
United Arab Emirates University
Scholarworks@UAEU

Dissertations Electronic Theses and Dissertations

Summer 5-2014

COMMUNITY DETECTION AND
INFLUENCE MAXIMIZATION IN ONLINE
SOCIAL NETWORKS
Kanna Gharib Al-Falahi

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/all_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarworks@UAEU. It has been accepted
for inclusion in Dissertations by an authorized administrator of Scholarworks@UAEU. For more information, please contact fadl.musa@uaeu.ac.ae.

Recommended Citation
Al-Falahi, Kanna Gharib, "COMMUNITY DETECTION AND INFLUENCE MAXIMIZATION IN ONLINE SOCIAL
NETWORKS" (2014). Dissertations. 35.
https://scholarworks.uaeu.ac.ae/all_dissertations/35

https://scholarworks.uaeu.ac.ae?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_dissertations?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/etds?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_dissertations?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_dissertations/35?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fadl.musa@uaeu.ac.ae


United Arab Emirates University

College of Information Technology

COMMUNITY DETECTION AND

INFLUENCE MAXIMIZATION IN ONLINE

SOCIAL NETWORKS

Kanna Gharib Al-Falahi

This dissertation is submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

Under the direction of Dr. Yacine Atif

May 2014



DECLARATION OF ORIGINAL WORK

I, Kanna Gharib Al-Falahi, the undersigned, a graduate student at the United

Arab Emirates University (UAEU) and the author of the dissertation entitled “Com-

munity Detection and Influence Maximization in Online Social Networks”, hereby

solemnly declare that this dissertation is an original research work done and pre-

pared by me under the guidance of Dr. Yacine Atif, in the College of Information

Technology at UAEU. This work has not been previously formed as the basis for

the award of any academic degree, diploma or similar title at this or any other uni-

versity. The materials borrowed from other sources and included in my dissertation

have been properly cited and acknowledged.

Student’s Signature: ...................................... Date: ............................



Copyright © 2014 by Kanna Al-Falahi

All Rights Reserved



ABSTRACT

The detecting and clustering of data and users into communities on the

social web are important and complex issues in order to develop smart marketing

models in changing and evolving social ecosystems. These marketing models are

created by individual decision to purchase a product and are influenced by friends

and acquaintances. This leads to novel marketing models, which view users as

members of online social network communities, rather than the traditional view of

marketing to individuals.

This thesis starts by examining models that detect communities in online

social networks. Then an enhanced approach to detect community which clusters

similar nodes together is suggested. Social relationships play an important role

in determining user behavior. For example, a user might purchase a product that

his/her friend recently bought. Such a phenomenon is called social influence and

is used to study how far the action of one user can affect the behaviors of others.

Then an original metric used to compute the influential power of social network

users based on logs of common actions in order to infer a probabilistic influence

propagation model. Finally, a combined community detection algorithm and sug-

gested influence propagation approach reveals a new influence maximization model

by identifying and using the most influential users within their communities. In do-

ing so, we employed a fuzzy logic based technique to determine the key users who

drive this influence in their communities and diffuse a certain behavior. This orig-

inal approach contrasts with previous influence propagation models, which did not

use similarity opportunities among members of communities to maximize influence

propagation. The performance results show that the model activates a higher num-

ber of overall nodes in contemporary social networks, starting from a smaller set

of key users, as compared to existing landmark approaches which influence fewer

nodes, yet employ a larger set of key users.

Keywords: Social networks, community detection, social influence, influence max-

imization, influence metrics, fuzzy logic.
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Chapter 1

Introduction

During the past decade, social networks have increased dramatically along with

rapid developments in Web 2.0 applications. Millions of people participate in social

networks such as Facebook, Twitter and MySpace. Facebook in particular, accumu-

lated more than 1 billion active user in 20121. As the number of users increases,

the complexity induced when evaluating social networks increases too. Moreover,

the bewildering number of options, which are continuously expanding the scope of

these networks across social, business2 and even governmental3 spaces, sparked the

need for criteria or measures to understand the current and future prospects for so-

cial networks [4]. However these networks tend to be large and complex. Therefore

to understand and summarize whole network properties, there is an evolving need

to harness this complexity by organizing the network into communities. This rising

online organization has revealed the power of social influence in today’s viral mar-

keting campaigns. In recent years, the study of influence propagation has gained a

lot of attention in both academic and business contexts to maximize the number of

users who follow a particular action, behavior or product.
1One Billion People on Facebook, Facebook NewsRoom,

https://newsroom.fb.com/news/2012/10/one-billion-people-on-facebook/ (accessed April 20,
2014)

2Dell Outlet, Twitter, http://twitter.com/delloutlet (accessed April 20, 2014)
3Barack Obama, Facebook, http://www.facebook.com/barackobama (accessed April 20, 2014)

1



2

1.1 Motivation

Network science, which arguably had its beginnings in the 1700s with Euler’s

‘Seven Bridges of Knigsberg’ [5], has passed through a number of stages, including

the appearance of graph theory [6], the sociogram (i.e. graphical representation of

social links), and the advent of social network analysis [7], culminating in the recent

boom and solidification as a discipline. Just after, some of the most important re-

cent innovations, such as the development of scale-free networks [8], the first social

networking sites started to appear [9], and within less than a decade, Facebook had

51% of the world’s online population as active users [10].

Social networks are essentially built by groups of people who share similar

interests, backgrounds and activities. In social networks, people can communicate

with each other in many ways. They can share and upload profiles with images,

videos and texts. Social networks consist of nodes that are considered as the actors

of the network. These nodes might represent a user, a company, etc. The nodes are

interlinked through connections, which represent the relationships between them as

friendship, partnership, etc. The cardinality of nodes expands dynamically, espe-

cially on the web, as new nodes and profiles are created continuously, while further

populating the social web [11]. Social web is based on a set of relations that connect

people through the World Wide Web. Hubs are one social network phenomena, de-

fined simply by nodes that have a large number of links [12]. An example for a hub

would be a Facebook page with many incoming links. Figure 1.1 shows a graphic

view of a typical social network involving profiles and web objects with a typical

hub node. Such hub nodes are influential in spreading trends across social networks,

due to the high number of connections they have.
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Figure 1.1: Social Graph

Social networks have gained significant importance due to their great im-

pact on people’s everyday lives. We increasingly rely on recommendations and

influence from friends and acquaintances to choose the best products to buy. Nowa-

days, people generally depend on the Internet to make decisions. However, the In-

ternet alone cannot provide users with sufficient support for their decision-making

processes as it contains a wide number of products and services to choose from. The

current online social structure is paving the way for social networks to take a pivotal

role in generating recommendations, based on social influence, and recommender

systems integration [13]. These trends are expected to promote new intuitions and

observations that would not have been achieved through traditional recommenda-

tions. Moreover, the need for an effective approach to maximize the number of

individuals who will adopt a recommended product is soaring as businesses com-

pete to find innovative viral marketing strategies to advertise their products with

minimal effort and small budgets. When it comes to merchants, the immediate and

tangible economic benefits of a successful recommendation is expressed in terms

of increasing sales and creating revenue. On the other hand, when it comes to users

(i.e. potential buyers), nowadays, they are often overwhelmed with a multitude of

choices and options in their online business experiences, while at the same time

they have limited resources and free time to invest in the selection process. Finding

an accurate and cost-effective solution to address these challenges will increase the
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precision and efficiency of viral marketing over traditional means of propagating

marketing campaigns for products and services.

We can illustrate the adoption process for products in a social context

through the following scenario. Assume Ahmed wants to go to the cinema with

his friend Saeed. But they do not know which movie to watch, knowing only that

Saeed does not like action movies. They start to ask their friends online using Face-

book or Twitter. A very close friend of Ahmed (trusted by Ahmed), Mohammed,

sends his recommendation to watch ‘Les Misérables’ as he just saw it in the theater

last week and he thinks the movie has a really good story to tell. Mohammed was

probably influenced by other friends about this movie. Saeed’s friends also may

recommend movies too. Based on the most suitable level of influence from friends

and their positive opinions, that also fit with Ahmed and Saeed’s preferences they

determine to watch ‘Les Misérables’.

In the example above we can see that there are different aspects that en-

courage people to accept (i.e. adopt) a recommended product. Such as the strength

of a relationship or the level of trust between people in the social network. This

affinity between people reveals the power of community structures in matching in-

dividual behaviors to actions.

In this thesis, we investigate community detection solutions that support

social influence. In doing so, we look into online social networks to find sets of

influential and important users (seed sets), who are interested in a product, to the

point that they will provide a positive review and recommend it to their friends.

Then, their friends will embrace the product (given the influential power of the

recommenders) and will also recommend it to their friends, and so on. We want to

build an influential system that will increase the possibility of recommending and

adopting products initiated form a small set of important (or influential) users in

contemporary online social networks. Our proposal aims also to solve the famous

‘cold start’ problem, faced by companies when starting a marketing campaign. A

set of active and influential users can propagate the adoption of a new product. This
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seed set of active users will maximize word-of-mouth recommendations as they

have high connections and influential power.

Traditional recommender systems [14, 15, 16, 17, 18, 19, 20, 21, 22] do

not take the social relationships between users into consideration even though stud-

ies measuring the importance of social influence have been conducted [23, 24].

One chapter [25] provides a detailed study of traditional and current recommender

systems as well as the challenges they face. When friends tend to recommend prod-

ucts, other friends will accept these recommendations most of the time, as they trust

each other. Businesses which adopted social influence in their marketing campaigns

were successful. For example, Hotmail used social influence to achieve 12 million

subscribers in just 18 months with a marketing budget of only $50,000. Hotmail

spread all over the World even in countries where they did not advertise such as

Sweden and India. This shows that relationships are powerful when making deci-

sions on buying or adopting products or ideas. Another real example of influence

can be seen in the effects of obesity. Christakis and Fowler [26] provided a study of

12,067 people from 1971 to 2003. The results of their study shows that having an

obese friend will increase an individual’s chance of obesity by 57%. While having

an obese sibling or spouse increases the chance of obesity by 40% and 37% respec-

tively. Other real examples of this propagation can be seen in the spread of viruses

(like the Melissa computer worm), diseases (like mad-cow disease), fashions (like

floral prints trending in Spring 2013) and the adoption of new technologies.

Social Influence has been studied in different disciplines and has it’s his-

torical roots in sociology, through studying opinion formation, diffusion of inno-

vations [27, 28] and economics, where social influence shows how individuals are

inclined to coordinate decisions [29, 30]. Recently, digital social influence research

has emerged and started to attract more attention due to the availability of many im-

portant applications. For example, computer scientists developed models of social

influence to support applications such as viral marketing [31, 3, 32], the spread of

online news [33, 34], and the growth of online communities [35].
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Most current applications for online social networks focused on increasing

the accuracy of item rating. In this thesis, we investigate the increase of word-

of-mouth recommendations through an influence propagation model which applies

novel influence maximization techniques.

1.2 Terms, Concepts And Properties of Social Net-

works

In this section, we discuss different concepts and properties that are related to social

networks and reveal some related work done on analytical issues. The main goal

of social networks is to connect people so that each user in a social network can

establish a link with other users in that network. These connections and relations

in social networks are modeled as a graph G which is defined as a pair of sets

G = (V,E), where V is a set of N nodes V = {v1,v2, ...,vn} and E ⊆V ×V is a set

of edges that connect pairs of nodes vi, v j within V [36]. In other words V ×V is an

adjacency matrix E = [Ei j] i, j ∈V , where Vi j ∈ {0,1} represents the availability of

an edge from node i to node j. The edge weight Ei j > 0 represents the intensity of

interaction and the graph G(V,E) in that case is called a weighted graph. The graph

is directed if Ei j �= E ji and undirected if Ei j = E ji for all i, j ∈V [37].

1.2.1 Basic Concepts of Online Social Networks

User Profile

Most social networks provide their functionalities for free to the users. Though

some social networks need users to register in order to gain access to full facilities.

Personal information about each user is stored in his/her profile, where a profile is

a collection of user information that shapes the user’s identity and other personal

attributes such as interests [38].
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User Connections

The main goal of social networks it to connect people, thus each user in a social

network can establish a link with other users in the network. Figure 1.2 shows

the types of relationships that occur in social networks. An example would be the

concept of ‘follow-me’, in Twitter where a user (creator) can follow other users

(targets). A full connection between the creator and the target is established if both

are following each other. In the case of the Twitter example, a full connection

will allow additional functionalities such as the ability to send private messages

between users. Users establish these connections in order to follow each other’s

contributions, especially if they share similar interests.

Figure 1.2: Social Graph: Patterns of Social Relationships Between People

Profile Privacy

Many social networks allow any user to view other users’ profiles, though some

social networks such as Facebook provide users with privacy levels that allow them

to access only a particular group of profiles.
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1.2.2 Properties of Online Social Networks

Connectivity

That is the degree to which the nodes of a network are directly connected [36].

When a network has high connectivity this means it has a high ratio of edges to the

number of nodes[36]. The connectivity is calculated using the following equation

[36]:

C =
|E|

|V |(|V |−1)
(1.1)

Where E is the number of edges and V is the number of nodes in the

network

Network Diameter

The diameter of a network is the length of the longest path between two nodes.

In social networks, the diameter is small and averaged by the number six as in

small world phenomenon [39]. This will affect the processes that take place in the

network. For example there can be a fast spread of information such as ‘rumors’

[40].

Large-Scale

Each network has basic properties such as: network order, represented by the num-

ber of nodes in the network; the size, that represents the number of edges in the

network; and the node degree, which represents the number of edges that are con-

nected to a node. OSNs are large-scale networks with high order and size that may

reach millions. For example in Twitter, the nodes of celebrities such as Katy Perry,

Justin Bieber, Barack Obama, Lady Gaga, and Taylor Swift have more than 40 mil-

lion followers. LinkedIn has more than 90 million nodes, having a new user joining

every second [41].
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Network Clustering

The idea of clusters or cliques is very common in social networks. Clusters are

groups of friends who know each other. The degree to which nodes are able to clus-

ter together can be measured by the clustering coefficient. In general the clustering

coefficient C is based on the number of closed triples in a network (a set of three

nodes connected to each other’s ‘triangles’) and it can be calculated as in Equation

[42]:

C =
3×number o f triangles

number o f connected tripleso f vertices
(1.2)

For example the clustering coefficient C for the network below can be measured as

follows in Figure 1.3:

Figure 1.3: Example On Clustering Coefficient

Power Law Degree Distribution

The degree of a node represents the number of edges connected to that node [36].

A distribution function P(K) gives the probability that a node selected at random

has degree K [36]. Plotting the P(K) function for a network, generates a histogram

of degree distribution of nodes similar to the one shown in Figure 1.4. Note that

the distribution has a long right tail as shown in Figure 1.4. The long right tail

indicates that in social networks, most nodes have a low degree, whereas a small

number of nodes known as ‘hubs’ have a high degree. This is fairly true for social

networks. Many studies [4, 43, 44, 45] showed that OSNs follows the power law

degree distribution.
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Figure 1.4: Histogram of Degree Distribution of Nodes

Reputation and Trust

In social networks, trust relationship between acquaintances and friends is paramount.

Amazon for example, has a recommender system that we trust. Another example

would be eBay as it uses the seller rating system in order to allow sellers and buy-

ers to build reputation. Digg is an example for rating web content, where people

‘digg’ articles they like from all over the web and the most popular articles are pro-

moted on the front page of the website so million of people can view them. Much

research has been done in the area of social network trust, but in order to build a ro-

bust reputation and trust, a deeper understanding of social topology is required [4].

Understanding social network topology will help in identifying properties about the

different members of the network. For example, the location of the member can be

used to infer the power and reputation of that member. These members could be

identified easily through the number of connections they have with other nodes in

the network. This information could support an automatic reputation system in the

future, instead of using a manual rating system provided by the users.

Users’ Interests

Users in social networks tend to navigate their neighbors’ profiles because they

may find things of interest there. Systems like Delicious (social bookmarking) al-

low users to bookmark web links of interests and share them with their friends or
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explore the bookmarks of other users. StumbleUpon also helps users to discover

and rate web pages, photos and videos based on their own interests. This content is

recommended by the users’ friends or other people who share the same interest [46].

It gives them the choice to ‘like’ or ‘not-like’ the content recommended, which also

increases the quality of content recommendations.

Some of the above properties are common in complex networks, for ex-

ample large-scale and power law distribution. These OSNs properties are used to

analyze issues pertaining to social influence. Another important property of OSNs

that is of benefit in social influence analysis is the ability to retrieve OSN data easily

through APIs, while in real world social networks, a substantial physical effort is

needed in order to collect this data. The opportunity for data extraction and analysis

in OSNs has encouraged an increased research importance to model OSNs.

Thus, understanding the structure of social networks helps in evaluating

the strengths, weaknesses, opportunities and threats associated with them. Much

work have been done in the field of social networks analytics. One of the most

popular papers is by Milgram, ‘The Small-World Problem’ [39], where the earliest

experiments about ‘six degrees of separation’ were investigated. Milgram studied

the average path length for social networks in the United States and suggested that

we live in a small world. Watts also studied the mathematical analyses of the small

world structure [47] as he examined the small world systems and discussed the

problems of measuring the distances in the social world and studied examples of

real small-world networks.

1.3 Research Issues and Contributions

The problems addressed in this research are twofold: maximizing social word-of-

mouth recommendations by spreading influence and increasing the rate of adopting

recommendations in online social networks. This thesis addresses the following

research issues:



12

1. Detecting communities in online social networking

2. Finding key nodes within each community (resulting from Step 1)

3. Constructing the seed set (made up of top users generated from Step 2) which

is used to spread influence over an online social network.

Figure 1.5 shows a framework for our proposed model.

Figure 1.5: Community Aware Influence Maximization
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1.3.1 Community Detection

Contribution 1: Survey and Evaluation of Existing Community Detection Ap-

proaches

The ability to find groups of interest in a network can help in many ways to provide

different services such as targeted advertisements. The problem researchers face

here is how to find groups of users who share similar interests or have a high level

of connections between them. A critical review of existing approaches proposed in

the field of community detection was reviewed and their strengths and limitations

were addressed. There was also an analytical study and a performance evaluation

of these approaches to contrast and compare different aspects of the techniques

employed. In Chapter 2 we provide a thorough survey of the results.

Contribution 2: Similarity-CNM Based Community Detection

One of our research goals is to provide users with an online means to identify or

build communities on the web. The focus is on the social web and providing new

techniques to detect and build robust communities. We extended the CNM algo-

rithm to use the Jaccard Similarity Measure to first infer an isomorphic graph from

the original network, resulting in what we label as a similarity social network or a

virtual social network. Our technique showed that by pre-processing the original

network, we can derive better quality community structures. Chapter 2 shows more

details about this algorithm.

Contribution 3: Jaccard Similarity Based Community Detection

Another algorithm to build strong communities over the web is the ECD-Jaccard

Algorithm (ECD refers to “Enhancing Community Detection”) which enriches the

virtual social network with weights on edges and then applies a quality-optimized

version of the CNM algorithm [48] to detect communities. Our technique showed

that by pre-processing the original network, we can derive better quality community

structures. More details about this algorithm are given in Chapter 2.
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1.3.2 Social Influence

Contribution 4: Classification and Evaluation of Existing Social Influence Ap-

proaches

Social influence was addressed by first evaluating different models used to measure

influence probability. Research carried out in this area is sparse. Besides our ef-

forts to summarize the state of the art surrounding social influence in online social

networks, we also surveyed and evaluated different approaches and have clustered

them into an original categorization framework to understand commonalities and

distinguish differences. This is discussed in Chapter 3.

Contribution 5: Common Actions Based Estimation of Influence Weights

The historical node activity is one of the most valuable estimates of the influence of

a node on other nodes in the network. The Jaccard Coefficient Based on Common

Actions is proposed to estimate such influence weights in social networks. Further

details are described in Chapter 3.

1.3.3 Community Aware Influence Propagation

Contribution 6: Synthetic Communities for Influence Propagation

In this thesis, the influence maximization issue is addressed where we find a set

of k nodes which are the most efficient at spreading influence in the network. The

community-based influence algorithm starts by detecting communities in the social

network as a pre-processing step, in order to group similar nodes together. This step

is the basis for influence propagation, as discussed in Chapter 4.

Contribution 7: Fuzzy Decision-Making Approach to Find Key Influential

Nodes

To decide which nodes are the most influential, we use a Fuzzy logic inspired

method, which computes and selects influential nodes based on both their central
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location and influence weight. As far as we know, using Fuzzy logic to find the most

influential nodes in online social networks has not been explored before. Chapter 4

explains the methodology.

1.4 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we introduce basic

concepts related to clustering in social webs, enabling algorithms and present state-

of-the-art research in this field. Different basic algorithms are discussed and are

used to group social networks nodes into clusters that share similarities. Exam-

ples of such algorithms are Linked-based, K-means, Robust Clustering Using Links

(ROCK) and Density-Based Spatial Clustering of Applications with Noise (DB-

SCAN). We show how each algorithm works and discuss potential advantages and

shortcomings. These algorithms are then compared against each other and their

ability to accurately identify communities of interest based on social web data is

discussed. This is illustrated and discussed in our findings, which involved cluster-

ing in online social networks. Finally, two proposed approaches are presented, a

Similarity-CNM algorithm and an ECD-Jaccard algorithm, to enhance community

detection processes for both unweighted and weighted social networks. Our exper-

imental evaluation study reveals interesting tradeoffs and the effectiveness of the

proposed approaches.

In Chapter 3, we introduce social influence and discuss the metrics used

to measure influence probability. Different considerations in the field of modeling

influences are provided in this chapter. Means are revealed to maximize social

influence by identifying and using the most influential users in a social network. We

also surveyed existing social influence models and clustered them into an original

categorization framework and applied experiments to compare the Linear Threshold

(LT) and Independent Cascade (IC) Models.

In Chapter 4, our community aware influence maximization proposal, based

on combining both community detection and social influence is presented. In partic-
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ular, we discuss how we can maximize the influence between social network nodes

using enhanced community detection techniques. To explain our proposal we first

propose our method of estimating influence weights based on historical common

actions in online social networks. Then we discuss our novel contribution by using

fuzzy logic inspired method to find the most influential nodes in a social network.

Finally, our experimental results for applying our proposed algorithm in real-world

social network are discussed. Our findings show the effectiveness of the proposal.

Chapter 5, provides concluding remarks and discusses future directions for

further research.



Chapter 2

Enhancing Community Detection in

Social Networks

2.1 Introduction

Since its inception, the web has evolved into a huge repository of information of all

kinds. The current semantic enrichment of web data and the automation of web ser-

vices [49], have given rise to novel models for retrieving and analyzing information,

particularly in social contexts. In these domains, web content is increasingly collab-

oratively generated and communicated across blogs, feeds and other social forums.

The opportunity to analyze similarities within these social contexts empowers web

experiences to recommend preferential web content and services [50].

To realize these intelligent content retrieval models, connectivity is a core

feature as users share files, publish articles, comment on others’ blogs, view each

other’s profile and add new members to their networks. These are typical operations

in today’s online social networks such as Facebook1, Instagram2 and Twitter3. In

these networks, members feed in information every day, resulting in a continuous

flow of data. In this myriad of social information production, data classification

and clustering can facilitate the process of analyzing and building meaningful infer-
1http://www.facebook.com/
2http://www.instagram.com/
3http://twitter.com/

17
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ences. For example, grouping similar web content could help in finding problems

such as detecting copyright violations [51] or building communities. Different ap-

proaches, such as clustering and classification [52], are used to achieve the goal

of grouping data in social networks. The ability to group users into communities

can serve important business needs such as targeted advertisements or enhancing

online shopping, through viewing personalized products or services [50]. Allowing

more personalization per individual user is achieved through special recommenda-

tions for a specific user or through providing page categorizations for users such as

Google News4.

Communities refer to a group of nodes that have high affinities, as revealed

by multiple connections between the group members and fewer connections with

members in other groups [53]. Figure 2.1 illustrates of a typical community struc-

ture containing a network with three groups. Nodes can represent users and edges

represent connections between them, like friendships. The interconnections within

the groups are high, while the external connections are rare.

Finding communities in social networks can help in disclosing underlying

network properties in order to understand and summarize the whole network. De-

tecting communities can be useful in many real-life fields. For example identifying

fraudulent actions in telecommunications networks by recognizing groups of users

who have unexpected behaviors in terms of usage [54]. Other examples might relate

to grouping pages of related topics on the web or finding papers related to a specific

topic in a citation network or simply building communities of practice which gather

professionals into common fields of interest. Community detection is also impor-

tant to identify powerful nodes in the network, based on their structural position to

initiate influential campaigns [55].
4http://news.google.com/
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Figure 2.1: A Sample Community Structure

The objective of this chapter is to provide users or organizations with on-

line means of identifying or building communities over the web. We focus on the

social web and provide new techniques to detect and build robust communities. The

clustering algorithms discussed in this chapter are based on the following catego-

rizations: Hierarchical, Partitional and Density-based algorithms. Each of these

approaches features intrinsic techniques such as threshold or centroid techniques.

We also discuss and compare six important algorithms used for clustering purpose

namely: Link-based (Single-Link, Average-Link and MST Single-Link), K-means,

ROCK and DBSCAN algorithms. We propose two complementary algorithms: 1) a

Similarity-CNM algorithm which uses the Jaccard Similarity Measure to first infer

a virtual network from the original network, resulting in what we label as a ‘simi-

larity social network’ or simply a ‘virtual social network’, and 2) an ECD-Jaccard

algorithm5 which assigns weights to edges in the virtual social network and then ap-

plies a quality-optimized version of a CNM algorithm[48] to detect communities.

This work is based on CNM because it is used in many applications and it has an

acceptable speed. The use of network links or connections to measure similarity is

more generic than using node attributes like age, interest, etc., which may be con-

text specific. Our techniques show that by pre-processing the original network, we

can reduce the time that the CNM algorithm needs to generate communities with

a greater structural quality. We propose a pre-processing method that prepares the

social network for community detection algorithms. This preparation is shown to
5ECD refers to ‘Enhancing Community Detection’
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enhance the results generated from such algorithms.

The rest of the chapter is organized as follows: Section 2.2 defines clus-

tering and introduces some important terms and concepts related to clustering as

well as the different types of clustering techniques. Section 2.3 reveals different

clustering algorithms and presents a comparison among candidate clustering algo-

rithms. We also describe a case study related to the use of clustering algorithms

in social networks where we evaluate some of the candidate algorithms’ clustering

performances. In Section 2.4, we introduce and discuss our algorithms to enhance

community detection. Also in this section, the quality measures used in community

enhancement are explained. Section 2.5 presents an experimental comparison of

the proposed algorithms for both artificial and real-world social networks. Section

2.6 includes relevant works in the field of community detection. Finally, Section

2.7 concludes with a summary of results.

2.2 Clustering in Social Web

Dividing people into different groups is human nature. Previously, people used

clustering in order to study phenomena and compare them with others based on

certain set of rules. Clustering refers to grouping similar things together. It is a

division of data into groups of similar objects: each group is called a cluster. Each

cluster consists of objects that embody some common similarities and are dissimilar

to objects in other groups [56]. We can find many definitions for clustering in the

literature [57, 58, 59, 60, 61, 62] but the most common definition is partitioning data

into groups (called clusters), based on certain criteria, that the data grouped in one

cluster should share. These criteria include common similarities calculated using

distance measurements.

We can define clustering in the context of real-world social network by

grouping individuals with high friendship relations internally and scattered friend-

ship externally [63]. With clustering, we can identify groups of interest or commu-

nities, which share common properties which can be used to study these groups and
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understand their behavior. Amazon6 for example provides users with recommenda-

tions based on their shopping history. Twitter also recommends new friends (people

to follow) to members based on several factors, such as being the friend of a user’s

friend [64].

Clustering can be used for summarizing large inputs. So instead of apply-

ing algorithms on entire data sets, we can reduce the data sets based on specific

clustering criteria [52]. Clustering analysis has been used in many research fields

such as image analysis, data mining, pattern recognition, information retrieval and

machine learning [62]. On the web, identifying groups of data or users would facil-

itate the availability and accessibility of data. Using clusters in the web is thus an

appealing approach to counter the increasing numbers of Internet users and plethora

of data, especially in online social networks, where tremendous number of users and

data are interlinked.

2.2.1 Cluster Structure

Distance and Similarity Measures

Any clustering algorithm has a similarity factor (proximity matrix) in order to orga-

nize similar objects together. It is important to understand measures of similarity.

What makes two clusters join? What makes two points similar? And how do we

calculate the distance (dissimilarity)?

Rui Xu and Donald Wunsch defined the function of distance or dissimilar-

ity on a dataset X in their survey paper on clustering algorithms [58] by representing

an n*n symmetric proximity matrix for a dataset of n elements where the (i, j)th ele-

ment represents the similarity or dissimilarity measure for the ith and the jth pattern

[58].

The family of Minkowski distances is a very common class of distance

functions [65] and can be represented as follows:
6http://www.amazon.com/
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D(pi, p j) =
w
�

∑(pi − p j)w (2.1)

Where w is a parameter with a value greater than or equal to 1. Based

on the value of w different distance functions can be represented such as the Ham-

ming distance (w=1), Euclidean distance (w=2) and Tschebyshev distance (w=∞).

Other similarity measures are cosine correlation measure and the Jaccard measure

[65]. Further discussion can be found in Xu and Wunsch survey paper of clustering

algorithms [58].

Dendrogram Data Structure

Figure 2.2: Dendrogram Structure

One of the basic structures in the clustering environment is the dendrogram, which

is a tree data structure used to form a hierarchical cluster. Figure 2.2 shows a sample

dendrogram with four levels. The dendrogram can be represented as a set of triples

S = {[d, k, {. . . }]} where d represents the threshold, k is the number of clusters

and {. . . } is the set of clusters. Figure 2.2 shows a dendrogram for detecting a

cluster in a group of five users based on their distance similarities. This dendrogram

could be represented by the following set S = { [0, 5, {{U1}, {U2}, {U3}, {U4},

{U5}}], [1, 4, {{U1,U2}, {U3}, {U4}, {U5}}], [2, 2, {{U1,U2,U3}, {U4,U5}}], [3,

1, {U1,U2,U3,U4,U5}] } [52]. The dendrogram represents a set of clusters. Most

of the algorithms considered in this chapter are hierarchical algorithms.
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Proximity Between Clusters

Proximity calculation is the most important step in identifying clusters. It is used

to measure how close the data are to each other, and differs according to the algo-

rithm in use. For example, agglomerative hierarchical clustering techniques such as

single-link, complete link and group average have different ways to determine the

proximity threshold. The single-link defines the proximity as the closest distance

between two elements in two different clusters or simply the shortest path between

the two nodes in different clusters. Complete link calculates the largest distance

between two points in two different clusters or the largest edge between the two

nodes in different clusters. In group average the proximity is defined to be the aver-

age length distance of all elements from the two different clusters [62]. Figure 2.3

illustrates the three approaches:

Figure 2.3: Cluster Proximity

2.2.2 Clustering Types

There are many kinds of clustering algorithms available in the literature [57, 58,

61, 56]. They can be categorized based on the cluster structure (hierarchical, parti-

tional), data types and structure (numerical, categorical) or data size (large datasets)

[52]. In general, clustering approaches can be divided into four main types: hier-

archical, partitional, density-based and meta-search controlled [66]. In this chapter,

we will discuss hierarchical, partitional and density-based clustering.

The Hierarchical and Partitional algorithms partition the data into differ-

ent non-overlapping subsets. A partition of a dataset X = {x1,x2, ...,xN}, where

x j = (x j1,x j2, ...,x jd) ∈ ℜd with each measure x ji called a feature (attribute, di-

mension or variable) and d is the input space dimensionality [58], is a collection

C = {C1,C2, ...,Ck} of k non-overlapping data subsets. Ci �= � (non-null clusters)
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such that C1 ∪C2 ∪ ...∪Ck = X , where X is the super cluster and Ci ∩Cj = � for

i �= j [67]. The data partition is overlapping if the condition ( Ci∩Cj = for i �= j ) is

ignored and in that case the cluster will have sub clusters of different levels inside

it [67].

Hierarchical Clustering

In hierarchical clustering, the clusters are represented as a tree called dendrogram

[68]. They can be either top-down (divisive) or bottom-up (agglomerative). Most

of these algorithms need a threshold parameter that tells the algorithm when to stop

looking for subgroups. Figure 2.4 shows a graphic representation of divisive and

agglomerative algorithms.

Figure 2.4: A Dendrogram that Represents Divisive vs Agglomerative Clustering.
Two Clusters are Generated When Cutting the Dendrogram at a Specific Level

In divisive hierarchical clustering, the algorithm starts from the global clus-

ter that contains all the elements and then the data is divided into sub clusters. We

need to find out which clusters to split and how to perform the splitting [65]. While

in agglomerative hierarchical clustering, the algorithm starts from a single cluster

and then every two clusters are merged together until a global cluster is achieved.

DBSCAN is a hierarchical clustering algorithm represented in [69] and used to

group articles together that refer to the same event and have similar patterns.

The basic idea behind clustering is to find a distance/similarity measure

between any two points such as a Euclidean distance or a cosine distance, etc. In
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particular, this is the shortest path in linkage algorithms based on linkage metric.

To calculate the distance between two points, these algorithms include single-link,

average-link and MST link techniques.

Hierarchical algorithms are represented using a proximity matrix (distance

matrix) assuming it is symmetric which means that it require the storage of 1
2n2

proximities, where n is the number of elements [62]. The total space complexity is

O(n2) and the time required for computing the proximity matrix is O(n2) [68]. In

general, agglomerative hierarchical clustering does not have difficulties in selecting

initial points as the algorithm will starts from single clusters. However, they are

expensive algorithms in terms of time and space which limit their usage with large

scale datasets [58]. We will focus on agglomerative hierarchical algorithms in this

section such as Single-Link, Average-Link and MST Single-Link algorithms.

Partitional Clustering

Partitional algorithms have a fixed number of clusters where data is divided into

a number of subsets [61]. The most common example is the K-means algorithm

that starts by selecting random means for K clusters and assigns each element to its

nearest mean. K-means algorithms are O(tkn), where t is the number of iterations

[68], k denotes the number of clusters and n the size of the data being clustered.

These algorithms use a number of relocation schemes that provide optimization to

the clusters, which means the clusters can be refined at each revisited step and thus

give an advantage over hierarchical clustering [61].

Density-Based Clustering

In density based algorithms, the cluster is a dense region of data objects. The points

density is higher inside the cluster than outside the cluster. It is used most when the

shapes of the clusters are irregular and contain noise and outliers [1]. DBSCAN is

an example of a density-based algorithm. In the worst case, the time complexity for

this algorithm is O(n2), but in low dimensional spaces the time would be reduced
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to O(nlogn) [62].

Meta-Search Controlled Clustering

The meta-search controlled clustering approach treats clustering as an optimiza-

tion problem where a global goal criterion is to be minimized or maximized [1].

Even though these algorithms provide flexibility, their runtime is unacceptably high.

Cluster detection can be performed using genetic algorithms or two-phase greedy

strategy [1].

In this thesis, we will focus on hierarchical, partitional and density-based

algorithms. Next, we will discuss these algorithms in detail.

2.3 Algorithms and Analysis

In this section, we will discuss and compare the following six clustering algorithms:

1. Link-based Algorithms

(a) The Single-Link Algorithm

(b) The Average-Link Algorithm

(c) The Minimum-Spanning-Tree Single-Link Algorithm

2. The K-means Algorithm

3. The Robust Clustering Using Links Algorithm (ROCK)

4. The Density-Based Spatial Clustering of Applications with Noise algorithm

(DBSCAN)

2.3.1 Link-based Algorithms

TLink-based algorithms are agglomerative hierarchical algorithms where the den-

drogram starts with individual objects and the proximity threshold is set to zero.

Then the value of the threshold is increased and based on that value the algorithm
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checks if two elements should be merged in one cluster or be kept apart. After a

number of iterations all the elements will belong to a single super cluster.

The general algorithm for the hierarchical agglomerative algorithms can

be described as shown in Algorithm 2.1.

Algorithm 2.1 General Hierarchical Agglomerative Algorithm

1. Set the proximity threshold and calculate the proximity matrix.

2. Start with individual clusters.

3. Based on the threshold merge the closest clusters.

4. Update the threshold according to the new clusters.

5. Repeat steps 3 and 4 until all the elements are in one super cluster.

The Single-link, Average-link and Minimum-Spanning-Tree algorithms,

which are link-based algorithms of the agglomerative hierarchical type will be dis-

cussed next.

Single-Link

The single link algorithm is based on the distance between clusters that are con-

nected by at least one edge. First, it calculates the distance between the elements

in the clusters. Then the proximity threshold is compared to the minimum distance

to determine whether to merge the two clusters or not. The single–link distance

between two clusters Ci and Cj can be represented by the following formula [65] :

D(Ci,Cj) = minx∈Cj,y∈Ci(x− y) (2.2)

The Single-link follows the general approach of linked-based algorithms

described in Algorithm 2.1. The time and space complexity of the Single-Link

Algorithm is O(n2) [58]. This complexity is a problem when working with very

large data, which is the case when clustering large real web datasets such as social

networks.
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The single link is sensitive to noise and outliers actually suffer from the

chain effect [70]. This effect occurs when a single link algorithm merges two clus-

ters based on two points in these two clusters that are close to each other, regardless

of the other points of the clusters that are far away. A single-link does not pro-

vide a solution for this problem [52], but algorithms such as ROCK could provide a

solution.

Average-Link

The average link algorithm is similar to the single-link algorithm but it uses dif-

ferent techniques to merge two clusters. It uses the average distance between any

two points in the two different clusters and checks if it is less than the proximity

threshold in order to merge the clusters.

As with a single-link algorithm, we start with individual clusters and merge

them until one cluster is formed, but unlike the single link the distance of all pairs

of points between the two different clusters need to be calculated.

The average distance between two clusters Ci and Cj could be represented

by the following formula:

D(Ci,Cj) =
∑x∈Cj,y∈Ci(x− y)

Ci.Cj
(2.3)

The time and space complexity of the Average-Link Algorithm is O(n2)

[58]. Which is similar to single-link algorithms so it has the same problem.

Minimum-Spanning-Tree Single-Link

In this approach, a minimum spanning tree connects all the elements of a given

set in a way that minimizes the sum of the adjacency values for the connected el-

ements [71]. The MST single link algorithm is a combination between single link

algorithms and minimum spanning tree.

The Prim-Jarnik algorithm [71] is used in this approach for the minimum

spanning tree with single technique. This algorithm builds the minimum spanning
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tree starting from a single cluster (root) as expressed in Algorithm 2.2.

Algorithm 2.2 MST Single-Link Algorithm

1. Mark all elements of the graph as not visited.

2. Choose any element you like as the root and mark it visited (cluster C cre-
ated).

3. The smallest-weight edge e= (v, u) that connects one vertex v inside the clus-
tering C is chosen and added to the spanning tree T.

4. Repeat until all vertices are visited and the minimum spanning tree is formed.

The time and space complexity of the MST Single-Link Algorithm is O(n2)

[52]. This is similar to the single-link and average-link algorithms. The MST

Single-Link Algorithms results in fewer clusters than the single link algorithm be-

cause the proximity circles do not expand as much as in the single link.

2.3.2 K-means Algorithm

K-means is a partitional algorithm. It uses the idea of a centroid, which is the

mean of a group of points. It has high performance characteristics and it is one of

the oldest and most used clustering algorithms. Figure 2.5 illustrates the idea of

centroid.

Figure 2.5: The Centroid Approach

The K-means algorithm starts by choosing the K initial centroids. The

simplest approach is to choose random centroids. Then the points are assigned to

their closest centroid to form K clusters [72]. Depending on the points assigned to

the cluster the centroid position is updated. We repeat the update until there are no

more points to add or the centroids remain unchanged. The K-means algorithm can

be represented as shown in Algorithm 2.3.
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Algorithm 2.3 K-means Algorithm

1. Select K points as initial centroids.

2. Form K clusters by assigning each point to its closest centroid.

3. Re-compute the centroid of each cluster.

4. Repeat steps 2 and 3 until centroids are unchanged.

The K-means is fast compared to other clustering algorithms. Its computa-

tional time is O(tkn) where t is the number of iterations, k represents the number of

clusters and n is the number of data points we want to cluster. The space complexity

for K-means is O(n) which is much better than link based algorithms.

Different runs of the K-means will produce different results since we ran-

domly initialize the centroids. This will produce poor clustering results. So choos-

ing the right initial centroids is very important in order to create good quality clus-

ters [73]. It is better to choose centroids in regions with high concentration of data

points as proposed by David Arthur and Sergei Vassilvitskii in their K-mean++ ar-

ticle [74].

The K-mean is efficient for large datasets [73] and works well with numeri-

cal data. But a challenge occurs when it is used with categorical data such as strings

since we need to find a good way to represent nonnumeric values in a numerical

way.

2.3.3 Robust Clustering Using Links (ROCK)

ROCK is an agglomerative hierarchical algorithm. It uses links as a similarity mea-

sure rather than measures based on distance. It clusters points that have many com-

mon links. As an agglomerative hierarchical algorithm it starts from single clusters

and merges these clusters until a super single cluster is formed. For the ROCK

algorithm we need to define a minimum number of clusters that we want to form

in order to stop the algorithm before all the elements are grouped into one single

cluster.
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Goodness Measure

In the process of merging clusters in the ROCK algorithm, we need to determine

the best pair of clusters to merge together. Thus a goodness measure is used. Ac-

tually for ROCK algorithms the best clusters are those that maximize the goodness

measure. The goodness measure for two clusters Ci and Cj is represented as follows

[75]:

g(Ci,Cj) =
link[Ci,Cj]

(ni +n j)1+2 f (θ)−n1+2 f (θ)
i −n1+2 f (θ)

j

(2.4)

where link[Ci,Cj] represents the number of cross links between clusters Ci

and Cj that is

∑
pq∈Ci,pr∈Cj

link(pq, pr) (2.5)

There is a link between two data points if a common neighbor exists be-

tween them. For the ROCK algorithm to merge two clusters the focus will be on the

number of links ni, n j between all paired points of the two clusters Ci, Cj. A large

number of links should indicate a higher probability that the two points belong to

the same cluster and give the best cluster.

The denominator of the goodness measure is a normalization process that

estimates the expected number of links between pairs of points each from different

clusters. Where (ni+n j)1+2 f (θ) is the number of links between pairs of points in the

merged cluster (after merging the two clusters) and n1+2 f (θ)
i is the expected number

of links between points within the cluster i (the number of links in the cluster be-

fore merging) and n1+2 f (θ)
j is the expected number of links between points within

the cluster j (the number of links in the cluster before merging). This property of

the goodness measure prohibits data points that have few links between them from

being assigned to the same cluster [75].

Any pairs of clusters that will maximize the goodness measure will be the

best pairs to merge. With algorithms that are based on similarity distance only,
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it will be difficult to determine if two clusters are separate because this kind of

measurement may merge two clusters if there are two points close together even

though these points do not have large number of common neighbors [68]. Thus the

ROCK algorithm uses links as its name implies.

ROCK Algorithm

The ROCK algorithm needs the following arguments:

1. The set of points that we want to cluster

2. The minimum number of clusters to have to stop the ROCK algorithm before

all points are merged in one cluster

3. Proximity that is required between two points in order to form a link between

them

The ROCK algorithm could be expressed as shown in Algorithm 2.4.

Algorithm 2.4 ROCK Algorithm

1. Create a cluster for each point.

2. Use a goodness measure to evaluate if two clusters should be merged or not
(the best are the ones that maximize the value of the goodness measure).

3. Repeat step 2 until the number of clusters formed is equal to the minimum
number required to stop or the number of cluster does not change between
iterations.

The space complexity of the ROCK algorithm is O(n2) [52], while the time

complexity is O(n2logn) [75].

The ROCK algorithm is best used with categorical data such as keywords,

Boolean attributes that use the Jaccard coefficient to measure similarity [73]. It

works well on large data sets. One of the advantages of using the ROCK algorithm is

its ability to handle outliers effectively. Outliers are points that lies in a far distance

from the other points. Which means these points can be easily discarded, as they

will not participate in the clustering process [75].
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2.3.4 Density-Based Spatial Clustering of Applications with Noise

(DBSCAN)

The DBSCAN algorithm is a density-based algorithm that uses density as a mea-

surement other than links or distance between points.

Density-based algorithms are based on using density to identify the bound-

aries of objects. So clusters are identified based on their points density within a spe-

cific region. Figure 2.6 explains this concept where we can identify three clusters

in the figure. The points that don’t belong to the clusters are identified as noise and

DBSCAN is used to discover clusters and noise in a dataset.

Figure 2.6: Density-based Clustering

The DBSCAN can be described as follows (Figure 2.7): any two core

points should be put in the same cluster if they are close to each other within a

distance of ε(Eps) [68]. Where ε(Eps), stands for epsilon and is a value that helps

to define an epsilon neighborhood for any given data point p [1].

Figure 2.7: DBSCAN Core Points, Border Points and Noise [1]

To understand the concept of center points let us look at Figure 2.7. The

large circles are the epsilon neighborhood for points p and q. Each of them is a

center of one of the circles. The circle radius is ε and minPoints represents the

minimum number of points that must be inside the circle for a data point to be

considered a core point. The points that are on the border of the cluster are called
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border points. A point p1 is directly density-reachable from a data point p2 with

respect to ε and minPoints if there is a list of points p1, ..., pn, p1 = q, pn = p such

that pi+1 is directly density-reachable from pi [1]. The following two conditions

should be met:

1. p1 inside the epsilon neighbor of p2

2. There are more than minPoints data points inside the epsilon neighborhood

of p2

The DBSCAN algorithm is expressed in Algorithm 2.5.

Algorithm 2.5 DBSCAN Algorithm

1. Define the points as core, border, or noise points.

2. Eliminate noise points.

3. Put an edge between all core points that are within E ps of each other.

4. Make each group of connected core points into a separate cluster.

5. Assign each border point to one of the clusters of associated core points.

The time complexity for the DBSCAN algorithm is O(n2) [76], where n

is the number of points. DBSCAN can handle noise and different shape clusters

because it is based on density. It can discover many clusters that are not found

by the K-means algorithm. But this algorithm will have problems with clusters of

very different densities as the algorithm requires that the object’s neighbors have

high density [58] with high-dimensional data [62]. The DBSCAN uses R*-tree in

order to improve the determining of the points within a ε distance [73]. R*-tree will

reduce the time complexity of the DBSCAN to O(nlogn) [1].

2.3.5 Discussion and Evaluation

In this section, we have discussed the complexity of clustering algorithms and other

related issues. There are many criteria that decide the use of one algorithm over
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others. The two main criteria are time complexity and if they handle data with high

dimensionality.

Scalability Analysis

To deal with a large number of elements we need to evaluate the computational

complexity of the algorithm under consideration, in other words how long does this

algorithm take to construct the cluster?. There is a big difference between clustering

groups of people on Facebook with millions of registered users and clustering a lo-

cal newsgroup of some hundred users. To understand how crucial the data size is we

need to understand how each algorithm deals with memory size (space complexity)

and the number of operations performed to cluster a set of data (time complexity).

Table 2.1 shows both of these metrics for the algorithms discussed. Here k denotes

the number of clusters, t the number of iterations, and n the size of the data being

clustered. It is obvious that the problem is with the O(n2) algorithms specially when

n is large. In [58] Rui Xu and Li Wunsch compared the time and space complexities

of these algorithms and provided additional algorithms that can handle very large

data sets such as CLARA, CLARANS and BIRCH.

Algorithm name Space complexity Time complexity
Single-Link O(n2) O(k n2)

Average-Link O(n2) O(k n2)
MST Single-Link O(n2) O(n2)

K-means O(n+ k) O(t k n)
ROCK O(n2) O(n2 log(n))

DBSCAN O(n2) O(n2) or O(nlog(n)) with R*-tree

Table 2.1: Space and Time Complexities for Clustering Algorithms

It is obvious that hierarchical clustering algorithms are not suitable for

large datasets because of their complexities. The K-means is the most efficient

algorithm among them as the complexity is almost linear [58], but it cannot handle

categorical data which is very important when clustering the web. DBSCAN can

be improved by using spatial indices on data points such as R*-tree that will reduce

the time complexity from O(n2) to O(nlog(n)) and generates more efficient queries
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[58]. It is important to mention that indexing spatial data faces difficulties in high

dimensions and this subject is an active area of research [52].

Dimensionality Issues

The world that we deal with is three dimensional and if we want to cluster worlds of

higher dimensionalities we need to know that these worlds are governed by different

rules and different proximities [52]. Actually higher dimensionality means larger

computations which will slow the algorithm down.

High dimensionality produces a problem in data separation as the distance

between the point and its nearest neighbor has no difference than the distance from

that point to other points when the dimensionality is high [68]. The ‘curse of di-

mensionality’ is a problem that is related to high dimensionality. The term was

introduced by Bellman to indicate the exponential growth of complexity in a high

dimensionality situation [58], which indicates that the distance between any set of

points in high dimensions are the same. In such situation there will be no effect for

clustering algorithms that are based on distance measurements. Aggarwal provided

a solution to this problem [77].

Case Study and Evaluation

In this section, a case study is used to further explain clustering algorithms. The

scripting language is explained and also how the environment was set up to run the

algorithms and obtain results. Also we will discuss the results obtained using each

algorithm.

The issue of identifying articles of similar topic is of great potential in the

intelligent web environment. In our case study we will use clustering algorithms

to help in grouping similar articles. Data was collected from Delicious.com, which

is a social bookmarking service that allows users to share, store and discover web

bookmarks [78]. Since we are dealing with categorical data and keywords, rep-

resented by articles titles, we will use ROCK and DBSCAN algorithms to define
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different clusters and group similar titles together. The codes for both algorithms

are available [52].

Data Collection

For the two experiments, we have collected a list of 48 titles for different articles

from Delicious.com and saved them in a CSV file. Each title was assigned a unique

ID and a username for the person who bookmarked that title. Two or more users can

bookmark the same title. A sample of the dataset (11 out of 48 titles) is illustrated

in Table 2.1.

ID Name Title
776 user01 Google Sites to Add Social Networking in ‘Layers’
774 user01 40 Best And Highly Useful Websites For Adobe

Photoshop Tutorials
740 user01 Nikon D7000: Camera Road Test With Chase Jarvis |

Chase Jarvis Blog
770 user01 Twitter is NOT a Social Network, Says Twitter Exec
722 user01 An Open Source Collaborative Network
744 user02 Google Sites to Add Social Networking in ‘Layers’
710 user02 40 Best And Highly Useful Websites For Adobe

Photoshop Tutorials
730 user03 Google Sites to Add Social Networking in ‘Layers’
777 user03 40 Best And Highly Useful Websites For Adobe

Photoshop Tutorials
756 user03 An Open Source Collaborative Network
733 user03 How To Discover Your Money Making Niche

Table 2.2: Sample Dataset Collected from Delicious.com

Evaluation and Discussion

The two algorithms are implemented in Java language and to execute and debug

them we used BeanShell, which is a free Java interpreter. The code commands

were executed through the command line on Windows OS environment.
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ROCK Algorithm

First we used the ROCK Algorithm from [52] to cluster the dataset. The algorithm

uses the Jaccard Coefficient to measure the similarities between different titles. It

compares the common terms or keywords in the titles and based on their similarities

are grouped together.

To start the experiment we have loaded Delicious.com titles using the 15

most common terms and stored these titles in an array. The ROCK algorithm was

used to cluster the dataset with a minimum number of clusters equal to 5. This

parameter will allow the ROCK algorithm to stop before grouping all the data in

one cluster. The threshold of 0.2 is used to represent the required proximity between

two points that can be linked. Algorithm 2.6 represents the code used to execute the

algorithm and print the result.

Algorithm 2.6 ROCK Algorithm Execution Code

1. DeliciousDataset ds = DeliciousData.createDataset(15);

2. DataPoint[] dps = ds.getData();

3. ROCKAlgorithm rock = new ROCKAlgorithm(dps, 5, 0.2);

4. Dendrogram dnd = rock.cluster();

5. dnd.print(16);

The results of our experiment for the ROCK algorithms at level 16 shows

8 clusters, (Table 2.3). We noticed that the algorithm clustered similar titles such

as title ID 799 and title ID 688 together. On the other hand, there are articles with

similar titles, but the algorithm did not merge them in one cluster such as title ID

520 that is in cluster 4, and title ID 681 in cluster 7. The algorithm also defined non-

obvious clusters such as the titles in cluster 4; which contained different titles that

are grouped together because they contain similar terms related to ‘social network’

topics. The ROCK algorithm will compare titles based on keywords in these titles.
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Clusters for: level-16, Goodness = 1.973889261532508
Cluster No. ID Title

1 799 Nikon D7000: Camera Road Test With Chase Jarvis |
Chase Jarvis Blog

1 688 Nikon D7000: Camera Road Test With Chase Jarvis |
Chase Jarvis Blog

2 708 40 Best And Highly Useful Websites For Adobe
Photoshop Tutorials

2 774 40 Best And Highly Useful Websites For Adobe
Photoshop Tutorials

2 710 40 Best And Highly Useful Websites For Adobe
Photoshop Tutorials

3 722 An Open Source Collaborative Network
3 715 An Open Source Collaborative Network
4 520 Twitter is NOT a Social Network, Says Twitter Exec
4 566 Twitter is NOT a Social Network, Says Twitter Exec
4 744 Google Sites to Add Social Networking in ‘Layers’
4 730 Google Sites to Add Social Networking in ‘Layers’
4 776 Google Sites to Add Social Networking in ‘Layers’
4 770 Twitter is NOT a Social Network, Says Twitter Exec
5 740 Nikon D7000: Camera Road Test With Chase Jarvis |

Chase Jarvis Blog
5 720 Nikon D7000: Camera Road Test With Chase Jarvis |

Chase Jarvis Blog
6 777 40 Best And Highly Useful Websites For Adobe

Photoshop Tutorials
6 795 40 Best And Highly Useful Websites For Adobe

Photoshop Tutorials
7 681 Twitter is NOT a Social Network, Says Twitter Exec
7 500 Twitter is NOT a Social Network, Says Twitter Exec
7 790 Twitter is NOT a Social Network, Says Twitter Exec
7 780 Google Sites to Add Social Networking in ‘Layers’
8 735 40 Best And Highly Useful Websites For Adobe

Photoshop Tutorials
8 726 40 Best And Highly Useful Websites For Adobe

Photoshop Tutorials

Table 2.3: ROCK Algorithm Results
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DBSCAN Algorithm

We applied the DBSCAN algorithm to the same dataset. The algorithm also used

the Jaccard Coefficient to measure the similarities between different titles. To start

the experiment we have loaded Delicious.com titles using the 15 most common

terms only and stored these titles in an array. A cosine distance is used as a distance

metric. The DBSCAN algorithm invoked to cluster the dataset with a distance

metric, ε (neighbor threshold), minPoints and the term frequency. Algorithm 2.7

represents the code used to execute the algorithm and print the result.

Algorithm 2.7 DBSCAN Algorithm Execution Code

1. DeliciousDataset ds = DeliciousData.createDataset(15);

2. DataPoint[] dps = ds.getData();

3. CosineDistance cosD = new CosineDistance();

4. DBSCANAlgorithm dbscan = new DBSCANAlgorithm(dps, cosD, 0.7, 2,
true);

5. dbscan.cluster();

The results of our experiment for the DBSCAN algorithms are shown in

Table 2.5. The results were more accurate than the ROCK algorithm results. All

similar titles are clustered together such as clusters 2 and 3 and the titles are exactly

the same as each other. Non-similar titles in cluster 1 (title ID 776, title ID 566)

and cluster 4 (title ID 722, title ID 711) were also defined by the algorithm, In

cluster 1 the titles are grouped based on the keyword ‘social networks’ and cluster

4 grouped all the titles related to the ‘open source’ topic. The algorithm was also

able to recognize noise elements where these points did not belong to any cluster.

1 790 Twitter is NOT a Social Network, Says Twitter Exec

DBSCAN Clustering with NeighborThreshold = 0.7 minPoints = 2

Cluster No. ID Title

1 776 Google Sites to Add Social Networking in ‘Layers’
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1 790 Twitter is NOT a Social Network, Says Twitter Exec

1 566 Twitter is NOT a Social Network, Says Twitter Exec

1 744 Google Sites to Add Social Networking in ‘Layers’

1 780 Google Sites to Add Social Networking in ‘Layers’

1 500 Twitter is NOT a Social Network, Says Twitter Exec

1 730 Google Sites to Add Social Networking in ‘Layers’

1 770 Twitter is NOT a Social Network, Says Twitter Exec

1 681 Twitter is NOT a Social Network, Says Twitter Exec

1 520 Twitter is NOT a Social Network, Says Twitter Exec

2 774 40 Best And Highly Useful Websites For Adobe

Photoshop Tutorials

2 708 40 Best And Highly Useful Websites For Adobe

Photoshop Tutorials

2 777 40 Best And Highly Useful Websites For Adobe

Photoshop Tutorials

2 726 40 Best And Highly Useful Websites For Adobe

Photoshop Tutorials

2 795 40 Best And Highly Useful Websites For Adobe

Photoshop Tutorials

2 735 40 Best And Highly Useful Websites For Adobe

Photoshop Tutorials

2 710 40 Best And Highly Useful Websites For Adobe

Photoshop Tutorials

3 740 Nikon D7000: Camera Road Test With Chase Jarvis |

Chase Jarvis Blog

3 530 Nikon D7000: Camera Road Test With Chase Jarvis |

Chase Jarvis Blog
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1 790 Twitter is NOT a Social Network, Says Twitter Exec

3 688 Nikon D7000: Camera Road Test With Chase Jarvis |

Chase Jarvis Blog

3 685 Nikon D7000: Camera Road Test With Chase Jarvis |

Chase Jarvis Blog

3 799 Nikon D7000: Camera Road Test With Chase Jarvis |

Chase Jarvis Blog

3 720 Nikon D7000: Camera Road Test With Chase Jarvis |

Chase Jarvis Blog

4 722 An Open Source Collaborative Network

4 590 An Open Source Collaborative Network

4 711 XWiki - Open Source Wiki and Content-Oriented

Application Platform

4 600 An Open Source Collaborative Network

4 715 An Open Source Collaborative Network

4 756 An Open Source Collaborative Network

5 690 Apple: Sorry, Steve Jobs Isn’t a Ninja

5 736 Apple: Sorry, Steve Jobs Isn’t a Ninja

6 499 How To Discover Your Money Making Niche

6 733 How To Discover Your Money Making Niche

7 743 How To Create WordPress Themes From Scratch

Part 1

7 533 How To Create WordPress Themes From Scratch

Part 3b

7 694 How To Create WordPress Themes From Scratch

Part 2
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1 790 Twitter is NOT a Social Network, Says Twitter Exec

7 510 How To Create WordPress Themes From Scratch

Part 3a

Noise 540 iPhone SDK 3.0 Playing with Map Kit -

ObjectGraph Blog

Noise 742 This Is The Second Time A Google Engineer Has

Been Fired For Accessing User Data

Noise 577 Enhance Your Web Forms with New HTML5

Features

Noise 745 Resize or Move a Complete Flash Animation in One

Go

Noise 746 10 Things You Didn’t Know About the New #Twitter

/via @gigaom #news #sm

Noise 732 How To Handle Customers During Virtual Assistant

Problems

Noise 705 Article on Social Media Ad Campaigns

Noise 587 The Business Plan

Noise 791 CSS Color Names

Noise 601 Typography : Web Style Guide 3

Noise 753 in 4 U.S. Adults Now Use Mobile Apps [STATS]

Table 2.5: DBSCAN Algorithm Results

Discussion

From both experiments, the DBSCAN and the ROCK algorithms produce good

clustering results for the dataset. We noticed that the DBSCAN advanced the ROCK
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algorithm to find the correct clusters and outliers as shown in Table 2.5. The ROCK

is based on measuring similarity between two clusters as it finds the common neigh-

bors for the two clusters. But relaying on similarity might make the algorithm merge

two clusters even if they contain outliers or noise.

2.4 Similarity-Based Community Detection

Basic clustering methods face challenges when dealing with social networks data

clustering. Many of the proposed clustering algorithms such as hierarchical clus-

tering and K-Means use distance matrices to build clusters. But social networks

data needs algorithms that directly use graph properties such as edge and node be-

tweenness to detect communities. Different community detection algorithms are

proposed in the literature such as hierarchical divisive algorithms using shortest-

path betweenness [79]. This algorithm starts from the global cluster of the network

and iteratively identifies the shortest path of edges that lie between clusters and then

removes them to generate cohesive communities. Another popular approach pro-

ceeds with clustering based on network modularity [80]. This uses a modularity

function to measure the quality of partitioning a network into communities.

In this section, two community detection proposals are suggested. They

semantically enrich the network prior to the community detection process, in order

to enhance community discovery and deliver a better community structure. This is

achieved when the community structure has nodes that are densely connected in-

ternally in a network. The complexity of the proposed offline pre-manipulations is

O(n2). This manipulation is done offline to avoid any extra costs. The resulting

network is then used by CNM to detect the final communities. In the proposed ap-

proach, we use unweighted directed networks and generate the same networks with

added edge-weights based on the nodes’ similarities. Using this similarity helps in

measuring the strength of relationships between nodes, which in turn builds tighter

communities based on this relationship. We postulate that this approach enhances

the community structure. Our experimental evaluation of artificial and real-world
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networks supports this claim, based on modularity and normalized mutual informa-

tion measures, as described earlier.

To detect, find and measure the strength of a community structure in social

networks, we use the CNM community analysis algorithm proposed by Clauset,

Newman, and Moore [48]. The CNM algorithm is a bottom-up agglomerative clus-

tering method that uses greedy techniques to combine and merge clusters in a net-

work. It is efficient at identifying communities since its running time is O(nlog2n).

We used this algorithm to calculate the modularity (Q) for social networks, where Q

states the quality of graph partitioning or the quality of clustering. The modularity

(Q) formula is defined as follows [80]:

Q = ∑
i
(eii −a2

i ) (2.6)

Where ei j is the fraction of edges that connect vertices in group i to vertices

in group j and ai = ∑ j ei j. Modularity is based on finding the difference between

the number of edges within the communities and the expected number of edges

(edges are generated randomly). When the difference is large, we get a better com-

munity structure. Values of Q above 0.3 means a significant community structure

in a network [48].

High modularity is not always associated with the best partitions. Some-

times high modularity partitions are not optimal [81]. In this chapter, we used the

normalized mutual information proposed by Danon, et al. [82] to determine how

similar the original communities are to the ones found by the proposed algorithms

in this thesis. The value of the mutual information is between 0 and 1 inclusive.

If there is an exact match between the found and real communities then the value

of the mutual information is equal to 1. If there is less of a match the value of the

mutual information decreases. We used this measure to evaluate the accuracy of the

results obtained on the benchmark networks. The normalized mutual information is

defined as follows [82]:
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I(A,B) =
−2∑cA

i=1 ∑cB
j=1 Ni jlog(Ni jN/Ni.N. j)

∑cA
i=1 Ni.log(Ni./N)+∑cB

j=1 N. jlog(N. j/N)
(2.7)

Where A represents the real communities and B represents the detected

communities. While cA and cB are the number of communities in A and B respec-

tively. In this formula, N is the confusion matrix with rows representing the original

communities and columns representing the founded communities. The value of Ni j

means the number of common nodes that are in the original community i and the

founded community j. The sum over the ith row is identified as Ni. and the sum

over the jth column is identified as Nj.

2.4.1 Similarity-CNM Algorithm for Unweighted Social Networks

The CNM algorithm starts from a single/separate nodes with no edge connections,

low modularity and low community structure. It then proceeds to add edges, build

communities and merge pairs that increase the modularity. This process tends to

quickly build larger communities of low degree nodes, which results in poor max-

imum modularity values [55]. To solve this issue, we propose to feed the CNM

algorithm with an initial set of similar nodes. This initial set of nodes composes

of a synthetic virtual social network which is generated from an original one. This

similarity pre-processing step helps in building more connected nodes and shaping

the structure of the communities more quickly. After this pre-processing step, the

CNM algorithm is applied to the resulting connected nodes. Our goal is to enhance

the community structure and maximize modularity.
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Algorithm 2.8 Similarity-CNM Algorithm

1. Start from single nodes and the original social network.

2. Start generating the similarity social network from the original social net-
work.

(a) For each node a and b do:

i. Calculate similarity based on Equation 2.8.
ii. For each node a find the highest similar node b.

• Establish a link between nodes a and b.
iii. Apply CNM algorithm to calculate the modularity (Q).

The similarity-CNM Algorithm shown in Algorithm 2.8 starts by building

a new synthetic social network based on the original social network. The synthetic

social network is a virtual social network labeled ‘similarity social network’. During

this process, nodes are grouped together to create a virtual social network based

on high similarity. If two nodes a and b are highly similar, then a link is virtually

established between them. The synthetic link is virtually established in the synthetic

network, but no actual link is created in the original social network. At the end of

the process, a new virtual network is generated where nodes similarity is derived

from the Jaccard Measure [83], as shown below:

Similarity(a,b) =
ad jab + cnab

na +nb
(2.8)

In Equation 2.8, ad jab which represents the intersection of row a and col-

umn b in the adjacency matrix, is equal to 1 if there is an edge between nodes a and

b and 0 otherwise, cnab are the number of common neighbors of nodes a and b, na

and nb are the total neighbors of nodes a and b respectively.

The original CNM algorithm [48] is applied on the generated synthetic net-

work to discover new communities with better structures. The generated synthetic

network includes the original network. That is because the method includes adja-

cent connections between any two nodes ad jab. This expectation is facilitated by

the pre-processing step, which synthesizes new similarities in the virtual network.



48

This step also favors the generation of communities which are densely connected as

shown later in the experiments and performance analysis section of this chapter.

2.4.2 ECD-Jaccard Algorithm for Weighted Social Networks

CNM is usually solicited for unweighted social networks. In our next algorithm, we

use the weighted version of CNM to show that by assigning weights to the edges of

the network we can infer sets of highly connected nodes. To assign a weight to each

edge, we used a simple similarity measure called the Jaccard Similarity [83].

JaccardSimilarity(a,b) =
|na ∩nb|
|na ∪nb|

(2.9)

In the worst case, computing the Jaccard similarity occurs in O(n2) time.

So for large data sets, the computations might be expensive, especially that the Jac-

card method needs to perform the calculation from the start for each pair, and it

does not use any previously calculated information [83]. We note here that this

computation was performed offline and before applying the community detection

algorithm, which will not reduce the performance of the CNM algorithm. In the

case of real-world social networks, the connections and relations are changed dy-

namically. In that case, our algorithm is able to compute the new relations built

between any two nodes in the social network without affecting the performance of

the CNM algorithm. The basic steps of our algorithm are shown in Algorithm 2.9.
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Algorithm 2.9 ECD-Jaccard Algorithm
Input:
G, unweighted directed graph
Output:
Gw, weighted directed graph where the edges weights are calculated based on nodes
of Jaccard Similarity
Qs, modularity values
begin

//initialize the weighted graph matrix (Gw) to zeros
Gw = 0;
//a and b are nodes in G
//EG is the set of edges for graph G
for every (a,b) ∈ EG do

//calculate weights using the Jaccard Similarity Measure
//then assign weights to their appropriate location in Gw
Gw[a,b] = JaccardSimilarity(a,b);

end for
Apply CNM algorithm on Gw and generate Qs, where

Q = (number of internal community edges) - (expected number of such edges)
end

2.5 Experiments and Performance Analysis

We mentioned earlier that the proposed approaches perform well in detecting com-

munities in online social networks. To illustrate this potential outcome, this section

shows our experimental results for both synthetic and popular real-world datasets.

We used the modularity Q and the normalize mutual information discussed earlier

in our experiments as evaluation metrics to show the performance and accuracy of

our algorithms. We implemented the algorithms using Matlab and C++. The maxi-

mum modularity (Q) was estimated using the CNM algorithm provided by Clauset,

et al. [48]. We also calculated the normalize mutual information using the formula

provided Danon, et al.[82]. We performed the experiments on an Apple iMac with

Mac OS X version 10.6.8, processor 2.66 GHz intel Core i5 and 4GB memory.
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2.5.1 Benchmark Networks Simulation for Similarity-CNM Al-

gorithm

In this experiment, we used benchmark generated networks. There are many gener-

ators for testing networks and we used the benchmark network generator developed

by Lancichinetti [84]. The generator requires different parameters to produce a di-

rected unweighted network. The values we used to generate different benchmark

networks for a range of � values (varying from 0 to 1 and defined next) are :

N = 10000,k = 20,maxk = 50,�= 0,0.1,0.2, . . . ,1,minc = 100,maxc = 300

Where (N) is the number of nodes in the network, which we set to 10000

nodes to be equivalent to the number of nodes in the real-world network Flickr that

we will evaluate in Section 2.5.2, (k) is the average in-degree for the nodes, (maxk)

is the maximum in-degree for the nodes, (�) is the fraction of links a node shares

with other nodes in other communities; called also the mixing parameter; (minc) is

the minimum community size and (maxc) is the maximum community size.

We generated six unweighted benchmark networks and performed two ex-

periments on these networks. First the CNM is applied directly on the benchmark

networks to generate original communities. Secondly, we applied the Similarity-

CNM technique on the benchmark networks followed by applying the CNM algo-

rithm. Then we compared the results generated from applying the CNM on both

experiments. Figure 2.8 shows how modularity (Q) evolved over time for networks

with � value of 0.4 and 0.8 respectively. We noticed that Q in general starts small

then increased over time to reach its maximum point. Beyond this point, Q value

drops sharply as the randomly generated edges exceeds the actual ones as shown

in Equation 2.6. By calculating the nodes similarity we noticed higher Q values

and better maximum Qs after applying Similarity-CNM technique. The values of

maximum Q in synthetic networks outperforms the maximum Q values in original

network by more than 25% when � value is equal to 0.6. Adding a similarity fea-
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ture to the network edges helps in grouping nodes in robust sets which ensure better

community structure.

Table 2.6 and Figure 2.9 show the values of Qmax for benchmark networks.

For these networks with µ value 0.4 and 0.8, the maximum modularity value for

Similarity-CNM outperforms the original CNM algorithm by more than 50% and

23% respectively. Table 2.7 and Figure 2.10 also show that number of steps to reach

Qmax is better in Similarity-CNM than the original CNM algorithm. For benchmark

networks with µ values of 0.4 and 0.8, the number of steps when running the origi-

nal CNM is 9993 and 9994 steps respectively, while in Similarity-CNM it is reduced

to 9819 and 9881 steps respectively.
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(a) Maximum Modularity When µ = 0.4

(b) Maximum Modularity When µ = 0.8

Figure 2.8: Maximum Modularity For Different Mixing Parameter

µ = 0 µ = 0.2 µ = 0.4 µ = 0.6 µ = 0.8 µ = 1
Original CNM 0.981127 0.71149 0.463902 0.243267 0.131554 0.128823

Similarity-CNM 0.984779 0.98204 0.965201 0.49581 0.362154 0.374377

Table 2.6: Comparing Maximum Modularity using CNM Algorithm and Similarity-
CNM Algorithm for Benchmark Networks
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Figure 2.9: Maximum Modularity using CNM Algorithm and Similarity-CNM Al-
gorithm for Benchmark Networks

µ = 0 µ = 0.2 µ = 0.4 µ = 0.6 µ = 0.8 µ = 1
Original CNM 9943 9987 9993 9996 9994 9993

Similarity-CNM 9388 9674 9819 9881 9832 9783

Table 2.7: Comparing Number of Steps to Reach Qmax using CNM Algorithm and
Similarity-CNM Algorithm for Benchmark Networks

Figure 2.10: Number of Steps to Reach Qmax using CNM Algorithm and Similarity-
CNM Algorithm for Benchmark Networks

We also used the normalized mutual information measure on the bench-
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mark data to evaluate the accuracy of the benchmark networks results. Normalized

mutual information measure estimates the common information between the orig-

inal and the detected communities. This will show how much the communities

that our algorithms generate match the actual ones. Figure 2.11 shows that the

Similarity-CNM algorithm detects communities that are 90% similar to the original

ones when µ = 0. With that value of µ , the Similarity-CNM algorithm will detect

612 communities compared to only 57 communities found by the CNM algorithm

in the original benchmark network as shown in Table 2.8. When µ = 0.4 & 0.8, the

communities detected by the Similarity-CNM are 55% and thus almost 2% higher.

Figure 2.11: Normalized Mutual Information for Different Mixing Parameter Val-
ues

µ CNM Similarity-CNM ECD-Jaccard
0 57 612 57

0.2 13 326 56
0.4 7 181 49
0.6 4 119 19
0.8 6 168 6
1 7 217 8

Table 2.8: Number of Communities Detected by the CNM, Similarity-CNM and
ECD-Jaccared Algorithms for 10000 nodes Benchmark Network
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2.5.2 Evaluation of Similarity-CNM Algorithm with Real-World

Networks

For this experiment, we used two real-world social networks, to compare our results

against the original CNM algorithm results. The first social network is Flickr, which

is a photo sharing social network. In Flickr, users can share and embed photographs

in their own blogs. We used the data set provided by Cha, et al. [85]. The Flickr

network consists of 2,570,535 nodes and 33,140,018 links between the nodes. We

selected 10,000 nodes, to run our experiments. The second social network is the

American Football Network which is a network of American football games be-

tween colleges (Division IA) during Fall 2000 season [86]. This network contains

115 nodes.

We focused on finding the value of Qmax since it represents the best par-

tition in the network. We compare Qmax results obtained using the original CNM

algorithm against the Qmax results we got from applying Similarity-CNM algorithm.

We also compared the number of steps to reach Qmax for both algorithms. We no-

ticed a difference in modularity as well as the number of steps used for both ex-

periments. Similarity-CNM produces higher Qmax in fewer steps compared to the

original CNM algorithm. Table 2.9 and Figure 2.12 show the values of Qmax for

both Flickr and the American football social networks.

Flickr American Football
Original CNM 0.247936 0.577

Similarity-CNM 0.9253 0.813

Table 2.9: Comparing Maximum Modularity using CNM Algorithm and Similarity-
CNM Algorithm for Real-World Networks
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Figure 2.12: Maximum Modularity using CNM Algorithm and Similarity-CNM
Algorithm for Flickr and American Football Networks

Flickr American Football
Original CNM 9879 108

Similarity-CNM 8843 100

Table 2.10: Comparing Number of Steps to Reach Qmax using CNM Algorithm and
Similarity-CNM Algorithm for Real-World Networks

Figure 2.13: Number of Steps to Reach Qmax using CNM Algorithm and Similarity-
CNM Algorithm for Flickr and American Football Networks

For the Flickr network, the maximum modularity value for Similarity-

CNM outperforms the original CNM algorithm by more than 67%. While for

American Football network, the maximum modularity value for Similarity-CNM
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exceeds by more than 23% the value obtained in the original CNM algorithm. Ta-

ble 2.10 and Figure 2.13 also show that number of steps to reach Qmax is lower in

Similarity-CNM than the original CNM algorithm. For Flickr, the number of steps

when running the original CNM is 9879 steps, while in Similarity-CNM it is re-

duced to 8843 steps. For American Football, the number of steps is also reduced

from 108 steps for original CNM to 100 steps for a Similarity-CNM algorithm.

We also applied the Similarity-CNM to different network sizes on the

Flickr network, because it has high number of nodes, compared to the American

football network, and thus we could observe performance scales for varying net-

work sizes. Starting with 500 nodes and increasing the network size to 10,000

nodes, we compiled a range of performance results in Tables 2.11 and 2.12, and il-

lustrated the corresponding graphic presentations of the results in Figures 2.14 and

2.15.

Although the Similarity-CNM requires consistently fewer steps than the

original CNM, the scale of the steps increases faster in the Similarity-CNM. This

contributes to the pre-processing that Similarity-CNM needs to perform on the

nodes before applying the original CNM algorithm. A new virtual social network

(similarity social network) will be generated, with fewer nodes and edges than the

original one, each time we add new nodes to the network. This will decrease

the steps to reach the maximum modularity (Qmax) value and the accumulated Q

will reach maximum value in larger scales. Compared to the original CNM, the

Similarity-CNM algorithm performs better and is more sensitive to network size.

Flickr (Nodes) 500 1000 2000 4000 6000 8000 10000

Original CNM 0.314201 0.196513 0.154273 0.200447 0.194078 0.194702 0.247936
Similarity-CNM 0.733643 0.900258 0.956798 0.976981 0.982534 0.983595 0.9253

Table 2.11: Comparing Maximum Modularity for different Flicker Network Sizes
using CNM Algorithm and Similarity-CNM Algorithm
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Figure 2.14: Maximum Modularity for Different Network Sizes using CNM Algo-
rithm and Similarity-CNM Algorithm

Flickr (Nodes) 500 1000 2000 4000 6000 8000 10000
Original CNM 494 979 1973 3954 5929 7908 9879

Similarity-CNM 384 821 1717 3473 5257 7015 8843

Table 2.12: Comparing Number of Steps to Reach Qmax for Different Flicker Net-
work Sizes using CNM Algorithm and Similarity-CNM Algorithm

Figure 2.15: Number of Steps for Different Network Sizes using CNM Algorithm
and Similarity-CNM Algorithm
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2.5.3 ECD-Jaccard Algorithm Simulation with Artificial Net-

works

In this experiment, benchmark networks were used that have the same configura-

tion as in Section 2.5.1. After generating six unweighted benchmark networks, we

applied the Jaccard similarity technique and derived the edge weights for each net-

work, in order to generate weighted networks. The CNM algorithm was applied on

both unweighted and weighted networks. Figure 2.16 shows the evolution of the

modularity (Q) over time for networks with � value 0.4 and 0.8 respectively. We

noticed that Q in general starts small then increases over time to reach its maximum

point. Beyond this point, the Q value drops sharply as the randomly generated edges

exceed the actual ones. By calculating the nodes similarity and assigning weights to

the network edges we noticed higher Q values and better maximum Qs in weighted

networks than in unweighted networks. The values of the maximum Q in weighted

artificial networks outperforms the maximum Q values in unweighted networks by

about 11% when � value is equal to 0.4. Higher values resulted from feeding the

CNM algorithm with the edge weights generated earlier. Adding similarity features

to the network edges helps in grouping nodes in robust sets which ensures a better

community structure.
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(a) Maximum Modularity When µ = 0.4

(b) Maximum Modularity When µ = 0.8

Figure 2.16: Modularity (Q) Evolution Over Time for Different Mixing Parameters
�

By comparing the maximum modularity (Q) for all generated networks,

both weighted and unweighted, we noticed that for networks with high mixing pa-

rameters (�), the modularity is low due to weak community structures and less inter-

nal connectivity between the nodes. As the mixing parameter decreases, the modu-

larity measure (Q) increases, resulting in a higher node density within communities.

These results are depicted in Figure 2.17.
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Figure 2.17: Maximum Modularity (Qs) for Different Values of �

The normalized mutual information for the ECD Jaccard is 100%, 54%

and 0.3% when µ = 0,0.4 and 0.8, respectively as shown in Figure 2.11. When

µ = 0.4, ECD-Jaccard algorithm is able to detect 49 communities compared to 7

communities detected by the CNM (see Table 2.8).

2.5.4 Application of ECD-Jaccard Algorithm to Real-World Net-

works

We also applied these techniques to data collected from the real-world social net-

work Flickr [85]. The data set was represented by an unweighted directed graph in

order to match the previous experiment (i.e. artificial settings). From the data set

provided [85], we selected 10,000 nodes and extracted the list of links (or edges)

between these nodes. The nodes represent Flickr users. We generated the weighted

version by applying the Jaccard similarity technique. Figures 2.18 and 2.19 show

that adding similarity between the nodes as a weight to the edges also increases the

modularity in real-world networks. The weighted network results in higher modu-

larity (Q) which increased by almost 3% compared to the original CNM algorithm

when the number of nodes is 10000. This confirms the range of performance results

obtained earlier in the artificial network experiments.
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Figure 2.18: Modularity (Q) Evolution Over Time for Flickr’s Real-World Network
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Figure 2.19: Modularity (Q) Evolution Over Number of Nodes for Flickr’s Real-
World Network

2.6 Related Works

Many algorithms for community detection have been proposed [55], and extensive

comparative studies between these algorithms have been investigated previously

[87, 53, 88, 89, 90, 91]. Newman and Girvan proposed a method for discovering

communities based on hierarchical divisive algorithms [79], where an edge is re-

moved iteratively from the network to split it into communities. However, these

divisive algorithms were rarely used to study community detection at that time as

most research was based on agglomerative algorithms due to various complexity

issues. The main idea of Newman and Girvan’s algorithm is to remove the edge

with the highest betweenness. One speedy method to measure edge betweenness is

the shortest-path betweenness by measuring all the shortest paths passing through

a given link. Once an edge is removed, a recalculation of the edge betweenness is

needed for all edges, which leads to substantial computational costs. The process

continues until the desired communities with a target threshold are reached.

Fortunato, et al. [92] implemented a hierarchical clustering algorithm

based on the work of Newman and Girvan [79]. They used the centrality mea-

sure to iteratively find and remove edges in the network. Their work shows that
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even though the algorithm runs in O(n4), it is powerful when dealing with mixed

and hard to detect communities.

Newman [80] also proposed another qualitative method for identifying

communities, called modularity. The modularity method uses a quantity function

Q to measure whether a specific division is meaningful, when identifying commu-

nities. Their algorithm was simple with a reasonable running time (compared to

other existing algorithms at that time) with the worst complexity of O(n2) on a

sparse network of n nodes. This method has become very popular and is widely

used. However, it has a resolution limit. Fortunato and Barthélemy [93] showed

that modularity has an upper scale, which depends on the size of the network, and

any module that is smaller than the scale might not be determined. Zhenping Li, et

al. [94] proposed a quantitative modularity density measure to get over the limits of

the regular modularity method proposed by Newman and Girvan. They used both

the nodes and the edges in their method and showed that the optimization of the

quantitative modularity density measure will not affect the network division pro-

cess, resulting in better detection of communities. But this method is still NP-hard.

Another solution for the resolution limit [95], suggests using a modified (multires-

olution) version of modularity. Recently Lancichinetti and Fortunato [96] showed

that multiresolution modularity also has limits related to merging small clusters

when the resolution is low and splitting large clusters when the resolution is high.

Clauset, Newman and Moore [48] proposed another algorithm called CNM.

The CNM algorithm is a bottom-up agglomerative clustering method that uses

greedy techniques to combine and merge clusters in a network. The algorithm is

similar to [80] and also gives similar results for detected communities. But it is

more efficient in identifying communities since its time performance in worst case

scenarios drops to O(nlog2n).

To the best of our knowledge, the use of weighting schemes to enhance

community detection has rarely been explored. Khadivi, et al. [97] proposed pre-

and post-processing steps to improve the Newman and Girvan algorithm known as
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Newman Fast. They calculated the weights for each edge ei j connecting any two

vertices i and j in the graph. The weight represents the normalized product of the

edge betweenness and the common neighbor ratio. After calculating the weights,

the Newman Fast Algorithm uses a greedy method to maximize function Q. The

Newman Fast Algorithm starts by representing each vertex as a community. Then

communities are merged to maximize the value of Q. The algorithm ends when Q

cannot be improved any more or all nodes have formed one single community.

An enhanced approach of the Newman Fast Algorithm was proposed by

the same authors [98]. They proposed two parameters α and β that control the val-

ues generated by the edge betweenness and the common neighbor ratio. Different

pairs of α and β will generate different results. Our approach is different than the

methods proposed by [98], as we use a Jaccard Measure to compute similarities

between nodes instead of using only common neighbors.

Berry, et al. [99] focused on studying the resolution limits discovered by

Fortunato and Barthélemy [93]. However, they investigated this on weighted net-

works. Fortunato and Barthélemy found that there was a limit for communities that

can be detected, represented by
�

|E|/2, where |E| is the number of edges in the net-

work. The authors stated the resolution limit for weighted networks to be
�

Wε/2,

where W is the sum of the weights in the network and ε is the maximum weight

of an edge connecting two different nodes from two different communities. They

proposed a modified version of the CNM algorithm called wCNM. They calculated

the edges’ weight based on the number of iterations of length k. Our approach is

different from Berry, et al., as we generate a virtual social network based on nodes

similarity and then use it to detect the final communities through a CNM algorithm.

Yan and Gregory [100] also studied the effect of adding weights to the net-

work results generated by community detection algorithms. They used the common

neighbor technique to calculate the edges’ weights. The common neighbors mea-

sure is based on finding the number of common neighbors for each two vertices in

a network.
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Another approach was proposed by De Meo, et al., in [101]. They pro-

posed a k-path centrality technique that is computed using random paths of most

k lengths. This approach was not designed for any specific community detection

algorithm [97, 98]. Instead, it works with any algorithm that deals with weighted

networks. Our approach is different as we actually propose two methods to enhance

community detection. In the first proposal, we generate a virtual social network

based on nodes similarity as introduced earlier. In the second enhanced approach,

we use the Jaccard Coefficient to calculate similarity between nodes. In fact both

proposed approaches are based on the Jaccard Measure. The first proposal considers

the edges instance between the nodes. For example if there is a link between nodes

a and b then the adjacency matrix value is 1, otherwise it is zero. In general, the

Jaccard and the common neighbor techniques look similar, but in fact there is a ma-

jor difference between them. The Jaccard measure computes the similarity between

every two nodes, by dividing the intersection of the common neighbors by the sum

of all neighbors of the two nodes. Whereas the common neighbor technique takes

only inter-connections into consideration [102].

2.7 Summary

In this chapter, we discussed clustering techniques in social networks since these

techniques are the basis for detecting communities. Two complementary approaches

were suggested for community detection: Similarity-CNM and ECD-Jaccard, to

provide enhanced community structures. Both algorithms use an offline pre-processing

step before applying the CNM algorithm. We used a benchmark network generator

as developed by Lancichinetti, et al. [84]. We also used a real-world social network,

Flickr, to compare our results to the original CNM algorithm results. For both al-

gorithms, Similarity-CNM and ECD-Jaccard, we observed good results compared

to the results generated from a CNM algorithm. We found that even though our

algorithms run in O(n2) time, this offline pre-processing manipulation can detect

better communities.
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Social Influence

3.1 Introduction

Online Social Networks (OSNs) have grown in popularity since they were intro-

duced a decade ago. Millions of people participate and register in online social

networks such as Facebook, LinkedIn, Flickr, MySpace, and Twitter. Facebook it-

self accounted for more than 1 billion active user in 20121. These social networks

have a great impact on people’s lives at different levels, and in a variety of ways.

One use of OSNs is in reporting adversity and boosting awareness about situations,

especially in places that lack physical communication facilities, due for example

to nature disasters such as hurricanes and earthquakes. People are increasingly us-

ing social networks to spread information during crises because these networks are

handy and easy to use. Acar and Muraki [103] studied posts on Twitter, (called

tweets), two weeks after the devastating Tohoku earthquake that resulted in an over-

whelmingly destructive tsunami in Japan during March 2011. They found that peo-

ple in the affected areas had a tendency to post tweets related to their situation, while

people in remote area post tweets to let their followers know they are safe. Another

widespread use of OSNs occurred during political protests in Tunisia and Egypt

in January 2011, where massive anti-governmental demonstrations forced dictator-

ships to fall. What is interesting in these events is that social network bloggers did
1https://newsroom.fb.com/news/2012/10/one-billion-people-on-facebook/

67
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not use OSNs to advertise their webpages or encourage people to write about their

frustrations, but to engage people and motivate them into taking action not only

online but in real world too, which illustrates the influential power and impact of

social networking.

In real life contexts, an influencer is a person who is followed by many

people and has the power to make changes in a community. The same aspects occur

in OSNs contexts, as they form a large social space where people are engaged to-

gether to build relationships and expand their connections with others. These OSNs

have the same traits of real-life communications and many people thrive socially

in OSNs as they do in their real life. In previous years, influential people were

those who had many friends. This idea evolved as influencers started not only to

have many friends, but also to actively engage their friendship community in action.

Currently, many influencers drive discussion topics about a specific topic or brand

[104]. This kind of influence was the main building block of the interest graph: a

network of people who are interested in each other’s content [105]. Interest-graphs

help with branding products and services by targeting influential people in social

networks [105].

In this chapter, we address social influence by evaluating different models

used to measure influence probability. Conceptually, OSNs are related to graph the-

ory [36], computer science and the social sciences [106]. To study and analyze these

networks properly, a combination of these disciplines needs to be considered. So-

cial networks can be modeled as a graph that contains nodes representing members

and edges corresponding to the relationship types between the nodes (e.g. friend-

ship). Social Networks Analysis (SNA) [107] can help in addressing the sources

and distribution of influential power in social networks, based on the structure of

the network. The influential power of a user rises with his relationship to other

influential users in the network. Sociologists have studied the power of a specific

node in a network by addressing the attributes of centrality using SNA. They look

at degree, closeness and betweenness centralities [107]. Nodes with high degrees,



69

high closeness and high betweenness will have greater influence. Figure 3.1 shows

a sample social network graph and the edges between the nodes. The graph shows

clusters and central nodes that can be sources of great influential power when eval-

uating their social influence. One drawback of measuring influence based on SNA

is that centrality is based on the structure of the network, while influence should be

based on the dynamics and changes that occur in the OSNs connections and links.

Figure 3.1: Social Network Diagram

A better understanding of the evolution of social networks leads to a bet-

ter understanding of the community structure and social influence [108] of these

networks. This investigation helps in conducting different activities around OSNs

based communities such as targeted advertisements, and item recommendation to

OSNs users. Research works out in this area is sparse, and spans multiple disci-

plines. As well as our efforts to summarize the state of the art surrounding social

influence in OSNs, we also evaluate different approaches and classify them in order

to understand commonalities and distinguish differences.

The rest of this chapter is organized as follows: Section 3.2 provides ba-
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sic information about social influence through defining influence in OSNs contexts.

Section 3.3 discusses suggested social influence models as well as their limitations,

strengths and challenges. Section 3.4 provides a survey of social influence related

works on OSNs and state the problem of measuring influence probability. Section

3.5 provides a classification of influence propagation algorithms. In Section 3.6

we compare two benchmark influence propagation algorithms, Independent Cas-

cade and Leaner Threshold. Finally, Section 3.7 concludes the chapter with some

possible future extensions to the social influence models presented.

3.2 Influence in Online Social Networks

Social Influence has been studied by sociologists and social psychologists since the

early years of the 20th century [109]. It started in 1898, with the first experiment by

Norman Triplett on the phenomenon of social facilitation [110]. This theory implies

that people tend to do well in the things they are good at when they are watched by

others [110]. One of the main theories of social influence was proposed in 1950 by

Leon Festinger, it is called Cognitive Dissonance Theory. This theory is related to

how thinking can affect our behavior [111]. In 1959, French and Raven discussed

social power and provided a formalization for the social influence concept [112].

Research was more mature in both theory and method during the 1980’s and 1990’s

[109].

Social Influence has been studied in different disciplines and has historical

roots in sociology, through studying opinion formation and the diffusion of inno-

vations [27, 28]; in economics, where social influence is represented by theoretical

models that show how individuals are inclined to coordinate their economic deci-

sions [29, 30]. Recently, digital social influence research has started to attract more

attention due to the availability of many important applications. For example, com-

puter scientists have developed models of social influence to support applications

such as viral marketing [31, 3, 32], the spread of online news [33, 34], and the

growth of online communities [35].
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3.2.1 Social Influence Definition

Sociologists define social influence as a “change in an individual’s thoughts, feel-

ings, attitudes, or behaviors that results from interaction with another individual or a

group” [112]. Social influence occurs when an individual changes his/her behavior

after interacting with other individuals who tend to be similar or superior.

Social influence develops social correlation, which is divided into three

categories [113]:

• Influence: where the user performs an action based on his/her friends’ recent

actions. For example when the user purchases a product because one of his

friends just bought or recommended that product.

• Homophily: A user chooses friends who share the same characteristics [114,

115], which leads to performing the same actions. For example two people

who have Xbox are more likely to be friends.

• Confounding factors: or external influence that affects individuals who are

located near each other in the social network. One example would be when

two users live in the same city, which makes them perform the same activities

like taking the same photos and posting them with the same tags in an online

photo social network such as Flickr.

Social influence across OSNs can help in spreading different behaviors, ideas, and

new technologies throughout the network. For example, a fashion company might

provide coupons to the most influential users in their social network or take ad-

vantage of these users to promote a new product. Different researches has been

conducted to study the methods of leveraging social influence [3] and the effect of

influence on product growth [116]. This leads to the process of carefully choosing

targets with high influential power as a good marketing strategy that could lead to

high acceptance levels for a certain product among users of the social network. So-

cial influence is becoming a complex and subtle force that governs the dynamics
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of all social networks. Therefore, there is a need for methods and techniques to

analyze and quantify social influence.

The rich properties and components of social networks paved the way for

better analysis of individual user actions, that leads to further profiling users’ be-

havior in OSNs. Through their behaviors, people can influence other users to do

specific actions. This is a powerful process that can generate revenue or incite

global actions. Social influence appears as a social correlation pattern where the

actions of a user can urge his or her friends to behave in the same way [117]. OSNs

provide different properties that make it possible to study user actions that influence

community behaviors. The availability of rich interactions between users and the

data that results from such interactions facilitate social influence analysis. In Sec-

tion 1.2 we described social network structures and introduced some properties that

help in a better understanding of social influence.

3.2.2 Basic Measurements for Influence Strength and Power

Social networks are modeled as graphs G= (V,E), where V is the set of nodes in the

network and E is the set of edges. The nodes are related to the users and the edges

represent the relationships between these users in the network. Influence strength

can be related to a node or an edge in the network. For example some nodes in

the network might have a higher influence than other nodes, let’s say that node A

has a high influence and higher edge strength on node B. This strong influence will

make node B behave similarly to node A. In this section we will present the basic

measures of strength for edge and node levels.

Edge Strength

The edge or tie strength concept was introduced by Granovetter [118]. For edge

level there are two different types of ties, strong ties and weak ties. The tie strength

depends on the number of overlapping friends or neighbors between the two nodes

[118]. The larger the overlap the stronger the ties between the nodes. The strength
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between two nodes A and B can be defined in terms of a Jaccard coefficient as

follows [119]:

S(A,B) =
| nA ∩ nB |
| nA ∪ nB |

where nA and nB are the neighbors of nodes A and B, respectively. There

are other measurements to determine the tie strength such as embeddedness [120].

Strong ties represent a trust relationship between nodes. While weak ties occur be-

tween acquaintances when the overlap is small and restricted information is shared

between the nodes such as private and personal details and posts.

Node Strength

The importance of the node in the network is measured through centrality. Nodes

with high centrality have higher influence in the network than nodes with less cen-

trality power. Here we distinguish three levels of centrality: degree, betweenness

and closeness.

Figure 3.2: Degree Centrality

Degree Centrality

is the number of ties that a node has [107]. In Figure 3.2, node Ali has the highest

degree centrality, because it is the node with the highest number of ties or edges.
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This means he is quite active in the network. However, he is not necessarily the

most influential person because he is only directly connected within one degree to

people in his group. He has to go through Ahmed to get to other connections.

Figure 3.3: Betweenness Centrality

Betweenness Centrality

occurs when a node falls in a favored position between two groups in the network

[107]. In Figure 3.3, Ahmed has the highest betweenness because he is between Ab-

dulla, Mohammed and Saeed, who are between other nodes. Abdulla, Mohammed

and Saeed have lower betweenness because they are essentially within their own

groups. So Ahmed has potentially more influence in the network. Betweenness

represents a single point of failure; when the node with highest betweenness cen-

trality is removed from the network the ties between groups separate.
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Figure 3.4: Closeness Centrality

Closeness Centrality

measures how quickly a node can access more nodes in a network [107]. In Figure

3.4, Abdulla and Mohammed have the highest closeness centrality because they can

reach more entities through shorter paths.

3.2.3 Social Influence Analysis

There are different considerations for modeling influence in social networks. Edge

and node strength are typical attributes used to analyze influence in social networks.

In addition, the following are additional analytical considerations:

• Multi-topics: Social influence will have different effects on different topics

discussed in the social network. For example, assume two neighbors A, spe-

cialized in data mining and B, specialized in programming. A will have high

influence on B when the topic is related to data mining while B will have

higher influence on A when the topic is related to programming.

• User actions: considering user actions and past behaviors while measuring

influence.

• Scalability: The numbers of nodes in OSNs increases rapidly. Therefore there
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is a need to develop methods that scale well with large datasets [113].

As far as we know, limited research has compared modeling techniques to spec-

ify their limitations and challenges. In this chapter, we will address these issues

based on social influence models. We also propose a categorization of these mod-

els based on general criteria to compile their common features and distinguish their

differences in a single snapshot.

3.3 Structures And Models of Social Influence

Some theoretical and empirical works have been conducted in order to understand

users’ behavior when correlated to their friends’ attributes in social networks. Back-

storm, et al. [35] observed the process of joining an online community and noticed a

correlation between a user joining an online community and the number of friends

who are in the community. Another study by Marlow, et al. [121] observed tag

usage in Flickr. They noticed a correlation between the tags assigned by a user

and those assigned by his friends in his social network. These provides evidence of

influence between users’ and their friends.

The spread of influence can be modeled through probabilistic frameworks

[2]. While a behavior is spreading through the social network we need to estimate

the probability that a particular individual will embrace the new behavior, given that

k of his/her neighbors in the social network have done so. Neighbors refer to people

who have a direct edge or tie between them in the OSNs. At any point in time t,

users would be ‘adopters’ or ‘non-adopters’ of the behavior based on whether they

adopt the new behavior [2].

The properties of social networks enable probability evaluation of user be-

haviors especially when those behaviors are spread over a large population. For

example the probability of a person purchasing a product given that k of his or her

friends recommended that product [32]. Another example would be the probability

of joining an online community as a function of the number k of neighbors belong-

ing to community [121, 122].
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If we have a social network with the intention of influencing the individual

users, as we want to introduce a new product, then a viral marketing strategy could

start by targeting the most influential users in the network. This will generate a

chain-reaction of influence driven advertisement campaigns. By using this method,

reaching a very large proportion of the network can occur with very small marketing

costs.

3.3.1 Social Influence Structure

The problem of influence maximization can be expressed as follows: “given a net-

work with influence estimates, how to select an initial set of k users such that they

eventually influence the largest number of users in the social network” [123].

This influence problem can be formally stated as follows: given a social

graph that is undirected G = (V, E, T ) where V represent the set of users in the net-

work, E is the set of edges in the network and T is the matrix of timestamps at which

the social ties were created, matrix social ties represent the links and relationships

between the nodes in the social network. A tie between users u and v is represented

by an undirected edge (u, v) ∈ E. Each edge is labeled with a timestamp at which

the edge was created. Assuming that social ties are never broken [123], the labeling

function can be represented by T : E → N.

A log of actions, is maintained where an action could be joining an online

community or purchasing a product. This is formulated as Actions(User, Action,

Time) where a tuple (u, a, tu) indicates that user u has performed action a at a time

tu. The log contains all the actions performed by all users in V of the social graph G.

Let A represents the actions set, Au represents the number of actions performed by

user u, and Au&v is the number of actions performed by both users u and v and Au|v

represents the number of actions that either u or v performed. This can be shown

through the following formula Au|v = Au + Av − Au&v . We also use Au2v to denote

the number of actions propagated from u to v [123].

Definition 1 formally introduces the action undertaken between users in
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graph G.

Definition 1 (Action Propagation). We say that an action a ∈ A propagates

from user u to v if: (i) (u, v) ∈ E; (ii) ∃(u, a, ti),(v, a, t j) ∈ Actions(V, A, T ) with ti

< t j; (iii) T (u, v) ≤ ti. When this happens we state the predicate prop(a, u, v,�t)

where �t = t j − ti.

Definition 2 shows the propagation graph [123] of each action. This leads

to a natural notion of a propagation graph, defined next.

Definition 2 (Propagation Graph). For each action a, we define a propaga-

tion graph PG(a)= (V (a), E(a)), as follows: V (a)= {v | ∃t (u, a, t)∈Actions(V, A, T )};

there is a directed edge u �t
−→v in E(a) whenever prop(a, u, v,�t).

The propagation graph of an action is a directed graph, which contains all

the users who performed that action, with the edges connecting them according to

the direction of propagation.

3.3.2 Social Influence Models

Although many models have been proposed to address the problem of measuring

influence probability, there are limited models to contrast their strengths and limi-

tations. Sun and Tang [119] introduced a survey of social influence analysis models

and algorithms for measuring social influence. They discussed influence maximiza-

tion and its application in viral marketing. They focused on the computational as-

pect of social influence analysis by calculating a selection of people who are similar

to each other (for example two users who have the same opinion) and influence that

leads users to adopt behaviors experienced by their neighbors (for example chang-

ing the opinion of a user to agree with one of his neighbors). They also provided

methods to measure the weight of influence. Our survey approach categorizes so-

cial influence models into four categories: 1) static models, 2)dynamic models, 3)

diffusion models and 4) models based on user behaviors. We also contrast different

influence models stating their strength and limitations.

OSNs are still new and need to be fully analyzed. OSN models should
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represent and satisfy some inherent properties introduced in Section 1.2.2. As a re-

sult modeling social influence in OSNs is still in its infancy. There are no standard

models for representing influence, which leads to difficulties in analyzing large-

scale networks based on social influence. In this section, we will look at different

models of social influence and compare the results of each model to determine the

most accurate way to measure the probability (pu,v) with which a node u is influ-

enced by its neighbor v. We discuss the strengths and limitations as well as the

different challenges of the models.

Generally there are two basic categories to represent influential models in

social networks. static influence models are the simplest and easy to test. They

assume the probability of influence is static and time-independent. Only the current

state of the network and the most influential nodes at that state are considered. The

second category of models is labelled as dynamic influence models and assumes

that influence changes over time. We will see later that the models in this category

are the most accurate as they can tell the history of a specific network and identify

the most influential nodes for spreading information, but they are very expensive

when tested on large data sets as they take long time to execute for large social

networks.

Other categories of social network models discussed in this paper are cate-

gorized as linear threshold models and independent cascade models. Models based

on greedy algorithms and past user behaviors such as topical affinity propagation

models are also addressed in this paper. Figure 3.5 shows the Social Influence

Models we will discuss in this section.
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Figure 3.5: Social Influence Models

The challenge that any researcher faces is how to compare models of dif-

ferent categorization and state the relationship between them. Especially when the

relationship between the models is ambiguous. Thus we aim to clarify this ambigu-

ity by explaining and finding similarities in each.model.

Next, we will briefly introduce each category.

Static Influence Models

Static Influence Models are independent of time and used to capture the most in-

fluential nodes. Therefore the network size is fixed. One instance of this model

is based on Bernoulli Distribution. The success state is labelled n=1 and occur

with probability p. In social influence a specific node u has a fixed probability to

influence its inactive neighbor v. If it activates the neighbor then this is a success-

ful attempt and otherwise failure. Each attempt can be shown as a Bernoulli trial.

Figure 3.6 shows a sample illustration to explain Bernoulli trials. The influence

probability can be estimated using a Maximum Likelihood Estimator (MLE) [123]

as the ratio of successful attempts over the total number of trials:

pu,v =
Av2u

Av
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Figure 3.6: Bernoulli Distribution: Node u Will Have Fixed Probability to Influence
its Inactive Neighbor v1, v2 and v3. If u Attempt is Successful, Node v Will be
Activated Otherwise Node v Will Remain Inactive

Dynamic Influence Models

In real-life, influence changes over time and may not stay static. For example, users’

opinions could change over time. When a user is influenced by his/her neighbors to

join a community, she/he is initially excited to join that community, but over time

that user might be less excited. To represent dynamic influence models, we discuss

two models of social influence. The first one is based on capturing a small set of

‘snapshot’ observations and the second one is based on detailed temporal dynamics.

These two models can be represented as a function of the number k of neighbors

who have adopted a new behavior [2]. The individual become k− exposed to the

behavior at specific time t if it is a non-adapter at time t but surrounded with k

neighbors who are all adopters at time t.

Figure 3.7: The Probability of Editing an Article in Wikipedia [2]
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Snapshot Model

To represent this model we need to consider two snapshots of the social network

at different points in time [2]. Consider then the set of all individuals who are

k − exposed in the first snapshot. Let ps(k) be the fraction of individuals in this

set who have become adopters by the time of the second snapshot [2]. To further

clarify, imagine that all k−exposed nodes in the first snapshot will flip a coin ps(k)

to decide wither to adopt the behavior or not. Based on different experiments on

Wikipedia (a free, web-based, collaborative, multilingual encyclopedia ), LiveJour-

nal (a virtual community where Internet users can keep a blog, journal or diary ) and

engage in email correspondence [2, 35, 124] the snapshot curve (shown in Figure

3.7b) shows that the influence increases with more links, but the marginal influence

of each additional link is slowly decreasing [2]. There are studies that used snapshot

models to compute influence probabilities such as [124, 35, 122], though they used

a large number of snapshots requiring substantial computational sources.

Ordinal-Time Model

To represent this model we need to consider a time sequence as it evolves over time.

A new link is created in the network or a new individual adopts a new behavior.

For each k, consider the set of all individuals who were ever k − exposed at any

time, and define p0(k) to be the fraction of this set that became adopters before

acquiring a (k + 1)st neighbor who is an adopter [2]. To clarify imagine that a

non-adopter acquired the kth neighbor who is an adopter, by flipping a coin p0(k),

the non-adopter will decide to adopt or not. The curve of ordinal time in Figure

3.7a shows that the first five links have greater impact, but after some propagation

the subsequent links impact stabilizes. This feature is similar to a power of low

distribution. In both of the above, cases there is a need to determine the maximum-

likehood values of these probabilities p0(k) and ps(k).

Comparing different models and their relationships reveals interesting per-

formance thresholds and application domains. Generally the snapshot model is
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widely used as it captures an observation without the need to perform moment-

by-moment measurements [2]. Although there is no apparent relationship between

the snapshot and the ordinal-time models, the shape of ordinal time can be approxi-

mated from data in single snapshot. Experimental analysis show that accurate result

occurred with more snapshots.

Diffusion Influence Models

These models are used when adopting behavior depends on knowing the number

of neighbors who adopted the same behavior. In [31, 125] Domingos and Richard-

son proposed a framework for the propagation of influence when addressing the

problem of identifying influential users. They proposed a probabilistic model of

interaction and heuristics to select the influential users in the context of viral mar-

keting, and confirmed their approach through an empirical study. Their idea was

based on how to find the most influential individuals and target them to advertise a

new innovation or a product. In a large cascade, they will influence their friends and

friends of friends. Market customers are represented as nodes in social networks and

customer influence is modeled as a Markov random field. These Diffusion models

can be used to optimize marketing decisions. Kempe, et al. [3] revealed that the

problem of selecting influential sets of individuals in most influence models is NP-

Complete. This set of individuals should be chosen to generate the maximum influ-

ence during the influence diffusion process. Approximation algorithms are used to

solve the problem of influence maximization. In some influence models the greedy

algorithm will select the set of individuals with approximation (1− 1/e− ε) [3],

where e is the base of the natural logarithm and ε is any positive real number. In

their work Kempe, et al. focused on two influence diffusion models that are, the

linear threshold model and the independent cascade model.
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Linear Threshold Model

Granovetter and Schelling [126] were among the first to propose the threshold ap-

proach to capture influence. In a Linear Threshold Model a weight bu,v is used to

measure the tendency of a node u to be influenced by each neighbor v such that

∑vneighbour o f u bu,v ≤ 1. Starting with an initial set of active nodes A0, Then the in-

fluence propagation continues as follows: each node u is assigned a threshold θu

randomly from the interval [0, 1]; the threshold represents the weight fraction of

u’s neighbors that must adopt the behavior (be active) in order for u to become ac-

tive and adopt the same behavior. At timestamp t, all nodes that were active in time

t − 1 remain active, and we then activate any node u for which the total weight of

its active neighbors is at least θu; where

∑
vactiveneighbour o f u

bu,v ≥ θu

The thresholds θu represents the tendency of nodes to adopt the new be-

havior when their neighbors do [3]. Figure 3.8a-b shows an example of the Linear

Threshold Model Process.

Figure 3.8: Example of Linear Threshold Model Process

In their experiment, Kempe, et al. [3] compared their greedy algorithm

with node degrees and centrality within the network, as well as incorporating ran-

dom nodes. Based on their experiment, their greedy algorithm outperforms the

degree and distance centralities because these two features do not consider the dy-

namics of social networks and focus on the structure of the network to emphasize
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influence. Random nodes do not generate good results in a linear threshold model.

Figure 3.9 shows the result of these experiments.

Figure 3.9: Results For The Linear Threshold Model [3]

Independent Cascade Model

An independent cascade model starts with an initial set of active nodes A0. This

set of individuals should be chosen to generate the maximum influence during the

cascade diffusion process. The process occurs in discrete steps as follows: when

node u becomes active for the first time in timestep t, it is provided with one chance

to activate each of its currently inactive neighbor v; in that case u is called conta-

gious which means it has the ability to affect other nodes as shown in Figure 3.10a.

Node u succeeds in influencing its neighbor v with a probability pu,v independent

of past history. If u succeeds, then v will become active in timestep t +1 as shown

in Figure 3.10b; but whether or not u succeeds, it cannot make any further attempts

to activate v in future rounds[3]. The same process continues until u’s communicate

with all neighbors to influence attempts and there are no more contagious nodes.
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Figure 3.10: Example of Independent Cascade Model Process

Based on Kempe, et al.’s experiments on independent cascade model, we

can see that the greedy algorithm still outperforms the degree and centrality within

the network. Interestingly, random nodes performed well on independent cascade

models, as shown in Figure 3.11.

Figure 3.11: Results of Independent Cascade Model [3]

Models of influence based on users’ behavior

The models discussed above are based on the influence model proposed in [3],

where the influence probabilities are provided in advance as input. Other mod-

els proposed in the literature compute the probabilities through mining the users’

past behaviors. Tang, et al. [113] studied topic-based social influence. In these so-

cial networks, discussion topics are distributed across users. The problem is to find
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topic-specific subnetworks, and topic-specific influence weights between members

of the subnetworks. They propose a graphic probabilistic model called a Topical

Factor Graph (TFG) to unify the information in one probabilistic model. Then they

proposed the Topical Affinity Propagation (TAP) model which uses TFG to infer

the influence graph. They also dealt with the efficiency problem by devising a dis-

tributed implementation of TAP.

Saito, et al. [127] studied the problem of building influence from users’

past actions. They focused on the independent cascade model of influence. They

formally defined the likelihood maximization problem and then applied an Expecta-

tion Maximization (EM) algorithm to solve it. Their formulation dose not however

scale to larger data sets like social networks. This is due to the fact that in each

iteration, the EM algorithm must update the influence probability.

Other Influence Models

There are many influence models that are based on greedy algorithms. Nemhauser,

et al. [128] shows a greedy approximation algorithm to address the problem of

finding a maximal set of individuals. Kempe, et al. [3] also proposed a greedy algo-

rithm, but it suffered from an efficiency problem because the model needs to execute

Monte-Carlo simulation several times until it provides accurate results which leads

to very long computational times. There are studies concerned with improving the

efficiency of greedy algorithms to maximize the influence, such as [129, 130].

Leskovec, et al. [129] studied the influence problem from a different per-

spective. The main question in their study is how to select nodes in a network to

detect the spread of a virus as soon as possible? This is called outbreak detection.

They developed an efficient algorithm based on ‘lazy-forward’ optimization. The

algorithm was optimal and 700 times faster than a simple greedy algorithm. How-

ever, the approach still faces problems related to scalability. Chen, et al. [130]

improved the efficiency of the greedy algorithm.
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3.4 Review of Existing Approaches

In social networks, nodes that adopt an idea or a behavior are called active, while

the other nodes which are not affected by this idea or behavior are called inactive.

Based on this definition, the problem of influence maximization in social networks

is based on finding the smallest number of nodes k that can influence the highest

number of other nodes in the social network [31]. Although many models have

been proposed to address the problem of measuring influence probabilities a node

has over other nodes in the social network, they exhibit limitations in identifying

the most influential users and the influence propagation process.

Static influence models [123] are very basic influence observation meth-

ods in social networks which are time-independent and based on fixed probabilities

associated with the nodes in the network. These types of influence models do not

diffuse over time since they assume that influence probabilities are fixed (i.e. static)

and thus the influence propagation pattern does not change over time. In other

words, these models do not consider the dynamic and the potential changes in the

influence spectrum over contemporary social networks. One of the probabilistic

techniques used in such models is based on Bernoulli Distribution, whereby a user

tries to influence its inactive neighbors with the same probability. Static influence

models are easy to apply to measure influence in a social network. But since so-

cial networks are dynamic in nature and therefore change over time, ignoring these

changes makes them an appropriate practical choice to measure influence in today’s

social networks. To address this drawback, dynamic influence models were intro-

duced. These influence models consider the dynamic valuation of influence proba-

bilities associated with the network nodes over time. Examples of such models are

snapshot and ordinal-time models. The snapshot model [124, 35, 122] takes various

numbers of snapshots of the network at different successive timestamps to generate

an evolving observation about the network. The Snapshot technique is widely used

to model social networks because it can capture large-scale data and make it avail-

able for further analysis, particularly to measure influence progression over time.
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On the other hand, this process of continuous observations needs to generate many

snapshots, which can result in a lot of data. Ordinal-time models consider a time

sequence in an evolving social network where each time an individual adopts a new

behavior and a new network link is formed. This moment-by-moment measure-

ment, though appealing, makes these ordinal-time models less practical to imple-

ment on large scale networks, and thus limits their ability to analyze the temporal

evolution in adoption behaviors [2].

To address the issue of influence propagation, diffusion influence models

such as linear threshold and cascades independent models were introduced. In lin-

ear threshold [31, 3, 125], every node contributes a certain weight to its adopting

neighbors. If the sum of these weights is greater than a given threshold, the node

becomes an adopter too. The weight depends on the edge strength between the

node and its neighbors. Using the weight as a measurement between the node and

its neighbors reveals the strength of the influence. In independent cascade mod-

els [3], each node has two states, to adopt or not to adopt the behavior. Influence

propagation is measured using cascade processes where the adopters will have in-

fluence on their neighbors and the adopter neighbors will have influence on their

own neighbors too, and so on. The influence spreads over the network as a result of

these cascade sequences. Each adopting node has one chance to influence its neigh-

bor to adopt the same behavior with a probability that depends on the edge strength

between the node and its neighbor. These models are fast in spreading behaviors

between nodes, especially when the initial set of the most influential nodes in the

network is determined. Both linear threshold and independent cascade models do

not reconsider the correlation between users’ actions, and ignore alternative influ-

ence propagation methods to achieve adoption at a later activation instance. This

raised the need for models that measure influence based on the dynamic nature of

users’ behaviors and contexts. The topical affinity propagation model [113] uses

a topical factor graph (TFG) to build the influence probability model based on the

users’ topics. This model computes the influence probabilities through mining the
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users’ behaviors and employs a distributed machine-learning algorithm to deal with

the efficiency problem.

Sun and Tang [119] conducted a survey of social influence analysis models

and algorithms. They discussed correlations between social similarity and influence

and, in doing so, they focused on the computational aspects of social influence

analysis by determining the selection of people who are similar to one another (for

example two users who have the same opinion). They argued that people tend to

influence other people who are already similar to them (for example changing the

opinion of a user to agree with one of his neighbors). They also provided methods

to measure the weight of influence.

However, novel applications of artificial intelligence techniques such as

fuzzy logic could further contribute to maximizing influence in social networks. In

chapter 4, we present a technique which will be further developed in a subsequent

chapter.

3.5 Classification of Influence Propagation Algorithms

In this section, we compare the influence models discussed in the previous section

as compiled in Table 3.1. Static influence models are based on capturing influence

at the current moment. They are time independent models that do not diffuse over

time. They assume that influence probabilities are fixed (static) and do not change

over time. Different techniques are used in static influence models one of them is

Bernoulli Distribution. Static influence models are easy to apply and test which

makes them one of the easiest ways to measure influence in a network. But since

social networks are dynamic, where new links are built/removed regularly, then the

assumption is that static influence models will not be the best choice to measure

influence in social networks. Dynamic influence models were introduced to address

static influence probability deficiency. Based on these dynamic models, influence
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probability changes over time. Snapshot and ordinal-time models are discussed

as types of dynamic influence models that are time-dependent. Snapshot models

take different snapshots of the networks and generate an observation about the net-

work. The snapshot technique is widely used to model social networks because it

can capture large-scale data. To get a better observation of the network, we need

to take many snapshots for large data sets, which is time consuming and needs a

lot of space. Ordinal-time models provide detailed temporal dynamics of the net-

work. They provide more accurate results since they measure influence moment-

by-moment. There is no direct implementation of ordinal-tTime Models on large

data sets (such as large social networks), which makes it difficult to draw conclu-

sions about these models on social networks. Diffusion influence models such as

linear threshold and cascades independent models were introduced to address the

issue of influence propagation. In linear threshold, every node contributes a cer-

tain weight to its adopting neighbors. If the sum of these weights is greater than a

given threshold, the node becomes an adopter too. The weight depends on the edge

strength between the node and its neighbors. Using the weight as a measurement

between the node and its neighbors will show the strength of the influence. Cascade

independent models use cascade processes to measure influence propagation. Each

node has two states, to adopt or not to adopt. The adopters will have influence on

their neighbors and the adopter neighbors will have influence on their neighbors too,

and so on, as the influence spreads over the network. Each adopting node has one

chance to influence its neighbor to adopt the same behavior with a probability that

depends on the edge strength between the nodes. These models have the advantage

of fast spread of information through the nodes, specially when determining the ini-

tial optimal set of the most influential nodes in the network. Both linear threshold

and cascade independent models have the same limitations since they both ignore

the attributes associated with each user node and do not consider the correlation

between user actions.

Other models based on user behavior were used to measure influence. The
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topical affinity propagation model uses TFG to build the influence probability model

based on the user’s topics. This model employs a distributed learning algorithm to

deal with the efficiency problem, but it cannot capture the social influence between

users while building a unified probabilistic model. We discussed also models that

are based on greedy algorithms and we found that they outperform influence mea-

sures based on the structure of the social network, such as degree and distance

centralities. However, on the other hand, their efficiency is low since they take a

long time to execute tests repeatedly to provide accurate results.

3.6 Experiments and Results

In this section we will compare influence spread based on two famous influence

propagation models the linear threshold (LT) model and the independent cascade

(IC) model and we will propose our own model of influence named as the ‘Simi-

lar Independent Cascade’. For estimating influence weights we proposed a method

called the ‘Jaccard Coefficient Based on Common Actions’. Then we compared

the influence spread of our method against other methods. Linear threshold and the

independent cascade algorithms, using Matlab were implemented. Then we con-

ducted experiments using an Apple iMac with Mac OS X version 10.6.8, processor

2.66 GHz intel Core i5 and 4GB memory.

The experiment was applied to two real world social networks. The first

social network is Flickr, which is a photo sharing social network. On Flickr, users

can share and embed photographs on their own blogs. The dataset for Flickr consists

of 2,570,535 nodes and 33,140,018 links between the nodes. We used the dataset

provided by Meeyoung Cha, Alan Mislove and Krishna P. Gummadi [85]. 500

nodes were selected. These nodes are associated with actions to select a photograph.

The second social network was Last.fm2, which is a popular Internet radio to stream

music. The dataset provided by Cantador, et al. [131] contains 1892 users who

assigned tags to artists during different timestamps. A tag could be any word related
2http://www.lastfm.com
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Table 3.1: Comparison of Social Influence Models
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to the artist like rock, POP, sad, touching, etc. The timestamp shows when the tag

assignments were done. We selected 99 nodes. Each user is associated with his/her

action of tagging an artist.

To compare the two influence propagation models we used four methods

to assign edge probabilities in the social graph:

• Jaccard Coefficient Based on Common Actions: we proposed this method

where we calculate the similarity between two nodes based on the common

actions they have. The Jaccard Coefficient measures the commonly active

properties of nodes u and v to the number of active properties in u or v. The

formula used is JCu,v =
Au,v

Au+Av−Au,v
, where Au is the number of actions per-

formed by node u, Av is the number of actions performed by node v and Au,v

is the number of common actions performed by nodes u and v. Algorithm 3.1

shows the steps of calculating the common actions between two nodes u and

v.

• Weighted Cascade (WC): which is a special case of the independent cascade

model where each edge from node u to v is assigned a probability 1
dv

of acti-

vating v [3].

• Trivalency (TV): where edge probabilities are selected uniformly at random

from the set {0.1, 0.01, 0.001}

• Uniform (UN): where all edges have the same probability (e.g. p = 0.01)
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Algorithm 3.1 Jaccard Coefficient Based on Common Actions Algorithm

1. Find all actionsu;

2. Find all actionsv;

3. For ∀a ∈ actionsu do

(a) if a is in actionsv AND timea < timevdo

i. commonu,v = commonu,v +1;

4. JCu,v =
commonu,v

actionsu+actionsv−commonu,v

5. return JCu,v

Using the Flickr social network we noticed that the independent cascade

model outperforms the linear threshold model in all probability assignment meth-

ods when the seed set size becomes larger. Across a range of influence valuation

methods, initial results show that our approach applied to the independent cascade

model outperforms an existing landmark influence propagation model called the lin-

ear threshold model. The common actions (Figure3.12(a)) probability assignment

methods is steadier and both propagation models provide similar curves, although

it does not activate as many nodes as other methods; shown in Figure3.12(b)(c)(d).

Results could be different for different sittings applied to run the algorithms such as

the threshold value or the number of nodes in the seed set.
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Figure 3.12: Comparing Influence Spread For Flickr Social Network

Using the Last.fm social network, we applied the same probability assign-

ment methods used above on the dataset. In this experiment we noticed that in

the trivalency and uniform methods the independent cascade model outperforms

the linear threshold model by activating more nodes during the propagating process

Figure 3.13.

Figure 3.13: Comparing Influence Spread For Last.fm



97

3.7 Summary

In this chapter, we discussed the metrics used to measure influence probability. We

introduced some new metrics to analyze the centrality in social networks. We also

surveyed state of the art research which addressed the objective of influence maxi-

mization in social networks. We highlighted the strengths and limitations of these

approaches through a comparative study and focused on two landmark propagation

algorithms to assess their diffusion performance in real-world networks. We made

comparisons using different methods to assign edge probabilities in the social graph,

including the proposed method of estimating influence using the Jaccard Coefficient

based on Common Actions. We found that independent cascade outperforms linear

threshold in every experiment and thus we used it as a candidate for performance

evaluation against our proposed algorithm (see the next chapter).



Chapter 4

Community Aware Influence

Maximization

4.1 Introduction

Communications and recommendations started a long time before the internet. Users

communicate with each other in order to seek opinions from their friends about spe-

cific products. Then friends will give their opinion directly about the product. The

user will make up his mind to purchase or not based on the suggested opinion of his

friend. In later years the Internet has been used to provide users with an opportunity

to surf the web for products. Users can use their computers to search the web for a

product, but the internet is a huge repository that has too products of different styles

and shapes, which makes it difficult to chose. Currently new websites like Twitter

and Facebook have become the most visited websites on the Internet. These social

websites provide users with a richer communication experience. For example, if a

user wants to watch a movie with his friend, and that friend likes a specific type

of movie, then one of the first things a user will do is to go to his Twitter account

and post a tweet to seek the suggestions of his/her friends. He/She might have

different connections with his/her friends. Some with strong ties and some with

weak ties. Strong ties means high trust and the willingness to accept suggestions,

while the user might be hesitant to accept the suggestions from other friends who

98
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have weak tie connections. Those friends will recommend movies based on their

personal opinion and respond by tweeting their recommendations. Some of these

friends might also get the recommendation about the movie from their friends or

friends-of-friends. So social ties play an important role nowadays. From the previ-

ous example we can see that there are some considerations that encourage a user to

accept (adopt) a recommendation or recommend a products to his friends such as

1) number of friends who adopted that behavior. The more your friends talk about

a product, the more curious you become about it. The more curious you want to try

that product. Also 2) how strong is your relationship with the friend who recom-

mended the product. The stronger the relationship, the more trust you will have, the

more influenced you become by that friend’s opinion. 3) The type of your friends

and their references. If you go out with a friend who likes action movies you will

probably try to find a movie that matches his/her preferences and you will probably

be interested in such a movie genre because your friend likes it.

Nowadays users are overwhelmed by many products, and due to the fast-

pace of life they have limited time to invest in the process of searching and finding

other options. So the solution is to combine Internet resources with social com-

munities. These connections between users will make it easier to send and accept

recommendations. This is because people tend to accept ideas and product recom-

mendations from their friends. Social connections are also important for business.

As companies want to advertise their products with minimal effort and a minimal

budget. They want to increase sales and create new revenue sources and also they

want to solve the ‘cold start’ problem, when a company has new products and the

system cannot derive any inferences for the users, because the system has not gath-

ered enough information yet. So using ‘viral marketing’ with social connections,

such as selecting a user who has high connections and high influence in his commu-

nity, can spread knowledge about products through the social network. The aim of

finding such individuals is referred to as influence maximization [31]. This problem

is becoming one of the most demanding issues in the current age of social networks.
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Many companies are currently using social networks as a base for their marketing

and promotional campaigns, as social networks provide an easy cost effective way

to spread knowledge about a product.

In this chapter, we address the influence maximization problem where we

strive to find a set of k nodes that can spread influence to the largest set of other

nodes in the network. For that purpose we adopt a two-phase approach. First we

identify synthetic communities within the network which results in subsets of sim-

ilar nodes. Then, we discover ‘key nodes’ within each virtual community to rep-

resent the seed of influence propagation. Hence, our community-based influence

propagation algorithm starts by detecting communities in the social network as a

pre-processing step to group similar nodes together. This process will emphasize

the influence due to the similarity between the nodes and the similar behaviors they

will perform. After grouping similar nodes together, we identify the set of ‘key

nodes’ that contains the most influential nodes within each virtual community. The

rationale of this approach is that similar nodes tend to behave similarly, and hence

influence is embraced faster as similar nodes tend to interact and adopt each other’s

behavior. We use centrality measure to uncover influential nodes. However, this

attribute is based solely on network structure and ignores individual nodes’ influ-

ence weight. Therefore, we combined centrality degree with an estimated weight

measure which we derive based on common actions between two nodes. We pro-

pose to harvest historical action logs between nodes to elicit an estimated influence

weight based on their common actions. This value dynamically changes based on

the behavior of nodes in the social network. To evaluate the degree of influence, and

decide which nodes are most influential, we use a fuzzy logic inspired approach to

select the influential nodes based on both their central location and influence weight.

Finally, our method selects the final set of influential nodes that we call a ‘seed set’,

where members are predicted to have the highest propagation rate across the net-

work. Such research works to discover how the most influential users can help in

performing different activities around OSNs such as targeted advertisements, and
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item recommendations to OSNs users. Research carried out in this area is sparse,

and spans multiple disciplines.

The rest of this chapter is organized as follows: Section 4.2 provides back-

ground and related work relevant to our proposal on influence maximization based

on common actions and fuzzy logic. Section 4.3 describes the community-based in-

fluence propagation algorithm. Section 4.4 reveals our experimental findings, which

resulted from applying the algorithm to real-world online social networks. Finally,

Section 4.5 concludes the chapter with a summary and some possible future direc-

tions for this social influence model.

4.2 Fuzzy Logic Inferences in Social Networks

Fuzzy logic was introduced by Lotfi Zadeh in 1965 [132]. Fuzzy logic is a type

of probabilistic logic that allows medium values between 0 and 1 to be consid-

ered for reasoning about qualitative situations with gradual levels of affirmation

(i.e. yes/no) or truthfulness (i.e. true/false)[133]. The reasoning process is approxi-

mate rather than fixed or exact. This kind of reasoning is more like human thinking

[134] and is more logical in judging natural situations. We are using a fuzzy logic

inspired method in our approach to determine the nodes of a social network with

high probability to join the membership of ‘key nodes’ used as a seed for influence

propagation.

Fuzzy logic has the unique feature of being a simple and flexible human

language rule-based approach [135]. A fuzzy logic based system converts these

rules into their mathematical equivalents, which provide more realistic behavior in

real world situations [136]. Unlike standard logic methods, the truth of a specific

situation can be a range of values. These fuzzy systems need a membership function

that clarifies how to calculate the correct value between 0 and 1 to match a given

affirmation [137]. This can be represented by a value between 0 and 1. The human

language rules and the ability to use membership functions make such a system easy

to update and to maintain.
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We will give an example inspired from [138] and based on our method of

finding influential nodes. For example, let’s assume that we want to find the most

influential nodes in a social network. Given a social network of five nodes, nodes =

{1,2,3,4,5} we want to find the nodes that will be the most influential, given the

constraints that the node should be in a central location and it have a high influence

weight on other nodes in the network. We need to represent the first constraint us-

ing a fuzzy set Centrality(C) = {{1,0.4},{2,0.6},{3,0.8},{4,0.4},{5,0.5}} this

shows that node 3 has the highest membership grade, which means that node 3

has the highest centrality in this network. While node 1 has the lowest mem-

bership function of 0.4. Then we represent the second constraint in a fuzzy set

In f luenceWeight(IW )= {{1,0.1},{2,0.9},{3,0.7},{4,1},{5,0.2}}. In this fuzzy

set the membership grades indicate the average influence weight of a node in the

whole social network. The highest means the most influential in the network. From

that set we notice node 4 is the most influential while node 1 is the least influential

in the whole network. After representing all constraints as fuzzy sets, we need to

make a decision which of these nodes is the most influential. For that we apply

the standard function fuzzy intersection that helps in making the fuzzy decision. It

can be thought of as combining the constraints together to come up with the best

overall decision[138]. The fuzzy intersection between two fuzzy sets is computed

by taking for each element (nodes in our example) the minimum of its member-

ship in both sets [137]. Thus the minimum of the two fuzzy sets Centrality(C) and

In f luenceWeight(IW ) is given by C∩IW = {{1,0.1},{2,0.6},{3,0.7},{4,0.4},{5,0.2}}.

Figure 4.1 shows a graphic representation of the fuzzy decision. From the figure we

find the most influential nodes by looking at the node with the maximum member-

ship grade. In our example and as shown in Figure 4.1, we noticed that node 3

seems the most influential node in the network based on its location and influence

weight.
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Figure 4.1: Fuzzy Decision Plot

4.3 Community Aware Influence Propagation Using

Fuzzy Logic Inferences

In this section, we suggest our community detection and influence maximization al-

gorithm. The objective of which is to maximize influence and increase the activation

of nodes in a social network. In this approach, we combine the previous techniques

which were introduced, namely community detection [139] and influence weight

calculation [140]. We anticipate from this approach to identify the seed set of users

who can influence their neighbors to behave similarly. Our experimental evaluation

on real-world networks confirms this statement.

Our proposed algorithm, shown in Algorithm 4.1, consists of three main

steps:

1) Detecting communities (Step 1 in Algorithm 4.1)

2) Identifying key users in each community (Step 4 in Algorithm 4.1), and

3) Finding the seed set to propagate influence across the entire social net-

work (Steps 5 and 6 in Algorithm 4.1).

Figure 1.5 illustrates our proposed framework.
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Algorithm 4.1 Community Aware Influence Propagation Algorithm

1. Detect Communities C of (G) (Algorithm: 2.8).

2. T hreshold−IU ← Number of Important Users.

3. T hreshold−S ← Number of Users in the Seed Set (S).

4. For each community C do :

(a) Find Central Users Fuzzy Set

i. CentralUsers ← Find Central Users (Algorithm: Degree Central-
ity)

ii. For each CentralUsers do
A. CentralityWeight = nodeDegree/totalEdges //Membership

Function

(b) Find Influence Weight Fuzzy Set

i. For each CentralUsers do
A. InfluenceWeight ← Calculate Influence Weight (Algorithm:

3.1)
ii. For each CentralUsers do

A. In f luenceWeightsAvg= sumIn f luenceWeights(node)/totalNodes
//Membership Function To Calculate Average Influence Weight

(c) Find The Important Users (Fuzzy Decision)

i. Intersection = min(CentralityWeight, In f luenceWeightsAvg)
ii. ImportantUsers← Select The Maximum Intersection Grade To

Decide The Important Users

5. For each ImportantUsers do

(a) Reachability ← Apply Influence Propagation Method (Algorithm: 4.2)

6. S← Select The Top Influential Users Based on T hreshold−S

7. Return S
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4.3.1 Detecting Communities

Starting from a social network, the first step of our framework consists in detecting

communities. Finding communities is one of the most important steps that we must

perform. This step determines the success or failure of the adoption of behaviors

in the social network, because of the similarity factor within communities that is

used for influence propagation. Well structured communities will facilitate a better

dissemination of influence. Therefore, the role of this initial community detection

step in the influence propagation algorithm is important. Similar users tend to adopt

similar behaviors, and detecting these communities in the network will make it

easier to find the key nodes in each community to form the seed set for the whole

network. Algorithm 4.1 reveals an enhanced version [139] of the CNM algorithm

proposed by Clauset, et al. [48]. Our experiments on Similarity-CNM showed

that pre-processing social network data and considering other factors related to the

network structure can optimize the community structure. Based on this observation,

starting the influence propagation algorithm by dividing the social network into

virtual communities of similar users is poised to maximize the process of influence

spread within the social network, as members of the same community tend to behave

similarly. Next, we discuss Algorithm 4.1 where the quest for key users starts by

finding central users and then determining those with higher influence weights.

4.3.2 Finding Key Users

After dividing the network virtually into groups of similar communities, we then

identify the initial set of key users in each community. These users are potential

candidates of the final seed set in the network. There are two main characteristics

of a key user: 1) location in the network (centrality), and 2) historical influence

activity. This is a multi-criteria decision making problem for which fuzzy logic can

provide a solution [141]. Indeed, multi-criteria decision making problems consist

of (1) a finite set of criteria (or properties) that evaluate the quality of a key user to

join the seed set of users used in our influence propagation model, and (2) weights
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(or importances) of the criteria [142]. These decision-making components map to

our problem to identify key users where the criteria are represented by centrality

and influence power, and weights are represented by the level associated with these

criteria. Based on these criteria and weights, a fuzzy logic process is employed to

find key users, and hence the seed set of users who will drive influence propagation,

as shown in Algorithm 4.1.

Finding Central Users Fuzzy Set

The first main characteristic of a key user is to have a favorable location in the

network. For example, central nodes have high connections with other users. Also

nodes that reside between two groups play the role of a bridge to convey behavior

from one group to another, and so they would be good key user candidates. We

used a degree centrality measure to determine users with favorable locations. These

central users are elected as members of a fuzzy set which accumulates users with

favorable locations based on a membership function which is discussed below.

The process starts by calculating the degree centrality of each community

user. This is done by calculating the in-degree and out-degree of each node then

summing up these values. A centrality threshold is then used to discriminate the

central nodes for our algorithm’s further consideration. Nodes that have higher in

and out degree than the threshold are considered central in the social network. The

membership function calculates the degree weight of all central users based on the

following formula:

CentralityWeight = nodeDegree/totalEdges (4.1)

Where nodeDegree is a variable that stores each node’s in and out degree,

totalEdges is the total number of edges in the network. This formula calculates

the centrality weight of each node’s in and out degree based on the total number of

edges in the network. The resulting values vary between 0 to 1, which reflect the

centrality level of each node in the network. Whenever the result is approaching 1,
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this means the node is probably in a very central location. We will use this value

later to make a decision about whether the node could be a key user.

Finding Influence Weight Fuzzy Set

The second main characteristic of a key user is its ability to influence many indi-

viduals. To calculate influence weights, we propose the integration of Jaccard Co-

efficient Based on Common Actions technique [140]. To illustrate this technique,

consider a user A who started a behavior at time T 1, and after a while another user B

adopts the same behavior at time T 2. This means B is influenced by A after a certain

time. For the Jaccard Coefficient Based on Common Actions technique, we find out

the number of similar actions a user has embraced after his friend had adopted the

same behavior. We assume there is only one source for each action. This assump-

tion is actually validated by the sample data set used in our experimental evaluation.

After calculating the influence weights, we propose to calculate the av-

erage influence weight to discriminate nodes with the highest historical influence

activity in the network. Finding the average can be calculated through the follow-

ing membership function:

In f luenceWeightsAvg = sumIn f luenceWeights(node)/totalNodes (4.2)

Where sumIn f luenceWeights(node) is the sum of all influences weights

that a specific node has on every node in the network; totalNodes is the total number

of nodes in the social network.

Fuzzy Decision Making

Key users are determined based on a Fuzzy Set Intersection value for each node n

using both CentralityWeightn and In f luenceWeightsAvgn criteria weights, as shown

in the following formula:
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Intersectionn = min(CentralityWeightn, In f luenceWeightsAvgn) (4.3)

Intersection determines the lowest of the two values between the central-

ity weight of a node (CentralityWeight) and the average weight of influence for

that node (In f luenceWeightAvg). Then, we select the maximum membership grade

generated from the above intersection process to decide on key users. To illustrate

this step, we anticipate each node to have a defect in either centrality or its influence

value, so we select the lowest value of these two values to minimize the effect of

either deficiency, and then compensate this deficiency by detecting the nodes with

the maximum of these lowest values. These nodes will be the least defective of all

other nodes and they will definitely be the best key user candidates. Equation 4.4

shows a mathematical representation of this process.

MembershipGrademax = max(Intersectionn) ∀n ∈CN (4.4)

Where CN is the set of central nodes in the social network.

4.3.3 Finding Seed Set

After finding the key users in each community, we select the top ones which have

highest influence propagation in the social network to form the seed set of nodes that

are used to diffuse influence across the network. Algorithm 4.2 shows our influence

propagation method which is based on an independent cascade propagation model.

Our algorithm takes into consideration the influence power that a node might have

on other nodes indirectly. This means a node might activate nodes other than its

direct neighbors. This is inferred through historical common actions as a method

to estimate weights probabilities. The complexity of this approach is similar to the

IC model since the propagation process uses the same steps but the nodes selected

for propagating the influence are different in our approach from the IC one (see
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Algorithm 4.2).

Algorithm 4.2 Influence Propagation Algorithm

1. For ∀u ∈ KeyUsers do

(a) At step t = 0, activate u ∈ KeyUsers and added it to Coverage0

(b) At each step t > 0, For ∀u ∈Coveraget−1 do

i. For ∀vinactive if In f luenceWeightu,v ≥ In f luenceT hreshold
A. Activate v
B. ActiveList = ActiveList ∪{v}
C. TotalCoverage = TotalCoverage+1

ii. All the nodes activated at this step are added to Coveraget

iii. This process ends at a step t if Coveraget = 0 /*no more nodes to
activate*/

2. Add nodes u with highest TotalCoverage to S

3. Return S

4.4 Experiments and Performance Analysis

In this section we discuss our experimental environment and reveal the results ob-

tained from our proposed approach.

4.4.1 Experiment Environment

As an experimental platform, we used Flickr real-world social network dataset.

Flickr is a photo sharing social network. On Flickr users can share and embed pho-

tographs in their own blogs. We used the dataset provided in [85], which consists

of 2,570,535 nodes and 33,140,018 links between the nodes. Due to computational

constraints and as part of our preliminary experiments, we randomly selected 500

nodes, to run our experiments. We are planning to increase the size of the sample

data set in the future to run further experiments.

Algorithm 4.1 was implemented using Matlab and C++. The experiments

were performed on an Apple iMac with Mac OS X version 10.6.8, processor 2.66



110

GHz intel Core i5 and 4GB memory.

4.4.2 Candidate Algorithms and Performance Metrics

We compared our proposed algorithm to the benchmark independent cascade model.

The algorithm of the independent cascade model starts with an initial set of active

nodes A0. This set of individuals should be chosen to generate maximum influ-

ence during the cascade diffusion process. On the other hand this model does not

consider the correlation between users’ actions, which we we considered in our

modified approach of independent cascade model depicted earlier in Algorithm 4.2,

where we exploit those social connections and similar actions from different users.

As an evaluation metric, we used the number of activated nodes to show

the performance of our algorithm. We focused on finding the number of activated

nodes because it is the main factor to compare the propagation of influence for both

the independent cascade (IC) model and our proposed model. Node activation can

be explained as embracing a certain behavior by a node that is initiated from another

node.

4.4.3 Results and Discussion

Through our experiments, we noticed interesting results generated by our proposed

method. Compared to IC model, our community-aware social influence model (dis-

cussed in Algorithm 4.1) activates higher number of nodes starting from a smaller

seed set (compared to the IC model).

Figure 4.2 shows the results generated by both candidate algorithms when

the seed set maximally contains 5 nodes. Based on the original propagation of the

IC model, the 5 seed set nodes will activate 33 nodes in the social network. While in

our approach, the same number of seed set nodes activates 134 nodes. This shows

that by using the social relations that are available in the network, more additional

nodes are reached by the influence propagation process. In doing so, the initial

nodes are more successful in persuading neighbors or neighbors-of-neighbors to
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adopt the propagated behavior.

Figure 4.2: Activated Nodes When Seed Set = 5

In another experiment, we increased the size of the seed set to 30 nodes.

Using the IC model, 30 nodes in the seed set activate 98 nodes in the social network

as shown in Figure 4.3. On the other hand, in this experiment our approach first

discovers the top 6 nodes out of the 30 nodes and then selects them as potential

candidates for the seed set. The 6 nodes activate 135 nodes in the social network.

This shows that our approach can select the minimal number of influential nodes

as seed set members who can activate a larger number of nodes in the social net-

work. The seed set in our approach contains fewer nodes compared to the IC model

startup nodes, and at the same time our approach activates more nodes in the so-

cial network. For example, if there is a company that wants to promote a product

using our approach, they can convince fewer numbers of initial people to promote

their product. This way they will save on the expenses of having an advertisement

campaign or save on the expenses of providing these products for free to those ini-

tial people (seed set members). At the same time, the company will generate more

revenue, as those initial people are capable of persuading many other people in

the social network who are expected to embrace the product later on. We noticed

more interesting results by changing the threshold In f luenceT hreshold of similar-

ity probability used as weight of influence propagation in Algorithm 4.2. When the
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threshold decreases, our approach reveals that 1 node can activate 144 other nodes

in the network. By decreasing this threshold, we increase the number of nodes that

are similar to the initial nodes. This means instead of finding 30 initial nodes we

can find only 1 node which has connections that can activate about 29% of the total

nodes in our sample social network as seen in Figure 4.4.

Figure 4.3: Activated Nodes When Seed Set = 30

Figure 4.4: Activated Nodes When Seed Set = 30 and the Influence Threshold is
Decreased
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4.5 Summary

In this chapter, we discussed the components of our combined influence maximiza-

tion framework which involved a community detection pre-processing step followed

by eliciting key users in each community. We introduced a novel method of finding

key users in each community based on a fuzzy logic method. We worked on each

component of our framework separately then combined these building blocks to

craft our overall model for influence maximization in online social networks. Our

experiments on the real-world network, Flickr, showed more nodes activated than

by using the benchmark independent cascade model.



Chapter 5

Conclusion and Future Work

In this chapter, we summarize the contributions of this dissertation and discuss some

future research directions towards maximizing influence in online social networks.

5.1 Clustering For Intelligent Web

Clustering algorithms represent an important approach to divide and analyze data.

There are many different types of clustering each with its own technique. We have

discussed six clustering algorithms in this thesis: single link, average link, MST

single link, K-means, ROCK, and DBSCAN. We discussed the accuracy issues in-

volving these techniques when applied to the social web.

The single-link, average-link, and MST single-link algorithms are agglom-

erative hierarchical algorithms. They do not perform efficiently (both with respect

to time and space) on large data sets even though they are easy to implement. K-

means algorithm is a partitional algorithm, which is more efficient than link-based

algorithms. However, it does not work with categorical data since it relies on the

idea of centroids. Moreover it cannot handle outliers (the points that are far away

from the main clusters) [58]. ROCK algorithm is a hierarchical agglomerative al-

gorithm that can handle categorical data since it relies on the links more than the

distance between nodes to cluster categorical data. However it has high time and

space complexities. The DBSCAN algorithm is a density-based algorithm that uses

114
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point density to identify clusters in a space. It can handle outliers even though its

time and space complexity are high.

The algorithms discussed in this thesis are used for the identification of

groups of users and data. We propose to combine different algorithms in order to

overcome their individual deficiencies. For example, K-means proved to be simple

and quick since it can run on parallel computational platforms, and could be com-

bined with other algorithms to overcome its weaknesses in addressing categorical

data. This could maximize the benefits resulting from combining these algorithms

in terms of better quality clusters [73]. One example would be combining the effi-

cient K-means algorithm with the powerful ROCK algorithm (if the data is Boolean

or categorical) or DBSCAN algorithm (if the data is spatial). One scenario would

be using K-means on the high-level clusters then process them with the ROCK or

the DBSCAN algorithm.

5.2 Enhancing Community Detection

Community detection algorithms are important to cluster data into communities

and analyze their characteristics. However, different clustering techniques lead to

different performance outcomes, and can become applicable to distinct real-world

phenomena. CNM is a prominent community detection approach, which we pro-

posed to improve through a pre-processing step, based on node similarity. We

suggested two complementary approaches for that purpose: Similarity-CNM and

ECD-Jaccard, to provide a better community structure. Similarity-CNM algorithm

discovers similarity between nodes and builds a corresponding virtual social net-

work. Similarly, ECD-Jaccard algorithm also computes nodes similarity as a pre-

processing step, but then these values are assigned as weights to the network edges,

resulting in a weighted virtual social network, unlike the Similarity-CNM approach

(which is unweighted). The CNM algorithm is then employed to detect communi-

ties in both approaches. The experimental analysis reveal that these pre-processing

techniques have an advantage over the original CNM algorithm in terms of commu-
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nity modularity. We have evaluated our methods on artificial networks and applied

them to real-world networks. Simulation results show that our Similarity-CNM

approach outperforms the original CNM algorithm by more than 50% in certain

configurations of the network. The experimental results on the real-world network

Flickr raises this performance scale to 67%. In ECD-Jaccard, the values of maxi-

mum modularity in weighted artificial networks outperforms the maximum modu-

larity values in unweighted artificial networks by almost 11%.

Our work showed that pre-processing social network data and considering

other factors related to the network structure can optimize the results generated by

community detection algorithms. We plan to pursue our investigation to augment

social networks with additional semantic information derived from their social as-

pects to further optimize community detection and related applications.

5.3 Social Influence

In this thesis, we defined social influence and stated its importance in evolving so-

cial networks. We introduced some analytics used to measure centrality in social

networks such as degree centrality. We also surveyed influence maximization mod-

els in social networks. We stated the strength and limitation of each model through a

comparative study. We compared two prominent propagation models; independent

cascade and linear threshold models to evaluate their information diffusion perfor-

mance. This original comparison used common actions influence weight estimation

which has later been integrated in our proposed influence maximization algorithm.

Based on performance evaluation grounds, we developed this comparative study

to find the best candidate algorithm against which we evaluate our proposed algo-

rithm. As independent cascade showed a higher performance, it was selected for

further comparative analysis with our approach. In doing so, we also revealed some

research directions in social network mining aimed at further analyzing social influ-

ence in order to generate more accurate results and help in addressing the limitations

of existing approaches, such as scalability and efficiency.
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5.4 Community Aware Influence Maximization Us-

ing Fuzzy Logic

We addressed the influence maximization problem and proposed a novel approach

to increase propagation of influence in online social networks. Our results show

the effectiveness of adopting a community-detection process prior to applying in-

fluence propagation techniques. We also proposed a novel method of discovering

‘key nodes’ in the social network based on a fuzzy logic inspired method. Using the

proposed fuzzy-based technique to identify the most prominent nodes as an initial

set for influence propagation provides a more dissuasive determination of the influ-

ential nodes, empowered by a combination of criteria such as the node’s location

and influential weight in the social network. There are many possible future direc-

tions to extend this influence maximization algorithm to address limitations such as

scalability and efficiency. We are currently working on applying the algorithm on

larger datasets to come up with a better view about the robustness of this algorithm

in finding the most influential seed set. We are also studying the effectiveness of

applying different centrality measures for better accuracy of result, such as with

betweenness and closeness, etc.
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