is performed by LOMETS [60] whirh is a local meta-threading-
server for protein structure prediction.

Although hamology-based methods can achieve high prediction accuracy
specially when close templates are retrieved, the accuracy often decreases pierc-

ingly when the sequence identity of the target and template is low.

2.2.2 DMlachine Learning Nethods

Beside the homology-based methods, there are several ML-based methods
for predicting structural domains within proteins. Chatterjee et al. [61] and Li

et al. [62] are examples of such ML-based methods.

Chatterjee et al.:

Chatterjee et al. [61] employed a 5VM classifier with three kernel func-
tions; linear, cubic polynomial, and RBF. The feature set consists of six different
features; predicted secondary structure, predicted solvent accessibility, predicted

conformational flexibility profile, AA composition, PSSM, and AA physicochem-
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ical properties. A window of 13 AA long is slided over the protein chain every
timer by one AA position. The aciruracy of this approach was evaluated on CATH
datasets [56]. The SVM classifier with a cubic polyvnomial kernel had shown the
best porformuances in terms of accuracy and precision. These two measures were

76.46% and 26.82% respectively.

Li et al.:

Li et al. [62] proposed a domain prediction method based on combing
the techniques of Random Forest, mRMR (maximum relevance minimum redun-
dancy), and IF5 (incremental feature selection) and incorporating the features
of physicochemical and biochemical properties, sequence conservation, residual
disorder, scondary structure, and solvent accessibility. The performance of this
approach was evaluated on UniProt/Swiss-Prot datalase (version 2010.06) [63)
and achieved 64.3% sensitivity and 50.8% specificity.

Although using structural information could achieve good prediction re-
aults. finding the structural information by itself is another challenge. The above
mentioned methods require the computational cost to generate P5SN and to
predict secondary structure information for each protein.

Table 2.2 summarize the above mentioned prediction approaches and com-
pares them. Most of the discussd methods have, in general, the following limi-

tations:

e Although many ML-based domain predictors have been developed and
shown good prediction performance in single-domain proteins, they have

shown limited capability in multi-domain proteins [3].

e Although homology-tiazed methods can achieve high prediction accuracy
specially when close templates are retrieved, the accuracy often decreases

piercingly when the sequence identity of the target and template is low [50].
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Approach Extrocted Features "l'El:hniqur.-I.l"]'tu',ul_ Datasets

!ﬁ]ﬁﬂﬁﬁ Evalutionary and PSEI-BLAST CAFASDP-4
(Cheng «f ol 2006)  homology information

Scooby-Domain Domain lengths and A*-search =wiss-Prot

(George et al. 2005, hydrophobicities
Pang et al. 2008)

FIEFDom PasM FMO) SCOP 1.65

(Bondugula et al.

2009)

ThreeDom Template domain Multipli CASPS

(Xue et al. 2013) structures, terminal and  threading CASP9
imternal alignment gaps  alignments CASP10

Chatterjee et al. Sewuinilary struetiiies, 5VM CATH

(2009) solvent necessibility,

FasM, AA composition
] prliysiochemmbenal

propserties

Li et al. (2012) physicochemical and Random Forest, UniProt/
biorhemical properties mRMR . Swiss-Prot
stquince conservation IFS

residual disorder.
seconidary structure,
solvent arressibility

Table 2.2: Domain prediction approaches.

e Although methods that use structural information could achieve good pre-
diction results, finding the structural information by itself is another chal-

lenge.

e Some methods are computationally expensive as they require the computa-
tional cost to generate PSS\ and/or predict secondary structure informa-

tion for each protein.

In the second contribution of this work, I develop a simple and effective
approach for predicting structural domains using inter-domain linker knowledge.
Inter-domain linkers are generally shorter than domains and can be recognized
more simply and efficiently. Recognizing a linker can then lead to discovering two

adjacent domains.



2.3 Protein-Protein Interaction Prediction

PPI prediction has been studied extensively by several researchers and a
large number of approaches have been proposed. These approaches can be clas-
sified into physiochemical experimental and computational approaches. Phys-
iochemical experimental techniques identify the physiochemical interactions be-
twien proteins which, in turn, are used to predict the functional relationships
between them. These techniques include yeast two-hybrid based methods [64],
mass spectrometry [65], Tandem Affinity Purification [66]. protein chips [67], and
hybrid approaches [68]. Although these techniques have succeeded in identifying
several important interacting proteins in sevirral speciss such as Yeast, Drosophila,
and Helicobacter-pylori [69], they are computationally expensive and significantly
time consuming. and so far the predicted PPls have: covered only a small portion
of the completss PP1 network. As a result., the need for computational tools has
been incritasid in order to validate physiochemical experimental results and to
predict non-discovered PPls [8, 70].

Several computational methods have been proposed for PPI prediction and
can be classified according to the used protein features into sequence-based and
structure-based methods. Sequence-based methods utilize AA features and can
be further categorized into statistical and Machine Learning (ML)-based meth-
ods. The structure-based methods use three-dimensional structural features [71]
and can be categorized into template-hased. statistical and ML-based methods.
This section provides an overview and discussion of some of the current compu-

tational sequence-based and structure-based PPI prediction approaches.

2.3.1 Sequence-Based Approaches

Sequence-based PPI prediction methods utilize AA fisatures such as hy-

drophobicity. physiochemical properties, evolutionary profiles, AA composition,
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AA mean. or weighted average over a sliding window [71]. Sequence-hased meth-
ods can be categorized into statistical and Machine Learning (ML)-based meth-
ods. This section presents and evaluates some of the existing sequence-based

approaches.

Statistical Sequence-Based Approaches

This section presents and describes several existing statistical sequence-

based PPI prediction approaches.

Mirror Tres Method:

Pazos and Valencia [72] introduced the Mirror Tree Method based on the
comparison of the evolutionary distancis between the sequences of the associated
protein families and using topological similarity of phylogenetic trees to predict
PPI. These distanies were calculated as the average value of the residue similar-
ities taken from the NcLachlan amino acid homology matrix [73]. The similarity
between trees was calculated as the correlation between the distance matrices
used to build the trees. The Mirror Tree Method does not require the creation of
the phylogenetic tree= but only the underlying distance matrices are analyzed, and
therefore, this approach is independent of any given tree-construction method.
Although the mirror tree method does not require the presence of fully sequenced
genomes, it requires the presence of the orthologous proteins in all the species
under consideration. As a result, when more species genomes become available,
fewer proteins could be applied. In addition to that, the method is restricted to
cases where at least eleven sequences were collected from the same species for
both proteins. This minimum limit was set empirically as a compromise betwiten
being sufficiently small to provide enough cases and large enough for the matrici's
to contain sufficient information. The approach can be improved by increasing

the number of possible interactions by collecting sequences from a larger number
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of genomes. Further. since the distance matrices are not a perfect representation
of the corresponding phylogenetic trees. it is possible that some inaccuracies are

introduced by comparing distance matrices instead of the real phylogenetic trees.

PIPE

Pitre et al. [74] introduced PIPE (Protein-protein Interaction Predic-
tion Engine) to estimate the likelihood of interactions between pairs of the yeast
Saccharomyces cerevisiae proteins using protein primary structure information.
PIPE is based on the assumption that interactions between proteins occur by a
finite number of short polypeptide sequences observed in a database of known
interacting protein pairs. These sequences are typically shorter than the clas-
sical domains and reociur in different proteins within the cell. PIPE estimates
the likelihood of a PPI by measuring the reoccurrence of these short polypep-
tides within known interacting proteins pairs. To determine whether two pro-
teins 4 and B interact, the two query proteins are scanned for similarity to a
datnbase of known interacting proteins pairs. For each known interacting pair
(X.Y). PIPE uses sliding windows to compares the AA residues in protein A
against that in .X' and protein B against }', and then measures how many times
a window of protein A finds a match in .\ and at the same time a window in
protein B matches a window in Y. These matches are counted and added up in
a 2D matrix. A positive protein interaction is predicted when the reoccurrenci
count in certain cells of the matrix exceed a predefined threshold value. PIPE
was evaluated on a randomly selected set of 100 interacting yeast protein pairs
and 100 non-interacting proteins from the database of interacting proteins (DIP)
(http://dip.doe-mbi.ucla.edu) [75] and MIPS [76] databases. PIPE showed a pre-
diction sensitivity of 0.61 and specificity of 0.89. Since PIPE is based on protein
primary structure information without any previous knowledge about the higher

structure, domain composition, evolutionary conservation or the function of the
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target proteins. It can identify interactions of protein pairs for which limited
structural information is available. The limitations of PIPE are as follows. PIPE
is comiputationally intensive and requires hours of computation per protein pair
as it scans the interaction library repeatedly every time. Second, PIPE shows
weakness in detecting novel interactions among genome wide large-scale dutasets
as it reported a large number of false positives. Third, PIPE was evaluated on
uncertain data of interactions that were determined using several methods, each
having a limited accuracy.

Pitre et al. [77] then developed PIPE2 as an improved and more effi-
ilent version of PIPE which showed a specificity of 0.999. PIPE2 represents AA
sequences in a binary code which speeds up searching thi: similarity matrix. Un-
like the original PIPE that scans the interaction database repeatedly every time,
PIPE2 pre-computis all window comparisons in advance and stores them on a
local disk.

Although PIPE?2 achieves a high specificity, it has a large number of false
positives with a sensitivity of 0.146 only. False positives rate can be reduced
by incorporating other information about the target protein pairs including sub-
cellular localization or functional annotation. A major limitation of PIPE2 is
that it relies exclusively on a database of pre-existing interaction pairs for the
identification of re-occurring short polypeptide sequences and in the absence of
sufficient data, PIPE2 will be ineffective. PIPE2 is also less effective for motifs
that span discontinuous primary sequenci: as it does not account for gaps within

the short polypeptide sequences.

Co-evolutionary Divergence:
Liu et al. [78] introduced a sequence-based co-evolution PPI prediction
method in the human proteins. The authors defined the co-evolutionary diver-

gimce (CD) based on two assumptions. First, PPI pairs may have similar substi-
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tution rates. Second, protein interaction is more likely to conserve across related
gpecies. €D is defined as the absolute value of the substitution rate difference
between two proteins. CD can be used to predict PPl as the CD values of in-
teracting protein pairs are expertad to be smaller than those of non-interacting
pairs. The method was evaluated using 172,338 protein sequences obtained from
Evola database [T9] for Homo sapiens and their orthologous protein sequences in
thirteen different vertebrates. The PPI dataset was downloaded from the Human
Protein Reference Database [20]. Pairwise alignment of the orthologous proteins
was made with Clustal\W2 software. The absolute value of substitution rate dif-
ference between two proteins was used to measure the CDs of protein pairs which
were then used to construct the likelihood ratio table of interacting protein pairs.

The CD method combines co-evolutionary information of interacting pro-
tein pairs from many species. The method does not use multiple alignments, thus
taking less time than other alignment methods such as the mirror tree method.
The method is not limited to proteins with orthologous across all =pscies un-
der consideration. However, incretising the number of species will provide more
information ti improve the accuracy of the co-evolutionary divergence method.
Although this method could rank the likelihood of interaction for a given pair of
proteins. it did not infer specific features of interartion such as the interacting
residues in the interfaces.

Table 2.3 summarizes these statistical sequence-based approaches includ-
ing the features that are used, the technique and/or the tools applied. and the

validation datasets used.

Machine-learning sequence-based PPI prediction approaches.

This section describes several existing ML sequence-based PPI prediction

approaches.



Exiracted
Features

Approach

Technique/Tool

Mirror Trei
(Pazos and
Valencia 2001)

Similarity of
phy logenetic
trees

Datasiits

Evolutionary distance,
McLachlan AA
homology matrix

Escherichia coli
protein (Dandekar
et al. 1998)

PIPE (Pitre et al.
2006, 2008)
Co-evolulionary
Divergence

(Lin et al. 2013)

Short AA
pulypeptides
Co-emvolu WAy
information,

Similarity measure Yenst protein

(DIP and MIPS)
Human protein
(Matsuya et al. 2008,
Prasad et al. 2009)

Pairwise aligniment,
Clustal\W?2

Table 2.3: Statistical Sequence-based PPI prediction approaches.

Auto Covarianci:

Guo et al. [81] proposed a sequence-based method using Auto Covari-
ance (AC) and Support Vector Machines (SVM). AA residues were represented
by seven physicochemical properties. These properties are hydrophobicity, hy-
drophilicity. volumes of side chains, polarity, polarizability, solvent-accessible sur-
face area, and net rharge index of AA side chains. AC counts for the interactions
between residues a certain distance apart in the sequence. AA physicochemical
properties were analvzed by AC based on the calculation of covariance. A protein
sequence was characterized by a series of ACs that covered the information of in-
teractions between each AA residue and its 30 vicinal residues in the sequence.
Finally, a SVM model with a Radial Basis Function (RBF) kernel was constructed
using the vectors of AL’ variables as input. The optimization experiment demon-
strated that the interactions of one AA residue and its 30 vicinal AAs would
contribute to characterizing the PPI information. The software and datasets are
available at http://www .scucic.cn/Predict_PPI/index.htm. A dataset of 11,474
veast PPI pairs extracted from DIP [82] was used to evaluate the model and the
average prediction accuracy, sensitivity, and precision achieved are respectively
0.86. 0.85. and 0.87.

One of the advantages of this approach is that AC includes long-range
interaction information of AA residues which are important in PPl identification.

The use of SV as a predictor is another advantage. SVNI is the state of the art
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ML technique and has many benefits and overcomes many limitations of other
techniques. VM has strong foundations in statistical learning theory [83] and
has been successfully applied in various ¢lassification problems [84]. SV wifers
several related computational advantages such as the lack of local minima in the

optimization [85].

Pairwise Similarity:

Zaki et al. [8] proposed a PPI predictor based on pairwise similarity of
protein primary structure. Each protein sequence wus represented by a vector of
pairwise similarities against large AA subsequences created by a sliding window
which passes over concatenated protein training sequences. Each coordinate of
this vector is the E-value of the Smith-Waterman (SW) score [86]. These vectors
were then used to compute the kernel matrix which was exploited in conjunction
with a RBF-kernel 8% M. Two proteins may interact by the means of the scores
-imilarities they produce [87. 88]. Each sequence in the testing set was aligned
against each sequence in the training set, counted the number of positions that
have* identical residues, and then divided by the total length of thi alignment.

The method was evaluated on a dataset of yeast Saccharomyces rerevisiae
proteins created by Chen and Liu [89] and contains 4917 interacting protein pairs
and 4000 non-interacting pairs. The method achieved an accuracy of 0.75, a
sensitivity of 0.81. a specificity of 0.744, and a ROC of 0.85.

SW alignment score provides a relevant measure of similarity between pro-
teins. Therefore protein sequence similarity typically implies homology, which in
turn may imply structural and functional similarity [90]. SW scores parameters
have been optimized over the past two decades to provide relevant measures of
similarity between sequences and they now represent core tools in computational
biology [91]. The use of SVM as a predictor is another advantage. This work can

be improved by combining knowledge about gene ontology, inter-domain linker



regions, and interacting sites to achieve more aceurate prediction.

A A Composition:

Roy et al. [92] examined the role of amino acid composition (AAC) in
PPI prediction and its performance against well-known features such as domains,
tuple feature. and signature product feature. Every protein pair was represented
by AAC and domain features. AAL" was represented by monomer and dimer fea-
tures. Monomer features capture compuosition of individual amino acids. whereas
dimer features capture composition of pairs of consecutive AAs. To generate
the monomer features, a 20-dimensional vector representing the normalized pro-
portion of the 20 AAs in a protein was created. The real-valued composition
was then discretized into 25 bits producing a set of 500 binary features. To
ginerate the dimer features, a 100-dimensional vector of all possible AA pairs
were extracted from the protein sequence and discretized into 10 bits producing
a set of 4000 binary features. The domains were represented as binary features
with each feature identified by a domain name. To compare AAC against other
non-domain sequence-based features, tuple features [93] and signature products
[94] were obtained. The tuple features were created by grouping AAs into six
categories based on their biochemical properties, and then creating all possible
ztrings of length 4 using these categories. The signature products were obtained
by first extracting signatures of length 3 from the individual protein sequences.
Each signature consists of a middle letter and two flanking AAs represented in
alphabetical order. Thus two 3-tuples with the first and third amino acid let-
ter permuted have the same signature. The signatures were used to construct a
signature kernel specifying the inner product between two proteins.

The proposed approach was examined using three machine learning classi-
fiers (logistic regression, SVM. and the Naive Bayes) on PPI datasets from yeast,

worm and fly. Three datasets for yeast S. cerevisiae were extracted from the
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General Repository for Interaction Datasets (GRID) database [95], TWOHYB
(Yeast Two-hybrid), AFFMS (Affinity pull down with mass spectrometry), and
PCA (protein complementation assay). In addition to that, a dataset each for
worm, C. elegans (Biogrid dataset) [96] and fly, D. melanogaster [95] were used.
The authors reported that AAC features performed almost equivalent contribu-
tion as domam knowledge across different datasets and classifiers which indicatid
that AAC captures significant information for identifying PPI. AAC is a simple
feature, computationally cheep, applicable to any protein sequence, and can be
used when there is lack of domain information. AAC can be combined with other

features to enhance PPl prediction.

AA Triad:

Yu et al. [97] proposed a probability-based approach of estimating triad
significance to alleviate the effect of AA distribution in nature. The relaxed vari-
able kernel density estimator (RVKDE) [98] was employed to predict PPI based
on AA triad mformation. The method is summarized as follows. Each protein
sequence wus represented as AA triads by considering every three continuous
residues in the protein sequence as a unit. To reduce feature dimensionality vec-
tor, the 20 AA types wire categirized into seven groups based on their dipole
strength and side chain volumes [69]. The triads were then scanned one by one
along the sequence. and each scanned triad is counted in an occurrence vector,
O. Subscquently, a significance vector. S, was proposed to represent a protein
sequence by estimating the probability of observing less occurrences of each triad
than the one that iz actually observed in O. Each PPI pair was then #ncoded as a
feature vector by concatenating the two significance vectors of the two individual
proteins. Finally. the feature vector was used to train a RVKDE PPI predictor.
The method was evaluated on 37,044 interacting pairs within 9,441 proteins from

the Human Protein Reference Database (HPRD) [99, 100]. Datasets with differ-
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ent positive-to-negative ratios (from 1:1 to 1:15) were generated with the sams
positive instances and distinct negative sets, which are obtained by randomly
sampling from the negative instances. The authors concluded that the degree
of dataset imbalanee is important to PPI pradictor behavior. With 1:1 positive-
to-negative ratio, the proposed method achieves (L8] sensitivity, 0.79 specificity,
0.74 precision. and 0.8 F-measure. These evaluation measures drop as the data
gets more imbalaneed to reach 0.39 sensitivity, 0.97 specificity, 0.495 precision.
and 0.44 F-measure with 1:15 positive-to-negative ratio.

RVKDE is a ML algorithm that constructs a RBF neural network to ap-
proximate the probability density function of each class of objects in the training
dataset. One main distinct feature of RVKDE is that it takes an average time
complexity of O(nlogn) for the model training process, where n is the number
of instances in the training set. In order ti improve the prediction efficiency,
RVKDE considers only a limited number of nearest instances within the training
dataset to compute the kernel density estimator of each class. One important
advantage of RVKDE. in comparison with SVM, is that the learning algorithm
generally takes far less training time with an optimized parameter setting. In
addition to that, the number of training samples remaining after a data reduc-
tion mechanism is applied is quite ¢lie to the number of support vectors of SVM
algorithm. Unlike SVM, RVKDE is capable of classifying data with more than

two classes in one single run [98].

UNISPPI:

Valente et al. [101] (2013) introduced UNISPPI (Universal In Silico Pre-
dictor of Protein-Protein Interactions). The authors examined both the frequency
and composition of the physicochemical properties of the twenty protein AAs to
train a decision tree PPI classifier. The frequency feature set includes the percent-

ages of each of the 20 AA in thi protein sequence. The composition feature set
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was obtained by grouping each AA of a protein into one of three diflerent groups
related to seven physicochemical properties and calculating the percentage of
cach group for cach feature ending up by a total of 21 composition features. The
seven physicochemical properties are hvdrophobicity, normalized van der Waals
volume. polarity, polarizability. charge. secondary structure, and solvent acces-
sibilitv. \When tested on a dataset of PPI pairs of twenty different cukaryotic
species including eukarvotes, prokarvotes. viruses, and parasite-host associations,
UNISPPI correctly classified 0.79 of known PPI pairs and 0.73 of non-PPI pairs.
The authors coucluded that using only the AA frequencies was sufficient. to pre-
dict PPIs. They further concluded that the AA frequencies of Asparagines (N).
Cysteine (C), and Isoleucine (I) are important features for distinguishing between
interacting and non-interacting protein pairs.

The main advantages of UNISPPI are its simplicity and low computational
cost as small amount of features were used to train the decision tree classifier.
Decision tree classifier is fast to build and has few parameters to tune. Decision
trees can be easily analyzed and the features can be ranked according to their
capabilities of distinguishing PPIs from non-PPIs. However, decision tree classi-

fiers normally sutfer from overfitting.

ETB-Viterbi:

Kern et al. [102] proposed the Early Traceback Viterbi (ETB-Viterbi)
as a decoding algorithm with an early traceback mechanism in ipHNINs (Inter-
action Profile Hidden Markov Models) [103] which was designed to optimally
incorporate long-distance correlations between interacting AA residues in input
sequences. The method was evaluated on real data from the 3DID database [104]
along with simulated data generated from 3DID data containing ditferent de-
grees of correlation and reversed sequence orientation. ETB-Viterbi was capable

to capture the long-distance correlations for improved prediction accuracy and
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was not much affected by sequence orientation. Hidden Markov models (HMM)
are powerful probabilistic modeling tool for analyzing and simulating sequences
of symbols that are smitted from underlying states and not directly observable
[105]. The Viterbi algorithm is a dynamic programming algorithm for finding the
most likely sequence of hidden states. However, the Viterbi algorithm is expensive
in terms of memory and computing time. The HNIM training involves repeats«
iterations of the Viterbi algorithmm which makes it quite slow. HAM Model may
not converge to a truly optimal parameter set for a given training set as it can
be trapped in local maxima. and can suffer from overfitting [106, 107, 108, 109].

Table 2.4 summarizes these ML sequence-based approaches and compared

them in terms of ftatures, techniques. tools, and validation datasets.

Approach Extracted Technique/Tool  Datasets
Features

Auto Lovariance AA physicochemical Auto covariance, Yeast protein

(Guo et al. 2008) properties SVM (DIP and MIPS}

Pairwisegmilarity Pairwise similarity SV Yeast protein .

(Zaki et al 2009)

AA Composition AAC Logistic regression, Yeast protein,

(Roy et al. 2009) 5%\, Naive Bayes worm protein,
fly protein

AA Triad AA triad RVKDE Human protein

(Yu et al. 2010) information (HPRD)

UNISPPI Frequency and Decision trees Twenty different

(Valente et al. 2013) composition of eukaryotic species

AA physiochemical

properties
ETB-Viterbi AA residues HMAI, Early 3DID database
(Kern et al. 2013) Traceback Viterbi

Table 2.4: Machine-learning sequence-based PPI prediction approaches.

2.3.2 Structure-Based Approaches

Structure-based PPI prediction methods use three-dimensional structural
features such as domain information, solvent accessibility, secondary structuri

states, and hydrophobic and polar surface locations [71]. Structure-based PPI
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prediction methods van be rategorized into template-hased, statistical, and ML-

based methods. This section presents and evaluates sonie of the state-of-the-art

structure-based approaches.

Template Structure-Based Approaches

Examples of template structure-based approaches are PRISM and PrePPI.

PRISM:

Tunchag et al. [110] developed PRISM as a template-based PPI predic-
tion method hased on information regarding the interaction surface of crystalline
complex structures. The two sides of a template interface are compared with
the surfaces of two target monomers by structural alignment. If regions of the
target surfacez are similar to the complementary sides of the template inter-
face, then these two targets are predicted to interact with each other through
the template interface architecture. The method can be summarized as follows.
First. interacting surface residues of target chains are extracted using MNaccess
[111]. Second, complementary chains of template interfaces are separated and
structurally compared with each of the target surfaces by using MultiProt [112].
Third, the structural alignment results are filtered according to threshold val-
ues. and the resulting st of target surfaces is transformed into the corresponding
template interfaces to form a complex. Finally. the Fiber-Dock [113] algorithm is
i=ed to refine the interactions to introduce tlexibility, compute the global energy
of the complex, and rank the solutions according to their energies. \When the
computed energy of a protein pair is less than a threshold of -10 kcal/mol, the
pair is determined to interact.

PRISM has been applied for predicting PPl in a human apoptosis pathway
[114] and a p53- protein-related pathway [115], and has contributed to the under-

standing of the structural mechanisms underlying some types of signal transduc-
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tion. PRISM obtained a precision of 0.231 when applied to a human apoptosis

pathway that consisted of 57 proteins

PrePPI.

Zhang et al. [25] proposed PrePPl (Predicting Protein-Protein Interac-
tions) as a structural alignment PPI predictor based on geometric relationships
between secondary structure information. Given a pair of query proteins A and
B, representative structures for the individual subunits (A4, M g) are taken from
the PDB (Protein Data Bank) [116] or from the ModBase [117] and SkyBase [118]
homology model databases. {’lise and remote structural neighbors are found for
each subunit. A template for the interaction exists if a PDB or PQS (Protitin Qua-
ternary Structure) [119] contains interacting pairs that are structural neighbors
of M4 and Mpg. A model is constructed by superposing the individual subunits,
M, and M g, on their corresponding structural neighbors. The likelihood for each
model to represent a true interaction is then calculated using a Bayesian Network
trained on 11,851 veast interactions and 7.409 human interactions datasets. Fi-
nally the structure-derived score is combined with non-structural information,
including co-expression and functional similarity, into a naive Baves classifier.

Although template-based methods= can achieve high prediction accuracy
when close templatis are retrieved, the accuracy significantly decreases when the

sequence identity of target and template is low.

Statistical Structure-Based Approaches

This section describes several existing statistical structure-Base PPI pre-

diction approaches.

PID Matrix Score:

Kim et al. [7] presented the Potentially Interacting Domain pair (PID)



matrix as a domain-based PPI prediction algorithm. The PID matrix score was
constructed as a measure of interactability (interaction probability) between do-
mains. The algorithm analysis was based on the DIP (Database of Interacting
Proteins) which contains more than ten thousand of mostly experimentally ver-
ified interacting protein pairs. Domain information was extracted from Iuter’ro
[120] which is an integrated database of protein families, domains and functional
sites. Cross validation was performed with subsets of DIP data (positive datasets)
and randomly generated protein pairs from TrEMBL/SwissProt database (neg-
ative datasets). The method achieved 0.50 sensitivity and 0.98 specificity. The
authors reported that the PID matrix can also be used in the mapping of the

genome-wide interaction networks.

PreSPI:

Han et al. [121. 122] proposed a domain combination-based method which
considers all possible domain combinations as the basic units of protein interac-
tions. The domain combination interaction probability is based on the number of
interacting protein pairs containing the domain combination pair and the number
of domain combinations in each protein. The method considers the possibility of
domain combinations appearing in both interacting and non-interacting sets of
protein pairs. The ranking of multiple protein pairs were decided by the inter-
acting probabilities computed through the interacting probability equation.

The method was evaluated using an interacting set of protein pairs in yeast
acquired from DIP database [75]. and a randomly generated non-interacting set
of protein pairs. The domain information for the proteins was extracted from the
PDB® (120, 116]. PreSPI achieved a sensitivity of 0.77 and a specificity of 0.95.

PreSPI suffers from several limitations. First, this method ignores other

domain-domain interaction information between the protein pairs. Second, it

Shttp://www.ebi.ac.uk/proteome/
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assumes that one domain combination is independent of another. Third. the

method is computationally expensivet as all possible domain combinations are

considerad.

Domain Cohesion and Coupling:

Jang et al. [123] proposed a domain cohesion and coupling (DCC)-based
PPI prediction method using the information of intra-protein domain interactions
and inter-protein domain interactions. The method aims to identify which do-
mains are involvird in a PPI by determining the probability of the domains causing
the proteins to interact irespective of the number of participating domains. The
coupling powers of all domain interaction pairs are stored in an interaction signif-
icance (IS) matrix which is used to predict PPI. The method was valuated on S.
rerevisiae proteins and atchieved 0.%2 sensitivity and (.53 specificitv. The domain
information for the proteins was extracted from Pfam (http://pfam.sanger.ai.uk)
[49], which is a protein domain family database that contains multiple sequence

alignments of common domain families.

MEGADOCK:

Ohue et al. [124] developed MEGADOCK as a protein-protein docking
software package using the real Pairwise Shape Complementarity (rPSC) score.
First, they conducted rigid-body docking ralculations based on a simplified en-
ergy function considering shape complementaries, electrostatics. and hydrophobic
interactions for all possible binary combinations of proteins in the target set. Us-
ing this process, a group of high-scoring docking complexes for each pair of pro-
teins were obtained. Then. ZRANK [125] was applied for more advanced binding
energy calculation and re-ranked the docking results based on ZRANK energy
scores. The deviation of the selected docking scores from the score distribution

of high-ranked complexes was determined as a standardized score (Z-score) and
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was used to assess pussible interactions. Potential complexes that had no other
high-scoring interactions nearby were rejected using structural differences. Thus
binding pairs that had at least one populated area of high-scoring structures
were considered. MEGADOCK has been applied for PPI prediction for 13 pris-
teins of a bacterial chemotaxis pathway [126, 127] and obtained a precision of
0.4. MEGADOCK is available at http://www.bi.cs.titech.ac.jp/megadock.

Une of the limitations of this approach is the demerit of generating false-
positivis for the cases in which na similar structures are seen in known complex

structure databases.

Meta Approach:

Ohue et al. [128] proposed a PPI prediction approach based on combining
template-based and docking methods. The approach applies PRISM [110] as
a template-matching method and MEGADOCK [1214] s a docking method. A
protein pair is considered to be interacting if both PRISM and MEGADOI 'K
predict that this protein pair interacts. When applied to the human apoptosis
signaling pathway, the method obtained a precision of 0.333, which is higher
than that achieved using individual methods (0.231 for PRISM and 0.145 for
MEGADOCK). while maintaining an F1 of 0.285 comparable to that obtained
us=ing individual methods (0.296 for PRISM, and 0.220 for MEGADOCK).

\Meta approaches have already been used in the field of protein tertiary
structure prediction [129], and critical experiments have demonstrated improved
performance of Meta predictors when compared with individual methods. The
Meta approach has also provided favorable results in protein domain prediction
[53] and the prediction of disordered regions in proteins [130]. Although some
true positives may be dropped by this method, the remaining predicted pairs are
expected to have higher reliability because of the consensus between two predic-

tion methods that have different characteristics.



B

Maching Learning Structure-Based Approaches

Examples of ML structure-based approaches arit Maximum Likelihood Es-

timation [131]. Random Forest [89]. and Struct2Met.

MLE:

Deng et al. [131] developed the Maximum Likelihood Estimation (MLE)
method which is based on the assumption that two proteins interact if at least
one pair of domains of the two proteins interact. It infers domain interactions by
maximizing the likelihood of the observed protein interaction data. The probabil-
ities of interaction between twir domains (only single-domain pair is considered)
are optimized using the expectation-maximization (EM) algorithm. They used
a tombined interaction data which was experimentally obtained through two hy-
brid assays on Saccharomyces cerevisiae by Uetz et al. [132] and Ito et al. [133].
The protein domain infurmation were collected from Pfam database [134].

The basic assumptions of this method ignore thi* following bhiological fac-
tors. First, the method assumes independence of domain-domain interactions.
However. the fact that two domains interact er not may depend on other do-
mains in the same protein or other environmental conditions. Second, although
the method identified domains that coexist in proteins and merged them as one
domain, there certainly exist many domains whose functions depend on other do-
mains in the same protein. Third, the idea of using domain-domain interactions
to predict protein-protein interactions assumes that some subunits with special
structure are essential to protein-protein interactions. These subunits may be
different from PFAM domains obtained through multiple alignments.  Fourth,
the method used PFAM-B domains in the same level as the PFAM-A domains.
However. PFAM-B domains are shorter and less known than PFAM-A domains,

and therefore. their roles in protein-protein interactions may not be the same.



Random Forest:

Chen and Lin [89] introduced a domain-based Random Forest PPI predic-
tor. Protein pairs were characterized by thet domains existing in each protein. The
protein domain information were collected from Pfam database [134]. Each pro-
tein pair was represented by a vector of features where each feature corresponds
to a Pfam domain. If a domain exists in both proteins. then the associated fea-
ture value is 2. If the domain exists in one of the two proteins, then its associatsl
feature value is 1. If a domain does not exists in both proteins, then the fea-
ture value is 0. These domain features were used to train a Random Forest PPI
vlassifier. The random decision forest constructs many ilecision trees and each is
grown from a ditferent subset of training samples and random subset of frature
and the final ¢vlassification of a given protein pair is determined by majority votes
among the classes tecided by the forest of trees.

When evaluated on a dataset containing 9834 veast protein interaction
pairs among 3713 proteins. and 8000 negative randomly generated samples, the
method achieved a sensitivity of 0.8 and a specificity of 0.64.. Yeast PPI data was
collected from the DIP [75. 82], Deng et al. [131]. Schwikowski et al. [135]. The
dataset of Deng et al. is a combined interaction data experimentally obtained
through two hybrid assays on Saccharomyces cerevisiae by Uetz et al. [132] and
Ito et al. [133]. Schwikowski et al. gathered their data from yrast two-hybrid,
biochemical and genetic data.

Random Forest classifier has several advantages. [t is relatively fast, sim-
ple, robust to outliers and noise, easily parallelized, avoids overfitting, and per-
forms well in many classification problems [136, 137]. Random Forest shows a
significant performance improvement over the single tree classifiers. It interprets
the importance of the features using measures such as decrease mean accuracy
or Gini importance [138]. RF benefit from the randomization of decision tress s

they have low-bias and high variance. Random Forest has few parameters to tune
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and less dependent on tuning parameters [13%, 140]. However, the computational
cost of Raniam Forest increases as the number of generated tress increases. One
of the limitations of this approach is that PPI prediction depends on domain
knowledge so proteins without domain information rannot provide any useful in-
formation for prediction. Therefore, the method excludid the pairs where at least

one of the proteins has no domain information.

Struct2Net:

Singh et al. [141] introduced Struct2Net as a structure-based PPI predic-
tor. The method predicts interactions by threading each pair of protein sequences
inte potential structures in the Protein Data Bank (PDB) [116]. Given two pro-
tein sequences (or one sequence against all sequences of a species), Struct2Net
threads the sequence to all thit protein complexes in the PDB and then chooses the
best potential match. Based on this match, it uses logistic regression technique
to predict whether the two proteins interact.

Later on. Singh et al. [142] introduced Struct2Net as a web server with
multiple querying options which is available at http://struct2net.csail.mit.edu.
Users can retrieve Yeast, fly, and human PPl predictions by gene name or iden-
tifier while they can query for proteins of other organisms by AA sequence in
FASTA format. Struct2¥et returns a list of interacting proteins if one protein
sequence is provided and an interaction prediction if two sequenres are provided.
When evaluated on yeast and flv protein pairs, Struct 2Net aichieves a recall of
0.20 with a precision of 0.30.

A common limitation of all structure-based PPl prediction approaches is
the low coverage as the number of known protein structures is much smaller than
the number of known protein sequences, and therefore, such approaches fail when
there is no structural template available for the queried protein pair. Table 2.5

summarizes these structure-based approaches and compared them in terms of



features. techniques. tools. and validation datasets.

Approach Extracted Technigque,/ Datasuots

Features Tisal
PRISM Internction surface Nacciss, Human Protein =
(Tuncbag et al. of erystulline MultiProt, (Ozbabacan et al. 2012,
2011) ~complex structures Fiber-Dock Tunchag et al. 2009)
PrePPl Secondary structure Bay#sian Yeast protein, =
(Zhang et al. networks, Human protein
2012) Muive Haves

PID Matrix
Score (Kim
et al. 2002)

Potentially
intiracting domain
paurs

P matrix

DIP. InterPro.
TrEMBL/SwissProt

PresPl Domain combination Interacting Yeast protein (DIP),
(Han et al. interaction probability  probability PDB
2003, 2004) equation
DO Intra-protein Interaction S. erevisine protein,
(Jang et al. and inter-protein significanci Plam
2012) domain interactions matrix
MEGADOCK Shape complement- rPSG, Baitierial protein
(Ohue et al. aries, electrostatics, ZRANK (Ohue et al. 2012,
2013a) and hydrophobic Matsuzaki et al.. 2013)
1Tl ract jos
Meta Approach  liferaction surfaoe PRISNI. Human protein
(Ohue et al. of crvstalline MEGADOCK
2013b) complex structures,
shape complement-
aries. electrostatics,
and hydrophobic
interactions
MLE Interacting Blaximum Uetz et al.,
(Deng et al. domains Likelihood [to et al.,
2002) Estimation Pfam

Random Forest
(Chen and Liu
2005)
StroctZNet
(Singh of af

Existence of similar
domains

Random Forest

DIP, Deng et al..
Schwikowski et al..
Pfam

Homology with
known protein

Logistic
regression

Yeast, Fly ,and
Human protein

2006, 2000}

complexes in PDB

Table 2.5: Structure-based PPI prediction approaches.

Several approaches for predicting interactions between human and HIV

proteins have been proposed. Tastan et al. [143] proposed a random forest
classification model for predicting HIV-1-human PPI. Dyer et al. [144] proposed
a SVM-based approach for predicting physical interactions between human and

HIV proteins. Mukhopadhyay et al. [145] proposed an association rule mining
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technique for discovering a set of rules among human and HIV-1 proteins.
Most of the discussed PPI prediction methods have the following limita-

tions:

e They are based on previously identified domains, and therefore they cannot

be applied when domain knowledge is not available.

e Although protein domains are highly informative for PPI prediction, other
sequence parts such as linkers can also significantly contribute to PPI pre-

diction.

e Theyv have, in general, limited capabilities to detect novel interactions and

to differentiate them from false positives [146, H].

In this work, I develop a compact and accurate approach that integrates
domain-linker prediction with PPI prediction based solely on protein primary
atructure information. This is achieved through introducing the concept of amino
acid (AA) compositional index. The compositional index is deduced from the
protein sequence dataset of domain-linker segments. The compositional index is
then combined with physiochemical properties to construct a novel AA profile.
A sliding window of variable length is used to extract the information on the
dependencies of each AA and its neighboring residues. The extracted informa-
tion is then used to train a machine-learning classifier to predict novel domains
and linkers. Once domains are identified within proteins, protein interactions=
can be predicted by analyzing their interacting domains. The proposed approach
efficientlv processes high-dimensional multi-domain protein data with a more ac-

curate predictive performance than existing approaches.
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Chapter 3: Research Methodology

This chapter provides an overview of the research method in Sertion
3.1, describes the datasets 1 Section 3.2 and defines the evaluation measures in

“ection 3.3
3.1 DNlethod Overview

In this work. I develop a compact and accurate approach that integrates
structural domain and inter-domain linker prediction with PPI prediction based
solely on protein primary structure information. The approach consists of two
main stages: identifying structural domains within protein sequences and predict-
ing PPI. The first stage includes two main contributions. The first contribution is
predicting inter-domain linker regions by introducing the concept of AA vompo-
sitional index and refining the prediction using Simulated Annealing. The com-
positional index of an amino acid represents the preference of this AA to appear
in linker regions based on its frequencies in linker and domain regions. The sec-
ond contribution is identifying structural domains based on inter-domain linker
knowledge bv constructing a protein profile that combines awnino acid compo-
sitional index and physiochemical properties and developing a machine-learning
classifier for predicting novel domains and linkers. In the second stage we predict
PPIs by characterizing structural domains within proteins and analyzing their
domain-domain interactions. An overview of the method is illustrated in Figure
8.1

This two main stages of this work, which are aligned to our main objectives,

can be summarized as follows:

e Developing a novel method for identifying structural domains within protein

sequences. This is achieved through the following steps:



Stage 1

Stage 2

5l

'y

L1080 A0 T f AW
WA VARIRARR i1 it
'||"i'| & ]':J‘ r'tsll{'g"=r-l‘1
i TR §i 5 1 'l' P ll ¥
hll" Il'I Iilill 1I'||]E I"IJ l|IJ I".ll .l'u' l“||lj lill l|'|r','|l'l.!I
Protein 1 | PFrotein 2 |
1 i
Extract AA Physiochemical Calculate A& Compositional
Features Index
|
Feature Vector 1 Feature Vector 2
ey —— Slideng window ,
o | il P jri =
1 1

Domain and Linker Prediction

' | 1

SR ST e e —Q Domain Zm}—e QH'{ Domain 21}% 22 _# {D?na?n_zn'}e

1 |

DDI Database

|

D1j and D2k

v V[

SR —_—
; nteract 1
( Interacting Protein | Non-interacting

Pair Protein Pair

Figure 3.1: Nethod overview.



51

(1) Predicting protein domain-linker regions by introducing the con-
cept of AA compositional index and refining the prediction by Simulated

Annealing.

(2) Developing a machine-learning approach for predicting novel do-

mains and linkers:

(i) To include more biological knowledge. the compositional index is

combined with AA physiochemical properties to ronstruct a protein profile.

(12) A sliding window technique is applied] to extract the information

on the dependencies of rach AA and i1ts neighbors.
(w2) A Random Forest classifier is developed to distinguish between
domains and inter-domain linker regions.
e Developing a novel PPI predictor:
(1) Characterizing structural domains within protein sequences.
(2) Identifyving interacting domains.

(3) Predicting protein interactions based on analyzing their interacting

domains.

To evaluate the performance of our proposed method and to compare our
experimental results with other approaches, we used benchmark datasets along
with standard evaluation measures. These datasets and evaluation measures are

described in following sections.



3.2 Datasets

3.2.1 Structural Domains and Inter-Domain Linker Pre-

diction

To evaluate the performance of the inter-domain linker prediction and
structural domain prediction approach, two protein sequence datasets were usisd.
The first dataset is DS-All [45, 46] which was used tis #valuate DROP [28]. All the
gsequences in DS-All were extracted from the non-redundant Protein Data Bank
(nr-PDB) chain set! and contains 182 protein sequences including 216 linker seg-
ments. By examining each sequence carefully, we found that the assignment of
domains in D=-All dataset is inconsistence with the ones in PDB. We thus vali-
dated the domain and inter-domain linkers according to NCBI conserved domains
dutabase? and ended up with 140 sequences including 334 domains and 183 linker
segments. The average numbers of AA residues in linker segments is 12.7 with
a standard deviation of 13.% and the average numbers of AA residues in domain
segments are 147.1 with a standard deviation of 90.1.

The protein sequences in the second set were extracted from the Swiss-
Prot database [54] and have tested by Suyvama and Ohara [17] to evaluate the
performance of DomCut. This dataset contains 273 non-redundant protein se-
quences including 486 linker and 794 domain segments. The average numbers of
AA residues in linker segments is 35.5 with a standard deviation of 26.7 and the
average numbers of AA residues in domain segments are 122.1 with a standard
deviation of 136.3. Therefore, about 85% (794 x 122.1) of the total AA residues
exist in domain segments and only 15% (486 x 35.5) are in linker segments. The

two datasets are summarized in Table 3.1.

'http://www.ncbi.nlm.nih.gov/Structure/VAST /nrpdb.html

Zhttp://www.nchi.nlm.nih.gov/protein
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Dataset Ds-All DomCut/Swiss-Prot
Reference Ebins et al. [45, 46]  Suyama and Oharn [17] 1
Number of proteins 140 AT

Number of linkers 183 186

Number of domains 331 794

Average number of AAs in linkers 13 36

Avernge number of AAs in doumains 147 1353

Table 3.1: Summary of domain-linker datasets.

Tool Resource Website

PFam The Protein family http://pfam.xfam.org/
ditiabase

NCBI The MNational Center for http://www.ncbi.nlm.nih.gov/
Biotechnology Information

RCSB/PDB  Pratein Data Bank http://www.resh.org/pdb/home/home.do

Table 3.2: Protein Tools.

Table 3.2 summarizes the protein resources and tools that we used in val-

idating domain and linker prediction.

3.2.2 PPI Prediction

To evaluate the performance of our PPI prediction approach, we used a
dataset containing 4.917 yeast Saccharomyces cerevisiae protein interaction pairs
among 3,713 proteins. and 4,000 negative randomly-generated samples. Yeast
PPI data was collected from the DIP [75, 82], Deng et al. [131], Schwikowski et
al. [135]. The dataset of Deng et al. is a combined interaction data experimentally
obtained through two hybrid assays on Saccharomyces cerevisiae by Uetz et al.
[132] and Ito et al. [133]. Schwikowski et al. gathered their data from yeast
two-hybrid, biochemical and genetic data. As non-PPI data are unavailable, the

negative samples were randomly generated. A protein pair is considered to be
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non-PPLif it does not exist in the interaction set. This dataset was gathered and
used by Chen and Liu [89]. Both the positive and negativie PPI examples were
divided evenly into training and testing datasets.

We obtained the domain information of the protein pairs from the Pfam-
A release 27.0° [147] using the NCBI BLAST SOAP!' [148, 51. 149] sequence
similarity search tool.

To validate our PPI prediction, we used three Domain-Domain Interaction
(DDI) databases; DOMINE, IDDI, and 3did. DOMINE?® (150, 12] is a database
of domain interactions inferred from experimentally characterized high-resolution
3D structures in the Protein Data Bank (PDB)®, in addition to predicted domain
interactions by thirteen different computational approaches using Pfam domain
definitions. DUAIINE contains a total of 26.219 DDI pairs among 5.410 domains,
out of which 6,634 are inferred from PDB entries, and 21,620 are predicted by at
list one computational approach.

The integrated domain-domain interaction analysis system (IDDI)? [151]
provides 204,715 unique DDI pairs with different reliability scores. The reliability
of the predicted DDI pairs are determined by considering the confidence scoris of
the prediction method, the independence scor# of the predicted datasets, and the
DDI prediction score measured by different prediction methods.

The database of 3D interacting domains (3did)® [152] is a collection of 3D
structures of domain-based interactions in the PDB based on domain definitions

from Pfam release 27.0 [147]. The 3did database contains 8,651 DDI pairs. Table

Shttp://pfam.sanger.ac.uk
‘http://www.ebi.ac.uk/Tools/webservices/services/sss/ncbi_blast_soap
http://domine.utdallas.edu
Shttp://www.ncbi.nlmnih.gov/Structure/VAST /nrpdb.htnl
Thttp://pcode.kaist.ac.kr/iddi/

"http://3did.irbbarcelona.org
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3.3 summarizes these DDI databases.

Dataset  Number of DDI pairs  Website

POMINE 26,219 http://domine.utdallas.edu
IR 204,715 http://pcode.kaist.ac.kr/iddi/
3did 8.651 http://3did.irbbarcelona.org

Table 3.3: DDI databases.

3.3 Evaluation Measures

The most commonly used evaluation metrics in general classification tasks
are accuracy (Ac), recall (R), precision (P), specificity (Sp), F-measure. and

Receiver Operating Characteristic (ROC).

TP+ TN ,
Ac = (3.1)
TP+TN+ FN+ FP
TE4P
= D2
i TP+ FN (E2)
TP
j - 3
TP+ FP (3.3)
TN
= S a 3
SP=TFNTFP (8e)

where TP.TN. FP, and FN represent true positive, true negative, false positive,
and false negative, respectively.

The F-measure (F1) is an evaluation metric that combines precision and
recall into a single value. It is defined as the harmonic mean of precision and

recall [153. 154]:

V]
~
=9

Fl=

(3.5)

Be)
+
=y
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The Receiver Operating Characteristic (ROC) is a graphical plot that
illustrates the classifier performance. The curve is created by plotting the true
positive rate (sensitivity) against the false positive rate (1-specificity) at various
threshold settings. The ROC curve is thus the sensitivity as a function of false
positive rate. Each prediction result or instance represents one point in the ROC
space. The best possible prediction method would yield a point in the upper left
corner of the ROLT space, representing 100% sensitivity (no false negatives) and
100% specificity (no false positives). Classifier accuracy is measured by the area
under the ROC curve (AUC). and therefore, AUC is used in model comparison.
An area of 1 represents a perfect test while an area of 0.5 represents a worthless
test. [155].

Wi used recall, precision, F-measure, and AUC to evaluate our first and
second contributions of domain and linker prediction approaches. Our third con-
tribution is evaluated and compared with existing PPI prediction approaches
using sensitivity (recall) and specificity.

In the proceeding chapters the proposed method will be discussed in de-
tails. Chapter 4 presents our first contribution in domain-linker prediction using
AA compositional index and Simulated Annealing. Section 4.1 introduces the
proposed formula for AA compositional index. Section 4.2 describes the use of
=imulated Annealing algorithm to refine the domain-linker prediction by detect-
ing the optimal threshold values of AA compositional index. Chapter 5 presents
our second contribution in developing a machine-learning approach for predicting
novel domains and linkers. Chapter 6 presents our third contribution which is

predicting protein-protein interactions based on their identified domains.



Chapter 4: CISA: Inter-Domain Linker
Prediction Using Composi-
tional Index and Simulated

Annealing

In this chapter. we introduss tur approach for predicting domain-linker
regions using AA Compositiomal Index and Simulated Annealing which we call
it L'ISA. CISA consists of two main steps; calculating the AA compositional in-
dex (CI) for the protein sequence of interest and then applying the simulated
Annealing (SA) algorithm to refine the prediction by detecting the optimal set
of threshold values that distinguish between domains and linker regions. In the
first atep, linker and domain segments are extracted from the protem sequence
ilutnset and the frequencies iff AA appearances in linker segments and non-linker
segments are computed. Then, the AA composition of the query protein sequence
is computed, and finally the AA compositional index is calculated. In the second
step. 5A is applied to find the optimal set of threshold values that separate linker
segments from non-linker segments through the compositional index profile. An
overview of CISA is illustrated in Figure 4.1. Both steps arit described in the

proceeding sections.

4.1 Compositional Index

From each protein sequence s; in the protein sequences database S* known
linker segments and domain segments are extracted and saved in two ilutasets S;
and S,. respectively. The compositional index ¢, of the amino acid ¢ is calculated

to represent the preference of this amino acid residue to appear in linker segments:
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Protein sequence dataset StEny pEEE
sequence
Extract linker Extract structural
segments domain segments Compute the
| | Amino Acid
Calculate the compositional index (CI) Composition
Find the optimal set of threshold values
using SA
L Predict linker segments
Figure 4.1: CISA overview.
fllinker A
cr= —ln(fldonmm) : (I) (4.1)
where fimker and fdoman gre the frequencies of amino acid residue ¢ in linker and

domain regions. respectively. This is inspired by DomCut method [17] which was
discussed in section 2.1.1. Howwever, the information encoded in the linker index
(LI) is insufficient to precisely predict linker segments. Therefore, we used the
compositional index proposed by [156] in which AA compositional knowledge was
combined. The typical AA Composition (AAC) contains 20 components, each of
which reflects the normalized occurrence frequency for one of the 20 natural AAs
in the query sequence. The AAC in this case is denoted by a,. Since domain
regions are usually longer than linker regions, AAC for the AA residues are more
likely to appear in domains is expected to be greater than those of linkers. So
multiplying LI by AAC as in [37] will scale linker regions less than domain regions.
In contrast, LI is now multiplied by :—' where A is a constant and therefore, LI

of linker regions will be scaled up greater than LI of domain regions. In this



59
case linker regions will have deeper troughs in the compositional index protile
than other regions. Each residue in the query protein sequence is represented
by its corresponding compositional index ¢,. Subsequently, the index values are
averaged over a window that slides along the length of the sequence. To calculate
the average compositional index value Y at position j in a protein sequence s of
length L residues, using a sliding window of size w, we followed [156] and applied

the following formula:

prwree v il 1<j<(w—-1)/2

+(w=1)/2
S:] E" ; /;

my=y§ SLEgA— . w-1)2<j<L-(w-1)/2 (42
g . .
T ) ¥ L-—w-1)/2<j<L

where L is the length of the protein and s, is the amino acid at position i
protein sequence s.

since using a fixed sliding window size could be biased towards a fixed
linker region length, various odd window sizes are examined. The averaging is
also carried out over this range according to the following formula:

-b)/2
(e—b)/ - b+2[

i = ((eI:—Ob)/z;JH =l (1.3)

where b and e are odd averaging window sizes, and 3 < b < e.
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4.2 Detecting the Optimal Set of Threshold Val-
ues Using Simulated Annealing

Simulated Annealing is a simple easily-applicable optimization technique
introduessd by Kirkpatrick et al. [157] as a computational analogous to the an-
nealing process which is the heating and controlled cooling of a metal to increase
the size of its crystal# and reduce their defects. The function to bat iiptimized in
SA is called the energy, E(x), of the state r, and during that, a parameter T, the
computational temperature, is lowered throughout thé process. SA is an iterative
trajectory descent algorithm that keeps a single candidate solution at any time
[158, 159

The major advantage of 5A is its ability to avoid being trapped in local
optima because the algorithm applies a random search which does not only ac-
cept changes that improve the objective function, but also some changes that
temporarily worsen it [160, 161]. Geman and Geman [162] presented evidence
that 5A guarantees to converge to the global optimum if the cooling schedule
is adequately slow. On the other hand. Salamon et al. [163] and Ingber [164]
reported through experience that 5A shows a very effective optimization perfor-
mance even with relatively rapid cooling schedules [165]. The run time of SA has
the complexity of O(n?logn)) [166].

SA i= commonly found in industry and provides good optimization results
(154, 159]. It has been examined and showed well performances in a variety
of single-objective and multi-objective optimization applications as reported liy
several researchers. Some of these applications are wireless telecommunications
networks (165, 159. 167], nurse scheduling problems [168]. high-dimensional and
complex nanophotonic engineering problems [169]. pattern detection in seismo-
grams [170]. dynamic pathway identification from gene expression profiles [171],

eukaryotic cell cycle regulation [172], gene network model optimization [173],
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biclustering of geni expression data [174]. and multiple biological sequence align-
ment (175, 178, 177). Howirver, examining SA in protein structure problems is
not well addressed in the literature. Due to this reason, in addition to the pre-
viously mentioned SA features. we have decided to examine SA in domain-linker
prediction.

As mentioned carlier. a dynamic threshold value is required to separate
domains from linker regions. In our case, the compositional index values, m®
are used in conjunction with SA algorithm. This is done by first dividing each
protein sequence into chunks. Starting from a random seed S, which is a set of
threshold values of the compositional index of these chunks, SA will attempt to
simultaneously maximize both prediction recall R(S) and precision P(S). which
can be considered as a multi-objective optimization problem with both R(S) and
P(5) are the fitness functions and the =et of threshold values, 5, 14 the randidate

solution apace, or individual representation. That is:

max y = f(S) = (R(S) and P(S)) (4.4)

Precision and recall should be maximized simultaneously. A perfect pre-
cisiin =core can be achieved by simply assigning "domain™ to all the protiin
sequence residues (FP = 0), and a perfect recall score can be simply achieved by
assigning "linker” to all residues (FN' = 0). However, a truly accurate predictor
should assign the correct categories and only the correct categories by maximizing
precision and recall at the same time, and accordingly, maximizing the F1 score.

In our case. SA will accept a transition from state S; to another state S,
if S5 dominates S , that is if S, i% not worse for all objectives than S; and wholly
better for at least one objective. In other words, SA will accept a transition
that leads to one of the following three conditions: an increase in both recall
and precision, an increase in recall if precision is not changed, or an increase in

precision if recall is not changed. That is:



R(55) > R(S;) and P{5;) = P(5;),
or (4.5)
P(Ss) = P(S)) and R{S3) > R(S,)

SA will also accept a transition from state S) to Sy if Sy does not domi-
nate 5, with a probability of e¢ /T where Af = f(S3) — f(S1), and T is the
temperature parameter which expected to be reduced over time during the pro-
cess and therefore, the possibility of accepting such transitions is decreased. The

method is summarized in Algorithm 1.
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Algorithm 1 Inter-Domain Linker Prediction Optimization
Set Sp s an initial candidate solution:
Divide the protein sequence into chunks
Assign a random initial threshold of each chunk
Calculate €]
Classify #ach AA as linker (1) or domain (0) according to its CI value with
respect to the corresponding chunk threshold
“alculate the fitness functions R(Sp) and P(Sp)
Ty + latial temperature
a « Temerature decay
Maximize the fitness functions:
for n =1 to Number of Chunks do
T « Temperature
repeat
Make a transition Tr:
randomly increase or decrease threshold of n
S « Tr(Sy)
Classify each AA as linker or domain
Calculate fi#) and P(s)
AR« R(S) — R(Sp) and AP « P(S)P(Sp)
if (AR>0and AP >0)or (AP >0and AR > 0) then
accept transition
else if random(0,1) < exp(
accept transition
end if
T'—axT
until stopping criteria is met
end for
return S as the set of optimal threshold values for the protein sequence chunks

AR+AP
~Rga8l ) thien

return R(S) and P(S) as the final recall and precision, respectively
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4.3 Experimental Results and Discussion

To illustrate the improvement of owr modified compositional index over
both the linker index of [17] and the compositional index of [156, 37], three
profiles of u protein lau7_A are plotted as shown in Figure 4.2. The lauT.A
protein sequence of Chain A, Pit-1 MutantDNA Complex has 146 AA residues
and contains an actual domain linker located in the positions from 74 to 109
as retrieved from the National Center for Bintechnology Information (NCBI)!
and indicated by the horizontal arrow in the figure. The figure shows that the
modified compositional index can separate linker regions from domain regions
more accurately and sharply than those of [17] and [37]. Figure 4.2(c) shows
how the trough in the linker region is deeper than those of Figure 4.2(a) and (b),
respectively. We can also notice that the profile in Figure 4.2(b) has a second
trough indicating a false linker in the right =ide of the profile which is deeper than
the actual inker’s trough.

Another example is illustrated in Figure 4.3 based on the 1f6f_.C protein
which hias 210 AA residues and one linker as retrieved from NCBI and indicated
by the horizontal arrow. Figure 4.3(a) (the linker index of [17]) and 4.3(b) (the
compositional index of [37]) show more than one trough indicating false linkers
and the index values of these false linkers are less than those of the actual linker.
However, Figure 4.3(c) clearly shows that, according to our proposed modified
formula, the residues in the actual linker regions have lower index values than
those of other residues which allows to easily find a separation threshold.

As shown in Figures 4.2 and 4.3, having a static threshold cannot precisely
separates linkers from domain regions, and therefore, a dynamic threshold is
required. We applied the SA technique to detect the optimal set of threshold

values that will separates linkers from domain regions along the protein sequenci:.

Thttp://www.ncbi.nlm.nih.gov/



onal iIndex

Gomposith
(Zaki ot al, 2011)

i H
it
oL
|

-
u"HHHHhnﬂHunuuuuu"""""“"""""
A 0 [

— e

...

. .28 il

! | 100 120 140
4

T T inker——> T

() '

2 '
0 !
2 | | l | |

20 60 80 100 120 140

Amino acd residues

Figure 4.2: Climparison between (a) linker index of [17], (b) compositional in-
dex of [37]. and (c) the modified compositional index profiles for lau7_A

protein.
f.E | | |
LE - il tadl
1 = |
i} ~1,luail!h1HlIILu-
117
¥ k L] - L] 1
i E | i .
R ;_!-
. ?”"Wl’"“”w““'“-ﬂ*'mr’-1‘J!‘”“lﬂih‘-jﬂﬂi‘“"*‘L”*ﬂlhhliith5*
1§
- e = ] 1 [ L] i
: 2 7 T T T T
St G Linker
2 « >
EERY
3 I
£ s
g I 1 | l I | |
. % 60 8 140 160 180 b

R W e

Figure 4.3: Comparison between (a) linker index of [17], (b) compositional in-
dex of [37], and (c) the modified compositional index profiles for 1{6f C

protein.
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We evaluated the performance of CISA using DomCut /Swiss-Prot protein
dataset which was prepared by [17] using one-against-all cross validation and ex-
plored different chunk sizes {5. 10. 18, 36} where 36 is the average linker size
withmn the dataset. CISA was able to achieve an average recall of 0.89. precisitm
of 0.50 and Fl-measure of (.84 on a window size of 25 residues and a chunk of 5

residues Figure 4.4 presents these evaluation metrics at different chunk sizes.
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Figure 14: Recall. precision, and Fl-measure at a window size of 25 and at
different chunk =izes (5 to 36) using DomCut/Swiss-Prot dataset.

In the second experiment. we #valuated the performance of our method
on 151 protein sequences of DS-All dataset including 182 linker and 332 domains.
In this experiment DomCut dataset was used to generate the linker index of each
AA before using them to predict the domain-linker regions in DS-All dataset.
Several odd sliding window sizes w in the range of 5 to 25 AAs are explored for
computing the compositional index m}" according to equation 4.2. It was noticed
that the best results were achieved when w > 19 as shown in Figure 4.5. Further.
we tested the averaging m, over a range of 5 to 25 AAs according to equation 4.3.
This process takes a longer computational time without a significant improvement

in the prediction accuracy as shown in Figure 4.5. A= a result. we decided to set

w to 25 in all of our experimental works. To optimize the scaling constant A.
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we examined three values {1. 10. 100}. Based on Equation 4.1. we found that

Fl-score is slightly higher when & = 100 than & = 10. and significantly higher

thant hattatt i =nn

0 65
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Figure 4.5: Riccall. precision and F1l-measure based on DS-All dataset by [45]
and [46]. The sliding window sizes w is set in the range of 5 to 25 AAs.
The average value of the sliding window sizes (avg) i= also included.

We have also #xplored several chunk sizes {5. 10. 13}. where 13 is the av-
erage linker =ize among the data=zet. Figure 1.6 present= these evaluation metrics
at different chunk =izes. We were able to achieve an average prediction recall of
0.7%, precision of 0.79 and F1-mea=ure of 0.79 when the chunk size was set to 5
AA long.

Although our algorithm =elects a random chunk in the initial iteration, it
can be easily modified to scan the protein sequence from left to right in order
to cover the whole chunks across the chain. One of the challenges that we faced
during the evaluation step of the algorithm is the division by zero during the
calculation of the precision. This is normally happens at the early stages where
no AA regions are predicted as linkers and. therefore. the true positive (TD)
and false positive (FP) are zeros. To overcome this challenge. we designed the
algorithm in a way to reject such state and immediately performs a new transition.

Another challenge is the fact that the recall R(S) and precifion P(S) are
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Figure 4.6: Hecall. precision and Fl-measure at a window sz of 25 and at
different ¢hunk sizes baseil on D5-All dataset.
not continuous functions. In other words, a change 1 S (the set of threshold
values) may cause a jump in the values of R(S) and P(S). or it may cause no
change in both values. At the same time the transition. AS should be maintained.

which i1s a change in a threshold of one chunk. within a reasonabli range that we

1

1o of the compositional index range. Therefore. the algorithm should

set to be
perform several transitions till it pas=es from state S; to a more dominant state
S5. However. while performing. these transitions. AR and AP will be zeros while
the algorithm has not vet converged to the global maximum. Therefore. we did
not consider having AR = 0 and AP = 0 as a stopping criteria. Instead. we set
the number of iterations to 20 per chunk.

One of the SA algorithm issues we had to deal with is the random seed. or
initialization issue. Depending on the initial state. SA performs differently and
returns different outputa. This issue can be addressed by setting a predefined
initial threshold value for the whole input sequence residues. \We set this initial
threshold to be the average value of the CI as this average value is somehow in the
middle of the CI profile which can help SA to converge more efficiently by either

stepping-up the threshold in linker segments or stepping-down the threshold in

domain segments.
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4.3.1 Performance Comparison

Based on the D5-All dataset. the performance of ['ISA was compared to
the currently available domain linker prediction approarhes as shewn in Figure
|.7. ISA was able to outperform 6 of the state-of-the-art domain-linker predii-
tion approaches in terms of recall. precision and Fl-score. As shown in Table 4.1.
the performance of C'ISA was ulso compared ta the recent predictor deviloped
by [175] and DomCut based on the Swizs-Prot /DomCut dataset. CISA was also

able to shenw considerable improvement in prediction accurasy.
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Figure 4.7: CI®A performance comparid to the state-of-the-art predictors
baszed on the DS-All dataset.

Method Recall Precision F1
CI3A (.54 (180} (.54
Shatnawi and Zaki[178]  0.56 0.84 0.67
DomCut 0.54 0.50 0.52

Table 4.1: CISA performance comparison using Swiss-Prot/DomCut dataset.

4.3.2 Biological Relevance

To demounstrate the performance of CISA. Figure 4.8(a) shows the compo-

sitional index profile for 1au7_A protein sequence in DS-All dataset which contains



146 AA residues and has two domains and a domain-linker in the region from 74
to 109. The figure also shows the optimal threshold values achieved by CISA. It i
shown that the compositional index threshold values at linker segments are raised
by the algorithm while threshold values of domains are rirduced. In this case the
compositional index value= of a linker region will be lower than its assoriated
threshold values while the compositional index values of a domain region will be

than it oriated thresholds. and this. in turn, improve the prediction.
The three dimensional structure of this protein is shown in Figure. 4.8(b) which

shows the two domains in red and green retrieved from NCBI2.

nal ingex
e
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1

Amino acid residues

Figure 4.8: Protein lau7_A in DS-All dataset which has 146 AA residues
containing two domains. (a) The compositional index (CI) profile (blue)
and the optimal threshold values returned by the algorithm (red). (b)
The 3D structure for this protein showing the two domains.

2http://www.ncbi.nlm.nih.gov/



!

Identification of domain linkers locations is often the first step in protein
folding and function annotations. Another example that illustrates how CISA
can furthermore assists in detecting important domains by identifving linkers is
the detection of three important conservative domains in the breast cancer tyvpe
1 (BRC'A1) susceptibility protein isoform 4 [Homo sapiens] which consists of 759
AAs. Figure 4.9 presents the compositiomal index profile for this protein and the
threshold walues achieved by CISA. It is shown that the proposed algarithm can
accurately detect the domain linkers which leads to the identification of three im-
portant domains. The first domain is RING-finger domain which is a specialized
tvpe of Zu-finger that binds two atoms of zinc. involved in mediating protein-
protein interactions. and identified in proteins with a wide range of functions
such as viral replication. signal transduction. and development. This domain is
located at positions 23 to 68. The other two domains are Breast Cancer Suppres-
sor Protein (BRCAL) carboxy-terminal domains. They are found within many
DNA damage repair and cell cycle checkpoint proteins. These two domain are

located in positions from 546 to 620 and from 659 to 735. re=pectively.

Averaged compositional index §
= Dynamic threshoid I r I1

15 -i A

Compositlonal indas

i = g
] 1 1

p
50 100 150 200 250 300 350 400 450 S00 550 600 850 700 750
Amino acid residues

Figure 1.9: The CI profile based on the Breast cancer tvpe 1 susceptibility
protein is shown in blue and the optimal threshold values achieved by
CISA are shown in red. The three domains according to the NCBI's
conserved domain database are represented by the green boxes.
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Chapter 5: Random Forest Approach for
Domain and Linker Predic-

tion

In this chapter, we present our second contribution which is identifying
structural domains based on linker knowledge. To include biological knowledge to
the compositional index which was introduced in Chapter 4, we combine the com-
positional index with several AA physiochemical properties to construct a novel
protein profile. This profile is then used to build a machine learning classifier to
predict noveel domains and linkers. We utilizet a nature-inspired machine-learning
miidel called Random Forest. Section 5.1 describes the feature extraction stage
while Section 5.2 describes thit Random Forest model. Experimental results are

presinted and discussed in Section 5.3.

5.1 Feature Extraction

To extract AA features from a protein, a sliding window technique is used.
For each sequence in the protein dataset, we slidi* an averaging window across the
sequence from the A-terminal to the C-terminal. A number of important features
of a protein, located within the sliding window, are extracted. These features are
the compositional index which was introduced in Section 4.1, AA hydrophobicity,
and other AA physiochemical properties including side-chain charge, side-chain

polarity, aromaticity, size, and electronic properties.



5.1.1 Hydrophobicity Profile

Hydrophobicity is a physical property of a substance to repel water and it
is a major factor in protein stability. The hvdrophobic effect plays a key role in
the spoutaneous folding of proteins. It can be defined as the free energy required
to transfer amino-acid side-chains from cyclohexane to water [179]. Table 5.1
illustrates hydrophobicity index in kilo-calories per mole for each of the twenty
AAs of proteins at a pll of 7. Several researchers selected hydrophobicity as
the main feature among many other properties in protein structure prediction

(179, 180, 181, 182).

Amino Hydrophobicity Amino Hydrophobicity

acid index acid index
I .92 Y -0.14
I 1.92 T =257
\Y 4.04 S -3.40
P 4.04 H -1.66
F 2.98 Q -5.54
M 2.35 N 5.55
W 2.33 N -6.64
A 1.81 E -6.81
C 1.28 D -8.72
G 0.94 R -14.92

Table 5.1: Hydrophobicity index (kcal/mol) of amino acids in a distribution
from non-polar to polar at pH=T7 [182].

In literature. various hydrophobicity scales have been thoroughly exam-
ined for protein sequence classification and prediction tasks. David [183] con-
cluded that the Rose scale [184] was superior to all others when used for protein
structure prediction. The Rose scale in Table 5.2 is correlated to the average area
of buried AAs in globular proteins. However, Korenberg et al. [181] pointed out
several key drawbacks with Rose scale. Since it is not a one-to-one mapping, dif-
ferent amino-acid sequences can have identical hydrophobicity profiles; the scale

covers a narrow range of values while causing some AAs to be weighted more



Amino Hydrophobicity Amino Hydrophobicity

acid index acid index
A 0.74 L 0.85
R 0.64 K 0.52
N 0.63 M 0.85
D 0.62 F 0.88
C 0.91 P 0.64
Q 0.62 5 0.66
B 0.62 T 0.70
G 0.72 W 0.85
H 0.7% Y 0.76
[ (.88 \Y% 0.86

Table 5.2: Rose hyvdrophobicity scale. The scale is correlated to the average
area of buried AAs in globular proteins [182].

Amino Hydrophobicity Amino Hydrophobicity

acid index acid index
C 1,1.0,0.0 G 0,0,0,-1,-1
F 1.0.1,0.0 i 0.0,-1,0,-1
I 1.0.0,1,0 S 0.0.-1,-1,0
\Y 1,0,0,0.1 R 0,-1.0,0,-1
L 0,1.1.0,0 P 0,-1,0.-1,0
W 0.1.0.1.0 N 0.-1,-1,0,0
M 0,1.0,0.1 D -1.0,0,0,-1
H 0,0.1,1.0 Q -1,0,0,-1,0
Y 0,0.1,0.1 E -1,0.-1,0,0
A 0.0,0,1.1 K -1,-1.0,0,0

Table 5.3: SARAHI1 hyvdrophobicity scale. Each AA is assigned a five-bit
code in descending order of the binary value of the corresponding code
where the right-half is the negative mirror image of the left-half. The 10
most hydrophobic residues are positive, and the 10 least hydrophobic
residues are negative [182].
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heavily than others. To overcome this prohilems, the SARAHI scale was intro-
duced [181]. SARAHI assigns to emch AA a unique five-bit signed code, where
exactly two bits are non-zero. as illustrated in Table 5.3 where the right-half is
the negative mirror image of the left-half. The ten most hydrophobic residues are
positive while the ten least hvdrophobie residues are negative.

In this work. we experimentally tested the three above mentioned hy-
drophobicity scales where SARAH1 seale showed a slightly better prediction ac-

curacy. Thus. we used SARAHIL in the construction of our AA feature set.

5.1.2 Physiochemical Properties

In addition to hydrophobicity, we considered several physiochemical prop-
erties of AAs as fratures including electric charge, polarity, aromaticity, size, and
electronic property. AAs are categorized according to each physiochemical prop-
erty as in Table 5.4 [185, 186, 187]. Each physiochemical property of an AA is
based on its side-chain propensity and has its own characteristics. Physiochem-
ical properties play important role in recognizing the behavior of the AAs and
its interactions with other AAs. These interactions have significant impact on
the formation. folding. and stabilization of protein 3D structures. For example,
polar and charged AAs are able to form hydrogen bonds, and thus, they cover
the molecules surfaces and are in contact with solvents. Positively and nega-
tively charged amino acids form salt bridges. Polar amino acids are hydrophilic,
whereas non-polar amino acids are hydrophobic, which are used to twist protein

into useful shapes [188].

5.1.3 Protein Sequence Representation

Each sequence in the dataset is replaced by its corresponding properties;

compositional index, hydrophobicity, charge, polarity. aromaticity, size, and elec-



Property Value Amino acids
“Charge Positive H, K, R
Negativi D, E
Neutral ACFE.GLLMN
PQ.ST. VWY
Polatity Polar G, D, E, H, K, N, Q,
R, S, T, Y
“on-polar A F,GIL MP VW
Aliphatic/Aromatic  Aliphatic I, L,V
Aromatic F.H W, Y
Meutral A. C, D.E, G, K, M,
NeP-QLR -5, T
Size =mall A G P S
Medium D.N, T
Large CHoniDy IS BT, I WL,
M QR V, W Y
Electronic Strong donor A, D E P
Weak donor LLV
Meutral C.G H,S, W
Weak acceptor F, M, Q, T, Y
Strong acceptor K, N, R

Table 5.4: Amino acid classification according to their physiochemical prop-
erties [185. 186, 187].



tronic property. These values are then averaged over a window that slides along
the length of each protein sequence starting from the N-terminal towards the
C-terminal. To calculate the average feature values X' at position j in a protein
sequimes 5. using a sliding window of size w. we map feature values into numbers

and then apply the following formula:

et 1 <35 S w=1)/2
7 5l il P Y
‘\] - Jqu_—l_)j'.’_ I (ll’—l)/?(_} SL—(U.‘—I)/Q (51)
AP . .
| L—+1+(w—1)/2 b—@—0)/Z<)< L

where L is the length of the protein sequence and rg, is the fisature vector for the
AA residue 5; which i= located at position i in the protein sequence S. Figure 5.1
depicts the protein sequence representation by the amino acid features and the

sliding window.

Protein Sequence Representation siiding window
Residue .. ALETVQP! LTVEDL|CSTEE «+ | EQCVLSG!I PIANEMHKVYCDPWT...
domain — INKOT c— domain
Compositional o, - - - . - - _ =
P T S L T P H AR T L
Index '-"‘"'"'--"'--E"""""il--u"'""'i.""l"'i"l-l"l'"’l'li"ill'-'
€0-101-101001-1-20/100-1-11100-100111-1110001000-100-1101-1000
©10000-101000011000000-1-10-100000101000-10-1010-10010- 10
SARAE1-Bydro 01-1.100001-10-101/0-1-2-1-1 000-100000-10001-1000(0-2-1 01001000 0-1
10000-1-11000000/0-100001000-11010-1000-2-21-11000100000-1 10
100-110000-110-10/00-10010-10-10110000100-100100100110-10 0-1
Chargw S & 8 L p - L PP - il
Polaraty PP = p.- # PpP-PPPPP-"PDP-P-  PPP I | ER - BE- BRSO
Aromatic A- - & - AN N - oA - - - A - - - AlAI- - - AlA- - & Ar. AlA - - & -
Size stLMLLsLULMLLMLREsMLLLLLMLSsSsLLLLLLLLEsSLsLMLLLLELLLMLEM
Elsatrefis “EE P REREEEE R N - aDDJdJdAADDDOIID s - dd - d DIDADa - Adasa-DD- 2

Figure 5.1: Representation of protein sequence by AA features and sliding
window. Each protein is replaced by its corresponding AA composi-
tional and physiochemical properties. These property values are then
averaged over a window that slides along the length of the protein se-
quence.
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5.2 Random Forest MNModel

Random Forest (RF) [136] is an ensemble learner that constructs a multi-
tude of decision trees with randomly selected features during training time and
outputs the class that is the mode of thi ¢lasses output by individual trees. Each
decision tree grows as follows: for a training set of N cases and M variables, sam-
ple n cases with replacement from the original data to grow the tree. A number
m <= )M i= specified such that at each node m variables are selected randomly
to best split the nodes. Each tree grows as large as possible. The error of RF
depends on the strength of each individual tree and the correlation between them

(184]. RF algorithm is depicted in Figure 5.2.
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Figure 5.2: Random Forest Algorithm

Due to its averaging strategy. RF classifier is robust to outliers and noise.
avoids overfitting. is relatively fast. simple. easily parallelized, and performs well

in many classification problems [136. 137]. RF shows a significant performance
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improvement over the single tres elassifiers such as CART and C4.5. RF model
interprets the importanee of the features using measures such as decrease mean
accuracy or Gine importance [138]. RF benefit from the randomization of decision
tress as they have low-bias and high variance. RF has few parameters to tune
and less dependent on tuning parameters [139. 140].

Ensemble methods including RF. bagging. and boosting have been in-
creasingly applied to himuformatics. When compared to bagging and boosting
snsemble methods. RF has a unique advantage of using multiple feature sub-
sets which is well =uited for high-dimensional data as demonstrated by several
bioinformatics studies [190]. Lee ¢t al. [191] compared the ensemble of bagging.
boosting and RF using the same experimental settings and found that RF is the
most successful one. The experimental results through ten microarray datasets
in [192] reported that RF is able to preserve predictive accuracy while vielding
smaller gene sets compared to diagonal linear discriminant analvsis. kNN, SV'\ L.
shrunken centroids (SC). and kNN with feature selection. Other advantages of
RF such as robustness to noise. lack of dependence upon tuning parameters. and
the computation speed have been verified by [139] in classifying SELDI-TOF
proteomic data. \Wu et al. [193] compared the ensemble methods of bagging.
boosting. and RF to individual classifiers of LDA. quadratic discriminant analy-
sis. KNN. and S\V'M for NTALDI-TOF (matrix assisted laser desorption/ionization
with time-of-flight) data classification and reported that among all methods RF
gives the lowest error rate with the smallest variance. RF also has better gener-
alization ability than Ababoost ensembles [194].

Recently. RF has been successfully emploved to a wide range of bioin-
formatics problems including protein-protein binding sites [195]. protein-protein
interaction [89. 196]. protein disordered regions [197]. transmembrane helix [188].
residue-residue contact and helix-helix interaction [189], and solvent accessible

surface area of TM helix residues in membrane proteins [198].
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In our rase. the feature vector constructed in the last section is used to
train the RF classifier. At each node of every tree, a number of features are
randomly selected and the feature which can better =plit the dataset is chosen
among them. \We set the number of selectsl firatures at each node for building the
trees. m. to (loga(number of attributes) + 1) as recommended by [136]. During
testing. each test point is simultanesusly pushed through all trees until it reaches
the corresponding leave which can be either domain or linker and. in turn. RF

chooses the classification with the most vites from all the trees

5.3 Experimental Results and Discussion

Each AA residue in every protein sequence is represented by its corre-
sponding featurs values. Thise features are the compositional index that was
introduced in Section 4.1. AA hyvdrophobicity. and other AA phvsiochemical
properties including side-chain charge. side-chain polarity, aromaticity. size. and
electronic properties. Thes values are then averaged over a window that slides
along the length of each protein sequence according to Equation 5.1.

To find the optimal averaging window size. we tested odd window =ize= 1n
the range of 7 to 45 residues at randomly selected 50 protein sequences from D5-
All dataset [28] and another randomly selected 50 protein seqjuences from DomCut
dataset [17]. and then compared the prediction performance at these windows
in terms of recall. precision. and Fl-score. Figure 5.3 depicts the performance
measires at different sliding windows when applied to the 50 protein seijuences
of DS-All dataset. Figure 5.4 shows these prediction measures at different sliding
windows when applied to the 50 protein sequences from DomCut dataset. As seen
in these two figures. the window size of 41 showed the highest recall. precision
and F-measure on both datasets. We thus st the averaging window size to 41 to

obtain the final experimental results.
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\We st the number of selected features at #ach node for building the trees.
m. to (loga(numberof attributes) + 1) as recommended by [136]. Wi examined
several values for the number of generated decision trees. Nye... in the range of
10 and 500 and found that thi prediction accuracy increases as Ny .q.. icreases as
shown in Figure 5.5. However. the improvement in prediction when Ny, ..s exceeds
200 15 not considerable when compared with the increase in computational time
and memory. Therefore. we set Nyees to 200 in all the conducted experiments.
This also agrees with recent empirical studies [199, 200] which reported that en-
sembles of size less or equal to 100 are too small for approximating the infinite

ensemble prediction.
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Figure 5.3: Recall. precision. F-measure. and AUC of random forest classifier

at different averaging window sizes with fifty protein sequences from
DS-All dataset.

The experimental results showed that the proposed approach is useful
for the domain and linker identification of highly imbalanced single-domain and
multi-domain proteins. Clearly. there are several advantages of the proposed ap-
proach. First. there are only few RF parameters that need to be tuned. Second.
the better predictive performance of the proposed approach was achieved on the
imbalance domain-linkers without applying any class weights or data re-sampling

techniques. In other words. the proposed approach is not biased towards the
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Figure 5.4: Recall. precisitm. F-measure. and AUC of random forest classifier
at different averaging window sizes with fifty protein sequences from
DomCut dataset.
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Figure 5.5: Number of generated trees optimization. Rerall. precision. and
F-measure at different number of generated trees performed on DS-All
dataset.
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majority cla=s like most other ML models. To compare RF performance to S\'\I
and ANN ¢lassifiers. we trained a SVM and ANN classifiers with the same pro-
tein data and found that hoth classitied the whole protein sequences as domains.
This can be explained by the fact that the training of such methods is based
on adjusting the model purameters that maximize the classification accuracy (by
minimizing the error rate) which is not a successful strategy in case of highly im-
balanced data. Third. physiochemical properties that are used in this approach
play important roles in forming the behavior of amino acids and their interac-
tions with other amino acids and these interactions have significant impact on the
formation. folding. and stabilization of protein 3D structures. Therefore. these
properties are important features to distinguish structural domains from link-
ers. Fourth. the primary structure features that are used in this approach can
be extracted with a low computational cost when compared to extracting other
features such as PSS\ and protein secondary structure that are used in most of
the current approaches. Generating PSS\ and predicting secondary structure
features are computationally expensive and time consuming. Noreover. protein
secondary structures are normally predicted by SSpro [26] which reaches an ac-
curacy of 80% only, so the incorrectly predicted secondary structures may lead
to model misclassification.

To study the importance of features by finding which features contribute
most to the prediction. we perform a feature selection procedure as follows. First.
we measure the Information Gain (IG) of each feature and order the features ac-
cording to their IG. Then. we remove the features one by one starting with the
one that has least IG and find its effect on the prediction and present the re-
sults in Table 5.5. It is found that AA compositional index and hydrophobicity
contribute the most while AA polarity and electric charge contributes less than

other features.
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_f'l'_d'l'-lrr‘!-: Henowvid Recall Precision F1
None N _—iH'r'.".-'. |4_;§T |1-:~:I_Ij
Polaritv 0.G73 0.984 [, 795
Charge and Polarity 0.645 0.983 0.774
Size and all the aliove 0.602 (.9%0 0.74i
Electronic and all the abuve 0.455 0.96% 0.619
Aromaticity and all the above 0.325 0.916 0.4%0

Hydrophobicity and all the above 0.169 0.204 0.185

Table 5.5: Predictitn mwasures after removing features that have less infor-
mation gain using DS-All dataset.

5.3.1 Performance Comparison

Based om the D5-All dataset. with 10-fold cross validation. we achieved
the average prediction recall of 0.68. precision of 0.99. and F-mwas=ure of 0.%0).
The comparisons of our approach with existing domain and linker prediction ap-
proaches= [28] on DS-All dataset are summarized in Figure 5.6. Clearly. the pro-
posed approach outperformed the existing predictors in terms of recall. precision.
and F-measure.

To prove the usefulness of our approach. it was again tested on DomCut /Swiss-
Prot protein sequence dataset. Our approach again outperformed Shatnawi and
Zaki's predictor [178] as well as DomCut [17] with average recall of 0.65. a preci-

sion of 0.9%, and an F-measure of 0.7% a= shown in Tabl# 5.6.

Approach Recall Precision F1
Our Approach 0.71 (.08 (.82
Shatnawi and Zaki (2013)  0.56 (.54 .67
DomCut 0.54 050 052

Table 5.6: Recall. precision. and F-mwisure using Swiss-Prot/DomCut dataset
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5.3.2 Biological Relevance

I'o demonstrate the performance of our methad in predicting important
domains, it was applied on the FAS-associated death domain protein, FADD_Human.
(PDB Accession number Q1315%8) which has 20% residues with two domains and
one domain-linker located in the interval between %3 and 96 residues according to
the Protein Data Bank (RCSB PDB)![116]. Our method succeeded in predicting

these two domain# a& indicated by the orange bars in Figure. 5.7.
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Figure 5.7: FAS-associated death domain protein - Q13158 (FADD_HUMAN).
The protein contains 208 residues and has two domains and a linker
according to RCSB-PDB. Our method succeeded in predicting these
two domains as indicated by the orange bars.

Thttp://www.resb.org/pdb/protein/Q13158
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Another example is illustrated in Figure. 5.8 of the B-lvmphocvte anti-
gen D19 (CD19_.HUMAN). (PDB Aceession number P15391) which has 556
residues with two domains and one domain-linker according to thit Resvarch Col-
laboratory for Structural Bioinformatics - Protein Data Bank (RCSB PDB). Our
method succeeded in predicting these two immunoglobulin domains as indicated
by the orange bars. Immunoglobulin domains may be involved in proteinpro-
tein and proteinligand interactions. The immunoglobulin superfamily domains
are involved in the recognition. binding. or adhesion processes of cells. They are

commonly associated with roles in the immune system [201].

D19 HUMAN
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Figure 5.58: B-lvmphocyte antigen CD19 - P15391 (CD19_HUMNAN). The pro-
tein contains 556 residues and has two domains and a linker according
to RCSB-PDB. Our method succeeded in predicting these two domains
as indicated by the orange bars.

Figure 5.9 presents the izumo sperm-egg fusion 1. isoform CRA_c¢ [Homo
sapiens] protein which contains 194 residues and has one domain (PF15005) ac-
cording to NCBI 2. Our method succeeded in predicting this domain as indicated
by the orange bar. The izumo sperm-egg fusion domain is important in fertiliza-

tion and essential for sperm-egg plasma membrane binding and fusion [202. 203].

2http://www.ncbi.nlm.nih.gov /protein /119572782
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Chapter 6: PPI Prediction

This chapter presents our third contribution which is predicting protein-
protein interactions based on analyzing their interacting structural domains. The
method is described in Section 6.1 and experimental results are presented and

discussed in Section 6.2.

6.1 DNlethod

Following the structural domain identification. we determine that two pro-
teins interact by the means of interacting domain both contain. The validation
is done by searching the identified domains in a benchmark domain-domain in-
teraction (DDI) database. This is achieved. as illustrated in Figure G.1. through

the following steps:

e Each of the predicted domains within a given protein pair is searched in
the Pfam domain database to find its Pfam ID (Accession Number) by

emploving the Needleman-\Wunsch (NW) global alignment algorithm.

e Based on their Pfam Accession Numbers. domain interactions are searched

in three benchmark DDI databases.

e \We conclude that two protein interact if thev contain one or more interact-

ing domains available from the DDI database.

The details of each step is explained through the proceeding sections.

6.1.1 Pfam Search

Each of the predicted domains is searched to find its Pfam Accession Num-

ber. This is performed by applying a global sequence alignment of the predicted



1 i

Domain and Linker Prediction

| 1
& Dowmam 17 & 4 Bormain 2m & = -4 Domann ”9%‘ 4 Doman 2n ha

Linker

= A Doty 11 #

I i i i i i
Pfam Domain Library
| | } ) i '
[ prD11 prD12 [PFIDIm | Tefi0n [ PFiD22 | ['PFiD2n |
‘ ' DDI Database
DOMINE DD 3did
D1} and D2k
———
_r_ interact 1
(Interacting Protein ) Non-interacting
Pair Protein Pair

Figure 6.1: Overview of the PPI prediction process

domain with every entry in Pfam release 27.0 [147] using the Needleman-Wunsch
(NW) algorithm [204] and returning the Pfam entry that has the highest align-
ment score.

Pfam is a large collection of protein families. each represented by multiple
sequence alignments and HN[Ns. The Pfam database consists of two components:
Pfam-A and Pfam-B. Pfam-A entries are high quality. manually curated families
and cover a large proportion of the sequences in the underlving sequence database.
Pfam-B entries are automatically generated and of lower quality and can be useful
when no Pfam-A entries are found. We use Pfam-A 27.0 [147] which is the latest
Pfam release. Pfam-A contains 14.830 protein families with 10.626.097 domain
entries.

The NW algorithm [204] is a dynamic programming algorithm that mea-

sures the similarity score between two sequences by a global gapped alignment
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and guarantees to find the best alignment. The algorithm provides a method of
finding the optimal global alignment of two sequences by maximizing the number
of amino acid matches and minimizing the number of gaps necessary to align the
two sequences [205].

NW algorithm constructs a two-dimensional matrix in which one of the
sequences to be aligned runs down the vertical axis and the other along the hori-
zontal axis. The algorithm finds the best alignment by using optimal alignments
of smaller subsequences. The optimal path can then be determined by incre-
mental extension of the optimal sub-paths. All possible comparisons between
any number of AA pairs are given by pathways through the array and are scored.
The alignment is grown from the C-terminus towards the N-terminus and all pos-
sible alignments at each step are rejected except the one with the best score [206].
The MW algorithm consists of three steps; score matrix initialization, matrix fill-
ing with maximum scores. and residues traceback for appropriate alignment. N\V
algorithm is described in Algorithm 2. Regarding its complexity, given two se-
quences of length m and n. the NW algorithmm performs the alignment with a

time complexity of O(mn) and a space complexity of O(mn) [205].
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Algorithm 2 Needleman-Wunsch global alignment.
input two protein sequences .\ and Y
initialization:

Set F(i,0) = —wd foralli =0.1.2, ... n
Set F(0,5) = —jdforall j =0,1.2,...;1n
for : = 1 to n do: do

for ) =1 to m do: do

FG—-1,j-1)+s(x.y;)
Set F(i,)) :=max{ Fa—-1,)) —d

F(i,j—1)-d
(6.1)
Set backtrace T(4, j) to the maximizing pair (7', j)
end for
end for

Score a := F(n,m)
Set (i.j) := (n,m)

repeat

if T(¢,j)=((¢—1,j—1) then
print (z,,y,)

else if T(i, j) = ((i = 1.Jj) then
print (r;.—)

else
print (—,y;)

end if

Set (i.7) :==T(i,J)
until (i.j) = (0.0)
return optimal alignment and score «




6.1.2 DDI Database Search

Domain-Domain Interactions (DDI) occur when two globular domains
form a stable interface. The assumption that proteins interact with each other
through their domains is widely accepted [89]. Understanding protein interactions
at the domain level provides valuable information about binding mechanisms and
functional contribution to protein interactions [151]. The initial source of DDI
information is the 3D structure of protein complexes but due to the limited avail-
ability of 3D structures, DDI prediction methods or their predicted datasets are
used as an alternative source [151].

In this work we use three DDI databases; DOMINE, IDDI, and 3did.
DOMINE! [150. 12] is a database of domain interactions inferred from experi-
mentally characterized high-resolution 3D structures in the Protein Data Bank
(PDB)2. in addition to predicted domain interactions by thirteen different com-
putational approaches using Ptam domain definitions. DOMINE contains a total
of 26.219 DDI puirs among 5.410 domains. out of which 6,634 are inferred from
PDB entries. and 21,620 are predicted by at least one computational approach.

The integrated domain-domain interaction analysis system (IDDI)? [151]
provides 204,715 unique DDI pairs with different reliability scores. The reliability
of the predicted DDI pairs are determined by considering the confidence score of
the prediction method, the independence score of the predicted datasets. and the
DDI prediction score measured by different prediction methods.

The database of 3D interacting domains (3did)? [152] is a collection of 3D
structures of domain-based interactions in the PDDB based on domain definitions

from Pfam release 27.0 [147].

Thttp://domine.utdallas.edu
2http://www.ncbi.nlm.nih.gov/Structure/VAST /nrpdb.html
3http://pcode.kaist.ac.kr/iddi/

Thttp://3did.irbbarcelona.org
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6.2 Experimental Results and Discussion

To evaluate the performance of our PPI prediction approach. we used a
dataset of veast Saccharomyces cerevisiae containing 4,917 protein interaction
pairs among 3,71k proteins, and 4,000 randomly-generated non-interacting pro-
tein pairs. The data was collected from the DIP [75, 82]. Deng et al. [131].
Schwikowski et al. [135]. The dataset of Deng et al. is experimentally obtained
through two hybrid assays on Saccharomyces cerevisiae by Uetz et al. [132] and
lto et al. [133]. Schwikowski et al. gathered their data from yeast two-hybrid,
biochemical and genetic data. As non-interacting protein data are unavailable.
the negative samples were randomly generated. A protein pair is considered to
be a negative sample if the pair does not exist in the interaction set. This dataset
was gathered and used by Chen and Liu [89]. Both the positive and negative PPI
examples were divided evenly into training and testing datasets. \We obtained
the domain information from the Pfam-A release 27.0 ° [147].

Once protein domains are identified, onr PPT prediction method achieved
a prediction accuracy of 97%, sensitivity (recall) of 96%. precision of 98%, and
specificitv of 98%. The comparisons of our method to the existing PPI prediction
approaches are summarized in Figure 6.2 which clearly shows that the proposed
method outperformed the existing PPI predictors in terms of sensitivity and
specificity.

In terms of the prediction performance of the whole process of domain
identification and PPI prediction, we achieved a prediction accuracy of 78%,
sensitivity of 60%, precision of 94%, and specificity of 96%. This reduction in
prediction performance is due to the fact that some of the predicted domains in
few proteins are either shorter or longer than the actual domains or the fact that

our method sometimes predicts several short domains in a location that contains a

Shttp://pfam.sanger.ac.uk
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Figure 6.2: Accuracy. sensitivity. and specificity of the state-of-the-art PPI
predictors compared to our approach.
long actual domain. and therefore. thesi predicted domains do not exactly match
with domains in the Pfam database. To overcome this issue. we followed DomCut
[17] where thev consider the domain linker to be in the range of 10 and 100. and
thus we extended the domain prediction stage by adding a post-processing step
where if several adjacent domains are identified and they are a part by less than
10 AA residues. thev will be concatenated into a single domain. As a result. the
overall prediction accuracy is improved to 90%.
Although this approach achieved very high PPI prediction accuracy. the
PPI prediction performancs is strongly dependent on domain prediction accuracy
and if domain= are not accurately identified. PPI prediction will be negatively
affected. One of the limitations of this approach is the computational time of
the sequence alignment step as the NW algorithm is applied to calculates the
alignment =core for each identified domain against all the 10.626.097 Pfam domain
entries.
To demonstrate the effectivenes= of the proposed method in identifving
domains and predicting protein interactions. let us take YCR077C and YDL160C
a= an example of interacting protein pairs according to our benchmark datuset. As

shown in Figure 6.3. two domains are identified in the first protein in the regions
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(1-224] and [241-78¥] and two domains are identified in the second protein in the

regions [71-235] and [303-37§]. The Pfam accession number for these domains are

PFO9T

70. PF09770. PF00270. and PF00271. respectively.

When thess# domain=

are searched through the DDI databases, it is confirmed by 3did that PF09770

Interacts with PF00270.

interact.
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Similarlv. YDR477W and YER027C represent another example of inter-
acting protein pairs. As shown in Figure 6.4. two domains are identified in the
first protein in the regions [55-306] and [344-389] and one domain is identified
in the second protein in the region [306-115]. The Pfam accession number for
the two domain= of the first protein are PF00069 and PFO&557. and the Pfam
accession number of the domain in the second protein is PF04739. When these
domains are searched through the DDI databases. it is confirmed by IDDI that
both PF00069 and PFO%487 interact with PF04739 and retrieved by 3did that
PFO=587 interacts with PF04739. As a result. the model reports that the two
proteins interact.

YDRO44W and YCRO14C represent an example of non-interacting pro-
tein pairs. As shown in Figure 6.5. one domain i= identified in the first protein in
the region [14-327] and three domains are identified in the second protein in the
regions [1%8-253], [326-407]. and [517-574]. The Pfam acces=ion number for the
domain of the first protein is PF0121% and the Pfam accession number for three
domains in the second protein are PF14716. PF14792. and PF14791. When these
domaing are searched through the DDI databases. no interacting domains were

found. As a result. the model reports that the two proteins are not interacting.
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Chapter 7: Conclusions and Future Work

Directions

In this research work. we employ structural domain and inter-domain
linker prediction mto predicting PPIs. We propose a novel method for predicting
inter-domain linkers within proteins. This is achieved through introducing the
concept of AA compositional index. The linker knowledge, represented by AA
compositional index. is then enhanced by biological knowledge through combin-
ing it with AA phyvsiochemical properties to develop a Random Forest classifier
for predicting novel domains and linkers. Following the structural domain iden-
tification step, we predict whether two proteins interact or not by analyzing the
interacting structural domains that they contain.

The three main contributions of this work can b summarized as follows;
In the first contribution. we developed CISA as a method for detecting protein
domain-linker regions based on AA compositional index and Simulated Anneal-
ing. Experimental results showed that this method outperformed the currently
available approaches of domain-linker prediction in terms of recall, precision, and
Fl-score. It was also shown that CISA is capable of predicting nuwviel linkers which
could lead to the identification of crucial structural domains such as RING-finger
and carboxy-terminal domains. The main reasons behind the considerable accu-
racy achieved by CISA is the improvement in the concept of AA compositional
index and the adoption of the SA algorithm to refine the prediction by finding
the optimal set of threshold values that separate domains from linker regions.
CISA has a potential to perform well if it is applied to human proteins where
novel domain linkers could be recognized.

Although SA has significantly improved the prediction, additional tun-
ing could accomplish more effective and flexible prediction. One of these tuning

strategies is the use of dynamic chunk sizes which could, in turn, obtain better
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optimization and more accurate prediction. This work can be extended by explor-
ing other compositional index models such as the weighted sum or the weighted
product of linker index and AA composition, and emplov SA to find the opti-
mal weights along with the optimal threshold that separate linker regions from
domain regions. Furthermore, other optimization techniques such as Genetic Al-
gorithm can be examined and compared to SA in domain linker prediction. or
both techniques could he combined in a hybrid approach.

[n the second contribution, we developed a novel machine-learning ap-
proach to predict novel domains and linkers. This is achieved by combing the
compositional index with AA physiochemical properties to construct a novel pro-
tein profile. A sliding window technique is applied to extract and normalize the
AA features and takes into consideration the dependences of each AA with its
neighborhood. Then, a well-optimized Random Forest domain-linker classifier is
constructed and trained by these protein features. The utility of the proposed ap-
proach is illustrated on two well-known benchmark datasets by achieving a high
prediction accuracy and outperforming the state-of-the-art domain predictors in
terms of recall, precision, and Fl-score. The proposed approach successfully
eliminates some of the data pre-processing steps such as class weights or data
re-sampling techniques, and proves that the model can handle imbalanced data
and is not hinsed towards the majority class.

Although various ML-based domain prediction approaches have been di-
veloped. they have shown a limited capability in multi-domain protein prediction.
Capturing long-term AA dependencies and developing a more suitable representa-
tion of protein sequence profiles that includes evolutionary information may lead
to better model performance. Existing approaches showed a limited capability in
exploiting long-range interactions that exist among amino acids and participate
in the formation of protein secondary structures. Residues can be adjacent in 3D

space while located far apart in the AA sequence. (3, 30].
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Regarding protein sequence profile representation. the proposed imput pro-
files in most domain-linker predictors still provides insufficient structural informa-
tion to reach the maximum accuracy. One reason behind the limited capability
of mmlti-domain protein predictors is the disagreement of domain assignient
within dilfferent protein databases. The agreement between domam databases
covers about Bl¥1 of single domain proteins and about 66% of multi -domain
proteins only [#1]. This disagreement is due to the variance in the experimental
methods used in domain assignment. The most predominant techniques used to
experimentally determine protein 3D structures are X-ray crystallography and
nuclear magnetic resonance spectroscopy (NMR). However. their conformational
results of domain assignment vary in about 20% so that the upper limit accuracy
for such domain-linker prediction task could be about 80%.

This approach can be extended by examining longer averaging window
sizes in order to capture long-range interactions that exist among amino acids
and participate in the formation of protein secondary and tertiary structures.
Residues can be adjacent in 3D space while located far apart in the AA sequence.
The averaging window formula can also be improved to a weighted average so that
the closer AA neighbors to the central residue can take higher weights than far-
ther ones. Although the proposed approach successfully handles the imbalanced
protein data. data balancing techniques such as re-sampling can be integrated and
tested for further improvement of the model performance. Comparing the perfor-
mance of RF in domain prediction with other ensemble methods such as bagging
and boosting is one of the future work directions. Emerging ensemble methods
such as ensemble of support vector machines, meta-ensemble, and ensemble of
heterogeneous classification algorithms are promising directions.

In the third contribution, we developed a novel PPI prediction approach
based on characterizing structural domains within proteins and analyzing their in-

teractions. Each of the predicted domains within a given protein pair is searched
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m the Pfam domain database to find its Pfam Accession Number by employv-
ing the Needleman-Wunsch (NW) global alignment algorithm. Based on their
Pfam Accession Numbers. domain interactions are searched in three henchmark
domain-domain interaction databases. We determine that two proteins interact
if & domain in the first protein is interacting with a domain in the second protein
as confirmed by at least one of the benchmark DDI databases. \When tested on
a dataset of Saccharomyces cerevisiae protein pairs, the method showed a very
high capability of predicting PPIs outperfiirming several existing predictors. One
of our future goals is to develop a web server that enables users to enter a protein
pairs and return their structural domains and whether they are interacting or
not.

One of the limitations of this approach is the computational time of the
sequence alignment step as the N\W algorithm is applied to calculate the align-
nment score for each identified domain against each of the Pfam domain entries.
Therefore, the N\ alignment can be a further research area for parallel comput-
ing. Although this approach achieved very high PPI prediction accuracy. the PPI
prediction performance is strongly dependent on domain prediction performance.
If domains are not accurately identified, PPI prediction will be negatively af-
fected. Therefore, any improvement in our previous contributions of domain and
linker prediction can lead to improvement in PPI prediction. One of the possi-
ble future directions is to include more DDI databases in order to have better
validation and to search and include validated non-DDI databases to validate

non-interacting protein pairs.
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