United Arab Emirates University Scholarworks@UAEU

Theses

Electronic Theses and Dissertations

6-2003

Hydrogeological and Geophysical Studies on AI Jaww Plain, AI Ain Area, U.A.E.

Hind Saif Ali AI-Nuaimi

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/all_theses Part of the <u>Water Resource Management Commons</u>

Recommended Citation

AI-Nuaimi, Hind Saif Ali, "Hydrogeological and Geophysical Studies on AI Jaww Plain, AI Ain Area, U.A.E." (2003). *Theses*. 67. https://scholarworks.uaeu.ac.ae/all_theses/67

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarworks@UAEU. It has been accepted for inclusion in Theses by an authorized administrator of Scholarworks@UAEU. For more information, please contact fadl.musa@uaeu.ac.ae.

United Arab Emirates University Faculty of Graduate Studies

Hydrogeological and Geophysical Studies on Al Jaww Plain, Al Ain Area, U.A.E.

By Hind Saif Ali Al-Nuaimi

A Thesis Submitted to

Faculty of Graduate Studies United Arab Emirates University

In the Partial Fulfilment of the Requirenments for the of M. Sc. Degree in Water Resources

> Faculty of Graduate Studies United Arab Emirates University June 2003

United Arab Emirates University Faculty Of Graduate Studies

Thesis Title

Hydrogeological and Geophysical Studies on Al Jaww Plain, Al Ain Area, U.A.E.

Author's Name

Hind Saif Ali Al-Nuaimi

Supervisors

No.	Name	Position
1	Dr. Ahmed El-Sayed El-Mamoudi	Associate Professor of Geophysics, Geology Department, Faculty of Science, United Arab Emirates University
2	Prof. Mohsen Sherif	Professor of Water Resources, Civil and Environmental Engineering Department, College of Engineering, United Arab Emirates University
3	Dr. Tareq Al-Zabet	Assistant Professor of Hydrogeology, Geology Department, Faculty of Science, United Arab Emirates University

Thesis of Hind Saif Ali Al-Nuaimi Submitted in Partial Fulfillment for the Degree of Master of Science in Water Resources

Chair of Examination Committee Dr. Ahmed El Mahmoudi, Associate Professor Geology Department

A.EL-Mahmoud.

De Berns Rich

External Examiner Prof. Ole Bernt Lile, Professor of Applied Geophysics Petroleum Engineering and Applied Geophysics Department Norwegian University of Science and Technology, Norway

Internal Examiner Dr. Fares Howari, Assistant Professor Geology Department

Dean of Graduate Studies Dr. Hadef Rashed Al-Owais

United Arab Emirates University 2002/2003

DEDICATION

Τo

The Memory of My Father My Mother

My Brothers .. My Sisters

ACKNOWLEDGMENT

Praise be to ALLAH (GOD), the Lord of the world, who has blessed me with countless blessings in my life. Most important are the true love, full understanding, and endless support of my family. He has blessed me with more than sufficient life, health and energy to carry out this study. My trust and believe in ALLAH have been, and will always remain, inspiriting my life.

I would like to express my deepest gratitude and indebtedness to my Mother, Brothers and Sisters for their continuous moral support throughout my life. Their love and support have always been overwhelming.

Sincere thanks are due to Dr. Ahmed El Mahmoudi, Associate Prof. of Geophysics, Faculty of Science, UAE University. He suggested the topic and provided much of his time to guide the work in its various phases. His discussions were constructive. His patience and guidance are very much appreciated.

I am indebted to Prof. Mohsen Sherif, Professor of Water Resources. College of Engineering, UAE University. His supervision, scientific discussions, and critical review of the manuscript were quite important.

Dr. Tarek Al Zabet, Assistant Professor of Hydrogeology, Faculty of Science, UAE University, reviewed some parts of the thesis.

Dr. Reyad Al-Mehedeb, Vice Dean of Faculty of Engineering and Coordinator of the Water Resources Graduate Program, UAE University, is acknowledged for providing the administrative support throughout the duration of the study.

Mr. Hamdi Kandil, Remote Sensing and GIS laboratory, is acknowledged for his help in drafting the figures. He assisted in the preparation of the final version of the thesis. Mr. Gaber Latif and Mr. Ayman El Say prepared some Figures. Thanks are due to. Dr. Hassan Garamon and Dr. Amir Gabr for their kind help in field activities. Dr. Othman Abdlghany provided the figure for the stratigraphic description of the study area. Thanks are also due to all the staff of the Geology Department, UAE University for their kind support and help during the progress of this work.

The data were provided by the National Drilling Company (NDC), Water and Electricity Department (WED) and Department of Civil Aviation (Abu Dhabi International Airport). Their support, through providing the data, is appreciated.

The members of the examination committee provided many constructive remarks which have added to the quality of the study.

Finally, special thanks are due to my sincere friends, Miss Moza Al Shamsei and Miss Muna Al-Hammadi whom have been a source of encouragement and inspiration. They have always been there for advice and support whenever and wherever needed. Their true love and sincere friendship have added another pleasure to my life.

ABSTRACT

In the last few decades, the United Arab Emirates has witnessed a remarkable development in the various aspects of life. Such fast development imposes a tremendous pressure on natural resources including water. Despite the severe shortage in the natural water resources, the per capita water consumption in the UAE is among the highest consumption rates of the world.

UAE depends on conventional and non-conventional water resources to meet its everincreasing water demands. Groundwater is one of the most important conventional water resources in UAE, in general, and Al Ain area, in particular.

The focus area of the current study is **Al-Jaww Plain**. It lies in the eastern part of Al-Ain city and is bounded by Oman Mountains range in the east and Jabal Hafit in the west. It represents one of the main plains at Al-Ain and occupies an area of about 500 km².

The spatial extent and petrophysical characteristics of the Quaternary aquifer at Al Jaww Plain and the bedrock are the primary factors controlling storage and movement of groundwater. Information about the aquifer geometry in space, petrophysical parameters, hydrology and drainage basins network are vital to understand the flow regime, recharge mechanism and the boundary conditions of the hydrogeological system.

This study is devoted to the investigation of the water potentiality and quality at Al Jaww Plain. It defines the hydrogeological parameters of Al Jaww Plain using different techniques. To that end, detailed geophysical and hydrogeological investigations were conducted.

The results of this study provide quantitative and qualitative assessment for the groundwater resources in Al Jaww Plain. These results could be used by other researchers, concerned authorities and decision makers to outline future plans for groundwater development in this area.

Keywords: Al Jaww Plain, Al Ain groundwater, Assessment, Hydrochemistry, water quality, Geophysics, DC Resistivity, Time Domain Electromagnetic, Wireline well logging.

TABLE OF CONTENTS	Page
DEDICATION	i
ACKNOWLEDGMENT	11
ABSTRACT	iii
LIST OF TABLES	vi
LIST OF FIGURES	vii
ABBREVIATIONS	ix
Chapter 1: INTRODUCTION	
1.1 General Outline	ĩ
1.2 Physical Setting and Climatic Conditions	1
1.3 Water Resources in UAE	1
1.3.1 Conventional water resources	4
1.3.2 Non conventional water resources	12
1.4 Water Resources in Al Ain area	15
1.4.1 Surface water	15
1.4.2 Springs	10
1.4.3 Falajes	10
1.4.4 Seasonal floods	18
1.4.5 Groundwater	18
1.4.6 Non conventional water resources	18
1.5 Aim of Study	21
	22
Chapter II: GEOLOGY OF AL AIN AREA	
2.1 Location of Al Ain	
2.2 Geomorphology of Al Ain Area	20
2.2.1 Mountains	20
2.2.2 Gravel plains	23
2.2.3 Drainage basins	27
2.2.4. Sand dunes	- 20
2.2.5 Interdune areas	29
2.3 Stratigraphy	-29
a) The Upper Cretaceous	29
b) The Paleocene	33
c) The Eocene	33
d) The Oligocene	3.5
e) The Miocene	34
f) The Quaternary	54
2.4 Geology of Al Jaww Plain	34
(i) Alluvial denosits(Og)	34
(ii) Desert Plain denosits (Oes)	35
(iii) Mixed denosits (OTm)	35
(iv) Sahkha deposits (Qrh)	57
(v) Agolian sand (Od)	37
2.5 Structural Setting	37
2.5 Structures in the Oman Mountains	37
2.5.1 Structures wast of the Oman Mountains	38
2.5.2 The northern structural regime	38
2.5.5 The northern structural regime	41
2.5.4 The southern structural regime	42
Chapter III: MATERIALS AND TECHNIQUES OF STUDY	
3.1 Materials	44
3.2 Direct Current (DC) Resistivity Method	44
5.2.2 Basic concepts of the resistivity method	45
3.2.2.1 Electrode arrays	49
3.2.2.2 Surveying procedures	51
3.2.2.3 Data acquisition	53
3.5 Principles of Time Domain Electromagnetic Techniques for Resistivity Sounding	53
3.4 Borenole Geophysics	57

3.4.1 General

3.4.2 Logging in groundwater development

iv

57

57

58

3.4.3 Logging in water wells	60
3.4.3.1 S.P. logging	60
3.4.3.2 Point resistance logging	61
3.4.3.3 Resistivity logging (normal and lateral)	61
3.4.3.4 Natural gamma ray logging	61
3.4.3.5 Neutron log	62
3.4.3.6 Sonic log	62
3.4.3.7 Gamma-gamma ray or density log	62

Chapter IV: HYDROGEOLOGICAL ASPECTS

4.1 General Outline	64
4.2 Climate	66
4.2.1 Temperature	66
4.2.2 Rainfall	66
4.2.3 Humidity	66
4.2.4 Evaporation	70
4.2.5 Aridity	70
4.3 Groundwater Bearing Formation	72
4.3.1 Quaternary aguifer	72
4.3.2 Jabal Hafit Limestone aquifer	74
4.3.3 Recharge of the Quaternary aquifer	78
4.4 Geological Cross Sections	78
4.4.1 Hydraulic characteristic and well vield of shallow aguifers at Al Jaww Plain	88
4.5 Groundwater Flow Systems	88

Chapter V: HYDROGEOCHEMICAL ASPECTS

5.1 Background	- 98
5.2 Hydrogeochemical Characteristics	98
5.2.1 Physical properties	98
5.2.1.1 Hydrogen ion concentration (pH value)	102
5.2.1.2 Electrical conductivity (E.C.)	103
5.2.1.3 Total salinity distribution	103
5.2.1.4 Total hardness	107
5.2.2 Chemical properties	107
5.2.2.1 Major cations	107
5.2.2.2 Major anions	111
5.3 The Ion Dominance	113
5.4 Water Genesis	118
5.4.1 Water genesis using (Sulin's graph)	118
5.4.2 Trilinear diagram	118
5.5 Water Quality Evaluation and its Availability for Use	119

Chapter VI: GEOPHYSICAL INVESTIGATIONS

6.1 General	128
6.2 Vertical Electrical Sounding Results	128
6.2.1 Qualitative interpretation	128
6.2.2 Geoelectric section discussion	131
6.3 Time Domain Electromagnetic (TEM) Results	133
6.3.1 TEM data and resistivity model	133
6.3.2 TEM cross sections	141
6.4 Borehole Geophysics (Wireline Logging)	146

Chapter VII: SUMMAR	AND CONCLUSIONS	8
---------------------	-----------------	---

7.1 Summary	152
7.2 Conclusions	154
7.3 Recommendations	155
REFERENCES	156

APPENDIX ARABIC SUMMARY

LIST OF TABLES

able		Page
1.1	Summary of conventional and non-conventional water resources in UAE.	4
1.2	The mean annual rainfall on the eastern mountain range and gravel plain, and the total annual falaj discharges (Mm ³ /yr) during the 1978-1995 period in the United Arab Emirates.	12
1.3	Tertiary treated wastewater characteristics in UAE for reuse in irrigation.	15
1.4	The 1989 water balance in Al Ain area (in million cubic meters per year).	21
1.5	Total water use in the Al Ain area, in the years 1990, 2000 and the predicted at 2010.	21
3.1	Utility of geophysical logs for exploration of groundwater.	59
4.1	Summary of meteorological data at Al Ain International Airport from 1994 to 2002.	67
4.2	Prevailing climatic conditions corresponding to the different values of dryness.	70
4.3	Geological formations and their water bearing properties in Al Ain area.	77
4.4	Thickness of near-surface permeable material, aquifer thickness, thickness of saturated eolian dune sand, and fresh water thickness in Groundwater Research Project Wells.	89
5.1	Classification of the water samples in the area of study, based on Chebotarev's classification (1955).	104
5.2	Statistical analysis for the parameters of physical properties (pH, Ec, TDS, TH) and for the major cations and anions of Al Jaww Plain.	107
5.3	Suitability of water according to R.S.C. for Quaternary aquifer at Al Jaww Plain.	127
6.1	Qualitative and Quantative interpretation of the Vertical Electrical Sounding (VES) resistivity Data, Al Jaww Plain.	129
6.2	Qualitative and Quantative interpretation of the Time Domain Electromagnetic (TEM) data along some wadis of Al Jaww Plain.	138
6.3	Electromagnetic (TEM47) Profiles data at Al Jaww Plain.	141
6.4	Lithology description for the wells GWP-398, GWP-251 and GWP 2551.	148

LIST OF FIGURES

igure		Pag
.1	Arabian peninsula and location of the UAE	2
.2	The main drainage basins in the UAE	6
3	Location map of the main towns and springs in UAE	8
.4	Map view and a vertical cross section of a falaj	10
.5	Location map of the falajes in the UAE.	11
.6	Location map of Al Jaww plain, Al Ain area, UAE	17
,7	Location map of the falajes in the Al Ain area, UAE	19
.8	Location and types of active falajes in Al Ain area	20
51	Geomorphology of Al Ain region	24
.2	Physiographic subdivisions of eastern study area	25
1.3	Drainage pattern in AL Jaww Plain area	28
14	Geology of Al Ain area	30
1.5	Stratigraphic description and correlation of the identified Cretaceous/ Tertiary rock units surrounding the study area	31
1.6	Photos showing Jabal Hafit to the west of Al Jaww Plain and Jabal Muthaymimah to the east of Al Jaww Plain	22
5.7	The main peological units of Al Jaway Plain	24
1.0	A moco seismic lines and unhole-survey locations	20
10	Generalized subsurface structural features in Al Ain area	27
210	Interpreted seismic lines at AI laww Plain and north of AI laww Plain	40
2019) 2019	Basic definition of resistivity across a homogeneous medium	17
1.4	Current lines radiating out from a source electrode and converging on a sink electrode	47
3.3	Current lines and equipotential surfaces produced by a source and sink in a medium of uniform	
	resistivity	50
3.4	Current electrodes A and B and potential electrodes M and N	50
3.5	Common electrode arrays (configurations) used in DC resistivity and their corresponding	
	geometrical factor	52
3.6	Super sting R1 IP earth resistivity and IP meter and its accessories	- 34
3.7.	Principles of time domain electromagnetic techniques for resistivity sounding	55
3.8	A typical S.P. record	63
4.1	Photos of Al Jaww plain	65
4.2a	Mean minimum temperatures at Al Ain	68
4.26	Mean temperatures at Al Ain (1994-2002)	68
4.2c	Mean maximum temperatures at Al Ain (1994-2002)	68
4.3a	Total yearly rainfall at Al Ain (1994-2002)	65
4.3b	Total monthly rainfall at Al Ain (1994-2002)	64
4.4a	Mean minimum relative humidity at Al Ain (1994-2002)	= -7
4.4b	Mean humidity at Al Ain (1994-2002)	1
4.4c	Mean maximum humidity at Al Ain (1994-2002)	7
4,5	Mean total evaporation at Al Ain (1994-2002)	7
4.6	The main water bearing units (aquifers) in the UAE	
4.7	Base of Quatemary alluvium in Al Jaww Plain	7
4.8	Thickness of Quaternary alluvium in Al Jaww Plain	73
4,9	Conceptual model of recharge and discharge of the Tertiary limestone aquifer at of Jabal Hafit	7.
4.10	Base map for the boreholes used to developed geological and schematic cross-sections	7
4.11a	Schematic section along profile A-A', Al Jaww Plain	8
4.11b	Geological cross section along profile B- B', Al Jaww Plain	8
4.11c	Geological cross-section along profile C-C' Al Jaww Plain	8
4.11d	Schematic section along profile D-D', Al Jaww Plain	8
4.11e.f	Schematic section along profiles E-E'& F-F', Al Jaww Plain	8
4,12a	Geological cross-section shows the change in the thickness of shallow aquifer at Al Jaww Plain	8
4.12b	Geological cross-section along north of Al Jaww Plain show the shallow aquifers	8
4.12c	Shallow aquifers and gypsum aquifers along Al Jaww plain between J Malaqat, and J. Hafit	8
4.13	Different groundwater flow systems in UAE	9
4.1.4	A graph showing the water level fluctuations for some wells in Limm Ghafa area. Al Jaww Plain	9

6

4,15	Base map showing the well locations used for static water level oscillations sections along the area of study, Al Jaww Plam	02
4.16	SWL Oscillations from 1995 to 2002 along wells of different cross sections	93
4.17	Static Water Level at Al Jaww Plain in 1995 through 2002	94
4.18	Location of equipotential line 300 in 1995, 1999 and 2001 at Al Jaww Plain	97
4.19	Water table map based on uphole seismic, 1981	.97
5.1a	Base map showing the well locations of the area of study, Al Jaww Plain	99
5.1.b	Wells and their numbers provided by (NDC), Al Jaww Plain	100
5.1c	Location map of the wells provided by (WED), Al Jaww Plain	101
5.2	Distribution map of the pH for the Quaternary aquifer in the study area, Al Jaww Plain	105
5,3	Distribution map of the Electrical Conductivity for the Quaternary aquifer, Al Jaww Plain	105
5.4	Distribution map of the total salinity for the Quaternary aquifer in, Al Jaww Plain	106
5.5	Histograms for total salinity classification of Quatemary aquifer in Al Jaww plain	106
5.6	Distribution map of the total hardness for the Quaternary aquifer in Al Jaww Plain	108
5,7	Distribution map of the calcuim cation for the Quaternary aquifer in Al Jaww Plain	110
5.8	Distribution map of the magnesium cation for the Quaternary aquifer in Al Jaww Plain	110
5.9	Distribution map of the sodium cation for the Quaternary aquifer in Al Jaww Plain	112
5.10	Distribution map of the potassium cation for the Quaternary aquifer in Al Jaww Plain	112
5.11	Distribution map of the bicarbonate anion for the Quaternary aquifer in Al Jaww Plain	114
5.12	Distribution map of the sulphate anion for the Quaternary aquifer in Al Jaww Plain	114
5.13	Distribution map of the chloride anion of the Quaternary aquifer Al Jaww Plain	115
5.14	Distribution map of the nitrate anion of the Quaternary aquifer in the study area. Al Jaww Plain	115
5.15	Base map showing the well locations used for schoeller diagram analysis. Al Jaww Plain	116
5.16	Semilogarithmic diagram for Quaternary aquifer showing the dominance ions along cross section 1-1° in the study area	117
5.17	Semilogarithmic diagram for Quaternary aquifer showing the dominance ions along cross section	
	2-2' in the study area	117
5.18	Semilogarithmic diagram for Quaternary aquifer showing the dominance ions along cross section	
	3-3' in the study area	117
5.19	Sulins graph for genetic classification for the Quaternary aquifer in Al Jaww Plain	120
5.20	Piper's trilinear diagram for classification of Quaternary aquifer in Al Jaww Plain	120
5.21	Distribution map of the sodium adsorbation ratio (SAR) for the Quaternary aquifer Al Jaw plain	122
5.22	Diagram for the classification of irrigation water (U.S.Salinity Laboratory Staff, 1954) for the	
	Quaternary aquifer in Al Jaww Plain	123
5.23	Wilcox's classification of groundwater of the Quaternary aquifer in Al Jaww Plain	124
5,24	Distribution map of the Residual Sodium Carbonate (RSC) for the Quaternary aquifer in Al Jaww Plain	126
6.1	Base map showing the locations of VES data and the available logged wells at Al Jaww plain	130
6.2	Geoelectric Cross section using VES data and borehole information along profile trending	
100m	southeast-northwest. Al Jaww nlain	132
6.3	Base map showing the locations of TEM profiles at Al Jaww Plain	1.34
64	Typical TEM data from sounding zarub-2-2 and zarub-2-11	135
6.5	Transient electromagnetic model of typical resistivities for interdune soundings at Al gura'a.	
	north of Al Jaww Plain	136
6.6	Photos showing the presence of clay layer at shallow depths at drilled trench at Al Jaww plain	137
6.7a	Wadi Muravkhat line-1 geoelectric models showing the variation of resistivity with depth	142
6.7b	Interpreted resistivity cross section of Wadi Muraykhat line-1. Al Jaww plain	142
6.8a	Wadi saa line-1 geoelectric models showing thee variation of resistivity with depth	143
6.8b	Interpreted resistivity cross section of Wadi Saa line-1. Al Jaww Plain	43
6.9a	Wadi Muthaymimah line-2 geoelectric models showing the variation of resistivity with depth	144
6.9b	Interpreted resistivity cross section of Wadi Muthavmimah line-2, Al Jaww Plain	144
6.10a	Zarub line-2 geoelectric models showing the variation of resistivity with depth	145
6.10b	Interpreted resistivity cross section of Zarub gap line-2, Al Jaww Plain	145
6.11	Petrophysical logs for well GWP-398	148
6.12	Petrophysical logs for well GWP-255	149
6.13	Petrophysical logs for well GWP-251	150

viii

ABBREVIATIONS

mm	Millimeter
cm	Centimeter
m	Meter
km	Kilometer
asl	Above sea level
UTM	Universal Transverse Mercator
MCM	Million Cubic Meters
NDC	National Drilling Company
μmhos	micromohs per centimetres
°C	Degree Centigrade
ppm	part per million
BH	Borehole
TDS	Total Dissolved Solids
EC	Electrical Conductivity
ha	Hectare=10,000 Square Meters
Ω-m	Ohm meter
RSC	Residual Sodium Carbonate
WED	Water & Electricity Department
epm	equivelant per milliliter
DC	Direct Current
VES	Vertical Electrical Sounding
TDE	Time Domain Electromagnetic
S.P	Self Potential
Rw	Resistivity of formation water
Rmf	Resistivity of the mud filtrate
Rt	true resistivity
φ	porosity
F	tortuosity
∆t's	the travel times (in microsecond)
ρ	resistivity
GWP	Ground Water Project
TH	Total Hardness
SAR	Sodium Adsorption Ratio
pH	Hydrogen Ion Concentration

Chapter I

INTRODUCTION

CHAPTER ONE

INTRODUCTION

1

1.1 General Outline

In the last few decades, the United Arab Emirates has witnessed a remarkable development in the various aspects of life. The standard of living in the different emirates has been elevated. Agricultural, industrial and commercial activities were developed. Such fast development imposes a tremendous pressure on natural resources including water.

UAE depends on conventional and non-conventional water resources to meet the everincreasing water demands. Groundwater is considered as one of the most important water resources in UAE. Under present climatic condition the groundwater is not recharged. Therefore, groundwater levels are declining and its quality is deteriorating due to the increase of the total dissolved salts, seawater intrusion in the coastal areas and saline water upconing in the inland areas where saline water horizons exist below fresh water horizons.

Al Ain area, in the east of the Emirate of Abu Dhabi, is characterized by its good supply of fresh water fom Oman Mountains to the east. Al Jaww Plain is regarded as one of the most important aquifers with fresh groundwater. This thesis aims to evaluate the various aspects of Al Jaww Plain to assess water potentiality, quality and define its hydrogeological parameters using different techniques.

In this chapter a review of the water resources in UAE, in general and in Al Ain area, in particular, is presented.

1.2 Physical Setting and Climatic Conditions

The United Arab Emirates lies in the southeastern part of the Arabian Peninsula between Latitudes 22° 40' and 26° 00' N and Longitudes 51° 00' and 56° 00'E. It is bounded from the north by the Arabian Gulf, on the east by the Sultanate of Oman and the Gulf of Oman and on the south and the west by the Kingdom of Saudi Arabia (Fig. 1.1). The total area of the United Arab Emirates is about 77,700 km².

The UAE is characterized by a dry and long hot summer and a short mild winter. It is exposed to the oceanic effects of the Arabian Gulf and the Indian Ocean. Humidity is always relevant to the coastal zone and it decreases inland as the sea losses its influence. The rainfall is usually higher in the northeastern parts and lower in the southwest.

Fig. (1.1) Arabian peninsula and location of the United Arab Emirates.

High evaporation rates occur when high temperature, low humidity and long hours of sunshine combined together. The wind speed is low most of the year, yet sometimes winds may be strong due to the passage of weather systems. Mist and fogs occur in winter while dust storms commonly occur during summer (Ministry of Communications, 1996).

The UAE lies across the tropic of cancer. It receives the highest solar radiation in June and the lowest in December. The maximum solar radiation is on June 21 where the sun appears directly overhead giving an angle of incidence of the sun rays of 90°. In December 21 the incidence of the sun rays falls to 43° 06', therefore the lowest insulation level is received (Garamoon, 1996).

The sky is cloudy most of the year, however, an extensive cloud cover is encountered in February and March while the least cloud cover is found in June and November. The average annual hours of sunshine in UAE is 10 hours per day; in May sunshine hours increase to 11.5 hours while in December they decrease to reach 8.4 hours (Al-Shamsei, 1993).

The mean annual temperature in UAE is constant through out the country but there are some variations especially through the eastern mountains where the mean temperature is 25° C. The hottest month is July and the coldest month is January. The average temperature from May to September is 40° C. The monthly average temperature is 25° C between November and March (Garamoon, 1996 and Rizk, 1999).

The relative humidity in UAE reaches its maximum value during the November-March period and its minimum value in May. In general the relative humidity is higher in the coastal area than in the interior area. The humidity decreases from 60% in Abu Dhabi to 45% in Al Ain and to 25% in Liwa (Garamoon, 1996).

The UAE faces two types of wind speed, the winter depression which descend the Arabian Gulf from the north and northwest and the summer monsoonal low which is developed over Rub Al Khali (Rizk, 1999).

According to (Al-Shamsei, 1993) the wind speed over the country can be considered light to moderate. The annual mean wind speed is less than 18.5 kilometres per hour (kph) and it decreases from north-northwest to south-southeast.

Along the eastern coast, the wind speed is stronger than the interior. The coastal areas are subject to local sea breeze and have a different wind regime. In general the highest wind speed is observed at Gabal Danna in March and the lowest is occurred at Kalba in September (Rizk, 1999).

The evaporation rate is relatively high all over the UAE. The western coast has the lowest annual average pan evaporation (between 7.5-8 mm/day). The eastern coast has higher evaporation rate, (between 9-9.5 mm/day) due to the high wind speed. In the eastern mountain, western gravel plain and desert foreland the evaporation ranges between 10-11 mm/day. Evaporation rate in the western and the southwestern desert regions is the highest and may reach 12mm/day.

The average evapotranspiration (ET) value in UAE changes from one location to the other. In northern parts of UAE the annual average (ET) reaches 1909 mm. The monthly minimum value is 80 mm in January and the maximum monthly value is 262 mm in July. The monthly average value is 164 mm.

In central UAE, the annual average (ET) reaches 2124 mm. The monthly minimum (ET) is 83 mm in January and the monthly maximum is 285mm in July. The monthly average (ET) is 177 mm. In general, annual (ET) in UAE ranges between 1909 mm and 2124 mm. The minimum value can be observed along the eastern coast while the maximum value can be observed in interior parts. ET is generally higher during summer.

1.3 Water Resources in UAE

Because of the serious deficit of water resources, the United Arab Emirates relies on non-conventional water resources, including desalinated water and treated wastewater. Conventional water resources include seasonal floods, springs falajes and groundwater. However, the conventional water resources do not support the freshwater demands in the country. A large part of the fresh water demand is met by desalinated water. Table (1.1) summarizes the conventional and non-conventional water resources in UAE (Rizk, 1999).

Table (1.1). Summary of conventional and non-conventional water resources in UAE (after Rizk, 1999).

Resource	Existing	Potential	In use	Source
Seasonal Floods	125	125	125	Al Asam, 1996
Perennial Springs	3	6	3	Rizk and El Etr, 1997
Seasonal Springs	22	40		MAF, 1998
Falajes	20	40	20	Rizk, 1998
Aquifer Recharge	120	120	120	Khalifa,1995
Groundwater			880	*MAF, 1998

a) Conventional Resources (million cubic meters per vear)

Resource	Existing	Potential	In use	Source
Desalinated water			694	*MEW, 1998
Reclaimed water	150	-	150	Hamouda, 1995

b) Non-Conventional Resources (million cubic meters per year)

*MAF=Ministry of Agriculture and Fisheries

*MEW= Ministry of Electricity and Water

1.3.1 Conventional water resources

The conventional water resources in UAE include seasonal floods, springs, falajes, and groundwater. There are no perennial surface water resources in UAE such as rivers or lakes. However, a few numbers of springs and several falajes provide a limited renewable supply of water. In general, rainfall increases toward the north and east and decreases in the south and west. Estimates of the total annual volume of rainfall ranges from 700 to 1480 million m³. About 10% of this amount recharges the groundwater every year (70 to 148 m³) with an average of 120 million m³ (Khalifa, 1995). Convential water resources are discussed hereafter.

Seasonal floods

Flash floods are always encountered in desert areas. Flash floods occur in the eastern region in association with strong, short lasting, rain storms. Large amounts of rainwater move on land surface as surface water runoff because of the low porosity and permeability of the prevailing igneous and metamorphic rocks. This flow starts usually near the water divide and moves toward the Gulf of Oman in the east or desert in the west. On the other hand, the western region is dry and lacks surface runoff due to low rainfall (40 mm/year), high natural evaporation (3360 mm/year), scarce vegetation cover, and high porosity and permeability of dune- forming sands dominating this area.

Topographic maps, aerial photographs, and satellite images show that the mountain range of the eastern region has 70 drainage basins, 58 of them are within UAE. The catchment areas of these basins vary between 5 km² (Wadi Dhednah, Al Fujeirah) and 500 km² (Wadi Al Bih, Ras Al Khaimah), (Fig. 1.2). Some large wadis may witness more than one runoff event every year, others may have surface runoff once every several years and the rest of the wadis may remain dry for longer periods.

Fig. (1.2). The main drainage basins in the United Arab Emirates, traced from topographic maps, scale 1:100,000 (after Rizk et al., 1997).

A large volume of water is now being harvested by 35 dams with a total storage capacity of 75 million m³. In addition to their roles in protection against flood and recharging. These dams have been constructed by the Ministry of Agriculture and Fisheries and there are several others dams under construction (Rizk, 1999).

Springs

Springs are considered to be important historical sources of fresh water. In the area of dry and arid climate with no permanent river they provide reasonable amounts of water which can be used for various purposes. According to Mayboom (1966), spring is defined as a groundwater outcrop but Todd (1980) defined it as a "concentrated discharge of groundwater appearing at the surface as a flow current".

The springs water may contain dissolved minerals and gases and is usually found at temperatures close to the mean annual air temperatures, even close to boiling. Mineralized springs, usually associated with faulting and fracturing, have been developed as tourist or recreational sites as, for example, Ain Al Faydah and Ain Khatt in the United Arab Emirates (Alsharhan et al., 2001).

The UAE springs seem to discharge from local and intermediate groundwater flowsystems (Rizk and El-Etr, 1997). Mineralized and thermal springs have a therapeutic value. In UAE, several springs, (Fig. 1.3), such as Khatt (Ras Al Khaimah), Maddab (Al Fujairah) and Bu Sukhanah or Ain Al Faydah (Al Ain) belong to this category and have been utilized as recreational and tourist sites.

The Khatt springs are located about 13 km east of Diba and 15 km south of Ras Al Khaimah, within the hard limestone rocks of the Musandum Formation. Siji spring lies at about 50 km west of Al Fujairah and 75 km east of Al Sharjah, on the contact between the ophiolite sequence and the western gravel plains. Bu Sukhanah spring is about 4 km west of Jabal Hafit, and south of Al Ain town (Fig. 1.3). According to El-Shami (1990), the spring issues from Miocene gypsum and clay layer through thin Quaternary loose sediments.

The water discharged by springs may be derived from aquifers in virtually any part of the stratigraphic column; however in many instances it depends upon rainfall recharge and in the absence of rainfall a spring may dry up. The presence of recharge dams may have a stabilizing effect on springs discharge; such as for of Siji spring, (Alsharhan et al., 2001).

Fig. (1.3) Location map of the main towns and springs in UAE.

Rizk and El Etr (1997) studied the relationship between rainfall events and discharge of permanent springs based on the records at Khatt, Al Fujairah, Siji and Bu Sukhanah meteorological stations in the period from 1984 to 1991. They reported that Bu Sukhanah spring has the highest discharge $(2.50 \times 10^6 \text{ m}^3/\text{yr})$ whereas Siji spring has the lowest discharge $(0.06 \times 10^6 \text{ m}^3/\text{yr})$.

During the period 1984-1991 the discharge of all springs shows wide variations, with a net increase in the Khatt south and Bu Sukhanah springs and a net decrease in the Khatt North spring.

High temperature water (about 40 C°) represents the most important physical property characterizing UAE springs. This high temperature of the water of the springs is related to the deep circulation of groundwater or presence of radioactive source.

Falajes

The falaj is a man made stream which intercepts groundwater at the foot slopes of mountains and brings it to the surface at a lower level for irrigation purpose (Fig. 1.4). The word "Falaj", or A falaj in Arabic, means the division of an ownership into shares among those who have water rights. A falaj also means a distinct irrigation system through which water is distributed among individuals who have a right to it. Until recently, falajes represented the main arteries of life in the eastern UAE. At their outlets palm oases have flourished, permanent communities were established, and agricultural activities were developed upon their water. At the present time, many of UAE falajes have gone dry because of the low rainfall and excessive groundwater pumping; however, several falajes are still flowing and feeding the same, but larger, palm oases. Despite their limited amount, falaj waters are renewable resources which originate from rainfall. The UAE falajes lie in the eastern region, between Longitudes 55° 00' and 56° 30' E and Latitudes 24° 00' and 26° 00' N, (Fig. 1.5), covering an area of about 40,000 km² (Rizk, 1998).

The Ministry of Agriculture and Fisheries monitors and manages over 40 active falajes (Fig. 1.5). These falajes are confined to the Northern Oman Mountains in the United Arab Emirates and the gravels plains flanking these mountains from the east and west. The falaj lengths range from 0.5 km (e.g., Falaj Khatt at Ras Al Khaimah) to about 15 km (e.g., Falaj Al Daudi at Al Ain) (Alsharhan et al., 2001).

Fig. (1.4) Map view and a vertical cross section of a falaj (Modified from UAE National Atlas, 1993).

Fig. (1.5) Location map of the falajes in the United Arab Emirates. The lengths of arrows represent falaj lengths (modified after Rizk, 1998).

There are many factors controlling the falaj discharge which include the location of the main well, nature of aquifer, the amount of seepage from tunnel side and the main annual rainfall. However, the discharge from the falajes depends mainly upon mean annual rainfall. The annual discharge of the United Arab Emirates falajes which are predominantly of the Al Gheli type, shows a direct correlation with the mean annual rainfall on the Eastern Mountain Ranges and gravel plains, Table (1.2) (Alsharhan et al., 2001).

Table (1.2). The mean	annual rainfall on the eastern mountain range	and gravel plain,
and the total annual	falaj discharges (Mm ³ /yr) during the 1978-19	95 period in the
United Arab Emirates	(after Al Sharhan et al., 2001).	

	Rainfall (mm/yr)	Discharge		Rainfall (r	mm/yr)		
Year	Eastern Mountains Range	Gravel Plain	(10 ⁶ m ³)	Year	Eastern Mountains Range	Gravel Plain	Discharge (10 ⁶ m ³)	
1978	94.3	73.3	18.8	1987	191.9	153.0	28.7	
1979	75.6	60.4	18.2	1988	262.3	188.0	29.2	
1980	160.6	137.5	17.9	1989	70.3	79.4	23.2	
1981	110.8	100.2	21.1	1990	230.8	184.2	22.4	
1982	339.7	283	31.2	1991	81.4	80.6	16.9	
1983	353.9	225.9	26.2	1992	198.3	105.7	13.5	
1984	46.1	27.2	26.3	1993	189.9	184.1	15.0	
1985	32	30.5	18.4	1994	40.9	33.7	9.0	
1986	75.9	61.3	14	1995	284.4	185.0	16.5	

Alsharhan et al., (2001) reported that according to discharge, falajes could be classified into three types locally designated as Al Gheli, Al Daudi, and Al Hadouri types. Al Daudi falajes have a large groundwater supply and maintain a permanent discharge throughout the year with a little change in their discharge rate. Al Gheli falajes carry seasonal water with discharge directly dependent on rainfall, and may become dry when the rainfall ceases. In contrast Al Hadouri falajes or Al Aini falajes could produce hot water as their discharge is directly related to the springs. Where they arise from limestone they provide good quality water. If they emerge from ophiolites the water is usually strongly alkaline and is connected with deep artesian aquifers, draining water which rises along fissures and fractures. The Al Hadouri (Maddah in Fujairah), Bu Sukhanah (in Al Ain) belong to this category.

Due to the over pumping of the Quaternary during the last three decades the aquifer's hydraulic head has lowered at an average rate of 1m/yr. As a result, the Mu'Tarrad, Maziad, and Jimi falajes went dry in 1977, 1982 and 1983, respectively.

Al Aini and Al Daudi falajes in the Al Ain area are still active due to the continuous maintenance, extension, and pumping of groundwater into their channels (Rizk, 1998).

Groundwater

Aquifers provide the major supply of potable fresh water in the Gulf area. Because neither the amount nor the quantity of groundwater produced in the Gulf States satisfy the ever-increasing demands for water, desalination plants were established since 1970. Also during the rainy seasons, some rain and flood water are retained behind dams to recharge shallow aquifers (Alsharhan et al., 2001).

The aquifers of the UAE are discussed by Rizk et al., (1997), Ministry of Agriculture and Fisheries (1986a&b) and by Bakhit (1998). More details about the different types of aquifers are presented in chapter four.

1.3.2 Non conventional water resources

During the last three decades, a rapid development has occurred in the different sectors in the United Arab Emirates. The population has experienced a rapid improvement in the standard of living. These factors have disturbed the balance between the water demand and the available water resources. Non-conventional water resources such as desalination of seawater and treated wastewater were therefore introduced.

Desalination water

Desalination plants in the United Arab Emirates operate based on shared production of electricity and drinking water. Low-capacity plants apply the reverse osmosis technique. Advancement in water desalination techniques has reduced the production costs of water from 8 Dirham for 1 m³ in 1980 to 4 Dirham in 1995. However, its usage in irrigation is still uneconomical. Due to the large investment required in water desalination project, the water price for the consumer has to be re-evaluated. The use of a solar energy as an alternative source of energy in water desalination should be considered in the Arabian Gulf (Alsharhan et al., 2001).

Two main types of desalination processes are available commercially: distillation processes and membrane processes. The most important distillation methods are multi-stage flash distillation and multi-effect distillation. Both of them involve the evaporation of saline feed water and its condensation back into fresh water, leaving dissolved substances in the waste brine.

Water desalination in UAE started since 1973 in Abu Dhabi at an annual production rate of 7.0 million m³, reaching 33 million m³ in 2001. Since 1974, over thirty desalination

plants have been built in UAE. Most of the plants are located on the coast or on islands, although small number of units are located inland, such as Al Burayrat (Ras Al Khaimah) and As Surrah (Umm Al Quwein), where brackish groundwater is desalinated.

The number of desalination plants in UAE increased from one station at Abu Dhabi in 1976 to 65 stations in the 1995, with each Emirates having at least one desalination plant. The daily production of desalinated water in the Abu Dhabi Emirate, jumped from 12.5 thousand m³ in 1969 to 90 thousand m³ in 2001.

Treated wastewater

Water is scarce resource in United Arab Emirates. Therefore, every drop of water must be used in an economically feasible manner so that no higher quality water is used for a purpose that can tolerate a lower quality. As a substitute for freshwater in agriculture and industry, treated wastewater has an important role to play in water resources management in UAE.

The annual treated sewerage water in UAE is 80 Million m³, and it is used in irrigation of public parks and development of green areas along the streets and in the roundabouts of major cities. The total discharge of sewage treated water reached about 175 Million m³ in the year 2000. The sewerage water is treated primarily, secondary and tertiary. Tertiary treated wastewater could be used in the irrigation because poisons and heavy minerals would be removed. The sewage water could be used for industrial development, groundwater recharge. (Alsharhan et al., 2001).

There are four sewage treatment plants in the United Arab Emirates in Abu Dhabi, Dubai, Al Ain, and Al Sharjah. The first sewage treatment plant was constructed in Abu Dhabi during 1973 with a daily capacity of 4,000 m³. The capacity of the plant reached 120,000 m³/day in 1994. The Al Aweir plant in Dubai has a daily capacity of 110,000 m³. These plants provide primary, secondary (biological treatment), and tertiary (advanced) treatments. The latter makes the quality of produced water suitable for reuse in irrigation.

Table (1.3) summarizes the treated-sewage water compared with the water quality criteria for irrigation. It could be seen that the produced water is suitable for irrigation, as it does not contain heavy metals. Chlorinating the treated sewage during the tertiary treatment kills germs and microorganisms that are health hazardous.

Paramotor (mg/l)	Major trea	ated plants	Water quality criteria for	
Farameter (mg/l)	Abu Dhabi	Dubai	Al Ain	irrigation
Biological Oxygen Demand	1.2	2.2	2.7	10
Chemical Oxygen Demand	2.4	49.1	15	75
Suspended Solids	3	1.5	6.3	8
NH ₃ - N	1.1	1.3	1.4	1
NO3- N	11	20	13.2	20
PH	6.8	6.7	7.9	6-8
Conductivity	2800	2140	1600	750-2000
Total Dissolved Solids	1950	1356	1042	1500
Chloride		524	320	40-200
Sulphate		104	135	100-380
Phosphate		12.6	10.9	23
Calcium		39		
Magnesium		36		
Sodium Adsorption Ratio		15		<10
Total Coliform (MPN/100 ml)	90			<100
Fecal Coliform (MPN/100 ml)		<2	<2	<2

Table (1.3). Tertiary treated wastewater characteristics in UAE for reuse in irrigation (after Hamouda, 1994).

The economic feasibility for the treatment of sewage water and its usage depends on many factors, such as the cost of treatment and the degree of required treatment in comparison to the cost of producing an alternative water source for the same usage. The cost of producing one m³ of desalinated water is 4 UAE Dirham, whereas the cost of producing one m³ of treated sewage water is 2 Dirham. However, important questions still remain about the degree of treatment of sewage water for irrigation, possible use of treated sewage water, and the possibility of chemical and biological pollution to the plants, soils and groundwater. In addition one should consider the possible health hazards associated with the use of sewage treated water in irrigation. In order to avoid the consequences, safe treatment process should be applied. Such a process should enable the development of clean water that have no pollutants. Periodical analysis and field studies should be conducted to spread the safety of the use of sewage water for irrigation and to educate the community on how to avoid any adverse effect and health risks associated with the application of treated wastewater.

1.4 Water Resources in Al Ain Area

Al Ain area is located in the east of the Emirate of Abu Dhabi, near the international border with the Sultanate of Oman (Fig. 1.3). It is the administrative centre of Abu Dhabi. It has a supply of surface and subsurface water drainage from the Oman Mountain to the east. It is regarded as one of the most ancient oasis of the Arabian Peninsula and is cultivated with palm trees which depend mainly on the shallow wells. Al Ain area is located within an arid belt and is characterized by low rainfall and high evaporation. Al Ain city lies on an alluvial

plain, which forms the northwest extension of Al Jaww plain. There are some large wadis covering Al Ain area like Wadi Al Ain, Wadi Towayya and Wadi Al Jimi (Fig. 1.6).

Conventional water resources in Al Ain include surface water such as (springs, falajes, seasonal floods) and groundwater. A brief discussion on the water resources in Al Ain area is presented hereafter.

1.4.1 Surface water

Due to the distribution of the arid region and despite the absence of permanent surface stream, Al Ain area has better ephemeral surface water resources as compared to the rest of the country.

Rizk (1999) calculated the minimum annual rainfall that can produce surface runoff on the drainage basins of the Al Ain area which is of about 75 mm in the Oman Mountains and 90 mm in Jabal Hafit. The annual average runoff volume ranges from 0.25 million cubic meters (MCM) in southwest Al Ain to 3.00 MCM in the northeast. The average annual runoff for the 1981-1991 period ranges from 5 mm in southwest of Al Ain to 20 mm in the northeast. The percentage of rainfall as runoff varies between 3% in Jabal Hafit basins and 18% in the basins of the Oman Mountains. Based on the values of the infiltration rate and length of overland flow, Wadi Sidr of the Oman mountains and Wadi Ain Al Faydah of Jabal Hafit have the highest flood potential, while Wadi Muraykhat and Wadi Al Ain West have the lowest flood potential (Rizk, 1999).

1.4.2 Springs

The only spring which is available in Al Ain is Al Ain Al Faydah (Ain Bu Sukhanah) which is located 15 km south of Al Ain area and 2 km west of Jabal Hafit (Fig. 1.3). The spring represents a discharge area of a deep water source which found its way up through one of several thrust faults dissecting the area. In 1991, the discharge of the Bu Sukhanah was estimated to be 2.5 million m³ of brackish water. The water temperature is about 39 °C and the spring outflow has a negative correlation with the local rain indicating that the spring receives its discharge from Oman Mountains further east (Rizk and El Etr, 1997). Ain Bu Sukhanah represents resort with a therapeutic capability because of its high temperature and high contents of sulphur. Moreover, its water can be used to grow the palms trees because palms are high tolerance crops.

1.4.3 Falajes

The falajes in Al Ain are open channels used to collect groundwater to the oasis and palm farms. Due to the excessive water pumping in the recent years, a decline in the water level was encountered.

There are a number of falajes in Al Ain area (Fig. 1.7). In 1984 five falajes were ceased to flow (Jimi, Mutarad, Qattarah, Hili and Maziad). All of these falajes except Maziad are located near the Hili draw down area. Nowadays, two falaj systems (Al Aini and Daudi) are active. Both of them are supplemented by water supply wells (Fig. 1.8).

1.4.4 Seasonal floods

Garamoon (1996) reported that the main wadis carry water at Al Ain area are Selimi, Wadi Al Ain and Wadi Shik.

1.4.5 Groundwater

Al Ain aquifer is recharged by different sources. It is recharged by the infiltration of the precipitation in the interdune areas and gravel plains. It is also recharged from Jabal Hafit where the precipitations percolate in the permeable limestone rocks forming Jabal Hafit. Another sources of recharge include irrigation return flow, upward vertical recharge from deeper rocks and infiltration of water lost from the leaky water transmission lines, although very small quantities (U.S Geological Survey,1993). The most important aquifers in Al Ain area is the Quaternary aquifer. The northern dune aquifer and Jabal Hafit aquifer are good reservoirs for fresh water. Al Jaww Plain receives fresh water through the groundwater flow from the northern Oman Mountains to the east (Garamoon,1996).

Garamoon (1996) reported that the total storage of fresh water in the Quaternary aquifer in Al Ain area is about 2,600 million m³ and the total storage of brackish water is 18,000 million m³. Therefore, the combined storage of fresh and brackish water in Al Ain area is estimated as 20,600 million m³.

Gibb and Partners (1970) stated that the decline of groundwater level started since 1966. However, the decline was about 2 m in areas with heavy groundwater pumping for irrigation date palm. Since 1970, the abstraction of groundwater in Al Ain area has increased excessively, mainly through wells equipped with mechanical pumps. The Water and Electricity Department (WED) and the Agriculture and Fisheries Department (AFD) of the Municipality are the main consumers for water in Al Ain.

Fig. (1.7) Location map of the falajes in the Al Ain area, United Arab Emirates (after Rizk, 1998).

Fig. (1.8) Location and types of active falajes in Al Ain area (after Rizk, 1998).

The WED utilizes exclusively the fresh water only but the AFD uses both fresh and brackish waters.

Hyde (1992) reported an increase of 27% and 80% in fresh and brackish water usage, respectively in Al Ain area during 1985-1991 period. He summarized the water balance in Al Ain area as given in (Table 1.4).

Table (1.4).	The	1989	water	balance	in	AI	Ain	area,	in	million	cubic	meters	per	year
(after Hyde,	1992).												

SOURCE	Million m ³ /yr	Percent
Water and Electricity Department Wells	33	52.4
Treated Sewage	7	11.1
Desalinated Water Imported from Abu Dhabi	23	36.5
Total	63	100
Uses		
Public Supply	31.5	50
Municipal Supply (Watering)	31.5	50
Total	63	100

1.4.6 Non conventional water resources

Non-conventional water resources in Al Ain area include desalinated water from Abu Dhabi Emirate and recycled wastewater from Al Ain treatment plant in Zaker. Table (1.5) lists the total water use in the Al Ain area, in the years 1990, 2000 and the predicted for 2010 (Hyde, 1992).

Table (1.5). Total water use in the Al Ain area, in the years 1990, 2000 and the predicted for 2010 (after Hyde, 1992).

Course	19	990	Year 2000	rs)	2010		
Source	Million m ³ /yr	percent	Million m ³ /yr	percent	Million m ³ /yr	percent	
WED Wells	28	60	28	44.4	28	35	
Treated Sewage	19	40	35	55.6	52	65	
TOTAL	47	100	63	100	80	100	
Public Supply	40	51.9	68	62.1	103	67.3	
Municipal Watering	37	48.1	43	38.8	50	32.7	
TOTAL	77	100	111	100	153	100	
BALANCE	-30		-48		-37		

Al Ain receives about 16 million gallons of desalinated water per day. This water is used to meet the rapid increase in the fresh water demand. This amount of desalinated water is expect to be double after the construction of Al Taweilah desalination plant.

The treated wastewater which is produced from Al Ain treatment plant is used mainly for irrigating parks and gardens located in and around Al Ain area. About 7 million gallon per day is currently produced. The capacity of the plant is expected to reach 30 million gallons per day.

1.5 Aim of Study

The future development in Al Ain area depends mainly on the availability and sustainability of the groundwater resources. The Quaternary aquifer is the most promising and economic source for the groundwater supply in Al Ain Area. Al Jaww Plain lies in the eastern part of Al Ain city and receives a considerable share of Abu Dhabi's fresh water resources.

The present work aims at studying the main geomorphologic units and their effect on groundwater occurrence. The hydrogeological conditions prevailing in Al Ain area are investigated. The groundwater occurrences, movements and fluctuations, along with the different hydraulic parameters of the main aquifers are discussed. One of the main goals of this study is the hydrogeochemical assessment of the Quaternary aquifer. The groundwater resources, origin, recharges, discharges and potentiality are evaluated.

The groundwater is defined through the geological data identified from different wells and through geoelectric resistivity and electromagnetic investigations. Wire line logging analyses of some available data are used to define the petrophysical properties relevant to hydrogeology, hydrogeological, and hydrochemical setting. The implications of this study toward the sustainable use of groundwater resources in Al Ain area are addressed.
Chapter II

GEOLOGY OF AL AIN AREA

GEOLOGY OF AL AIN AREA

The study area, Al Jaww Plain, is located in Al Ain area. A brief discussion about the geology of Al Ain, in general, with emphasis on the geological elements that affect its hydrogeology is presented in the following sections. These geological elements comprise geomorphology, stratigraphy, geometry and distribution of geologic units along with the structural deformation affecting the hydrogeology of these units.

2.1 Location of Al Ain

Al Ain lies east of Abu Dhabi Emirate, near the border with the Sultanate of Oman and at the western margin of the northern Oman Mountains (Fig. 1.3). It is one of the largest and most ancient oases of the Arabian Peninsula due to the plentiful supply of fresh groundwater from the Oman Mountains to the east.

Although Al Ain is located within the arid desert belt of the world, it is characterized by relics of integrated drainage net that was formed as a result of the prevalence of humid climate during the Quaternary. The net drains externally towards the west (Al Ain region). Rapid development is taking place in the city both in agriculture and housing.

2.2 Geomorphology of Al Ain Area

The geomorphology of Al Ain area was studied by several investigators (e.g. Hunting, Geology and Geophysics, 1979; Abou El-Enin, 1993; Al-Shamsei, 1993; UAE National Atlas, 1993; Garamoon, 1996 and Baghdady, 1998). The geomorphic units in Al Ain area are classified as mountains, gravel plains, drainage basins, sand dunes, interdune areas and inland sabkhas (Figs. 2.1 and 2.2). These units are presented hereafter.

2.2.1 Mountains

The main mountains in Al Ain area are Jabal Hafit, Jabal Moundassah, Jabal Malaqet, Jabal Al-Oha and Jabal Rawdah. Jabal Hafit is one of the most prominent features of Al Ain area. It is located southeast of Al Ain at lat 24° 02' - 24° 13' N and long 55° 44' - 55° 49'E (Figs. 2.1 and 2.2). Hunting Geology and Geophysics (1979) and Abou El-Enin (1993) reported that Jabal Hafit is a Tertiary anticlinal structure plunging southeasterly in Oman and northwesterly in the United Arab Emirates. Jabal Hafit has approximately a length of 29 km

Fig. (2.1) Geomorphology of Al Ain region (after the National Atlas of United Arab Emirates, 1993).

Fig. (2.2) Physiographic subdivisions of eastern study area.

and width of 5 km. It reaches a maximum elevation of about 1160 m above the sea level. The rocks forming Jabal Hafit are almost composed of limestone and dolomite (Rus Formation).

The mountain has a whale-back form with beds dipping down to the east and west along the two fold limbs. North of the core, limestones and marls of the lower and middle intervals of the Dammam Formation (Middle to Upper Eocene) are eroded forming a low-lying area of small hills enclosed between ridges of the Asmari Formation (Lower to Middle Oligocene). The eastern limb of Jabal Hafit is characterized by slumps because of high dip values in addition to the presence of rather alternating with limestone.

The marls of the overlying Middle Eocene Dammam Formation are less resistant to erosion leading to the formation of two wadies known as Wadi Tarabat to the east and Wadi Al Nahayan to the west. These marls form a low-lying area with small hills between the resistant Oligocene ridges. The resistant Oligocene limestone forms two Cuestas known as East Cuesta and West Cuesta. The beds of the east Cuesta dip at about 70° E and an elevation of 320 m above sea level whereas those of the west Cuesta are gently dipping at about 29° W and an elevation of 460 m above sea level.

Jabals Malaqet and Mundassah are parts of the northern Oman Mountains and located approximately 17 km east of Jabal Hafit (Fig. 2.1). They form asymmetrical anticlinal structures (Warrak, 1987). Each of the eastern limbs represents the main part of the exposures, while the western limbs are represented by disconnected strike ridges. The rocks forming these two Jabals are composed of serpentinized predotite (in the cores), conglomerates and carbonates of Late Cretaceous age, overlain by marls and carbonates of Paleocene to Early-Middle Eocene age (Hamdan and El-Deeb, 1990).

Jabal Al Oha lies about 8 km northeast of Al Ain City (Fig. 2.1). It consists of three NW-SE parallel hogback ridges of about 10 km length. The ridges represent fault repetition of the western limb of the horseshoe-shaped southerly-plunging anticline of Jabal Huwayah exposed immediately to the east of Jabal Al Oha, further east.

Jabal Al Oha succession attains a total thickness about 85 m, and is of Late early to Late Maastrichtian age. It is divided into a lower unit that consists of gray to green mudstone to shale of Qahlah Formation, and 3 m thick unit of red-colored chert pebble conglomerate and is overlain by white limestone of Simsima Formation.

Jabal Rawdha is a plunging anticlinal located at the western end of the Hatta shear zone. It consists of ridge of Hawasina limestones which are unconformably overlain by Upper Cretaceous -Tertiary carbonate cover. This cover is folded into open symmetrical fold trending axes.

2.2.2 Gravel plains

Two gravel plains terminate the eastern part of Al Ain area; one fringes the Oman Mountains and the second fringes Jabal Hafit. The first fringe reaches its maximum development in the study area of Al Jaww Plain which is located between Jabal Hafit and the Oman Mountains (Hunting Geology and Geophysics, 1979).

The main features of the gravel plains are low-relief piedmonts that slope gently westward away from the western margin of the Oman Mountains. The term piedmont is applied as a general term for an alluvial plain associated with a variety of landforms, such as alluvial fans, wadies, and associated terraces, or for erosional bedrock surface (piedmont) thinly mantled by alluvium (U.S. Geological Survey, 1993).

Surface drainage on the piedmonts and alluvial fans subdivisions is generally channalized in wadis with variable flow patterns, through most systems exhibit complexly braided channel morphologies (Menges and Woodward in U.S. Geological Survey, 1993).

2.2.3 Drainage basins

There are two systems of drainage basins in Al Ain area; one is related to the northern Oman Mountains and the second belongs to Jabal Hafit (Fig. 1.2).

Drainage basins of the Oman Mountains

The drainage pattern of the Oman Mountains is generally dendritic; as it is typical of massive igneous rocks forming these mountains. However, some areas due to the faulting, have more rectangular patterns, with long stream segments trending at about N 60° to 70° W, parallel to the northwesterly fault trend common through the Ophiolite (Fig. 2.3a). In the west of Al Ain area there is some tendency for rectangular drainage in the faulted parts of the sedimentary sequence. In Al Jaww Plain, the dendritic pattern (Fig. 2.3b) usually changes to braided pattern where the slope decreases in Al Jaww Plain (Fig. 2.3c). The main reasons for the variation in the drainage pattern are either deformation, or decrease in slope (Al-Shamsei, 1993).

a) Rectangular dendritic pattern in the ophiolitic sequence

b) Dendritic drainage in the sedimentary rocks

c) Braided drainage pattern in Al Jaww Plain

Drainage basins of Jabal Hafit

The drainage pattern of this system occurs in the west of Al Jaww Plain and south of Al Ain area. The overall drainage pattern of this system is rather sub radial but on a basin scale. The pattern ranges from dendritic to braided with some parallel or rectangular patterns especially in the structurally-controlled areas.

2.2.4. Sand dunes

Sand dunes are the most dominated geomorphologic units in the United Arab Emirates; they cover about 75% of the surface area of the country. The northern and western parts of Al Ain area are dominated by the dune fields (Fig. 2.1). Embabi (1991) attributed the regional and local variations in type and pattern of sand dunes to the variations in the wind regime, sand supply and local relief. The two dominant dune types within Al Ain area are the linear and the star dunes.

Northern and western parts of Al Ain area are dominated by linear dunes which are located in the NE-SW direction. In the east region of Al Ain area the dune is darker and denser due to the contributions from the ophiolitic succession, whereas at the west region of Al Ain area the dune is lighter due to the carbonate debris which derived from Jabal Hafit (Abu-Zeid et al., 2000).

Star dunes are radially symmetrical, pyramidal sand accumulations with slip faces on arms that radiate from the high central parts of the mound. In the southeastern part of Al Ain area star dunes, exist near Al Wagan associated with the E-W barchanoid and linear ridges. Near Al Wagan area the star dunes show more development because of the increasing sand supply. The development of this type of dunes increases in environment with multidirectional wind regime.

2.2.5 Interdune areas

Interdune areas occupy the low lands between sand dunes. In these areas the groundwater is shallow and high content of fine grained sediments exist. Therefore the groundwater in this area is favorable for agriculture.

2.3 Stratigraphy

Al Ain area is covered by a rock sequence ranges from Cretaceous to Quaternary (Figs. 2.4, 2.5 & 2.6). The following is a brief discussion of this sequence.

Fig. (2.5) Stratigraphic description and correlation of the identified Cretaceous/Tertiary rock units surrounding the study area (Abdelghany, in prep.).

31

Fig. (2.6) Photos showing Jabal Hafit (a) to the west of Al Jaww Plain and Jabal Muthaymimah (b,c) to the east of Al Jaww Plain.

a) The Upper Cretaceous

According to Hamdan and Anan (1993), the Upper Cretaceous sequence includes (from base to top): Semail Ophiolites, Qahlah Formation, Simsima Formation and Fiqa Formation. The Semail Ophiolites are pre-Maastrichtian serpentine and serpentinized predotite. They represent the oldest exposed rocks in Al-Ain area where they form the base of Jabal Malaqet and Jabal Moundassah in its eastern side. The Qahlah Formation consists of red to yellow unfossiliferous clast-supported conglomerates composed of rounded clasts of serpentinized predotite derived from the Semail Ophiolites. Hunting Geology and Geophysics (1979) and Warrak (1987) indicated that Qahlah Formation is in fact Haybi and Hawasina suite which structurally underlies the Semail Ophiolites.

Simsima Formation is composed of medium-to thick-bedded shallow marine bioclastic limestones with rudists, corals and echinoids. It disconformably overlies the Qahlah Formation (Hamdan and Anan, 1993). In the northern and middle sections of Jabal Moundassah, however, the Simsima Formation unconformably overlies the Semail Ophiolites and was given by Hunting Geology and Geophysics (1979) the informal name Simsima Limestone.

The Fiqa Formation is represented by tongues in Jabal Moundassah and consists of light grey to buff thinly-bedded pelagic marls and calcareous shales with creamy to orange nodular to flaggy argillaceous limestone interbeds.

b) The Paleocene

The Paleocene sequence is separated from the underlying Upper Cretaceous sequence by a regional unconformity with local conglomerate at its base. It is represented by the Muthaymimah Formation. Harndan and Anan (1989) and Harndan and El-Deeb (1990) described this unit as the Pabdeh "equivalent" Formation. Nolan et al., (1990) formally named this unit the Muthaymimah Formation and assigned it to the Late Paleocene-Early Middle Eocene. This unit is exposed in Jabal Malaqet and Jabal Moundassah. It consists of shale, marl and argillaceous limestone with conglomerate interbeds.

c) The Eocene

Whittle and Alsharhan (1994) considered the Eocene sequence to include the Rus Formation and Dammam Formation. The Rus Formation (Lower Eocene) is composed of fossiliferous dolomitic limestone with thin argillaceous limestone (Tle₁) grading upward to well-bedded nodular limestone (Tel₂). The formation constitutes the core of Jabal Hafit anticline where it has unexposed base. The Dammam Formation (Middle to Upper Eocene) unconformably overlies the Rus Formation (Hamdan and Bahr, 1992). It constitutes most of the outcrops of Jabal Hafit and is made up of fossiliferous marl and limestone interbeds. Hunting Geology and Geophysics (1979) gave informal designations for this formation; namely: Tle₃ to Tle₆.

d) The Oligocene

According to Whittle and Alsharhan (1994) the Asmari Formation ranges in age from Middle to Late Oligocene. It is composed upwardly of silty marl (TIe₇), bioclastic nodular limestone (TIo₁), and interbedded bioclastic limestone and marl (TIo₂). The formation constitutes the east and west cuestas of Jabal Hafit which extend north of Wadi Tarabat and Al Ain Cement Factory respectively. At the western cuesta, the upper and lower contacts of the Asmari Formation are covered by alluvium.

e) The Miocene

The Miocene succession unconformably overlies the Asmari Formation (Whittle and Alsharhan, 1994). It is low-lying and located at the eastern flank of Jabal Hafit as interbeds of gypsum and clay (Tm₁) and gypsiferous clay (Tm₂).

f) The Quaternary

Quaternary age deposits cover most of Al Ain area and consist of near-surface and surficial sediment of mixed alluvial, eolian, and, locally, sabkha (evaporatic origins). These units collectively form a relatively thin veneer that overlies most older rocks with varying degrees of structural discordance. In the following section, Quaternary deposits in the study area of Al Jaww Plain are discussed. The Quaternary alluvium will also be elaborated in chapter four as it constitutes the principle water-bearing lithostratgraphic unit.

2.4 Geology of Al Jaww Plain

Al Jaww Plain is an especially large (15 km) wide and prominent piedmont situated east and southeast of the city of Al Ain between the Oman Mountains and Jabal Hafit. It consists of gently inclined gravelly materials transported by wadis dissecting the northern Oman Mountains. The plain is transversed by numerous wadis such as Wadi Shik, Al Ain, and Muraykhat. Al-Shamsei (1993) identified three alluvial fans within plain; namely: the Zarub fan in the north, the Moundassah fan in the middle and the Ajran fan in the south.

Al Jaww Plain is mostly covered with the Quaternary deposits. Hunting Geology and Geophysics (1979) recognized five sediment types. They are broadly contemporaneous and represent different facies of deposits being formed by present-day processes.

(i) Aluvial deposits (Qg)

Alluvial deposits occur beneath the piedmont plains fringing the Oman Mountains and Jabal Hafit. The grain size of these deposits ranges from boulder gravel and conglomerate in the east part to fine sand and silt where wadis disappear in the sand dune to the west. A typical section through the alluvium of Al Jaww Plain consists of pebbles and cobbles of gabbros, serpentine, limestone and chert set in a fine-grained cement of carbonate silt. At some localities, the clastic matrix is absent and the pebbles are either uncemented or loosely held together by coarse-grained recrystallised calcite. These rocks are both porous and permeable and make excellent aquifers. The deposits are crudely bedded and contain impresistent lenses of cross-laminated sand. Around Jabal Hafit the clastics are composed entirely of limestone.

Towards Al Ain town and further west the gravel and conglomerates are replaced progressively by interbedded sand, silt and calcrete. The sand and silt are typically crosslaminated, calcareous, brown or white and, with scattered pebbles and cobbles. They tend to be more firmly cemented than the conglomerates. The calcrete is typically white, lacks obvious bedding, contains scattered grains of silica and altered igneous rocks and contains irregular fracture surfaces and vugs coated with iron and manganese oxides.

Towards the west where the alluvium becomes sufficiently fine-grained (Fig. 2.7). It is subjected to wind action and the area is partly covered by low sand dunes.

(ii) Desert plain deposits (Qes)

Most of the remaining flat or gently undulating parts of the area are underlain by desert plain deposits. They occur between the dune ridges mainly in the west and north of Al Ain area.

Typical exposures consist of low scarps at the margins of the ablation hollows and flats. They are of inter-layered pale gray laminated silt that is loosely cemented with carbonate, and red or brown sand locally showing dune bedding. These rocks types represent dune sands which have been cemented by salts at times of higher water table and that have been subsequently re exposed by ablation. Adjacent parts of the plains are covered with nodules of sandstone formed by surface cementation of these rocks types and by scattered

Fig. (2.7) The main geological units of Al Jaww Plain, D= Desert plain deposits, mainly gravels, F= Fluviatile deposits. pebbles of serpentinite, gabbro, limestone and chert. Sections exposed in borrow pits near Jabal Muhayjir and elsewhere show that inter-layered gravel, pebbly calcrete, nodular limestone and calcareous silt also make up a part of the desert plain deposits. These deposits are present between the dune ridges, mainly in the western and northern parts of the study area. They are distinguished from fluvial deposits by being unrelated to the present drainage pattern. Desert plain deposits are interlayered, larminated and loosely cemented by carbonate silt and sand. They represent dune sands which were cemented by salts at times of higher water tables and then re-exposed by ablation (El- Saiy, 2002).

(iii) Mixed deposits (QTm)

These deposits, which are present in the northern part of the study area, include calcrete, serpentinite granules and calcareous sandstones. They are very similar to the Miocene rocks. The lack of diagnostic fossils, however, makes their indeterminate (Hunting Geology and Geophysics, 1979).

(iv) Sabkha deposits (Qsb)

Sabkha deposits occur where the main wadi channels enter the sand dunes and at other locations within the dunes liable to flooding by rising groundwater. Sabkhas are also developed on the lower parts of gravel and sand plains at and west of Ain Bu Sukhanah. The main rock type is loosely cemented calcareous siltstone. Visible gypsum, which is common in the Sabkhas near the coast, is rare in the Al Ain area except around Ain Bu Sukhanah.

(v) Aeolian sand (Qd)

The greatest part of the area is covered by sand dunes. They vary in color from red and pink to white. Hunting Geology and Geophysics (1979) emphasized that grains of these sand dunes are well-rounded carbonates and quartz with minor proportions of basic and ultrabasic igneous rockfragments.

2.5 Structural Setting

Al Ain area is located on a structural pattern ranging between the uplifted, highlydeformed rocks of the Oman Mountains at the east and the buried, flat-lying to gently-folded strata of western Abu Dhabi Emirate (Hunting Geology and Geophysics, 1979; Schlumberger, 1981; Robertson et al., 1990). The history of these structural elements is summarized with reference to (a) compressive deformation exposed in the mountains and (b) similarly developed structures to the west of the range (primarily those structures in the shallow subsurface beneath the piedmont and the northern dune area). The main remarkable structural elements of Al Ain area are elaborated in the following section.

2.5.1 Structures in the Oman Mountains

The rocks exposed in the northern Oman Mountains have suffered from a complex compressive deformation primarily due to Late Cretaceous obduction of the Semail ophiolites and associated sedimentary and volcanic rocks formed as a result of this obduction (Glennie *et al.*, 1974; Coleman, 1981 & 1981; Lippard *et al.*, 1986, Patton and O'Conner, 1988; Boote *et al.*, 1990 and Warburton *et al.*, 1990).

Major structures formed in response to ophiolite emplacement include: i) several sets of east to-northeast dipping thrust faults and nappes; ii) uplift and collapse of regional culminations above stacked thrust sheets; iii) intense folding associate with thrust folding; and iv) pervasive internal deformation (shearing tectonic dismemberment and mélange development) in the Hawasina and rocks (Searle et al., 1990 and Warrak, 1987).

Regional mapping has identified complex folding and faulting in the Bedrock Mountains of the western Oman Mountains adjoining the eastern margin of the study area (Fig. 2.4).

2.5.2 Structures west of the Oman Mountains

Based on structural interpretations of seismic reflection profiles, several studies have documented the presence of a large buried system of folds and thrust faults bordering the western flank of the Oman Mountains (Boote et al., 1990; Dunne et al., 1990; and Warburton et al., 1990).

Woodward (1994) used 94 reprocessed seismic sections covering Al Ain area (Fig. 2.8) for outlining the major structural elements that affect the Quaternary aquifer. Most of the thrust faults were identified by offset and/or by aligned truncation of shallow reflectors. (Fig. 2.9) shows a comprehensive map of subsurface structures for the western flank of the Oman Mountains in Al Ain area.

Most of the deformation in the zone is under a surficial cover of alluvium and eolian sand, although some structures produce mountains ranging in size from Jabal Hafit in the south to small bedrock outcrops protruding through the sand cover in the northern dune area, such as Bida Bint Saud, Jabal Mohayer and Qarn Saba. The orientation, style, and geometry

Fig. (2.8) Amoco seismic lines and uphole-survey locations (afterWoodward, 1994).

Fig. (2.9) Generalized subsurface structural features in Al Ain area (after Woodward, 1994).

of subsurface structures are similar in many aspects to the faults and folds exposed in the bedrock of the Oman Mountains.

Two structural domains have been defined on the basis of deformational style and complexity. A complex belt of tight folds and thrust faults underlie the northern dune area. A less deformed zone of relatively simple compressional structures, as shown in (Fig. 2.9) extends from Jabal Hafit eastward under Al Jaww Plain.

The boundary between the two regimes trends ENE beneath the Wadi Al Ain system. The two regimes share the followings:

(i) The fold axes have a general NNW-SSE trend.

(ii) All the major thrust faults are dipping eastward at moderate to steep angles.

 (iii) The distal (western-most) structural elements of each domain are anticlines (Jabal Hafit south of Al-Ain, and a buried anticline to the north).

(iv) West of the distal anticlines, the undisrupted layered bedrock is dipping gently to the west.

2.5.3 The northern structural regime

This structural regime is characterized by an episodic, compressive tectonism. Starting from the western distal anticline, the folding consists of three sets of alternating anticlinesyncline fold pairs. The folds are doubly-plunging; the eastern ones are symmetrical whereas the western folds are asymmetrical; with the axial surfaces dipping slightly to the west. Most of the folds have been ruptured by a series of imbricate thrust faults.

There are six sub parallel zones of major, eastward-dipping thrust faults. The F1 and F6 thrust zones consist of single faults; the F3, F4 and F5 zones are made up of two branching thrusts, whereas the F2 zone comprises three inline discontinuous thrusts. The deformation sequence of the post-Late Cretaceous shallow sediments is one of an initial phase of folding followed by thrusting. The thrust system seems to be a leading imbricate fan with westward propagating piggyback thrust. Based on seismic data, the northern anticline is thought to be either unfaulted or less faulted with little displacement along the thrust plain. In the central part of the anticline, the fold becomes more compressed, where the limbs begin to dip quite steeply, and a thrust fault develops near the central part of the fold and ruptures the fold west of its crest. As compressional deformation increases, the throw of the thrust increases and the anticline begins to be decapitated. At the southern end of the anticline, seismic sections show

that the fold is broad and unfaulted, and the limbs are dipping at low angles. Warrak (1996) studied the origin of the Hafit anticline and analyzed its structural pattern. He concluded that the structure was formed as a result of one-sided compression acting from ENE and grew as a detachment fold. Also, the reversed verence and the fold superposed on the limbs of Hafit folds were formed due to simple shear as it moved up a listric, east-dipping thrust plane. Warrak (1986) emphasized that the Hafit anticline grew synchronously with the sedimentation from just before the Middle Eocene until the end of the Miocene.

2.5.4 The southern structural regime

The southern structural regime is dominated by Jabal Hafit, the distal fold, and Al Jaww Plain. The mountain is a composite anticline with a sinuous doubly-plunging fold axis. This large amplitude fold is asymmetric with a vertical to steeply-overturned eastern limb.

The Al-Jaww Plain (500 km²) is a westward-sloping, low-relief alluvial piedmont bounded on the east by the Oman Mountains and on the west by Jabal Hafit. Structurally, the plain is underlain by a series of southerly-plunging folds that comprise a central anticline flanked by synclines, and easterly-dipping thrust fault located near the eastern boundary of the plain (Fig. 2.10). The major fold is a syncline whose axis is about 6 km long east of Jabal Hafit. All folds and faults have axial traces that are subparallel to Jabal Hafit, which has an axial trace striking about N20° W.

Fig. (2.10) Interpreted seismic lines at Al Jaww Plain and north of Al Jaww Plain, see Fig.2.9 for location (modified after Woodward, 1994).

1

Chapter III

MATERIALS AND TECHNIQUES OF STUDY

CHAPTER THREE

MATERIALS AND TECHNIQUES OF STUDY

The theoretical background of the implemented geophysical techniques is discussed in this chapter.

3.1 Materials

This study is based on various data collected from different sources including field trips to the area under investigation. These data include.

- Meteorological data collected from the Departement of Civil Aviation (Abu Dhabi International Airport). These data are recorded at Al Ain Intrnational Airport, which represents the nearest metrological station to the study area.
- Records of the water wells drilled in the study area, provided by National Drilling Company (NDC) and Water and Electricity Departement (WED) of Al Ain Distribution Company, Al Ain.
- 3. The lithologic logs of many wells, which were drilled at Al Jaww Plain.
- Periodical recording for the measurements of groundwater depth in available wells by NDC and WED.
- Chemical analyses of previous periodical records of groundwater samples provided by NDC and WED.
- 6. Topographic maps of scale 1:50,000 and land sate image for Al Ain area.
- Surface geophysics including Direct Current (DC) resistivity and Transient Electromagnetic (TEM). Data from borehole geophysics logged by Schlumberger Middle East at Al Jaww Plain are also used.

3.2 Direct Current (DC) Resistivity Method

3.2.1 General

Applied geophysics is known as a large group of various methods and techniques developed to investigate the subsurface. By the geophysical methods, a lot of information is acquired, which can be used for various aspects. Geophysical techniques are considered as one of the most accurate and cost saving methods used in hydrogeology, engineering and geoenvironmental investigations. This achievement is related to the expanding interpretative skills of the geophysicists and the increasing acquaintance of the engineers and geologists with its basic geophysical principles. The electrical methods in general include different techniques and instruments depending on the nature of the method used in prospecting. Some of these methods make use of the natural currents and others depend on injection of artificial currents into the earth. For more details about these different techniques reference is made to Reynolds (1997), Parasins (1997), Telford et al., (1990), Robinson and Coruh (1988) and Dobrin (1976).

The DC-resistively methods of geophysical exploration are popular and proved to be successful and have many implications in the fields of geoenvironment and hydrogeology. Electrical resistively methods were developed in the early 1900 but have become widely used since the 1970_s, primarily due to the availability in the search for suitable groundwater sources. These methods have also been used to monitor types of groundwater pollution; in engineering surveys to locate sub-surface cavities, faults and fissures permafrost, mineshafts and in archaeology for mapping out a real extent of remnants of buried foundations of ancient buildings, amongst many other applications. Electrical resistively methods are also employed extensively in downhole logging as will be elborated in the section of borehole geophysics.

3.2.2 Basic concepts of the resistivity method

Resistively is one of fundamental electrical properties of soils and rocks. The term (Resistivity) is used because earth materials behave like electrical resistors, impeding currents flow through the ground. The materials, ability to conduct currents is controlled by a number of factors, including the moisture content, clay content, porosity or compaction and the presence of free ions. For example, resistance to current flow decreases with increasing ionized water or salt content.

Resistivity (ρ) is a bulk property of material describing how well that material inhibits current flow. This is slightly different from resistance, which is not a physical property. If we consider current flowing through a unit cube of material, (Fig. 3.1) resistivity is defined as the voltage measured across the unit cube's length (V/m)

Divided by the current flowing through the unit cube's cross sectional area $(1/m^2)$. This results in units of Ohm m²/m or Ohm-m.

It is expressed by the following formula:

$$\rho = \frac{r.A}{L} \tag{3.1}$$

Where r is the resistance of a conductive material having a length L and across sectional area A

Consider an electric circuit in which the earth is the resistor. Two metal stake electrodes are connected at two different locations to the battery terminals, as shown in (Fig. 3.2). The electrodes connected to the positive terminal is called the source, the other connected to named the negative terminal is the sink. Due to the difference in potential between these electrodes current is obliged to flow along paths leading from the source to the sink. The source electrode is positively charged therefore it pushes positive electric charges outward into the ground. The result is that electric current flows outward from the source, into the ground. Assuming that resistivity is constant through the model of the earth, the current moves away from the source, radiating outward and uniformly in all directions as shown by the paths in (Fig. 3.2).

Now consider the resistance encountered by current that has traveled a distance from the source. Because it spreads outward in all directions, it has moved through a hemispherical zone. The current flows out of this zone when it moves across the area of $2\pi d^2$, which is the surface of the hemisphere. According to Equation (3.1), the resistance **r** can be expressed by the product of resistivity ρ and the distance d that the current has traveled divided by the area $2\pi d^2$ then

$$r = \frac{\rho d}{2\pi d^2} = \frac{\rho}{2\pi} \left(\frac{1}{d}\right)$$

The charge in potential resulting from the flow of current through this hemispherical zone can be found from Ohm's law, which relates the current, potential difference, and resistance such that

3.24

$$V = ir$$
 (3.3a)

then

 $V = ir = \frac{i\rho}{2\pi} \left(\frac{1}{d} \right) = V_0 - V_d \tag{3.3b}$

Where, $V_0 - V_d$ is the difference between the electric potential V_0 at the source and the potential V_d at any point in the ground at a distance d from the source.

Considering the sink electrode, if the potential at the source is V_0 , the potential at the sink will be - V_o , for it is connected to the negative terminal of the battery. Similarly, we can use ohm's law to find the difference between the electric potential - V_0 of the sink and the potential V_d at all points which far by a distance d from it. Thus

$$V = ir = \frac{ip}{2\pi} = V_d - V_0$$
(3.4)

Fig. (3.1) Basic definition of resistivity across a homogeneous medium.

Fig. (3.2) Current lines radiating out from a source electrode and converging on a sink electrode.

To find the electric potential V at a point in the ground, we have to combine the potentials of the source and sink. Using Equations (3.3) and (3.4), we obtain

$$V = \frac{i\rho}{2\pi} \left(\frac{1}{d_1} - \frac{1}{d_2} \right)$$
(3.5)

Where d_i and d_j are the distances to the source and the sink. Equations (3.5) can be used to calculate the potential point by point throughout the ground then, by connecting points of equal potential, we would obtain the pattern of equal potential surfaces as shown in (Fig. 3.3). the pattern of equipotential lines and current lines in (Fig. 3.3) applies for any plane surface containing the source and sink, regardless of its inclination.

In normal practices of electrical resistivity surveying it is usual to use source and sink electrodes connected to a battery, or some other source of electric power, to compel current to flow in the ground. An ammeter is included to measure current. Two other electrodes connected to a voltmeter are placed in other positions to measure differences in potential.

In (Fig. 3.4), the source and sink electrodes are A and B, and the so called potential electrodes are M and N. According to Equation (3.5), if the resistively ρ is uniform, the electric potential V_M at the M electrode will be.

$$V_{\rm M} = \frac{i\rho}{2\pi} \left(\frac{1}{d_1} - \frac{1}{d_2} \right) \tag{3.6}$$

And the potential V_N at the N electrode will be

$$V_{\rm N} = \frac{i\rho}{2\pi} \left(\frac{1}{d_1} - \frac{1}{d_2} \right) \tag{3.7}$$

Therefore, the difference in potential V_{MN} measured by the voltmeter will be

$$V_{\rm MN} = V_{\rm M} - V_{\rm N} = \frac{i\rho}{2\pi} \left(\frac{1}{d_1} - \frac{1}{d_2} - \frac{1}{d_3} + \frac{1}{d_4} \right)$$
(3.8)

by rearranging Equation (3.8) to express resistively

$$\rho = 2 \pi \frac{V_{MN}}{i} \left(\frac{1}{d_1} - \frac{1}{d_2} \frac{1}{d_3} + \frac{1}{d_4} \right)^{-1}$$
(3.9)

most of the work with resistivity instruments is based upon apparent resistivity (ρ_a) instead of true resistivity (ρ), because the ideally uniform subsurface is rare.

Thus the value obtained from Equation (3.9) is called the apparent resistivity ρ_a . Equation (3.9) can be expressed as:

$$\rho_a = \frac{V_{MN}}{i} G \tag{3.10}$$

Where

$$G = \frac{2\pi}{\frac{1}{d_1} - \frac{1}{d_2} - \frac{1}{d_3} + \frac{1}{d_4}}$$
(3.11)

is the geometrical factor that depends on the electrode arrangement.

For more detail about the theory, different types of electrode configurations, data acquisition and methods of interpretations, are given in Koefoed (1968), Dobrin (1976), Robinson and Coruh (1988), Lowrie (1997), Parasnis (1997), Reynolds (1997) and Sharma (1997).

3.2.2.1 Electrode arrays

Most electrical resistivity surveying is done with one or more of the various electrode configurations. (Fig. 3.5) shows the most common electrode arrays used in resistivity survey. The electrode configuration which has been used during this study is the Schlumberger electrode array, illustrated in (Fig. 3.5b). In this configuration, the current electrodes A and B are at equal distance **S**, in opposite directions from the center of the array. The potential electrodes M and N are between A and B at equal distance from the center of the array, S/2 From Equation (3.11), the geometrical factor for this array becomes

$$G_{s} = \frac{2\pi}{\frac{1}{S - (a/2)} - \frac{1}{S + (a/2)} - \frac{1}{S + (a/2)} + \frac{1}{S - (a/2)}} = \frac{\pi(S^{2} - (a/2)^{2}}{a}$$
(3.12)

Therefore, the formula used in the Schlumberger configuration can be written as follows:

$$\rho_a = \pi \left(\frac{S^2 a^2 / 4}{a}\right) \frac{VMN}{i}$$
(3.13)

To measure apparent resistivity, the subsurface of the earth is energized through two current electrodes, and the resulting potential is measured by two nonpolarizing electrodes, and values of I and V_{MN} are read from the ammeter in the current circuit and the voltmeter in the potential circuit. These values are used with the appropriate geometrical factor in Equation (3.10).

Fig. (3.3) Current lines and equipotential surfaces produced by a source and sink in a medium of uniform resistivity. (After Van Nostrand and Cook, 1966).

Fig. (3.4) Current electrodes A and B and potential electrodes M and N are used to measure potential difference V, which depends on the zone resistivity.

The depth of investigation is generally controlled by the current electrode spacing. Greater depths are achieved as the current electrode separation is increased. Each type of electrode arrangement has its own depth of current penetration, in the case of horizontal layers. The depth of probing is also controlled by the resistivities of the subsurface materials.

A very general rule of thumb with certain reservations can be applied which implies that the depth of penetration ranges between one third and one fifth of the current electrode separation (Van Nostrand and Cock, 1966).

3.2.2.2 Surveying procedures

Many procedures have been designed (Habberjam, 1979) and although several are occasionally employed in specialized surveys, only two are in common use as elaborated below.

Vertical Electrical Sounding (VES)

The resistivity sounding is one of the most economical methods used in the field of shallow geophysical investigations such as engineering, hydrogeological, geoenvironmental and archaeological investigations. The man power and time required for performing Schlumberger sounding are less than those required for Wenner array. Also, the effect of near surface lateral inhomogeneities is less under the Schlumberger array (Zohdy, 1974), as the separation MN is generally smaller than AB.

The objective of sounding is to determine the variation of electrical resistivity with depth. This method is also called (electric drilling). An electrical sounding is done by measuring several values of apparent resistivity with successively increasing electrode spacing, with the center of the configuration and its orientation remaining fixed. With increasing electrode spacing, current penetration increases and consequently the depth of investigation.

Therefore, in the Wenner configuration, as the electrode array expands, the distance (a) is increased equally by keeping the midpoint of the configuration fixed. However, in the Schlumberger configuration, the potential electrodes can remain in the same position for a series of readings with changing only the current electrodes spacing. Then, increasing the spacing of the potential electrodes for another series of current electrode spacing to obtain readable measurements for both V and I. In all cases MN spacing must be kept to about 1/5 of the AB spacing.

Electrical Profiling

The objective of electrical profiling is to determine the lateral variations in resistivity of the ground along profiles with stations used for measurements of ρ_a . The coverage of the

¹ Fig. (3.5) Common electrode arrays (configurations) used in DC asistivity and their corresponding geometrical factor.

area of investigation with a number of such profiles can be used for construction of resistivity maps representing resistivity at different electrode separations, i.e., at the depth of current penetration related to this electrode separation (e.g. in case of Wenner array) (Fig. 3.5a).

This technique is useful in detecting local shallow inhomogeneities in the subsurface and is employed typically in delineating geologic boundaries, fractures, cavities, etc. Generally any of the electrode arrays may be used, however, the selection is depending mainly on the field situation.

3.2.2.3 Data acquisition

Data of nine vertical electrical soundings (VES) using Schlumberger electrode configuration along profile crossing Al Jaww Plain (after MAF, 1985) have been used. Moreover, the available instrument "Sting R1 IPTM" Resistivity meter (Fig. 3.6) has been used in this study to carry individual VES near to borehole for purpose of calibration and training. Presentation of the data, processing and interpretation are discussed in chapter six.

3.3 Principles of Time Domain Electromagnetic Techniques for Resistivity Sounding

Conventional DC resistivity techniques have been applied for many years to a variety of geotechnical applications. More recently electromagnetic techniques, have been used effectively to measure the resistivity (or its reciprocal, the conductivity) of the earth.

Electromagnetic techniques can be broadly divided into two main groups. In frequency-domain instrumentation (FDEM) the transmitter current varies sinusoidally with time at a fixed frequency which is selected on the basis of the desired depth of exploration of the measurement (high frequencies result in shallower depths). On the other hand, in most time-domain (TDEM) instrumentation, the transmitter current, while still periodic, is a modified symmetrical square wave, as shown in Fig. (3.7a). After every second quarter-period the transmitter current is abruptly reduced to zero for one quarter period, whereupon it flows in the opposite direction.

A typical TDEM resistivity sounding survey configuration is shown in Fig. (3.7b). The transmitter is connected to a square (usually single turn) loop of wire laid on the ground. The side length of the loop is approximately equal to the desired depth of exploration except that, for shallow depths (less than 40 m) the length can be as small as 5 to 10 m in relatively resistive ground. A multi-turn receiver coil, located at the centre of the transmitter loop, is connected to the receiver through a short length cable.

Fig. (3.6) Super Sting R1 IP earth resistivity and IP meter and its accessories.

Fig. (3.7) Principles of time domain electromagnetic techniques for resistivity sounding.

In TDEM resistivity sounding, the process of abruptly reducing the transmitter current to zero induces, in accord with Faraday's law, a short duration voltage pulse in the ground, which causes a loop of current to flow in the immediate vicinity of the transmitter wire, as shown in Fig. (3.7c).

Immediately after transmitter current is turned off, the current loop can be thought of as an image in the ground of the transmitter loop. However, because of finite ground resistivity the amplitude of the current starts to decay immediately. This decaying current induces a voltage pulse which causes more current to flow, but at a larger distance from the transmitter loop, and also at greater depth, as shown in Fig. (3.7c). This deeper current flow also decays due to finite resistivity of the ground, inducing even deeper current flow and so on. The amplitude of the current flow as a function of time is evaluated by measuring its decaying magnetic field using a small multi-turn receiver coil usually located at the center of the transmitter loop. From the above it is evident that, by making measurement of the voltage out of the receiver coil at successively later times, measurement is made of the current flow and thus also of the electrical resistivity of the earth at successively greater depths.

The output voltage of the receiver coil is shown schematically (along with the transmitter current) in (Fig. 3.7d). To accurately measure the decay characteristics of this voltage the receiver contains 20 narrow rime gates indicated in (Fig. 3.7e), each opening sequentially to measure (and record) the amplitude of the decaying voltage at 20 successive times. To minimize distortion in measurement of the transient voltage, the early time gates, which are located where the transient voltage is changing rapidly with time, are very narrow. The later gates, situated where the transient is varying more slowly, are much broader. This technique is desirable since wider gates enhance the signal-to-noise ratio, which becomes smaller as the amplitude of the transient decays at later times. It is noted from (Fig. 3.7d) that there are four receiver voltage transients generated during each complete period (one positive pulse plus one negative pulse) of transmitter current flow. However, measurements are made only of those two transients that occur when the transmitter current has just been shut off. In this case accuracy of the measurement is not affected by small errors in location of the receiver coil. This feature offers a very significant advantage over FDEM measurements, which are generally very sensitive to variations in the transmitter coil/receiver coil spacing since the FDEM receiver measures while the transmitter current is flowing. For more details about TDEM resistivity sounding refernce is made to McNeill (1994).
Three types of equipment systems manufactured by Geonics limited, Ontario, Canada, were used for electromagnetic surveys done by US Geological Survey, (1993) at Al Ain area. The EM-34, is a frequency domain terrain conductivity meter (TCM) that uses a portable loop-loop receiver and transmitter configuration to collect conductivity data at three preset separation frequencies and two different loop orientations (McNeill, 1980, Fitterman and others, 1991). Six measurements are recorded at a series of stations spaced at intervals of 10, 20, and 30 m along a profile line. Results are used to produce geoelectric resistivity cross-sections with fair to good resolution to depths below land surface of about 40 m.

Two types of transient electromagnetic (TEM) systems were used to obtain vertical sounding with higher resolution and greater depths, relative to TCM surveys. The TEM systems use battery or generator driven transmitters to supply square wave direct current at two base frequencies into large wire loops lay on the ground. The on-off source current in the loop induces eddy currents in the subjacent ground; these currents decay as they diffuse downward and outward. The ground response, in turn, induces transient voltages in a receiver coil. These transient voltages, which are recorded digitally in 40 channels with prescribed time delays, are converted to apparent resistivities.

The EM-47 system uses a small loop (40 meters on a side), low transmitting current (3 amperes), and high frequencies to give high resolution soundings over a depth range of 0 to 100 m. Deeper soundings (extending to 300 m), but with lower-resolution, are provided by the large loop (100 to 200 m on a side), high transmitting current (30 amperes), and low frequencies of the EM-37 system.

Transient electromagnetic (TEM) data provided by NDC along some wadis crossing al Jaww Plain are used to determine the paleochannel geometry along these profiles and to map the depth of the conductive clay layer of Tertiary age that forms the base of the aquifer. Data presentation and discussions of results are given in chapter six.

3.4 Borehole Geophysics

3.4.1 General

Well logging methods are essential tools in groundwater exploration and development. In borehole geophysics, a suitable sensor is lowered to the bottom of the borehole and the logs are continuously recorded in terms of depth when the sensor (called 'Sonde) is drowning upwards gradually with a uniform speed.

Normally, logging is carried out in water wells as test boreholes recommended after through geological and surface geophysical surveys. Geophysical logs help understand the hydrogeology of the area clearly as the strata chart prepared from the mixed up samples recovered at the time of drilling is not reliable. While the logs are used for stratigraphic correlation from well to well, these may be used for detection of bed boundaries, porous and permeable zones, saline water bearing zones, fractured zones and groundwater flow pattern, having a strong bearing in groundwater development and management of large scale water supply schemes.

Electric resistivity and electromagnetic methods presented in the earlier sections help in the selection of drilling points recommended for test borehole in both hard and soft rock areas. The drilling points are recommended after the geoelectric section and the subsequence lithological sections are obtained on necessary correlation of data. As soon as the drilling of the borehole starts, well logging is carried out for in situ evaluation of the aquifer's characteristics through measured physical properties.

3.4.2 Logging in groundwater development

The subsurface geophysical methods (logging techniques) available for oil, water and mineral exploration are numerous (Nath et al., 2000). Of these, the following logs play an important role in detailing water wells and related groundwater development.

- Self potential (S.P) logging,
- · Conventional resistivity logging (normal and lateral),
- · Natural gamma and radioactive traces,
- Caliper logging (as a substitute for Caliper log, drilling time log is used for fractured zones) and
- Temperature logging (typical geothermal gradient of 1.1.3 °F per 100 feet is taken as a suitable for temperature log).

Other logs like neutron, sonic and gamma-gamma ray (density) logs known as porosity tools may be used. Table (3.1) lists the utility of geophysical logs used for groundwater exploration.

Surface electrical resistivity can be carried out to locate the drilling site for groundwater pumping. Once the borehole is drilled and geophysically logged, the formation water resistivity value can be used for noting the chemical quality of groundwater. The thickness of porous and permeable zones and their lateral extent obtained from geophysical surveys help in fixing the spacing and yield of wells, phasing the annual recharge and discharge of the aquifer causing no overdraft and minimizing mutual interferences among the

TYPE OF LOG	UTILITY											
	WATER QUALITY	PERMEABILITY	POROSITY	WATER TABLE	LITHOLOGY	FORMATION CONTACTS	CORRELATION	BEDDING				
CALIPER		?					?					
GAMMA-RAY					?	?	?					
SPONTANEOUS POTENTIAL	?	?					- 21					
DUAL INDUCTION	?	?		?		?	?	?				
MICRO-RESISTIVITY	?	?						?				
NEUTRON	?		?	?	?	?	1.1					
DENSITY	?	?	?		?	?						
SONIC		?	?	?	?	?						
PHOTO-ELECTRIC					?	?						
COMPUTER-PROCESSED	?		?	?	?	?	?	?				

Table (3.1). Utility of geophysical logs for exploration of groundwater

pumped wells. The well logging methods together with pump test play a dominant role in the development, planning and management of groundwater resources.

3.4.3 Logging in water wells

The methods listed in section (3.4.2) and implemented for water wells are elaborated in the following section.

3.4.3.1 S.P logging

S.P. is the self potential or spontaneous potential of electrochemical origin controlled by the concentration difference of the electrolytes in boreholes (drilling mud) and formations (formation water) within borehole drilled with fresh water mud. The S.P. (mV) across a porous and permeable bed is given by the expression:

S.P. (mV) = -K log R_{mf}/R_{w} (3.14)

K is a constant, dependent on absolute temperature (value equal to 80 at 24 °C, for example), R_w is the resistivity of formation water and R_{mf} is the resistivity of the mud filtrate ($R_{mf} = 0.8 R_m$) calculated from the resistivity of mud (R_m) at the corresponding temperature.

S.P. (always negative) log plotted to the record (Fig. 3.8) has three major applications: (i) definition of bed boundaries, (ii) correct location of porous and zones and (iii) determination of formation water resistivity (R_w). The total dissolved salt (TDS) may be calculated for the formation water in parts per million (ppm) from the empirical relation.

$$TDS = 0.64 * EC \text{ in micromhos/cm}$$
(3.15)

Where EC = electrical conductivity of formation water given by,

 $EC = 10000/R_w$ (R_w in Ω-m) (3.16)

Once TDS is known, chlorinity of the water may be evaluated using the empirical relation.

Chlorinity (in ppm) = 0.6 (TDS - 400) (3.17)

When salinity of formation water is less than that of mud, positive S.P. anomaly is recorded. This is termed as S.P reversal (Fig. 3.8) and is an important diagnosis for fresh water aquifers, normally encountered in the coastal areas. When S.P. is used in combination with resistivity logs the following situation may occur.

 No S.P and a high resistivity means: (a) NaCl concentration in the formation water and the borehole mud are the same, and (b) a hard non-porous bed which shows increase in resistivity but no S.P. to be resolved through sonic log.

ii. A strong negative S.P. but no distinct resistivity anomaly means a saline water aquifer.

3.4.3.2 Point resistance logging

This is the simplest and cheapest approach where a constant and regulated amount of current is fed through two spherical lead electrodes, one at the surface mud pit and the other in the borehole. Normally this is recorded simultaneously with S.P. log and plotted to the right side of the record. The measured resistance becomes proportional to the resistivity of the material close to the electrode. This is used for detection of resistive porous and permeable fresh water saturated zones against low resistivity adjacent shale and clay bed estimation of their thicknesses. The saturated zones interpreted from S.P. log are confirmed through point resistance log.

3.4.3.3 Resistivity logging (normal and lateral)

Beside point resistance, normal and lateral logs are used both for qualitative and quantitative interpretation in water wells. The apparent resistivities obtained from these logs give the true resistivity (R_t) of the formation. The $R = R_0$ (read from the log) is the resistivity of the bed completely saturated with formation water. Knowing R_0 from resistivity log and the value of R_w from S.P. log, resistivity formation factor (F) and porosity (ϕ) can be calculated from the relations:

$$F = R_0/R_w \tag{3.18}$$

$$\mathbf{F} = (1/\phi^2)$$

Where F is a measure of the tortuosity of the path for groundwater flow. Using Archie's relation $F = (a/\phi^m)$ where a = 1 and cementation factor m = 2 the porosity (ϕ) of the formation is calculated using equation (3.19).

3.4.3.4 Natural gamma ray logging

This is the record of natural gamma ray intensity originating mainly from radioisotope Potassium-40 (K^{40}) present only in clay or shale. The shale or clay bed shows higher gamma ray counts compared to sand.

Gamma ray log is suitable for S.P. log, which becomes practically non-existent in case of holes drilled with saline mud. Thus, when S.P. log fails to demarcate bed boundaries of clay or shale from adjacent sand, gamma ray log is the only alternative. In hydrogeology, the volume proportion of shale in shaly sand is generally obtained from gamma ray intensity amplitude.

In tracer technique, weak radioactive sources like Bromine-82 (half life = 36 hours) and Iodine-131 (half life = 8 days) are used as the tracers for determination of the direction of

(3.19)

the movement of the groundwater within borehole, through single hole and multiple hole measurements. Other logging tools like neutron, sonic and density, if available, may be used for determination of porosity of the aquifer.

3.4.3.5 Neutron log

Neutron log records the response due to neutron-capture gamma rays which depend on the hydrogen content of the formation. Hydrogen content is a measure of the porosity for nonshale sand. This method of logging is used to calculate the porosity.

3.4.3.6 Sonic log

Sonic log records the time required for a sound wave to travel through unit length of formation. The following expression is used for calculation of porosity for uniform intergranular porosity

$$\varphi = \frac{\Delta t_{\log} - \Delta t_{matrix}}{\Delta t_{liquid} - \Delta t_{matrix}} =$$
(3.20)

Where Δt 's are the travel times (in microsecond) for unit length of formation (recorded from the log) matrix and the liquid filling the pores.

3.4.3.7 Gamma-gamma ray or density log

Gamma-gamma ray or density log measures the intensity of scattered gamma-rays which is dependent on the density of the formation. Both neutron and sonic logs are affected by shale content of the formation and the porosity values are altered considerably Density log, which is independent of chemical behavior and is not affected by shale contamination and is given by the following equation

$$\varphi = \frac{d_{s} - d_{b}}{d_{s} - d_{f}} \times 100(precent)$$
(3.21)

Where, d_g is the grain density (gm/c^3) is known from the constituents of the formation (2.65 for sandstone, 2.70 for limestone and 2.85 for dolomite, for example); d_b is the bulk density is obtained from density log and d_f indicates the average fluid density.

As soon as the experimental borehole is drilled, logging of the borehole is carried out. This helps to define the total thickness of the aquifers and to determine strainers positions in wells.

Fig. (3.8) A typical S.P. record (modified after Nath et al., 2000).

HYDROGEOLOGICAL ASPECTS

CHAPTER FOUR

HYDROGEOLOGICAL ASPECTS

4.1 General Outline

The study area is located in the southeast of Al Ain city and comprises Al Jaww Plain which is bounded by Oman Mountains range from the east and Jabel Hafit from the west (Fig. 1.6).

All of the major wadis crossing Al Jaww Plain originate from the Oman Mountains range (Fig. 4.1a&b) which forms the catchment and feeding area of the water resources in the investigated area. These catchments areas are made up of barren high mountains and hills rising up to elevations of 1500 m and is relatively impervious except for fault zones. The narrow valley is filled with alluvium and the intra mountain flat areas are covered with extensive gravel deposits.

Al Jaww Plain is a large spread of an area made up of gravel and sand outwashes from the Oman Mountains and deposited in the main wadies including Al Ain, Shik and Hamad which traverse the plain (Fig. 2.4).

The gravel progressively diminishes in size away from the hills and is replaced by thicker deposits of fine sands and silts. The vegetation is sparse comprising low trees (Fig. 4.1c).

All the rocks of Al Jaww Plain in Al Ain area are sedimentary including massive, fossiliferous Tertiary limestone of Lower Eocene, limestone with intercalations of Pelagic blue grey marls, gypsum and gypsiferous marls of Miocene age overlain by marls and clays with conglomerates of the Fars Formation. The latter forms the base of the Quaternary to recent deposits which include the aquiferous zones of the study area.

The main structural elements of the region is the two anticlines formed by Jabal Hafit and Jabal Huwayiah outcrops (Fig. 2.4). The younger rocks in Al Jaww Plain and in other basins complementary to the anticlines are deposited in sequence around these two main structures.

Jabal Hafit structure plunges northward from the Al Ain area while the Jabal Huwayiah plunges southward beneath the Al Jaww Plain. These structures have influenced the subsurface geology of the plain, especially through the synclinal area which has been formed between them. The Fars Formation which forms the base of the Quaternary aquifers

Fig .(4.1) Photos of Al Jaww Plain.

deposits is thickest in the axial region of the syncline while the subsurface folding of the Tertiary rocks has controlled the thickness of this formation.

4.2 Climate

The meteorological data, given in Table (4.1) are compiled from the data obtained from the Department of Civil Aviation (Abu Dhabi International Airport) for Al Ain International Airport meteorological station. Generally, the study area is characterized by dry arid conditions. The analysis of the climate data of Al Ain area is given below.

4.2.1 Temperature

The mean maximum temperature is 46.7 °C and was in June 1998, while the mean minimum temperature is 10.8 °C and was recorded in January 2001 (Fig. 4.2 a through c) and Table (4.1). Fig. (4.2b) indicates that the monthly mean maximum temperature is 38.1°C which was recorded in August 1998. The monthly mean minimum is 17.2 °C and was recorded in January 2001. The highest maximum temperature is recorded between June and September. The temperature variation from one year to another is relatively small.

4.2.2 Rainfall

Al Ain lies in an arid desert belt which is characterized by low rainfall (less than 150 mm/y). The main rain falls between November and March but the maximum is during January and February. Fig. (4.3a) shows the histogram of rainfall for the period from 1994 to 2002.

The wettest year was 1996, where the total annual rainfall reached 162.5 mm. While the driest year was 2001 as no rainfall was traced. Years 1995 and 1997 are regarded rainy years as the rainfall reached to 119.8 and 134.9 mm, respectively. Fig. (4.3b) shows group of total monthly rainfall at Al Ain for the period from 1994 to 2002. It could be concluded that the main rain falls between January and March. In summer months the rain is rare and if exists it would be in the order of a few millimeters. However, in July of 1995 the rainfall reached about 48.8 mm (Fig. 4.3b).

4.2.3 Humidity

Although, Al Ain area is located in a non coastal area, the humidity is relatively high. The mean maximum humidity value recorded in Al Ain International Airport in the period 1994-2002 is 92% and was recorded in January 1998. The minimum humidity value is 9% and was recorded in June 2000 (Fig. 4.4 a through c). However, there are seasonal differences

Table (4.1) Summary of meteorological data at Al Ain International Airport from 1994 to 2002.

A) MONTH	ILY TOTAL	RAINFAL	L (mms) Al	TAL AIN (1	994-2002).								
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Total
1994		100.00		0	0	2		0	7,8	0	0	0	13.80
1995	77.5	0.4.8	40.8	Tables	0.5	0	48.8	11	9		0	12年	119.80
1007	63.6	0.0	64.0	- 1908	3	0.0	Trace	Trans	-0		0.6	13	162.50
1008	28.2	1914	7.8	5.5		0.4	Trace	7	Trace		4.4	0.1	134,90
1909	Traca	Trate	16.8	6	3.6	0	0	18	Trace	6		0	12.30
2000	Trace	0	Trace	6	0	0	57.5	Trace	0	3.4	Trace	305	24.30
2001	Trace	0	Trace	0	0		Trace '	0	Trace	Trace	ö	1100	Traca
2007			24.9	tó s	18	ġ.	0	8.0	Trece	0	1.5	0.2	39.80
ELMAXIMI	IM RAINE	ALL IN 24	HOURS ID	NE DAY)		AIN /190	4.20021						
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Maximum
1994												AC IN SY	macriticitt
1995													
1998	17.7	0.6	24.1	Trace	9	9.6	2.4	并条	0	D	0.6	1.2	24:10
1997	46.2		30.4	6.8	4	Q	Trace	Trace	0	3.4	東京	.87	48.20
1998	5.2	18.3	7	- 53		0.4	TRACE	6.9	Trace	0.	-	0	16.33
1999	Trace	Trace	10.0	0	2.4	0		12	Trace	0	0	0	16.80
2000	Trace		Trace		1	191	and a	TACE		2.4	Trace	10.E	17.00
2007		Trans	10.7	6.8			6	0.4	Trace	() (in the second	24	0.7	1 Factor
												- Y/2	10.70
C) MEAN (DAILY DR	Y BULE TE	MPERATU	RE (DEG.	C) AT AL	AIN (1994-2	002).						
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Average
1994		_		28.7	327	35.2	34.9	36.3	1.65	29.2	25.3	19.7	30.61
1996	18-5	110.0	21	26.9	32.1	34.7	33.1	36.5	33.4	30.2	24.2	20.2	27.55
1996	18.5	20 T	23.4	26.5	34.1	35.9	38.1	36.3	23.4	28.7	23.4	10.3	28.31
1997	17.5	19.9	21.5	257	32	35.7	35.6	35.9	34.7	30.3	24	19.7	27.71
1995	17.8	20.4	24.7	29.2	34.1	37.9	37 8	37.4	35 2	21	253	22.B	29.45
1999	19-1	22.0	23.1	29.9	23.2	37.2	37.1	38.1	34.3	30.3	25.4	20.6	29.21
2000	19.3	192	22.0	21.2	24.4	20,2	37.0	37.2	33.4	22.1	24.0	20.1	28.68
2001	40	10.0	54.8	28.5	34.6	35.6	37.4	34.9	M 3	312	24.3	20.7	20.70
4004	1.0	19.0		24.5						201	124.0	49.1	40.057
D) MEAN I	DAILY MA	XIMUM DR	Y BULB TH	EMERATUR	RE (DEG. C) AT AL AI	N (1994-201	02).	224	0.07			
YEAR	JAN	FEB	MAN	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Average
1994	(10. A)	-	-	14	41.4	44.7	47.0	44.3	41.0	20 0	34.7	10.0	35.55
1000	24	77.7	20 A	32.1	47.2	457	46.3	44.7	41.6	76.7	30.6	241.4	36.84
1007	23.9	27.1	27.7	33.3	40.8	44.2	44.1	44.6	43.2	37.7	30.2	25.0	35.23
1996	23.5	26.0	32.3	377	42.6	46.7	45.9	45	42.7	38.5	33.1	30.3	37.11
1900	76	29.7	30.7	38.9	43.1	46.4	45.7	46	42.2	38.5	32.9	28.1	37.31
2000	26.3	22.4	31.3	40.2	43.1	44 £	46	45	411	37.6	31	26.9	36.71
2001	24.3	27.3	31.8	37.5	43.4	22.2	44.5	44.E	-47	38.1	21.6	-30	36.64
2002	25.5	27.1	32.1	36.3	43.2	44.7	45.6	45.1	42.2	38.5	31.2	27.1	36.64
E) MEAN D	DAILY MIN	IMUM DR	Y BULB TE	MERATUR	E (DEG. C	AT AL AI	N (1994-200	02).					
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Average
1994				25.2	24.8	26.9	28.5	30-T	26.7	-23	19.6	33.4	23.73
1995	12.2	13.8	15.7	19.8	23.8	25.7	26.5	30.2	26.2	23.3	17.E	16	20.96
1996	12.91	14.9	18.2	20.6	76	28	30 8	22 €	26.4	21.7	17.2	12.1	21.72
1997	11.8	13.9	16.1	10.1	23.5	27.6	26.7	78.5	27	24	7在老	14 A	21.14
1995	12.9	74.7	18.1	27.2	25.9	29.9	30.9	30.7	78.3	24,7	18.5	16.1	22.66
1999	12.9	7E-5	16	21.4	24.3	28.4	29.7	31.4	27.5	23.1	79.2	14.1	22.05
2000	13.3	12.3	15.2	22	23.8	25 3	30.E	30.6	27	23.2	19.1	14	21.60
2001	10.8	12.2	16.3	50.5	25.6	27.3	30.3	30	26.8	23.4	15.1	37.4	21.58
2002	13.2	132	18.1	20€	-26	27 E	26.8	29.2	22.1-	23.5	18.2	14.8	21.21
F) MEAN	MAXIMUN	RELATIV	E HUMIDI	TY % AT AL	AIN (1994	-2002).							
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUE	AUG	SEP	OCT	NOV	DEC	Average
1994			-	48	50	56		60	65	63	74	79	
1995	50	-81	87	57	49	63	01	57	66	53	78	66	The second
1996	66	84	53	67	44	68	49	58	76	31	11	82	78.17
1997	90	83	85	75	04	6	10	18	20	14	04	88	80.65
1998	22	26	11	20	- 00	50	37	- 54	0,2	07	00	d D	C29.33
1999	20	24	70	4.0	82	40	40	40	60	th	21	6.5	P.6.02
2004	A.F	83	74	5.2	45	57	63	44	63	71	76	78	65.33
2002	76	75	67	65	47	66	52	E1	66	68	75	75	65 08
						-							
G) MEAN	DAILY TO	TAL EVAP	ORATION	AT AL AIN	1994-200	(2).		200	225	0.01	NUMBER OF	755.0	No. of Concession
1003	JAN4	100	MAR	14 G	10	10.7	30L 92.8	16.9	15.4	12.6	8.7	DEU P.E.	14/24
1005	67	7.6	8.6	14.5	10.0	TOR	16.4	18.6	16.2	13.7	-	6.3	12.70
took	8.7	78	10.5	157	75.1	18.9	21.6	18.5	16.5	13.1	8.9	63	13.61
1997	3.5	8.8	8.5	12.9	22.4	21.3	18	18.1	17.2	13.6	TE	5.9	13.15
1995	6.2	TB.	52.8	37	20.4	21	25.9	20.4	12.7	14:	佳才)	7.1	14:51
1998	5.4	8.5	11.B	17.1	19.4	22	19.7	21.1	18.9	23	8.9	6.9	14.33
2000	6.7	8.1	32	17	19.1	19.6	20.4	19.3	15	12.9	3	6.5	13.80
2001	6.3	8	11.4	15.6	19.3	19.1	19.4	20 1	16.5	12	9.1	7	13.75
2002	7.1	9	21.7	158	19.9	20.4	20.3	18.1	37.4	13.6	67	2.1	14.07

Fig. (4.2b) Mean temperatures at Al Ain (1994-2002).

Fig. (4.3a) Total yearly rainfall at Al Ain (1994-2002).

Fig. (4.3b) Total monthly rainfall at AL Ain (1994-2002).

in the winter months which are associated with higher humidity's value while in the summer months small humidity values are noticeable. The monthly mean maximum humidity is 74% and was recorded in January 1998. The monthly mean minimum humidity is 25% recorded and was in July 2000 (Fig. 4.4b).

4.2.4 Evaporation

Evaporation intensity is generally affected by air temperature, relative humidity and wind speed. Fig. (4.5) shows the variation of the total mean evaporation during the period 1994-2002. The evaporation is irregular in duration. A clear fluctuation in evaporation intensity is recognized. The maximum values are recorded in summer months, while the minimum values are recorded in December and January. The maximum mean evaporation according to Fig. (4.5) reached to 22 mm and it was recorded in June 1994. The minimum mean evaporation is 5.1 mm and was recorded in January 1996.

4.2.5 Aridity

Using the data obtained from meteorological station of Al Ain International Airport and applying the Emberger formula (1955), the mean degree of aridity (Q) is determined as follow:

Q = [100 x R / (M+m) (M-m)]

Where: R is mean total annual rainfall (mm/year).

M is mean maximum temperature of the hottest month

m is mean minimum temperature of the coldest month.

The aridity scale used by Emberger is shown in Table (4.2).

Table (4.2) Prevailing climatic conditions corresponding to the different values of dryness.

Value of Q	Corresponding annual rainfall intensities (mm/year)	Climatic conditions		
0-20	0-200	Desert conditions		
20-45	200-400	Arid conditions		
45-65	400-800	Semi-arid conditions		

Applying the above formula, it is concluded that the study area belongs to the desert conditions domain. (4.1)

4.3 Groundwater Bearing Formation

Rizk et al., (1997) reported that the main existing aquifers in the UAE are, fractured ophiolite rocks in the east, gravel aquifers flanking the eastern mountain ranges on the east and west and sand dune aquifers in the south and west (Fig. 4.6). A discussion on these aquifers with more emphasis on the aquifers existing on the study area (Quaternary aquifer and Jabal Hafit limestone aquifer) is provided hereafter. For more details about the different types of aquifers in UAE, reference is made to Garamoon, 1996, Bakhit, 1998, and Rizk 1999 and Alsharhan et al., 2001.

4.3.1 Quaternary aquifer

The most important aquifer in the study area is the Quaternary aquifer. Quaternary-age deposits consist of near-surface and surficial sediments of mixed alluvial, aeolian and locally, sabkha (Evaporates) origins. Quaternary alluvium represents the principle water bearing lithostratigraphic unit relative to other units.

Quaternary alluvium is composed of a sequence of about 60 m of sand and gravel with interbeds of silt and clay. Most of the coarse clastic units contain a clay-rich matrix that is usually calcareous. The bulk of the alluvium has been deposited after transport within wadi systems draining westward from ophiolitic source rocks in the Oman Mountains.

Fig. (4.7) shows a generalized structure contour map of the basal contact of the alluvium in Al jaww Plain (Menges and Woodword, 1993). This map depicts a generally low-relief surface that contains a significant westerly directed trough on the eastern margin of the plain near Jabal Zarub.

This trough appears to represent an incised paleovalley where Wadi Shik exists onto the piedmont through a bedrock gap in the Oman Mountain range front. Thus, the sub-Quaternary erosional surface may have developed by lateral stream planation between loci of marked of downcutting approximately coincident with modern drainages.

The base of the Quaternary alluvium is usually an abrupt unconformity at the juxtaposition of the contrasting lithologies of the underlying Neogene section which contains clastic sections with generally clay-rich textures at thin dispersed sand or gravel interbeds (Menges et al., 1993).

Quaternary alluvium deposited across an erosional unconformity cut across a variety of Tertiary to Cretaceous rocks underlying the piedmont along the western front of the Oman

Fig. (4.5) Mean total evaporation at Al Ain (1994-2002).

Fig. (4.6) The main water bearing units (aquifers) in the United Arab Emirates (after Rizk et al., 1997).

Mountains. This erosional surface discordantly truncates older rocks including folded and locally faulted sedimentary rocks of Eocene to Miocene age; see the geological sections (Fig. 4.11a through d).

Fig. (4.8) shows the thickness of Quaternary alluvium in Al Jaww Plain. The thickness of Quaternary alluvium in Al Jaww varies from 12 to 50 m. The thicker accumulation of Quaternary alluvium occurs at the bedrock gabs along the eastern edges of the piedmont. The alluvium irregularly thins to the west across the piedmont.

Al Jaww Plain has several westward decreasing gradually wedges of sediment with radial fan-like geometry pieces of the sediment fans coincide with palevalleys at the wadi gaps, suggesting a persistence in the general location of drainage and sediment dispersal from the mountains during the Quaternary (Bown et al., 1991).

4.3.2 Jabal Hafit limestone aquifer

Jabal Hafit is composed of 1500 m thick limestone and marl interbeds with gypsum and dolomite and evaporate formations of Lower Eocene to Miocene age. Limestone of the Middle Eocene of Dammam Formation constitutes an aquifer in Jabal Hafit. The aquifer is characterized by extensive dolomitization and is affected by numerous faults and fractures. Porosity is virtually nill except for infrequent unfilled fractures, vugs and heterogeneous secondary porosity (Whittle and Alsharhan, 1994).

Fig. (4.9) shows a conceptual model of the three water bearing zones in the Jabal Hafit area. These are: a fresh water zone replenished by meteoric water, a mixing zone where fresh water mixes with brackish water, and a deep saline water zone (White, 1977). The model supports a mixture of two different sources fresh water from rain falling on the Jabal and saline water moving upward from 2000 m deep by gas or temperature drive. Brackish water is formed due to the mixing of the two types of water. Then, the aquifer water cools and become more dilute. For more information about the geometry and distribution of geologic units that comprise the main aquifer of the study area and the structural deformation affecting the hydrology of these units, some geologic cross-sections are developed. These geological sections guided with the stratigraphic sequence in Al Ain area (Table 4.3) are discussed below.

The subsurface of AI Jaww Plain based on seismic interpretation has been discussed in chapter two. The Pre-Quaternary bedrock underlying Al Jaww Plain is deformed by a series

Fig. (4.7) Base of Quaternary alluvium in Al Jaww Plain (modified after USGS, 1993).

Fig. (4.8)Thickness of Quaternary alluvium in Al Jaww Plain (modified after USGS, 1993).

Fig. (4.9) Conceptual model of recharge and discharge of the Tertiary limestone aquifer at Jabal Hafit (modified from Khalifa, 1997).

17

Table (4.3) Geological formations and their water bearing properties in Al Ain area, (after Gibb et al., 1970).

A G E OUATERNARY RECENT		FORMATION	UNIT SYMBOL INTERIM REPORT	UNIT SYMBOL THIS REPORT	LITHOLOGY	SURFACE EXTENT, THICKNESS	GROUNDWATER POTENTIAL		
				Q	Q Q	Calcium carbonate clemented pebble gravel and conglomerates, with clasts of ultrab-basic rocks, limestone and cherts includes Sabkhas& aeolian sand Increasing content of calcium carbonates, all and clay to the south and west of Al Am. Degree of alteration of clasts increasing lowards Bu Samarah	Extensive at surface Gravels of mountain front derived from Hawasina and Semail rock weathering Gravels up to 43m (TW1A) in Al Jaw plain Lateral equivalents of gravel to west of Al Ain are highly cemented, argillacous, calcareous and up to 600m thick.	Main exploted aquifar in Al Ain district; unconfined, permeability decreasing away from mountain front and recharge channels water fresh to sightly brackish but salino west of Jabal Hafit yields are high in north Al Jaww Plain recharge channel	
_	GENE		Lower Fars	Tđ	<u>1c2</u>	Upper part or post-gypsum Fars pink-brown mottled marts and clays with conglomerates	Widespread in Al Jaww Plain poorly exposed on the surface may exceed 150m thickness	Acts as aquiclude to Unit Q aquifer	
TERTIARY	PALEO	MIQUENE			Ici	Evaporites sequence: Gypsum anhydrite-halite with blue-grey marts overtying hard massive limestone	Base marked by oolitic timestone (possibly the base of the Miocene marker at 377m in BH2 Encountered in deep Fars basins in ALlaww Plain	Gypsum layers contain brackish to saline water, confined except near zones of leakage from unit Q aquifers and outcrop, permeability very low	
				Te	Ib2	Calcareous clays and thin limestone	Exposed on Banks of Jabal Hafit with	None	
	NEOGEN	OUGOCENE	2		<u>Tb1</u>	Intercalated fossiliferous limestone and blue grey marts overlying hard massive limestone. Often rich in Nummulites	in shucture at depth. Encountered in shallow sub-surface in north Al- Jaww Plan. Underlies nolite marker in BH2. Probably orderlies Fars Formation in south Al-Jaww Plan.	Fossiterous limestone layers are hydraulically connected with unit Q aquifers in north. At Jaww Plain but permeability is very low Cavernous limestone connected with unit Q aquifer in Mutarah Muweygl area.	
	_	Lower Eccene? Modello	u/ c7 Damman	Tb	Ia2	Intercalated limestone and pelagic bluegrey maris, part gypsilerous with underlying brown fossiliferous crystalline timestone, with shale Cherty at base	Extensive in subsurface At least 210m thick in BH 15. Occurs below 600m in south At Jaww Plain	Fractured and very permeable limestone part of unit Q aquifer at BH14 but between Mutarad and AI Airi limestones provide poorly permeable restricted aquitards; water fresh to brackish in leakage zones but slightly saline between ridges Jabal Hafit	
MESOZOIC		Eocene? Upper Eocene		Та	Iat	Massive, fossiliferous limestone and thick gypsiferous marts intervals, marty limestone with chert nodules towards bases	Probably occurs below 210m in BH15, in core of Jabal Hafit structure. Base at 125m in BH 19	Not known, but productive fresh water aquifers unlikely	
		Campenian/	Campenian/ Upper		Кс	Ke	Maris with thin grey argillaceous dolomitic limestones. Scarce pelagic fossils: May contain blue-grey aroon clays and siltsone with pyrite and mica. Limestone firm, calcilised, part entobreochiated Some nodular or vein gypsum.	Cut at 125m in BH19 Near surface in BH30. Possible fracture porosity Probably more than 500m thick	limestone provides poorly permeable fresh water aquiters north of Jabal Auha.
		Cretaceous	Semail ultra basic complex	Kb	Kb	Igneous, ultrabasic rocks, gabbros spilltes and serpentinites	Very thick, weathering products contribute to main aquifer mat-anal to the west of outcrop not investigated.	Probably none	
4		-	Hawasina Group	Ка	Kat	Contoured Imestone, chert and radiolarite sequence	Not penetrated by drilling	No likely potential	

of southerly dipping plunging folds comprising a central anticline flanked by syncline (Fig. 2.10).

An easterly dipping reverse forms the eastern structural boundary between the plain and the outer mountains of the Oman Mountains. The most pronounced fold is a western syncline with an axis located about 6 km east of Jabal Hafit. The axial traces of folds are orientated approximately sub parallel to the trend of Jabal Hafit.

4.3.3 Recharge of the Quaternary aquifer

The main source for the recharge to Quaternary aquifer at Al Jaww Plain is the rainfall on the Oman Mountains. The system is recharged through three sources: groundwater underflow through gaps (drainage basin exit points) infiltration of flood flows carried onto the piedmont plains overlying the aquifer and groundwater flow through fractured bedrock along the entire mountain front. The fractured bedrock east of the piedmont plain may also recharge the shallow aquifers (US Geological Survey, 1993).

The Quaternary aquifer may also be recharged by the infiltration of precipitation in the interdune areas and gravel plain and from Jabal Hafit where the precipitation percolates rapidly through the permeable limestone rocks of Jabal Hafit.

There are other sources that recharge Al Ain aquifer such as irrigation return flow, upward vertical recharge from deeper rocks (fault zone) and infiltration of water lost from heavy water transmission lines.

4.4 Geological Cross Sections

For the Quaternary aquifer in the study area, some geological cross sections are considered (Figs. 4.11 a through f). The locations of the boreholes are given in Fig. (4.10). Investigations of these cross sections guided with the two maps presented in Figs. (4.7) and (4.8), revealed the following with consideration of the stratigraphic sequence from younger to older.

 Near NW-SE strip of the middle part of Al Jaww Plain, the Quaternary aquifer unit attains its maximum thickness (boreholes 11 and 12, cross section C-C' Fig. 4.11c). The location of these sites of high Quaternary thickness near to Jabal Zaroub appear to represent the incised palleovalley where Wadi Shik exits onto the piedmont through bedrock gab in the Oman Mountains range front. Towards the limestone ridges, the aquifer thickness diminishes gradually to about 10 m or less

Fig. (4.10) Base map for the boreholes used to develop geological and schematic cross-sections.

Fig. (4.11a) Schematic section along profile A-A', Al Jaww Plain (modified after GeoConsult and Bin Ham Well Drilling Establishment, 1985).

Fig. (4.11 b) Geological cross section along profile B-B', Al Jaww Plain (modified after Saqr, 1980).

Fig. (4.11c) Geological cross-section C-C', Al Jaww Plain (modified after Saqr, 1980).

Fig.(4.11d) Schematic section along profile D-D'Al Jaww Plain (modified after GeoConsult and Bin Ham Well Drilling Establishment (1985).

Fig.(4.11e&f) Schematic section along profiles E-E'& F-F', Al Jaww Plain (modified after Saqr, 1980).

near Jabal Malaqet, Jabal Hafit and disappears at the foots of both Jabals Hafit and Malaqat, as shown in cross sections BB' (Fig. 4.11b) east to the borehole BH6 and to the east of BH12, section C-C'(Fig. 4.11c). The thickness of the Quaternary unit at Al Jaww Plain is controlled by many factors which include the distance from the alluvial fans as it decreases by the effect of wind and the ephemeral wadies while the thickness of the Quaternary unit increases when the subsurface is syncline or a basin shape like. Moreover, the erosion of the Upper Eocene has played important rule in such effective structural elements which in turn control the thickness of the Quaternary unit. It increases when the subsurface is syncline or a basis shape like. Along section BB' (Fig. 4.11b) it is noted that the Quaternary unit has its minimum thickness in the middle part of Al Jaww Plain (boreholes 9 and 10). Eocene-Oligo-Miocene are relatively high.

- 2) The Quaternary aquifer to the west of Jabal Hafit north of Al Ain city (the oasis area) attains a considerable thickness which varies widely from a few meters to 100 meters or even more. Reference is made to the section beneath BH26 along the cross section D-D' (Fig. 4.11d).
- 3) In the Plain lying to the west of Jabal Hafit, the thickness of the Quaternary deposits has wide range, it gets thicker towards the west; see for example B-B' (Fig. 4.11b) beneath BH25 and section C-C' (Fig. 4.11c) beneath Tw22. In these areas the old rocks have low relief which results from either erosion or structural effects.
 - From the schematic cross section AA' (Fig. 4.11a) it is clear that from Jabal Hafit to westward, the Tertiary rocks are dipping to the west and are covered by Quaternary sediments in the western plain area. In this area, the Fars Formation is represented by evaporates as the data of BH23 and BH28 indicate. The Fars Formation is encountered at depths of less than 100 m. Ain Bu Sukhana is emerged from Fars Formation (Evaporates) where the Fars Formation overlying the impermeable marl sediments which belong to Oligocene.
 - 4) Along these sections, the Upper Fars Unit (Td) acts as an aquiclude for most of the Quaternary unit. On the other hand, the Lower Fars Oligo-Miocene (Tc) consists of the evaporate series (gypsum), anhydrite, clay, marl and Imestone which act as an aquifer of poor potential. Such an aquifer unit is encountered beneath the area lying to the east and west of Jabal Hafit, as a part of the Al Jaww Plain and the western plain, respectively. The average thickness of this unit is 50 m, although

an exceptional thickness of about 200 m has been recorded at the southern border of the Al Jaww Plain. In some locations this unit does not exist due to the outcropping of the older rocks at these sites. Geoconsult and Bin Ham Well Drilling Est., (1985) reported that the Lower Fars exists with a considerable thickness at the southern part of Al Jaww Plain. At that site the Lower Fars is overlain by a gravel layer of abnormal thickness (200 m), which is attributed to the accumulated deposits carried by Wadi Muraykhat. Such condition has led to the occurrence of a relatively good aquifer (the gravel layer) above a poor aquifer (the Lower Fars). In Al Jaww Plain, the altitude of the top of a thick sequence of less permeable rocks (that comprise the basal confining system) declines from about 360 m at Zaroub gab to about 150 m near Jabal Hafit. The altitude of the top declines to about 60 m where Quaternary aquifer contains a thicker zone of fresh water west of the northern end of Jabal Hafit. The basal confining system is dominated by slightly permeable mudstone, claystone, evaporate, and limestone units of the Fars Formations in the Al Jaww Plain. Geoconsult and Bin Ham Well Drilling Est., (1985) reported that the Caliper Log revealed that the Lower Fars unit was confirmed by drilling data.

5) The Eocene Limestone Unit (Ta, Tb) consists of fossiliferous limestone with gypsiferous marl in its lower part and intercalations of limestone and marl with a cherty base into upper part.

The limestone has a fractured nature and sometimes very permeable (to the North of Al Jaww Plain) and sometimes of extremely low permeability (at the Northern limit of Jabal Hafit). In borehole No.15 along section E-E' (Fig. 4.11e), the limestone has a thickness of more than 600 m while in borehole No. 25 along section B-B' (Fig. 4.11b) in the western plain, the drilling down to 600 m does not reach the top of this formation.

Figs. (4.12 a through c) show three geological cross sections crossing Al Jaww Plain. The locations of these cross-sections are presented in the inset map of Fig. (4.12a).

Fig. (4.12a) Geological cross-section showing the changes in the thickness of shallow aquifer at Al Jaww plain (modified after Saqr, 1980).

Fig. (4.12 b) Geological cross-section along north of Al Jaww Plain showing the shallow aquifers (modfied after Saqr, 1980).

Fig. (4.12c) Shallow aquifers and gypsum aquifers along Al Jaww Plain between Jabal Malaqat and Jabal Hafit (modfied after Saqr, 1980).

These sections indicate the condition of the shallow aquifer at Al Jaww Plain. In areas where the thickness of the aquifer is small, it will not be productive. These shallow aquifers generally consist of conglomerates cemented with calcareous. Except at BH4, the shallow aquifer consists of fissured limestone of Upper Eocene (Ta Unit).

4.4.1 Hydraulic characteristic and well yield of shallow aquifers at AI Jaww Plain

Hydraulic characteristics of aquifers affect the groundwater movement and distribution to local and regional groundwater systems. Groundwater gradients change in relation to where water is added to or removed from the groundwater system. Based on Petrophysical logs, Jorgensen and Petricola (1993) estimated values for geohydrologic aquifer properties such as transmissivity, aquifer thickness, hydraulic conductivity and storage coefficient (Table 4.4).

4.5 Groundwater Flow Systems

Toth (1963) suggested that most of the flow nets can be distinguished into local, intermediate and regional systems of groundwater flow and are controlled by local topography and basin shape geometry (Fig. 4.13).

The local groundwater is considered of good water quality type, such as those of Masafi and the Al Jaww Plain area. Also Khatt springs (Ras Al Khaimah) and Maddab spring (Al Fujairah) are local groundwater flow systems (Rizk et al., 1997).

Local groundwater flow system characterizes the eastern mountain where the hydraulic cycle is fast and the groundwater has a short residence time. The water of these systems has a low salinity (500-1500 mg/l) with HCO_3^- water type and magnesium ion (Mg^{2^+}) as dominant cation.

In the intermediate groundwater flow system, the groundwater is mainly brackish (1500-10000 mg/l) and has a moderate residence time. It belongs to $SO_4^{2^2}$ water type and the calcium ion (Ca²⁺) is the dominant cation. Al Ain Al Faydah (Al Ain) to the west of Al Jaww Plain seems to belong to this system.

Table (4.4) Thickness of near-surface permeable material, aquifer thickness, thickness of saturated eolian dune sand, and fresh water thickness (after US Geological Survey, 1993).

[m, meters; nd, no data; est, estimated]

Groundwater Project Well Number	roundwater Project Well Number		THICKNESS OF NEAR SURFACE PERMEABLF2 MATERIAL (m)	WATER-LEVEL1 ALTITUDE (m)	LAND-SURFACE ALTITUDE (m)	THICKNESS OF SATURATED EOLIAN DUNE SAND (m)	AOUIFER THICKNESS (m)	FRESH-WATER THICKNESS (m)	
1	2677489.5	393675.8	nd	381.5	408.20	0.0	nd	nd	
2	2677553.0	393665.5	nd	381.5	408.41	0.0	nd	nd	
3	2677490.7	393634.2	nd	381 5	407.90	0.0	nd	nd	
4	2677498.4	393649.1	nd	381.5	408.05	0.0	nd	nd	
5	2675789 0	389344.6	nd	351.7	377.34	0.0	nd	nd	
6	2667305.7	386313.8	72	322.2	342.52	0.0	51.3	51.0	
7	2664080.4	380942.0	102	300.5	322.30	0.0	80.3	0.0	
8	2665971.9	393220.5	110	358.2	397.92	0.0	88.0	29.0	
9	2669147.5	390728.0	102	347.9	369.65	0.0	80.3	39.0	
10	2658958.7	381480.3	117	302.2	317.41	0.0	102 1	40.0	
11	2662909.3	385939.8	81	319.1	337.83	0.0	62.0	62.0	
11A	2662911.2	385903.1	81	319.1	337.75	0.0	62.1	62.0	
14	2668360.8	380303.5	130	298.0	320.60	0.0	106.9	40.0	
15	2671155.0	386144 1	40	325.1	348.52	0.0	16.2	18.0	
16	2677390.0	384530.3	46	321.5	343.36	0.0	23.9	24.0	
17	2674345.8	388463.8	43	341.9	367.30	0.0	17.2	20.0	
18	2676791.5	393546.3	44	378.6	403.39	0.0	19.4	22.0	
19	2676523.7	380702.6	50	301.7	320.10	0.0	31.9	nd	
20	2664216.2	395299.9	107	371.0	389.59	0.0	88.1	nd	
21	2684295.2	375639.1	55	279.0	288.63	0.0	45.2	45.0	
22	2660340.9	367988.3	76	228.7	233.98	28.2	104.4	0.0	
66	2684691.5	369033.2	nd	258.3	269.06	0.0	nd	est32	
67	2685922.0	365786.1	0	246.2	268.16	78.0	68.1	nd	
68	2664639.0	395194.4	nd	369.5	388.43	nd	nd	nd	
80	2670276.1	380371.1	nd	298.8	323.50	nd	od	nd	

In the third type (regional groundwater flow system), the groundwater is characterized by the high salinity content of greater than 10000 mg/l. The coastal sabkhas represent the main discharge of this groundwater system. It has a long residence time and it is of CI water type. The sodium ion (Na⁺) is the dominant cation in this system (Rizk et al., 1997).

To assess water level changes in Al Jaww Plain, the available data about water levels from both NDC and WED were used in this analysis. Historical data for water level measurements of four wells at Umm Ghafa area (south east of the study area (Fig. 4.14) were considered. The water levels fluctuated in the period from 1982 to 2001. Water levels rise during rainy years and drop during the years of less precipitation. Guided with Fig. (4.3a), it could be noted that there is a rise in the water level for the period from 1995 to 1998, while there is a drop in the 1998 as the total rainfall was low (about of 17 mm). Also from this hydrograph, there is another drop in the water levels in the year 1986. The rates of pumping and evapotranspiration were assumed fixed during the period of water levels measurements.

Figs. (4.16a through d) show water levels fluctuation along four cross sections in Al Jaww Plain. The locations of this cross section are shown in Fig. (4.15). There is a slightly decrease in water levels in the period from 1995 to 2002 for all the wells included along these cross sections. This analysis indicates that the water resources in Al Jaww Plain is in balance.

Water level maps for Al Jaww Plain during the period from 1995 to 2002 are shown in Figs. (4.17a through k). The following can be deduced:

- Fluctuations in water level have been observed along with displacement in the positions of the equipotential line. This displacement is attributed to the variation of discharge rate. Fig. (4.18) shows the change in the position of equi potential line 300 for the years 1995, 1999 and 2001.
- 2) The groundwater level decreases gradually from east (about 400 m above sea level near Oman Mountain) to about 200 m (towards Jabal Hafit). The contours of equal water level are quite uniform and parallel to each other. They follow a north-south trend with slight deflections in the main recharge zones (around Jabal Hafit and the Zarub gab).
- 3) In the Al Ain area and west of Jabal Hafit the distance between the contours is somewhat increasing, perhaps due to higher permeability but most possibly due to the pumping in this area (see the water level map of 1995 Fig. 4.17a).

Fig. (4.13) Different groundwater flow system in UAE (after Rizk et al., 1997)

Fig. (4.14) A graph showing the water level fluctuations for some wells in Umm Ghafa area, Al Jaww Plain.

Fig. (4.15) Base map showing the locations of wells used for static water level oscillations along the study area, Al Jaww Plain.

(c) Cross section C-C

Fig. (4.16) SWL oscillations from 1995 to 2002 along wells of different cross sections, see (Fig. 4.15) for location of the cross-section.

93

Fig. (4.17) Static water level at AL Jaww Plain in 1995 through 2002.

- 4) A groundwater mound near Jabal Hafit was found parallel to the eastern edges of the mountain and channeled groundwater around the northern and southern ends of Jabal Hafit (Fig. 4.17a through h). Two possible explanations for the mound may be given:
 - a) Increased groundwater recharge from rainfall infiltering through the more permeable limestone units of Jabal Hafit.
 - b) The upward movements of groundwater through fractures associated with the Jabal Hafit anticline.

The constructed water level maps are in a good match with the map (Fig. 4.19), which was constructed, based on seismic uphole survey data (Woodward and Menges, 1991).

Generally, the depth to water level decreases with distance from the Oman Mountains. The depth to water from the alluvial plain surface in the eastern part of the study area is about 30 m, whereas in the western part of the study area, the depth to water is about 3 m.

Fig. (4.18) Location of equipotential line 300 in 1995, 1999 and 2001, at Al Jaww Plain.

Fig. (4.19) Water table map based on uphole seismic, 1981 (after Woodward & Menges, 1991).

Chapter V

HYDROGEOCHEMICAL ASPECTS

CHAPTER FIVE

HYDROGEOCHEMICAL ASPECTS

5.1 Background

The geochemical characteristics of groundwater give important information regarding the geologic history of the enclosing rocks, sources of groundwater recharge, and the velocity and direction of flow. The chemical composition of groundwater may significantly change due to the admixture of other water, natural biological processes in aquatic plants and animals, and as a result of direct or indirect human activities.

The hydrochemistry of groundwater in the UAE has been discussed by many investigators including, among others, US Geological Survey, (1993), Garamon (1996), Rizk et al., (1998), Rizk (1999) and Alsherhan et al., (2001).

The water resources in the study area can be grouped under two major sources; groundwater and surface water. The groundwater is mainly encountered in Quatenary aquifers. The surface water is encountered in the flajes and as an outflow from AI Ain Faydah. The determination of the water quality of these resources is based on the hydrochemical data provided by NDC and WED.

In this study, data of 202 observation and production wells (Fig. 5.1a) are used. The locations of wells and their numbers are provided in Figs. (5.1b and 5.1c). The chemical results are given in Appendix (A). The following discussions and interpretations are made based on the results included in Appendix (A).

5.2 Hydrogeochemical Characteristics

The main characteristics of the groundwater in the Quaternary aquifer including, hydrogen ion concentration (pH), electrical conductivity (E.C.), total dissolved salts (T.D.S.), and hydrochemical properties; distribution of major constituents (K^+ , Na^+ , Mg^{++} , Ca^{++} , CI, SO_4^{-+} , No_3^{-} and HCO_3^{-}) are presented hereafter.

5.2.1 Physical properties

The quality of water must suit the purpose of its intended useage. It must has suitable physical quality. Three criteria are generally used in the preliminary assessement of groundwater quality. These criteria include pH (acidity/alkalinity), total dissolved salts (T.D.S.) and specific electrical conductance (EC).

Fig. (5.1a) A base map including the locations of wells at Al Jaww Plain.

Fig. (5.1b) Wells and their numbers provided by National Drilling Company (NDC), Al Jaww Plain.

Fig. (5.1c) Location map of the wells provided by Water and Electricity Department (WED), Al Jaww Plain.

5.2.1.1 Hydrogen ion concentration (pH value)

pH is a measure of the acidity and alkalinity of the groundwater, or hydrogen ion concentration on a logarithmically calculated scale, Gymer (1973). pH has a major influence on the water geochemistry, because it affects ionic strength, organic carbon content, mobility of metallic ions and the oxidation/reduction potential. The pH affects to a great extent the growth of both plant and soil micro-organisms, degree of ionization, extent of hydrolysis and buffering action. Worsley (1929) further stated that the addition of salts to water may cause a reduction in the pH value depending on the quality and quantity of the added salts, whereas leaching of salts may cause a rapid rise in its pH value. Exchangeable cations like K⁺, Na⁺, Mg⁺⁺, Ca⁺⁺, and hydrogen, affect the water reaction properties. Sodium and potassium cations make water slightly more alkaline than calcium and magnesium. Moreover, the presence of CaCO₃ with considerable quantity rises the pH value of water and makes it alkaline as shown in the following equations:

 $H_2O + CaCO_3 \rightarrow CO_3^- + H_2O$

 $CO_3^{-} + H_2O \rightarrow HCO_3^{-} + OH^{-}$

 $CO_3^- + 2H_2O \rightarrow H_2CO_3 + 2OH^-$

In the present work, water samples can be calssified according to the pH value as:

pH value	Type of water
<6	Acidic
6-7	Slightly acidic
7-8	Slightly alkaline
8-9	Alkaline

The groundwater samples of the Quaternary aquifer have pH values ranging between 7 to 11.6 (alkaline type) with an average value of 9.3. The distribution patterns of pH of the groundwater in the Quaternary aquifer is shown in Fig. (5.2). There is no specific trend for the pH patterns. These patterns have irregular distribution but do not completely match with the water salinity, (Fig. 54). A great part of the aquifers is alkaline, particularly in eastern and western parts of the study area. The high value of pH concentration in the west and east side has resulted from the increase of CaCO₃ from Jabel Hafit and from carbonate units of Oman Mountains. The pH values are inversely proportional to the salinity content. However, relatively low pH values are observed along the rest of the area.

5.2.1.2 Electrical conductivity (E.C.)

Electric conductivity (E.C.) refers to the ability of substance to conduct electrical current. It depends on the concentration of charged ionic and species in the water. Hence, the measure of conductance is used to approximate the total concentration of ionic species present. The measurement of electrical conductance is usually in micromohs per centimetres (umhos/cm). The measurements are standardized to 25°C. For a very rough estimate of the total dissolved salt in parts per million in fresh water, the specific conductance of the water in micromhos should be multiplied by 0.6-0.7 according to the cation and anion types.

The distribution of electrical conductivity of the groundwater is shown in Fig. (5.3). The western and eastern parts have E.C. less than 4000 (μ mhos/cm). In the transition zone the E.C. ranges between 4000-8000 (μ mhos/cm). The area located near the centre is characterized by high values of E.C. ranging between 12000-16000 (μ mhos/cm). The electrical conductance of water depends on the salinity content. The similarity between salinity and electrical conductance is demonstrated in the salinity map (Fig. 5.4).

5.2.1.3 Total salinity distribution

The total salinity of natural water is a measure of the ion concentration which may be affected by dissolution and evaporation processes. In natural water which contains a variety of conic and non conic species, the values of E.C. are not simply related to T.D.S. However, some water sources may display well defined relationships. The variation in the salinity is relatively influenced by evaporation, lithologic characteristics of the aquifers, transportation process, solubility of salts by falajes, and the rate of discharge of the groundwater from the aquifer.

In the Quaternary aquifer, the total salinity ranges between 240 and 51000 ppm, with a mean value of 2550 ppm. The distribution of salinity content is shown in Fig. (5.4). The salinity increases from east to west in the direction of groundwater flow. The higher salinity content recorded for the central and western areas can be attributed to the influence of the marine sedimentary facies which are encountered at shallow depths in these areas as shown in the geological cross-sections (Fig. 4.11a through f).

According to Chebotarev classification (1955), the salinity content of the different water samples are classified into several catergories. These categories are presented in Table (5.1) and (Fig. 5.5).

Table (5.1) Classification of the water samples in the area of study, based on Chebotarev's classification (1955).

Water Class	Water Subclass	TDS	Well No						
FRESH	GOOD POTABLE	< 500	WED(6 8.9 11 12 13 14 15 16 17 18 19 21 23 24 28 32 35 37 38 39 40 41 44 46 48 49 50 51 52 53 10 1 102 103 105 204 206 207 404 406 409 411 501 502 503 504 505 506 507 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615) NDC 19 002GHAF 002MARK 002SAA 002 SHIR 003SAA 003SAA 003SHIR 004SHIR 005SAA 008SH IR 009SHIR 011SHIR 017BSAA 019SHIR 019BSAA 021BSAA 037SOH 040SHIR 064GHAF 037SOH 040SHIR 064GHAF 066SAA 075GHAF 106GHAF 107GHAF 108GHAF 109GHAF 149SAA 18 248A)4 8.02%						
	FRESH	500 - 700	WED(201,508,412) NDC(246B,001SOHHIR.053BSAA.037GHAF30SHIR.033S.247B,201,412,508,002ZAK.003GHAF.010 MEZ.011MEZ.012SOH.028MEZ.029GHAF.029SHIR)9.41%						
	FAIRLY FRESH	700 - 1500	WED(201.508.412) NDC(2468.001SOHHIR.053BSAA.037GHAF30SHIR.033S.247B.201.412.508.002ZAK.003GHAF.010 MEZ.011MEZ.012SOH.028MEZ.029GHAF.029SHIR)14.36%						
BRACKISH	SLIGHTLY BRACKISH	1500 - 2500	WED(201 508 412) NDC(246B.001SOHHIR.053BSAA.037GHAF30SHIR.033S.247B.201.412.508.002ZAK.003GHAF.010 MEZ.011MEZ.012SOH.028MEZ.029GHAF.029SHIR) 5.94%						
	BRACKISH	2500- 3200	WED(201,508,412) NDC(246B,001SOHHIR 053BSAA 037GHAF30SHIR 033S,247B,201,412,508,002ZAK,003GHAF,010 MEZ.011MEZ.012SOH.028MEZ.029GHAF.029SHIR) 3.96%						
	DEFINITELY BRACKISH	3200 - 4000	WED(201 508 412) NDC(24BB 001SOHHIR 053BSAA 037GHAF 30SHIR 033S 2478 201 412 508 002ZAK 003GHAF 010 MEZ 011MEZ 012SOH 028MEZ 029GHAF 029SHIR 13 96%						
SALINE	SLIGHTLY SALINE	4000 - 6500	WED(201.508.412) NDC(2468.001SOHHIR.053BSAA.037GHAF30SHIR.033S.247B.201.412.508.002ZAK.003GHAF.010 MEZ.011MEZ.012SOH.028MEZ.029GHAF.029SHIR)7.43%						
	SALINE	6500 - 7000	WED(201.508.412) NDC(246B.001SOHHIR.053BSAA.037GHAF30SHIR.033S.247B.201.412.506.002ZAK.003GHAF.010 MEZ.011MEZ.012SOH.026MEZ.029GHAF.029SHIR)1.49%						
	VERY SALINE	7000 - 10000							
	EXTREMELY SALINE	>10000	NDC(198 199 200.002NIAD.002ZAK.003NIAD.006NIAD.007NIAD.008NIAD.011NIAD.013NIAD)5.459						

104

Fig. (5.2) Distribution map of the pH for the Quaternary aquifer in Al Jaww Plain.

Fig. (5.3) Distribution map of the Electrical Conductivity (EC) for the Quaternary aquifer in Al Jaww Plain.

Fig. (5.4) Distribution map of the total salinity for the Quaternary aquifer in Al Jaww Plain.

Fig. (5.5) Histograms for total salinity classification of Quaternary aquifer in Al Jaww plain.

106

5.2.1.4 Total hardness

The calculated total hardness for the Quaternary water at the study area varies between 150 and 3270 ppm. (Fig. 5.6) shows the distribution of the total hardness (TH) along the study area. There are two areas of high (TH); one is located at the northwestern part of the area and the other one area is located to south at the middle part of the study area.

The total hardness of water could be divided into two main types. The first includes carbonate hardness (temporary hardness), which is expressed as a portion of calcium and magnesium that would combine with the bicarbonate and the small amounts of carbonate. This type of hardness can be virtually removed by boiling the water, where calcium and magnesium carbonates precipitate. The second is the non-carbonate hardness (permanent hardness), which is the difference between the total hardness and carbonate hardness, and is caused by those amounts of calcium and magnesium that would normally combine with sulfate, chloride and nitrate ions. Most of the Quaternary water at Al Jaww Plain belongs to the first type.

The wells of temporary hardness water are corresponding to the recharge area, while the wells of some permanent hardness salts are located at a relatively long distance from the fresh water recharge (Fetter, 1988).

5.2.2 Chemical properties

The chemical composition of natural water is governed primarily by the natural environmental factors, to which the water is exposed in the hydrologic cycle. Specifically, the composition of natural water is influenced by the type and amount of soluble products of rock weathering and decomposition and by the terrain traversal by that water. The parameters that best relate to the major constituents of a water are potassium (K), sodium (Na), magnesium (Mg), calcium (Ca), chloride (Cl), sulphate (SO ⁻⁻), carbonate (CO ⁻⁻) and bicarbonate (HCO ⁻). Each of these parameters and their relationship to each other are discussed. Table (5.2) illustrates statistics about the distribution of these constituents at Al Jaww Plain.

5.2.2.1 Major cations

The major sequence of cations dominance in groundwater of the Quaternary aquifer at Al Jaww Plain area has the order Na > Ca > Mg > K, Table (5.2) and the appendix.

Table (5.2). Statistical analysis for the parameters of physical properties (pH, Ec, TDS, TH) and for the major cations and anions of Al Jaww Plain.

Analysis Values	рH	-	-	TH	Major Cations				Major Anions			
		EC	IDS		Na*	Ca⁺	K+	Mg++	CF	So-	Hco ₃	No ₃
Minimum	7	375	240	150	8	14	0	2	38	22	12	0.14
Maximum	11.6	75000	51000	3270	8650	2400	350	1200	25347	2840	2489	26
Mean	7.9	3834.5	2550.5	365.4	648.6	236.8	32	154.2	1325	337.3	223.4	7.221

Fig. (5.6) Distribution map of the total hardness for the Quaternary aquifer in Al Jaww Plain.

Calcium distribution

The common form of calcium in the sedimentary rocks is carbonate specially the limestone and dolomite which are distributed in the study area specifiely at Jabal Hafit. The calcuim ion Ca⁺ concentration ranges between 14 to 2400 ppm with a mean value of 236.8 ppm.

A gradual increase from east to west is observed (Fig. 5.7). The concentration of calcium in the east and middle is less than 500 ppm. High Ca concentration is encountered west of Jabal Hafit, mainly due to the carbonate rocks of Jabal Hafit.

Magnesium distribution

The common source for magnesium in the groundwater is the dolomite (MgCO₃, CaCO₃) magnesite (MgCO₃) and limestone (CaCO₃) in the sedimentary rocks, biotite, hornblend and augite in igneous rocks and serpentine, talc and tremolite in metamorphic rocks (Davis and De Weist, 1966).

The presence of magnesium ion Mg^{2+} in the freshwater is less than calcium due to the low geochemical abundance of magnesium (Mathess, 1982). The concentration of Mg^{2+} in water ranges from 2 to 1200 ppm with a mean value of 145.2 ppm. Contour map (Fig. 5.8) shows a general increase in Mg^{2+} concentration from east to west. The maximum Mg^{2+} concentration exists on the western side of Jabel Hafit and is related to the solution of dolomite which is abundant at Jabal Hafit. High Mg^{2+} is located in the western part of the study area and is related to the released magnesium from chemical fertilizers (Terao et al., 1993). This area is intensively cultivated (Fig. 5.1a).

Sodium distribution

Sodium ion is considered as one of the most important ions in natural water. The source of sodium in water depends on the rock type through which the water moves. The main source for the presence of most sodium ions (Na⁺) in the natural water is the release of soluble products during the weathering of plagioclase feldspars, which are typical constituents of many igneous rocks. It is also common in evaporates and argillaceous sediments. The value of (Na⁺) ranges between 8 and 8650 ppm with a mean value of 648.6 ppm. The sodium distribution is presented in (Fig. 5.9). The concentration of Na⁺ increases from east to west. Most of Al Jaww area has (Na⁺) concentration of less than 500 ppm, while the area west of Jabal Hafit has the highest concentration.

Fig. (5.7) Distribution map of the calcium cation for the Quaternary aquifer in Al Jaww Plain.

Fig. (5.8) Distribution map of the magnesium cation for the Quaternary aquifer in Al Jaww Plain.

Potassium distribution

Potassium content is generally lower than sodium. The natural sources of potassium in water are the igneous rocks as feldspars (orthoclase and microcline) some mica and sedimentary rocks as silicate and clay minerals. Potassium concentration is commonly less than one-tenth the concentration of sodium in natural water because potassium is hardly taken into solution. The potassium content ranges between 2 and 350 ppm with a mean value of 32 ppm. Potassium ion concentrations are low at Al Jaww Plain, while high K⁺ concentrations are recognized west of Jabal Hafit (Fig. 5.10).

5.2.2.2 Major anions

The sequence of the major anion in the groundwater of the Quaternary aquifer at the study area has the order of:

Cf > SO 2- > HCO - > NO 2-

Bicarbonate distribution

The presence of bicarbonate ions HCO⁻ in the groundwater is derived from carbon dioxide in the atmosphere, in soils and by dissolution of carbonate rocks (Davis and De Weist, 1966). In the absence of calcareous sediments and carbonate rocks most of HCO⁻ in groundwater results from the dissolution of carbon dioxide within the soil zone by organic decay. Bicarbonate ion concentrations in groundwater of the Quaternary aquifer in Al Ain area range between 12 and 2489 ppm. Bicarbonate represents the third dominance anion in the study area. The distribution of bicarbonate is shown in (Fig. 5.11). The iso-concentration contour map shows irregular distribution. The concentration in the area located at the most eastern part of the study domain reaches about 200 ppm. On the other hand, HCO⁻ concentrations are high at the western part (more than 400 ppm). The decline in HCO⁻ between the two concentrations of bicarbonate area is attributed to the presence of a buried alluvial channel that runs in a SW direction, see the dashed line in (Fig. 5.11).

Sulphate distribution

The most extensive and important occurrences of sulphate ions in water are sedimentary rocks as gypsum (CaSO₄2HO₂) and anhydrite (CaSO₄). During weathering, the sulphides which are in contact with water are oxidized to yield sulphate that is carried off in water. In arid region, the leaching of sulphate from the upper soil sediments causes the sulphate to be the principle anion in the underlying groundwater. Further addition of sulphate

Fig. (5.9) Distribution map of the sodium cation for the Quaternary aquifer in Al Jaww Plain.

Fig. (5.10) Distribution map of the potassium cation for the Quaternary aquifer in Al Jaww Plain.

to the groundwater arises from the breakdown of organic matters in the soil and from addition of leachate sulphates in fertilizers. The value of the sulphate in the study area ranges between 22 and 2840 ppm (Fig. 5.12). There is a steady increase in So_4^- from the east to west.

Chloride distribution

The chloride ion (CI) is widely distributed in natural water. Most (CI) in the groundwater is from three sources including ancient seawater entrapped in sediment, solution of halite and related minerals in evaporate deposits and solution of dry fallout from the atmosphere especially in the arid region (Davis and DeWeist, 1966).

The value of the chloride in the study area ranges between 38 and 25347 ppm. Low values of the chloride concentration are encountered in the eastern side, while high values are observed in the north and south of the study area. There is a steady increase in CI from east to west in the direction of water flow, (Fig. 5.13).

Nitrate distribution

The dissolved nitrogen in form of nitrates (NO₃⁻) is the most common contaminant identified in groundwater. Nitrate in groundwater generally originates from several natural and man induced sources on land surface. Nitrate or nitrogen has proved to be a health hazard when it occurs in drinking water at concentrations in excess of 10 mg/l. The Nitrate distribution is given in (Fig. 5.14).

The main source of nitrate in groundwater is related to the intensive use of chemical nitrogen fertilizers in agriculture. This is clearly demonstrated in the western part of the study area, where most of the farms are located (Fig. 5.14).

5.3 The Ion Dominance

The ion dominance detection is quite helpful in the water quality assessment and classification. Three Semi logarithmic profiles, Schoellers diagram after (Schoellers, 1962), were constructed within the study area (Fig. 5.15). The three profiles are oriented SE-NW (Figs. 5.16, 5.17 and 5.18). Generally, these diagrams indicate the predominance of sodium, followed by magnesium, followed by calcium and then by potassium. On the other hand, the chloride ions predominate followed by sulphate and then bicarbonates.

Fig. (5.11) Distribution map of the bicarbonate anion for the Quaternary aquifer in Al Jaww Plain.

Fig. (5.12) Distribution map of the sulphate anion for the Quaternary aquifer in Al Jaww Plain.

Fig. (5.13) Distribution map of the chloride anion for the Quaternary aquifer in Al Jaww plain.

Fig. (5.14) Distribution map of the nitrate anion for the Quatemary aquifer in Al Jaww plain.

Fig. (5.15) Base map showing the well locations used for Schoeller's diagram analysis, Al Jaww Plain.

Fig. (5.16) Semi-logarithmic diagram for Quaternary aquifer showing the dominance ions along cross-section 1-1', Al Jaww Plain.

Fig. (5.17) Semi-logarithmic diagram for Quaternary aquifer showing the dominance ions along cross-section 2-2', Al Jaww Plain.

Fig. (5.18) Semi-logarithmic diagram for Quaternary aquifer showing the dominance ions along cross-section 3-3', Al Jaww Plain.

From the hydrochemical cross sections, it can be concluded that:

Along the 1-1' hydrochemical profile (Fig. 5.16)

$$Na^+ > CI^- > SO_4^- > Mg^{++} > Ca^{++} > HCO_3^- > K^+$$

Along the 2-2' hydrochemical profile (Fig. 5.17)

$$CI' > Na^+ > Ca^{++} > Mg^{++} > So_4' > K^+ > HCO_3'$$

Along the 3-3' hydrochemical profile (Fig. 5.18)

$$Na^+>SO_4^->Mg^+>Ca^+>K^+>HCO_3^->C\Gamma$$

Along these sections diversity in water genesis within Quaternary aquifer is demonstrated.

5.4 Water Genesis

5.4.1.Water genesis using (Sulin's graph)

The hydrochemical composition of the Quaternary aquifer reflects the meteoric origin of the water, where the hydrochemical parameter rk^++rNa^+/rCl expressed in equivalent concentrations is always greater than unit. Where the letter (r) expresses that the relation is calculated in epm, by applying Sulins graph (1948) which is prepared for the genetic classification of water, (Fig. 5.19), the Quaternary reveals two types of water genesis, the first is of CaCb origin and the second is of MgCb origin.

5.4.2. Trilinear diagram

Piper (1944) suggested a form of linear diagram representing the analysis of water by three plotted points. The cations are plotted on the triangle to the lower left and the anions are plotted on the triangle to the lower right. These plots show the relative properties of the main constituents of natural water on the basis of the percentage reacting values (r%). The third point, plotted in the diamond shaped field indicates the character of water as represented by the relationship among Na⁺ + K⁺, Ca⁺⁺ + Mg⁺⁺, CO₃⁻⁻ + HCO3⁻ and CI + SO₄⁻⁻ ions.

The diamond shaped field can be subdivided horizontally into two equal triangular fields. The major cations (K^+ & Na⁺), Mg⁺⁺and Ca⁺⁺are plotted in the lower left triangle, while the anions (CO₃⁻⁻ & HCO3⁻), CI and SO₄⁻⁻ are plotted on the in the lower right triangle. The two points representing the major cations and anions composition are then plotted in the diamond shaped field. Numerous natural chemical changes can be demonstrated by the

trilinear diagram. If the analysis represents regional water and a mixture, it will plot on a straight line. Thus this diagram can be used for the detection of water quality changes by the mixing of water.

In this study the data of the chemical analysis of the groundwater samples are plotted on Piper diagram (Fig. 5.20). The investigated Quaternary type can be discriminated in sub areas of the diamond shaped filled. The appearance of most of the samples in the upper triangle of the diamond shaped field, points to the dominance of Ca-Mg and CO₃ -HCO₃ water types.

It should be noticed that water at Al Jaww Plain is enriched in Mg⁺⁺ that is dissolved from Mg-rich Ophiolite rocks. This plot is in good match with the data plotted on Sulin's diagram (Fig. 5.19).

5.5 Water Quality Evaluation and its Availability for Use

The most important factors to determine the suitability of water quality for irrigation purposes are the total concentration of soluble salts and the sodium adsorption ratio. Sodium and salinity hazards represente severe problems in arid areas where salt accumulation in the soil is seldom flushed by rainwater.

a) Evaluation of water for irrigation using the relation between (SAR and EC)

The suitability of the water for irrigation purpose depends on the classification proposed by salinity laboratory staff (1954). This classification is based on the electrical conductivity in micromohos per centimetre and sodium adsorption ratio (SAR). According to this classification, the characteristics of irrigation water which is most important in determining its suitability are:

 Sodium Hazard: expressed as, sodium absorption ratio, which is defined by the equation:

$$S. A. R. = \frac{Na^{+}}{\sqrt{\frac{Ca^{++} + Mg^{++}}{2}}}$$

Where, Na^+ , Ca^{++} and Mg^{++} are in meq/l. SAR has long been used as a measure of sodium hazard. It predicts reasonably well the degree to which irrigation water tends to enter into cation exchange reactions in soil. High values of SAR imply a hazard of sodium replacing absorbed Ca^{++} and Mg^{++} and this replacement is damaging to soil structure.

Fig. (5.19) Sulin's graph for genetic classification for the Quaternary aquifer in Al Jaww Plain.

Fig. (5.20) Piper's trilinear diagram for classification of Quaternary aquifer, Al Jaww Plain.

The sodium-ion concentration is important in classifying irrigation water because sodium reacts with soil to reduce its permeability and cause hardening of the soil.

According to the SAR values (Fig. 5.21), the groundwater in the east of the study area has a limited harmful effect on plants when used for irrigation. To the west, the groundwater can cause moderate to high harmful effects for plants when applied for irrigation.

Salinity Hazard, expressed as electrical conductivity in micromohos/cm at 23
^oC.

The total concentration of soluble salts in irrigation waters can be adequately expressed for the purpose of diagnosis and classification in terms of electrical conductivity. The conductivity is useful since it is readily and precisely determined.

Nearly all irrigation water which could used without adverse impacts for a considerable time have conductivity values less than 2.250 micromhos/cm. Water of higher conductivity can be used occasionally, but for the crop production it might not be suitable.

This classification diagram is divided into 16 classes according to salinity and sodium hazards. Fig. (5.22) shows the sodium and the salinities hazard diagram. Inspection of this figure indicates that sodium and salinity hazards increase with distance from the Oman Mountains. This westward increase in salinity hazard is consistent with westward increase of electric conductivity and TDS (Figs. 5.3 and 5.4).

b) Evaluation of water for irrigation purposes using sodium content (Wilcox, classification).

The soluble sodium content of water is an important indicator of its quality and suitability for irrigation. The increase of sodium ion content in groundwater leads to a high content of these ions in the soil, which in turn has a great effect on its physical properties. Wilcox (1955) defined sodium percentage in terms of common cations (epm) as follows:

$$Na^{+} \sqrt[n]{(Na^{+} + K^{+}) \times 100} = \frac{(Na^{+} + K^{+}) \times 100}{Na^{+} + K^{+} + Mg^{++} + Ca^{++}}$$

Wilcox (1955) designated a graph with the total cations or anions (epm) expressed by the horizontal axis against the sodium percentage expressed by the vertical axis. This graph is subdivided into five zones (excellent, good to permissible, permissible to doubtful, doubtful to unsuitable and unsuitable) to delineate water concerning its suitability for irrigation. Based

Fig. (5.21) Distribution map of the sodium adsorption ratio (SAR) for the Quaternary aquifer in Al Jaww Plain.

SALINITY HAZARD

Fig. (5.23) Wilcox's classification of groundwater of the Quaternary aquifer in Al Jaww Plain.

on the classification established by Wilcox (1955) for irrigation purposes, the groundwater of the Quaternary aquifer at Al Jaww plain can be classified as (Fig. 5.23).

- Excellent to good water: This category includes samples No GWP (019-018), GWD (040SHIR-034SHIR-028-002GHAF-001SOH-028MEZ-001SOH), 250, 307, 309, 248A, 258, 308, 250, 254, 257 and 331.
- Good to permissible water: This category includes the samples No GWD (065SAA-002SAA-068SAA-042SHIR-149SAA-041SHIR-003GHAF-033SHIR), 333, 68, 246B, 253, 247B, 330, 252 and 251.
- Permissible to doubtful water: it includes samples No GWD (029SHIR-030SHIR-007SHIR-001ZAK-010NIAD-005AMM).
- Doubtful to unsuitable water. This class includes samples No GWD (005SAA-003SAA-004GHAF-007MEZ-003SOH-002ZAK-011MEZ), 333, 68, 246B, 253, 247B, 330, 251and 252.
- 5- Unsuitable class: the sample No.329 falls in this class. However, some samples fall out of scale.

c) Evaluation of water using residual sodium carbonate (R.S.C.)

The residual sodium carbonate represents the excess of carbonate $(CO_3^- + HCO_3^-)$ over the lime elements $(Ca^{++} + Mg^{++})$. It gives an indication for water alkalinity and is used to estimate the suitability of the water for agricultural purposes. The quality of water samples has been determined according to the scale after Eaton (1950). The residual sodium carbonate is shown in the following equation:

 $R.S.C. = (CO_3^{+} + HCO_3^{+}) - (Ca^{++} + Mg^{++}).$

Where all values of cations and anions are expressed in epm.

The residual sodium carbonate is used to distinguish between the different water classes for irrigation purposes because high concentration of HCO_3 leads to an increase in pH values causing the dissolution of organic matter. Moreover, high concentration of HCO_3 in irrigation water leads to the increase of its toxicity and affects the mineral nutrition of plants. The residual sodium carbonate of Quaternary aquifer varies from -197 to 40 epm with a mean value of -6.1 epm. Generally, the distribution of residual sodium carbonate in the Quaternary aquifer ranges from good to unsuitable quality (Fig. 5.24). The eastern part of the

Fig. (5.24) Distribution map of the residual sodium carbonate (RSC) for the Quaternary aquifer in Al Jaww Plain.
study area has R.S.C. ranging between less that -2 to 3 epm while the western part of the Quaternary aquifer at Al Jaww plain has concentrations greater than 9 epm.

According to Eaton classification (1950), the water samples are classified into three classes. The first class has (R.S.C) less than 1.25 epm (good quality). The second class ranges 1.25 to 2.5 epm (medium quality). The third class has more than 2.5 epm (unsuitable quality). Table (5.3) lists the samples numbers and their relevant classes.

Table (5.3). Suitability of water according to R.S.C. for Quaternary aquifer at AI Jaww Plain.

Residual Na ₂ CO ₃	Quality	Samples No.
< 1.25 epm	Water of good quality, used for the irrigation of all soils	17-18-20-68-198-204-206A-206B-246B-247A-247B-248A-250-251- 252-253-254-256-257-258-259-307-308-309-328A-328B-329-330- 331-333-GWP(334A-334B-335-336-19)-JH(001-002-004-005-007- 008-009-010)-199-200-261-297A-297B-GWD(001SOH-001ZAK- 002GHAF-002SAA-002SHIR-003GHAF-003SAA-003SHIR- 003SOH-004GHAF-004GHAF-004ZAK-005AMM-005N1AD- 005SAA-005ZAK-007MEZ-007SHIR-007ZAK-008SHIR-008ZAK- 009MEZ-009SHIR-009ZAK-010N1AD-011MEZ-014SHIR-008ZAK- 009MEZ-009SHIR-009ZAK-010N1AD-011MEZ-014SHIR-015MEZ- 016MEZ-017MEZ-018MEZ-019MEZ-019SHIR-020MEZ-020SHIR- 021MEZ-022MEZ-028MEZ-029MAS-029SHIR-030SHIR-031MAS- 033SHIR-034MAS-034SHIR-035SHIR-035SOH-037SOH-040SHIR- 042SHUR-042SHIR-065SAA-068SAA-106CHAF-108GHAF- 109GHAF-112GHAF-149SAA-149SAA)
1.25-2.5 epm	Water of medium quality used in case of good drainage especially rich with calcium	GWD(001MAQ-EQ-002ZAK-003MAQ-EQ-014ZAK-022MAS- 032SHIR-075GHAF-107GHAF)
> 2.5 epm	Unsuitable water, especially in poor drainage or when soluble calcium	GWD(002N1AD-002ZAK-003NAD-005MEZ-006N1AD-007N1AD- 008MAS-008N1AD-010MEZ-010ZAK-011MAS-011N1AD- 012N1AD-013N1AD-020DA1-021MAS)

Chapter VI

GEOPHYSICAL INVESTIGATIONS

CHAPTER SIX

GEOPHYSICAL INVESTIGATIONS

6.1. General

Surface and borehole geophysical methods constitute a part of preliminary site evaluation for groundwater investigations. Geoelectrical surveying and well logs would be useful for those areas in which the unconsolidated deposits are important like for the case of the Al Jaww Plain. The data from the geophysical surveying can guide the selection of the sites to conduct test borings and provide information to correlate between them. These borings or wells are needed to determine the subsurface geologic units. The term borings referred to uncased holes drilled in unconsolidated overburden (Fetter, 1994). Logging of these borings, with wireline geophysical tools, is important for evaluating the aquifer's characteristics and management of groundwater resources.

In this study, the D.C resistivity method (Vertical Electrical Sounding, VES), Time Domain Electromagnetic (TEM) and wireline geophysical logging data are implemented. The description of these methods are disussed in chapter three. The results and interpretation of these data are given below.

6.2 Vertical Electrical Sounding Results

Table (6.1) lists the qualitative and quantative interpretation of nine vertical electrical soundings along a profile trending SW-NE direction (Fig. 6.1).

6.2.1 Qualitative interpretation

The first step in the interpretation of an apparent resistivity-sounding curve is to define the curve shape. This can be classified simply for the three layer case into one of four basic curve types, which are H ($\rho 1 > \rho 2 < \rho 3$), A ($\rho 1 < \rho 2 < \rho 3$), K ($\rho 1 < \rho 2 > \rho 3$) and Q ($\rho 1 > \rho 2 > \rho 3$). These can also be combined to describe more complex field curves, that may have several layers such as HK, KH or more complex types. The curve shape is dependent upon the relative thickness of the in-between layers (i.e. layer two in a 3-layer model).

The relative magnitude of the true resistivities obtained from the levels of the flat portions or shoulders of the graph represents a useful starting point before conducting more detailed interpretations. The number of layers identified is equal to the number of turning points in the curve plus one (Reynolds, 1997). The presence of turning points indicate sub-

				2.7	True	resis	tivity	(Ohm	i-m)					Thi	cknes	s of L	ayers	(m)		
VES No	Curve Type	No of Layers	P1	ρ2	p.,	ρ4	ρ ₅	ρ.	ρ,	ρ _s	P.9	T1	T2	Т3	Τ4	T5	T6	T7	Т8	Т9
Ĩ	QQH	5	180	42	4	2.4	9					1.3	7.8	163.8	8.2					
2	кон	5	300	450	75	10	36					0.4	5.6	34	310					
3	QQH	5	200	75	37	3	290					0.7	8.3	226	165					
4	коон	7	450	1250	190	105	6	24	12			0.5	1.3	3.2	25.2	249				
5	QН	4	1300	85	7	67						2	25	220						
6	QQH	5	590	58	26	6	59					1.5	4.5	30	160					
7	онкн	6	270	27	8	40	4	20				1	7.5	44	42	155				
8	нкнкнкн	9	269	7	23	5	16	11	23	10	22	0.7	1.5	4.2	4.5	19.2	21	70	860	
9	конкн	7	460	670	22	7	25	7.5	48			0.6	1.5	5.8	35.4	21.8	488			

Table (6.1) Qualitative and quantitative interpretation of the Vertical Electrical Sounding (VES) resistivity data, Al Jaww Plain.

Fig. (6.1) Base map showing the locations of VES data and the available logged wells at Al Jaww Plain.

surface interfaces, so the number of actual layers must be one more than the number of boundaries between them. However, the coordinates of the turning points indicate the depth to a boundary to provide specific information about the true resistivities. The minimum number of horizontal layers and the relative magnitudes of the respective layer resistivities can also be estimated.

A general inspection of the interpreted VES data (Table 6.1) indicates that they represent four to nine layers of different types such as the QQH, KQH and HKHKHKH. This variation in the curve types within the study area revealed that the subsurface geoelectric model in the investigated area is complicated. The elements which make the geoelectric model not simple include, the subsurface structure of Al Jaww Plain as discussed in chapter two, variation of lithological units of the subsurface sequence and changes of total dissolve solids of groundwater.

6.2.2 Geoelectric section discussion

The review of the geoelectric section (Fig. 6.2) guided with lithological information from the available borehole data reveals a systematic variation in the lateral sedimentary sequence at Al Jaww Plain.

There are four main litho-geoelectric units illustrated along this section: a- top soil zone of resistivity ranging between 180 to 1300 O-m. b- litho-geoelectric unit with a resistivity ranging between 23 to 190 ohm-m which is interpreted as marl with finer materials (this zone contains the water table), c- third geoelectric unit with the lowest resistivity values ranging between 3 to 100 O-m, and is attributed to clay and marl and d- the fourth geoelectric layer with a resistivity ranging between 20 to 290 ohm-m and is interpreted as limestone and or gypsum.

Along this geoelectric section a remarkable ridge of relatively high resistivity at a depth of 200-500m and extends beneath VES 7 to VES 4 in the north east direction is encountered. The low resistivity values show the trend of thick shale-filled faults which reach a depth of 900 m or more at the extremity of the profile. These inferred faults are in good match with traced faults based on seismic reflection data, (Fig. 2.9).

Fig. (6.2) Geoelectric cross section along profile trending southeast-northwest, Al Jaww Plain.

6.3 Time Domain Electromagnetic (TEM) Results

6.3.1 TEM data and resistivity model

A total number of 212 loop data measured at Al Jaww Plain have been provided by NDC. Fig. (6.3) shows the locations of these loops. Interpretated data using a onedimensional model (program TEMIXGL, Interpex Ltd.) indicated three to four layer resistivity models (Table 6.2) for each station on the profile. Typical soundings from Zaroub line-2 are shown in Fig.(6.4).

The three resistivity models of TEM become more conductive with depth. This is in good agreement when correlated with lithological information from the available borehole data located near to relevant loops. The model of TEM data in the interdune area to the northwest of Al Jaww Plain is reviewed and shown in Fig. (6.5) (US Geological Survey, 1993). The TEM Model at Al Jaww Plain and the model in the interdune area are not similar. The interdune area does not contain an alluvial-type layered sequence (existing at Al Jaww Plain). Instead, a thick resistive accumulations of variably-cemented dune sand overlying conductive bedrock.

The main three identified geoelectric-litologic units at Al Jaww Plain are.

Layer-1 is a surficial zone of loose to weakly consolidated sand and gravel. This zone corresponds to the upper part of the very resistive (> 200 ohm-m) layer in both TEM models and VES. The resistive nature of this layer is indicative of dry conditions in the upper part of the alluvium.

Layer-2 is a thick zone of gravel and sand comprising the bulk of the alluvium. This zone has moderate and generally downward increase in the amounts of interstitial cement. The moderate to relatively small resistivity in this middle interval suggests partial satuaration and/or the presence of a clay-rich matrix (Fig. 6.6). However, at certain locations along the measured loops, there is a zone of coarse cemented gravel of a varying thickness at the bottom of the alluvial section. This zone appears to represent a basal deposit of the satuarated channel gravels.

The third layer has a resistivity range from 5 to 11 Ohm-m. This low resistivity layer is composed of bedrock consististing of marl, caly, mudstone, or shale. In some places in the deeper depth this zone would have resistivities of less than 5 Ohm-m probably due to the increase of salinity with depth (see Fig. 6.8a below loop No.10). The depth to the boundary

Fig. (6.3) Base map showing the locations of TEM profiles at Al Jaww Plain.

Fig. (6.4) Typical TEM data from sounding Zarub-2-2 and Zarub-2-11.

DEPTH (m) Below land surface	ГІТНОГОСУ	RESISTIVITY (Ohm.meters)	DESCRIPTION
0		3,000	R1: Surface resistive layer (aeolian sand and alluvium, dry)
10 -		2.6	C1: Upper conductive layer (mostly clay and silt)
		75.3	R2 Upper resistive layer (alluvial sand and gravel; possible calcareous cement)
20 — 30 — 40 —		587	R3: Primary resistive layer (alluvial sand and gravel; good permeability; fresh water where saturated)
50 -		8.4	C2. Conductive layer (mostly clay and silt)
60 - 70 - 80 - 90 - 100 - 110 - 120 - 130 - 140 - 150		2.7	C3: Conductive layer (mostly clay and mudstone; poor water quality)

Fig. (6.5) Transient electromagnetic model of typical resistivities for interdune soundings at Al Qura'a, north of Al Jaww Plain (after US Geological Survey, 1993).

Fig. (6.6) Photos showing the presence of clay layer at shallow depths of drilled trenches at Al Jaww Plain.

Line No	VES No	Curve Type	No of Lavers	True r	esistivity	(Ohm-r	n)	Thickne	ess of Laye	rs (m)
		source appe		P ₁	p ₂	P3	P4	T1	T2	T3
	1	н	3	694.3	10.76	13.36		23.58	60.8	
	2	н	3	304 1	9.19	41.51		25.52	62.43	
	3	н	3	192.9	9.3	20.73		27.87	81.65	
	- 4	Q	3	243.6	12.28	8.55		26.94	34.19	
	5	Q	3	261.5	18.45	8.33	-	26.52	38.51	
at-	6	н	3	245.3	10.86	20.95		28.98	42.64	
ykh	7	н	3	190.9	9.83	21.02		30.2	37.75	
ing.	8	Q	3	352.4	15.68	10.14		25.79	18.92	
A ib	9	н	3	336.6	11.53	17.56		26.53	47.96	
W.	10	Q	3	232.7	17 79	11 18	15	25.83	22.86	
	11	Q	3	361.8	18.98	12.69	3.83	25.49	33.8	
	12	Q	3	618.3	17,64	5.98		27.68	77.2	
	13	Q	3	517	17 01	15.74		26.9	102.8	
	14	н	3	203.4	13.37	69.35		29.58	76,13	
	15	Q	3	465.4	15.16	3.71		24.86	22.1	
	16	Q	3	428.9	28.76	10.59		24.68	17 16	
	17	Q	3	474.5	30.66	10.96		24.06	9.7	
	18	Q	3	477.7	32.79	10,64		21.73	8.59	
	19	Q	3	463.8	18.86	11.58		25.77	21.69	
	20	Q	3	618.2	20.2	12.52		24.36	34.3	
	1	Q	3	593.1	32.56	12.47		23.04	18.41	
chat	2	Q	3	607.2	29.19	12.13		22.49	20.07	
ray	3	Q	3	641.5	29.59	12.66		26.24	11.5	
Mu	4	н	3	706.5	15.41	27.57		25.18	80.07	
ipe	5	н	3	341.8	14.85	795		27 35	25.38	
N	6	Q	3	355.9	18.06	13,53		25.81	22.54	
	7	Q	3	442.2	15.51	13.2		26.8	20.8	
	8	н	3	598.9	12.84	20.93		28.12	43.39	
	9	н	3	566	12.72	14.21		28.03	24.46	
	1	н	3	402.4	13.17	50.32		25.77	34.81	
	2	н	3	564.8	21.94	31.13		22.57	16:3	
	3	Q	3	705.9	38.3	23.74		18.56	50.69	
1	4	Q	4	691	43.72	23.2		16.89	37.05	
es.	5	Q	3	674.8	23.78	9.61		21.47	68.63	
Vadi	6	Q	3	965.4	22.47	12.12		20.82	52.33	
s	7	Q	3	989.8	22.91	10.68		18.09	32,65	
	8	н	2	237.3	9.55	20.52		29.24	50.78	
	9	н	2	473.7	8.23	21.01		21.71	26.47	
	10	QH	4	499.5	7.51	0.6	15	23.51	17.43	52.93
	11	НК	4	504.7	10.03	13.37	3.83	23.86	16.27	47.19
	12	Q	3	319.4	12.89	6.59		24.88	58.97	
	13	Q	3	257.6	15.94	4.53		24.52	38.18	
	14	Q	3	291.3	19.47	5.6		23.09	30.64	

Table (6.2) Qualitative and Quantative interpretation of the Time Domain Electromagnetic (TEM) data along some wadis of Al Jaww Plain.

Line No	VES No	Curve Type	No of Lavers	True r	esistivity	(Ohm-r	n)	Thickne	ess of Laye	ers (m)
Linento	120110	ourre type		Pi	ρ2	p ₃	p ₄	T1	T2	Т3
	- 1	Q	3	248.7	18.6	4.36		26.49	35.73	
	2	Q	3	283.2	21.1	4.27		25.8	35 13	
	3	Q	3	460.9	23.14	6.14	2.0	26.04	34.31	
a-2	4	Q	3	545.5	19.71	5.28		25.75	28.88	
N.	5	Q	3	618.1	19.43	5.1		25.15	29.24	
Nad	6	Q	3	618.3	20.27	5.23		25.5	26.67	
-	7	Q	3	615.7	20.1	4.34		25.44	26.89	
	8	Q	3	607.8	22 92	4.54		23.94	33.28	
	9	Q	3	623.8	20.59	5.95		24.18	28.09	
	10	Q	3	633.6	13.68	5.06	15	26.59	27 27	52.93
	11	Q	3	823 5	11 49	3.3	3.83	22.85	69.76	47 19
	12	Q	3	762.1	14.37	5.02		23 12	27.85	
	1	Q	3	1132.2	9.39	2.52		22.24	46.59	
	2	Descending	2	842.6	2.67			25.67		
2	3	н	3	1161.2	1.59	14.03		28.12	22.59	
ta E	4	нк	4	1791.1	27	9.66	3.07	29.14	4.96	47.32
ymi	5	Q	3	1725.2	21 29	9.46		22.89	35.21	
tha	6	н	3	2273.9	12.29	106.5		25.88	72.02	
W	7	Q	3	311.6	24.91	3.07		25.69	16.24	
Nad	8	Q	3	445.5	16.25	10.34		25.16	18.3	
-	9	н	3	485.3	12.18	62 84		25.69	74.66	
	10	Q	3	200,4	15.25	8 93		27,4	36.25	
	11	Q	3	222.1	12.29	574		28.7	29.42	
	1	Q	3	218.6	14 57	7 32		28.62	34.24	
	2	Q	3	251.2	26 62	12.46		26.05	15.8	
	3	Q	3	396.3	23.21	12.65		28.77	9.87	
÷	4	Q	4	423.9	13.92	9.54		27.89	23.32	47.32
E .	5	Q	3	344.8	15.23	8 09		27.23	24.02	
ayr	6	Q	3	323.8	11.36	8.96		30.41	22.37	
Auth	7	Q	3	459.4	10.22	9.51		28.81	28.98	
ip	8	Descending	2	413.2	9.46			29.57		
Ň	9	Descending	2	219.7	9.44			31.1		
	10	Descending	2	219.7	9.56			31.04		
	11	Q	3	228.9	11 37	6 65		28.93	36.56	
	12	0	3	245.5	13.28	8.87		31.15	40	
-	13	0	3	314.4	10.70	7.00		29.70	50.50	
ah-3		a c	3	201.4	12.78	1.33		30.51	00.09	
mim	2	Q	3	200.7	11	8.87		31.99	38.96	
thay	3	Q	3	214.7	18 15	5.73		28.15	12.1	
Mut	4	Q	3	255.1	23 41	5 06		23.18	13.44	
Vadi	5	Q	3	420.8	12.66	4.41		20.7	10.53	
>	6	Q	3	424.2	13.57	9.7		29.06	12.03	

	Line No	VES No	Curve Type	No of Layers	True re	esistivity	(Ohm-r	n)	Thickne	ess of Laye	rs (m)
i H 3 593.3 232.5 5.36 19.92.8 8.58 2 Descending 2 766.4 562 19.33 1 4 0 3 417.8 8.16 4.95 21.31 36.33 4 0 3 447.73 16.64 5.66 18.94 21.19 5 0 3 468.2 462.3 5.64 18.02 39.12 7 0 3 468.6 560.5 6.38 171.1 44.04 9 0 3 528.5 6117 7.96 18.24 47.19 12 0 3 693.5 224.7 7.48 22.03 24.47 13 0 3 722.2 24.77 7.74 25.96 26.75 14 0 3 723.2 24.77 7.74 25.96 26.75 15 0 3 724.2 249.7 81.3 81.3					P1	P2	ρ3	P4	T1	T2	T3
2 Descending 3 2 766 4 562 2 19.33 10 3 3 4 0 3 417.8 8.16 455 21.31 36.33 30.72 557 19.75 19.75 30.97 6 0 3 468.7 30.72 5.57 19.75 19.75 30.97 5 7 0 3 468.7 30.72 5.57 19.75 19.75 30.97 8 0 3 558.5 61.17 7.66 18.74 47.12 9 0 3 552.5 11.0 10.2 15 25.22 33.84 52.93 11 0 3 672.3 33.07 8.54 383 26.19 23.44 47.19 12 0 3 722 24.77 7.74 25.56 25.5 24.12 24.96 24.79 14.4 20.2 29.19 23.86 10.57 12.2 24.67 17.19 12.86 16.12 29.19 23.		1	н	3	589.3	2.32	5.36		19.92	8.58	
4 0 3 417.8 8.16 4.95 21.31 36.33 4 0 3 477.8 166.4 565 19.75 30.97 5 0 3 468.7 30.72 5.57 19.75 30.97 6 0 3 468.7 30.72 5.57 19.75 30.97 7 0 3 468.8 50.92 5.84 18.14 47.12 52.23 9 0 3 524.9 6.84 3.83 26.19 22.44 47.19 12 0 3 672.3 33.07 8.54 3.83 26.19 22.94 47.19 13 0 3 722 27.54 8.13 26.19 22.34 47.19 14 0 3 72.2 29.8 8.23 25.95 25.57 24.12 24.96 15 0 3 72.4 38.31 8.73 19.77 77.77 <td></td> <td>2</td> <td>Descending</td> <td>2</td> <td>756.4</td> <td>5.62</td> <td></td> <td></td> <td>19.33</td> <td></td> <td></td>		2	Descending	2	756.4	5.62			19.33		
4 Q 3 4473 1664 6.65 18.94 21.19 5 Q 3 468.7 30.72 5.57 19.75 30.97 6 Q 3 468.2 46.23 5.64 18.02 39.12 7 Q 3 466.8 56.05 6.38 17.11 44.04 9 Q 3 528.5 61.17 7.96 18.74 47.12 10 Q 3 590.8 41.04 10.28 15 25.22 33.84 52.93 11 Q 3 672.3 33.07 8.54 3.33 26.19 22.34 47.19 12 Q 3 722 22.47 7.74 25.96 26.75 25.19 23.86 13 Q 3 722 29.8 8.33 14.13 21.19 23.86 14 Q 3 722 29.5 7.55 24.12 24.98		3	Q	3	417.8	8.16	4.95		21.31	36.33	
Solution Solution Solution Solution Solution 66 Q 3 468.7 30.72 5.57 19.75 30.97 7 Q 3 468.8 246.23 514.4 18.02 39.12 9 Q 3 524.9 6.98 19.14 44.04 9 Q 3 528.5 61.17 7.766 18.74 47.12 10 Q 3 693.5 29.24 7.84 38.2 26.19 29.34 47.19 12 Q 3 693.5 29.24 7.84 38.3 26.19 29.34 47.19 13 Q 3 722.2 29.8 8.33 25.19 23.86 5.17 19.17 33.74 33.74 33.74 33.74 33.74 33.74 33.74 33.74 33.74 33.74 33.74 33.74 33.74 33.74 33.74 33.74 33.74 33.74 33.74 33.76 <td></td> <td>4</td> <td>Q</td> <td>3</td> <td>477.3</td> <td>16.64</td> <td>5.65</td> <td></td> <td>18.94</td> <td>21 19</td> <td></td>		4	Q	3	477.3	16.64	5.65		18.94	21 19	
6 0 3 4682 46.23 5.64 18.02 39.12 7 0 3 4668 56.05 6.38 17.11 44.04 8 0 3 528.5 61.17 7.96 15 25.22 33.84 52.23 10 0 3 639.5 29.24 7.48 27.03 29.47 47.19 13 0 3 722.2 27.54 8.13 26.12 29.17 7.14 25.96 26.75 14 0 3 722.2 27.54 8.13 26.12 29.17 15 0 3 722.2 29.823 25.19 23.86 29.57 16 0 3 726 29.55 7.55 24.19 23.86 24.96 17 0 3 724 38.31 8.73 19.12 32.66 22.29 23.15 14 14.99 24.96 24.96 24.37.9 18.12		5	Q	3	468.7	30.72	5.57		19.75	30.97	
Provide Provide <t< td=""><td></td><td>6</td><td>Q</td><td>3</td><td>458.2</td><td>46 23</td><td>5.64</td><td></td><td>18.02</td><td>39.12</td><td></td></t<>		6	Q	3	458.2	46 23	5.64		18.02	39.12	
8 Q 3 519.9 52.49 6.89 19.14 49.02 10 Q 3 528.5 61.17 7.96 18.74 47.12 11 Q 3 672.3 33.07 8.54 3.83 26.19 29.34 47.19 12 Q 3 672.3 33.07 8.54 3.83 26.19 29.47 47.19 13 Q 3 722.2 27.54 8.13 26.12 29.19 23.86 67.5 24.12 24.96 27.55 24.12 24.96 57.55 24.12 24.96 57.14 29.96 26.75 57.55 24.12 24.96 57.14 29.90 37.44 38.31 87.3 19.74 37.44 38.31 87.3 19.74 37.44 38.31 87.19 19.12 32.65 5 22.12 Q 3 406.2 43.79 81.12 18.94 35.14 5 5 22.12 Q 3		7	Q	3	466.8	56.05	6.38		17.11	44.04	Low Party
9 0 3 528.5 61.17 7.96 18.74 47.12 10 0 3 590.8 41.04 10.28 15 25.22 33.84 52.93 11 0 3 672.3 33.07 8.54 38.2 26.19 29.34 47.19 12 0 3 693.5 29.24 7.48 27.03 29.47 47.19 13 0 3 722.2 29.4 8.13 26.12 29.19 29.46 14 0 3 722.2 29.8 8.23 25.19 23.86 15 0 3 726 29.55 7.55 24.12 24.96 16 0 3 4762 43.79 8.12 18.94 35.14 20 0 3 471.91 0.44 615 42.13 13.35 21 0 3 617.9 16.4 61.5 21.13.4 7.51 21.9		8	Q	3	519.9	52.49	6.98		19.14	49.02	
OD Q 3 590.8 41.04 10.28 15 25.22 33.84 62.33 11 Q 3 672.3 33.07 8.54 3.83 26.19 29.34 47.19 12 Q 3 672.5 29.24 7.48 13 27.03 29.47 13 Q 3 722 27.54 8.13 27.03 29.47 14 Q 3 722 29 8.23 25.19 23.86 16 Q 3 726.2 29.55 7.55 24.12 24.96 17 Q 3 726.4 38.31 8.73 19.74 33.74 18 Q 3 374.7 13.03 41.8 25.92 33.15 20 Q 3 871.9 10.84 6.15 42.13 13.35 21 Q 3 714.6 17.02 23.16 30.66 22 Q		9	Q	3	528.5	61.17	7.96		18.74	47.12	
index 11 Q 3 672.3 33.07 8.54 3.83 26.19 29.34 47.19 12 Q 3 693.5 29.24 7.48 27.03 29.47 7 13 Q 3 722 27.54 8.13 26.12 29.19 14 Q 3 722 29 8.23 25.19 23.86 15 Q 3 726 29.57 7.55 24.12 24.96 17 Q 3 724.4 38.31 8.73 19.74 33.74 18 Q 3 406.2 43.79 8.12 18.94 35.14 20 Q 3 871.9 10.84 6.15 42.13 13.35 21 Q 3 718.7 11.08 7.2 23.16 30.66 22 Q 3 661.9 35.48 10.53 26.34 36.36 22 Q		10	Q	3	590.8	41.04	10.28	15	25.22	33.84	52.93
12 Q 3 693 5 29.24 7.48 27.03 29.47 13 Q 3 722 27.54 8.13 26.12 29.19 14 Q 3 722.2 27.54 8.13 26.12 29.19 15 Q 3 722.2 29 8.23 25.19 23.86 16 Q 3 723.4 38.31 8.73 19.74 33.74 18 Q 3 374.7 13.03 41.8 23.93.15 20 Q 3 406.2 47.79 8.12 18.94 35.14 20 Q 3 406.2 43.79 8.12 18.94 35.14 20 Q 3 174.7 10.84 6.15 42.13 13.35 22 Q 3 716.4 17.02 23.16 30.68 25 Q 3 61.9 35.48 10.53 26.34 36.36		11	Q	3	672.3	33.07	8.54	3.83	26.19	29.34	47.19
13 Q 3 722 27.54 8.13 26.12 29.19 14 Q 3 732.2 24.77 7.74 25.96 25.75 16 Q 3 729.2 29 8.23 25.19 23.86 16 Q 3 726 29.55 7.55 24.12 24.96 17 Q 3 724 38.31 8.73 19.74 33.74 18 Q 3 729.2 29 8.21 18.94 35.14 20 Q 3 406.6 6.25 7.97 19.12 32.65 21 Q 3 1224.8 8.43 5.59 39.68 13.57 22 Q 3 672 11.34 751 21.95 32.9 24 Q 3 672 11.34 751 21.95 32.9 25 Q 3 672 11.34 751 21.95		12	Q	3	693.5	29.24	7.48		27.03	29.47	
Ge 14 Q 3 732.2 2477 7.74 25.96 26.75 15 Q 3 729.2 29 8.23 25.19 23.86 17 Q 3 723.4 38.31 8.73 1974 33.74 18 Q 3 374.7 13.03 41.8 29.2 33.15 20 Q 3 406.2 43.79 8.12 18.94 35.14 20 Q 3 406.6 46.25 7.97 19.12 32.65 21 Q 3 718.7 11.08 7.2 23.65 22 Q 3 718.7 11.08 7.2 23.16 30.68 22 Q 3 661.3 31.91 8.02 27.64 39.83 24 Q 3 661.3 31.91 8.02 27.64 39.83 3 Q 3 665.3 31.82 7.35 <td< td=""><td>3</td><td>13</td><td>Q</td><td>3</td><td>722</td><td>27.54</td><td>8.13</td><td></td><td>26.12</td><td>29 19</td><td></td></td<>	3	13	Q	3	722	27.54	8.13		26.12	29 19	
Yes 15 Q 3 729.2 29 8.23 25.19 23.86 16 Q 3 726 29.55 7.55 24.12 24.96 177 Q 3 726 29.55 7.55 24.12 24.96 18 Q 3 374.7 13.03 41.8 25.92 33.15 19 Q 3 406.6 46.25 7.97 19.12 32.665 21 Q 3 871.9 10.84 6.15 42.13 13.35 22 Q 3 1224.8 8.43 5.59 39.68 13.57 23 Descending 2 1349.1 7.04 37.07 7 24 Q 3 672 11.34 7.51 21.95 32.9 26 Q 3 661.9 35.48 10.53 26.43 36.36 3 Q 3 661.9 35.48 10.53	de	14	Q	3	732.2	24.77	7.74		25.96	26.75	
Prev 16 Q 3 726 29.55 7.55 24.12 24.96 177 Q 3 723.4 38.31 8.73 19.74 33.74 18 Q 3 406.2 43.79 8.12 18.94 35.14 20 Q 3 406.6 46.25 7.97 19.12 32.65 21 Q 3 1224.8 8.43 5.59 39.68 13.57 23 Descending 2 1349.1 7.04 37.07 7.07 24 Q 3 672 11.34 7.51 21.95 32.9 26 Q 3 672 11.34 7.51 21.95 32.9 26 Q 3 6619 35.48 10.53 26.64 39.83 2 Q 3 6619 35.48 10.53 26.64 39.83 3 Q 3 785.5 35.63 8.62	9	15	Q	3	729.2	29	8.23		25.19	23.86	
N 17 Q 3 723 4 38.31 8.73 19.74 33.74 18 Q 3 374.7 13.03 41.8 25.92 33.15 19 Q 3 406.6 46.25 7.97 19.12 32.665 20 Q 3 871.9 10.84 6.15 42.13 13.35 22 Q 3 174.7 11.08 7.2 23.16 30.68 23 Descending 2 1349.1 7.04 37.07 70 24 Q 3 672 11.34 7.51 21.95 32.9 25 Q 3 661.3 31.91 8.02 27.64 39.83 2 Q 3 665.3 31.82 7.35 25.94 37.75 4 Q 3 785.5 35.63 8.62 26.2 35.03 2 Q 3 813 45.73 7.03	n."	16	Q	3	726	29.55	7.55		24.12	24.96	
18 0 3 374.7 13.03 41.8 25.92 33.15 19 0 3 406.2 43.79 8.12 18.94 35.14 20 0 3 406.6 46.25 7.97 19.12 32.65 21 0 3 871.9 10.84 6.15 42.13 13.35 22 0 3 718.7 11.08 7.2 23.16 30.68 23 Descending 2 13.49.1 7.04 37.07 7 24 0 3 718.7 11.08 7.2 23.16 30.68 25 0 3 619 35.48 10.53 26.34 36.66 3 0 3 685.5 31.82 7.35 25.94 37.75 4 0 3 785.5 35.63 8.62 2.62 35.03 6 0 3 785.5 34.07.2 8.28 25.67 <td>N</td> <td>17</td> <td>Q</td> <td>3</td> <td>723.4</td> <td>38.31</td> <td>8.73</td> <td></td> <td>19.74</td> <td>33.74</td> <td></td>	N	17	Q	3	723.4	38.31	8.73		19.74	33.74	
19 Q 3 406.2 43.79 8.12 18.94 35.14 20 Q 3 408.6 46.25 7.97 19.12 32.65 21 Q 3 871.9 10.84 6.15 42.13 13.35 22 Q 3 1224.8 8.43 5.59 39.68 13.57 23 Descending 2 1349.1 7.04 37.07 - 24 Q 3 718.7 11.08 7.2 23.16 30.66 25 Q 3 650.3 31.91 8.02 27.64 39.83 2 Q 3 661.9 35.48 10.53 26.34 36.63 3 Q 3 665.5 31.82 7.35 25.94 37.75 4 Q 3 795.3 40.72 8.28 2.66.7 36.79 7 Q 3 813 457.3 7.03 24.23 <td></td> <td>18</td> <td>Q</td> <td>3</td> <td>374.7</td> <td>13.03</td> <td>41.8</td> <td></td> <td>25.92</td> <td>33 15</td> <td></td>		18	Q	3	374.7	13.03	41.8		25.92	33 15	
20 Q 3 408.6 46.25 7.97 19.12 32.65 21 Q 3 871.9 10.84 6.15 42.13 13.35 22 Q 3 1224.8 8.43 5.59 39.68 13.57 23 Descending 2 1349.1 7.04 37.07 7 24 Q 3 718.7 11.08 7.2 23.16 30.68 25 Q 3 650.3 31.91 8.02 27.64 39.83 2 Q 3 661.9 35.48 10.53 26.34 36.66 3 Q 3 685.5 31.82 7.35 25.64 37.75 4 Q 3 785.5 35.63 8.62 2.62 35.03 5 Q 3 785.5 35.63 8.62 26.2 35.03 6 Q 3 797.3 24.23 37.97 3		19	Q	3	406.2	43.79	8.12		18.94	35.14	
21 Q 3 871.9 10.84 6.15 42 13 13.35 22 Q 3 1224.8 8.43 5.59 39.68 13.57 23 Descending 2 1349.1 7.04 37.07 - 24 Q 3 718.7 11.08 7.2 23.16 30.68 25 Q 3 672 11.34 7.51 21.95 32.9 26 Q 3 714.6 17.02 8.58 20.4 28.49 1 Q 3 661.9 35.48 10.53 26.34 36.36 3 Q 3 685.5 31.82 7.35 25.94 37.75 4 Q 3 795.3 40.72 8.28 25.87 36.79 7 Q 3 813 457.3 70.3 24.23 37.97 9 Descending 3 859.2 7.06 23.59 38.17<		20	õ	3	408.6	46.25	7 97	12.0	19.12	32.65	
22 Q 3 1224.8 8.43 5.59 39.68 13.57 23 Descending 2 1349.1 7.04 37.07 24 Q 3 718.7 11.08 7.2 23.16 30.68 25 Q 3 672 11.34 7.51 21.9 32.9 26 Q 3 714.6 17.02 8.58 20.4 28.48 2 Q 3 661.9 35.48 10.53 26.34 36.66 3 Q 3 685.5 31.82 7.35 25.94 37.75 4 Q 3 728.4 35.3 8.08 25.96 36.65 5 Q 3 785.5 35.63 8.62 26.2 35.03 6 Q 3 795.3 40.72 8.7 36.79 37.7 7 Q 3 813 457.3 7.03 24.23 37.97 </td <td></td> <td>21</td> <td>õ</td> <td>3</td> <td>871.9</td> <td>10.84</td> <td>6.15</td> <td></td> <td>42 13</td> <td>13.35</td> <td></td>		21	õ	3	871.9	10.84	6.15		42 13	13.35	
23 Descending 2 1349.1 7.04 37.07 24 Q 3 718.7 11.08 7.2 23.16 30.68 25 Q 3 672 11.34 7.51 21.95 32.9 26 Q 3 672 11.34 7.51 21.95 32.9 26 Q 3 672 11.34 7.51 21.95 32.9 26 Q 3 650.3 31.91 8.02 27.64 39.83 2 Q 3 661.9 35.48 10.53 26.34 36.36 3 Q 3 785.5 35.63 8.02 26.6 36.65 5 Q 3 795.3 40.72 8.28 25.87 36.79 4 Q 3 875.3 40.72 8.28 25.87 39.7 7 Q 3 875 42.94 7.44 23.48 35.1 <td></td> <td>22</td> <td>õ</td> <td>3</td> <td>1224.8</td> <td>8.43</td> <td>5.59</td> <td></td> <td>39.68</td> <td>13.57</td> <td></td>		22	õ	3	1224.8	8.43	5.59		39.68	13.57	
24 Q 3 718.7 11.08 7.2 23.16 30.68 25 Q 3 672 11.34 751 21.95 32.9 26 Q 3 672 11.34 751 21.95 32.9 2 Q 3 660.3 31.91 8.02 27.64 39.83 2 Q 3 665.5 31.82 7.35 25.94 37.75 3 Q 3 785.5 35.63 8.62 26.2 35.03 6 Q 3 785.5 35.63 8.62 26.2 35.03 7 Q 3 813 45.73 7.03 24.23 37.97 8 Q 3 859.2 7.06 23.57 39.37 9 Descending 3 875 42.94 7.44 23.48 30.14 10 Q 3 892.5 38.85 7.08 24.66		23	Descending	2	1349.1	7.04	0.00		37.07		
25 Q 3 672 11.34 7.51 21.95 32.9 26 Q 3 714.6 17.02 8.58 20.4 28.48 1 Q 3 661.9 35.48 10.53 26.34 30.63 2 Q 3 661.9 35.48 10.53 26.34 36.66 3 Q 3 665.5 35.63 8.08 25.96 36.65 4 Q 3 785.5 35.63 8.62 26.2 35.03 6 Q 3 785.3 40.72 8.28 25.87 36.79 7 Q 3 813 45.73 7.03 24.23 37.97 8 Q 3 875 42.94 7.44 23.48 35.31 10 Q 3 879 43.52 7.35 25.32 30.2 2 Q 3 902.5 38.88 7.31 24.8<		24	0	3	718.7	11.08	72		23.16	30.68	
26 0 3 714.6 17.02 8.58 20.4 28.48 1 Q 3 650.3 31.91 8.02 27.64 39.83 2 Q 3 661.9 35.48 10.53 26.34 36.36 3 Q 3 665.5 31.82 7.35 25.94 37.75 4 Q 3 728.4 35.3 8.08 25.96 36.65 5 Q 3 795.3 40.72 8.28 25.87 36.79 6 Q 3 795.3 40.72 8.28 25.96 36.65 7 Q 3 813.4 45.73 7.03 24.23 37.97 8 Q 3 835.1 49.56 8.09 23.57 39.37 9 Descending 3 875 42.94 7.44 23.48 30.14 1 Q 3 892.8 42.06 7.7		25	õ	3	672	11.34	7.51		21.95	32.9	
Cd C <thc< th=""> C <thc< th=""> <thc< th=""></thc<></thc<></thc<>		26	0	3	714.6	17 02	8.58		20.4	28.48	
2 Q 3 6619 35.48 10.53 26.34 36.36 3 Q 3 685.5 31.82 7.35 25.94 37.75 4 Q 3 728.4 35.3 8.08 25.96 36.65 5 Q 3 785.5 35.63 8.62 26.2 35.03 6 Q 3 795.3 40.72 8.28 25.77 39.79 8 Q 3 813 45.73 7.03 24.23 37.97 8 Q 3 875 42.94 7.44 23.48 35.31 9 Descending 3 879 43.53 8.39 23.68 30.14 1 Q 3 892.8 42.06 7.7 25.32 30.2 2 Q 3 902.5 38.88 7.31 24.8 27.8 3 Q 3 902.5 35.65 7.08 2		1	Q	3	650.3	31.91	8.02	_	27.64	39.83	
State 3 Q 3 685.5 31.82 7.35 25.94 37.75 4 Q 3 728.4 35.3 8.08 25.96 36.65 5 Q 3 785.5 35.63 8.62 26.2 35.03 6 Q 3 795.3 40.72 8.28 25.87 36.79 7 Q 3 813 45.73 7.03 24.23 37.97 8 Q 3 859.2 7.06 23.59 38.17 10 Q 3 875 42.94 7.44 23.48 35.31 11 Q 3 875 42.94 7.44 23.48 35.31 2 Q 3 902.5 88.8 7.31 24.8 27.8 3 Q 3 892.8 42.06 7.7 25.32 30.2 2 Q 3 902.5 38.26 7.08 24.66 <td></td> <td>2</td> <td>0</td> <td>3</td> <td>661.9</td> <td>35.48</td> <td>10.53</td> <td></td> <td>26.34</td> <td>36.36</td> <td></td>		2	0	3	661.9	35.48	10.53		26.34	36.36	
24 Q 3 728.4 35.3 8.08 25.96 36.65 5 Q 3 785.5 35.63 8.62 26.2 35.03 6 Q 3 795.3 40.72 8.28 25.87 36.79 7 Q 3 813 45.73 7.03 24.23 37.97 8 Q 3 835.1 49.56 8.09 23.57 39.37 9 Descending 3 875 43.94 7.44 23.48 35.31 10 Q 3 875 43.53 8.39 23.68 30.14 1 Q 3 875 43.53 8.39 23.68 30.14 2 Q 3 902.5 38.88 7.31 24.8 27.8 3 Q 3 899.7 38.26 7.08 24.66 25.45 4 Q 3 921.1 28.35 27.1 <td< td=""><td></td><td>3</td><td>õ</td><td>3</td><td>685.5</td><td>31.82</td><td>7.35</td><td></td><td>25.94</td><td>37.75</td><td></td></td<>		3	õ	3	685.5	31.82	7.35		25.94	37.75	
Program 5 Q 3 785.5 35.63 8.62 26.2 35.03 6 Q 3 795.3 40.72 8.28 25.87 36.79 7 Q 3 813 45.73 7.03 24.23 37.97 8 Q 3 835.1 49.56 8.09 23.57 39.37 9 Descending 3 875 42.94 7.44 23.48 35.31 10 Q 3 875 42.94 7.44 23.48 35.31 11 Q 3 879 43.53 8.39 23.68 30.14 1 Q 3 892.8 42.06 7.7 25.32 30.2 2 Q 3 902.5 38.88 7.31 24.8 27.8 3 Q 3 899.7 38.26 7.08 24.66 25.45 4 Q 3 92.1 28.91 <t< td=""><td>2</td><td>4</td><td>Q</td><td>3</td><td>728.4</td><td>35.3</td><td>8.08</td><td></td><td>25.96</td><td>36.65</td><td></td></t<>	2	4	Q	3	728.4	35.3	8.08		25.96	36.65	
PDEX 6 Q 3 795.3 40.72 8.28 25.87 36.79 7 Q 3 813 45.73 7.03 24.23 37.97 8 Q 3 835.1 49.56 8.09 23.57 39.37 9 Descending 3 859.2 7.06 23.59 38.17 10 Q 3 875 42.94 7.44 23.48 35.31 11 Q 3 879 43.53 8.39 23.68 30.14 1 Q 3 892.8 42.06 7.7 25.32 30.2 2 Q 3 902.5 38.88 7.31 24.8 27.8 3 Q 3 899.7 38.26 7.08 24.66 25.45 4 Q 3 923.1 22.93 4.81 28.33 18.67 7 Q 3 924.7 25.63 5.14 <t< td=""><td>Gal</td><td>5</td><td>Q</td><td>3</td><td>785.5</td><td>35.63</td><td>8.62</td><td></td><td>26.2</td><td>35.03</td><td></td></t<>	Gal	5	Q	3	785.5	35.63	8.62		26.2	35.03	
FX 7 Q 3 813 4573 7 03 24.23 37 97 8 Q 3 835.1 49.56 8.09 23.57 39.37 9 Descending 3 875 42.94 7.44 23.48 35.31 10 Q 3 875 42.94 7.44 23.48 35.31 11 Q 3 879 43.53 8.39 23.68 30.14 1 Q 3 892.8 42.06 7.7 25.32 30.2 2 Q 3 902.5 38.88 7.31 24.8 27.8 3 Q 3 899.7 38.26 7.08 24.66 25.45 4 Q 3 901 28.51 5.57 26.63 21.22 6 Q 3 923.1 22.93 4.81 28.33 18.67 7 Q 3 916.7 26.91 5.3<	4	6	0	3	795.3	40.72	8.28		25.87	36.79	
N 8 Q 3 835.1 49.56 8.09 23.57 39.37 9 Descending 3 859.2 7.06 23.59 38.17 10 Q 3 875 42.94 7.44 23.48 35.31 11 Q 3 879 43.53 8.39 23.68 30.14 1 Q 3 892.8 42.06 7.7 25.32 30.2 2 Q 3 902.5 38.88 7.31 24.8 27.8 3 Q 3 899.7 38.26 7.08 24.66 25.45 4 Q 3 849.1 39.63 5.43 23.5 26.35 5 Q 3 901 28.51 5.57 26.63 21.22 6 Q 3 923.1 22.93 4.81 28.93 18.67 7 Q 3 916.7 26.91 5.3 27.	art	7	õ	3	813	45.73	7.03		24.23	37.97	
9 Descending 3 859.2 7.06 23.59 38.17 10 Q 3 875 42.94 7.44 23.48 35.31 11 Q 3 879 43.53 8.39 23.68 30.14 1 Q 3 892.8 42.06 7.7 25.32 30.2 2 Q 3 902.5 38.88 7.31 24.8 27.8 3 Q 3 899.7 38.26 7.08 24.66 25.45 4 Q 3 849.1 39.63 5.43 23.5 26.63 5 Q 3 901 28.51 5.57 26.63 21.22 6 Q 3 923.1 22.93 4.81 28.33 18.67 7 Q 3 916.7 26.91 5.3 27.1 17.31 8 Q 3 924.7 25.63 5.14 26.84	14	8	õ	3	835.1	49.56	8.09		23.57	39.37	
10 Q 3 875 42.94 7.44 23.48 35.31 11 Q 3 879 43.53 8.39 23.68 30.14 1 Q 3 892.8 42.06 7.7 25.32 30.2 2 Q 3 902.5 38.88 7.31 24.8 27.8 3 Q 3 899.7 38.26 7.08 24.66 25.45 4 Q 3 849.1 39.63 5.43 23.5 26.35 5 Q 3 901 28.51 5.57 26.63 21.22 6 Q 3 923.1 22.93 4.81 28.33 18.67 7 Q 3 916.7 26.91 5.3 27.1 17.31 8 Q 3 924.7 25.63 5.14 26.84 17.19 9 Q 3 973.9 18.16 4.85 28.07 <td></td> <td>9</td> <td>Descending</td> <td>3</td> <td>859.2</td> <td>7.06</td> <td>0100</td> <td></td> <td>23.59</td> <td>38.17</td> <td></td>		9	Descending	3	859.2	7.06	0100		23.59	38.17	
11 Q 3 879 43,53 8.39 23,68 30,14 1 Q 3 892,8 42,06 7.7 25,32 30,2 2 Q 3 902,5 38,88 7,31 24,8 27,8 3 Q 3 899,7 38,26 7,08 24,66 25,45 4 Q 3 849,1 39,63 5,43 23,5 26,63 5 Q 3 901 28,51 5,57 26,63 21,22 6 Q 3 923,1 22,93 4,81 28,33 18,67 7 Q 3 916,7 26,91 5,3 27,1 17,31 8 Q 3 924,7 25,63 5,14 26,84 17,19 9 Q 3 973,9 18,16 4,85 28,07 15,84 10 Q 3 996,8 15,85 4,73 28,58 </td <td></td> <td>10</td> <td>0</td> <td>3</td> <td>875</td> <td>42.94</td> <td>7 44</td> <td></td> <td>23.48</td> <td>35.31</td> <td></td>		10	0	3	875	42.94	7 44		23.48	35.31	
1 Q 3 892.8 42.06 7.7 25.32 30.2 2 Q 3 902.5 38.88 7.31 24.8 27.8 3 Q 3 899.7 38.26 7.08 24.66 25.45 4 Q 3 849.1 39.63 5.43 23.5 26.35 5 Q 3 901 28.51 5.57 26.63 21.22 6 Q 3 923.1 22.93 4.81 28.33 18.67 7 Q 3 916.7 26.91 5.3 27.1 17.31 8 Q 3 924.7 25.63 5.14 26.84 17.19 9 Q 3 973.9 18.16 4.85 28.07 15.84 10 Q 3 996.8 15.85 4.73 28.58 14.61 11 Q 3 1000.3 15.33 4.4 28.72		11	õ	3	879	43.53	8.39		23.68	30.14	
2 Q 3 902.5 38.88 7.31 24.8 27.8 3 Q 3 899.7 38.26 7.08 24.66 25.45 4 Q 3 849.1 39.63 5.43 23.5 26.35 5 Q 3 901 28.51 5.57 26.63 21.22 6 Q 3 923.1 22.93 4.81 28.33 18.67 7 Q 3 916.7 26.91 5.3 27.1 17.31 8 Q 3 924.7 25.63 5.14 26.84 17.19 9 Q 3 973.9 18.16 4.85 28.07 15.84 10 Q 3 996.8 15.85 4.73 28.58 14.61 11 Q 3 1000.3 15.33 4.4 28.72 14.57 12 Q 3 995.5 14.79 3.59 28		1	Q	3	892.8	42.06	7.7		25.32	30.2	
3 Q 3 8997 38.26 7.08 24.66 25.45 4 Q 3 849.1 39.63 5.43 23.5 26.35 5 Q 3 901 28.51 5.57 26.63 21.22 6 Q 3 923.1 22.93 4.81 28.33 18.67 7 Q 3 916.7 26.91 5.3 27.1 17.31 8 Q 3 924.7 25.63 5.14 26.84 17.19 9 Q 3 973.9 18.16 4.85 28.07 15.84 10 Q 3 996.8 15.85 4.73 28.58 14.61 11 Q 3 1000.3 15.33 4.4 28.72 14.57 12 Q 3 992 15.81 3.77 28.45 15.38 14 Q 3 995.5 14.79 3.59 28		2	Q	3	902.5	38.88	7.31		24.8	27.8	
4 Q 3 849.1 39.63 5.43 23.5 26.35 5 Q 3 901 28.51 5.57 26.63 21.22 6 Q 3 923.1 22.93 4.81 28.33 18.67 7 Q 3 916.7 26.91 5.3 27.1 17.31 8 Q 3 924.7 25.63 5.14 26.84 17.19 9 Q 3 973.9 18.16 4.85 28.07 15.84 10 Q 3 996.8 15.85 4.73 28.58 14.61 11 Q 3 1000.3 15.33 4.4 28.72 14.57 12 Q 3 992 15.81 3.77 28.41 15.65 13 Q 3 995.5 14.79 3.59 28.45 15.38 14 Q 3 918.1 20.68 5.66		3	õ	3	899.7	38.26	7.08		24.66	25.45	
5 Q 3 901 28.51 5.57 26.63 21.22 6 Q 3 923.1 22.93 4.81 28.33 18.67 7 Q 3 916.7 26.91 5.3 27.1 17.31 8 Q 3 924.7 25.63 5.14 26.84 17.19 9 Q 3 973.9 18.16 4.85 28.07 15.84 10 Q 3 996.8 15.85 4.73 28.58 14.61 11 Q 3 1000.3 15.33 4.4 28.72 14.57 12 Q 3 992 15.81 3.77 28.41 15.65 13 Q 3 995.5 14.79 3.59 28.45 15.38 14 Q 3 918.1 20.68 5.66 918.1 20.68 5.66		4	õ	3	849.1	39.63	5.43		23.5	26.35	
6 Q 3 923 1 22 93 4.81 28.33 18.67 7 Q 3 916.7 26.91 5.3 27.1 17.31 8 Q 3 924.7 25.63 5.14 26.84 17.19 9 Q 3 973.9 18.16 4.85 28.07 15.84 10 Q 3 996.8 15.85 4.73 28.58 14.61 11 Q 3 1000.3 15.33 4.4 28.72 14.57 12 Q 3 992 15.81 3.77 28.41 15.65 13 Q 3 9925 14.79 3.59 28.45 15.38 14 Q 3 918.1 20.68 5.66 918.1 20.68 5.66	~	5	õ	3	901	28.51	5.57		26.63	21.22	
0 7 Q 3 916.7 26.91 5.3 27.1 17.31 8 Q 3 924.7 25.63 5.14 26.84 17.19 9 Q 3 973.9 18.16 4.85 28.07 15.84 10 Q 3 996.8 15.85 4.73 28.58 14.61 11 Q 3 1000.3 15.33 4.4 28.72 14.57 12 Q 3 992 15.81 3.77 28.41 15.65 13 Q 3 995.5 14.79 3.59 28.45 15.38 14 Q 3 918.1 20.68 5.66 918.1 20.68 5.66	d a	6	0	3	923.1	22.93	4.81		28.33	18.67	
8 Q 3 924.7 25.63 5.14 26.84 17.19 9 Q 3 973.9 18.16 4.85 28.07 15.84 10 Q 3 996.8 15.85 4.73 28.58 14.61 11 Q 3 1000.3 15.33 4.4 28.72 14.57 12 Q 3 992 15.81 3.77 28.41 15.65 13 Q 3 995.5 14.79 3.59 28.45 15.38 14 Q 3 918.1 20.68 5.66 918.1 20.68 5.66	0	7	0	3	916.7	26.91	53		27.1	17 31	
9 Q 3 973.9 18.16 4.85 28.07 15.84 10 Q 3 996.8 15.85 4.73 28.58 14.61 11 Q 3 1000.3 15.33 4.4 28.72 14.57 12 Q 3 992 15.81 3.77 28.41 15.65 13 Q 3 995.5 14.79 3.59 28.45 15.38 14 Q 3 918.1 20.68 5.66 918.1 20.68 5.66	rut	8	0	3	924 7	25.63	5.14		26.84	17.19	
10 Q 3 996.8 15.85 4.73 28.58 14.61 11 Q 3 1000.3 15.33 4.4 28.72 14.57 12 Q 3 992 15.81 3.777 28.41 15.65 13 Q 3 995.5 14.79 3.59 28.45 15.38 14 Q 3 918.1 20.68 5.66 918.1 20.68 5.66	Za	9	0	3	973.0	18.16	4.85		28.07	15.84	
11 Q 3 1000.3 15.33 4.4 28.72 14.57 12 Q 3 992 15.81 3.77 28.41 15.65 13 Q 3 995.5 14.79 3.59 28.45 15.38 14 Q 3 918.1 20.68 5.66 918.1 20.68 5.66		10	0	3	996.9	15.85	4.73		28.58	14.61	
11 12 Q 3 992 15.81 3.77 28.41 15.65 13 Q 3 995.5 14.79 3.59 28.45 15.38 14 Q 3 918.1 20.68 5.65 918.1 20.68 5.65		11	0	3	1000.2	15.33	4.4		28.72	14.57	
12 Q 3 995.5 14.79 3.59 28.45 15.38 14 Q 3 918.1 20.68 5.66 918.1 20.68 5.66		12	0	3	000.3	15.91	3.77		28.41	15.65	
14 0 3 9181 2068 566 9181 2068 566		12	0	3	905.5	14.70	3.50		28.45	15.38	
		1.5	0	3	918 1	20.68	5.66		918.1	20.68	5.66

between the second and third layer, commonly in the range of 35-60 m, varies from one sounding to another along the profile. This variation is less than that encountered in the first layer. This layer corresponds to what is called "basal confining system" which is dominated by slightly permeable mudstone, claystone, evaporite, and limestone units of the Fars formations in the Al Jaww Plain (as discussed in chapter four).

6.3.2 TEM cross sections

The model results are used to produce geoelectric resistivity cross-sections to depths below land surface of about 40 m. These geoelectric resistivity cross-sections represent the wadi profile and are composed of a series of EM-47 soundings located at intervals of 40 to 120 m to the side of the profile. Table (6.3) and the inset maps of Figs. (6.7b,6.8b,6.9b and 610 b) describe these TEM-profiles.

Site	Line	Total Profile Length (m)	Number TEM loops
	1	1350	26
Zaroub Gap	2	530	11
	3	700	14
	1	2250	19
Wadi Muraykhat	2	900	9
	1	900	11
Wadi Muthaymimah	2	1230	13
	3	520	6
Wadi Saa	1	1400	14
Wau Saa	2	500	12

I able tool Licen on a circle (I Lot / / I tonies wata at / L out it A tan	Table ((6.3)	Electromagnetic	(TEM-47)) Profiles data at	Al	Jaww	Plain
--	---------	-------	-----------------	----------	--------------------	----	------	-------

Loops model results are interpretated to form resistivity cross-sections termed wadi profiles. These wadi profiles provide valuable high-resolution subsurface information on the buried paleochannels in wadi gaps. This information would help understand the process of groundwater recharge in the shallow alluvial aquifer.

Four geoelectric cross-sections (Figs 6.7 to 6.10) are constructed along Wadi Muraykhat line-1, Saa line-1, and Wadi Muthaymimah line-2 and Zarub line-2, respectively. These geoelectric cross-sections provide additional information on the subsurface geometry of Quaternary alluvium along the eastern margin of Al Jaww Plain. The gaps at the wadis

Fig. (6.7a) Wadi Muraykhat line 1 geoelectric models showing the variation of resistivity with depth.

Fig.(6.7b) Interpreted resistivity cross section of Wadi Muraykhat line-1, Al Jaww Plain.

Fig.(6.8a) Wadi Saa line 1 geoelectric models showing the variation of resistivity with depth.

Fig.(6.8b) Interpreted resistivity cross section of Wadi Saa line-1, Al Jaww Plain.

Fig.(6.9 a) Wadi Muthaymimah line 2 geoelectric models showing the variation of resistivity with depth.

Fig.(6.9b) Interpreted resistivity cross section of Wadi Muthaymimah line-2, Al Jaww Plain.

Fig. (6.10a) Zarub line-2 geoelectric models showing the variation of resistivity with depth.

have wide, complex channel systems that are typically filled with 24 to 40 m of alluvium. The erosional contact at the base of the alluvium is generally irregular and broadly undulating, with relief locally up to 40 m, but commonly in the range of 5 to 10 m. These irregularities define one or more, variably distinct, deeper subchannels with typical widths of 200 to 500 m and depths of 45 to 60 m (see cross-sections of Wadi Muraykhat line-1 at locations of loop 5 and 6 and between 11 and 14, (Fig.6.7b). The same feature is identified beneath loops 8 to 10 along the profile of Wadi Muthaymimah line-2 (Fig. 6.9b), with 24 to 40 m of alluvium of coarse materials which are characterized by relatively high resistivities.

Zaroub line-2 (Fig. 6.10b) is not well situated to show channel geometry as it crosses the wadi at an oblique angle. However, this cross section shows that there can be variations in depositional environment along the wadi axis. This suggests that for a more detailed analysis of channel geometry several traverses prependicular to the wadi axis are needed.

The constructed electromagnetic profiles can be used to infer lateral variations in the thickness and resistivity of the model layers. In EM models, the uppermost resistive layer tends to thin and the basal resistive layer tends to thick in the deep portions of buried paleochannels beneth active wadis (Figs. 6.7b & 6.9b). These paleochannels are promising sites of drilling water wells as they contain appreciable thickness of water bearing formation which are recharged from the surrounding mountain region.

These geoelectric cross sections are in a good match with the geological cross sections discussed in chapter four. Morever, they confirm the depositional framework of Quaternary alluvium at Al Jaww Plain, where wadis exist from the Oman Mountains through narrow bedrock gaps and extend to the west across narrow flanking piedmont fans (see the geologic map, Fig. 2.4). However, wadi systems disappear beneath the eolian sand cover and there is no defined expression of surface channels along the westward projection of the wadis in the interdune areas.

6.4. Borehole Geophysics (Wireline Logging)

Borehole geophysics offers a great deal in the way of practical application to hydrogeology. Borehole geophysical methods were developed primary in the petroleum industry and virtually in all oil and gas wells. In the water well industry the use of geophysical logging is generally restricted to either research projects or high capacity municipal and industrial wells.

Borehole geophysics is considered as the most reliable and accessible geological-

geophysical method for determining rock petrophysics and areas of high porosity and permeability, that would produce high quantities of groundwater. However, zones of an aquifer with high salinity water and the regional groundwater flow pattern can also be identified if a number of wells are used. In addition, it can be used for locating the saline /fresh water interface in the coastal regions. It is considered as one of the best branches of geophysical science treatable by computer for the ability of transferring the usable set of logs into a continuous sequence of numbers and digits.

On the other hand, the existing lithological columns of the drilled wells do not replace using the wireline logs. This is because the reliability of lithologic well log depends on the method of drilling and sample recovery as well as the knowledge and skills of the person who is making the log. There are also many existing wells for which records of the subsurface geology are available.

Generally, a suite of geophysical logs is made rather than only a single type. The method tends to be a complementary, one may confirm another, and certain interpretations are made on the bases of two or more logs.

Wireline logs have been utilized in this study comprising conventional Resistivity, Gamma Ray, Self-Potential and Temperature logs of 7 logged boreholes. Locations of these wells are combined with VES location (Fig. 6.1).

Petrophysical logs are analyzed to determine the depth to water table, depths and thickness of permeable rock strata, resistivity of formation water in the permeable strata and hydraulic properties of penetrated formations. Permeable zones were identified by inspection of the resistivity. Permeability in clastic material is often a function of clay content. Most permeable aquifer material, such as sand and gravel are resistive and can be identified on the resistivity log. However, water resistivity and clay conductivity also affect the resistivity log.

Figs. (6.11 to 6.13) present plots of the different type of geophysical logs recorded for boreholes GWP-398, GWP-255 and GWP-251 respectively.

Inspection of these plots indicate remarkable log responses due to lithological changes. The hydrogeological conditions are clearly demonstrated. Table (6.4) summarizes the description of lithology versus depth for these three wells.

Fig. (6.11) Petrophysical logs for well GWP-398.

Fig. (6.12) Petrophysical logs for well GWP-255.

Fig. (6.13) Petrophysical logs for well GWP-251.

Well No.	Depth (ft)	Description of Lithology
1	50	Gravel, weakly cemented
	60	Clay, sandy
80	140	Mudstone
-39	150	Siltstone, calcareous, gray
AP.	180	Mudstone
0	190	Limestone, yellowish brown
	210	Mudstone
	220	Siltstone, calcareous, gray
	50	Gravel, sandy
	70	Marl
21	80	Gravel
P-2	95	Claystone
MO	110	Limestone
	310	Mudstone
	330	Limestone
Ś	40	Gravel
-25	80	Gravel, clayey
WP	195	Clay, yellow, sticky
0	253	Clay, gray, silty, calcareous

Table (6.4) Lithology description for the wells GWP-398, GWP-251 and GWP-2551.

Guided with lithological records of these boreholes (Table 6.4) and the geophysical log plots (Figs. 6.11 to 6.13), it could be concluded that:

- The aquifer consists mainly of gravel and sandy gravel interbeded with mud as indicated from resistivity and gamma logs.
- 2- The aquifer is underlain by mudstone and claystone, which may act as a barrier for vertical percolation of groundwater. Resistivity and gamma logs along GWP-398 are clearly defining this mudstone layer at depth of 200 ft (Fig. 6.11).
- 3- Due to the mud intercalations, the groundwater is not restricted to a limited thickness within the aquifer. For this reason, the geophysical logs should be considered when finalizing the well for production where the screen must be faced by permeable formations (less shaly). This feature is remarkable from resistivity logs of GWP-398 at intervals 120 to 140 ft and from 150 to 185 ft (Fig. 6.11).

Chapter VII

SUMMARY AND CONCLUSIONS

Chapter 7

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary

Water resources constitute the most important element for the sustainable development. Water has always been regarded as the sources of life, without which no life could exist on the earth. Availability of water with sufficient quantities and proper qualities is vital for agriculture and industrial development.

In arid and semi arid regions water is very scarce and is thus valuable. Rainfall events are scattered and infrequent. Surface water runoff is very limited. Surface water bodies are almost absent. Due to the harsh climatic conditions, evaporation rates are very high. Therefore surface water resources do not contribute significantly to the water budget. Groundwater resources are thus critical for the nation's development. In the absence of desalination plants and other non-conventional water such as treated wastewater, groundwater would be the only freshwater resource.

The UAE is located in an arid region. The groundwater constitutes the only natural water resource in the country. Groundwater has been overexploited to meet the increasing water demands. Despite the wide expansion in the construction of desalination plants in the different Emirates, the groundwater resources still contribute by the largest share in the water budget of the country. The importance of the subject matter of this thesis can not, therefore, be overemphasized.

This study is devoted to the quantitative and qualitative assessment of the groundwater resources in Al Jaww Plain which is located in the eastern part of Al Ain City. It represents one of the main plains at Al Ain with an area of about 500 km². The study includes a comprehensive review and assessment for various aspects related to groundwater resources in Al Jaww Plain including climatology, hydrology, hydrogeology, and geochemistry of the system.

The thesis is composed of seven chapters. Chapter One presents an introducting for the subject. The physical location of the UAE and the prevailing climatic conditions including evaporation and evapotranspiration rates, mean annual temperature, relative humidity and wind speed and directions are presented. The conventional and nonconventional water resources in the UAE are quantified based on previous investigations. These sources include rainfall, seasonal floods, falajes, groundwater, springs, as well as desalination water and treated wastewater (reclaimed water). Emphasis is then devoted to the quantitative assessment of the water resources in Al Ain area. The aim of the current study and it is expected results are also included at the end of this chapter.

Chapter Two is devoted to the geological and geomorphological aspects of Al Ain area. A comprehensive review for the classification of the geomorphic units in Al Ain area including mountains, gravel plains, drainage basins, sand dunes, interdune areas, and inland sabkhas is presented in details. The stratigraphy of Al Ain area and the rock sequence from Cretaceous to Quaternary are described. The focus is then directed to the geology of Al Jaww Plain including fluvial deposits, desert plain deposits, mixed deposits, sabkha deposits and aeolian sand. The chapter is concluded with the structural setting of Al Ain area compressing the structures of Oman Mountains and the northern and southern structural regimes.

Chapter Three presents a comprehensive review for the different techniques employed in geophysical investigations and electrical soundings. The Direct Current Resistively method is discussed and its basic concepts and surveying procedures are presented. The principles of Time Domain Electromagnetic techniques for resistively sounding are discussed. The different methods for Borehole Geophysics including S.P. logging, point resistance logging, resistively logging, natural gamma ray logging, neutron log, sonic log and gamma-gamma ray or density log are presented.

The hydrogeological aspects of AI Ain constitute the subject matter of Chapter Four. The prevailing climatic conditions in AI Ain area including temperature, rainfall, humidity, evaporation, and aridity are outlined. The groundwater bearing formations encompassing the Quaternary aquifer and Jabal Hafit limestone aquifer are presented. Several cross sections were deduced for Al Jaww Plain. The groundwater flow system in the study area and the historical fluctuations of the groundwater levels are discussed at the end of this chapter.

Chapter Five is devoted to the hydrogeochemical aspects and groundwater in the study area. The physical properties including the hydrogen ion concentration (pH), electrical conductivity, total salinity distribution and total hardness and the chemical properties including the major cations and anions are discussed. The distribution of various physical and chemical elements and the ion dominance in the groundwater are elaborated. The water genesis including analyses by Sulin's graph and Trilinear diagram is discussed. The chapter is concluded with an assessment of the suitability of groundwater for irrigation purposes based on SAR, EC, sodium content and residual carbonate.

Chapter Six elaborates the field activities and the geophysical investigations that have been conducted within the course of this investigation. The results of vertical electrical sounding along with the quantitative interpretation for the apparent resistivity-sounding curve are presented. Geoelectrical sections are deduced and discussed. The time domain electromagnetic results are presented and analyzed. Available data for the borehole geophysics are discussed.

Chapter Seven presents a summary of all the activities conducted within the course of this study. The conclusions and main findings of the study are presented. Recommendations for future investigations are also made.

7.2 Conclusions

Based on the integration of borehole data, Vertical Electrical Sounding data, Electromagnetic (TEM), borehole geophysics, meteorological data along with the review of the geomorphological and geological information of study area, the following conclusions are made:

- 1- Al Jaww Plain is characterized by a relatively thin surficial aquifer of slight to moderate permeability overlying a thick basal confining unit of very low permeability. The thickness of the aquifer ranges from zero to more than 100 meters. The aquifer is composed of interbeded rock and sediment. Rainfall in the Oman Mountains and Jabal Hafit contributes to the recharge of the Quaternary system.
- 2- The hydrogeological situation at Al Jaww Plain is affected by main structural elements which are north to northwest trending folds associated with northeast-dipping thrust and reverse faults.
- 3- Groundwater flow is generally from East to West. However, this flow system is affecting by local features such as Jabal Hafit, where a groundwater mound is encountered on the east flank of Jabal Hafit. This mound is recognized on the developed water level maps. The comparison of 1995 through 2002 water level maps shows some decline in the water levels which is associated with the decrease of recharge rate (mainly rainfall) and the increase of groundwater pumping.
- 4- The total dissolved content of the water shows a general increasing trend from east to west. The fresh water is associated with Wadi courses locations. An area of high total dissolved solids content is encountered west from Jabal Hafit. This increase of TDS is attributed to the brine moving upward near Ain Al Faydah. This is also attributed to the existence of sabkhas in areas of low elevation west of Jabal Hafit, at locations where the water table is near or at the land surface.

- 5- Vertical Electrical Soundings (VES) results portrayed the lithostratigraphy beneath Al Jaww Plain. A ridge of relatively high resistivity at depths of 200-500 m, related to gypsum with clay intercalation, is traced. The constructed cross section reveals a trend of thick shale-filled faults which reach a depth of 900 m. Shall aquifer of quaternary has been delineated as channel-like structure. According to these results, no deep aquifer of importance is present.
- 6- Time Domain Electromagnetic data along wadi profiles at Al Jaww Plain has been successfully traced the erosional unconformity that crosses Tertiary to Cretaceous rocks. These unconformities represent the paleochannels in the bed rock that were formed in the geological past by the ancient wadis. These paleochannels are promising targets for fresh groundwater, as they contain appreciable thickness of water bearing formations that are recharged from the surrounding mountain region.
- 7- The borehole geophysics identified the mudstone and claystone, which act as barriers for vertical percolation of groundwater. Also the permeable zones and shaly zones within the aquifer are identified. The geophysical logs should be considered when finalizing the well for production in which the screen must be placed at the permeable formations (less shaly).

7.3 Recommendations

- Recharge areas should be monitored to prevent developments that might reduce recharge or contaminate the recharge area.
- 2- A comprehensive water resources database for information regarding well locations, meteorological data, water quality, water levels and water use should be developed. This database should be accessible by researchers and scientists in the different fields of water resources.
- 3- A monitoring system for groundwater levels and quality should be established, maintained and updated.
- 4- The construction of new groundwater pumping wells should be fully controlled by local authorities. The pumping rates should also be monitored to avoid over pumping practices.
- 5- Detailed analysis of paleochannel geometry should be done. Several TEM traverses for perpendicular to the wadi axis are recommended.
- 6- The treated wastewater can be fully utilized in the irrigation and horticulture. This would help sustain the groundwater resources at Al Jaww Plain.

a construction of the second se

and the second second

- Constant

and Ear

References

- Abdelghany, O., (in prep.). Contribution to the Late Cretaceous/Tertiary Stratigraphy, West of the Northern Oman Mountains.
- Abou El-Enin, H.S., (1993). Structurally controlled features in Jabal Hafit. Bull. Geog. Soc., Kuwait, v.151, p1-63.
- Abu-Zeid, M.M., Baghdady, A.R. and El-Etr, H.A. (2001). Textural attributes, mineralogy and provenance of sand dune fields in the greater Al Ain area, United Arab Emirates, Journal of Arid Environment, V 48, (4), p 475-499.
- Al-Shamsei, M.H., (1993). Drainage basins and flash flood hazards in Al Ain area, United Arab Emirates. M.Sc. Thesis, United Arab Emirates University, 151p.
- Alsharhan, A.S., Rizk, Z.A., Naim, A.E.M., Bakhit, D.W., and, AlHajari, S.A., (2001). Hydrogeology of An Arid Region: The Arabian Gulf And Adjoining Areas, Elsevier, Publishing Company, New York, 331p.
- Baghdady, A.R., (1998). Petrography, Mineralogy, and Environmental Implications of the sand dune fields of the greater Al Ain area, United Arab Emirates, Ph.D. Thesis, Geol Dep., Fac. Sci., Ain Shams Univ., Egypt, 304 p.
- Bakhit, D.W.M., (1998). Environmental and management problems in hydrology of the United Arab Emirates. Ph.D. Thesis, University of South Carolina, Columbia, 407p.
- Boote, D.R.D., Mou, D. and Waite, R.I., (1990). Structural evolution of the Suneiyah foreland, Central Oman Mountains. In: Rovertson, A.H.F., Searle, M.P. and Ries, A. C. (edits.). The geology and tectonics of the Oman Region. Geol. Soc. London, Spec. Publ., V49, p397-418.
- Bown, T.M., Hadley, D.G., Brouwers, E.M., and Imes, J.L., (1991). Neogene-Quaternary tectonosedimentary evolution of a part of eastern Abu Dhabi Emirate, UAE: Geol. Soc. Am., Abstracts with programs, 1991 Annual Meeting, V. 23, no.5, p 289.
- Chebotarev, I.I., (1955). Metamorphism of natural water in the crust of weathering. Geochim et Cosmoch. Acta, V 1.7, part I, p 22-48. Part II, p 137-170 and Part III p 148-212, London and New York.
- Coleman, R.G., (1981). Tectonic setting for ophiolite obduction in Oman. Journal of Geophysical Research, V 86, no B4, p 2497-2508.
- Davis, S.N. and De Weist, R.J. (1966). Hydrogeology. John Wiley and Sons, New York, 463p.
- Dobrin, M.B., (1976). Introduction to geophysical prospecting. Third ed., Mc Graw-Hill Co., New York.
- Dune, L.A., Manoogian, P.R., and Pierini, DF., (1990). Structural style and domains of the northern Oman Mountains (Oman and United Arab Emirates). In Robertson, A.H.F., Searle, M.P., and Ries, A.C., (eds), The Geology and Tectonics of Oman Region. Geological Society of London Special Publication (49), p375-386.
- Eaton, F.M., (1950). Significance of carbonates in irrigation water. Soil. Sci., v 69, no. 2, p 123-133.
- El-Saiy, A.K., (2002). Petrology, geochemistry and framework of sedimentation of the Quaternary aquifer rocks north of Al Ain. UAE. M. Sc. Thesis, Geol. Dep., Fac. Sci., Suez Canal University, 203p.
- El-Shami, F., (1990). The hydrochemistry of the spring at Ain bu Sukhnah, UAE. Arab J. Scient. Res., V 8 no 1, p 33-49.
- Embabi, N.S., (1991). Dune types and patterns in the United Arab Emirates using Landsat TM-data. 24th Intern. Symp. on Remote Sensing of Environment, Rio dejaneiro, Brazil, p 27-31.
- Emberger, L. (1955). Afrique due Nord-Desert Ecologic Vegetate Compte de recherches. Plant Ecology Reviews of Research, Paris, UNESCO.
- Fetter, C.W., (1988). Applied hydrogeology: Macmillan Publishing Company, New York, second edition, 592p.
- Fetter, C.W., (1994). Applied hydrogeology, 3^d edition, Prentice-Hall, Inc. A Simon & Schuster Company, Englewood Cliffs, New Jersey .07632, USA, 691 p.
- Fitterman, D.V., Menges, C.M. Al Kamali, A.M., and Jama, F.E., 1991.Electromagnetic mapping of buried paleochannels in eastern Abu Dhabi Emirate, U.A.E: Geoexploration, V.27, p.111-133.

- Garamoon, H.K., (1996). Hydrogeological and geomorphological studies on the Abu Dhabi-Dubai-Al Ain triangle, UAE. Unpublished Ph.D. thesis, Geol. Dep., Fac. Sci., Ain Shames University, Egypt, 277p.
- GeoConsult, and Bin Ham Well Drilling Establishment, (1985a): Project 21/81, Drilling of deep water wells at various locations in the UAE, V I, general part: UAE, Ministry of Agriculture and Fisheries, Water and Soil Department, unpublished report on file at Ministry of Agriculture and Fisheries, Dubai, 131p.
- GeoConsult, and Bin Ham Well Drilling Establishment, (1985b): Project 21/81, Drilling of deep water wells at various locations in the UAE, V III, 1-Masfut, 2-Al Ain, 3Al Wagan, 4Medeisis, 5Liwa: UAE, Ministry of Agriculture and Fisheries, Water and Soil Department, unpublished report on file at Ministry of Agriculture and Fisheries, Dubai, 87 p.
- Gibb, S.A. and Partners, (1970). Water resources survey, supplement to interim report, subsurface investigations in Al Ain area: Department of Development and Public Works, Abu Dhabi, 608p.
- Glennie, K.W., Boeuf, M.G.A., Huhger Clarke, M.W., Moody Stuart, M., Pillar, W.F.H. and Reinhardt, B.M. (1974). Geology of the Oman Mountains. Koninklijk Nederlands Geol-Minjb. Genootschap. (Transactions of the Royal Dutch Geological and Mining Soc.), p 31-423.
- Gymer, R. G. (1973). Chemistry: An Ecological Approach, Harper and Row, New York.
- Habberjam, G.M., (1979). Apparent Resistivity Observation and the Use of the Square array Techniques. Geoexploration Monograph, 9, Borntraeger, Berlin, 152 p.
- Hamdan, A.A., and Anan, H.S. (1989). The Paleocene tecto-sedimentary events of Jabal Malaqet., East of Al Ain., West of the Northern Oman Mountains. M.E.R.C., Ain Shams Univ., Earth Sci. Ser., (3), p 209-214.
- Hamdan, A.A., and Anan, H.S. (1993). Cretaceous/Tertiary boundary in the United Arab Emirates. M.E.R.C., Ain Shams Univ., Earth Sci. Ser., (7), p 223-231.
- Hamdan, A.A., and Bahr, S.A. (1992). Lithostratigraphy of the Paleogene succession of northern Jabal Hafit., Al-Ain area., UAE, M.E.R.C., Ain Shams Univ., Earth Sci. Ser., (6), p 201-224.
- Hamdan, A.A., and El-Deeb, W. Z., (1990). Stratigraphy of the Paleogene succession of Jabal Malaqet, West of the Northern Oman Mountains., Fac. Sci., UAE Univ., (2), p30-39.
- Hunting Geology and Geophysics Ltd. (1979). Report on a mineral survey of UAE., Al Ain Area, Ministry of Petroleum and Mineral Resources., Abu Dhabi., (9), 1-22p.
- Hyde, L.W., (1992). Interregional advisory mission of water resources management. Abu Dhabi Emirate: United Nations Department of Technical Cooperation for Development. 86p.
- HydroConsult, (1978): Reconnaissance report and development proposals. Abu Dhabi, (UAE) Eastern Region water resources: Government of Abu Dhabi, Ministry of Petroleum and Mineral Resources Report, 126 p.
- Jorgensen, D.G., and Petricola, Mario, (1993). Petrophysical analysis of geophysical logs, National Drilling Company- U.S. Geological Survey. Groundwater Resources Project for Abu Dhabi, United Arab Emirates: U.S. Geological Survey Open-File Report 93-085, 58p
- Khalifa, A.A., (1995). Surface water and groundwater resources in UAE. Culture and Science Society, Meeting on Water Balance in U.A.E., Dubai, 12p.
- Khalifa, M.A., (1997). Hydrogeology of the geothermal fractured-rock well field at Jabal Hafit, Abu Dhabi Emirate. Proceedings of the 3rd Gulf Water Confer, Muscat, Sultanate of Oman, V.1,p. 125-140.
- Koefoed, O.O. (1968). Geosoinding principles, 1- Resistivity Sounding Measurements. El-Sevier, Amsterdam.
- Lippard, S.J., Shelton, A.W., and Gass, I.G., (1986). The ophiolite of northern Oman. The Geological Society of London, Memoir no. 11, 178 p.
- Lowrie, W., (1997). Fundamentals of Geophysics. Cambridge University press.
- Mathess, G. (1982). The properties of groundwater. New York: John Wiley and Sons.
- Mayboom, P., (1966). Groundwater studies in the Assiniboine River drainage basin part I. The Evolution of a Flow System in South central Saskatchewan. Geol. Surv. Can. Bull., V 139,65p.
- McNeil, J.D. (1980). Electromagnetic terrain conductivity measurements at low induction number. Golden, Colorado, Geonics Technical Note TN-6, p15.

- McNeill, J.D. (1994). Principles and application of time domain electromagnetic techniques for resistivity sounding. Technical Note TN-27, Geonics limited, Ontario, Canada.
- Meinzer, O.E., (1923). The occurrence of groundwater in the United States with discussion of principles, U.S. Geological Survey, Water Supply Paper, 492p.
- Meju, M.A. (1992). An effective ridge regression procedure for resistivity data inversion. Computers & Geosiences, 18, (2/3), 99-118.
- Menges and Woodward, US Geological Survey and United Arab Emirates National Drilling Company, (1993). Ground Water Resources of Al Ain area, Abu Dhabi Emirate. Unpublished administrative report 93-001, National Drilling Company, Abu Dhabi, UAE, 315 p.
- Ministry of Agriculture and Fisheries, United Arab Emirates, (1986a). Drilling of deep water wells at various locations in U.A.E, Main Report, V1, MAF, U.A.E. Dubai, 214p.
- Ministry of Agriculture and Fisheries, United Arab Emirates, (1986b). Drilling of Deep Water Wells at Various Locations in U.A.E., Main Report, V8, MAF, U.A.E., Dubai, 107p.
- Ministry of Agriculture and Fisheries, Water and Soil Department, (1985). Project 21/81, Drilling of deep water wells at various locations in the UAE, VI, general part. unpublished report on file at Ministry of Agriculture and Fisheries, Dubai, 131p.
- Ministry of Communications United Arab Emirates, (1996). U.A.E. Climate. Cultural Foundation Publications, Abu Dhabi, 240 p.
- Nath, S.K., Patra, H.P. and Shahid, Sh. (2000). Geophysical prospecting for groundwater. A.A. Balkema, Rotterdam, Netherlands, 256pp.
- National Atlas of U.A.E. (1993). UAE Univ., Al Ain., UAE.
- Nolan, S.C., Skeleton, P.W., Clissold, B.P. and Smewing, J.D. (1990). Maastrichtian to Early Tertiary stratigraphy and paleogeography of the central and northern Oman Mountain. In: Robertson., A.H.F., Searle, M.P., and Ries, A.C., (edits). The Geology and tectonics of the Oman Region. Geological Society of London, Special publication, (49), p 495-519.
- Parasnis, D. (1997). Principles of Applied Geophysics. London: Chapman & Hall.
- Patton, T.L. and O'Conner, S.J. (1998). Cretaceous flexural history of Northern Oman Mountains foredeep., United Arab Emirates., AAPG Bull., (72), p797-809.
- Piper, A. M. (1944). A graphic representation in the geochemical interpretation of water analyses. Trans. Amer. Geophysical Union, V. 25, p. 914-928.
- Reynolds, J.M., 1997. An introduction to Applied and Environmental Geophysics, John Wiley & Sons. pp. 796.
- Rizk, Z.S., (1998). Falajes of United Arab Emirates: Geological Settings and hydrogeological characteristics. Arab of the Jour. Sci. Eng., King Fahd University for Petroleum and Minerals, Dhahran, Saudi Arabia, V.23(1c), p.3-25.
- Rizk, Z.S., (1999). A review article on water resources in the United Arab Emirates. Unpublished Article, Department of Geology, Faculty of Science-Menoufia University, Shebin El Kom, Egypt, 44p.
- Rizk, Z.S., Alsharhan, A.S. and Shino, S., (1997). Evaluation of groundwater Resources of United Arab Emirates: Proceedings of 3rd Gulf Water Conference, Muscat, Sultanate of Oman, v. 1, p. 95-122.
- Rizk, Z.S., and El Etr, H.A., (1997). Hydrogeology and hydrogeochemistry of some springs in the United Arab Emirates. Arab Jour. Sci. Eng., King Fahd University for Petroleum and Minerals, Dhahran, Saudi Arabia, v.22 (1c), p.95-111.
- Rizk, Z.S., Garamoon, H.K. and El Etr, H., 1998. Contribution to hydrogeochemistry of the Quaternary aquifer in the Al Ain area, United Arab Emirates. In: A.S. Alsharhan, K.W. Glennie, G.L. Whittle and C.G.ST.C. Kendall (eds.), Quaternary Deserts and Climatic Change, Published by Balkema, Rotterdam, p.439-454.
- Robertson, A.H.F., Searle, M.P., and Ries, A.C., eds., (1990). The geology and tectonics of the Oman Region: Geological Society of London Special publication no. 49, p845.
- Robinson, E.S., and Courth, C. (1988). Basic Exploration Geophysics, Cambridge University Press.

Schlumberger (1981). United Arab Emirates and Qatar: Schlumberger well Evaluation Conference, p271.

- Searle, M.P., Cooper, D.J.W., and Watts, K.F., (1990). Structure of the jebal Sumeini-Jebal Ghawil area, northern Oman in Robertson, A.H.F., Searle, M.P., and Ries, A.C., eds., The Geology and Tectonics of the Oman Region: Geological Society of London Special Publication no (49), p361-374.
- Sharma, P.V., (1997). Environmental and Engineering Geophysics, Cambridge University Press.
- Sulin, U. A. (1948) Basis of classification of natural water. Moscow, U.S.S.R. (In Russian).
- Teleford, W.M., Geldart, L.P., Sheeriff, R.E and Keys, D.A. (1990). Applied Geophysics. 2nd edn. Cambridge: Cambridge University Press.
- Terao, H., Yoshioka, R. & Kato, K. (1993): Groundwater pollution by nitrate originating from fertilizer in kakamigahara heights, central Japan. 29th Inter. Geol. Congress, International Association of Hydrogeologists, Kyoto, japan 51-62.
- Terrates Ltd., (1973). Abu Dhabi Mineral Survey. Final Report (unpublished). Thomas, A.N. (1950). The Asmari Limestone of southwest Iran. Rept. 18th International geological congress., London., (6), p35-55.
- Todd, D.K., (1980). Groundwater hydrology: John Wiley and Sons, New York (second edition), 535 p.
- U.S. Salinity Laboratory Staff (1954). Diagnosis and improvement of saline and alkaline soils. U. S. Dept. Agri., Handbook No. 60, Washington, D. C., 60 p.
- US Geological Survey and United Arab Emirates National Drilling Company, (1993). Ground Water Resources of Al Ain area, Abu Dhabi Emirate. Unpublished administrative report 93-001, National Drilling Company, Abu Dhabi, UAE, 315 p.
- Van Nostrand, R.G., and Cood, K.L., (1966). Interpretation of resistivity data. U.S.G.S. Prof. Paper No. 499.
- Warburton, J., Burnhill, T. J., Graham, R.H. and Isaac, K.p. (1990). The evalotion of the Oman Mountains foreland basin. In: Robertson, A.H.F., Searle, M.P. and Ries, A.C. (edits). The geology and tectonics of the Oman Region. Geological Society of London Special publication no., Publ., (49), 419-427p.
- Warrak, M. (1986). Structural evolution of the Northern Oman Mountain front, Al Ain Region. Symposium on the hydrocarbon potential of intense thrust zones. Ministry of Petroleum and Mineral Resources., Abu Dhabi., (2), p375-431.
- Warrak, M. (1987). Synchronous deformation of neoautochthonous sediments of the Northern Oman Mountains. 5th Conf. S.P.E., Bahrain., p129-136.
- White, W.B., (1977). Conceptual models for carbonate aquifers: Revisted in Dilamarter, R.R., and Csallany, S.C. (edits), Hydrologic problems in krast region, U.S., Bowing Green, Kentucky, Western Kentucky University, p. 176-187.
- Whittle, G.L. and Alsharhan, A.S. (1994). Dolomitization and chertification of the Early Eocene Rus Formation in Abu Dhabi, UAE. Sedimentary Geology, (91), p. 273-285.
- Wilcox, L. V. (1955). Classification and use of irrigation water U. S. A., Salinity Lab., Circulation No. 969.
- Woodward, D.G., and Menges, C.M., (1991a). Application of uphole data from petroleum seismic surveys to groundwater investigation, Abu Dhabi (United Arab Emirates): Geoexploration, V.27, p. 193-212.
- Woodward, G.L. and Alsharhan, A.S. (1994). Dolomitization and chertification of the Early Eocene Rus Formation in Abu Dhabi, UAE. Sedimentary Geology, (91), p. 273-285.
- Worsley, R. R. (1929) The hydrogen ion of Egyptian soil. Min. Agri., Bull. No. 83, pp. 1-33, Egypt.
- Zohdy, A.A.R. (1974). Use of dar Zarrouk curves in the interpretation of vertical electrical sounding data. U.S. Geol, Surv. Bull., 1373-D, 41.

Ľ

	1	10000	1	1	1	1					1	-	-		
Well Num	UTME	UTMN	TDS	EC at 25 C	pH	Units		Cati	ions		Total		Anions		Total
			mg州	m.mhos/cm			Na	CA	Mg	K	Cations	CL	S04	HCO3	Anions
17	388463	2674345			8.25	ppm	41	18.5	28.3	2.4		78.75		144	CONTRACTOR.
						epm	1.78338408	0.923154	2.3287389	0.061381	5.096657789	2.2214386		2.360656	4.582094384
					1	opm%	34.9912463	18.11292	45.691491	1.20434		48.480857	-	51.51914	
GWP 018	393546	2676791	299.5	502.5	7.8	ppm	34	18.7	33.7	2.2		66.7	38	144	
and the second second						epm.	1.47890387	0.933134	2.773092	0.056266	5.241395545	1 8815233	0.791667	2 360656	5.033845677
						epm%	28 2158417	17 80315	52.907512	1.073492		37.377452	15.72688	46.89567	
20.	395300	2664216	1306		7.4	ppm	340	47	46	36		405	295		
						epm	14 7890387	2 345309	3 7852294	0.920716	21.84029358	11:424542	6.145833	0	17 57037494
			-			opm%	67 7144685	10.73845	17 331403	4.215676		65.021615	34.97838	0	
68	395194	2664639	.804		11.6	ppm	85	150		31		85	260		
	-				_	sbur	3.69725968	7.48503	0	0.792839	11.97512849	2.3977433	5.416667	0	7.814409967
						epm%	30.8744886	62.5048	0	6.620713		30 683613	69.31639	0.	
198	370366	2668998	13000	20000	113	ppm	3427	1205	42	184		6449.6	1600		
						epm	149 064811	60 12974	3.456079	4 705882	217.3565127	181 93512	33 33333	0	215.2684532
			-			epm%	68.5807888	27.66411	1.5900508	2 165052		84.515458	15.48454	0	
201	374810	2677881	-			- ppm								1	
			-		-	abur									
0.02	070045	0535355			-	epin%									
202	372345	2676700			-	ppm			-						
			-		-	ebur									
201	101010-01010	mental and	1000	0.000	- mar	epm%	Canal C		Antenno -				CALCOLD .		
204	377637	2661181	1560	2400	1.225	ppm	345	150.4	46 605	8		535.795	298.41	274.75	
	-		-			epm	15.0065246	7.50499	3.8350134	0.204604	26.55113155	15,114104	6.216875	4 504098	25 83507773
2023	072260	0077670	0240	0000		epm%	00.019341	28 26618	14 44 38 79	0.770602		58 50226	24.0637	17.43404	
2004	373353	2011512	0249	9600	1.03	ppm	1840	311.85	348.35	30		2455.81	2217	490.4	
	_					epm	80.0347977	15,56138	28.664884	0 767263	125:0283222	69.275317	46 1875	8.039344	123-5021616
2060	373223	20722223	1775	29205	-	epm%	64 0133342	12 44628	22.926712	0.613672		56.092393	37 39813	6 509477	
2008	213305	2011313	4745	1.300	0	ppm	1200	218	289.14	30		1761.2	1270	405	
						epm	52 1906072	10.87824	23792035	0.767263	87.63474942	49.681241	26.45833	6.639344	82 77891878
2460	304206	9620065	620	000	75	epm?#	59.901541	12.41316	2/ 149/73	0.875524		60.01678	31.96265	B 020574	
2400	334200	2000303	- GeW	01/1/	1.2	ppm	- CO	410	30.74	4	0.01015310	101.2	59.30	301.3	
						epm	3/4075065	2 0/ 5848	3.02.32402	0.102302	8.94215319	2.854725	1 236667	4 939344	9.030735894
2476	302732	2620617	1050	2000	8.15	epm://e	41.8528424	23.21419	33.808979	1.14404		31 611211	13 69397	54.69481	
(31)	USET OF	2070017	1.0570	3000	:0.10	ppm	47 3000004	104 02	61.79	0 40 70 77	20.4000022	848.4	204	1/1.2	20.00002020
						epro	17.3300031	3.210009	0.720108	0.127877	\$3.4082075	23 93/299	4 25	2.806557	30.988856.39
2478	392728	2670605	630.5	970	7.86	epon.	100	31 35	40.26	A 5		150.82	1110	184.0	
2.7.7.67	Conc.r.a.ur.	2,527,470,0717	States or		1.00	apm	4 34971727	1 56487	3 3128986	0.11509	0 342575622	4 0544400	2 33136	3 031148	0.616940419
			+ +			opm%	46.5580097	16 74988	35.460729	1.231992	D. SHEST SMEE	44.000600	04 24192	31 51016	3.0.100404.10
248A	395943	2669109	344.5	533	8-22	DDDD	40.0000001	19345	27.92	2.6		57.25	65 A	136.9	
	NOT NEAR THE	L. NOVER THE O			St. News	enm	173988691	0.965319	2 2974697	0.066496	5.069172089	1.6149506	1 3626	2 244262	5.22171293
						comm 0/	24.3220000	10.01204	45 20030A	1.211776	a obstreeds	20.027603	20.00202	43.07042	P.Z.E.IT IE.J.J.
250	397507	2664126			8.1	nom.	39.322.9000	12.042.24	30	3.1		73	20.09287	42.31.349	
	- Gran gran	CONTINU			0.1	approx.	1 69638973	0.848303	2 633203	0.079284	5.25718006	2.0592384	0	0	2.059238364
	-					open%	32 2080546	16 13600	50.097747	1.509107	2.2.33-1130.00	100	0	0	7.0037.00004
251	399035	2661977				opm	115	19	27	6.4		120	55	211	
						enm	5.87211831	1.397206	2.4686279	0.181586	9 9 9 9 9 5 3 7 4 3 3	3 3850494	1 145833	3 459016	7 989899092
						enm%	59 1975014	14 08539	24 RR6522	1.830586		42 36661	14 34 102	43 29237	
252	399413	2662926				DDM	135	28	30	7.1		140	105	224	
						epm	5.87211831	1 397206	2.4686279	0.181586	9 919537433	3 9492243	2.1875	3.672131	9.808855407
						epm%	60 0088644	1137398	26 653526	1 96363		40 261826	22.30128	37 4369	
253	399254	2663992				ppm	90	35	40	6		130	105	175	
						epm	3.91474554	1:746507	3.2915038	0.153453	9.106209019	3.6671368	2.1875	2.868852	8.723489271
						epm%	59.1975014	14.08539	24 886522	1.830586		42.0375	25.07598	32.88652	
254	396576	2669013		512	7.9	ppm	41	17	28	2.9		55			
						epm	1.78338408	0.848303	2.3040527	0 074169	5.009908935	1.551481	0	0	1.551480959
						.epm%	35 5971357	16 93251	45 989911	1.480442		100	0	0	
256	394265	2675661				ppm	350	80	100	15		550	425	160	
						(appro)	15 2240104	3 992016	8 2287595	0 383632	27.82841764	15 51481	8 854 167	2.622951	26:99192708
						apprn%	54.7067053	14.34511	29 569628	1 378561		57.479444	32.80302	9.717538	

Appendix (A) Chemical analysis of major cations and anions for the Quaternary aquifer, Al Jaww Plain

257	394845	2674067		57.7	7.8	ppm	. 53	15	27	43		60	-		
						epm	2.30535015	0.748503	2.2217651	0.109974	5.38559264	1.6925247	0	0	1.692524683
						opm%	42.8058768	13.89825	41.253864	2 042012		100	0	0	Contraction in the second
258	393624	2674009		555	8	- ppm	54	15	27	3 15		64		160	
						epm	2 34884732	0 748503	2 2217651	0.080563	5 399678048	1 8053597	0	2600051	A 400000000
						epm%	43 4997662	13.86199	41 146251	1.20100	Sala and Grade	40 769500	0	2.022.001	9.920310981
259	395949	2669335		595		DDM	45	20	31	3.4		40,700,000	- 55	09.23191	
					-	2000	195737277	0.00000d	2.5500154	0.086057	5.5001340734	1037/201	1 110000		
			1			anne	34.0063740	17.04204	AE COTOAE	3 664660	9,0007407.04	1.0533004	1,145035	0	2.37/940174
307	306274	2669013			-	112211130	34.3352749	17.04301	40.007040	1 004009		61:041496	38,4585	0	
201	000124	2003010			-	- Fritune	1919	000003	21	3.1		60	45	170	
and the second second			-		-	epm	1.9138756	0.998004	2.221/651	0.094629	5.228273815	1.6925247	0,9375	2.786885	5.416909929
87.8	2000073	2000024	-		-	eibui.20	36.6062618	19 08859	42.495193	1.80995		31.245206	17.30692	51.44788	
308	396057	26690.34	-		-	ppm	44	-22	29	3		60	60	172	
			-		-	epm	1.9138756	1.097804	2 3863403	0.076726	5 474746591	1.6925247	1.25	2.819672	5.762196814
						ebus??	34.95825	20.05215	43 588141	1 401459		29.372907	21.69312	48.93398	
309	396904	2668831	/			ppm	40	35	30	5.5		65	:55	199	
						epm	1 73988691	1 746507	2.4686279	0.140665	6.095686709	1.8335664	1.145833	3.262295	6-241696822
						epin%	28.5429188	28 65152	40 497945	2.307615		29 376121	18 35772	52 26616	0.241030022
328A	381374	2660544				ppm	675	80	85	29		000	700	125	
			-			anm.	29 3605916	3.002016	E GGAAAEE	0.689336	40.03530043	36.30707	14 50000	130	10.210.00.00
					-	2 epin%	71.7244038	9.752016	17 086592	1.436000	917.0002.004.1	20.30/07	14.08333	2.040984	42.51218718
3288	301303	3660564				E print ris	676	007-00.0710	TC ODDDDZ	1.9400000		23.7.1904	34 30389	5.977071	
37.00	301392	Engineer.				ppm	20 2000046	3.002040	30	19	110111010	815	725	201	
					-	epri	29.3005910	3,992010	7 40588 35	0.485934	41.2444246	22 990127	15.10417	3.295082	41 38937557
220	304000				-	epm _{7n}	/1 1808134	a/01/8852	17 1/06/084	1.17818		55.545962	36 49286	7.961178	
329	381580	2020005			-	ppm	450	90	100	12.2		600	525	233	1
					-	epm	19.5737277	4 491018	8.2287595	0.31202	32.60552565	16.925247	10.9375	3819672	31.68241896
					_	epm%	60.0319342	13 77379	25:237316	0.956956		53.421574	34.5223	12.05613	
330	395458	2669339				ppm	105	21	32	8.5		145	76	134	
						epm	4.56720313	1.047904	2.633203	0.217391	8.465701672	4.090268	1 583333	2 196721	7.870322628
						epm%	53.949493	12.37823	31 104369	2.567907		51 970779	20 11777	27.91145	
331	394651	2669940				ppm	60	24	-37	4.5		80	57	194	
						epm	2.60983036	1.197605	3 044641	0.11509	6.967165686	2 2566996	1 1875	3.180328	6.624527446
						epm%	37.4589967	17.18927	43,699851	1.651884		34.06582	17.92581	48.00837	
333	393492	2670287			-	ppm)	80	55	60	6.5		100	200	240	
						seen	3.47977381	2 744511	4.9372557	0.16624	11 22728001	3.0300745	A 100007	2 024490	10.02+00737
	-					epm%	30.7189364	24.22814	43 585374	1.467546	11 32110031	2.0200145	100007	3.9.94420	10/02/1007.01
(SWP.334A	362862	2673851				nom	790	145	220	37		4400	4420	30.02303	
0.000	302.002	2.07.50.51				Plan	22 02 22047	14.0	40.400.004	36	22 202 22000	1100	14.012	11	
						epm	53.9217947	1.230029	18 103271	0.818414	00.08200889	31 029619	30.20833	1.262295	62.5002476
211/D 224D	200000	0.02200.40			-	epm %	00.4003222	12.04215	30.12943	1.36/094		49.04/194	48 33314	2.019664	
CIAN W 224B	362880	20/3843			-	ppm	780	145	220	32		1450	650	155	
					-	epm	33.9277947	7 235529	18.103271	0.818414	60.08500889	40.90268	13.54167	2.540984	56 9853301
						epm%	56 4663222	12.04215	30.12943	1.362094		71 777561	23.76343	4 4 5 9 0 1 4	
GWP 335	361139	2676999				ppm	1100	270	190	34		2100	650	86	
			_			epm	47.84689	13.47305	15.634643	0.869565	77 82415214	59.238364	13 54 167	1 409836	74 18986663
						epm%	61 4807725	17.31218	20.089706	1.117346		79.846975	18 25272	1.900308	
GWP 336	371566	2679371				ppm	2000	800	1200	55		6000	2300	170	and the second second
						epm	86.9943454	39.92016	98 745114	1.40665	227.0662688	169.25247	47.91667	2,786885	219 9560202
					-	epm%	38 3123155	17 58084	43.487355	0.619489		76.948323	21.78466	1 267019	
6	394150	2678020	358												
		A STATISTICS			-										
0	303000	3677060	740												
0	393900	2011300	:240												
		_				-									
9	393680	2677920	-256												
11	389250	2676000	256								_				
12			246												
	-				-										
12	302020	2677400	375	105	0.40	DEVE						49.61	27		
1.9	033310	2077480	£10	40.0	0.45	1 ppm						CHORNEL .	51		

		-		-	. sibuu				1 3994358	0.5625	0	1961935825
			and the second second		sipm%				71 329337	28.67066	0.	
14	393950 2677300	288	487	8,44	ppm				51 597	42		
					epm				1.4554866	0.875	0	2 330486601
					epm%				62 454 193	37,54581	0	
15	393740 2677310	246			ppm				-			
-					epm							
					epm%							
16	393450 2677750	371			ppm							
					opm							
				1	epm%							
17	393660 2677120	249			mgg							
					epm							
		-			epm%							
18	393400 2677560	269		-	DDm							
					ento							
		-			anm%							
19	303635 2676910	320	805	RA	(DDID)				22.300	12.7		
15		C.M.	in and	0.4	- Priprint	 			17,000	30.		
					epm	 			2 183244	1.291667	0	3.474910672
	103000 967700	200			epm%				62.828781	37 17122	0	
21	393900 207700	30.9			ppm	 						
					epm					_		
				-	epm%							
2.5	393225 2677420	288	470	8.35	ppm				52.588	31.5		
					epm				1 4834415	0.65625	0	2 139691467
					epm%				69.32969	30 67031	0	
24	393040 2677330	294			ppm							
					epm							
					epm%							
28	392870 2677220	262	467.5	8.29	ppm				52 585	33		
					epm				1 4833568	0.6875	0	2 170856841
					epm%				68 330477	31.66952	0	
29	393280 2676260	794	1		ppm							
					epm							
					enni%							
32	392710 2677120	279	460	83	CODED				50.105	31		
			114.9		and the second				1.4131002	0.645833	0	2.050232882
				-	anm ^{®/}				69.632192	31 36282	0	A. 1057377, 112, 401
	393500 2676100	2024		-	norm				301.107.00	31.00202		
		1.01.1		-	opm	 						
				-	epm	 	-					
	305440 3676000	766		-	estress an	 						
-34	393990 2075090	1.05			ppm	 						
				-	epm							
					epm%							
35	392540 2677020	568	47.0	8.35	ppm				57 55	25		
				-	epm	_	-	_	1.6234133	0.520833	0	2 144240591
					ebu.%				75:710194	24.28981	U	
37	393300 2675700	346			ppm		1					
					epm		-					
					epm%							
38	393050 2675600	346			ppm							
					epm	1				-		
					epm%							
39	393250 2675500	314			ppm	1						
					epm							
					epm%							
40	392360 2677040	262	440	8.4	ppm				47.62	24		
	London London.				epth				1 3433004	0.5	0	1843300423
				-	eom%				72.874742	27 12526	0	
41	393150 2675300	269			DDD							
	201000 2010000	1.0.0			PDID							
					epm [®]							
4.4	302100 2575830	256		8.37	(open)				45.64	26		
44	-332180 2070830	200	450	10.0r	P.D.O.				1 2874471	0.541667	0	1 829113775
					epm				a starting t	COLUMN TO COLUMN		

						epm%		T		1	70 396387	1 20 61 261	1 0	1
46	392010	2676760	256	450	8.36	000					10 300001	23,01301	101	
		0.000.000	- 12. 1764	TEAM.	.0.50.	hhu			-		45.04	22		
						epm	 				1 2874471	0 458333	0	1 745780442
						epm%					73 746221	26 25378	0/	
48	391610	2676740	253	410	8.41	ppm					43.65	33		
						epm					1.2313117	0.6875	0	1.918811707
						epm%					64 1/0533	35 82947	0	C.B. INPOLINE TAL
49	391440	2676560	250	447.5	8.505	0000					16 626	345		
					10000	all					1 2162224	0.7+0.25		a land and and
						Arpana M.			-		1.3152377	071875	0	2.033982722
	201250	2020220	0.00	400.5	0.10	ethurse		1			64.662925	35.33707	0	
50	391250	2676520	256	422.5	843	ppm	_		-		47.625	29.5		
						appro.					1 3434415	0.614583	0	1.9580248
						epm%					68.612076	31.38792	0	
51	391790	2676780	262	430	8.36	DDI13					45.64	33		
						epm					1 2874471	0.6975	0	1 024042100
						eipm%			-		01.100041	24 21100	<u> </u>	1.0.040407.100
5.2	391050	2676450	258	137.5	0.4	Diam.					0.0 100.041	34.01100		
		2010450	200	401.0	0.9	ppm	 				49,605	29		
					-	etru					1.3992948	0.604167	0	2 003461448
						whun %					69.843859	30 15614	0	
53	390875	2676400	250	444	8,41	ppm					47.62	30.5		
					1	epim	_				1 3433004	0.635417	0	1 97871709
		-			-	epm%					67.887447	33 44355		1.51011103
54	302300	2677260		612.6	0.33	FARINES.	 				01.007442	32 11230	0	
	376.300	2.473 1 2.474		MAR. II	0.00	phili	 				D4 490	34.5		
						sibiu	 				1.8193512	0.71875	0	2.538101199
						epm 76					71.681586	28:31841	0	
	390660	2676350				ppm								
In the second						epm								
						epm%								
62	390160	26/6190		525	8.45	ppm					66.49	40		
	COLOR LINKS				6.70	open	 				4 9753473	+0		0.01/01/2010
					-	104/11	 				1,070317.3		0	Z.870317348
	1000100					-opin/%	 				65,22123	34.77877	:0	
63	392450	2677370		(1353/5)	8.145	ppm					325.46	45.5	1	
						opm					9.1808181	0.947917	0	10.12873472
						Tepon %					90.641312	9.358688	0	
65	390900	2676600		460.	8.25	ppm.					63.60	32.6		
						AVENTA					+ 5++4/245	0.677093	0	3 100203036
					-	an and a state of the	 				20.0010240	0.077083	0	2 100001010
20	200200	2020100		400.0	0.00	Arpett //s	 	-			69.061874	30.93813	u	
00	:390690	2676590		A.36-5	8.28	ppm	 				48.619	30.5		
						opm	 				1 371481	0.635417	0	2 006897626
						epin%					68.338362	31.66164	0	
67	390480	2676520		462.5	8.38	ppm					57 55	34.5		
						epm.					1 6234133	0.71875	0	2 342 1632 58
					+	enm%	 				60 312558	30 69744	0	
72				550	8.33	nnm	 				73.43	19		
7.				0.00	0.00	oper	 				20712001	40	0	7.071200101
					-	opin	 				20713061		0	3.071308124
	201220	000000				epin%	 				67.44122	32 55878	0	
	394350	X818090				ppm	 							
						epm					A DESCRIPTION OF THE OWNER OF THE			
						epm%								
7(w)	390030	2676350				DOM								
						00000	 							
					-	NOTES IN	 							
40	201100	1017000			-	epina	 							
10	394 180	2077860				ppm								
						epm								
						epm%								and the second se
10(w)	389500	2676000				ppm						-		
						epm								
						enmes.								
22	393670	2676700				nom	 							
22	Margin M	COLOR DIS			-	phut								
						shu.	 							
						epm%								
27	393620	2676490				ppm								
						epm								
						epm%								

25	393400	2676480				.ppro									
						epm									
						epm%							-		
26	393850	2676810				ppm									-
						epm				1					
						epm%								1	
310	393240	2676020	_			ppm									
						ebur					Non-Second Second	-			
	-				-	epm%			·	-					
300	393200	2675970				ppm									
			-		-	epm:									
		000000			-	epm%									
420	393170	2675870			-	ppm			-						
					-	epm			<	-					
10	303200	50315005	-		-	epm%			-						
43	393090	2675090	-			ppm	1 1 m		1	1	Sec. 1				
	_		-			epm		_	-						
						oburge								1	
45	392980	2675390				ppm									
			1			epm									
						epm%									
101	392817	2662106	401.55	617.5	79	ppm						112.7	.95		
	_		_			epm						3.1791255	1.979167	0	5:158292196
						epm%						61 631358	38.36864	0	
1.02	393194	2662034	416	640	8.005	ppm						109.18	81 5		
						epm						3.0798307	1.697917	0	4.777747414
						epm%						64-461983	35.53802	0	
103	393592	2661994	407.85	627.5	8.02	ppm						116.68	83		
					-	epm						3.2913963	1.729167	.0.	5.020563
						epm%						65.558312	34.44169	0	
104	394134	2661825			8.19	ppm									
						epm									
						epm %									
105	395969	2662179	404 65	622.5	8.05	ppm						129.16	76.5		a second second
						epm.						3 64 34 4 15	1 59375	0	5.237191467
					_	epm%						69.568613	30 43139	0	
201	393146	2661796	616.95	949	8.12	ppm						245.05	111		
						epm						6.9125529	2 3125	0	9.225052891
						epm%						74 932393	25.06761	0	
294	394604	2661911	499.95	769	8.17	ppm						165.135	99.5		
						epm						4.6582511	2.072917	0	6.731167724
		_			-	epm%		_				69.204204	30.7958	0	
206	395525	2661895	401.8	618	8.155	ppm						122.18	77.5		
						epm						3.4465444	1.614583	0	5.061127762
						epm%						68 098349	31 90165	0	
207	396375	2662226	380.9	586	8.025	ppm						128.15	81		E 909420532
						epm				1		3.6149506	1.6875	0	5.307450635
			-			epm%						68 175093	31.82491	0	
404	390923	2661092	433.9	667.5	8.15	ppm						116.05	87	1.1.1	1 000 4 0 10 0 C
						epm						3 27 36 248	1 8125	0	5 086174824
						epm%						64 363832	35.63617	0	
406	389434	2660528	469.65	722.5	8.2	ppm						114 62	111.5	-	0.00000000
						epm						3.2332863	2 322917	0	3.330202985
						epm%						58 1923/2	41.80763	0	
409	388545	2659896			8 195	ppm									
						epm									
						epm%						23.2.37	200		
410	387824	2660235	881	1355.5	8.09	ppm						227.35	233	0	11 73675811
						epm						64132081	45 30624	0	1172010011
					0.100	epm%						34,693761	45.30624	0	
411	388088	2659589	457.5	704	8.495	ppm						100.093	2 166667	0	5 176398684
						epm						20 14132	A1 85664	0	C. C. G.
			Carabourg	-	10.000	opm _%						120.26	141	4	
412	387659	2659767	659.65	1015	8.335	ppm						11915	141		

						epm					5.0705219	2.9375	0	8.008021862
	1					epro%.					63.318032	36 68197	0	
501	391044	2663861	470.45	723.5	8.365	DDm					82 135	82		
						opm			-		2 3169252	1 708333	0	A 07575858
	+				-	Partire Par					E7 550660	42 44014	0	.9 02020000
200	205282	2663010	360.35	200.5	11 135	DDD		_			12545	9.2.991/39	0	
502	031201	2003010	400.55	100.0	0.000	DOM					2 043	85.5		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
			-			101011					2.0092243	1 (81/5	0	3.83047428
	1000000	INCOME.	1000	000	0.20	oproze.					53,497925	46.59207	0	
503	.5914.38	2004025	446.1	680	8.39	ppm		_			71,215	81		
			-			epm					2.0088858	1.6875	0	3 696385755
					-	epm%					54.347297	45:6527	0	
504	391740	2664350	476.7	733	8:45	ppm					81.16	79.5		
			1			epm					2.2894217	1.65625	0	3.945671721
						epm%	instanting the second second				58.023624	41.97638	0	
5.05	392041	2664373	464.7	71.5	8.06	ppm					79.665	76.5		
						epm					2.2472496	1 59375	0	3.840999647
			1			epm%					58.506895	41.4931	0	
506	392512	2664385	474 15	729.5	8.075	ppm					81.64	81.5		
						opm			-		2 3020610	1.607017	0	4.000070505
						mpm92					57 551405	43 4300		4.000010000
507	391442	2664313	427.05	657	8.06	DOT					75.446	B5.5	0	
	- STOTETE.	2.0157.157.157		- NPMPT.	0.00	open					2 4 20 2 /0 /	4 20406	0	A DADAED TAE
					-	eiphini neurodit.					2.1202007	1 /8125	0	3 909438745
	201752	3664000	500.36	0.05 6	8.075	epma					54.43/42/	45.56257	0	
508	3917.02	3004030	-069.20	900-5	D.U/D	phu					151.9	115.5		
						epm		_			4.2849083	2 40625:	0	6,691158322
					-	epm%					64.038364	35.96164	0	
601	395112	2663781	412.1	634	8.175	ppm			-	_	87.335	83.5		
						epm					2.4636107	1.739583	0	4.203194053
						epm%					58.612824	41.38718	0	
602			425.55	668.5	8 185	ppm					89.325	87		
						epm					2.5197461	1.8125	0	4.332246121
						opm%					58 16258	41.83742	0	
603			399.75	615	8.22	ppm					79.4	81		
					-	000					2,2397743	1.6875	0	3 02707433
				1.		(arrival)					57.031368	42 06973	14	Sold and the second second
2018			458.45	653	8 185	topits					01 051200	70.5		
0.04		_	424.40	000	0.100	pipers .		-			2 364633	190	0	1.007072003
					-	Contraction (b)					2.301022	1100020	0	4.007072005
	203004	3003044	376 3	6.20	10 105	.epm%					00.070077	41 02492	<u>N</u>	
605	393804	2004011	313.1	578	8 105	bbu		-	-		002.50	10		
	-				-	epm					1.9454161	1408333	0	3.403749412
					1	epm%		-			57 155091	42.84491	0	
606	393282	2664650	420.55	647	8.12	ppm		1			87,335	73.5		
	1					epm					2 4636107	1.53125	0	3.994860719
						epm%					61.669502	38 3305	0	
607	392750	2664591	396.5	610	8.18	ppm					80.365	66		
						epm					2.2669958	1.375	0	3.641995769
						epm%					62 245975	37 75403	0	
608	392120	2665064	422.2	649.5	8.21	ppm					90.3	76.5		
						epm					2 5472496	1.59375	0	4 140999647
	-					epm%					61.512916	38 48708	0	
600	392245	2664515	313.1	635.5	R 105	DDID					95 765	76.5		
609	-332240	2009101-0	415.1	000.0	0.100	ppin					2 2014104	1 59375	0	4 295160437
					-	epin					62 894285	37 10572	0	The second second
	201002	DECASIO	303.3	200	0.446	Chill M					17.44	68.5		
610	391852	2004073	-30Z Z	000	0 140	ppm					2 1036300	1.422003	0	3.610722261
					-	epm					ED 420543	29,52240	0	3.010122201
						epm ₇₆					01470013	04	.0	
611	391637	2665155	423.8	652	8.155	ppm					97.29	81		1 151030215
						epm					2.7444288	1.6875	0	4.4.31928773
						opm%					61 9/4027	38/07597	0	
612	390870	2664924	461.1	709	8.205	ppm					89.31	82.5		
						epm					2.519323	1 71875	0	4.23807299
						epm%					59.445012	40.55499	0	
613	390730	2665392	487	749	8.195	ppm					103.17	85.5		
						epm					2.9102962	1 78125	0	4.691546192

3110 3100 715 6 715 6 715 6 715							epm%	The second second					62.032773	37.96723	0	
11 15 16 16 16 16 16 16 233337 175878 16 1713788 11 35670 36674 413 6615 515 471 470<	614	391025	2664579	464.9	715	8.16	ngq	-	1				104.2	86		
a15 50070 7.07.000 6.07.10000 7.1700000 7.1700000 7.1700000 7.1700000 7.17000000 7.17000000 7.17000000 7.17000000 7.17000000 7.170000000 7.170000000 7.170000000 7.170000000 7.170000000 7.170000000 7.170000000 7.170000000 7.170000000 7.170000000 7.1700000000 7.1700000000 7.1700000000 7.17000000000 7.1700000000000000000000000000000000000							epin						2 0303512	1 701667	0	1 231047022
11.1 1000 204020 44.11 66.15 10.55		-		-			epm%						82 100000	37.02064	0	4,737017800
010 00000 0000 0000 <th< td=""><td>616</td><td>390870</td><td>2664582</td><td>443.1</td><td>RAT 5</td><td>B 125</td><td>DOWN</td><td></td><td></td><td></td><td></td><td></td><td>02.120302</td><td>37 87004</td><td>0</td><td></td></th<>	616	390870	2664582	443.1	RAT 5	B 125	DOWN						02.120302	37 87004	0	
GWP-091 MOV02 WebS3 All P	015	0.0001.0	3,0004-2012	144.00.0	MM LOV	0.11.0	Provin						112.3	.01		
SWD 091 SWD 00 20000 20000 20000 20000 20000 20000 20000 20000 20000 100000 20000 10000 20000 10000 20000 10000 20000 100000 20000 100000 20000 100000 20000 100000 20000 100000 20000 1000000 200000 200000 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>epm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.6036671</td> <td>1.6875</td> <td>0</td> <td>4.291167137</td>				-			epm						2.6036671	1.6875	0	4.291167137
COUPOIDS NUM (1) Lem 33 3 5 4 0 1 2771141 Tay on participation 39 39 30 7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>appril 70</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>60.675034</td> <td>39.32497</td> <td>0</td> <td></td>							appril 70						60.675034	39.32497	0	
Integr Integr Integr 1/1481125 2/2450 1/4007 0/2016 1/12711407 1/107 0/2017 0/2016 0	GWP-019	380702	2676523	(3,34.:))		6.3	bbui	31	45	42	8.1		38	32		
jii 00 jii 20 USA USA USA USA US							epm	1.34841235	2.245509	3.456079	0.207161	7.257161457	1.0719323	0.666667	0	1,738598966
31.001 32.42 266.04 41.90 7.74 7.80							epm%	18.5804376	30.94197	47.623014	2.854575		61.654949	38 34505	0	
meter meter <th< td=""><td>314-001</td><td>372244</td><td>2666247</td><td>4790</td><td>7150</td><td>7.24</td><td></td><td>31</td><td>45</td><td>42</td><td>8.1</td><td></td><td>2000</td><td>775</td><td>226</td><td></td></th<>	314-001	372244	2666247	4790	7150	7.24		31	45	42	8.1		2000	775	226	
jii 0.00 5.000 7.000							epm	47.84689	18.71257	11.108825	0.895141	78.56343081	56.417489	16 14583	3.704918	78.26824020
30.4002 20.300 69.6950 55.34 0.600 7.14 ppm 7.100 2.375 7.157 <							epm%	60.902241	23.81843	14 139944	1139386		73 072454	21 1609	4 857747	10-2012-4012
JH 004 JUN JUN<	JH-002	373020	2665926	5534	8260	7.14	000	1100	375	135	36		1000	450	4.41.41 4.41	
JH 004 312/207 266/341 37/10 6/01/02/9 9/01/02/9 JH 005 312/207 266/341 37/00 6/01/02/9 9/01/02/9 JH 006 37/206 2/06/01 3/02/9 1/00 1/02/9 9/01/02/9 9					THE PLANT IN		(CONT)	57 6337538	28 60264	42 343430	1 278772	00.04030033	04 010004	430	16.3	DO ALTONICO
3H 693 3P290 2B6581 92.00 777 1000 77.000		-					copres and	67 6636777	20.00201	12.340530	1 220124	33 34020023	04 020234	9313	Z.010393	30.01105128
JH 000 JJ 200 Zelos Color 101 <	101.7904	172020			0210	7.17	ethurze		28.70740	12.349020	1.27.94.34		88.136144	9.763832	2 100024	
and bit bit< bit< b	-JU1212029	215310	2000491		9240	1.11	ppm	1320	5/5	145	50	and the second second	2950	500	107	
ji do 3 ji do 2 ji do 2 <t< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td>epm</td><td>57.6337538</td><td>28.69261</td><td>11.931701</td><td>1 278772</td><td>99.53684225</td><td>83.215797</td><td>10.41667</td><td>1.754098</td><td>95.38656192</td></t<>			_				epm	57.6337538	28.69261	11.931701	1 278772	99.53684225	83.215797	10.41667	1.754098	95.38656192
JH 05 J266 266019 J256 B600 718 pm 0.957 J26 140 J33 pm 1900 500 1007 285008 285018 24.00144 15.2176 15.5276 298007 293018							epm%	57 9019311	28.82613	11 987221	1.284723		87.240587	10.92048	1.838937	
Image: space in the stand sp	JH-005	372456	2666119	3926	5860	7.14	ppm	975	325	140	33		1900	500	182	
JH 00 JP 200 JP 2000 Link 2000 <thlink 2000<="" th=""> <thlink 2000<="" th=""> <thlink 2000<<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>epm</td><td>42.4097434</td><td>16 21756</td><td>11.520263</td><td>0.84399</td><td>70 99156133</td><td>53 596615</td><td>10.41667</td><td>2 983507</td><td>RE GORGARITE</td></thlink></thlink></thlink>							epm	42.4097434	16 21756	11.520263	0.84399	70 99156133	53 596615	10.41667	2 983507	RE GORGARITE
JH 007 37235 2066174 4741 6330 7.34 pm 1005 7.35 100 7.35 100 7.35 100 7.35 100 7.35 100 7.35 100 7.35 100 7.35 7.36 <th7.3< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>epm%</td><td>59 7391332</td><td>22 84436</td><td>16 227652</td><td>1 188850</td><td>7.0.0001000</td><td>70 008663</td><td>15 54700</td><td>4.453354</td><td>44-224000013</td></th7.3<>							epm%	59 7391332	22 84436	16 227652	1 188850	7.0.0001000	70 008663	15 54700	4.453354	44-224000013
Dr. Sol.	011.0002	372535	2666174	4241	6330	7.94	DOM	1075	306	150	110001055		19.990003	12.04133	4,423331	
JH 008 3/2772 206009 7/15000	311.001	- Strandy	2.000217-7	42.41	Marity		- Papers	AE 7504606	10.21760	12242420	0.0000444	20 34 53 55 5 5 1	2000	025	198	
3H 048 3/2277 266609 4/190 7/150 7/60 2000 13/1409 7/7010/25 14/409 7/7010/25 14/409 7/7010/25 14/409 7/7010/25 14/409 7/7010/25 14/409 7/7010/25 14/409 17/7010/25 14/409 17/7010/25 14/409 17/7010/25 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>epin</td><td>45.7334006</td><td>10.217.50</td><td>12 343139</td><td>0.093141</td><td>70.21030044</td><td>56,417489</td><td>13.02083</td><td>3.245902</td><td>72.68472439</td></t<>						-	epin	45.7334006	10.217.50	12 343139	0.093141	70.21030044	56,417489	13.02083	3.245902	72.68472439
JH 08 J2272 266609 A 190 7 1/00 7 06 ppm 1/200 4/25 1/45 4/0 22500 5/50 1/51 JH 089 3/2746 2666997 6667 7 10250 67 35794 13/1611 11/8612 7 0516 13/36279 2/3716 13/36279 2/3716 3/300 600 7/20 6/300 6/00 7/20 6/300 6/00 7/20 6/300 7/20 10/700 3/300 6/00 7/20 10/700 3/300 6/00 7/20 10/700 7/20 10/700 3/200 10/700 11/700006 9/200 11/700 11/700006 11/200 11/700006 11/200 11/700006 11/700 11/700006 11/700 11/700006 11/700 11/700006 11/7000 11/700006 11/7000 11/700006 11/7000 11/700006 11/7000 11/700006 11/7000 11/700006 11/7000 11/700006 11/7000 11/7000 11/7000 11/7000 11/70000 11/70000 11/70						1	estru 29	01.3517985	21.27802	10,195093	1.174489		77.619992	17:91425	4 465758	
Image: second		3/22/1	2666089	4790	7150	7.06	ppm	1200	425	145	40		2500	550	151	
JH.09 3127.46 266907 6067 10250 7.00 ppm 4450 000 200 60 900 3020 903005 913002 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>epm</td> <td>52 1966072</td> <td>21 20758</td> <td>11 931701</td> <td>1 023018</td> <td>86.35891125</td> <td>70.521862</td> <td>11.45833</td> <td>2.47541</td> <td>84 45560495</td>		-					epm	52 1966072	21 20758	11 931701	1 023018	86.35891125	70.521862	11.45833	2.47541	84 45560495
JH 009 37278 206599 666 100250 7.00 pm 4400 6500 2700 660 - 3300 6500 127 - 1 - - - - - - 60700004 2294210 16.452511 13100306 053208 17.55 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>epm%</td> <td>60 44 148 36</td> <td>24 55749</td> <td>13.81641</td> <td>1 184612</td> <td></td> <td>83.501695</td> <td>13:56729</td> <td>2.931019</td> <td></td>							epm%	60 44 148 36	24 55749	13.81641	1 184612		83.501695	13:56729	2.931019	
c c	900-HL	372746	2665997	6867	10250	7.03	ppm	1450	600	200	60		3300	600	122	
JH-010 372146 266131 6396 9550 7.0 pm 4400 550 7.7 5 9 2000 7.0 pm 4000 550 7.6 55 2000 7.6 55 199 372504 2674450 13650 7.62 pm 608 04048 27.44511 14.00329 1.40055 104.148130. 81.80236 156.30.5 25.25269 99.96.486983 199 372504 267.4520 13650 7.62 pm 69.97.97.7 79.94473 125.97.97.8 99.95.486983 156.37.97.7 225.957.97 225.957.97 23.93.97.7 75.95.97 225.957.97 23.93.97.7 75.95.97 22.95.97.8 170.97.97.7 25.95.97 23.93.97.7 75.95.97 22.95.97.8 170.97.97.7 23.99.97.7 23.99.97.7 23.99.97.7 23.99.97.7 23.99.97.7 23.99.97.7 23.99.97.7 23.99.97.7 23.99.97.7 23.99.97.7 23.99.97.7 23.99.97.7 23.99.97.7 23.99.97.7 23.99.97.7 23.99.97.7 23.99.97.7							epm	63 0709004	29.94012	16.457519	1 534527	111003066	93.088858	12.5		107.5898575
jH 010 372146 2666131 0.398 9550 7.08 60 9500 7.07 5.90 7.07 5.90 7.08 7.09 7.99 7.99 7.99 7.99 7.90 7.90 7.90 7.90 7.90 7.90 7.99 7.99 7.99 7.99 9.95 9.96 7.96 9.97 7.91						-	ppm%	56 8190615	26 97234	14 826184	1 382418	1111 5000000	BE 573769	11 6193	+ 050030	191,000001110
jmm. jmm. <th< td=""><td>111.010</td><td>5704AC</td><td>0000494</td><td>6300</td><td>0550</td><td>2.00</td><td>C Prive 10</td><td>1400</td><td>5.0 07 2.04</td><td>175</td><td>1 -11/24 10</td><td></td><td>10.322700</td><td>110103</td><td>1000373</td><td></td></th<>	111.010	5704AC	0000494	6300	0550	2.00	C Prive 10	1400	5.0 07 2.04	175	1 -11/24 10		10.322700	110103	1000373	
cpm cpm <td>211-010</td> <td>012140</td> <td>2000101</td> <td>0.930</td> <td>9990</td> <td>7.00</td> <td>ppm</td> <td>20.0000445</td> <td>37.44644</td> <td>110</td> <td>00</td> <td>101 1101100</td> <td>2900</td> <td>750</td> <td>154</td> <td></td>	211-010	012140	2000101	0.930	9990	7.00	ppm	20.0000445	37.44644	110	00	101 1101100	2900	750	154	
199 372504 267450 13650 252728 607% 539987 336706049 2635199 1365076 1350674 539087 252578 199 372504 2674356 13325 10022035 59987 2753948 245599 222808838 19033286 473145 1924369 1931163 200 373063 2671356 13325 707 ppm 532707 14455278 1707402 591467 57544 2240489 3322 200 373063 2671354 12 1389743 1387178 155 07359 02003899 220 618676 1754674 575464 528489 235 185557 201 3780702 2671734 12 12 128949 567 4098517 2109895 220 478343 100185 220 47849 13815 128559 029733 1285749 5675 40985167 21088567 21088567 21088578 21088578 21088578 21088578 21088578 21088578 2108558 2108558 2108							ebu	00 83004 18	27.44.511	14.400329	1.40665	104 1481303	8180530	15,625	2.52459	99.95494983
199 37/25/4 267/45/0 13850 762 ppm 3337 599.87 386.9 98.34 cm 674.73 2000 136.6 2000 37.06 267/356 13326 cm 691 971.022/035 132.1071 14.658/276 17.981 cm 199.3326 24.756 793.326 24.756 793.327 224.008.083 32.72 220.038.08 32.72 220.048.07.41 23.03 22.051.085.27 27.0402 59.166/7 27.0402 59.166/7 27.048.07 22.051.085.27 2611 37.67/02 26/173.4 cm cm ppm 37.016/94 13.016/94 13.016/94 13.000180 20.061867.26 17.07.402 59.156.47 27.086.09 22.05185.27 27.086.09 22.05185.27 27.086.09 22.05185.27 27.086.09 22.05185.27 27.086.09 22.05185.27 27.086.09 22.05185.27 27.086.09 22.05185.27 27.086.09 22.05185.27 27.086.09 22.0508.50 27.000 55.7 47.092 59.57.4 29.085.09 21.066.09 20.000.09 27.000 25.7 47.092.09 25.157.44							epm%	58.4706049	26.35199	13 826776	1.350624		81 84223	15:63204	2.525728	1
Image: constraint of the state of	199	372504	2674450	13650		7.62	ppm	3637	589.87	396.9	98.34		6747.3	2300	136.6	
200 33/063 26/13/6 133/25 707 170/20205 13/21/11 14 658/278 11/28/14 (9)/44/45 19/94/06 0.33/163 (9)/24/16 0.322 (9)/24/16 (9)/24/16 0.322 (9)/24/16 (2)/24/16 (2)/24/16 (2							epm	158 199217	29.43463	32.659947	2 51509	222.8088838	190.33286	47.91667	2.239344	240.4888741
200 373063 2671356 13325 7.07 ppm 3522 609.32 425.5 78.32 c 605.24 2840 3322 261 3780/02 2617734 -							epm%	71.0022035	13,21071	14 658278	1.12881		79 144 145	19 92469	0.931163	
200 201000 201000 10000 10000 100000 1000000 20000000 2000000 2000000 20000000 2000000 2000000 2000000 2000000 20000000 2000000000 20000000 2000000000000000000000000000000000000	200	373063	2671356	13325		7.07	DDDD	35,72	609.32	425.5	78.32		6052.74	2840	322	
261 378/02 2671734 66 4 39744 13 78178 15 878539 22007879 17 97462 37 8747 25 88081 261 378/02 2671734 ppm 66 4 39744 13 78178 15 878539 20 0932376 17 8402 97 84478 2244478 261 378/02 2671734 ppm 66 4 39744 13 78178 15 870539 20 0932376 17 8402 97 8468 5 62 5 4 098361 21 0068584 297A 36365 266394 mm 2 0008 950 350 21800 2803333 0.901839 67 41856074 297A 36365 2663084 ppm 0 57 88744 2788124 4900 55 4000 55 41800 2700 850 13 778616 46 524150 13 778667 19 50584 10 97805 78 73735 8 954077 208 895111 61 495063 56 353333 0.901839 67 4 1856074 297B 363665 265713 29 44 4330 7 6 ppm 61 77057	F. 5454		4.67.15550	1992.9		1.91	opm	153 107042	30.40519	35 013372	2 003060	220 6106726	170 2402	50 16667	5 278680	016 1066507
261 378/02 2671734 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 2 2 1 2							TO DATE OF	CD 43037443	47 204 20	AE 070620	2 003003	CENTRINGER CENT	77.500004	35 42 744	0210000	ESU, TOUSSES
261 3/6/02 20/17/34 image: constraint of the second se	- 023	370103	10.14.104				epril 26	02.4537445	12/01/0	15.670539	0.90(900		12.090081	23.157.94	2.29997.0	
control control <t< td=""><td>20.1</td><td>318102</td><td>20/1/04</td><td></td><td></td><td></td><td>bbiii.</td><td>315</td><td>40</td><td>50</td><td></td><td></td><td>400</td><td>27.0</td><td>250</td><td></td></t<>	20.1	318102	20/1/04				bbiii.	315	40	50			400	27.0	250	
297A 563662 2663094 C C ppm 68.1998491 9.933666 2.0476349 1.400116 53.7134 26.77697 19.50963 297A 563662 2663094 C C ppm 2.0476353 8951407 206.8851011 614.95063 58.3333 0.901639 6/4.1856074 297B 363665 2663084 C epm% 0 57.88744 3/7.78612 4.326753 91.21840 86.52470 0.83734 297B 3653665 2663084 C ppm 8650 2200 900 350 F113840 86.52470 1.837080 57.65187715 297B 363665 2663084 C ppm 8652 200 900 350 F113840 86.52470 1.837080 57.65187715 6WD.001-MAQ.EQ 363289 2675713 2944 43300 7.6 ppm C C 1.573068 8951407 569.0412251 9014569 9.241747 GWD.001-MAQ.EQ 363383							epm	13 /016094	1,996008	4 114.37.98	0.28133	20.09332706	11.283498	5.625	4.098.361	21 00685854
297A 363662 2663994 Image: Marcine							epm%	68.1898491	9.933686	20.476349	1.400116		53,7134	26.77697	19.50963	
Image: Note of the second o	297A	363662	2663094				ppm		2400	950	350		21800	2800	55	
297B 363665 2663084 c epm% 0 57.88744 37.785812 4.326753 91.213848 8.652415 0.133738 297B 363655 2663084 c ppm 8650 2200 900 350 18400 2700 81 c epm% 367250544 109.7804 70.08836 8.951407 569.0412251 519.0409 9.075145 0.230285 GWD.001-MAQ.EQ 363289 2675713 2944 43300 7.6 ppm 661200863 19.29218 13.01467 1.573068 90.014569 9.755145 0.230285 GWD.001-MARK 364803 2678753 1600 25900 7.4 ppm c c 93.7828733 0 62.1747 GWD.001-MARK 364803 2678753 1600 25900 7.4 ppm c c c 93.782872 0 62.17474 GWD.001-MARK 364803 2678753 1600 25900 7.4 ppm c c c 6 24.1747 GWD.001-SOH 383187 2676240 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>epm</td> <td>0</td> <td>119 7605</td> <td>78 173215</td> <td>8.951407</td> <td>206.8851011</td> <td>614 95063</td> <td>58.33333</td> <td>0.901639</td> <td>674.1856074</td>							epm	0	119 7605	78 173215	8.951407	206.8851011	614 95063	58.33333	0.901639	674.1856074
297B 363665 2663084 ppm 9650 2200 900 350 18400 2700 81 GWD 001-MAQEQ 363289 2675713 2944 4330 76 ppm 9729218 13 01467 157368 90 014569 975145 0220626 GWD 001-MAQEQ 363289 2675713 2944 4330 76 ppm 661200853 1929218 13 01467 157368 90 014569 975145 022065 122 GWD 001-MAQEQ 363289 2675713 2944 4330 76 ppm 67 67 30 042313 0 2 32 04231312 GWD 001-MARK 368403 2678753 1600 2500 7.4 ppm 6 6 93758253 0 621747 GWD 001-SOH 383187 2678240 700 748 5 7.7 ppm 52 50 134.5 48 6 6709190136 3.7940762 0 0.766885 4.5806141 GWD 001-ZAK 365776 2669295 3320 5145.3 7.53 ppm 295							epm%	0	57.88744	37.785812	4.326753		91213848	8.652415	0 133738	
Image: Second	2978	363665	2663084				ppm	8650	2200	900	350		18400	2700	81	
GWD-001-MAQ_EQ 363289 2675713 2944 4330 7 6 ppm 66 1200853 19 29218 13 01467 1 573068 90 014569 9.05204 0.230285 GWD-001-MAQ_EQ 363289 2675713 2944 4330 7 6 ppm 90 014569 9.051450 0.230285 32.04231312 GWD-001-MARK 364803 2678753 1600 2500 7 4 ppm 30.042313 0 2 32.04231312 GWD-001-MARK 364803 2678753 1600 2500 7 4 ppm 93.758253 0 6211747 GWD-001-SOH 383187 2676240 700 7 48.5 7.7 ppm			and the second s				0000	376 250544	109 7804	74 058836	8.951407	569.0412251	519.0409	56'25	1 327869	576 6187715
GWD.001-MAQ.EQ 363289 2675713 294 4330 7 6 pm 60.120053 19.29216 13.01807 157.308 60.014303 97.05145 02.30285 GWD.001-MAQ.EQ 363289 2675713 294 4330 7 6 ppm 6 157.308 157.308 157.308 0 22.2 GWD.001-MARK 364803 2678753 1600 27.00 7 4 ppm 157.308 0 157.308 0 27.33143 0 27.3320263 GWD.001-MARK 364803 2678753 1600 2500 7 4 ppm 93.758253 0 6.241747 GWD.001-MARK 364803 2678753 1600 7 48 ppm						-	opm	66 1200862	10.20210	13.01467	1.673000	and the set	90.014560	9.755145	0.230304	
GWD-001-MAGEQ 363289 2075/13 2944 4.339 7.6 ppn c c c 122 122 GWD-001-MARK 364803 2678753 1600 2500 7.4 ppm c c 937783 0 2 32.04231312 GWD-001-MARK 364803 2678753 1600 2500 7.4 ppm c c 9377833 0 6.241747 c GWD-001-SOH 383187 2676240 700 2500 7.4 ppm c	0000 000 000 000	200000	2010240	2012	1220	20	epin 76	00.1200803	10.23210	10.01407	1.07.3008		1055	0.100100	433	
cm cm< cm< cm<	GWD OUT MAQ EQ	363289	26/5/13	2944	4330	76	ppm .						1065		122	
GWD-001MARK 364803 2678753 1600 2500 7.4 ppm cm cm cm gm							epm	_					30.042313	0		32.04231312
GWD-001-MARK 364803 2678753 1600 2500 7.4 ppm L <thl< th=""> L <thl< th=""></thl<></thl<>		-	Real Provide State				epm%						93.758253	0	6.241747	
GWD-001-SOH 383187 2676240 70 748 5 7.7 ppm 52 50 134.5 48 GWD-001-SOH 383187 2676240 70 748 5 7.7 ppm 52 50 134.5 48 GWD-001-SOH 383187 2676240 70 748 5 7.7 ppm 52 50 134.5 48 GWD-001-SOH 383187 2676240 70 748 5 7.7 ppm 52 50 134.5 48 GWD-001-SOH 385176 2669295 3320 5145.3 7.53 ppm 295 32 37 6 710 128 GWD-001-ZAK 365176 2669295 3320 5145.3 7.53 ppm 295 32 37 6 710 128 GWD-002-CHAF 365176 2669295 3320 5145.3 7.53 ppm 128316659 1.04641 0.153453 17 62656603 20.08209 0 2.098361 2	GWD 001-MARK	364803	2678753	1600	2500	7.4	ppm									
GWD-001-SOH 383187 2676240 700 748 5 7.7 ppm 52 50 134.5 48 48 GWD-001-SOH 383187 2676240 700 748 5 7.7 ppm 52 50 134.5 48 48 GWD-001-SOH 383187 2669295 320 5145.3 7.53 ppm 0 259481 41143798 0 6709190136 3.7940762 0 0.786885 4.58096141. GWD-001-ZAK 365776 2669295 3320 5145.3 7.53 ppm 295 32 37 6 710 128 GWD-001-ZAK 365776 2669295 3320 5145.3 7.53 ppm 295 32 37 6 710 128 GWD-002-CHAF 389578 2664152 405 633 7.8 ppm 56 18 29 4 156 24 21265694 GWD-002-CHAF 389578 2664152 405 633 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>epm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							epm									
GWD-001SOH 383187 2676240 700 748.5 7.7 ppm SQ 50 134.5 48 GWD-001SOH 383187 2676240 700 748.5 7.7 ppm SQ 50 6709190136 37940762 0 0.786885 4.58096141 GWD-001ZAR 365776 2669295 3320 5145.3 7.53 ppm 295 32 37 6 700 128 GWD-001ZAR 365776 2669295 3320 5145.3 7.53 ppm 295 32 37 6 700 128 GWD-001ZAR 385776 2669295 3320 5145.3 7.53 ppm 295 32 37 6 700 128 GWD-002CHAF 389578 2664152 405 633 7.8 ppm 580 3044641 0.153453 17.62656603 20.028209 0 2.99861 22.1265694 GWD-002CHAF 389578 2664152 405 633							epm%									
Alternation	GWD-001-SOH	383187	2676240	700	748.5	77	mag		52	50			134.5		48	
Build of the second s	Site ourself	300101	2010210	100	149.0		opm	0	2.50483	4 1143700	0	6 709190136	3 7940762	0	0 786885	4.58096141
GWD-001-ZAK 365776 2669295 320 5145.3 7.53 ppm 295 322 37 6 62.892/05 0 17.1729 GWD-001-ZAK 365776 2669295 332 5145.3 7.53 ppm 295 32 37 6 71.0 128 GWD-001-ZAK 389578 2664152 405 5145.3 7.53 ppm 295 32 37 6 70 128 GWD-002-GHAF 389578 2664152 405 653 7.8 ppm 56 18 29 4 90.516557 0 9483443 GWD-002-GHAF 389578 2664152 405 653 7.8 ppm 56 18 29 4 156 24 24 GWD-002-GHAF 389578 2664152 405 653 7.8 ppm 56 18 29 4 156 24 24 GWD-002-GHAF 389578 2664152 405		-					april	0	20.00401	24 324537	0	0.103130130	82 822706	0	17 17 770	A CONTRACT OF A
GWD-001-ZAK 365778 2669295 3320 5145.3 7.53 pm 295 32 37 6 710 128 GWD-001-ZAK 365778 2669295 3320 5145.3 7.53 pm 295 32 37 6 710 128 128 GWD-001-ZAK 90578 2664152 405 5145.3 7.53 pm 295 32 37 6 710 128 128 1596668 304641 0.153453 17.62656603 20.028209 0 2.948361 22.1265694 GWD-002-CHAF 389578 2664152 405 633 7.6 pm 58 18 29 4 156 24 24 GWD-002-CHAF 389578 2664152 405 633 7.6 ppm 58 18 2.9 4 156 24 24 GWD-002-CHAF 389578 2664152 405 633 7.6 ppm 2.52283602 0.886430 <	2014/05 10 20 20 20 20 20 20 20 20 20 20 20 20 20	-				1	epinta	0	38 67546	01.324537	0		32 822703	U.	120	
epm 12 8316659 1.596806 3.044641 0.153453 17.62656603 20.028209 0 2.098361 22.1265094 GWD-002-GHAF 389578 2664152 405 633 7.8 pm 58 18 2.9 4 156 24 GWD-002-GHAF 389578 2664152 405 633 7.8 pm 58 18 2.9 4 156 24 GWD-002-GHAF 389578 2664152 405 633 7.8 pm 58 18 2.9 4 156 24 epm 2.52283602 0.898201 15 108453 0.102302 5.909681658 4.4005642 0 0.393443 4.794006798	GWD-D01-ZAK	365776	2669295	3320	5145.3	7.53	ppm	295	Se	37	0		210		128	20 1002001
GWD_002/GHAF 389578 2664152 405 633 7.8 ppm 50 18 2.9 4 156 24 GWD_002/GHAF 389578 2664152 405 633 7.8 ppm 50 18 2.9 4 156 24 GWD_002/GHAF 389578 2664152 405 633 7.8 ppm 50 18 2.9 4 156 24 epm 2.52283602 0.898204 2.3863403 0.102302 5.909681658 4.4005642 0 0.393443 4.794006798							epm	12.8316659	1.596806	3.044641	0.153453	17.62656603	20.028209	40	5,098301	22 12000094
GWD_002/GHAF 389578 2664152 405 633 7.8 ppm 58 18 2.9 4 156 24 epm 2.52283602 0.898204 2.3863403 0.102302 5.909681658 4.4005642 0 0.393443 4.794006798							epm%	72,7973101	9.059089	17.273024	0.870576		90.516557	0	9.483443	
epm 2.52283602 0.898204 2.3863403 0.102302 5.909681658 4.4005642 0 0.393443 4.794006798	GWD 002 GHAE	389578	2664152	405	633	7.8	ppm	58	18	29	4		156		24	
enm% 42.6898801 15.19885 40.380183 17.31088							epm	2.52283602	0.898204	2.3863403	0.102302	5 90968 1658	4.4005642	0	0.393443	4 794006798
							onmit.	42 6808801	15 10885	40.380183	1.731088	States of the second				

GWD-002-MARK	364620	2678670	240	375	2.7	ppm							1	1	1
						opim									
						opm%									
GWD 002 NIAD	376905	2678342	51000	75000	73	ppm						26347		2400	
CONTRACTOR CONTRACTOR				A CONTRACTOR		epm						745.00705	0	40.80330	765 0403300
						epm%						01.501205	0	40.80328	120 6103309
CWD 002 SAA	398170	2663268	460	710	77	0000	140	103	63			39 501355	0	0.398614	
0000-002-0004			1910/07	F. 117	1.4	- ppm	6.00060440	- 10.5 5 130731	C 404440C	0.400202	1071014000	/1	-	13	
						opro	0.00900418	31.139721	34,300047	0.102302	16 51574502	2.0058509	0	1.196721	3 199542186
2300 003 5000	170634	2676782	115	5.54		opm %	30.8715076	31.12013	31.388947	0.01942		62.597108	. 0	37.40289	
GWU-MAZSTUR	37.9931	cororos.	-38.96	5.9K1	-0	. ppm						89		24	
						epm						2.5105783	0	0.393443	2.904020902
CIARS DOD YAV	300007	3600110	12011	10750	1 71	epm%						86 451798	0	13.5482	
134413-002-2MB	302897	5003413	12014	18000	1.4	tibu	412	3/	23	4		4313		1318	
					-	epm	17.9208351	1.846307	1.8926147	0.102302	21.76205901	121 66432	0	21.60656	143.2708733
EVAIPS OON TAIL	- SAFARI			78575		epro %	87.348987	8 484066	8.6968549	0.470092		84.919086	0	15.08091	
GWU 002.2AK	.305897	2669419	6970	19250	1.1.1	ppm						1988		342	
					-	epm						56.078984	0	5.606557	61.68554186
						ebu.%						90.911067	0	9.088933	
GWD-003-GHAF	389687	2664042	560	875	7.8	ppm									
						epm									
						epm%									
GWD-003-GHAF	389687	2664042	726	1134	. 78	ppm	126	2/8	30	50		284		12	
						opm	5 48064376	1 397206	2.4686279	1 278772	10.62524958	8 0112835	0	0.196721	8 208004809
						épm%	51 5813179	13 14986	23 233599	12.03522		97.603299	0	2 396701	0.10000110003
GWD-003-MAQ-EQ	362664	2675296	3005	4420	7.5	ppm						1278		146	
						epm						36 050776	0	2303443	38 44421836
						epm%						93 774246	0	6.235754	30/11112/1030
GWD-003-NIAD	377043	2678350	30464	44800	73	DDm			-			15336	<u>v.</u>	1464	
SHOLD SERVICE		2.07 (11100)	and they	11000	1.0	april 1						433.60031		1904	100000000
					-	apm ³⁶				-		04.743965	0	E 200420E	410.0043089
AA2200 0000	300013	2663564	460	2752	27	epite //	145	110	101	-		199:79.500.5	0	0.200130	
GWD 003 3MM	230013	2003004	400	105	11	ppuz	140	115	0.0000000	4	20.112002100	107		12	
					-	epm	0.30709004	2738523	8.3110471	0.102302	20.45896189	3.0183357	0	0 196721	3.215056996
233 P. D.						epm %	30.8280002	28 04894	40,623015	0.500034		93.88125	0	6 11875	
GWD-003-SHIR	379979	2676654	3/1	580	8	ppm						89		24	and the second second
						opm						2.5105783	0	0.393443	2.904020902
		-				epm%						86 451798	0	13.5482	
GWD-003-SOH	383393	2676020	2897	4260	7.5	ppm	448	36	- 38	-4		781		268	
	1					epm	19.4867334	1 796407	3 1269286	0 102302	24.51237095	22.03103	0	4 393443	26.42447224
						epm%	79.4975459	7 328574	12 756533	0.417348		83 373584	0	16.62642	
GWD-004-GHAF	389819	2664132	2040	3000	7.8	ppm	441	47	46	138		810		164	
						epm	19 1822532	2 345309	3 7852294	3.529412	28.84220368	22.849083	0	2 688525	25.53760781
						epm%	66.5075851	8,131519	13 123926	12.23697		89.472293	0	10.52771	
GWD-004-MEZ	382484	2659872	901	1344	7.8	ppm									
						epm						0	.0	0	0
						epm%						#D1V/01	#DIV/01	#DIV/01	
GWD-004-SHIR	380270	2676506	355	555	8	ppm						182		24	
						epm						5 1339915	0	0 393443	5.52743416
					-	epm%						92 882003	0.	7 117997	
GWD-004 ZAK	365763	2669441	5000	7812	7.6	DDm		669	857			2293		415	
						epm	0	33 38323	70.520469	0	103.9037026	64 682652	0	6.803279	71 48593031
					-	apmac	0	32 12901	67.620088	0		90.483052	0	9.516948	
CWD. 005 AMM	376358	3737325	736	0311	7.8	epin is	150	71	07.070300			213		31	
GYYL - 005 244141	370330	2131323	230	1150	1.0	ppm.	6 78555894	1 147705	0	0	7.033263520	E ODRAEZE	0	0.508197	6.516659345
	-				-	capital and	85.5330094	14 46000	0	0	1.00020002.9	92 2016 26	0	7 708424	a. a. rationartia
CIMID OUT ME 2	303025	2000222	1170	1750	7.0	etura	03.3330001	14.40000		0		72 201010	17	244	
GAAD ODD MEZ	302003	2000223	1110	17.58	1.0	ppm						E 7083076	0	204	10 79830748
						epm						62 067150	0	37.04384	10.75030740
CANTS OF SHALL	370070	2020200	1000		1	epin%						02.957.158		37.04280	
GWD-005-NIAD	3/69/9	2678268	10.32	2400	1.5	ppm						400	0	1 000201	14 86423802
	-					epm						13 /6586/	0	1090301	19,00922007
						epm%						92 610/12	0	7.369288	
GWD-005-SAA	396081	2662683	441	688	1.1	ppm	145	115	151			107		0.000000	1 210000000
						ebu	6:30709004	5.738523	12.425427	0.102302	24.57334165	3.0183357	0	0.196721	2.5 12020330
						epm%	25 6663914	23.35264	50 564661	0.416312		93.88125	0	6 118/5	
GWD-005ZAK	365779	2669462	\$250	8202.5	7.8	ppm		972	122			1598		183	

						epm	0	48.50299	59.411644	0	107 9146377	45.077574	0	1 3	48 07757405
						epm%	0	44.9457	55.054296	0		93 760084	0	6 239916	
GWD-006-NIAD	377194	2678050	38420	56500	73	ppm						19258	1	1135	
						epm						543 24401	0	18 60656	561.850563
						epm%						96 698344	0	3 31 (656	301.039303
GWD-007-MEZ	383262	2660530	1476	2216	7.65	ppm	458	69	66			568		317	
						epm	19 9217051	3 443 114	5.4309813	0	28.79580014	16 022567	0	5.106723	21 21028031
			-		-	epm%	69 1826759	11.957	18 860324	0		25 500445	1 0	24.40055	16.11/6/1/27/09/5/1
GWEL-007 NEAD	377297	2678191	17340	25500	7.3	nom	1. 100 (100 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00000	100,000,000,000,00			REDD	. M.	DOA.	
						epm						245 35085	0	14 16 303	360 6336060
					-	epm%						94 542333	0	5.457667	- Carriel Star Michigan
GWD-007-SHIR	379594	2676948	1056	1650	7.8	DDM	212	36	51			373		171	
					-	epm	9.22140061	1 796407	4 1966674	0	15 21447515	10.521862	0	2 803070	1 13 32514042
						epm%	60 6093902	1180722	27 583386	0	TRACTING CO.	78.962483	0	21 03752	COLUMN SPECIAL
GWD 007 ZAK	365669	2669671	3234	4900	7.5	ppm		626	464			791		244	
						epm	0	31.23752	38 181444	0	694189691	22 313117	0	4	26.31311707
					-	epm%	0	44 99854	55 001457	0	and the second	84 798456	0	15 20154	EM DIDITION
GWD 008 MAS	372416	2686969	67.50	10040	7.5	ppm						3124		10.20104	
						epm						88 124118	-	22	110 1011100
					-	epm%				-		80.022542		10.07746	110 1291100
GWD 008 MEZ	383280	2661055	1000	1562	7.8	DDfB						245	<u>.</u>	13.97/40	
				C TONING		eom						30411103	1 0	1.106721	8 107063766
	-					epm%						85 330002	0	14.70001	0.10/003/00
GWD-008-NIAD	377312	2678189	31280	46000	73	DDM						15531	<u> </u>	1676	
Land Contract of Contract				1 INTERNA		epin						438 11001	0	25	463 1100141
						enm						936 11001	-	5300785	403.110/0141
GWD-008-SHIR	379440	2676905	419	656	7.8	ppm						181	0	5.390205	
STID OF CITIT	Granto	E ALL CALLER	115	Total States	1.97	Pom						5 1057828	0		6 106707703
						enm%						83622784	1 0	16 37763	0.100102195
GWD-008-ZAK	365705	2669816	2760	4312	7.4	ppm		421	256			700		10.501.02	
	. SPACE F. SPAC	. A CONTRACTOR	10.1.5017			enm	0	21.00798	21.065624	0	42 07260830	22 539797	1 0	1 4 802270	24 24208574
						apro 1	0	40.0345	50.068400	0	42:01300039	02 501024	0	7.408076	24.0420/007.1
GW0-009.MF2	383909	2661063	GAD	1062	7.8	DDm			00.000100			114	<u> </u>	98	
50 T 1 10 10 10 10 10 10 10 10	000000	E. STATE TO STATE	erector.	110000	1.000	p.p.m.						2.2167060	0	10000007	4.0222264224
						opro 0	(1	1.	-		5.2157909 6E.695306	0	73.34470	4.022304274
C3WD: 009 SHIP	370348	2676897	473	736	A	-eprom						100	0	33.314/3	
A PARTY OF	- 37.90.10	EMTMONT.	41.0	100	U.	opm						5 6135402	0	1	8.613540107
						epro-						04.070505	0	45 42040	0.010290127
CWD 009 748	365512	2669779	2040	3000	75	10000						746		10.12043	
STATE BOSTERIN	10135012	2000110	2.040	-3500	1.0	- open						21 043724	0	0.704018	21 74964150
					-	epm%						96 758795	0	3 241205	21.24004105
GWD-010 MEZ	393904	2660490	815	961	7.6	DDD						64		183	
GIVE STONES	SAURITY	2000400	010	40.71	1.0	open.						1 9053507	0	100	4.905359661
	-					epm%						37.569709	0	62.43029	4.00.33330001
GWD-010-NIAD	377057	2678333	028	1450	7.8	DOD	147	46				266		37	
Strb Croning	- JIII BAT	2010000	945	1150	1.0	ppm	6 39408438	2.295409	0	0	8 689493566	7.5035261	0	0.806557	B 11008347
						epm%	73 5840856	26.41591	0	0	0.000700000	92,520948	0	7.479052	S. F. ISSUPPLY
GWD 010 ZAK	365878	2669951	4719	6940	7.8	ppm						1931		488	
Strip Strating				0010		epm						54 471086	0	A	62.47108604
						epm%						87 194076	0	12 80592	
GWD:011MAS	372367	2686347	3765	7226	77	000						2130		915	
OTTO OTTAINO	572,001	CONDUCT.	1100	1210	1.1	PD00						60.084626	0	15	75 08462623
					-	epm%				1		80 022542	0	19.97746	
GWD-D11-MEZ	384478	2660534	622	040	75	DDDD		270	98			170		20	
State of the state		a construction	07.1	- Starter	1.0	PDM	0	13.47306	8.0641849	0	21 53723922	4 7954866	0	0.47541	5 270896437
	-					epm%	Ő	62 55702	37.442982	0	ALT THE ALT ALT ALT	90 980475	0	9 019525	
GWD-011-MIAD	377113	2678171	16660	24500	73	DDD						7810		671	
A CONTRACT OF COLORED			TO MUY	C. Torono		epm						220 3103	0	11	231.3102962
	-	-				epm%						95 244483	0	4.755517	
GWD-011SHUP	379375	2676540	310	640	8.2	ppm						106		24	
Section of the section of	an abra	and barry				optim						2 9901269	0	0 393443	3 383569562
	-					epm%						88 371966	Ó	11 62803	
GWD-011-ZAK	365636	2670075	3333	5050	7.7	ppm									
		Constant (10.100			epmi						0	0	0	0
						and the second se									

						opm%		1			#DIV/01	#DIV/01	#01//01	
GWD 012 SOH	383410	2676203	620	1000	7.8	DDm					 	50.10	atore to	
CONTRACTOR SCOTT		UNITER PORTATION	0.1 %.	1000	100	PERTY					 			
	_					.epm					0	0	0	0
						opm%-					#DIV/0!	#D1V/01	#DIV/01	
GWD 012 ZAK	365467	2669964	1822	2690	8.2	ppm:					490		220	
						epm					13.822285	0	3.505557	17.40004110
						oppin %					 70 20200		3000337	17.92009223
CIMPLO CAMAS	323053	2696130	3.490	6900	75	(Contraction)					 79-30090	9	20.09304	
134417-1713-14045	-31 8.0518	2000130	49400	0000	1.0	ppm								
					_	epm					 0	0	0	0
						epim%					#DIV/01	#DIV/01	#DIV/01	
GWD 013 NIAD	377305	2678029	23800	35000.	7.1	ppm					12815	-	811	
						-000					 THE ADDRE	10	+1.00500	224 2002423
					-	Semines.					 001/400/0	1 0	10.23000	519.1901934
210013-043-2612	365707	2670405	6440	0000	25	opinio				-	 30.45200	0	3:347.34	
GVID UTSZAG	- 303131	2010105	0040	0000	. f. D	ppm				-		-		
	_					epm					0	0	0	0
						epm%					#DIV/01	#DIV/01	#012/01	
GWD-014-MAS	373021	2685685	6732	10200	7.5	ppm								-
						epm					 0	0	0	0
											 0		14	
						ebus.w					#DIV/01	#DIV/01	#DIV/01	
GWD-014-SHIR	3/9197	2677015	928	1450	79	ppm	1		-		266		37	
	_				1	epm					7.5035261	0	0.606557	8.11008347
						epm%					92.520948	0	7.479052	
GWD 014 ZAK	365624	2669501	29992	3430	16	000			1		 052	· · ·	1.111.000120.	
57767 51114103	1717100(0.11)	4.09000000	E. G. ST.	erer Man.	1.00	ppm					 0.02		1.1.3	AF 100 10 10 10 10
	-				-	etun					24.03385	0	1.82085	25.98467017
						epm%					92:497421	0	7 507579	
GWD-015 MAS	373366	2686032	3828	5800	7.5	ppm								
					1	epm					0	0	0	0
					-	epm%					 #1315/769	#010701	#15157701	
CAMID: 015 KMEZ	303565	2659370	1250	3740	DI	ELEVEN					 	TANKA AND	#1.11.97.01	
CIVED OTDIVICE	305500	2030370	1740	C199	0.1	ppm					 033		29.	
						epm					18:025388	0	0.393443	18.41883049
						epm%					97.863911	0	2 136089	
GWD-016-MAS	373376	2686726	3412	5170	7.5	ppm								
						epm					0	0	Ū.	0
					-	opm #/					 4000000	-	10	~
Contraction in the second second	Contraction of the	CHOICE CONTRACTOR	1000	in the second	1 2 2 1	epro76					#017/01	#DIV/01	#DIV/01	10101
GWD-016-MEZ	383854	2658383	835	1290	1.7	ppm					213		37	
						epm					6.0084626	0	0.606557	6.61502
						epm%					90.830604	0	9.169396	
GWD-017.MEZ	383691	2658500	860	1343	7.5	0000					142		3.6	
LITTLE OTT THEFE	Grand and a	E. C. D. C. LI C. G.	0.00	TUTU		opm					 4.0056417	0	0.500168	4 500000000
						opm					 4.0000417	0	17.530104	4.585005065
			100		-	epm:%					 87.15864	0	12.84136	
GWD-017B SAA	387796	2660355	458	/16	7.5	ppm								
						epm					0	0	0	0
						epm%					#017/01	#DIV/01	#DIV/01	
GWD 018 MAS	373271	2686944	3379	5120	7.5	DDD					 			
				The second secon		in the second					 0	0	0	0
					-	obiu					 0	0	1)	.0
						epm%					 #DIV/01	#01V/01	#DIV/01	
GWD-018-MEZ	384062	2658484	804	1260	7.6	ppm					181		18	
						epm					5 1057828	0	0.295082	5:40086476
						epm%					94 536394	0	5.463606	
CIMP 010 MAC	373333	2662343	2670	3040	7.0	mmini					 and produced a		0.00000	
04412-01 5 WHAT2	arazza	2001243	2019	3140	7.0	bibitit.								
	-				-	epm					0	0	0	0
						epm%					#D)V/0?	#DIV/0*	#017/01	
GWD-019-MEZ	383740	2658723	752	1175	8.5	ppm					170		36	
						600					 4 7954866	0	0.590164	5 385650535
	-				-	anne V					 89.041010	0	10.05000	
CIMO 010 CIUD	400400	0030347	714.4	4754	0.0	erbiti 20					 00.041313	2	10.33800	
GWD-0198HIK	380199	2676216	244	404	85	ppm					69		12	5 36365600 F
						estaux					2.5105783	0	0.196721	2 707299591
	1					epm%					92 73367	0	7 26633	
GWD-019B-SAA	389002	2660894	461	720	7.8	DDM								
		a substant				PDID					 0	0	0	0
	-				-	C. C					 #01/2/01	#1507/01		
CIARS CON PAR	022020	20.303.00	24.20	1000	1	epin m					 4144701	ACT VIGY	147	
GWD-020-DAI	351319	2670195	3128	4600	11	(ppn)				1	1015		31/	
						(epril)					28.631876	0	5.196721	33 82859719
						epm%					 84.638082	0	15.36192	
						and the state of t							the second s	

GWD-020 MEZ	384007	2658909	924	1444	7.B	nqq						260	1	24	1
						lepm						7 3342736	0	0 393443	7 727716248
						opm%						94 908682	0	5 091318	
GWD 020-SHIR	379957	2676362	704	1100	8	DDD						133		61	
						epm						3.751763	0	4	4 751763047
	-				-	epm%			-			78.05518	1 0	2104482	1912-013 Children C
GWD 021 MAS	373697	2686747	1600	2500	7.7	ppm						443	-	183	
						apm				-		17.406478	0	105	15 30637301
and the second se	The second second					anm%						00.540757		TO SERVICE	(2/4304/081
GWD 021 MEZ	384188	2659198	983	1445	R	TIDET						300.0407.37	0	19.30324	
Salary and a state of						000						200	0	0.000000	0.110000017
					-	(CP)(T)				-		7 5035201	0	0.606557	8.11008347
CWD 0218 SAA	380020	2660354	396	000	7.7	01000			-	-		92.520948	0	7.479052	
GHD 0210 3701	303020	2000334	300	000	3.8	typen.			-						
						etpant .			-			0.	0	0	0
CIM/D 032 MAS	122075	2697000	7640	3876	76	epm-za		-				#DIV70	#010/01	#DIV/01	
GUID-UZZ-WAS	31-3913	2007030	2010	3890	1.13	ppm						958		109	
	-				-	epm				-		27.023977	0	1 786885	28.81086268
						erprin-sa						93.797877	0	6.202123	
GWD-022 MEZ	384478	2659088	1032	1613	12	ppm						266		24	
						epm						7.5035261	0	0.393443	7.896968716
						epm%						95.017802	0	4.982198	
GWD-028-MEZ	384002	2658189	607	.949	73	ppm		28	54	5		107		49	
The second s			1			epm	0.	1.397206	4 4435301	0.127877	5.968612965	3.0183357	0	0.803279	3.821614373
				and the second second		epm%	.0.	23 40922	74 448287	2.142495		78.980645	0	21.01935	
GWD:029 GHAF	390172	2663774	510	797	7.9	ppm									
						epm						0	0	0	0
						epm%						#010/01	#01/201	#019/01	
GWD 029 MAS	374203	2687185	3330	6530	77	DDID	303	540	328	8		1508	HIGHATAS	35.0	
CONTRACTOR STATES	011200	2001100		warew.		.POPOT	17 0043880	26.94611	26 000331	0.204604	71 23543144	A5 07757A	0	7.509.107	\$7.50577077
					-	april 0/	23.0020314	17.82683	37 8880331	0.204004	11.20040144	95 724000	0	1.000137	az.06a/7077
CWD 030 SHID	200500	2626543	0.04	303.2	20	in prove	13 3370314	37.02005	37.000314	M-201222		00.721999	. 0	14.270	
GWD-029SHIR	.000000	20/0342	054	1941.6	7.0	.ppm.	2 43240432	2.3	31	0	0.000000000	142	-	20	1 20200 10 12
						epro	5 13310135	1 147705	2 5509154	0.12/8/7	9.959598627	4.0056417	0	0.393443	4:399084372
					-	epm/%	01.5798044	11.5230	25.612633	1.28396		91.056261	0	8.943739	
GWD-030 SHIR	380867	2676542	630	985	1.1	ppm	151	73	. 32	4		142		24	
	-					opm	6 56807308	1 147705	2 633203	0 102302	10.4512825	4.0056417	0	0.393443	4 399084372
						operitie	62 8446612	10.98147	25.195023	0.978844		91.056261	0	8.943739	
GWD 031 MAS	373172	2685950				ppm									
					1	epm						0	0	0	0
						arginingia						#DIV/01	#DIV/01	#DIV/01	
GWD-031-MAS	373172	2685950	3978	5850	1.1	ppm	1924	173	150	22		1338		529	
						opm	83.6885602	8 632735	12 343139	0.56266	105.2270939	37 7433	0	8.672131	46.41543157
						epm%	79.5313803	8 203909	11730001	0.53471		81 316276	0	18.68372	
GWD-032 MAS	373350	2685779	4406	6480	7.8	DDM									
					-	RDM						0	0	0	0
						onm%						#1111/01	#01//01	#01//01	
000.037.5000	380750	2676146	815	1274	7.0	000						152		122	
and vaconin	andr.od	20103902	010	1274	1.0	eom						4 2877292	0	2	6.287729196
					-	Atim or						68 192014	0	31.80299	
00/0 000 0000	200452	00707000	690	049	0	1212111 10	140	37	20			155		40	
GWD-033SHIR	380452	2070028	339	042	0	ppm	0 00000110	3/	2 2002122	0	11 14510773	100	0	0.803320	6 175/24110
						ebu	6 08960418	1.846.307	3 2092102	0	11 14512(77	4.3/23004	0	0.003279	3 17 30 34 1 19
					-	epm%	54 6391598	16 56605	28.794791	0		84 479608	0	15.52039	
GWD-034-MAS	372841	2687280	2803	4380	1.5	ppm	225	792	590	6		1022		329	34 3537 10 10
						epm	9 78686385	39.52096	48.549681	0.153453	98.01095576	28 829337	0	5 393443	34 22211912
						epm%	9.98547946	40.323	49 534953	0.156567		84.240197	0	15.7598	
GWD-034-SHIR	380217	2676398	410	64.0	8	ppm	66	27	36			142		49	
						epm	2.8708134	1 347 305	2.9623534	0	7.180472212	4 0056417	0	0.803279	4 808920437
						epm%	39 9808441	18 76346	41,255691	0		83 29607	0	16,70393	
GWD-035-SHIR	379811	2676738	443	692	78	ppm	HQ .	20	29	3		71		24	
		and a second sec				epm	3.56676816	0 998004	2 3863403	0.076726	7 027838754	2.0028209	0	0.393443	2 396263497
					-	epm%	50.751992	14.20072	33 955535	1.091749		83.580995	0	16.419	
GWD 03550H	384361	2676215	253	304	77	DDTD	8	14	2			78		12	
STUR BORSTON		AMENALTH.	6.919	Mark	1	epm	0.34792738	0.698603	0.1645752	0	1.211155366	2.2002821	0	0.196721	2.397003399
	-					epm%	28.7310275	57 68069	13 588281	0		91.793032	0	8.206968	
CIMP OR CHAF	200202	2002/00	40.1	224	26	p.p.m.	STATISTICS A	and the state of	Carl and an and a			Contraction in the			
CAMP WAR CITAL	2031.45	2003100	401		1.10	P-P-III									

	-			1		-	-	-	-	-	-	-			
	_					epm						0	0	0	0
	_		_		_	epm%		-	-			#DIV/0+	#DIV/0!	#[31V/01	
GWD 037 SOH	384860	2676176	253	396	1.1	ppm	-	-				74		12	
						epm						2 0874471	0	0.196721	2.284.16842
						epm%						91 387618	6	8.612382	
GWD 040 SHIR	379732	2676385	360	563	7.9	ppm	43	18	33	2		53		12	
						epm	1.87037843	0.898204	2.7154906	0.051151	5 535223553	1 4950635	0	0.196721	1 691784781
						epm%	33 7904 767	16.22705	49.058373	0.924098		R8 371966	0	11.62803	1.4001.1.0001.011
GWD-041-SHUR	373686	2695555	858	3140	7.6	opm	149	31	36	69		350	1 m	36	1.000
					-	epm	6 48107873	1.546906	2 9623534	1764706	1275504423	9.8730606	0	0.590164	10-46199458
	-				-	CATAGORIA PAG	50 8118876	12 1278	23 224056	13 83536	TRUE GOLFEFER	04.360636		5.540354	10.30322330
000 003 5000	320600	2676300	670	1360	9.9	e part ve	145	16.16.00	50.224200	15.05450		94,309030	0	3.040304	
GWG/GRESTINA	- ar maria	KNH MANA	010	1,50,0		Ppm	6.30700004	4.700410	2 3003463	0.170/201	14 405 35357	80		49	
						Cprin D	43 5300513	1 10 0000 7	32.002.102	1.775020	14.4007.0304	2 397 (435	0	0.003279	3.201021989
OWIT 0528 SAA	397634	2659904	530	828	7.6	epiir/6	93.0000013	33.00907	22 104232	1.535031		74:905555	0	25.09444	
LOTTIC POLLO LITER	001004	E.M. P. S. D. S.	000	0.6.0	1.12	Pilato.									
						epm						0	0.	.0	0
COMP. DEA CUXE	200373	9003040	200	212	0.0	epm%						#DIA/01	#DIV/01	#DIV/01	
GWU 004 GHAT	369273	2003019	29%	012	80	ppm									
						epm						0	0	0	0
						epm%						#DJV/01	#DIV/01	#01\//01	
GWD-065 SAA	392372	2661393	742	1160	7.7	pipm	14	42	69	1		195		92	
						epm	3.21879078	2.095808	5,6778441	0.025575	11.01801867	5.5007052	0	1.508197	7.00890194
						epm%	29.2138802	19.02164	51.532351	0.232124		78.481698	0	21.5183	
GWD 066 SAA	392105	2661724	440	688	7.8	ppm									
						epm						0	0	0.	0
						opm%						#010//01	HOIVIOT	HEIRODAL	
GWD 068 SAA	391123	2660983	750	1171	77	ppm	120	60	56	4		107	ALCO VIGE	34	
CATTO CONFORM.	STOP T TELEV	a second long of	1.00			opm	5 21966072	2.994012	4 6081053	0.102302	12 02407092	3.0483357	0	0 508107	3 6 36 6 3 3 4 0 6
						Concerno 92	40.2970075	2334012	25 655103	0 102302	12 32407902	3.0383357	0	0.308197	3 320332405
CIMO 072 CUAE	300073	2004240	520	045	75	epina	40.3070313	23.10015	35 655191	0.79150		80.08330	0	14 4 1060	
GVVD-073-GHAT	300012	2004210	020	010	1.0	ppm									
	-				-	epm						0	0	0	0
				717		epm%						#D1V/0!	#DIV/0+	#DIV/0+	
GWD-075-GHAF	388571	2663527	350	547	7.8	ppm						73		79	
						epm						2 0028209	0	1 295082	3.297902842
	-					epm%						60.730136	0	39.26986	
GWD-106-GHAF	391791	2663312	479	749	8	ppin						3 14		24	
						epm						3.2157969	0	0.393443	3 60923952
						epm%						89.099016	0	10.90098	
GWD-107-GHAF	391788	2663059	. 442	692	7.8	ppm						156		98	
						epm						4.4005642	0	1.606557	6.007121552
		-				20mge						73 255787	0	26 74421	
GWD-108-GHAF	391960	2663168	401	626	75	ppm						100		24	
				596.87		200		-				2.8208745	0	0 303443	3 214317094
		_				ipmm%						87.759682	0	12 24032	Sele Franciscore
CIMD 100/CHAF	302105	2662077	A71	736	0.5	- Protein						440		24	
GHID TOBGHAT	2011.100	1002011	Set 1. 1	1.00	10,0	-pipitti						10 411040	0	0 303743	12 0052003
			_		-	erperi						06 007400		2 072504	12.0032.905
CARLS ALS STILLE	202024	3623460	000	1784	2.2	eprim						30.327433	0	22	
GWD-112GHAF	392074	206,3468	956	1493	01	ppm						313		4.466.774	11 71050300
					_	epm						10.521862	0	1.190721	1171858309
						opm%						89.787833	0	10/21/217	
GWD 149 SAA	392066	2662416	481	752	8	ppm					Terror and the second	106		24	
	1					epm				(manager and the second se		2 9901269	0	0.393443	3.383569562
						epm%						88 371966	0	11.62803	
GWD 149 SAA	392066	2662416	598	934	7.8	ppm.	99	29	46	0		1,28		73	
						epm	4 3062201	1.447106	3 7852294	0	9 538555261	3.6107193	0	1 196721	4.807440634
						epm%	45.1454123	15.17112	39 683466	0		75 106894	0	24 89311	
							and the second se	and the second se	the second s			and the second se			

ARABIC SUMMARY

7- نتائج المسوحات الجبوفيزيقية أوضحت الوضع الطبقى والتركيبي لمنطقة سهل الجاو والتي لها إتعكاسات مباشرة على الوضع الطبقى والتركيبي لمنطقة سهل الجاو والتي لها إتعكاسات مباشرة على الوضع الهيدروجبولوجي لخزان العصر الرياعي. كما أوضحت نتائج الدراسات الكهرومغناطسية تحديد مواقع القوات القديمة المدفونة والتي تمثل أماكن مناسبة لحفر الأيار للحصول على مياه ذات نوعية جيده حيث يكون في مجارى هذه القنوات القدولت سمك الرواسب كبير وذات مسامية لحفر الأيار للحصول على مياه ذات نوعية جيده حيث يكون في مجارى هذه القنوات القديمة المدفونة والتي تمثل أماكن مناسبة لحفر الأيار للحصول على مياه ذات نوعية جيده حيث يكون في مجارى هذه القنوات القدولت سمك الرواسب كبير وذات مسامية ونفاذية عالية. كذلك باستخدام بيانات تسجيلات الأيار أمكن تحديد النطاقات ذات المساد الذي يعب الخذائي عنه الرواسب كبير وذات مسامية ونفاذية عالية. كذلك باستخدام بيانات تسجيلات الأيار أمكن تحديد النطاقات ذات المساد الذي يعب الخذائر عنه الإعرار عند تصعيم الأيار للإنتاج وكذلك الأيار أمكن تحديد النطاقات الفلوات المساد الذي إلى عنه الذي عنه الإيار للإنتاج وكذلك الحديد النطاقات المناد المعن الذي عنه الإعرار عنه الإيار للإنتاج وكذلك العديد طبقة الأساس التي تقع أسفل الخاران. من السطح في هذه الأماكن.

والتي أعزيت لتدفق المياه شديدة الملوحة من الطبقات التي تقع آسفل خزان الرباعي خلال الكسور التي تعترى طبقات الحجر الجبرى المكونة لجبل حفيت وكذلك وجود السبخات غرب جبل حفيت خاصة وأن مناسيب المياه الجوفية قريبةً 6- كمية الأملاح الكلية الذائبة تزداد قيمتها من الشرق للغرب مع زيادة ملحوظة حول المناطق القريبه من جبل حفيت

ملحوظ في مناسبًب المياه الجوفية بسبب قلة سقوط الأمطار في هذه الفترات فضلا عن زيادة معدل السحب من الخزان. 5- الخرائط الكنتورية التي تم رسمها لمناسبيب المياه الجوفية للفترات من عام 1995 وحتى 2002 أوضحت إنخفاض

4- نظام سريان المباه الجوفية عموما يكون من الشرق إلى الغرب إلا أن هذا النظام قد يحيد فى بعض الأماكن نتيجة وجود بعض الحواجز التحت السطحية كما أظهرت النتائج فى المنطقة الواقعة شرق جبل حفيت.

3- أن الوضع الهيدروجيولوجي لهذا الخزان متأثر بالوضع التركيبي لمنطقة سهل الجاو حيث يسود في منطقة سهل الجاو الطيات و الفو التي العكسية الدافعة Thrust Faults

2- نتم تغذية الخزان يصغة أساسية من الأمطار التي تهطل على سلسلة جبال عمان وجبل حفيت.

1- أن خز أن عصر الرباعي بمنطقة سهل الجاو يتميز بسمك صغير نسبيا من صغر متر في بعض الأماكن خاصة في أماكن الجبال، بينما يصل إلى 100 متر في بعض الاماكن الأخرى وهو يتكون من رواسب مختلفة مختلطه بحطام صخرى منحدر من الجبال المحيطة بسهل الجاو.

وتتلخص نثائج هذه الدراسة في عمل تقييم كمي وكيفي لمصادر المياه الجوفية في منطقة سهل الجاو، توصلت هذه الدراسة إلى مايلي :

ولقد كرست هذه الدراسة لإمكانية تواجد المياه ومعرفة نو عيتها وكذلك تعريف المعاملات الهيدروجيولوجية لخزان عصر الرباعي بمنطقة سهل الجاو وتم ذلك من خلال إجراء دراسات هدروجيولوجية وهيدروكيميانية واستخدام تقنيات جيوفيزيقية شملت إستخدام طريقة المقاومة الكهربية والطريقة الكهرومغناطسية وبيانات تسجيلات الآبار .

يعتبَر المدى الحيزى والخواص البتَروفيزيانية لخَران عصر الرباعى Quaternary وكذلك ظروف طبقة الأساس Bedrock التى تقع أسفل الخزان الجوفى من العوامل التى تحكم تخزين وحركة المياه الجوفية لذلك فإن المعلومات عن وضع الخزان وإمتداده والمعاملات البتَروفيزيانية للخزان وهيدروجيولوجية الخزان وكذلك شبكات أحواض التصريف تعتبَر من الأهمية بمكان لفهم نظام سريان المياه والية تغذية الخزان وظروف النظام الهيدروجيولوجي.

وتَركز هذه الدراسة على منطقة **سهل الجاو** والذي يقع شرق مدينة العين ويحده من الشرق سلسلة جبال عمان ومن الغرب جبل حفيت ويعتبر سهل الجاو من أهم السهول بمدينة العين وتبلغ مساحته حوالي 500 كم² .

المياه للجوفية واحدة من أهم المصادر المائية الثقليدية في دولة الإمارات العربية المتحدة بوجه عام وفي مدينة العين بوجه

فاص.

وتعتمد دولة الإمارات العربية المتحدة لسد حاجياتها من المياه على مصادر مانية تقليدية ومصادر غبر تقليدية. وتعتبر

العربية المتحدة يعتبر من أعلى المعدلات إستهلاكا في العالم.

لقد شهدت دولة الإمارات العربية المتحدة فى العقود الأخيرة عمليات تنمية وتطورات واسعة النطاق اشملت مناحى عديدة لجوانب الحياة، وتمثل عمليات التنمية السريعة ضغوطا على المصادر الطبيعية و تعتبر المياه فى الطليعة لأى عملية تطور وتنمية. وبالرغم من أن دولة الإمارات العربية المتحدة هى إحدى الدول الواقعة ضمن المناطق القاحلة والتى تنميز بندرة الأمطار و عدم ابتظامها الأمر الذى يهدد تغذية المياه الجوفية إلا أن معدل استهلاك الشخص للمياه فى دولة الإمارات

دراسات هيدروجيولوجية وجيوفيزيقية على سهل الجاو- منطقة العين - دولة الإمارات العربية المتحدة

ملخص الرسالة

جامعة الإمارات العربية المتحدة عمادة الدراسات العليا

عنوان الرسالة

در اسات هيدروجيولوجية و جيوفيزيقية على سهل الجاو - منطقة العين دولة لإمارات العربية المتحدة

إسم الباحث

هند سيف النعيمي

المشرفون

الوظيفة	الاسم	P
أستاذ الجيوفيزياء المشارك بقسم الجيولوجيا. كلية العلوم. جامعة الإمارات العربية المتحدة	د. أحمد السيد المحمودي	1
أستاذ موارد المياه - كلية الهندسة- جامعة الإمارات العربية المتحدة	ا.د. محسن شريف	2
أستاذ مساعد الهيدروجيولوجي بقسم الجيولوجيا- كلية العلوم- جامعة الإمارات العربية المتحدة	د. طارق غازى الزبط	3

جامعة الإمارات العربية المتحدة عمادة الدراسات العليا

در اسات هيدروجيولوجية وجيوفيزيقية على سهل الجاو-منطقة العين دولة لإمارات العربية المتحدة

اعداد هند سيف النعيمي

رساله مقدمة إلى عمادة الدر اسات العليا جامعة الإمار ات العربية المتحدة

لإستكمال متطلبات الحصول على درجة الماجستير في العلوم في موارد المياه

عمادة الدر اسات العليا جامعة الإمارات العربية المتحدة يونيو 2003

