
United Arab Emirates University
Scholarworks@UAEU

Theses Electronic Theses and Dissertations

5-2015

UAV-CLOUD: A PLATFORM FOR UAV
RESOURCES AND SERVICES ON THE
CLOUD
Sara Yousif Mohamed Mahmoud

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/all_theses

Part of the Software Engineering Commons

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarworks@UAEU. It has been accepted for
inclusion in Theses by an authorized administrator of Scholarworks@UAEU. For more information, please contact fadl.musa@uaeu.ac.ae.

Recommended Citation
Mohamed Mahmoud, Sara Yousif, "UAV-CLOUD: A PLATFORM FOR UAV RESOURCES AND SERVICES ON THE CLOUD"
(2015). Theses. 40.
https://scholarworks.uaeu.ac.ae/all_theses/40

https://scholarworks.uaeu.ac.ae?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_theses?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/etds?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_theses?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_theses/40?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fadl.musa@uaeu.ac.ae

 Title

United Arab Emirates University

College of Information Technology

Software Development Track

UAV-CLOUD: A PLATFORM FOR UAV RESOURCES AND

SERVICES ON THE CLOUD

Sara Yousif Mohamed Mahmoud

This thesis is submitted in partial fulfilment of the requirements for the degree of

Master of Science in Software Engineering

Under the Supervision of Dr. Nader Mohamed

May 2015

ii

Declaration of Original Work

I, Sara Yousif Mohamed Mahmoud, the undersigned, a graduate student at the

United Arab Emirates University (UAEU), and the author of this thesis entitled

“UAV-Cloud: a platform for UAV resources and services on the cloud”, hereby,

solemnly declare that this thesis is an original research work that has been done and

prepared by me under the supervision of Dr. Nader Mohamed, in the College of

Information Technology at UAEU. This work has not been previously formed as the

basis for the award of any academic degree, diploma or a similar title at this or any

other university. The materials borrowed from other sources and included in my

thesis have been properly cited and acknowledged.

Student’s Signature Date

iii

Copyright

Copyright © 2015 Sara Yousif Mohamed Mahmoud

 All Rights Reserved

iv

Approval of the Master Thesis

This Master Thesis is approved by the following Examining Committee Members:

1) Advisor (Committee Chair): Dr. Nader Mohamed

Title: Associate Professor

Department of Networking

College of Information Technology

 Signature Date

2) Member: Dr. Imad Jawhar

Title: Associate Professor

Department of Networking

College of Information Technology

 Signature Date

 3) Member (External Examiner): Dr. Rabeb Mizouni

Title: Assistant Professor

Department of Computer Engineering

Institution: Khalifa University

Signature Date

v

This Master Thesis is accepted by:

Dean of the College of Information Technology: Dr. Shayma Al Kobaisi

Signature Date

Dean of the College of the Graduate Studies: Professor Nagi T. Wakim

Signature Date

Copy ____ of ____

vi

Abstract

UAVs - Unmanned Aerial Vehicles – have gained significant attention recently, due

to the increasingly growing range of applications. However, developing collaborative

UAV applications using traditional technologies in a tightly coupled design requires

a great deal of development effort, time, and budget especially for heterogeneous

UAVs. Moreover, monitoring and accessing UAV resources using traditional

communication media suffer from several restrictions and limitations. This research

aims to simplify the efforts, reduce the time, and lower the costs of developing

collaborative applications for distributed heterogeneous UAVs. In addition, the

research aims to provide ubiquitous UAV resources access. A platform is proposed

for developing distributed UAVs. This platform provides services to simplify

application development. In this approach, UAVs are integrated with the Cloud

Computing paradigm to provide ubiquitous access to their resources and services.

Due to the limited capabilities of UAVs, a lightweight architecture is adopted. UAV

resources and services are modeled in a Resource Oriented Architecture which is a

new flexible web service design pattern with loosely coupled interaction between

services. Hence, they are accessed as Representational State Transfer RESTful

services using HTTP. Moreover, the research proposes using a broker architecture to

increase efficiency by separating responsibilities. Therefore, it separates the

requester’s logic and functionalities from the provider’s. It also takes the

responsibility for allocating the issued request to the available and suitable UAV(s).

To test the proposed platform, I first developed the UAV resources as a payload

subsystem then provided them with Internet connectivity. Then, resource identifiers

and uniform interfaces were developed using the RESTful Application Programming

Interfaces (APIs). I also developed the broker service along with a database

containing the information of the registered UAVs and their resources. The platform

system components were tested using a requester interface in a browser by issuing a

request for a resource to the broker to find and request the service from a suitable

UAV. The test was done for retrieving data from UAVs as well as requesting actions

from them. The main contributions of this research are proposing the UAV-Cloud

platform for simplifying the development of ubiquitous UAV applications and its

vii

perspectives, as well as a lightweight loosely coupled design for UAV resources.

Another contribution is developing the broker architecture for separating

responsibilities in this platform.

Keywords: UAVs, Cloud Computing, distributed systems, broker, client-server

architecture, Resource Oriented Architecture -ROA, Representational State Transfer-

RESTful.

viii

Title and Abstract (in Arabic)

على الطائرات بدون طيار السحابية: منصة لموارد وخدمات الطائرات بدون طيار

 الحوسبة السحابية

 صالملخ

 لتزايد مجال نظرا الأخيرة، الآونة في كبيرا اهتماما اكتسبت - طيار بدون الطائرات

 التقنيات باستخدام التي تبنى التعاونية طيار بدون الطائرات تطبيقات تطوير ولكن. التطبيقات

. والتكلفة والوقت، في ضخمة جهود إلى يحتاج بإحكام المقرونة المهمات تصميم في التقليدية

 الأساليب باستخدام طيار بدون الطائرات موارد إلى والوصول الرصد ذلك، على وعلاوة

 وتقليل الجهود تبسيط إلى البحث هذا يهدف لذا .والحدود القيود من العديد من تعاني التقليدية

. الموزعة متجانسة غير طيار بدون لطائراتل التطبيقات لتطوير اللازمة والتكلفة الوقت

 كل من طيار بدون الطائرات الوصل إلى موارد توفير إلى البحث يهدف ذلك، إلى بالإضافة

 توفر. طيار بدون لطائراتل بنية برمجيات تم اقتراح البحث، هذا في. باستخدام الانترنت مكان

 في. بسهولة عليها الطائرات بدون طيار تطبيقات بناء يتم بحيث الأساسية الخدمات البنية هذه

للطائرات وصولال لتوفير السحابية الحوسبة نموذج مع طيار بدون الطائرات تتكامل النهج، هذا

 خفيفة برامج اعتماد تم الطائرات، لهذه محدودةال لقدراتل نظرا. مكان كل بدون طيار من

وهو نموذج مرن ROAصممت موارد الطائرات بدون طيار على نموذج للتحميل عليها.

 ذلك، على وعلاوة. RESTfulلتصميم برامج النت مع خدمات خفيفة الارتباط باستخدام منافذ

 يفصل فإنه وبالتالي،. المسؤوليات فصل طريق عن كفاءةال لزيادة وسيط برنامج البحث يقترح

 للطائرات نظرا الطلب توزيع عاتقه على ويأخذ مزودال الجانب من للخدمة الطالب الجانب

 خلال من للطائرات بدون طيار الموارد أولا بنيت المقترح، الهيكل لاختبار. مناسبةالو متاحةال

 واجهات باستخدام موحدة واجهات" الموارد معرفات وتطوير لهم بالإنترنت الاتصال توفير

 لاحتواء بيانات قاعدة مع جنب إلى جنبا وسيط خدمة تطوير تم ثم(. API) التطبيقات برمجة

 مستعرض في الطالب واجهة باستخدام الوسيط اختبار تم. طيار بدون الطائرات من المعلومات

 اختبار تم وقد. مناسبةال الموارد من القيمة باسترداد يقوم بحيث ،للوسيط مورد طلب بإعطاء

 المساهمات. منه الإجراءات الطالبة وكذلك طيار بدون الطائرات من البيانات لاسترجاع

 الموارد مكان كل طيار بدون الطائرات لتطوير منصةهي تصميم البحث لهذا الرئيسية

ix

 مع تحديد الاعتبارات والمتطلبات، مريحة، خفيفة المتباعدة الإنترنت خدمات إلى والخدمات

 .المسؤوليات لفصل وسيط نموذج عن فضلا

x

Acknowledgements

I would like to thank my advisor Dr. Nader for his time and efforts. He

believed in me and my abilities. Also, I would like to thank my committee (Dr.

Imad Jawhar and Dr. Rabeb Mizouni) for their guidance, support, and assistance

during the preparation of my thesis. Furthermore, I would like to thank the Dean

(Dr. Shayma Al Kobaisi) and all members of the College of Information

Technology at the United Arab Emirates University for assisting me throughout my

studies and research.

I am highly indebted to Dr. Abdulmutalib whose expertise and enthusiasm

about broker and Cloud Computing guided me through my research. I am

especially grateful to Dr. Yacine who introduced me to the concept of Internet of

Things and Web of Things, and whose support and encouragement led to this

research and most of the other studies in which I have been involved.

My gratitude is extended to the staff of the Engineering Lab in particular Dr.

Hassan Noura who allowed me to use their equipment and materials and also for

their invaluable guidance. My thanks too go to Dr. Jameela Al-Jaroodi for her kind

co-operation. I likewise offer my thanks to the Library Research Desk for providing

me with the relevant reference material. Also, I must not forget to mention that this

work is supported in part by UAEU-NRF Research grant number 3IT045.

I want to express my deepest appreciation to my parents and friends. I am

sure they suspected it was endless. Lastly, I would like to to express my profound

gratitude to Tasneem Amin my best friend, for her encouragement and motivation

whenever I felt despondent. She was so supportive and gave me the inspiration to

continue this journey.

xi

Dedication

To my beloved parents and family

xii

Table of Contents

Title ... i

Declaration of Original Work ... ii

Copyright ... iii

Approval of the Master Thesis .. iv

Abstract ... vi

Title and Abstract (in Arabic) .. viii

Acknowledgements .. x

Dedication ... xi

Table of Contents .. xii

List of Tables... xiv

List of Figures .. xv

List of Abbreviations... xvi

Chapter 1: Introduction .. 1

1.1 Overview .. 1

1.2 Statement of the Problem ... 4

1.3 Objectives ... 5

1.4 Scope .. 6

1.5 Thesis Outline .. 7

Chapter 2: Literature Review ... 9

2.1 Motivation to UAVs and their Usages ... 9

2.2 UAV Specifications ... 11

2.3 Radio Frequency (RF) Communication in UAVs .. 13

2.4 Collaborative UAV Architectures .. 14

2.4.1 Distributed Self-Allocation Architecture for Collaborative UAVs 14

2.4.2 Previous Efforts Toward Collaborative UAVs Middleware 16

2.4.3 Previous Efforts Toward Collaborative UAVs Cloud 18

2.5 Cloud Computing for Smart Objects.. 19

Chapter 3: UAV-Cloud Framework ... 21

3.1 UAV-Cloud Framework Layers ... 21

3.1.1 UAV IaaS ... 22

3.1.2 UAV PaaS .. 22

3.1.3 UAV SaaS .. 23

3.2 UAV-Cloud User Types ... 24

3.2.1 End Users ... 25

xiii

3.2.2 Application Developers .. 25

3.2.3 UAV Providers ... 25

3.2.4 Administrators .. 26

3.3 Opportunities of UAV-Cloud ... 26

3.4 Considerations of UAV-Cloud ... 27

3.4.1 UAV Considerations .. 27

3.4.2 Platform Development Considerations .. 28

3.5 UAV-Cloud Platform Components .. 30

3.5.1 Collaborative Services .. 30

3.5.2 UAV Resources and Services .. 31

Chapter 4: UAV-Cloud Platform Architecture .. 34

4.1 Web Service Architectures ... 34

4.2 Resource Oriented Architecture for UAV-Cloud .. 37

4.2.1 REST Architecture ... 37

4.2.2 RESTful HTTP Components ... 38

4.2.3 RESTful Models ... 40

4.3 Designing the UAV Layer ... 41

4.3.1 UAV Resource and Service Types ... 42

4.3.2 UAV Resource APIs .. 43

4.4 UAV Database ... 48

4.5 Designing the Broker Layer ... 50

4.5.1 UAV Broker Process .. 52

4.5.2 UAV Broker APIs .. 53

4.6 Front-End Application ... 59

Chapter 5: Implementation Experiment ... 60

5.1 Implementation .. 60

5.1.1 UAV Resources Implementation ... 60

5.1.2 Database Implementation ... 64

5.1.3 Broker Implementation .. 66

5.2 Testing .. 67

5.3 Evaluation .. 71

Chapter 6: Conclusion and Future Work ... 76

6.1 Conclusion ... 76

6.2 Future Work and Open Issues .. 81

Bibliography ... 83

List of Publications .. 87

xiv

List of Tables

Table 2-1 UAVs categories according to mass, flight altitude, range of

communication and endurance [19]. .. 11

Table 2-2 A comparison of physical specifications of autopilots [20]. 12

Table 2-3 A comparison of open hardware devices. .. 12

Table 4-1 A comparison of SOAP and RESTful web services. 36

Table 4-2 RESTful operations and their usages for UAVs .. 39

Table 4-3 A comparison between Pull Model and Push Model for requests and data

exchange. .. 41

Table 4-4 UAV resources types and their RESTful interfaces 47

Table 4-5 Broker API interfaces for UAVs and application developers. 58

Table 5-1 Implemented UAV resources and their interfaces. 62

Table 5-2 Response times for UAV resources with direct accesses. 72

Table 5-3 Response times of UAV resources through the broker. 73

Table 6-1 A comparison among the UAV-Cloud and other related solution in the

addressed features. ... 80

xv

List of Figures

Figure 3-1 UAV-Cloud Framework ... 24

Figure 3-2 Service request sequence diagram for UAV subsystems. 33

Figure 4-1 Client-Server Architecture. .. 48

Figure 4-2 UAV Database Sample. .. 49

Figure 4-3 Broker layer to separate the application layer from the UAV layer. 51

Figure 4-4 Client-Server Architecture with broker layer. .. 51

Figure 4-5 Requesting camera service for specific location. 59

Figure 5-1 The implemented system components of the UAV-Cloud architecture are

shaded in gray. ... 60

Figure 5-2 Four Arduino boards connected with Adafruito CC3000 boards as well as

sensors and actuators representing UAV payload systems and their resources. 61

Figure 5-3 UAV table in PostgreSQL database using PgAdmin platform. 64

Figure 5-4 Registered UAV resource table in PostgreSQL database using PgAdmin

platform. ... 65

Figure 5-5 Operation table of assigned UAVs in table in PostgreSQL database using

PgAdmin platform. ... 65

Figure 5-6 POST operation request and response for spraying service through the

broker ... 68

Figure 5-7 POST operation request and response for ‘led_on’ service through the

broker. .. 69

Figure 5-8 PUT operation request and response for turning spray service off through

the broker. .. 70

Figure 5-9 PUT operation request and response for turning ‘led service off’ through

the broker. .. 70

Figure 5-10 Reading the remaining tank capacity of the spraying service UAV 71

Figure 5-11 Response times of UAV resources with direct accesses. 73

Figure 5-12 Response times of UAV resources through the broker. 74

Figure 5-13 Response times of UAV resources with direct accesses and through the

broker. .. 75

xvi

List of Abbreviations

API Application Programming Interface

CC Cloud Computing

DBMS Database Management System

ER Entity-Relationship diagram

FANET Flying Ad Hoc Networks

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IoT Internet of Things

IP Internet Protocol

LED Light-Emitting Diode

MANET Mobile Ad-hoc Network

PaaS Platform as a Service

QoS Quality of Service

REST Representational State Transfer

RF Radio Frequency

ROA Resource Oriented Architecture

RoI Region of Interest

SaaS Software as a Service

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

TCP Transmission Control Protocol

xvii

UAV Unmanned Aerial Vehicle

UDP User Datagram Protocol

VANET Vehicular Ad-hoc Networks

WoT Web of Things

WSDL Web Service Definition Language

1

Chapter 1: Introduction

This chapter gives a brief overview about this research. After that the

problem statement is presented and the main objectives of this research are

illustrated, followed by the scope that this research covers. Finally, the thesis outline

is stated.

1.1 Overview

Unmanned Aerial Vehicles (UAVs) are aircraft without human pilots on

board. UAVs are remotely controlled from the ground or autonomously by an on-

board computer. A recent study estimated that in 2017, the civilian UAV market in

the United States alone could reach $560 million out of a total of around $5 billion

[1]. With recent advances in airframe, control, and communication technologies

offered in UAVs, manned operations for many applications can be efficiently

replaced with UAVs. UAVs have the potential to perform various important and

repetitive tasks; they can do this in an automated efficient way. This is mainly a

consequence of their high accuracy, mobility, and repeatability levels [2].

UAVs can be very useful in agriculture for spraying pesticides or seeds; in

search and rescue operations in disaster areas; for capturing large areas for security

and surveillance; in environmental monitoring; for large infrastructure monitoring;

and in terrain mapping applications. Such tasks require repetitive, hazardous and/or

tedious tasks. Although manned aerial vehicles can be used, such utilization requires

long hours of repetitive, highly focused, and costly flights that place a heavy burden

and high risk on pilots.

2

As they need to rely on some form of Radio Frequency (RF) communication,

UAV applications need to establish direct links among themselves and with the

ground station(s). Such links may either be single links or multiple hops through

other communication nodes that may be other UAVs nearby or some intermediate

ground stations [3]. However, this peer-to-peer RF communication between ground

stations and UAVs is not suitable for many of the UAVs’ dynamic distributed and

heterogeneous operating environments.

Some UAV missions involve multiple UAVs working together to quickly

achieve a specific task [4]. However, controlling and utilizing multiple UAVs that

will effectively and concurrently operate and coordinate them for a certain problem

area requires a huge number of man hours in design, development and testing [5].

This is mainly due to the lack of technologies that can be utilized to effectively

coordinate the operations of multiple UAVs. Moreover, a collaborative mission

usually consists of multiple tasks that are executed sequentially or concurrently by

multiple UAVs to accomplish the mission. These tasks are allocated to UAVs and

monitored by either a ground station [6][7], or autonomously [8][9]. Developing such

missions is time consuming and costly due to the heterogeneity of UAVs’ resources

and systems.

The aim of this research is to provide ubiquitous UAV resources and services

access through the cloud. As well as separating responsibilities for more efficient

architecture, this eases the development of new client applications without the

repetitive efforts for heterogeneous UAVs development.

The approach adopted in this research study is to utilize the Resource-

Oriented Architecture (ROA) model by providing the UAV’s resources and

capabilities to other requesters through Application Programming Interface (APIs).

3

The ROA is a client-server architecture implemented in Representational State

Transfer (REST) architecture. However, for distributed UAVs we utilize the broker

architecture pattern for more efficient and scalable applications. Here, UAVs register

their services and resources in the broker. Then, the requester sends the request of a

service to the broker which allocates the appropriate available UAV that can perform

the service. This model is implemented using the Cloud Computing (CC) paradigm.

By integrating UAVs to the cloud, UAVs are accessed ubiquitously as cloud

resources. CC has been expanded not only for computers and mobile devices but also

for embedded systems [10]. Similarly, UAVs have embedded systems that conform

to the concept of Internet of Things (IoT) [11] and Web of Things (WoT) [12], so

that they can be connected to the Internet to be accessed and monitored through the

Web. For example, a client application can monitor a mission’s progress as well as

the status and location of each UAV through a web browser. Moreover, it enables

access to the UAVs' resources such as the camera, sensors, and actuators using web

services’ protocols.

The contribution of this research includes: integrating UAVs not only to the

Internet but also to the cloud computing paradigm that provides resources and

services as a shared pool. In addition, the research proposes a UAV-Cloud platform

for distributed UAVs. This platform focuses on their resources and services of the

payload system. These resources are designed in a lightweight flexible ROA,

providing APIs for each resource in a loosely coupled architecture to support

reusability. Furthermore, a broker layer with a database is developed on the cloud for

separating responsibilities to separate the UAV side from the client side.

The research assumes that UAVs are autonomous; hence, the control

subsystem is responsible for the navigation process to the required location. In

4

addition, the user mission is assumed to be decomposed into set of tasks, where each

task could be assigned to a UAV. Furthermore, the research assumes the availability

of reliable network connections between the UAVs and the cloud. This is a valid

assumption especially for environment such as smart cities.

 The research is evaluated by developing a prototype using Arduino devices

as an UAV payload subsystem with a Wi-Fi shield for internet connectivity. Each

UAV will be considered as a server that provides its resources and services to be

accessed through defined RESTful APIs. Then a broker will be implemented by

NodeJS platform using JavaScript programming language. The UAVs will register

their services, capabilities and identifications to the broker, so that the broker stores

the information in a database that contains the data of the registered UAVs.

For the purpose of simplicity, the requester will be a RESTful requester plug-

in on the browser. The request of a certain service will be sent to the broker, then the

broker allocates the services to the available suitable UAV that matches the request

considerations.

1.2 Statement of the Problem

At this point in time most UAVs rely on radio frequency communication.

Most typical UAV operations need to establish direct links among themselves and

with the ground station(s) through certain frequencies that both transmitter and

receiver are tuned to. However, peer-to-peer communication and radio frequency

transmission suffer from many restrictions such as a narrow range of communication

which depends on the transmission frequency. Although the covered communication

area increases proportionally with the transmission frequency, it leads to a high

consumption of the limited UAV’s energy source more rapidly for the transmission.

5

Moreover, the transmitter and receiver should be tuned to the same frequency to be

able to communicate. Also, such common set-up systems suffer from the difficulty of

programming and developing new applications depending on the UAV's language

and commands. In addition, this approach does not support the heterogeneity of

UAVs, where each UAV could have a different operating system and different

command syntax and interfaces. It restricts the location of the ground station to the

mission's location and requires UAVs to be in direct line-of-sight (LOS) of the

ground station to maintain communication and control. In addition, the control and

monitoring of UAV missions have become more complicated and are limited to the

specific devices that UAVs are connected to.

 Most collaborative UAV missions’ developments face difficulties when

dealing with heterogeneous UAVs, where they have different resources, commands

and operating systems. Therefore, the development of UAVs is specified for a certain

mission and re-developed for each different mission using the same UAVs. That is

due to the tightly coupled design of UAVs functionalities.

Due to the difficulty of task allocation for UAVs, tasks require specific

resources that are available in some UAVs with specific conditions such as energy

level and location. Moreover, real time monitoring for these UAVs throughout the

mission is a difficult process for a human.

1.3 Objectives

This research aims to provide UAV platform architecture for developing

ubiquitous UAV applications based on separating responsibilities, where UAVs are

responsible for providing their resources and services to the given requester, while

another layer- the broker- is responsible for monitoring and registering UAVs which

6

will be able to allocate the suitable UAV for requests. As a result, the requester of a

service does not need to know the UAV services’ providers and their resources. This

facilitates the development of new missions because of the loosely coupled services

and the responsibility separation.

Moreover, developing new applications becomes an easy process regardless

of the heterogeneity of the UAV system and commands. Accordingly, adding UAVs

becomes as easy as plug and play. This research proposes a broker architecture that

keeps records of the registered UAVs and their services and resources with up-to-

date information of the dynamic UAVs. This architecture is built in the cloud

computing paradigm. In addition, it utilizes the cloud resources and the ubiquitous

service, so that UAVs are accessed regardless the location of the user.

1.4 Scope

The scope of this research is the UAV payload subsystem that is, UAV

resources and services. The research focus is to integrate UAVs to cloud computing

paradigm and model their resources and services as Resources-Oriented Architecture

that is implemented using RESTful web services. Resources and services are loosely

coupled where there is no direct relation between them. They are utilized using

broker architecture to separate the requester from the provider. The broker reserves

the information of the registered UAVs in the database, and allocates the resource

request to the appropriate UAV.

Decomposition of the mission from user requests into multiple assignable

tasks is out of the scope of this research. Therefore, for testing purposes, tasks are

simulated as an external request from a simple browser application. In addition,

7

controlling aspects and flight issues are beyond this research. The service assumes

that the flight subsystem gets the destination parameters without specifying

directions or path planning.

1.5 Thesis Outline

The rest of the thesis is organized as the following;

Chapter 2 is the literature review which examines briefly UAVs’ missions

and their importance. It then focuses on previous efforts toward multi-UAV

communication and architectures. This is followed by a discussion of the IoT smart

objects and their available platforms.

Chapter 3 proposes the Framework of UAV Cloud Computing starting by

defining the layers of the framework and then determining the user types of the

system. After that, the opportunities gained from this system are illustrated. Then a

discussion of the technical considerations is specified for both the UAVs side and the

platform. Finally, the components of the platform are detailed.

Chapter 4 focuses on designing the platform APIs using the ROA architecture

that is implemented as RESTful HTTP. The design begins by defining the UAV

resource types along with their APIs, then the database model for storing the UAV

information as well as the operation information. After that, the broker’s APIs design

which allowed the interaction of both UAVs and application developers is discussed.

Finally, a brief description of the user application is addressed.

Chapter 5 illustrates the implementation and testing of the architecture system

components. The implementation includes the UAV side as well as the broker side.

The UAV side is implemented as Arduino boards with connected sensors and LEDs

8

as resources and services accessed by their APIs. This is followed by the

implementation of the broker layer in NodeJS connected to PostgreSQL database, the

broker offers APIs to access UAVs through it.

Finally, Chapter 6 summarizes the research and makes suggestions for future

area of further researches.

9

Chapter 2: Literature Review

This chapter begins by examining UAVs and highlighting the motivation for

their usage and importance. Then, a summary is presented about UAV

communication types and their limitations. This is followed by an examination of

multi-UAV monitoring architecture, which focuses on previous efforts toward UAVs

middleware and cloud computing. After that, a similar field of smart objects and IoT

are discussed as my research is built upon this concept.

2.1 Motivation to UAVs and their Usages

UAVs are systems that include many subsystems such as flight and control,

communication as well as payloads. They vary in size from High Altitude Long

Endurance to Nano Air vehicles, with different speed capabilities and types of

missions. Although UAVs have been known in military missions, they have recently

been introduced into civilian missions and have had a great impact on the

environment [13].

Most civilian missions use small UAVs that have limited capabilities and

payloads. A UAV may have one or more payloads such as sensors and actuators.

Sensors collect data from the environment, while actuators perform actions on the

environment.

There are many applications for UAVs such as the example presented by

Varela et al. [14], where UAVs are used for environmental monitoring such as

collecting data on air quality in different layers of the atmosphere as some

information cannot be collected by ground systems due to gasses or smoke from

10

fires. The main missions of these UAVs were to measure pollution and locate its

sources. The swarm intelligence based strategy can be used as it uses a completely

distributed approach. Another example, Fausto et al. in [15] proposed architecture for

using UAVs and Wireless Sensor Network (WSN) in agriculture applications. Fausto

et al. developed a collaborative UAVs system to spray pesticides and fertilizers in

agricultural areas that can hardly be reached by humans efficiently without missing

some areas in the spraying process, duplicating spraying areas or spraying outside

boundaries.

Furthermore, Chmaj and Selvaraj [4] addressed a survey about collaborative

and distributed UAV applications. They presented several applications, such as;

object detection and tracking, where UAVs search and allocate a specific object then

track it using a swarm of UAVs that communicate with each other. Surveillance is

one of the most famous applications in UAVs, where multiple UAVs are distributed

to monitor a large area. Another important application is data collection through

WSN. This includes ground sensors as well as UAV sensors. Collected data can then

be sent to the ground station to be monitored and analyzed. Environmental

monitoring used to detect forest fires, storm and pollution has gained high interest in

UAV applications.

Mohammed et al. [16] referred to UAV applications for smart cities. They

addressed safety applications such as traffic and crowd management as well as urban

security especially for big public events. They also discussed the business

applications of UAVs such as in Amazon Prime Air for delivering products and their

use for restaurant services. Also they proposed the development of UAVs in Dubai

for small lightweight items delivery as well as documents and medicine [17].

11

These various application opportunities of UAVs have encouraged

researchers and developers to focus on improving efficient frameworks to develop

UAV applications easily, especially for multiple distributed UAVs that cooperate

with each other. Therefore, they have developed different architectures and

communication protocols for collaborative UAVs.

2.2 UAV Specifications

UAVs vary in size and specifications of their software and hardware

according to their category. Categories depend on the communication range, UAV

mass as well as their usages [18]. UAVs are categorized as shown in Table 2-1.

Table 2-1 UAVs categories according to mass, flight altitude, range of

communication and endurance [19].

However, most civil applications use only micro and mini UAVs. These

categories have a limited endurance up to 2 hours due to their limited power supply.

Furthermore, they fly in low altitudes with a short communication range not

exceeding 10 kilometers. In such categories, the UAV is capable of carrying limited

weight which restricts the hardware resources into certain boundaries.

12

 Chao et. al. [20] compared the physical specifications of small UAVs, shown

in Table 2-2. The comparison shows the limited processing and memory of UAVs. In

addition, most of these resources are consumed for controlling, navigation and

communication processes.

Table 2-2 A comparison of physical specifications of autopilots [20].

Moreover, Chao indicated that open source UAV designed in Linux is useful

for researchers to add and modify the source code and add their hardware. The

industry provides open source hardware in which the developer has the freedom to

design and program systems. Arduino and Raspberry Pi are the mostly used open

source hardware. A comparison of these devices is shown in Table 2-3.

Table 2-3 A comparison of open hardware devices.

13

2.3 Radio Frequency (RF) Communication in UAVs

One of the main technical requirements of UAVs is the availability of

communication facilities among them. A lot of research has been done on traditional

radio communication. In [3] a Flying Ad Hoc Network (FANET) model was

designed for UAVs. This model differs from traditional networks, Mobile Ad-hoc

Networks (MANETs) and Vehicular Ad-hoc Networks (VANET) in terms of

connectivity and routing capabilities.

The main challenge facing FANET is routing as the network topology

changes dynamically and rapidly. UAV communications can be either UAV-to-UAV

communication where UAVs communicate with each other or UAV-to-Infrastructure

communication where UAVs communicate with fixed infrastructure locations such

as ground stations. A MANET uses mobile nodes in random network topology that

changes rapidly; therefore, it can be used in UAV FANET to make routing easier and

to improve the performance of wireless communication systems. To increase FANET

communication performance, transmission power needs to be decreased by

communicating with the closer UAVs. As a result, MANET routing mechanisms are

preferred in FANET but they are not directly applicable.

However, this short range peer-to-peer communication is not suitable for

many of the UAV dynamic, distributed and heterogeneous environments. It restricts

the location of the ground station to the mission’s location and requires UAVs to be

in direct line of sight of the ground station to maintain communication and control. In

addition, the control and monitoring of UAV applications become more complicated

and limited to the specific devices that UAVs are connected to.

14

2.4 Collaborative UAV Architectures

Using multiple UAVs collaborating together decreases the time needed to

achieve specific tasks. However, developing such applications for UAVs with

heterogeneous devices; different energy levels, varying storage, communication,

sensing and processing capabilities is a complex task [21]. Collaborative UAVs can

be homogenous or heterogeneous in their communication, acting, sensing, storage,

and processing capabilities as well as their energy levels. Although applications that

rely on homogenous UAVs are easier to develop, heterogeneous UAVs can offer

great opportunities for providing cost-effective solutions for complex applications

that require different capabilities for the various tasks involved.

According to Mohamed’s et al. work [22][23], there are six aspects of

multiple UAVs collaboration; (1) collaborative sensing using distributed sensors; (2)

collaborative acting to cover large areas faster; (3) collaborative communication to

allow UAVs to interact with each other; (4) collaborative data processing which

allows UAVs to process large data among the UAVs that have on-board high

performance computers; (5) collaborative storage that organizes data storage among

multiple UAVs depending on their capabilities; and (6) collaborative control of

distributed components to achieve one goal.

2.4.1 Distributed Self-Allocation Architecture for Collaborative UAVs

In distributed collaborative UAV missions, a UAV interacts with all other

UAVs to find the required service provider, and then interacts with it to request and

get the service. In this scenario, all UAVs communicate to allocate tasks as specified

in [6], [22], [24] and [25]. Following this approach, the mission is divided into tasks

15

and distributed to all UAVs then each UAV chooses a suitable task for itself. Next,

they negotiate to ensure that all tasks are allocated to UAVs and no task assignment

duplications. After that UAVs exchange messages to execute tasks in the right order.

When a UAV requires data or a service from another UAV it sends requests

to all other UAVs, then the suitable UAV that provides that service replies to the

requester UAV; next they exchange messages to complete the service. Another

method is to broadcast information, where each UAV broadcasts its services and

status to other UAVs such that the requester knows others’ services and only sends

the request to the provider UAV rather than broadcasting its request.

The self-allocation algorithm for a set of tasks was implemented in [6] for

four UAVs and showed a conflict in allocating a task when having two UAVs had

almost identical resources and capabilities. This showed the inefficiency of the

algorithm for long collaborative service lengths and large numbers of UAVs.

The distributed self-allocation approach has many challenges especially for a

situation where there is a large number of UAVs. This is because it consumes more

energy in communications and negotiation for finding and requesting a service as

well as updating all UAVs with new parameters, since each UAV needs to interact

with all of the other UAVs. Also in such a scenario a lot of memory is used in UAVs

to save the data of the services and information about other UAVs such as their

energy level and locations. Furthermore, in case of re-planning a mission, UAVs

interact with each other for rescheduling. This all leads to high communication traffic

in collaboration, especially in the case of a mission with a huge number of UAVs.

16

2.4.2 Previous Efforts Toward Collaborative UAVs Middleware

Collaborative UAVs can be homogeneous or heterogeneous in their operating

systems, commands, communication, acting, sensing, storage, and processing

capabilities as well as their energy levels. While applications that rely on

homogeneous UAVs are easier to develop, heterogeneous UAVs can offer great

opportunities for providing cost-effective solutions for complex applications that

require different capabilities for the various tasks involved. However, developing

such applications for UAVs with heterogeneous devices, different energy levels, and

varying storage, communication, sensing and processing capabilities is a complex

task without middleware [21]. Middleware is the software layer composed of a set of

services and functions to connect different components of a distributed system. It

separates the operating system from the application side.

Distributed UAVs applications development, deployment, operations, and

management are generally very complex tasks. One proposed approach to overcome

these difficulties is to follow the Service-Oriented Architecture (SOA) [23] [26].

Earlier, de Freitas et al. [27] studied the UAVs sensing network specifically

for surveillance applications through middleware. In surveillance applications, UAVs

cooperate with ground nodes to cover the surveillance area. de Freitas et al. focused

on providing an intelligent communication between: (a) UAVs and the ground

station, (b) UAVs and ground nodes and (c) among each other, taking into account

the limited resources and capabilities of UAVs. First, de Freitas et al. proposed

breaking down the mission into a set of sub-missions that can be allocated to

individual nodes. These sub-missions run over middleware. de Freitas et al. detailed

the three layers of the middleware: At the bottom, the Infrastructure layer, in which

17

all hardware and resources are managed by the operating system. Then, the Common

Services Layer, that are common in different applications, regardless of the mission

such as networking management. Finally, the top layer, the Domain-Services Layer,

to support application services according the domain, nevertheless, it can be reused

among different applications. A minimal set of middleware services called a kernel

was installed in UAVs and nodes to perform the basic services that support UAVs.

Simulation results were provided to measure the efficiency of the proposed

middleware. The simulation showed the distribution of nodes and the selected ones

for mission. While their simulation demonstrated the number of engaged nodes, it

did not show the discovery method and how to integrate them. In summary, there

was no clear selection process or allocation approach.

The SOA model proposed in Mohamed’s et al. [22] is based on the concept

that every UAV has a global view of all other UAVs; however, it was reported that

this concept has a poor scalability. As a result, Mohamed et al. discussed having a

broker service in each UAV to maintain other UAVs’ information regarding their

services, capabilities, location, power level and other details. Then UAVs exchange

their information through advertising and requests. Requests are invocations from the

consumer to the provider to get a specific service. Mohamed et al. categorized

invocation services into synchronous service and asynchronous service. The former

maintains an active connection between the requester and provider until the provider

returns a result. While in the latter, the connection may be terminated after the

request is sent, then another connection is established when the provider responds

back, which is more efficient in instances where the connectivity is unreliable.

Finally, the Service-Oriented Middleware (SOM) services are integrated to develop

18

collaborative services so that applications can be reused without the need to

implement them from scratch for every application [8].

2.4.3 Previous Efforts Toward Collaborative UAVs Cloud

Cloud computing is a new paradigm for hosting and delivering services over

the Internet. Some research has been carried out to utilize the Cloud for some UAV

applications. Chin et al. proposed connecting a UAV to cloud services such as

Google Earth [28]. This was done using an Android-based smartphone that provides

its data to a MySQL database. The user accesses the UAV information in the

database using a web browser. UAVs are controlled using a specific flight plan

defined through a waypoint in the database. Then the mission is followed using

Google Earth software. However, the authors demonstrated the system for a single

UAV, they did not cover its use for multiple UAVs and their communication among

each other. In addition, monitoring and controlling the UAVs through a database is

generally an inappropriate architecture as it suffers from inconsistent data.

Simanta et al. [29] developed four prototypes using the SOA and

smartphones. The concept started by implementing a service that transmits Motion

JPEG images from a wireless camera to a smartphone via TCP/IP. Due to the TCP

delay, reimplementation was done using User Datagram Protocol (UDP). The first

prototype was a UAV that tracked a vehicle and sent images as Simple Object

Access Protocol (SOAP)-over UDP to a smartphone. In the second prototype

smartphones were connected to the vehicle that sent messages to a fixed station as

well as a UAV that transmitted video feed back to the station. The third prototype

sent messages to both local and remote service consumers. The foruth prototype

19

focused on the video performance that was affected by the message overload due to

its high size by using a binary format instead of SOAP.

Video Exploitation Tools is another example of a SOA application for UAVs

as implemented by Se et al. [30]. It allows the user to choose the Region of Interest

(RoI) to view the UAV path as well as the video footprint on a map. The framework

stores files that can be referenced using the exploitation services via SOAP

documents. Here as well, the communication generates high traffic and therefore it

may not always be possible to achieve real-time interactions.

2.5 Cloud Computing for Smart Objects

On the other hand, smart objects such as sensors, actuators, and embedded

devices are connected to the Internet through the IoT [31]. The main focus of IoT is

establishing network connectivity between smart objects and the Internet, while the

WoT builds the application layer on top of the network [32]. Accordingly, the Web

tools and protocols can be used for developing and interacting with these objects.

Some efforts have been vested in IoT and WoT aiming to connect devices

and embedded systems to the Internet and build applications for the client to use

them. For example, Guinard et al. [33] proposed the REST architecture by defining

an object as a server that provides its resources in a ROA. Guinard et al. used the

web tools as a solution for the WoT. Guinard et al. proposed two methods for

accessing objects [34]. First, they connected devices to a smart gateway for

measuring power consumption. The smart gateway is a web server that provides its

resources for the clients to monitor and control electrical devices. In this approach,

objects that have no direct Internet connectivity are connected to the smart gateway

20

through other protocols such as Bluetooth and ZigBee. This architecture allows

Internet access to those devices through the smart gateway as well as calculating the

overall consumption of all devices connected to it. The second method is a direct

access to wireless sensor networks, where each node is considered as a web server

that has a uniform interface that the client applications access.

According to the literature, IoT lacks standardizations and there is no

commonly accepted layer architecture [35]. Therefore, there is a wide variety of

platforms on the market. For example, Xively platform is one of the earliest IoT

platforms [36]. It allows users to register their devices and monitor them using API

keys. Another example is DeviceHive [37] that provides a common set of RESTful

web services APIs for access from clients and devices. Also, 52North's Sensor Web

provides access to sensor data encoded in SensorML [38]. The platform offers sensor

registration, inserting observation and marking queries. Furthermore, ThingWorx is

an application development platform with tools for model driven development of IoT

applications [39]. It provides data models for storing devices’ data and semantic

query/ search.

My research is built upon these approaches and proposes a platform with a

broker architecture for the UAV resources in a ROA implemented in a RESTful web

service on cloud computing.

21

Chapter 3: UAV-Cloud Framework

This chapter presents a UAV framework on the cloud computing paradigm to

enable the development of distributed UAV operations. Cloud computing has been

expanded to include not only powerful computers and servers but also objects and

embedded systems. Integrating smart objects to the Internet is IoT, while providing

its resources and services is WoT. UAVs with limited capabilities and resources such

as battery capacity, data processing and storage, may use the cloud resources for

application development for distributed UAVs. As a result, UAVs do not need to be

equipped with powerful capabilities and can be heterogeneous in their operating

systems and resources, so that using this technology with standard communication

protocols reduces the total time and cost of application development. UAVs can use

the cloud’s powerful services and resources while the cloud applications can use

UAVs as a real world resource and service provider. Missions and task-allocation to

UAVs depend highly on their locations and capabilities. Thus, Cloud Computing

could provide a platform to manage mission planning and brokering services, while

UAVs offer specialized services that are related to the physical world for certain

tasks such as sensing and acting. This separation of responsibilities for each entity

reduces the efforts needed to develop new applications on top of this platform. In

addition, it allows the addition of more UAVs as plug-and-play to the system.

3.1 UAV-Cloud Framework Layers

Cloud Computing, one of the major IT revolutions, is defined as a model for

enabling ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources that can be rapidly provisioned and released with

22

minimal management effort or service provider interaction. This model can be used

in UAVs to increase proficiencies and efficiency by collaborative UAVs. Cloud

Computing consists of three service models: Infrastructure as a Service (IaaS) that

includes hardware, virtual machines, storage, networks, and firewalls, then Platform

as a Service (PaaS) to provide a set of APIs for functions for programmatic platform

management and solution development, and finally, Software as a Service (SaaS)

which is an online software application. UAVs can be mapped to Cloud Computing

models to combine UAV resources with cloud features. The framework of the UAV-

Cloud is shown in Figure 3-1.

3.1.1 UAV IaaS

First, the IaaS model includes UAVs and other components. UAVs’

components include their payloads, sensors, actuators, internal memory, processor

and other resources. Other components are any external entities that could provide

resources or services such as ground node sensors or objects connected to the cloud,

or the cloud computing resources such as storage servers and high performance

servers and processors. These are managed through APIs to the PaaS.

3.1.2 UAV PaaS

Second, the PaaS is modeled as middleware to isolate the infrastructure layer

from the application layer. It offers resources as services to the application layer.

PaaS allows integrating cloud services with UAV services to implement powerful

UAV applications. The platform includes UAV resources and services as well as

cloud services such as collaborative services for mission planning and organizing

resources. The development of collaborative UAVs implies the development of three

23

main decision-making abilities: mission planning, task-allocation, and coordinated

task achievement [40][41]. In the proposed architecture, the Mission Planner is the

service responsible for dividing the user mission from its application into a set of

tasks, and then the Task Requester service coordinates these tasks by requesting a

service from the broker according to the tasks’ order. The broker is responsible for

registering UAVs and it reserves their data in a Database Management System

(DBMS). After that it allocates the requested task to the suitable available UAV.

UAV resources and services offer specific data from sensors, or perform an action

using certain actuators, for example, getting a temperature sensor or a gas sensor

from UAVs or performing pesticide spraying and image or video capturing.

3.1.3 UAV SaaS

Third, SaaS is a lightweight software application available online and built on

top of the PaaS through standard APIs. The developers implement applications for

users to request certain UAV missions, for example, software that requests UAVs for

spraying crops for a specific agriculture area. The user accesses the application to

specify the location and size of the land then requests crop spraying by UAVs. It also

offers monitoring interfaces for the user to follow up the progress and completion of

the mission. Then, the collaborative services in PaaS manage the mission planning,

scheduling and task allocation to suitable UAVs according to their statuses and

resources such as cameras for monitoring, GPS for location, and fertilizer/pesticide

tanks for crop spraying. These services are available by PaaS and are accessed

through APIs. Another example is surveying forests to find the source of a fire. This

mission is established and monitored through another software application that could

use the same set of UAVs. Therefore, Collaboration Services are responsible for

24

allocating the suitable available UAVs with gas sensors and cameras to the surveying

mission and managing the spread of UAVs over the forest to ensure they are

covering the whole area efficiently. Then UAVs use customized services to sense

temperatures, capture photos, update status and invoke other services requiring real-

time information. These applications can be built easily on top of the PaaS for the

same UAVs due to the separating of responsibilities of entities.

Figure 3-1 UAV-Cloud Framework

3.2 UAV-Cloud User Types

There are four types of UAV-Cloud framework users; End Users, Application

Developers, UAV Providers and Administrators. These users access the Cloud

Computing through APIs and identifications depending on the privileges given to

each user.

25

3.2.1 End Users

These are the SaaS application users who establish the UAV mission. The

end user accesses online application software through the browser to request the

mission giving specific service parameters. The results and feedback are displayed in

a user-friendly interface to the user with certain interaction capabilities. This

application software is built by the application developer.

3.2.2 Application Developers

They develop the SaaS for the end users on top of the PaaS. The developers

register to the platform to be authorized to access its services and APIs to develop

new applications. The developers use the platform resources and services to integrate

them through their APIs using the pre-defined formats and interaction protocols in

order to build the application. Therefore, the developer defines the mission

requirements and the UAV services required to perform that service. Also, the

developer defines the parameters that the end user should specify to request the

mission.

3.2.3 UAV Providers

These are the owners of the UAV who register them to the platform so that

they can be accessed and used by the application developer for certain missions. The

provided UAVs define their APIs according to standard interfaces, also they use the

platform API to push their data and access the platform. The registered UAVs

become part of the UAV cloud IaaS along with APIs to the platform.

26

3.2.4 Administrators

The administrators are the platform owners. They keep track of other users

and resources. They operate and maintain the cloud services and UAVs. They use

tools and APIs to manage and monitor the platform.

3.3 Opportunities of UAV-Cloud

There are many opportunities that Cloud Computing opens to collaborative

UAVs. The ubiquitous property of cloud computing allows users to monitor the

UAVs and use the platform from anywhere at any time. In addition, as the cloud has

a huge infrastructure of processing power, most of UAV data computations could be

made on the cloud rather than in UAVs which reduces the UAV consumption of

power and processing. Moreover, Cloud Computing provides large and scalable

storage services that can be used rather than the limited UAV storage. As a result,

storing data in the cloud increases reliability by ensuring data back-up thus offering

access to previous log data even when the UAV is out of service. Cloud Computing

provides ubiquitous services such as Google Earth 3D maps and computations that

can be integrated with the UAV services to develop efficient applications.

The cloud uses web service APIs and standardized communication protocols

to request services and exchange data. Therefore, heterogeneous UAVs can use these

standards regardless of their operating systems and commands. The standardized

protocols make the application development easier for building heterogeneous UAVs

in different programming languages that are used in web applications. Not only that,

but also the standardized protocols affords the ability to integrate other nodes and

components that use the same standards as the UAV application such as ground

nodes and WNS. Furthermore, adding more UAVs or resources is easier by

27

registering these UAVs to the platform as plug-and-play, so that UAVs are attached

to the mission in the run time of the operation. Additionally, the web service

architectures support reusability so that the UAV resources are used for different

applications according to their availability.

In addition, the users do not have to own the UAVs but only use them as

services. This decreases the cost for users and open huge business opportunities for

utilizing UAVs as services where they are provided. Another advantage is that UAVs

resources are pooled so they can be used by multiple users.

3.4 Considerations of UAV-Cloud

Although collaborative UAVs Cloud offers several opportunities for UAV

operations and development, there are a number of considerations that must be taken

into account for the UAV-Cloud framework. These considerations include UAV and

platform development issues:

3.4.1 UAV Considerations

UAVs have limited capabilities in memory, processor and energy; therefore,

they require a lightweight software and web services that do not heavily consume

their resources. UAVs should be developed following the platform web service APIs

to ensure the communication ability between UAVs and the platform. Moreover,

UAVs’ locations play an important role in task operations such as capturing specific

areas. UAVs require an efficient method to allocate their positions with minimum

power consumption, for example, the trade-off between GPS and Wi-Fi.

The availability of some services depends on some contexts such as the

UAVs’ locations, energy levels, or specific sensor readings. Therefore, if a UAV is

28

currently near the mission location, it is preferable to choose it rather than a similar

UAV which is far from the specified location. Moreover, UAV flight control

algorithms should be provided for real time execution and path planning

management as well as collision-avoidance. Internet connection reliability is another

important consideration. UAVs require continuous connectivity to the cloud so that

they can access the cloud and their resources to be invoked through their APIs. The

assumption of a reliable connection is valid for operations in city areas such as smart

cities. Otherwise, the operation location should be provided with connection

infrastructure for the UAV operation. Besides, the services provided by the UAVs

are real world services, thus they sense and affect the physical environment. UAV

services that make changes in the environment such as spraying should be managed

carefully, i.e. these services should not be duplicated over the same area. In case of a

repeated request, there should be approval or acknowledgment before performing the

service.

3.4.2 Platform Development Considerations

On the other hand, there are several considerations in developing the UAV-

Cloud platform. The platform should provide the ability to register UAVs and

reserve information of their resources and services as well as the uniform interface to

invoke them. This registration service facilitates the addition of UAVs to the

platform. Furthermore, the platform is required to be scalable to large numbers of

UAVs and should manage their distribution in real time simultaneously. Also, as the

platform is responsible for integrating heterogeneous UAVs as well as cloud

services, it should include services for (a) mission planning that divides the user’s

mission into sub-tasks to be executed sequentially, (b) decision-making of

29

performing services depending on the collected data of the environment, and (c)

allocating tasks to the suitable and available UAV according to certain parameters.

Additionally, the platform is responsible for tracking and monitoring UAV resources

and their execution throughout the mission to ensure the efficiency of the operation.

Moreover, UAVs collect a huge amount of data from the environment. These data

should be stored in data stores and analyzed to support and enhance decision-making.

Another consideration is security and privacy of data and resources. Data security is

one of the important considerations in UAVs as the data could be critical and/or

confidential, particularly if it is a military or political mission. The data should be

secured such that only users with authorization can access it. Encryption and

decryption processes can be used in data exchange. Other security mechanisms are

required for data and resources protection. Also, user access such as establishing or

canceling a mission could be authenticated by certain users under specific conditions,

so that only authorized clients can control UAVs. In addition, for platform security

issues, it authentication mechanism should be provided so that only registered and

verified developers can access the platform services.

Another consideration is multi-tenancy, where users access the same set of

UAVs. However, in a UAV environment, these UAVs are physical entities that

perform real world operations. Therefore, the same resource cannot be used by

multiple users at the same time. Nevertheless, they can be reused after a UAV has

accomplished its operation. As a result, the platform separates the data and resources

by having an operation database for each user to manage the assigned resources.

30

3.5 UAV-Cloud Platform Components

The focus of this research is the UAV-Cloud platform layer by integrating

UAVs to the cloud and providing an efficient platform to build applications on top of

it. In traditional development, applications are developed for specific hardware or

systems and this usually means implementing all the component systems needed.

This approach is inefficient and time and effort consuming. However, these

components can be developed as services and integrated in the applications when

needed. Services includes Collaborative Services that are required for any type of

collaborative UAVs and UAV Services that are offered and used based on the UAV

capabilities. Building applications on top of these services reduces the time and cost

of developing collaborative UAV applications.

3.5.1 Collaborative Services

Collaboration services manage the distribution of UAVs to accomplish a

mission. Using these services developers only focus on the main functionality of the

mission rather than reinventing the wheel. Collaborative services include:

Mission Planner Service which is responsible for analyzing the mission then

defining the resources needed to perform the mission according to the current and

expected conditions. It decomposes the mission into tasks defining the functionality

and parameters for the specified mission.

Task Requester Service which is responsible for requesting these tasks from

the broker service. The task requester does not have knowledge about UAVs and

their capabilities; however, it requests a certain resource giving its parameters

according to the plan and schedule.

31

Broker Service, where all UAVs register their services and resources to be

saved in a database. It has the knowledge about the available UAVs; therefore, it is

responsible for allocating tasks to the suitable UAV. Hence, when a request is given,

the broker service obtains the description of the request and searches for UAVs with

those resources or services. Then it requests those UAVs to find the most suitable

and available one with the requested parameters based on the resources available,

locations, energy levels and other considerations, for example, to capture a specific

location.

3.5.2 UAV Resources and Services

These are accessed according to the available resources in UAVs and the

tasks that are required for the mission. UAVs may have one or more of them.

Sensing Services; Most types of payload can be considered sensors, such as

temperature sensors, humidity sensors, radar, optical sensors and others. Sensing

services collect data from these sensors and send them to the broker service. The

request for this service could either be obtaining the value of that sensor, or setting a

threshold to be triggered when the sensor meets that condition.

Actuation Services; some UAVs may have to take actions according to

certain triggers. UAVs may have output devices such as lights or valves for liquid or

gas for spraying missions. A set of actuation services can be provided in each UAV.

Camera Capturing and Video Recording Services; these are considered as

separate services as more processes such as filtering and editing are used. Image and

video capturing require higher internal memory in the UAVs than other sensors.

They also may depend on the required resolution and environmental lighting

conditions. Some enhancements can be added to those services such as object

32

recognition and tracking. However, sending real time images and videos to the user

may require specific transportation protocols such as Real-time Transport Protocol

(RTP) and Real-Time Streaming Protocol (RTSP).

Energy Monitoring Service that is, when a service is needed to request the

UAV’s energy. Many decisions are taken according to the energy level. The UAV

may return to a specific location when it reaches a certain level. In addition, before

allocating a task to a UAV, it must ensure that it has enough energy to complete the

task. If a UAV reaches low energy levels during a mission, it can be replaced with a

similar UAV or with a set of UAVs. The energy level of each UAV is tracked by the

broker service.

Location Monitoring Service which is needed due to the mobility of UAVs.

Their locations play an important role in allocating tasks. If a UAV is currently near

the mission location, it should be chosen rather than similar UAVs which is located

farther from the mission location. The location monitoring service is responsible for

locating the UAVs in efficient method minimum power consumption. For example, a

GPS consumes high power but gives accurate positions, while using Wi-Fi may give

less accurate positions and consumes less power. These methods are managed by the

location monitoring service and the UAV locations are saved in the broker service.

Status Service; UAV status could be monitored using the status service that

returns the information about the resources. This is called housekeeping data. It

includes the condition of the UAV resources.

When the UAV receives the request through the communication subsystem

(i.e. Wi-Fi or 3G/4G), the request is then passed to the payload on-board computer to

be interpreted to the requested UAV API. In case the service is requested for a

certain location, the control subsystem gets the specified location and navigates to it.

33

When the location is reached, the control subsystem informs the payload on-board

computer. After that, the payload on-board sends the command to the requested

resource which accordingly performs the service and returns the result to the payload

on-board. Finally, it marshals the return message so that the communication

subsystem sends it. This process is shown in Figure 3-2.

Figure 3-2 Service request sequence diagram for UAV subsystems.

The platform architecture consists of both the collaborative services as well

as the UAV services that are accessed through web service APIs. There are different

types of web services in different architectures; therefore, the platform should follow

the requirements and considerations in the design of an efficient platform.

34

Chapter 4: UAV-Cloud Platform Architecture

This chapter narrows the research to the UAV side and the broker

architecture of the UAV-Cloud framework. The purpose of this chapter is to illustrate

UAV resources by presenting their interactions and models as well as the separation

layer of the broker and its interactions. The chapter begins by comparing the SOAP

and RESTful web services. This is followed by defining the UAV resource types.

Then, the ROA model and its RESTful HTTP implementation are demonstrated for

UAVs. After that, the broker architecture is proposed giving the process and

interfaces with other components.

4.1 Web Service Architectures

There are different architecture styles for distributed computing. Thelin [42]

defined them as Service-Oriented, Resource-oriented and Object-Oriented

architecture styles. A comparison between distributed architecture is discussed for

SOA, ROA and Object Oriented Architecture. The author concluded that the

applicability of architecture depends on the application scenario and the system. In

addition, he noted that using the single style is better than the combining styles.

 There are two main web service architecture styles. First, in the standardized

WS* web service architecture, the client requests and the service response objects are

encapsulated using SOAP and transmitted over the network using XML. Second, the

Representational State Transfer (RESTful) architecture is a web service architecture

that identifies resources through a uniform interface using Uniform Resource

Identifiers (URIs) and Hypertext Transfer Protocol (HTTP). Resources are

represented in media types, such as JavaScript Object Notation (JSON).

35

 Another comparative study was carried out for mobile hosts [43]. In this

scenario, the author illustrated the preferences of REST architecture for mobile hosts

because the RESTful services are loosely coupled, flexible and lightweight compared

to the SOAP architecture that consumes more bandwidth and is considered more

complicated. In addition, Markey and Clynch evaluated the size of a single payload;

they found that the JSON Restful call was only 25% the size of the SOAP request

[44]. Similarly, Guinard et al. [45] compared the two approaches (the standard WS*

web services and the RESTful web services) for the WoT. They concluded that

although SOAP is suitable for digital services that emphasize business architecture,

the architecture is a complicated approach and it requires high computing power,

bandwidth and storage. As a result, it is not suitable for physical-world embedded

systems that have limited resources. On the other hand, the RESTful architecture is a

reusable and loosely coupled set of web services. Moreover, they reported that it is

easier to learn and use for developers [46]. Furthermore, the authors recommended

the use of the RESTful web service for the WoT rather than the standard WS* web

server unless the application has advanced security and quality of service

requirements. The comparison is summarized in Table 4-1.

As a result I propose the use of the RESTful web services for implementing

ROA for the UAV cloud. Due to the limited capabilities and resources of UAVs such

as energy level and processing power, a simple lightweight web service architecture

such as the RESTful is more suitable than a heavyweight complex web service like

the WS*. Moreover, the broker layer provides its service APIs as RESTful web

services to interact with the requester as well as the UAVs.

36

Table 4-1 A comparison of SOAP and RESTful web services.

SOAP RESTful

For enterprise and business process More suitable for simple services

Suitable for static infrastructure Suitable for dynamic changeable

infrastructure

Operation-centric Data-centric

Tightly coupled interaction between

client and server

Loosely coupled interaction between

client and server

Heavyweight web service Lightweight web service

Complicated coding and changes in

server affects the change on the client

side

Easy to learn and modify

Binary attachment parsing Supports all data types directly

Not suitable for wireless infrastructure Friendly for wireless infrastructure

XML messages Support various message types

Large size messages that consume more

bandwidth

Less message size and bandwidth

consumption

Transport layer Application layer

Old technology, supports standards

(WSDL)

New technology, and lacks standards

37

4.2 Resource Oriented Architecture for UAV-Cloud

In SOA, a service is a functionality performed by a provider. However, in

UAVs, the provided interaction is not just services but also data such as sensed data

or housekeeping data. These entities are called resources. Therefore, SOA is not

sufficient for UAV resources, while ROA is more appropriate to represent them.

4.2.1 REST Architecture

RESTful is the implementation of ROA. The central concept of RESTful web

service [47] is that a resource is any component worth being uniquely identified and

linked to the cloud. RESTful is described as:

Resource Identification, that is, the URI to identify the resources of each

UAV.

Uniform Interface in which resources are available for interaction with well-

identified interaction semantic, or HTTP, that has a set of operations to optimize the

interactions with the resources.

Self-Describing Message: along with the HTTP interactions, the client and

server exchange a set of messages in an agreed upon format. In machine-oriented

services, there are two media types supported by HTTP; XML and JSON. The JSON

format has gained widespread support for embedded systems due to its readability by

both humans and machines; it is also lightweight and can be directly parsed to

JavaScript in contrast to XML.

38

Stateless Interactions, that is, the server does not hold previous interaction

information that affects any following requests. Therefore, each request contains all

the information needed to correctly satisfy it. The request information is contained in

the HTTP using a self-describing message by a JSON object.

4.2.2 RESTful HTTP Components

A resource is accessed through an HTTP interface. The following are the

three particular parts of this interface: operations, content-negotiation and status

codes.

Operations: The RESTful HTTP has four operation methods; GET, POST,

PUT and DELETE are summarized in Table 4-2. In UAVs, the GET operation is

used to retrieve the current value of a resource. For example, the GET method with

the resource URI can be used to retrieve the current energy level of a UAV or the

status of the camera on board. Moreover, in UAVs, the POST operation is used to

initialize a service providing its required parameters if any are needed, for instance,

requesting a POST method for a camera resource to take a picture of a certain

location. In this case, the camera resource has a URI operation (i.e. POST) and the

body request is the specified location to capture the picture. Then, the PUT method is

used to modify the parameters of a requested service. For example, a request with

PUT method is used for a sensor to change its threshold from one value to another,

and the new value is determined in the body request. There is also the DELETE

operation, which is used to cancel a UAV task or release it from the mission.

Consequently, the GET method retrieves data without affecting the UAVs or

resources. Therefore, it is safe to request, while the rest of the methods may change

or affect some values or state of the UAVs. As a result, they should be used

39

carefully, taking into account that UAVs perform actions on the real world that could

be irreversible.

Table 4-2 RESTful operations and their usages for UAVs

Operation Usage

GET

Retrieving the current state of the UAV

or its resources

POST Initialize a service for the mission

PUT

Modifying assigned UAV resources and

services

DELETE

Canceling or releasing a UAV from the

mission

Content Negotiation: the negotiation between a client and a server is built

into the HTTP request. It represents the exchanged messages in an agreed upon

manner to represent the needed resource information. The HTTP header supports

both JSON (application/json;q=1) and XML (application/xml;q=0.5). These media

types are specified in the Content-Type of the HTTP response. It is acknowledged

that JSON has widespread support in HTTP. Therefore, the HTTP header in a UAV

is set to Content-Type: application/json.

Status Codes: the status of the response has standardized status codes in

HTTP. These codes are well-known on the client side to represent the status of the

client request. For example, a return code of 200 to the client represents the success

40

of the request while the 400 code is interpreted as a bad request, meaning that the

client’s request does not follow the server request rules.

4.2.3 RESTful Models

There are different model scenarios for real time accessing resources of

embedded systems, the Pull and Push models [48] [49]. These models are compared

for web applications in Table 4-3.

HTTP Pull Model:

In this model, the client pulls the data from the UAV by sending HTTP

requests to it frequently using Asynchronous JavaScript and XML (AJAX) to refresh

the content without refreshing the client page. This model has proven to be a good

way of transferring some of the server workload to the client. The client requests the

resource HTTP from the UAV so that it returns the value in the response JSON

message. This is suitable for requesting the current value such as housekeeping data

or the status of a service or requesting a service.

UAV Push Model:

On the other hand, in the push model, the UAV pushes its data in real time

immediately to the client in an HTTP PUT request. In this scenario, the client first

requests a resource with an event or threshold value. Then, the UAV pushes the data

to the client when that event occurs.

This model is suitable for returning the result or notifying the requester at the

end of a task that takes time such as sensing a certain location or spraying an area.

41

Table 4-3 A comparison between Pull Model and Push Model for requests and data

exchange.

Pull (AJAX) Push (Comet)

Sends requests frequently to the

server

Sends the data when event occurs

Client workload Server workload

suitable for requesting the current

value

suitable for notifying event

occurrence

Monitoring slow changes Monitoring sudden changes in server

side

Fast changes require low time

intervals

Requires client subscription to the

event

4.3 Designing the UAV Layer

One of the concerns of integrating UAVs to the cloud is the connectivity.

Most UAVs support Wi-Fi connection, therefore it can be used to connect to the

Internet. In addition, recently, 3G/4G technology supports not only mobile devices

but also embedded systems using external shields connected to the embedded

system. By this connection, the UAV gets a unique IP address, so that it has a distinct

identification over the Internet. The assumption of the connection availability is valid

in many fields of application such as in smart cities. However, considering satellite

connectivity opens broader application fields.

42

The IoT studies the connectivity of smart objects and provides them with

addresses as well as applying the IPv4 or IPv6 for them. Integrating UAVs with the

Cloud means that the UAV and its resources become available on the Internet to be

accessed in a ubiquitous manner to a client user. The client could either be a human

using web browsers and applications, a UAV accessing another one's resources,

another system that collaborates with UAVs or any embedded devices that use the

same protocol. Therefore, the most important step is to identify the resources and

services that should be made available to the clients.

4.3.1 UAV Resource and Service Types

UAVs define their resources and services that vary from one to another due to

the heterogeneity of UAVs. However, each UAV should have uniform interfaces to

enable the client to achieve the following:

Monitor the UAV Housekeeping Data. This involves monitoring the UAV's

current status (i.e. whether it is idle or on a mission), the current status of the UAV's

storage, the UAV's flight conditions, the direction and orientation of the UAV, the

UAV's speed, the energy level and the current position coordinates (altitude, the

latitude and longitude values). Mostly, this is identified by the GET method with the

resource URI.

Access UAV Services which is requesting a service to collect some data from

real world, such as sensor readings (e.g. temperature, pressure, or humidity sensors),

radar data, camera images or videos, thermal camera images. Services offering this

type of information may require some parameters such as specifying the location or

QoS. Other services may also generate some form of action by the UAV or the

43

devices on board. For example, a client request may require the UAV to spray

gasses, pesticide or foam. These services are interfaced either as POST to initiate the

service, PUT to change parameter values or DELETE to release the service along

with the resource URI.

Monitor the UAV Resources, which is keeping track of the different

resource payloads onboard such as finding out if a certain resource is available,

currently in use or damaged. Another example is determining the remaining amount

of liquid for spraying during the mission.

4.3.2 UAV Resource APIs

The UAV is the server back-end that provides its services and resources as

web servers through RESTful APIs i.e. HTTP. These resources can be developed in

different languages that support RESTful web services programing such as NodeJS,

Ruby and Rails, Python or PHP. The variety of programming languages that

implement the RESTful protocol facilitates the development of heterogeneous

systems for easy collaboration.

For the UAV back-end development, first, it is necessary to identify the APIs

for the UAV resource types. A resource is identified through its URI that is

expressive and presents its meaning for human interpretation. Then, the exchanged

message information is represented as a JSON object that could be easily parsed into

JavaScript and be readable for humans. This can then be presented in the browser for

the user in an HTML file.

44

UAV Housekeeping APIs:

The UAV housekeeping data has several resources, and these are modeled as

HTTP pull APIs using GET method with the resource URI. For example, to retrieve

the current energy level of the UAV, it provides the following HTTP request

interfaced by the GET method:

http://.../energy_level

Then, the request reads the UAV energy level and returns it as a response in a

JSON message:

HTTP/1.1 200 OK

Content-Type: application/json

{“id” : 1, “Name” : “uav1”, “energy level” : 85}

This response indicates that the HTTP is version 1.1, the 200 is the success

status code. Then, the Content-Type: application/json is to define the

content negotiation type as JSON message. Next, the JSON object is the response

message of this request that contains the value of the energy level as well as basic

UAV information such as its name and ID. Other UAV housekeeping data are

similarly designed.

UAV Service APIs:

The UAV provides its services according to the available resource payloads

on it through POST, PUT and DELETE HTTP operation requests for each service.

For example, for a temperature sensor resource, the UAV provides the following

POST HTTP URI:

45

http://.../service/temperature

along with the JSON body of the request for the location parameters:

{“location”: [{“latitude”: 12.8145, “longitude”:

45.64827, “altitude”: 87.91}]}

In this scenario the UAV checks if it is available to accept this request or it is

performing another service. In the case where the UAV is available and ready to

provide this service, it returns a confirmation response HTTP/1.1 200 OK.

Then it moves to the specified location to perform the service, i.e. measure

the temperature for example. Then, it sends the collected data to the client HTTP API

using the UAV push model. This HTTP contains the collected data in the body

request as the following:

HTTP/1.1 200 OK

Content-Type: application/json

{“id:2, “name”: “UAV2”, “service”: “temperature”,

“status”: “available”, “value”: 28.5}

When the service is requested, the client may change the parameter value

using the PUT method for the resource URI:

http://.../service/temperature

with the JSON body request of the new values defined as:

{“location”: [{“latitude”: 12.7025, “longitude”:

45.4263, “altitude”: 87.91}]}

46

Accordingly, the UAV modifies the service location to the new values.

Finally, the UAV provides HTTP API for releasing the service using the

DELETE method for the URI resource. For example, releasing the spraying service

using the DELETE method for the URI:

http://.../service/pesticide_spary

This request releases the spray service from the mission operation.

UAV Resourse Status APIs:

Similar to the housekeeping data, the resource monitoring requests the current

status of the resource using the GET method, such as the URI:

http://.../pesticide_spray/tank_level

Then it reads the tank level and returns it as a response in a JSON message:

HTTP/1.1 200 OK

Content-Type: application/json

{“id” : 1, “Name” : “UAV1”, “service” : “pesticide

spray”, “tank_level” : 40}

This response indicates that the pesticide spray tank level of UAV1 has 40%

remaining.

The summary of the UAV resource APIs is shown in Table 4-4.

47

Table 4-4 UAV resources types and their RESTful interfaces

Resource Type Description RESTful HTTP interface

UAV housekeeping

data

Collecting the status and

internal values of the UAV

resource

Mainly GET method along

with the resource URI.

POST/ PUT/ DELETE

methods could be used for

threshold and event

feedback

UAV services

Requesting a service from a

UAV

POST method is used to

initiate the service, while

PUT modifies the

parameters.

DELETE method releases

the service

UAV resource data

Monitoring and follow the

service status

Mainly GET method to the

resource parameters to

check the status or value of

the resource.

POST/ PUT/ DELETE with

the resource parameter URI

could be used for event or

feedback notification

48

The HTTP is a client-server architecture, as shown in Figure 4-1. Therefore,

the client application could be built using the UAV APIs. However, in this scenario

the client application uses the UAV addresses directly by specifying the task for each

UAV. This architecture suffers from limitations such as scalability of adding UAVs

to the mission. Moreover, the application is developed for certain UAV resources

where changing the UAV leads to modifying the resource address. As a result, I

propose using broker architecture connected to a database to isolate the UAV side

from the application side, so that the broker is responsible for registering then

discovering and allocating the requested resources to the suitable UAVs.

Figure 4-1 Client-Server Architecture.

4.4 UAV Database

UAVs reserve their information internally in their storage. However, due to

their limited storage resources, I proposed storing their information and services in a

cloud database along with a log track of UAVs identified by timestamps.

This database takes advantage of the cloud scalable resources to store the

information. The database is useful for fetching UAVs’ services and resources as

49

well as recording the log data and mission information. Furthermore, it simplifies

monitoring the status and changes about UAVs through the mission time-line so that

it can be retrieved later on.

The database consists of many tables that include records. A sample of an

Entity-Relationship (ER) diagram is shown in Figure 4-2. It may basically have a

UAV_info table to store the primary information of the registered UAVs. Most

important is the UAV IP address in which it is requested. This information is inserted

when the UAV registers itself to the broker. Next, a Resources table is needed to

store the resources that UAVs provide. It contains the resource API information

which is the URI of the resource, its method and the provider of that resource. These

are the basic pieces of information required from a UAV when it registers to the

broker. After that, the allocated UAVs for a mission are reserved in the Operation

table or even in a separate database. The separation of user databases enables the

multi-tenancy by having a distinct database for each tenant.

Figure 4-2 UAV Database Sample.

50

4.5 Designing the Broker Layer

One of the considerations in integrating UAVs to cloud computing is the

distribution of UAVs and being scalable to offer their services and resources through

APIs to multiple clients. Although ROA is client-service architecture, the RESTful

implementation supports the loosely coupled, usability and flexibility services.

Moreover, when the developer builds the application or the end-user establishes a

mission, they are concerned with the UAV resource and service not a particular

UAV. Therefore, the RESTful properties facilitate the cooperation between the

required resources and services using a broker architecture to take the responsibility

for allocating the suitable UAV for the request, as shown in Figure 4-3.

A broker is a middle-agent that receives advertisements from service

providers regarding their capabilities and provision of services. After that, a requester

asks the broker for a service specifying the service needed and its parameters. Then

the broker compares the requested service against all available advertisements and

determines the best match provider. Next, the broker contacts the provider and

requests the service. If the provider accepts the request for the service, it performs

the service and returns the result to the broker. Finally, the broker returns the result to

the requester [50].

51

Figure 4-3 Broker layer to separate the application layer from the UAV layer.

For UAVs, the broker is a layer in the UAV-Cloud that is connected to a

database, UAVs and requester as shown in the framework Figure 3-1. The broker is

responsible for storing and retrieving UAVs’ information to/from the database. The

broker layer is one of the collaborative services. It manages the process of task-

allocations, encapsulating UAV APIs for client requests and receiving UAV data and

feedback. Therefore, the UAV back-end and the application front-end do not have

direct interactions to request a service or to retrieve a resource information. This

process is done through broker web service, as shown in Figure 4-4.

Figure 4-4 Client-Server Architecture with broker layer.

52

4.5.1 UAV Broker Process

The broker is responsible for the following:

 The broker registers UAVs i.e. information and services. Then, it adds

this information to the database.

 The broker receives a resource or service request along with

parameters if applicable.

 The broker identifies the suitable UAV from the UAV database to

perform the requested task. This process depends on several factors.

First, the broker discovers UAVs that are not assigned to other

mission and have the resources to accomplish the request according to

the request specification, for example, the camera resolution of spray

gas quality. Second, in case of multiple available UAVs with the

specified specifications, the broker narrows down the choice to the

nearest UAV to the location with the highest energy level. In this

case, the broker requests their locations and energy levels, and then

calculates the distance between their locations and the target

locations. Thus the most suitable UAV performs that service.

Moreover, the broker may take into account the load balancing, to

ensure that similar UAVs are assigned equally so that no one UAV is

used more frequently.

 The broker requests the identified UAV using its APIs along with the

suitable parameters.

 Then the broker may change the status of that UAV in the database

according to the request type.

53

 The broker returns the request result to the requester.

 The broker receives the UAV push data and returns it to the client.

4.5.2 UAV Broker APIs

The broker provides APIs to the developer to build applications according to

the available resources. Moreover, the broker provides APIs for UAVs to register

themselves as well as updating their resources and send feedback.

Broker APIs for UAVs

The broker provides APIs to interact with UAVs. These APIs allow them to

request several services.

First of all, in order to register a UAV, the broker provides API for UAVs to

register themselves. This is a POST HTTP with JSON body that includes the UAV

information as well as its service information. For example, the following HTTP

with a POST method is used to register a UAV:

http://mybroker.com/register

with the JSON body:

{"name" : "UAV1”, “address” : “176.205.68.244”,

"energy level" : 85, "status" : "available",

"orientation": 61.5 , "location": [{"latitude": 36.872,

"longitude" : 140.0704, "altitude" : 260}], "services" :

[

{“name” : “power”, “method” : “GET” , “uri” :

“/power”},

54

{“name” : "temperature", “method” : “GET”, “uri” :

“/temperature” },

{“name” : "temperature" , “method” : “POST” , “uri”

: “/temperature”}

]}

Then, the broker inserts this information into the database and returns an ID

to the UAV to confirm registration:

The broker returns the following response to that UAV:

HTTP/1.1 200 OK

Content-Type: application/json

{"id": 5}

This indicates that the UAV is registered and added to the database with an id

=5.

After all UAVs have been registered and recorded in the database, the broker

is able to allocate a specific task to the suitable available UAV. Moreover, the client

application monitors and tracks the process through the broker service.

Another API for UAVs is used to provide an interface to push their values

when an event occurs or threshold is triggered. The broker provides the following

URI with the PUT method and accepts JSON object:

http://mybroker.com/:service

55

where the :service is a variable of the service name that updates its value.

For example, a triggered UAV to sense temperature in a certain location, the UAV

returns the sensed data when it reaches that location using the PUT method for the

URI:

http://mybroker.com/temperature

{“id:2, “name”: “UAV2”, “value”: 28}

Where the UAV name is UAV2, id is 2 and the temperature value is 28.

Broker APIs for Application Developers

The broker provides APIs for developers to build applications on top of them,

so that the broker receives a request of a resource or a service from the user

application. Next, the broker searches the database for UAVs which had registered

that service. Then, the broker requests these UAVs to check their availability, energy

and location. When the broker obtains the information of these UAVs, it calculates

the distance between the current location and the specified requested location. After

that, the broker requests the nearest UAV with an applicable energy level to perform

the service. Consequently, the requested UAV performs the service and returns the

results to the broker using the broker API for UAV push data, which accordingly

returns that information to the requester. These information and log data are stored

on the database by the broker.

Therefore, the broker APIs are the gate between the application and the

UAVs. Developers build the applications following the rules of these APIs to ensure

the compatibility with UAV resources. The broker provides several APIs for

developers to initiate services and access resources as the following:

56

For initiating a UAV service, the broker provides the following POST method

with the following URI:

http://mybroker.com/service/:service

along with the JSON message that holds the required parameters according to

the service requirements, for example, requesting the temperature sensor for certain

location using the POST method:

http://mybroker.com/service/temperature

with the JSON body of the request defined as:

{“location”: [{“latitude”: 12.8145, “longitude”:

45.64827, “altitude”: 87.91}]}

In this scenario, the broker searches the UAV database for UAVs that

provides the temperature service, then checks the availability of them and allocates

the task to the nearest one using the suitable UAV API. In the case of a successful

task allocation, the broker returns a confirmation response to the application along

with the name of that UAV; otherwise the broker informs the requester the

unavailability of that service.

When a UAV is allocated to a mission, the UAV and its resources are added

to the mission database for monitoring purposes which are accessed by its name and

for determining the UAVs that are allocated to that mission.

Next, the broker offers API access to the allocated UAV resources, using

GET, PUT and DELETE methods, for example getting the current location of the

57

UAV1 that is allocated for the temperature services, using the GET method for the

following URI:

http://mybroker.com/:name/:parameter

in this case the :name is the UAV name that is UAV1 which is given when

it is allocated, while the :parameter is the location. As a result, the request is a

GET method with the following URI:

http://mybroker.com/UAV1/location

the broker searches the address, method and URI of UAV1 that is assigned

for the temperature sensing task. Then it requests its assigned location using the

UAV housekeeping data API. The response value is then returned to the application

as a JSON message.

Similarly, the broker provides APIs for requesting UAVs by provided

services rather than name using the GET method with the URI:

http://mybroker.com/:resource/:parameter

In this case, the broker searches the allocated UAVs that provides the

:resource resource, then requests them to retrieves the :parameter.

An example is requesting the remaining tank capacity of the spraying service

UAV. This is achieved by the GET method for the URI:

http://mybroker.com/pesticide_spray/tank_level

In this scenario, the broker requests all the UAVs that provide the pesticide

spray service and gets their tank level values then returns them to the client. This API

58

is suitable for managing a group of UAVs that provides similar resources. The broker

APIs are summarized in Table 4-5.

Table 4-5 Broker API interfaces for UAVs and application developers.

Broker APIs for UAVs

Register the UAV to the

broker

POST method for the

registration URI along with

the UAV information in

JSON message

Push value according to

an event or feedback

PUT method for the service

URI along with the new value

in JSON message

Broker APIs for

Application Developers

Initiating a service

POST method along with

service request URI

containing the required

parameters in JSON message

Monitoring UAVs and

their resources

GET/PUT/DELETE methods

along with the UAV name or

the provided resource URI

and the JSON message if

applicable

59

4.6 Front-End Application

The front-end application is online software on the client side. The client uses

it to establish UAV missions. The application is built on top of the UAV-Cloud

platform similar to web application development. It is then deployed to the Cloud

and interacts with the Collaborative Service Layer. The application displays a

friendly-user interface in a web browser. This interface provides the user with the

ability to establish a mission, monitor and access the UAV resources easily (see

Figure 4-5 for requesting a camera service). Due to the loosely coupled RESTful

architecture, the application layer is built easily on top of platform services using the

developer APIs. Therefore, different applications can be built for the same set of

UAVs managed by the broker layer.

Figure 4-5 Requesting camera service for specific location.

60

Chapter 5: Implementation Experiment

This chapter illustrates the implementation and testing of the proposed UAV-

Cloud architecture. The implementation includes building the UAV resources and

providing their APIs. After that, the broker was developed to separate the requester

side from the UAV resource side. The broker was connected to the database that

store the UAV and resources information. The implementation covers the shaded

components of the UAV-Cloud architecture, as shown in Figure 5-1.

Figure 5-1 The implemented system components of the UAV-Cloud architecture are

shaded in gray.

5.1 Implementation

5.1.1 UAV Resources Implementation

First for hardware part, the UAV was built using the Arduino board
1
 which is

an open source hardware for embedded systems. For this research, the Arduino was

1 http://www.arduino.cc/

61

implemented as the UAV payload subsystem that is the on-board device for

resources and services, and then sensors were connected to the Arduino such as

DHT11
2
 sensor for temperature and humidity and ultrasonic for distance

measurements. In addition, a buzz and some LEDs were attached to represent

actuators as shown in Figure 5-2. Moreover, for the Internet connectivity, an Adafruit

CC3000 Wi-Fi board
3
 was used to connect the Arduino to the Internet and get an IP

address.

The Arduino was developed using the Arduino software
4
 in the C language

with the Adafruit CC3000 library
5
 to read the request. Each resource was

implemented with a RESTful API.

Figure 5-2 Four Arduino boards connected with Adafruito CC3000 boards as well as

sensors and actuators representing UAV payload systems and their resources.

2 https://github.com/adafruit/DHT-sensor-library

3 https://www.adafruit.com/products/1469

4 http://arduino.cc/en/main/software

5 https://github.com/adafruit/Adafruit_CC3000_Library

62

The UAV resources were implemented for four UAVs. Each one has

different resources, IP address and RESTful APIs. However, UAVs that have the

similar resource, define their API interface in the same way. For simplicity, only the

GET method was used for the implementation. The implemented UAV resources and

services are summarized in Table 5-1:

Table 5-1 Implemented UAV resources and their interfaces.

UAV1

 /temp

Gets the temperature

from the DHT sensor

/humidity

Gets the humidity from

the DHT sensor

light/1 LED turns ON

/light/0 LED turns OFF

UAV2

/lighting/1

LED blinks on and off

continuously with time

interval of 200 ms

/lighting/0 LED stops blinking

/spray/1

Buzzer beeps

continuously with time

interval of 200 ms while

decreasing the tank

capacity.

63

/spray/0 Buzzer stops beeping

/spray/tank

Returns the remaining

tank capacity

/spray/tank/full

Refill the tank capacity

to the maximum

UAV3

 /temp

Gets the temperature

from the DHT sensor

/humidity

Gets the humidity from

the DHT sensor

/lighting/1

LED blinks on and off

continuously with time

interval of 200 ms

/lighting/0 LED stops blinking

UAV4

/distance

Return the distance in

centimeters from

ultrasonic sensor

/lighting/1

LED blinks on and off

continuously with time

interval of 200 ms

/lighting/0 LED stops blinking

64

5.1.2 Database Implementation

After that, database tables were implemented in PostgreSQL database
6

through PgAdmin platform
7
. The database was designed as in Figure 4-2 which

includes three tables; UAV_info table for all registered UAV information such as ID,

name, address and status (see Figure 5-3), second the Resources table for UAV

services and resources (see Figure 5-4) and third the Operation table for allocated

UAVs for a mission containing the requests log (see Figure 5-5). The database is

accessed by the broker to retrieve, write and modify data through its configurations.

Figure 5-3 UAV table in PostgreSQL database using PgAdmin platform.

6 http://www.postgresql.org/

7 http://www.pgadmin.org/

65

Figure 5-4 Registered UAV resource table in PostgreSQL database using PgAdmin

platform.

Figure 5-5 Operation table of assigned UAVs in table in PostgreSQL database using

PgAdmin platform.

66

5.1.3 Broker Implementation

Next, the broker service was built using the NodeJS platform
8
 in JavaScript

language. First, the broker was connected to the database using its configuration

parameters such as host, database name, port, user name and password to retrieve

and write values from certain tables. After that, RESTful APIs were built for the

broker to allow users to request the required services or resources. The broker

implementation focused on the developer APIs mentioned in Section 4.5.2. The

implemented APIs for service requests are either allocating a new service by adding

a UAV to the emission, modifying a service request, or retrieving a value of a

parameter. The APIs were defined by the uniform interface operations summarized

in Table 4-2.

The request of allocating a new service is the POST operation for the

following API:

http://localhost:3000/service/:service

In this request, the :service is a parameter for any service name that the

user defines, for example turning on the spraying service by requesting the POST

method for the following API:

http://localhost:3000/service/spray_on

to allocate the suitable available UAV that has the spray resource and add this

UAV to the operation.

8 https://nodejs.org/

67

Moreover, to modify or retrieve a value of a resource, the broker provides the

following PUT method API:

http://localhost:3000/:name/:service

In this situation, the :name and the :service are the parameters of the

UAV name and the service to be accessed or modified. For example, requesting the

following API by the PUT method:

http://localhost:3000/UAV2/spray_off

This request is to turn off the spray service of UAV2.

5.2 Testing

The implemented system was tested using the Postman Chrome extension
9

for each device and resource then for broker APIs. The test focuses on the pull data

model of HTTP requests.

First, the test begins with testing the UAV resource APIs, by directly

requesting the UAV RESTful HTTP by its address, URI and operation for each

resource. The UAV got the request, defined the service, performed it according to its

resources and then returned the response of the requested service. The services

mentioned in Table 5-1 were tested successfully with quick response.

Secondly the broker APIs were tested as the following; for requesting a

service, the system was tested by sending requests of services for the POST API:

http://localhost:3000/service/:service

9 https://www.getpostman.com/docs/requests

68

such as allocating a spraying service through the POST API:

http://localhost:3000/UAV2/spray_off

In this scenario the broker searches the database for the service spray in the

services’ table combined with the UAVs’ table to find the available one that provides

the spraying service. Then, the broker defines the UAV API components that are, the

method, address, resource URI and the name of the allocated UAV to request it so

that it performs the required service. After that, the broker changes the status of that

UAV into allocated in the UAVs’ table, to ensure that this UAV is not assigned again

but could be modified and accessed through GET, PUT and DELET methods.

After the broker requests the allocated UAV, this UAV replies with a

confirmation for performing the service. Next, the broker returns the response to the

client as a JSON message to the requester containing the name of the UAV, the name

of the requested service, and the UAV feedback message, as shown in Figure 5-6.

Figure 5-6 POST operation request and response for spraying service through the

broker

69

Similarly, when requesting another service to be performed by second UAV,

such as ‘led_on’ the POST method is used along with the resource name, as shown in

Figure 5-7.

Figure 5-7 POST operation request and response for ‘led_on’ service through the

broker.

Next, the allocated services are accessed through PUT APIs that specify the

name of the UAV to be modified and the service name. This was tested for several

services of different UAVs such as turning the spray off as well as turning the

‘led_off’ as shown in Figure 5-8 and Figure 5-9 respectively.

70

Figure 5-8 PUT operation request and response for turning spray service off through

the broker.

Figure 5-9 PUT operation request and response for turning ‘led service off’ through

the broker.

In the same way, the sensor readings were retrieved by specifying the name

of the UAV and its resource, as shown in Figure 5-10.

71

Figure 5-10 Reading the remaining tank capacity of the spraying service UAV

For these scenarios, the broker searches the allocated UAVs that provides the

service from the Operation table and the Resource table. Then, it requests the UAV

API using its address, operation and URI. With this, it will return the response to the

client.

The architecture showed the seperation of the client side from the UAV side

by the broker layer that allocates the suitable UAV to the operation from the set of

UAVs. In case of no service provider or no available UAV for that service, the

broker returns a not available message response to the client. Moreover, in case of

requesting an allocated UAV, it returns a rejection response that it is not available.

5.3 Evaluation

For measuring the overload of the broker layer, the response times for the

resources were compared in both direct access and through the broker.

First, the UAV resources in Table 5-1 were requested directly using their

URIs and the UAV address. The response times were recorded ten times for each

72

resource and the average was calculated as shown in Table 5-2 and Figure 5-11. The

response time of requesting a UAV resource directly varies between 180 and 470

milliseconds with an average of 266 milliseconds.

The variety of response time depends on the resource process, for example

the ‘led on’ resource is a simple digital output of LOW and HIGH, while the

temperature sensor resource reads the analog voltage of the sensor pin, then converts

it into voltage using a scale of 5 and then calculates the temperature value

accordingly. This process requires more time compared to the digital output;

therefore, the response time of the temperature request is higher than the response

time of the LED.

Table 5-2 Response times for UAV resources with direct accesses.

73

Figure 5-11 Response times of UAV resources with direct accesses.

After that, the UAV resources were requested through the broker layer by

specifying the name of the service to the broker, so that it ensures the availability of

the requested resource and requests the UAV according to its uniform interface and

returns the results to the requester. The measurement was done ten times for each

service of each UAV. The response time of requesting services through the broker

varies between 200 and 500 milliseconds with an average response time of 310

milliseconds as shown in Table 5-3 and Figure 5-12.

Table 5-3 Response times of UAV resources through the broker.

0

50

100

150

200

250

300

350

400

450

500

 /
te

m
p

/h
u
m

id
it

y

/l
ig

h
t/

1

/l
ig

h
t/

0

/l
ig

h
ti

n
g
/1

/l
ig

h
ti

n
g
/0

/s
p

ra
y

/1

/s
p

ra
y

/0

/s
p

ra
y

/t
an

k

/s
p

ra
y

/t
an

…

 /
te

m
p

/h
u

m
id

it
y

/l
ig

h
ti

n
g
/1

/l
ig

h
ti

n
g
/0

/d
is

ta
n
ce

/l
ig

h
ti

n
g
/1

/l
ig

h
ti

n
g
/0

R
es

p
o

n
se

 T
im

e
(m

s)

Resources

Response

Time with

direct

access

74

Figure 5-12 Response times of UAV resources through the broker.

Accordingly, the overhead of the broker layer is calculated for the resources

as shown in Figure 5-13. The average increase of the response time is only 13%. This

is due to the difference between the UAV and the computer processing capabilities.

Consequently, the cloud services transfer part of the processing from internal

UAVs to the cloud and add more advantages with minimal overhead. This shows the

high performance of the broker layer compared to the limited resources of UAVs.

0

100

200

300

400

500

600

 /
te

m
p

/h
u

m
id

it
y

/l
ig

h
t/

1

/l
ig

h
t/

0

/l
ig

h
ti

n
g

/1

/l
ig

h
ti

n
g

/0

/s
p

ra
y

/1

/s
p

ra
y

/0

/s
p

ra
y

/t
an

k

/s
p

ra
y

/t
an

k
/f

u
ll

 /
te

m
p

/h
u
m

id
it

y

/l
ig

h
ti

n
g

/1

/l
ig

h
ti

n
g

/0

/d
is

ta
n
ce

/l
ig

h
ti

n
g

/1

/l
ig

h
ti

n
g

/0

A
v

ar
ag

e

R
es

p
o

n
se

 T
im

e
(m

s)

Resourses

Response

Time

Through

Broker

75

Figure 5-13 Response times of UAV resources with direct accesses and through the

broker.

0

100

200

300

400

500

600

 /
te

m
p

/h
u
m

id
it

y

/l
ig

h
t/

1

/l
ig

h
t/

0

/l
ig

h
ti

n
g
/1

/l
ig

h
ti

n
g
/0

/s
p

ra
y

/1

/s
p

ra
y

/0

/s
p

ra
y

/t
an

k

/s
p

ra
y

/t
an

k
/f

u
ll

 /
te

m
p

/h
u

m
id

it
y

/l
ig

h
ti

n
g
/1

/l
ig

h
ti

n
g
/0

/d
is

ta
n
ce

/l
ig

h
ti

n
g
/1

/l
ig

h
ti

n
g
/0

R
es

p
o
n

se
 T

im
e

Resources

Direct access

Through broker

76

Chapter 6: Conclusion and Future Work

6.1 Conclusion

In conclusion in this research, I proposed a UAV-Cloud platform for

distributed UAVs. This platform offers several advantages for developing UAV

applications easily, separating responsibilities of UAV services and integrating them.

To facilitate this approach I proposed a ROA and described a broker layer to separate

the application side from the UAV side.

The proposed UAV-Cloud platform overcomes the limitations of the

traditional peer-to-peer RF communication that have showed numerous restrictions

for operation and development. In addition, developing a heterogeneous UAV

application using the traditional approaches is time and effort consuming because it

requires the knowledge of each UAV programing language. The operation of UAVs

is also limited to specific missions. Furthermore, in the RF communication scenario,

the user location has to be within the mission area. Moreover, it restricts UAVs to be

in a nearby area and to be in a line of communication with the ground station. This is

unsuitable for the dynamic UAVs environments where UAVs have to be spread

across large areas and may not have a direct line of communication with the ground

station or between them. Besides, the development of heterogeneous UAVs becomes

a difficult process for different UAV programing languages.

As a result, I proposed integrating UAVs to the cloud for ubiquitous UAV

resource access. In this model, UAVs are considered as web servers that are part of

the cloud so that they gain the benefit of the cloud computing ubiquity as well as

facilitating the use of web tools and protocols for developing collaborative UAV

77

applications. Following the cloud web development opens the ability to develop not

only desktop applications but also mobile applications for UAVs. In addition, these

applications are accessed regardless of the user operating system.

UAVs provides not only service but they are also resources. The RESTful is

the implementation of the ROA; it is a lightweight, reusable and loosely coupled web

service. It is more suitable for UAV limited resources compared to the standardized

heavyweight and complex WS* web services. Therefore, the UAVs were designed

using RESTful web services to offer their resources and services using HTTP

uniform interfaces. UAVs provide these HTTP APIs their resources and services

which can be accessed and requested through the broker layer.

Due to the loosely coupled services and to gain the benefit of separating

responsibilities, a broker architecture was proposed which is a web service on the

cloud. The broker is connected to a database that holds the information about the

registered UAVs and their resources, so that the user application is built upon it to

request and monitor the process of the mission.

The research focused on the framework architecture and the functionality

provided by the platform. On the other hand, there is a set of non-functional

requirements provided by the framework which include reusability of the framework

services due to the ROA design. Furthermore, the platform APIs support the usability

for easy development as building blocks for implementing applications. Not only

that, but also transferring the common services from the UAV side to the cloud side

increases the efficiency of these services. In addition, due to the standardized

communication and protocols, the platform supports interoperability where

heterogeneous systems are able to exchange data and messages in an agreed-upon

78

format. This also allows compatibility with other systems that use this protocol.

Besides, the system measured the performance of the services by direct access as

well as through the broker and showed that the response time is slightly higher. This

indicates that the platform layer does not lead to overheads for the system.

However, some other non-functional requirements were not addressed such

as availability, recovery, failure management, safety and testability. Another

important aspect is security and privacy. The exchanged data, platform access, UAV

resources and database require security mechanisms for accessing them and the

exchanged messages. The platform APIs enable having access tokens for access

authentications. Also, encryption and decryption are preferable for exchanged data

and messages.

The proposed architecture was implemented as a UAV payload subsystem.

The implementation included a communication subsystem to connect to the network

and get a unique IP. Then the payload for each device contained a resource that

retrieved data and one to perform action. Each resource had its API to allow access

for RESTful requests. This showed the separation of responsibilities and facilitated

building applications and integrating services easily. This was followed by

developing the broker layer which was connected to the database that contained the

information of the registered UAVs, their services and the operation information.

The broker APIs were used to assign a new UAV to the mission by defining the

service. In addition, they were used for modifying selected services and retrieving

values from the assigned UAVs. These were tested using a simple browser

application to demonstrate the interfaces of UAVs and the broker for several UAVs

and their resources. The overhead of the broker was measured and found that the

79

response time through the broker was only 13% higher than the direct access. This is

an acceptable overhead for the added broker features.

On the other hand, the implementation has some limitations. It did not

measure the scalability of the broker and how many UAVs it can deal with. This also

includes the maximum number of requests that can be handled simultaneously. In

addition, the impact of the concurrent requests on the response time and how the

broker handles them were not investigated. The implemented prototype used fixed

devices; therefore, the mobility factor and location considerations were not

implemented. Only the pull model was implemented. The push model of registration

was assumed available. Although the API supports heterogeneous devices, the

implementation of UAV is based on similar Arduino devices with different

resources.

From a business perspective, the requested architecture opens new

opportunities to the UAV industry by using cloud pricing model of pay-per-use and

resource sharing. The user operation does not have to go through the whole process

of owning the UAVs, developing them as well as operating and using them. The

cloud development models are (i) private cloud, (ii) public cloud, and (iii) hybrid

cloud.

The private UAV cloud provides services and infrastructure only for its

organization; this could either be managed by the organization itself or through a

third party. In this situation, the UAVs are owned by the organization and the

applications are developed according to its needs and operations.

80

On the other hand, the public UAV cloud provides services to an open

network, this opens the field for business UAV applications for the public, where the

user does not own or manage the UAVs but only gains the benefit of their usage.

This is cost effective for public users who cannot afford the infrastructure and

management process of UAVs.

Moreover, the hybrid UAV cloud is a combination of the public and private

cloud, where the UAVs are owned and managed by a third party for a specific

organization. This reduces the organization responsibilities of managing and

maintaining the UAVs to focus on their usage and operation.

A comparison of the addressed features is compared to the literature review

as shown in Table 6-1. Although some literature addressed part of these feature, no

general platform was proposed for UAV resources using the reusability and cloud

computing paradigm. Moreover, most of these researchers consider applications for a

specific field. Therefore, the design is tightly coupled and not considered for other

applications.

Table 6-1 A comparison among the UAV-Cloud and other related solution in the

addressed features.

Simanta

[29]

Freitas

[27]

Nadeau

[30]

Mohamed

[23]

UAV-

Cloud

SOA

Loosely coupled

Power considerations

Location considerations

Reusability

81

Platform

Business prospective

Application independent

Lightweight architecture

Separating

responsibilities

Integrating with other

system

Cloud resources

Ease application

development

Multi UAVs

6.2 Future Work and Open Issues

The proposed architecture does not cover the whole UAV-Cloud

considerations mentioned in 3.4. The payload subsystem has a high dependency on

the controlling aspects of flight path. Therefore, the control subsystem could have

interfaces to link the UAV services with it. For example, the broker allocation for the

nearest UAV depends on the flight path to the destination point.

In addition, another layer is required to decompose the user mission into a set

of tasks to be requested by the broker. This decomposition highly depends on the

operation of the mission. Therefore, it was assumed to be part of the application.

82

UAVs are not stand alone systems. They usually interact and exchange data

with other systems. The proposed architecture can be expanded to open the ability

for application to integrate not only with UAVs but also ground nodes and other

systems that use the same RESTful protocol. Therefore, the application combines

multiple resources to increase its efficiency and capabilities.

In addition, UAVs provide a huge volume variety of collected data, this

opens the Big Data field to analyze this data for future decision- making in different

operations.

Although the RESTful architecture is acknowledged to be suitable for the

limited UAVs, it still lacks standards. For example, it lacks a standardized

description format for representing UAV information and service details. Also, the

push model is an open issue in this field that requires more enhancements.

83

Bibliography

[1] B. Wagner, “Civilian market for unmanned aircraft struggles to take flight,”

Natl. Def. Mag., 2007.

[2] G. M. Saggiani and B. Teodorani, “Rotary wing UAV potential applications:

an analytical study through a matrix method,” Aircr. Eng. Aerosp. Technol.,

vol. 76, no. 1, pp. 6–14, 2004.

[3] O. K. Sahingoz, “Mobile networking with UAVs: opportunities and

challenges,” in Unmanned Aircraft Systems (ICUAS), 2013 International

Conference on, 2013, pp. 933–941.

[4] G. Chmaj and H. Selvaraj, “Distributed processing applications for

UAV/drones: a survey,” in Progress in Systems Engineering, Springer, 2015,

pp. 449–454.

[5] W. L. Teacy, J. Nie, S. McClean, G. Parr, S. Hailes, S. Julier, N. Trigoni, and

S. Cameron, “Collaborative sensing by unmanned aerial vehicles,” 2009.

[6] A. Ryan, J. Tisdale, M. Godwin, D. Coatta, D. Nguyen, S. Spry, R. Sengupta,

and J. K. Hedrick, “Decentralized control of unmanned aerial vehicle

collaborative sensing missions,” in American Control Conference, 2007.

ACC’07, 2007, pp. 4672–4677.

[7] P. Zhan, D. Casbeer, and A. L. Swindlehurst, “A centralized control algorithm

for target tracking with UAVs,” in 39th IEEE Asilomar Conference, 2005, vol.

13, p. 109.

[8] N. Mohamed and J. Al-Jaroodi, “Service-oriented middleware for collaborative

UAVs,” in Information Reuse and Integration (IRI), 2013 IEEE 14th

International Conference on, 2013, pp. 185–192.

[9] A. Ryan, X. Xiao, S. Rathinam, J. Tisdale, M. Zennaro, D. Caveney, R.

Sengupta, and J. K. Hedrick, “A modular software infrastructure for distributed

control of collaborating UAVs,” in Proceedings of the AIAA Conference on

Guidance, Navigation, and Control, Keystone, CO, 2006.

[10] P. Mell and T. Grance, “The NIST definition of cloud computing,” 2011.

[11] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things

(IoT): A vision, architectural elements, and future directions,” Future Gener.

Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[12] D. Zeng, S. Guo, and Z. Cheng, “The web of things: A survey,” J. Commun.,

vol. 6, no. 6, pp. 424–438, 2011.

[13] R. Austin, Unmanned aircraft systems: UAVS design, development and

deployment, vol. 54. John Wiley & Sons, 2011.

[14] G. Varela, P. Caamamo, F. Orjales, A. Deibe, F. López-Peña, and R. J. Duro,

“Swarm intelligence based approach for real time UAV team coordination in

search operations,” in Nature and Biologically Inspired Computing (NaBIC),

2011 Third World Congress on, 2011, pp. 365–370.

[15] F. G. Costa, J. Ueyama, T. Braun, G. Pessin, F. S. Osório, and P. A. Vargas,

“The use of unmanned aerial vehicles and wireless sensor network in

agricultural applications,” in Geoscience and Remote Sensing Symposium

(IGARSS), 2012 IEEE International, 2012, pp. 5045–5048.

[16] F. Mohammed, A. Idries, N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “UAVs

84

for smart cities: Opportunities and challenges,” in Unmanned Aircraft Systems

(ICUAS), 2014 International Conference on, 2014, pp. 267–273.

[17] F. Mohammed, A. Idries, N. Mohamed, J. Al-Jaroodi, and I. Jawhar,

“Opportunities and Challenges of Using UAVs for Dubai Smart City,” in 2014

6th International Conference on New Technologies, Mobility and Security

(NTMS), 2014, pp. 1–4.

[18] H. Bendea, P. Boccardo, S. Dequal, F. Giulio Tonolo, D. Marenchino, and M.

Piras, “Low cost UAV for post-disaster assessment,” in Proceedings of The

XXI Congress of the International Society for Photogrammetry and Remote

Sensing, Beijing (China), 3-11 July 2008, 2008.

[19] H. Eisenbeiss, “A mini unmanned aerial vehicle (UAV): system overview and

image acquisition,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol.

36, no. 5/W1, 2004.

[20] H. Chao, Y. Cao, and Y. Chen, “Autopilots for small unmanned aerial

vehicles: a survey,” Int. J. Control Autom. Syst., vol. 8, no. 1, pp. 36–44, 2010.

[21] S. Hadim, J. Al-Jaroodi, and N. Mohamed, “Middleware issues and approaches

for mobile ad hoc networks,” in The IEEE Consumer Communications and

Networking Conf.(CCNC 2006), 2006, pp. 431–436.

[22] N. Mohamed, J. Al-Jaroodi, I. Jawhar, and S. Lazarova-Molnar, “Middleware

requirements for collaborative unmanned aerial vehicles,” in Unmanned

Aircraft Systems (ICUAS), 2013 International Conference on, 2013, pp. 1051–

1060.

[23] N. Mohamed, J. Al-Jaroodi, I. Jawhar, and S. Lazarova-Molnar, “A service-

oriented middleware for building collaborative UAVs,” J. Intell. Robot. Syst.,

vol. 74, no. 1–2, pp. 309–321, 2014.

[24] S. T. Patibandla, T. Bakker, and R. H. Klenke, “Initial evaluation of an IEEE

802.11 s-based mobile ad-hoc network for collaborative Unmanned Aerial

Vehicles,” in Connected Vehicles and Expo (ICCVE), 2013 International

Conference on, 2013, pp. 145–150.

[25] T. Lemaire, R. Alami, and S. Lacroix, “A distributed tasks allocation scheme

in multi-UAV context,” in Robotics and Automation, 2004. Proceedings.

ICRA’04. 2004 IEEE International Conference on, 2004, vol. 4, pp. 3622–

3627.

[26] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and

research challenges,” J. Internet Serv. Appl., vol. 1, no. 1, pp. 7–18, 2010.

[27] E. P. de Freitas, A. M. Ferreia, C. E. Pereira, and T. Larsson, “Middleware

support in unmanned aerial vehicles and wireless sensor networks for

surveillance applications,” in Intelligent Distributed Computing III, Springer,

2009, pp. 289–296.

[28] C. E. Lin, C.-R. Li, and Y.-H. Lai, “UAS Cloud Surveillance System,” in

Parallel Processing Workshops (ICPPW), 2012 41st International Conference

on, 2012, pp. 173–178.

[29] S. Simanta, D. Plakosh, and E. Morris, “Web services for handheld tactical

systems,” in Systems Conference (SysCon), 2011 IEEE International, 2011, pp.

115–122.

[30] S. Se, C. Nadeau, and S. Wood, “Automated UAV-based video exploitation

using service oriented architecture framework,” in SPIE Defense, Security, and

Sensing, 2011, p. 80200Y–80200Y.

[31] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”

85

Comput. Netw., vol. 54, no. 15, pp. 2787–2805, 2010.

[32] S. Gustafson and A. Sheth, “Web of Things,” Comput. Now, vol. 7, no. 3,

2014.

[33] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented architecture for the

web of things,” in Internet of Things (IOT), 2010, 2010, pp. 1–8.

[34] D. Guinard, V. M. Trifa, and E. Wilde, Architecting a mashable open world

wide web of things. ETH, Department of Computer Science, 2010.

[35] P. Balamuralidhara, P. Misra, and A. Pal, “Software platforms for internet of

things and M2M,” J. Indian Inst. Sci., vol. 93, no. 3, pp. 487–498, 2013.

[36] “Xively by LogMeInXively.” [Online]. Available: http://xively.com/.

[Accessed: 28-Mar-2015].

[37] “Documentation | DeviceHive.” [Online]. Available:

http://devicehive.com/documentation. [Accessed: 28-Mar-2015].

[38] “52N Sensor Web Community - 52°North Sensor Web Community.” [Online].

Available: http://52north.org/communities/sensorweb/. [Accessed: 28-Mar-

2015].

[39] “ThingWorx - Internet of Things and M2M Application Platform | ThingWorx

is the first application platform designed to rapidly build innovative Internet of

Things and M2M applications.” .

[40] B. P. Gerkey and M. J. Mataric, “A framework for studying multi-robot task

allocation,” 2003.

[41] T. Lemaire, R. Alami, and S. Lacroix, “A distributed tasks allocation scheme

in multi-UAV context,” in Robotics and Automation, 2004. Proceedings.

ICRA’04. 2004 IEEE International Conference on, 2004, vol. 4, pp. 3622–

3627.

[42] J. Thelin, “A comparison of service-oriented, resource-oriented, and object-

oriented architecture styles,” in OMG Workshop, Munich, Germany, 2003.

[43] K. Wagh and R. Thool, “A comparative study of soap vs rest web services

provisioning techniques for mobile host,” J. Inf. Eng. Appl., vol. 2, no. 5, pp.

12–16, 2012.

[44] P. Markey and G. Clynch, “A performance analysis of WS-*(SOAP) and

RESTful Web Services for Implementing Service and Resource Orientated

Architectures,” 2013.

[45] D. Guinard, V. Trifa, T. Pham, and O. Liechti, “Towards physical mashups in

the web of things,” in Networked Sensing Systems (INSS), 2009 Sixth

International Conference on, 2009, pp. 1–4.

[46] D. Guinard, I. Ion, and S. Mayer, “In search of an internet of things service

architecture: REST or WS-*? A developers’ perspective,” in Mobile and

Ubiquitous Systems: Computing, Networking, and Services, Springer, 2012, pp.

326–337.

[47] A. Rodriguez, “Restful web services: The basics,” IBM Dev., 2008.

[48] S. Duquennoy, G. Grimaud, and J.-J. Vandewalle, “The Web of Things:

interconnecting devices with high usability and performance,” in Embedded

Software and Systems, 2009. ICESS’09. International Conference on, 2009, pp.

323–330.

[49] E. Bozdag, A. Mesbah, and A. Van Deursen, “A comparison of push and pull

techniques for ajax,” in Web Site Evolution, 2007. WSE 2007. 9th IEEE

International Workshop on, 2007, pp. 15–22.

[50] M. Fasli, Agent technology for e-commerce. John Wiley & Sons Chichester,

86

2007.

87

List of Publications

[1] S. Mahmoud and N. Mohamed, “Collaborative UAVs Cloud,” in “Unmanned

Aircraft Systems (ICUAS), 2014 International Conference”, Orlando, USA, 2014,

pp. 365–373.

[2] S. Mahmoud and N. Mohamed, “UAVs Cloud Computing,” in UAE Graduate

Students Research Conference 2015 (UAE GSRC 2015), Abu Dhabi, UAE, 2015, pp.

559–560.

[3] S. Mahmoud and N. Mohamed, “Broker Architecture for Collaborative UAVs

Cloud Computing,” at the “The 2015 International Conference on Collaboration

Technologies and Systems (CTS 2015)”, Atlanta, Georgia, USA, 2015.

[ACCEPTED]

	United Arab Emirates University
	Scholarworks@UAEU
	5-2015

	UAV-CLOUD: A PLATFORM FOR UAV RESOURCES AND SERVICES ON THE CLOUD
	Sara Yousif Mohamed Mahmoud
	Recommended Citation

	tmp.1447320783.pdf.DvGm4

