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 Abstract 

A financial derivative is an instrument whose payoff is derived from the behavior of 

another underlying asset. One of the most commonly used derivatives is the option which 

gives the right to buy or to sell an underlying asset at a pre-specified price at (European) 

or at and before (American) an expiration date. Finding a fair price of the option is called 

the option pricing problem and it depends on the underlying asset prices during the period 

from the initial time to expiration date. Thus, a “good” model for the underlying asset 

price trajectory is needed.  

In this work, we are interested in European call options. We propose a new Constant 

Elasticity of Variance (CEV) model that covers the post-crash situations. First, we set up 

the modified CEV model for markets with high volatility. Then we find a numerical 

solution for the stochastic differential equation of the underlying price. The risk-neutral 

valuation method shows that the option price can be written as an expected value of the 

discounted underlying asset price at maturity. Then we use Monte Carlo methods for 

finance this to find a numerical solution for the price of a European option under a CEV 

model with high volatility. 

 

Keywords: European option, stochastic calculus, stochastic volatility models, CEV 

model, Post-Crash markets, numerical analysis, Monte Carlo methods.  
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Title and Abstract (in Arabic) 

 بياني ذات مرونة ثابتة" معدلتسعير عقود الخيارات المالية الأوروبية لنموذج " فرق 

 الملخص  

هو الخيار الذي  أكثر المشتقات المالية استعمالا  ومن.مردودها ناتج عن سلوك أصل آخرأداة  يه المشتقات المالية

ا عند تاريخ النتهاء يعطي الحق  بل أو ق وأما عندحالة الخيار الأوروبي(  )فيببيع أصل مدرج بسعر محدد مسبقا

أسعار  ويعتمد على ”تسعير الخيار“سعر الخيار العادل يطلق عليه  إيجاد حالة الخيار الأمريكي(. )فيتاريخ النتهاء 

عر ر سذجا مناسبا لمساإن نمولذا ف النتهاء. وحتى تاريخالأصول المندرجة خلال الفترة الممتدة بين وقت البدء 

لمرونة هذا البحث على خيار الطلب الأوروبي ونقترح نموذجا جديداا  فياهتمامنا  الصل المدرج يعد ضرورياا.

  النهيار.هذا النموذج يغطي مواقف ما بعد  الثابتة ومن خلالاين بالت

 سعر المندرج التفاضلية العشوائية.ثم نجد حلاا عدديا لمعادلة ال  .وذج المعدل للأسواق كثيرة التقلبالنم عالبداية نضفي 

درج للخصوم المنصل لتعبير عنه كقيمة متوقعه لسعر الأن متعادل المخاطر أن سعر الخيار يمكن اثميتبين طريقة الت

لإيجاد حل عددي لسعر الخيار الأوروبي ضمن  الماليةطريقة مونت كارلو  وأخيراا نستخدم .وقت السدادعند حلول 

 تقلب السوقي.كثرة ال العتبارنموذج مرونة تباين ثابتة يؤخذ بعين 

 الثابتة،اين نموذج مرونة التب العشوائي،نماذج التقلب  والتكامل العشوائي،التفاضل  الأوروبي،الخيار  كلمات مفتاحية:

  .طرق مونت كارلو العددية،التحليلات  بعد النهيار،أسواق ما 
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Chapter 1: Introduction 

Options can be seen as a powerful tool in financial risk management.  The holder, of a 

European call option for example, gets the right (and not the obligation) to buy the 

underlying asset at the strike price on the maturity date. On the other hand, the holder has 

to pay the premium (the option price at the initial time). The maximum loss of the owner 

of the option is simply the premium but no limit to his profit. This shows how much it is 

important to find a fair price for the options.  

The famous Black-Scholes formula (F.Black, 1973) is usually used for this purpose. 

However, the Black Scholes model has many shortcomings, among others: the constant 

volatility.  

Empirical studies show clearly that the volatility is stochastic. To surmount this deficit, 

many researchers recommended models where the volatility is stochastic (stochastic 

volatilities models). We point out for example: Constant Elasticity of Variance (CEV) 

model (Cox, J.C., and S.A. Ross, 1976), Heston model (S.Heston, 1993)or more recently 

hybrid models, see for example (Y. El-Khatib, and A. Hatemi-J, 2015). However, these 

stochastic models do not treat markets suffering from crisis. On the other hand many 

researchers worked on models that account for the financial crisis see for instance 

(G.Chahda, 2005), (Y.El-Khatib, A.Hatemi-J, 2013/1), (F.Mantenga, 2003), and 

(D.Sornette, 2003).  In the reference (Y.El-Khatib, A.Hatemi-J, 2013/2)a closed form 

solution for a model with crisis is obtained.  

 This work, we deal with the pricing problem for European options under a modified 

Constant Elasticity of Variance (CEV) model (Cox, J.C., and S.A. Ross, 1976). We 
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consider a hybrid model that combines the CEV model and a particular case of the model 

with crisis considered in (Y.El-Khatib, A.Hatemi-J, 2013/2). 

The main advantage of the CEV model is that it accounts for the leverage effect: the 

volatility of a stock increases as its price goes down. 

We start by an introduction to financial derivatives and to stochastic calculus, then we 

provide a presentation on the Black and Scholes and the CEV models. Our results start by 

suggesting the modified CEV model where a new parameter𝛼 is added to the stochastic 

differential equation of the underlying asset price: 

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + ( 𝜎𝑆𝑡

𝛽

2 + 𝛼) 𝑑𝑊𝑡,         𝑆0 > 0. 

We solve the above equation numerically since to the best knowledge it does not have a 

closed form solution. Then, we find a numerical solution for the pricing of European 

option problem using the Monte Carlo methods for finance.   

The rest of the thesis is structured as follows, in chapter 2, we provide an introduction to 

the financial derivatives. Chapter 3 is devoted to the stochastic calculus and the different 

tools needed to solve our research problem. In chapter 4, we discuss the CEV model under 

the Black-Scholes model and we give the different numerical methods for solving 

stochastic differential equations. We use Euler scheme to solve numerically the stochastic 

differential equation of the underlying asset price. Chapter 4 is dedicated to our proper 

research work; we first suggest the modified CEV model. Then, we solve numerically the 

asset price stochastic differential equation using Euler scheme. Moreover, we find a 

numerical solution for the European call option price of the high volatile model.    
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Chapter 2: Prior Knowledge of Financial derivatives 

Financial derivatives are very important tools for risk management. Currently, derivatives 

markets exist in many countries over the world. Studying financial derivatives lead to two 

major problems: pricing and hedging. In the present work, we are interested in the pricing 

problem. This chapter is dedicated to an introduction to financial derivatives.  

2.1 Definition of Derivative  

A derivative security is a financial agreement whose value “derives” from cash market 

tools like stocks, bonds, currencies and commodities. (N.Neftci, 16 Dec 2013)  

The cash market tool is also denoted to as the underlying asset. Therefore, an underlying 

asset can be 

 Stocks: claims to real returns generated in the production sector of goods and services. 

 Currencies: banks. 

 Soft: such as cocoa, sugar, coffee 

 Grains and oilseeds: barley, corn, cotton, oat, palm oil 

 Metals: copper, nickel, tin 

 Precious metals: gold, platinum, silver 

 Energy: basic oil, gasoline. 

Definition 2.1.1 A financial contract is a derivative security if its value at a stated date T, 

called the expiration time, is determined by the market price of the fundamental asset at 

that time T. (C.Hull, 2005) 
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2.2 Major Categories of Derivatives 

There are many types of financial derivatives. In the coming subsections we list some of 

them.  

2.2.1 Forwards and Futures 

Forwards and futures contract are very similar the two parties are in the obligation. 

Definition 2.2.1 A forward contract is a contract (or agreement) to buy or to sell a positive 

asset at a certain future period for a certain price. (N.Neftci, 16 Dec 2013) 

Definition 2.2.2. A futures contract is a contract between two parties to buy or sell an 

asset at a sure time in the future for a sure price. (N.Neftci, 16 Dec 2013) 

2.2.2 Option 

Options differ from the futures and forward by giving the right to the holder (and not the 

obligation) to exercise. We have many types of options, below is a general definition of 

an option. (Mörters & Peres, 2010) 

Definition2.2.3 An option offers the holder with the right to buy or to sell a specified 

amount of an underlying asset at a fixed price (called a strike price) at or before the 

expiration date of the option. (Cohen, 2013) 

Since it is a right and not an obligation, the holder can choose not to exercise the right and 

consent the option to expire. There are two kinds of options - call options (right to buy) 

and put options (right to sell). 
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Call Options 

A call option gives the buyer of the choice the right to buy the underlying asset at a fixed 

price (strike price or K) at any time proceeding to the expiration date of the option. The 

buyer pays a price for this right. 

 From expiration: 

• If the price of the underlying asset (S) > Strike Price (K) 

– Buyer makes the difference: S – K 

 • If the value of the underlying asset (S) < Strike Price (K) 

– Buyer does not exercise 

More generally:  

• The value of a call growths as the value of the underlying asset growths 

• The value of a call decreases as the value of the underlying asset decreases 

Put Options 

A put option provides the buyer of the option the right to sell the underlying asset at a 

fixed price at any time previous to the expiration date of the option. The buyer pays a price 

for this correct. 

From expiration:  

• If the value of the underlying asset (S) < Strike Price (K) 

– Buyer makes the difference: K-S 
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• If the value of the underlying asset (S) > Strike Price (K) 

– Buyer does not exercise 

More generally: 

• The value of a put decreases as the value of the underlying asset increases 

• The value of a put rises as the value of the underlying asset decline 

2.3 American versus European Options 

An American option can be practical at any time prior to its expiration, while a European 

option can be exercised only at expiration. 

The opportunity of early exercise makes American options more appreciated than 

otherwise similar European options. 

However, in most cases, the time premium associated with the remaining life of an option 

makes early exercise sub-optimal. 

2.4 Example 

If we take an example, say a prepackaging food company who may be subject to volatile 

price actions and changes. In order for them to sustain and maintain steady and consistent 

prices for the customers, they are required to purchase supplies for the company at a 

market friendly rate, which is relatively consistent to maintain their prices. (Bjork, 2009) 

In order to be able to do this they must enter an options contract with their agricultural 

suppliers and buy a certain amount of crops at a certain time at a certain rate and upon a 

certain timeframe. If a product such as wheat went up suddenly then the company would 
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still be able to purchase the goods at the best value rate rather than purchase at the 

supplier’s rate for that particular time (Wheat prices raised) 

The company is then getting value for their money by signing up for the options contract 

and also are assured the best price at all times. Both parties involved are in a win situations 

as the company is guaranteed a competitive prices and the supplier is assured fair value 

for their goods, plus consistency in dealing with the company. 

In this instance, the value of the option is "derived" from an underlying asset; in this case, 

a certain number of bushels of wheat. (Cohen, 2013) 

A European style call (put) option is a right, but not an obligation, to purchase (sell) an 

asset at a strike price on option maturity date, T. An American style option is a European 

option that can be exercised prior to T. 

  

http://www.investinganswers.com/financial-dictionary/options-derivatives/underlying-asset-5363
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Chapter 3: Introduction to Stochastic Calculus 

This chapter provide to some probability notions and elementary specific tools form 

stochastic calculus that are needed in our study. 

3.1 Sample Space 

Definition 3.1.1 A random experiment in the theory of probability is an experiment whose 

outcomes cannot be determined in advance. (Neftci, 2000)  

These experiments are done mentally most of the time. When an attempt is practiced, the 

output is called the sample space, and we will define it asΩ. In the stock markets it can be 

accepted as a world case, known by all acceptable cases that are available. The number of 

cases that affect the financial market is big. Those will include all the possible costs for 

the vector parameter which describe the world and is always wide. (Mörters & Peres, 

2010). 

For some simple experiments the sample space is much smaller. For instance, flipping a 

coin will produce the sample space with two states {H, T}, while rolling a die yields a 

sample space with six states. Choosing randomly a number from 0 to 1 corresponds to a 

sample space which is the entire segment [0, 1].  

3.2 Events and Probability 

The chance of incidence of an experience is measured by a probability function (N.Neftci, 

16 Dec 2013) 

P: 𝐹→ [0, 1] which satisfies the following two properties:  

 P(Ω) = 1; 
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 For any mutually disjoint events A1,A2,··· ∈ F, P(A1 ∪ A2 ∪ ···) = P(A1) + P(A2) + ··· 

 The triplet (Ω, F, P) is called a probability space. This is the main setup in which the 

probability theory works.  

Example 1.3.1 In the case of flipping a coin, the probability space has the following 

elements: 

 Ω = {𝐻 , 𝑇} , 𝐹 = {𝜙, {𝐻}, {𝑇}, {𝐻, 𝑇}} 

 P defined by 𝑃(𝜙) = 0, 𝑃({𝐻}) =
1

2
 , 𝑃({𝑇}) =

1

2
 , 𝑝({𝐻, 𝑇}) = 1 

3.3 Probability Space 

Definition 3.3.1 A probability space is a measure space with total measure one.  

The standard notation is (Ω, F, P) where: 

 Ω is a set (occasionally called a sample space in simple probability). Elements of Ω are 

signified ω and are sometimes called outcomes. 

 F is an σ-algebra of subsets of Ω. Sets in F are called events. 

 P is a function from F to [0, 1] with P (Ω) = 1 and such that if E1, E2 ∈ F are disjoint,    we 

say “probability of E” for P (E). 

                        ℙ[∪ 𝐸𝑗] = ∑ ℙ[𝐸𝑗]∞
𝑗=1                                                  (3.1) 

3.4 Distribution Functions 

3.4.1 Introduction 

Let X be a random variable on the probability space (Ω, F, P). The distribution function 

of X is the function f(x): 𝑅 → [0 , 1 ]  defined by 𝐹(𝑥) = 𝑃(𝜔: 𝑋(𝜔) ≤ 𝑥)  (Privault, 

2013) 
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It is worth observing that since X is a random variable, then the set { 𝜔: 𝑋(𝜔) ≤ 𝑥 } 

belongs to the information set F. 

 

 

 

 

 

 

Figure 1: a) Normal distribution; b) Log-normal distribution; c) Gamma distribution; d) Beta 

distributions 

lim
𝑥→−∞

𝐹𝑋(𝑥) = 0                                                                  (3.2) 

lim
𝑥→∞

𝐹𝑋(𝑥) =  1                                                                   (3.3) 

If we have
𝑑

𝑑𝑥
𝐹𝑥(𝑥) = 𝑝(𝑥) , then we say that 𝑝(𝑥) is the probability density function of 

𝑋.a useful property which follows from the Fundamental Theorem of Calculus is  

𝑃(𝑎 < 𝑋 < 𝑏) = 𝑃(𝜔; 𝑎 < 𝑋(𝜔) < 𝑏) = ∫ 𝑝(𝑥) 𝑑𝑥                          (3.4)

𝑏

𝑎

 

3.4.2 Basic Distributions 

We shall recall a few basic distributions, which are most often seen in applications. 

Normal distribution: a random variable 𝑋  is said to have a normal distribution if its 

probability density function is given by:  
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𝑝(𝑥) =
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2                                                            (3.5) 

, with µ and σ > 0 constant parameters, see Fig.1.1a. The mean and variance are given by 

(𝑋) =  𝜇, 𝑉𝑎𝑟[𝑋] =  𝜎2 . If 𝑋 has a normal distribution with mean µ and variance𝜎2, we 

shall write 𝑋∼𝑁(µ,𝜎2). (C.Hull, 2005) 

3.4.3 Independent Random Variables 

Roughly speaking, two random variables X and Y are independent if the occurrence of 

one of them does not change the probability density of the other. More precisely, if for 

any sets 𝐴, 𝐵 ⊂  𝑅, the events {ω; X (ω) ∈ A}, {ω; Y (ω) ∈ B} are independent, then X 

and Y are called independent random variables. (C.Hull, 2005) 

Proposition 3.4.3.1 Let X and Y be independent random variables with probability 

density functions 𝑃𝑋(𝑋) and 𝑃𝑌(𝑌). Then the joint probability density function of (X, Y) 

is given by 𝑃𝑋,𝑌(𝑋, 𝑌) = 𝑃𝑋(𝑋)𝑃𝑌(𝑌) (C.Hull, 2005)  

3.5 Brownian Motion 

The Brownian motion is one of the most used stochastic processes. It has another name: 

the Weiner process.  

3.5.1 Definition of the Brownian Motion 

Below, we give its definition. 

Definition 3.5.1 A Brownian motion process is a stochastic process Wt, t ≥ 0, which 

satisfies 

 W0 = 0, starting at 0, 

 Wt has stationary, independent increments 
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 The process Wt is continuous in t; the increments Wt − Ws are normally distributed 

with mean zero and variance |t − s|, Wt − Ws∼ N (0, |t − s|). 

 The process xt  =  x +  Wt has all the properties of a Brownian motion that starts at 

since Wt − Ws is stationary, its distribution function depends only on the time interval 

t − s, i.e.  

    𝑃(𝑊𝑡+𝑠 − 𝑊𝑠 ≤ 𝑎) = 𝑃(𝑊𝑡 − 𝑊𝑜 ≤ 𝑎) = 𝑃(𝑊𝑡 ≤ 𝑎)                                         (3.6) 

It is worth noting that even if Wt is continuous, it is nowhere differentiable. From 

condition 4 we get that Wt is normally distributed with mean𝐸[𝑊𝑡] = 0 𝑎𝑛𝑑 𝑉𝑎𝑟[𝑊𝑡] =

𝑡 , Wt ∼N (0, t). 

This suggests also that the second moment is 𝐸[𝑊𝑡
2] = 𝑡  .Let 0 < s < t. Since the 

increments are independent, we can write:  

         𝐸[𝑊𝑠𝑊𝑡] = 𝐸[(𝑊𝑠 − 𝑊0)(𝑊𝑠 − 𝑊𝑡) + 𝑊𝑠
2] = 𝐸[𝑊𝑠 − 𝑊0]𝐸[𝑊𝑠 − 𝑊0] + 𝐸[𝑊𝑠

2]

= 𝑆                                                                                                                     (3.7) 

Consequently, 𝑊𝑠 and 𝑊𝑡 are not independent. 

3.5.2 Geometric Brownian Motion 

The geometric Brownian motion used usually to describe the underlying asset price 

trajectory.  Its SDE is given by 

𝑑𝑋𝑡 = 𝛼𝑋𝑡𝑑𝑡 +  𝜎𝑋𝑡𝑑𝑊𝑡 𝑜𝑟
𝑑𝑋𝑡

𝑋𝑡
= 𝛼𝑑𝑡 +  𝜎𝑑𝑊𝑡  

A process with a constant expected return over time and a constant variance of return. 

This is a simplified but more natural model of stock prices: 
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Figure 2: Geometric Brownian motion process with drift μ, volatility σ, and initial value S_0 in 

difference values 

3.6 Stochastic Differential Equation of the Stock Price 

We are going to assume that the stochastic process that generates stock prices is as follows: 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡                                                     (3.8) 

where 

 μ is the expected return per time unit 

 σ is the standard deviation of return per time unit. 

 𝑊𝑡 represents a Winner process 

One way of looking at Equation (3.8) is that the first term is the deterministic share, while 

the second term is the stochastic or random component. We could assume a number of 

other stochastic processes that would imply different price processes for stocks.  For 

example, a mean reverting process could be written as 

𝑑𝑆𝑡 = 𝜇(100 − 𝑆𝑡)𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡                                      (3.9) 

Here, the assumption is that, as the price moves away from 100, the drift component makes 

the change in price move back toward 100.  
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The assumptions for the equation reflect different assumptions about how stock prices 

move.  As you will see, defining how values change over time is an important part of 

option pricing. 

3.7 Ito's Lemma 

If 𝑥(𝑡) is described by Equation (3.8) and there is another function that depends 

on 𝑥, 𝑦(𝑥, 𝑡), then what is the distribution or the functional form of 𝑦(𝑥, 𝑡) In option 

pricing, we have the option price, 𝑦(𝑥, 𝑡), which depends on the stock price, 𝑥(𝑡).  In order 

to examine this question, we must know the following theorem:  

Ito's Lemma: If 𝑦(𝑡) = 𝑦(𝑥, 𝑡) is a continuous differentiable function of t and twice 

differential in x, and x satisfies Equation 1, then 𝑦(𝑡) satisfies the following stochastic 

differential equation: 

𝑑𝑦 = (𝑦𝑡 + 𝑦𝑥𝑓(𝑥, 𝑡) +
1

2
𝑦𝑥𝑥𝜎2(𝑥, 𝑡)) 𝑑𝑡 + 𝑦𝑥𝜎𝑑𝑊𝑡,                  (3,10) 

where:  

 𝑦𝑡 the first derivative of 𝑦 with respect to time 𝑡 

 𝑦𝑥 the first derivative of 𝑦 with respect to 𝑥, and  

 𝑦𝑥𝑥 the second derivative of 𝑦 with respect to 𝑥.  

The evidence of this suggestion is very difficult and far beyond anything we really need 

for this note.  However, the following examples demonstrate how Ito's Lemma is applied 

and how stochastic differential equations are solved. 
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Examples of Ito’s Lemma  

1. Consider an Ito process𝑦𝑡 =  𝑊𝑡
2 for t  0, where 𝑊𝑡 is a standard Brownian motion.  Find 

𝑑𝑌𝑡  We first identify𝑋𝑡then 𝑓( ) and finally compute 𝑓𝑥 , 𝑓𝑥𝑥, 𝑎𝑛𝑑 𝑓𝑡 in order to use the 

lemma. 

𝛼𝑡 = 0 , 𝜎𝑡 = 1 𝑎𝑛𝑑 𝑋𝑡 = 𝑊𝑡   𝑠𝑜 𝑑𝑋𝑡 = 𝑑𝑊𝑡    

𝑌𝑡 = 𝑓(𝑋𝑡, 𝑡) = 𝑋𝑡
2 𝑎𝑛𝑑 𝑓: ℜ × [0 , 𝑡] → ℜ      ⋁𝑋𝑡 ∈  ℜ,   

then 

𝑓𝑥(𝑋𝑡, 𝑡) = 2𝑋𝑡    𝑓𝑥𝑥(𝑋𝑡, 𝑡) = 2  𝑎𝑛𝑑  𝑓𝑡(𝑋𝑡, 𝑡) = 0,  

and we arrive at 

𝑑𝑌𝑡 = [𝑓𝑥(𝑋𝑡, 𝑡)𝛼𝑡 + 𝑓𝑡(𝑋𝑡, 𝑡) +
1

2
𝑓𝑥𝑥( 𝑋𝑡, 𝑡)𝜎2] 𝑑𝑡 + 𝑓𝑥(𝑋𝑡, 𝑡)𝜎𝑡𝑑𝑊𝑡  

       = [2𝑋𝑡. 0 + 0 +
1

2
2.12] 𝑑𝑡 + 2𝑋𝑡. 1. 𝑑𝑊𝑡 

       = 1. 𝑑𝑡 + 2𝑊𝑡𝑑𝑊𝑡   𝑠𝑖𝑛𝑐𝑒 𝑋𝑡 = 𝑊𝑡. 

So 𝑌𝑡is an Ito process with a drift () of 1 and a diffusion () of 2Wt. 

2. 𝑑𝑋𝑡 =  𝛼𝑑𝑡 +  𝜎𝑑𝑊𝑡an arithmetic Brownian motion, can also be written 

 𝑋𝑡 =  𝛼𝑡 + 𝜎𝑊𝑡(Since  is a constant). Consider a process defined by 𝑆𝑡 = 𝑆0 exp(𝑋𝑡),  

with 𝑆0 > 0  

𝑆𝑡 = 𝑓(𝑋𝑡, 𝑡), where the function f: [0, T]  is defined by 𝑓(𝑋𝑡, 𝑡) = 𝑆0 exp(𝑋𝑡). 

𝑓𝑥 = 𝑆0 exp(𝑋𝑡) ,    𝑓𝑥𝑥 = 𝑆0 exp(𝑋𝑡)   ,    𝑓𝑡 = 0 ,  

𝑑𝑆𝑡 = [𝑆0 exp(𝑋𝑡) . 𝛼 +
1

2
𝑆0 exp(𝑋𝑡) 𝜎2] 𝑑𝑡 + 𝑆0 exp. 𝜎. 𝑑𝑊𝑡 
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𝑑𝑆𝑡 = [(𝛼 +
1

2
. 𝜎2) 𝑆𝑡] 𝑑𝑡 +  𝜎𝑆𝑡𝑑𝑊𝑡 , and we see that S is a geometric Brownian 

motion. Xt is normally distributed so ln(𝑆0) +  𝑋𝑡 is normal with mean ln(𝑆0) +  𝛼𝑡 and 

variance 𝜎2𝑡. The log of S has normal increments so S has lognormal increments. 
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Chapter 4: Constant-Elasticity-of-Variance Model 

Modeling the underlying asset price is very important for solving the option-pricing 

problem. In fact, the price of the option depends essentially on the underlying asset price. 

One of the most important models is the Black-Scholes model because of its simplicity. 

In this chapter, we deal with the Black and Scholes model (F.Black, 1973) and the CEV 

model of (Cox, J.C., and S.A. Ross, 1976). 

4.1 Black and Scholes Model 

The Black-Scholes formula is widely used in practice. However, it has several 

shortcomings. In the next subsection, we present the Black-Scholes model and formula. 

4.1.1 Black-Scholes Formula 

The Black–Scholes model is a mathematical model of a financial market containing 

certain derivative investment instruments. It explains how volatility can be either 

estimated from historical data or implied from option prices using the model. It is widely 

used by options market participants. 

The Black-Sholes model also assumes stocks move in a manner referred to as a random 

walk at any given moment, they are as likely to move up as they are to move down. These 

assumptions are combined with the principle that options pricing should provide no 

immediate gain to either seller or buyer. The Black-Scholes formula: (F.Black, 1973) 

         𝑆𝑛+1 = 𝑆𝑛e
(r−

σ2

2
)∆t+εσ√∆t

                                                           (4.1) 

In Black-Scholes model is principally a formula that is used to calculate option values. 

The Black-Scholes formula consists of three parts. The main equation and two formulas 

for calculating parameters. 

http://en.wikipedia.org/wiki/Financial_market
http://en.wikipedia.org/wiki/Derivative_(finance)
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𝐶(𝑆, 𝑇) = 𝑆Φ(𝑑1) − 𝐾𝑒−𝑟𝑇Φ(𝑑2)                                                   (4.2) 

This part of the Black-Scholes formula tells us that the price of a European-style call 

option with expiration date in time T written on stock S is equal to the price of the stock 

adjusted for volatility, interest rate, and spread minus present value of the stock delivery 

price (or a strike price) also adjusted for volatility, interest rate, and spread. 

The parameters 𝑑1 and 𝑑2 in the Black-Scholes formula can be calculated the following 

way: 

𝑑1 = (ln (
𝑆

𝐾
) + (𝑟 +

𝜎2

2
) 𝑇) / 𝜎√𝑇 

𝑑2 = 𝑑1 − 𝜎√𝑇 

The d1 and d2 are parameters to the Φ in the first equation. (D.M.Kereps, 1979)  

Phi represents a cumulative distribution function of Normal distribution. In layman terms, 

we calculate the parameters d1 and d2 and look up a corresponding tabularized value in a 

book, and then we plug those values back into the first formula. The Black-Scholes 

formula for a European-style put option is very similar to the Black-Scholes formula for 

a call option. It is the following: 

𝑃(𝑆, 𝑇) = 𝐾𝑒−𝑟𝑇Φ(−𝑑2) − 𝑆Φ(−𝑑1)                                           (4.3) 

This Black-Scholes formula tells us that a value of a put option can be calculated as a 

present value of the stock delivery price minus the price of the stock, both adjusted for 

volatility, interest rate, and spread. 

4.1.2 Black-Scholes Formula Calculation Example 

The Black-Scholes formula is used to calculate the value of an option. We can demonstrate 

the working of the Black-Scholes formula on an example. 
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Let us assume that the current price of shares of company XYZ is $100 and you would 

like to get an option to purchase one share of XYZ company stock for $95. The option 

expires in three months. We also assume that the stock pays no dividends. The standard 

deviation of the stock’s returns is 50% per year, and the risk-free rate is 10% per year, we 

can calculate the value of the option as follows: 

𝑑1 =  [𝑙𝑛 ($100/$95)  +  (0.10 +  0.25/2)  ∗  0.25]/ 0.50 ∗  √0.25 =  0.43 

𝑑2 =  0.43 −  0.50 ∗  √0.25 =  0.18 

𝑁(0.43)  =  0.6664 

𝑁(0.18)  =  0.5714 

Plugging these parameters into the formula, we get: 

𝐶(𝑆, 𝑇)  =  $100 ∗  0.6664 −  $95 ∗  𝑒 − (0.10 ∗  0.25)  ∗  0.5714 

=  66.64 −  52.94 =  $13.70 

You can go to our Black-Scholes formula option value on-line calculator page to run some 

calculations and verify this result. 

This Black Scholes formula is used to evaluate a call option. It can be used as a price 

sticker’s technique, to evaluate it we can count it from scratch similar to the previous 

action using the (PST) model put or reevaluate the Black – Scholes model – Using the call 

parity technique to evaluate the put option value. (P.Protter, 1990) . This put – call parity 

will solved as given in the equation as the following example  

𝑃(𝑆, 𝑇)  =  𝐶(𝑆, 𝑇)  +  𝐵(𝑇)  −  𝑆(𝑇)  =  𝐶(𝑆, 𝑇)  +  𝑋 ∗  𝑒^(−𝑟𝑇)   −  𝑆(𝑇)  

=  $13.70 +  $95 ∗  𝑒^ − (0.10 ∗  0.25)  −  $100 =  $6.35 

http://www.maxi-pedia.com/Black+Scholes+formula+option+value+calculator
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4.1.3 Black-Scholes Model Work in the Real World. 

The Black-Scholes model is a mathematical model based on the notion that prices of stock 

follow a stochastic process. This model was developed by Fischer Black and Myron 

Scholes in 1973 (M.Schroder, 1989). Robert Merton also participated in the model's 

creation; hence that is why the model is sometimes referred to as the Black-Scholes-

Merton model. In addition to that, it is a mathematical model of a financial market 

containing certain derivative instruments that explains how volatility can be either 

estimated from historical data or implied from option prices using the model. 

4.1.4 The Assumptions behind the Black-Scholes Model 

There are several assumptions underlying the Black-Scholes model. One of these 

assumptions is constant volatility which is a measure of how much a stock can be expected 

to move in the near-term, is a constant overtime (F.Black, 1973) . 

The Black-Scholes model assumes stocks move in a manner referred to as a random walk. 

Furthermore, interest rates constant and known is another assumption through which the 

Black-Scholes model uses the risk-free rate to represent this constant and known rate. 

Moreover, the Black-Scholes model assumes that returns on the underlying stock are 

normally distributed and it also assumes European-style options which can only be 

exercised on the expiration date. American-style options can be exercised at any time 

during the life of the option, making American options more valuable due to their greater 

flexibility.  

4.2 Numerical Methods for Stochastic Differential Equation  

This section is based on chapter 6 from (Hirsa, 2013). 

Let (𝑋𝑡)0≤𝑡≤𝑇be a stochastic process that satisfied the following SDE: 
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𝑑𝑋𝑡 = 𝑎 (𝑋𝑡, 𝑡)𝑑𝑡 + 𝑏 (𝑋𝑡, 𝑡) 𝑑𝑊𝑡, 

𝑎 and 𝑏 are drift and the diffusion coefficient respectively. The assumption is that 𝜇 and 

𝜎 are defined and measurable.  

The Itˆo Taylor expansion is  

𝑋𝑡 = 𝑋𝑡0
+  𝜇 (𝑋𝑡0

) ∫ 𝑑𝑠
𝑡

𝑡0

+  𝜎(𝑋𝑡0
) ∫ 𝑑𝑊(𝑠) +

1

2
 𝜎(𝑋𝑡0

)
𝑡

𝑡0

𝜎/(𝑋𝑡0
)([𝑊(𝑡) − 𝑊(𝑡0)]2 − (𝑡 − 𝑡0))

+ 𝑅,                                                                                                                   (4.4 ) 

where 𝑅 is the remainder .  

When we simulate an SDE we generate samples of the discretized vision of SDE at a 

finite number of points  

                                                         𝑋∆𝑡 , 𝑋2∆𝑡, … , 𝑋𝑚∆𝑡 ,                                                          (4.5) 

where m is the number of time steps and ∆𝑡 is the time step assuming equidistant 

subintervals, ∆𝑡 =
𝑇−0 

𝑚
 . To write it more formally  

𝑋𝑡1
 , 𝑋𝑡2

, … , 𝑋𝑡𝑗
, … . , 𝑋𝑡𝑚

 ,  

where  𝑡𝑗 =𝑡0 + 𝑗∆𝑡 = 𝑗∆𝑡  for𝑗 = 1, 2 , … … , 𝑚 . As ∆𝑡  approaches zero, our discretized 

path will converge toward the theoretical continuous – time path. For the interval [𝑡𝑗  , 𝑡𝑖+1] 

, by choosing  

𝑡0 = 𝑡𝑗  ,  

𝑡 =  𝑡𝑗+1 

∆𝑡 = 𝑡𝑗+1 −  𝑡𝑗 

∆𝑊𝑗 = 𝑊(𝑡𝑗+1) − 𝑊(𝑡𝑗) 
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We get the following expression for (4.4)  

𝑋𝑡𝑗+1
= 𝑋𝑡𝑗

+ 𝜇 (𝑋𝑡𝑗
) ∆𝑡 + 𝜎 (𝑋𝑡𝑗

) ∆𝑊𝑗 +
1

2
𝜎 (𝑋𝑡𝑗

) 𝜎/ (𝑋𝑡𝑗
) ((∆𝑊𝑗)

2
− ∆𝑡) + 𝑅 (4.6) 

There are various schemes for simulating SDEs of this form, and the most common ones 

are 

 Euler scheme 

 Milstein scheme 

 Range – Kurta scheme  

4.2.1 Euler Scheme 

The Euler scheme is the simplest discretization scheme a variable for discrediting SDEs. 

Keeping the first three terms in equation (4.6) gives us the explicit Euler method 

𝑋𝑡𝑗+1
= 𝑋𝑡𝑗

+ 𝜇 (𝑋𝑡𝑗
,  𝑡𝑗) ∆𝑡 + 𝜎 (𝑋𝑡𝑗

,  𝑡𝑗) ∆𝑊𝑗 

=  𝑋𝑡𝑗
+ 𝜇 (𝑋𝑡𝑗

,  𝑡𝑗) ∆𝑡 + 𝜎 (𝑋𝑡𝑗
,  𝑡𝑗) √∆𝑡𝑍𝑗  

4.2.2 Milstein Scheme 

The Milstein scheme improves upon the Euler discretization by adding a second diffusion 

term, expanding the diffusion term to 𝑂(∆𝑡). This method is obtained by simply keeping 

all terms of 𝑂(∆𝑡) in equation (4.6), that is  

𝑋𝑡𝑗+1
= 𝑋𝑡𝑗

+ 𝜇 (𝑋𝑡𝑗
, 𝑡𝑗) ∆𝑡 + 𝜎 (𝑋𝑡𝑗

, 𝑡𝑗) ∆𝑊𝑗 +
1

2
𝜎 (𝑋𝑡𝑗

) 𝜎/ (𝑋𝑡𝑗
) ((∆𝑊𝑗)

2
− ∆𝑡) 

So while the Milstein scheme has a higher order in discretization, it requires knowing that 

the first derivative of the volatility functions.  



   23 

 

 

 

4.2.3 Range – Kurta Scheme  

While the Milstein scheme improves on the accuracy of the Euler scheme, it requires both 

knowledge of the first derivative of the volatility function, which may not be available at 

all or may be expensive to compute. The Range – Kurta scheme allows to avoid using the 

first derivative of the volatility function, by using the Range – Kurta approximation.   

We have the following Range – Kurta scheme  

�̂�𝑖 = 𝑋𝑖 + 𝜇(𝑋𝑖)∆𝑡 + 𝜎(𝑋𝑖)√∆𝑡 

𝑋𝑖+1 = 𝑋𝑖 + 𝜇(𝑋𝑖)∆𝑡 + 𝜎(𝑋𝑖)∆𝑊𝑖 +
1

2√∆𝑡
[𝜎(�̂�𝑖) − 𝜎(𝑋𝑖)]((∆𝑊𝑖)

2 − ∆𝑡) 

4.3 Simulation of the Black-Scholes Model 

The Brownian motion model states that the value S of a security follows the stochastic 

process 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 

The Exact solution of Black and Scholes model is: 

𝑆𝑡 = 𝑆0𝑒
[ (𝑟− 

𝜎2

2
)𝑡+𝜎𝑊(𝑡)] 

 

Euler-Maruyama method For 𝑛 = 0 , 1, 2, … . , 𝑁 − 1 

𝑆𝑛+1 = 𝜇𝑆𝑛𝑑𝑡 + 𝜎𝑆𝑛∆𝑊𝑛   
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Figure 3: Geometric Brownian motion and Euler method 

4.4 Figures of EM Approximation and Exact Solution  

 

 

 

 

 

 

 

 

 

         Figure 4: The effect of increasing the step size in the Euler-Maruyama method 

 

 

 

 

 

                                  Figure 5: Black-Scholes Model in different prices 
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4.5 CEV Model 

4.5.1 Introduction 

As before the CEV model has won an important attention because it allows the price 

change of stock goes back to be time change to mend the product that the present price 

change based on the present product prices and not on the chosen differences. 

The standard CEV model assumes that share price 𝑆𝑡is a solution to the following SDE: 

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 +  𝜎𝑆𝑡

𝛽

2𝑑𝑊𝑡                                                                  (4.4) 

Where r,  𝛽, 𝜎 are constant and with initial condition 𝑊0= 0. The CEV diffusion process has two 

volatility related parameters, the volatility coefficient 𝜎, and the elasticity of variance β, which is 

assumed to be time-invariant. Looking at (4.4), we can observe that the GBM process assumed by 

Black and Scholes is a special case of the CEV process. In particular, if β = 2, the process is 

equivalent to the lognormal diffusion and continuously compounded returns will follow a 

stationary normal distribution. Cox considers the cases where β <2, and (D.C.Emacuel, 

J.D.MacBeth, 1982) have extended the model to price options for those cases where β >2. As a 

result, the option price over an underlying asset whose price is a solution to the SDE (4.4) is known 

for any value of β. 

4.5.2 The CEV Evolution Process of Share Prices 

CEV model has increased considerable attention because it licenses the volatility of stock 

revenues to be time-varying but still keeps the property that the present volatility depends 

only on the current stock price and not on any other random variable. There are also some 

other advantageous structures of the model that has prepared it famous. First, if stock 

prices follow a CEV process with β < 2, then we have an inverse relationship between the 

stock price and the variance of the stock’s instantaneous rate of return. Thus, for a CEV 
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process with β < 2, the instantaneous variance of stock returns decreases as stock price 

increases. This is consistent with an empirical observation that the volatility of stock 

returns has an inverse relation with stock prices. For the Black-Scholes case with β = 2. 

For the CEV process with β > 2, the relationship between the instantaneous variance of 

stock returns and stock price is positive. This is again not consistent with the empirical 

findings. 

4.5.3 The Exact Solution of CEV Option Pricing Model 

When < 2 , the no dividend-paying CEV call pricing formula is as follows: (Schroder, 

1989) 

 

 

When𝛽 > 2, the CEV call pricing formula is as follows: 
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C is the call price; S, the stock price;  , the time to maturity; r, the risk-free rate of interest; 

K, the strike price; and  and 𝛿, the parameters of the formula. 

4.5.4 Simulation Method for CEV 

In the case of GBM, where the share price 𝑆𝑇 could be written as a function of a standard 

normal variable, using Mathematica we could simulate the time series {St} directly. In 

order to simulate the time series{𝑆𝑡}, it will be necessary to compute an approximate 

solution of the continuous time SDE (4.4). This method discretizes the continuous time 

SDE to: 

𝑆𝑡𝑖
− 𝑆𝑡𝑖−1

≈ 𝜇𝑆𝑡𝑖−1
(𝑡𝑖 − 𝑡𝑖−1) + 𝜎𝑆𝑡𝑖−1

𝛽

2 (𝑊𝑡𝑖
− 𝑊𝑡𝑖−1

) ,                    (4.5) 

where the interval of interest [t, T] is divided into n subintervals: 

𝑡 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑖 < ⋯ < 𝑡𝑛−1 < 𝑡𝑛 = 𝑇 

It not necessarily of equal length. We can rewrite the Brownian motion increment 𝑊𝑡𝑖
−

𝑊𝑡𝑖−1
 from (4.10) in terms of the standard normal variable using the following property 

of Brownian motion: 

𝑊𝑡𝑖
− 𝑊𝑡𝑖−1

~𝑁(0 , 𝑡𝑖 − 𝑡𝑖−1)  

The above property implies that: 

𝑊𝑡𝑖
− 𝑊𝑡𝑖−1

= √𝑡𝑖 − 𝑡𝑖−1𝑍𝑖 
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Where𝑍𝑖 are independent 𝑁(0,1) variables, and the relationship between the share prices 

at time. 

𝑡𝑖and the share price at time 𝑡𝑖−1can be written as: 

𝑆𝑡𝑖
≈: 𝑆𝑡𝑖−1

+ 𝑟𝑆𝑡𝑖−1
∆𝑖 + 𝜎𝑆𝑡𝑖−1

𝛽

2 √∆𝑖𝑍𝑖                                           (4.6) 

For𝑖 =  1,2, . . . , 𝑛, where ∆𝑖= 𝑡𝑖 − 𝑡𝑖−1  for any𝑡𝑖 > 𝑡𝑖−1. To sum up, using this Euler 

scheme, an individual share price at a particular period can be computed by first 

calculating the share price from the last period. 

 

 

 

 

Figure 6: Realization of CEV share prices with CEV parameter β=0.67 and additional parameters 

S_t=$7.753, ∆τ=5 years, μ=0.1, σ=1.2 and n=1250 subintervals 

4.5.5 The CEV Option Pricing Model 

The formula for the price of a European option over a stock whose share price evolves 

according to the SDE can be developed using the risk-neutral pricing. The risk-neutral 

method is appropriate because the CEV option pricing formula is derived independently 

of investor risk preferences. Recall that the value of a European call option at t is: 

𝐶𝑡 = 𝐸𝑡[𝑚𝑎𝑥(𝑆𝑇 − 𝐾)𝑒−𝑟𝑡] 
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where the discounting is performed using the risk-free rate r, and E is an expectation 

operator taken in a risk-neutral world, in which the underlying stock price evolves 

according to the following risk-neutral CEV process: 

𝑑𝑆𝑡
∗ = 𝑟𝑆𝑡

∗𝑑𝑡 +  𝜎𝑆𝑡

∗ 
𝛽

2𝑑𝑊𝑡
∗ 

subject to the initial condition 𝑆𝑡
∗= 𝑆𝑡 

To obtain the pricing formula, we need to determine the resulting distribution of the stock 

price at the option’s payoff date, and derive the form of 𝐸𝑡[𝑚𝑎𝑥(𝑆𝑇 − 𝐾)]. 

However this is not as easy as seen in the Black-Scholes case. An excellent detailed 

description of the procedure can be found in Randal (1998). The pricing formula for a 

European call option whose underlying asset’s price evolves according to the SDE.  

  

Figure 7: European call and put option prices under CEV processes 
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Chapter 5: Constant-Elasticity-of-Variance Model during High Volatile 

Periods 

A model that describes perfectly the behavior of a financial asset price does not exist. New 

model or improvement of the existing uses the stylized facts: A stylized fact is a term used 

in economics to refer to empirical findings that are so consistent that they are accepted as 

truth. We suggest a modified CEV model that has an increased volatility.  

Is the suggested model an improvement? 

Apparently, yes, since the suggested model satisfies the stylized fact: during crisis, the 

volatility increases. 

How to solve the option-pricing problem? 

 In this work, we use Monte Carlo method to find a numerical solution. 

5.1The CEV High Volatility Model 

As in the Black-Scholes and the CEV model, we assume that the market is living in a 

probability space (Ω, 𝐹, 𝑃), 𝑊𝑡 is a standard Brownian motion, 𝐹 = 𝐹𝑇 where (𝐹𝑡) is the 

filtration generated by the Brownian motion. We add an additional constant parameter 𝛾 

that designates the increase in the volatility during a financial crisis. The market has two 

assets. The risk-free asset price is following:  

𝑑𝐴𝑡 = 𝑟𝐴𝑡𝑑𝑡,      𝑡 ∈ [0, 𝑇],   𝐴0 = 1 

The price of the risky asset𝑆𝑡 under the risk-neutral probability is driven by the following 

SDE: 

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + (𝜎𝑆𝑡

𝛽

2 + 𝛾) 𝑑𝑊𝑡, 𝑡 ∈ [0, 𝑇], 𝑆0 = 𝑥 > 0      
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Here 𝑟, 𝛽, 𝜎 and 𝛾 are all constant. 𝛾 is a new parameter related to the increase in the 

volatility.  

Using the risk-neutral valuation, one can see that the price of the European call option 

with strike 𝐶 is  

𝐶 = 𝐸[𝑚𝑎𝑥(𝑆𝑇 − 𝐾, 0)]𝑒−𝑟𝑇 

The above expected value is under the risk-neutral probability.  

5.2 The Numerical Solution for in CEV Model with High Volatility 

We assume that the stock price 𝑆𝑡 is driven by the stochastic differential equation (SDE) 

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + ( 𝜎𝑆𝑡
𝛽/2

+ 𝛾)𝑑𝑊𝑡  , 𝑆0 > 0,                                           (5.8) 

where 𝑊𝑡  is Brownian motion. We simulate 𝑆𝑡  over the time interval [0, 𝑇], which we 

assume to be is discretized as 0 =  𝑡1 < 𝑡2 < ⋯  < 𝑡𝑚  =  𝑇, where the time increments 

are equally spaced with width𝑑𝑡: Equally-spaced time increments is primarily used for 

notational convenience, because it allows us to write 𝑡𝑖 –  𝑡𝑖−1 as simply𝑑𝑡. 

A discrete model for change in the price of a stock over a time interval [0, T] is  

𝑆𝑛+1 = 𝑆𝑛 + 𝑟𝑆𝑛∆𝑡 + (𝜎(𝑆𝑛)
𝛽

2 + 𝛾) ∆𝑊𝑡,                   𝑆0 = 𝑠                    (5.9) 

∆𝑊𝑡~𝑁(0 , √∆𝑡) 𝑜𝑟  √∆𝑡 𝑁(0 ,1 ),                                          (5.10) 

where 𝑆𝑛  =  𝑆𝑡𝑛
 is the stock price at time 𝑡𝑛 =  𝑛∆𝑡,𝑛 =  0,1, . . . , 𝑁 − 1, ∆𝑡 =  𝑇/𝑁 is 

the annual growth rate of the stock, and σ is a measure of the stocks annual price volatility. 

Highly volatile stocks have large values of σ. 
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5.3 Simulation Monte Carlo Method of the Option Price 

We then find numerical solution for using Monte Carlo method. The price 𝑆𝑇  can be 

obtained by applying the Euler scheme techniques for the stochastic differential equation. 

After, we compute the payoff= 𝑚𝑎𝑥(𝑆𝑇 − 𝐾, 0).  

The next step is to compute the mean of the resulting payoffs. Finally we estimate the 

price of the option by discounting the mean of the payoff at the risk-free rate.  

 An ensemble 

{𝑆𝑁
(𝑙)

= 𝑆𝑙(𝑇), 𝑙 = 1, … . , 𝑀} 

of M stock prices at expiration is generated using the difference equation 

𝑆𝑛+1
(𝑙)

= 𝑆𝑛
(𝑙)

+ 𝑟𝑆𝑛
(𝑙)

∆𝑡 + (𝜎(𝑆𝑛
(𝑘)

)

𝛽

2
+ 𝛾) ∆𝑊𝑡, 

𝑛 = 1                       𝑆1
(𝑙)

= 𝑆0
(𝑙)

+ 𝑟𝑆0
(𝑙)

+ (𝜎(𝑆0
(𝑙)

)

𝛽

2
+ 𝛾) √∆𝑡 𝑁(0, 1) 

𝑛 = 2                         𝑆2
(𝑙)

= 𝑆1
(𝑙)

+  𝑟𝑆1
(𝑙)

∆𝑡 + (𝜎 𝜎(𝑆1
(𝑙)

)

𝛽

2
+ 𝛾) √∆𝑡 𝑁(0 ,1 ) 

……………… 

𝑛 = 𝑁                        𝑆𝑁
(𝑙)

= 𝑆𝑁−1
(𝑙)

+ 𝑟𝑆𝑁−1
(𝑙)

∆𝑡 + (𝜎(𝑆𝑁−1
(𝑙)

)

𝛽

2
+ 𝛾) √∆𝑡 𝑁(0 ,1 ) 

Consider the European call, whose value at expiration time 𝑇 is 𝑚𝑎𝑥{𝑆𝑇 − 𝐾, 0}, where 

𝑆𝑡is the price of the underlying stock and 𝐾 is the strike price.  
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Now, the price of the option under the CEV model with high volatility model by using 

Monte Carlo method  

𝐶(𝑆0, 𝑇) =  𝑒−𝑟𝑇𝐸(𝑚𝑎𝑥{𝑆𝑇 − 𝐾, 0}) ≈ 𝑒−𝑟𝑇 ∑
(𝑆𝑇(𝑙) − 𝐾)

𝑀

𝑀

𝑙=1

 

5.4 Results and Findings  

By using Mathematica, it is very easy to create a sequence of random number. With this 

sequence, the equation (5.9)can then be used to simulate a sample path or trajectory of 

stock prices, {𝑆0, 𝑆1, 𝑆2, . . . , 𝑆𝑁}. For our purpose here, it has been shown as a relatively 

accurate method of pricing options and very useful for options that depend on paths. 

5.4.1 Observation of the High Volatility from the Suggested High Volatility Model  

The following figures show clearly that our suggested model takes into account the high 

volatility periods. Actually, when gamma=0, the range of the asset price is [4:6] (figure 

1), while when gamma=0.5 the volatility increases and the range of the asset price is [3:8]. 

If we take gamma=1, the volatility is increased and the asse1t price has values between 2 

and 9.  



   34 

 

 

 

 

Figure 8: Asset Price in the normal CEV model with r = 0.04; sig = 0.2; bet = 0.7; gam = 0 

 

 

Figure 9: Asset Price in CEV with high volatility model (beta = 0.7, gamma= 0.5) 
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Figure 10: Asset Price in CEV with high volatility model (beta = 0.7, gamma= 1) 
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5.4.2 Comparison between the Options Price for the CEV and CEV High Volatile 

Models  

The figure below shows that the price of European option under the CEV high volatile 

model (the line) is almost equal to the price of the CEV standard model (the dotes). 

However, when the strike is higher than the spot, the option price for the high volatile 

model is more expensive that the option price of the regular CEV model.     

 

Figure 11: Compare between the option price in CEV model and CEV model volatile model 
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5.4.3 Observation of the Leverage effect from the suggested high 

The suggested model conserves the leverage effect stylized fact. In fact the figure below 

shows clearly the inverse proportional relation between the underlying asset price (up) 

and its volatility (down).  

 

 

 

 

 

 

Figure 12: Relation between the underlying asset price (up) and its volatility (down) 
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Chapter 6: Conclusion 

This thesis suggests a new model that generalizes the CEV model. The thesis provides 

numerical solutions for the probabilistic expression of the European option price under 

the modified CEV model.  

After an introduction to financial derivatives in general and options in particular, the 

reader cand find an elementary introduction to the stochastic calculus and to the options 

pricing theory. Then we deal with the Black & Scholes and the CEV models. A simulation 

of the SDE of the underlying asset prices is conducted for the two models. We provide 

several illustrations for the trajectory of the underlying asset price. They are favorable to 

the suggested model. In addition, we compare the asset price trajectory and the volatility 

of the modified model. The comparaison shows clearly that the suggested model accounts 

for the leverage effect.  

Moreover, the price of a European option under the modified CEV model is obtained using 

Monte Carlo methods. Numerical reuslts for the option prices under the CEV and the high 

volatile models are obtained. They confirm the presence of an increased volatility in the 

modified CEV model.  

The suggested model can be seen as an improved version of the CEV model, since it 

conservs its advantages (for instance, stochastic volatility and leverage effect). However, 

as a future direction of research, we need to calibrate the model so that it can be used in 

practice.  
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Appendix 

Mathematica code of CEV high volatile model  

r = 0.04; sig = 0.2; bet = 0.7; gam = 0.5; 

T = 1; (* Maturity time*) 

NN = 1000; (*number of samples in a path from t=0 to T*) 

h = T/NN; (* Time step size *) 

KK = 100;(*number of paths to generate*) 

(*define strike price *) 

strikeprices = Table[2 + i 0.5, {i, 0, 12}]; 

CallPrices = Table[, {i, 0, 12}]; 

For[strikepriceindex = 1, strikepriceindex <= Length[strikeprices], 

strikeprice = strikeprices[[strikepriceindex]]; 

SS = {}; 

For[k = 1, k <= KK, (* begin of path*) 

S = {5}; 

(* generating 1001 independent normally distributed values Z_ 0, 

Z_ 1, .... Z_1000 *) 

U1 = RandomReal[1, 1001]; U2 = RandomReal[1, 1001]; 

R = -2 Log[U1]; V = 2 Pi U2; 

Z = Sqrt[R] Cos[V]; 

(*For[i=1,i<=NN,temp=S[[i]](1+r h)+(sig S[[i]]^bet+gam)RandomReal[ 

NormalDistribution[0,h]];*) 

For[i = 1, i <= NN, 
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temp = S[[i]] (1 + r h) + (sig S[[i]]^bet + gam) Sqrt[h] Z[[i]]; 

S = Join[S, {temp}]; 

i++]; 

SS = Join[SS, {S}]; 

k++]; \[AliasDelimiter] 

priceatmaturity = Table[, {index, 1, KK}]; 

For[index = 1, index <= KK, 

priceatmaturity[[index]] = SS[[index]][[Length[S]]]; index++]; 

CallPrices[[ 

strikepriceindex]] = (Sum[ 

Max[priceatmaturity[[index]] - strikeprice, 0], {index, 1, 

KK}]/KK) Exp[-r T]; 

Print["For strikeprice = ", strikeprice, 

" the  Call Price at Maturity is ", 

CallPrices[[strikepriceindex]]]; 

strikepriceindex++; 

];(* end of path*) 

ListPlot[ 

Table[{strikeprices[[in]], CallPrices[[in]]}, {in, 1, 

Length[strikeprices]}], Joined -> True] 

  ---------------------------------------------------------------------------------------------------- 
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Mathematica code of graph of CEV model with high volatile model  

ListPlot[{Table[{strikeprices[[in]],CallPricese[[in]]},{in,1,Length[strikeprices]}], 

Table[{strikeprices[[in]],CallPricesm[[in]]},{in,1,Length[strikeprices]}]} 

,Frame-> True,FrameLabel->{{C,},{"Strike Price (K)","Call Price versus Strike 

Price"}}] 

------------------------------------------------------------------------------------------------------ 
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