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ABSTRACT 

 

Endogenous cannabinoids (endocannabinoids) exert a wide range of 

biological effects. In addition to having their well-known neurobehavioral effects, 

a role for the major endocannabinoid anandamide (N-arachidonoyl ethanolamide; 

AEA), in the cardiovascular system in various pathological conditions has been 

reported. The aim of this thesis is to explore the effects of AEA on contractility, 

Ca
2+

 signaling, and action potential (AP) characteristics in rat ventricular 

myocytes. A video edge detection system was used to measure myocyte 

shortening. Intracellular Ca
2+

 was measured in cells loaded with the fluorescent 

indicator fura-2 AM. AEA (1 μM) caused a significant decrease in the amplitude 

of electrically-evoked myocyte shortening. The effect of AEA was not altered in 

the presence of pertussis toxin (PTX), AM251 and SR141716 (CB1 antagonists) or 

AM630 and SR 144528 (CB2 antagonists). AEA also caused a significant decrease 

in the amplitudes of electrically-evoked Ca
2+

 transients. However, the amplitudes 

of caffeine-evoked Ca
2+

 transients and the rate of recovery of electrically-evoked 

Ca
2+

 transients following caffeine application were not altered. In the whole-cell 

mode of patch-clamp technique, AEA (1 μM) significantly decreased the duration 

of APs. The inhibition was not altered in the presence of PTX, AM251 and 

AM630. Furthermore, AEA inhibited voltage-activated inward Na
+
 (INa) and Ca

2+
 

(IL,Ca) currents; major ionic currents shaping the APs in ventricular myocytes, in a 

voltage and PTX-independent manner. Cardiac Na
+
/Ca

2+
 exchanger (NCX1)-

mediated currents were also suppressed by AEA. The effect of AEA was not 

influenced by the inhibition of fatty acid amide hydrolase (FAAH) or in the 

presence of PTX, AM251 and AM630 or following the inclusion of GDP-β-S in 

pipette solution. The results of this study indicate for the first time that impaired 
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Ca
2+

 signaling underlies the negative inotropic actions of AEA in rat ventricular 

myocytes, and that the direct interaction of AEA with ion channel(s) shaping APs, 

mediates, at least in part, the effects of AEA on myocyte contractility. In addition, 

the results indicate for the first time that, under normal conditions, AEA can 

directly inhibit the activity of NCX1 in ventricular myocytes. In view of the 

massive release of various N-acylethanolamines (NAEs), including AEA, during 

cardiac ischemia and hypoxic conditions, further understanding of their 

mechanism(s) of action and target proteins is essential in the development of 

better treatment modalities under pathological conditions. 

Keywords: Endocannabinoids, anandamide, myocyte shortening, voltage-

activated inward Na
+
 current, voltage-activated inward Ca

2+
 current.  
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1. INTRODUCTION 

1.1. Cardiac cell electrophysiology 

1.1.1 Cardiac action potential 

Physiological function of the heart results from the periodic execution of a 

series of coordinated and interdependent mechanical, chemical, and electrical 

processes within the cardiac tissue. An important event central to these processes 

is the cardiac action potential (AP) and the mechanism by which this electrical 

excitation initiates cardiac muscle contraction is called excitation-contraction 

coupling.  

The AP of a cardiac cell arises from the coordinated opening and closing 

(gating) of ion channels; membrane proteins that control ion passage across cell 

membranes and constitute the molecular foundation for the generation of APs. 

Depending on the cell type, the transmembrane voltage in resting cardiac tissue 

cells ranges from -60 mV to -90 mV, where the intracellular space is negatively 

charged with respect to the extracellular space due to the differences in ion 

concentration that exist between the intracellular and the extracellular milieu 

(Grant, 2009). This concentration difference not only gives rise to diffusion of 

ions across the membrane, but also generates a potential difference that 

counteracts the diffusion and determines the electrochemical equilibrium 

according to the Nernst Equation (Kettenmann, et al., 1983). It is also important to 

note that due to involvement of multiple ions, the sum of conductances of 

different ion channels determines the final value of the resting membrane 

potential.  
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The electrophysiological characteristics of excitable cells are shaped in 

large part by the regulation of voltage-gated ion channels (VGICs). These 

channels are deemed voltage-gated since changes in membrane potential lead to 

alterations in their conformation or gating characteristics. Voltage-gated ion 

channels comprise three main families: Na
+
, Ca

2+
 and K

+
 channels (Bezanilla, 

2005). In general, at any given moment, VGICs can be found in one of three 

gating states; closed, open, or inactive (Karmazinova and Lacinova, 2010). 

Channels in their closed state can be opened by an appropriate change in 

membrane potential. Channels in their open state allow the generation of ionic 

conductance for a particular permeable ion. However, in the inactive state, 

channels at depolarized potentials enter a transient non-conducting refractory 

period in which no changes in membrane potential can re-open them. After this 

refractory period, inactive channels can return to their closed state and become 

available for the generation of the next AP (Bahring and Covarrubias, 2011).  

The AP in a ventricular muscle cell lasts for 200-300 ms and is divided 

into five sequential phases: resting (phase 4), upstroke (phase 0), early 

repolarization (phase 1), plateau (phase 2), and final repolarization (phase 3) 

(figure 1.1) (Amin, et al., 2010). At the resting membrane potential, Na
+
 and Ca

2+ 

channels are mainly in the closed state and the activity of K
+
 channels, especially 

the inwardly rectifying K
+
 (KIR) channels, determine the resting membrane 

potential. Because the resting state has higher permeability to K
+
, resting 

membrane potential of most ventricular cardiomyocytes stabilizes near the voltage 

required to oppose the K
+ 

concentration gradient, i.e., the K
+
 equilibrium potential 

(Chung and Kuyucak, 2002). Upon the arrival of a brief, suprathreshold 

depolarizing stimulus, voltage-gated Na
+ 

channels (VGSCs) in the resting state  
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Figure 1.1 Cardiac action potential and cardiac ion currents: The cardiac 

action potential is generated by transmembrane inwardly and outwardly directed 

ion currents. The inward (depolarizing) Na
+
 and Ca

2+
 currents point downwards. 

The outward (repolarizing) K
+ 

currents are pointed upwards. Adapted from Amin, 

et al., 2010. 

 

 



4 

 

begin to open allowing for the rapid influx of Na
+ 

ions into the cell down their 

electrochemical gradient. The influx of positively charged Na
+
 ions further 

depolarizes the membrane resulting in the opening of more Na
+ 

channels and 

progressively increasing Na
+
 influx (phase 0). This fast feed forward mechanism 

will bring the membrane potential towards Na
+
 equilibrium value which is about 

20 mV. It is important to note that this initial depolarizing phase is central to fast 

impulse propagation within the cardiac muscle. During depolarization, Na
+
 

channels rapidly enter their inactive state in which no amount of stimulus will re-

open them and Na
+ 

current decays within a few milliseconds (Grant, 2009; 

Moreno, et al., 2012). Following this initial upstroke, a first repolarization phase, 

coined phase 1, is initiated by the opening of a particular K
+
 channel that 

generates a transient outward current (Ito) and causes a repolarizing notch in the 

AP (Dong, et al., 2006). Meanwhile, the Ca
2+

 channels, which exhibit slower 

kinetics than Na
+
 channels, also open in response to depolarization leading to a 

period of prolonged (100-200 ms) depolarization of the membrane potential called 

the plateau phase of the AP (phase 2). This plateau phase results from a delicate 

balance between depolarizing (inward) and repolarizing (outward) currents (Qu 

and Chung, 2012). During the prolonged depolarization, VGCCs
 

begin to 

inactivate, while delayed rectifier K
+ 

channels begin to activate. Eventually, the 

prevailing repolarizing current carried by K
+ 

channels brings the membrane back 

towards the resting membrane potential (phase 3) (Moreno, et al., 2012; Grant, 

2009). As mentioned earlier, the resting state of the AP (phase 4) is maintained by 

the KIR. This channel is the primary conductance controlling the resting potential, 

and permitting a significant repolarizing current during the terminal stage of the 

AP (Wu, et al., 2012). 
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The characteristic shape of the AP changes significantly across the 

myocardial wall from the endocardium, midmyocardium, to epicardium. For 

example, epicardial cells have a prominent phase 1 and a shorter duration of AP 

(Voitychuk, et al., 2012). On the other hand, AP duration is the longest in the 

midmyocardial region of ventricular muscle (Antzelevitch, et al., 1991; Grant, 

2009). 

1.1.2 Cardiac inward ion currents 

1.1.2.1 Voltage-gated Na
+
 channels 

Voltage-gated Na
+ 

channels (VGSCs) play an essential role in the initiation 

and propagation of APs in neurons and other excitable cells such as cardiac 

myocytes (Catterall, et al., 2005a). The voltage-gated Na
+ 

channel is a large 

multimeric complex, consisting of an α subunit associated with auxiliary β 

subunits (Figure 1.2) (Catterall, 2012). The pore forming α subunit is large 

(molecular weight is about 227 kDa) and is sufficient for functional expression, 

but the kinetics and the voltage dependence of channel gating are modified 

significantly in the presence of the β subunits. In the heart, the Na
+
 channels 

contain β1 through β4 subunits. These auxiliary subunits are involved in channel 

localization and interaction with cell adhesion molecules, extracellular matrix and 

intracellular cytoskeleton (Catterall, et al., 2005a).  

Analysis of the primary sequence predicts that the α subunit folds into four 

main domains (I-IV), that are similar to one another and contain six 

transmembrane α helices (S1-S6). In each of the domains, the voltage sensor is 

located in the S4 segments which contain positively charged amino acid residues 

at every third position. These residues move across the membrane to initiate  
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Figure 1.2 Structure of voltage-gated Na
+
 channel: The α subunit of Na

+ 

channel is illustrated together with the β1 and β2 subunits. Roman numerals 

indicate the α subunit domains; segments 5 and 6 are the pore-lining segments and 

the S4 helices make up the voltage sensors. Modified from Catterall, 2012. 
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channel activation in response to membrane depolarization. The short intracellular 

loop connecting the homologous domains III and IV serves as the inactivation 

gate, folding into the channel structure and blocking the pore from the inside 

during sustained depolarization of the membrane. A re-entrant loop between 

helices S5 and S6 is embedded into the transmembrane region of the channel in 

order to form the narrow ion-selective filter at the extracellular end of the pore. 

The wider intracellular end of the pore is formed by the four S6 segments. Small 

extracellular loops connect the transmembrane segments, with the largest ones 

connecting the S5 or S6 segments to the membrane re-entrant loop (Yu and 

Catterall, 2003; Catterall, et al., 2005a).  

According to the primary sequence of the α subunit, nine subtypes of Na
+
 

channels (Nav1.1-Nav1.9) have been functionally characterized (Dib-Hajj, et al., 

2009; Yu and Catterall, 2003; Catterall, et al., 2005a). The nine Na
+
 channel 

isoforms are greater than 50% identical in amino acid sequence in the 

transmembrane and extracellular domains (Catterall, et al., 2005a). Generally, 

Nav1.1 and Nav1.3 are localized in the soma of the neuron, while Nav1.2 subtype 

is expressed mainly in unmyelinated axons. Moreover, Nav1.1 and Nav1.6 

subtypes are highly expressed in peripheral nervous system, and Nav1.4 and 

Nav1.5 subtypes are found in skeletal and cardiac myocytes, respectively (Rogart, 

et al., 1989). Cardiac Na
+ 

channels (Nav1.5) have a conductance of 19-22 pS 

(Catterall, et al., 2005a). The fraction of channels available for opening varies 

from about 100 % at -90 mV to zero at around -40 mV (Yu and Catterall, 2003; 

Grant, 2009). 

The cardiac Nav1.5 channel has consensus sites for phosphorylation by 

protein kinase A (PKA), protein kinase C (PKC) and Ca
2+

-calmodulin kinase 



8 

 

(Catterall, et al., 2005a). Moreover, biochemical studies have shown that purified 

Na
+
 channels are phosphorylated by the cAMP-dependent PKA and PKC at 

multiple sites in the intracellular loop between domains I and II (Cantrell and 

Catterall, 2001). Although, in earlier studies, Na
+
 currents have been shown to be 

modulated by the cAMP pathway, the results of these experiments are not 

conclusive; some studies reporting a decrease, whereas others reporting an 

increase in the Na
+
 current (Ono, et al., 1989; Kirstein, et al., 1996; Frohnwieser, 

et al., 1997). However, functional studies have consistently found that 

phosphorylation of the channel by PKC results in a decrease in INa (Murray, et al., 

1997; Hallaq, et al., 2012). In a recent study, it was reported that a mutation in 

glycerol-3 phosphate dehydrogenase like 1 kinase was associated with Brugada 

syndrome, and resulted in differential modulation of Na
+ 

channel activity. In this 

study, in vitro expression of the channel showed that mutated enzyme action is 

associated with a decrease in INa (London, et al., 2007). 

Modulation of Na
+ 

channel currents is undoubtedly important in vivo, 

although specific deficits that directly affect the function of Na
+ 

channel are not 

yet known. In the heart, point mutations and deletions in Nav1.5 cause long QT 

syndrome and idiopathic ventricular fibrillation due to a slow and an incomplete 

inactivation of the cardiac Na
+
 current resulting in prolongation of the AP 

(Keating and Sanguinetti, 2001). It has also been shown that mutations that subtly 

alter Na
+ 

channel function, can lead to human diseases of hyperexcitability (Yu 

and Catterall, 2003). 

Besides genetic modification, various pharmacological agents also modify 

the function of Na
+
 channels. For example, Na

+
 channels are activated by a 

number of compounds such as veratridine, batrachotoxin and aconitine, and 
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blocked by tetrodotoxin (TTX), saxitoxin, local anesthetics and antiarrhythmic 

drugs (Yu and Catterall, 2003). In this context, it is important to note that although 

neuronal Na
+ 

channels have high sensitivity to TTX (in nanomolar concentration), 

cardiac Na
+ 

channels are only affected at micromolar concentration and therefore, 

are called TTX-resistant Na
+ 

channels (Zimmer, 2010). 

1.1.2.2 Voltage- gated Ca
2+

 channel 

Voltage-gated Ca
2+

 channels (VGCCs) are key transducers of membrane 

potential changes into intracellular Ca
2+

 transients that initiate various 

physiological events, ranging from neurotransmitter release to muscle contraction 

(Catterall, et al., 2005b). Voltage-gated Ca
2+

 channels consist of five subunits 

called α1, α2, γ, β, and δ of which α1 constitutes the pore forming subunit 

(Figure1.3). The associated subunits have several functions including regulation 

of channel trafficking and modulation of current kinetics (Bodi, et al., 2005). The 

channel protein forming the α1 subunit consists of more than 2000 amino acids 

(molecular weight ~170 kDa) and contains four homologous domains (I-IV). Each 

domain contains six transmembrane segments (S1-S6) and a membrane associated 

loop between S5 and S6 segments. The S4 segment of each homologous domain 

serves as the voltage sensor for activation; moving outward and rotating under the 

influence of the electric field and initiating a conformational change that leads to 

the opening of the pore. The S5 and S6 segments and the membrane-associated 

pore loop between them form the pore lining of the VGCC (Catterall, 2011; Grant, 

2009). Each of the four pore-lining loops (P-I through P-IV) of each domain 

contributes a glutamate residue (E) to the pore structure. These conserved residues 

(EEEE) in the pore have been shown to be critical for Ca
2+

 selectivity of the 

channel (Sather and McCleskey, 2003). Expression of the α1 subunit is sufficient  
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Figure 1.3 Structure of voltage gated Ca
2+

 channel: The α subunit of Ca
2+

 

channel is illustrated together with the β, γ and α2δ subunits. Roman numerals 

indicate the domains of α subunit; segments 5 and 6 are the pore-lining segments 

and the S4 helices make up the voltage sensors. Adapted from Catterall, 2011.
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to produce a functional Ca
2+ 

channel, but it displays low expression level, 

abnormal kinetics, and voltage dependence (Perez-Reyes, et al., 1989). Studies 

have shown that co-expression of α2δ subunit and β subunit enhances the level of 

expression and confers more physiological gating properties (Lacerda, et al., 

1991; Singer, et al., 1991).  

To date, ten subtypes of VGCCs have been described in mammals (Table 

1). These subtypes serve distinct roles in signal transduction and other cellular 

functions (Catterall, 2011). The L-type subfamily (or CaV1) of VGCCs initiate 

contraction, secretion, regulation of gene expression and integration of synaptic 

input in neurons (Minor, Jr. and Findeisen, 2010). The neuronal CaV2 subfamily 

which includes the N-type (CaV2.1), P/Q-type (CaV2.2), and R-type (CaV2.3) 

channels is responsible for initiation of synaptic transmission at fast synapses 

(Catterall, et al., 2005b). The T-type channels (or CaV3) are important for 

repetitive firing of action potentials in rhythmically firing cells such as cardiac 

cells (Minor, Jr. and Findeisen, 2010; Catterall, 2011).  

In cardiac muscle, the two types of VGCCs, the L-type (long lasting) Ca
2+ 

channels and the T-type (transient) Ca
2+

 channels play an important role in muscle 

contraction and automaticity, respectively (Grant, 2009). There are four α1 subunit 

variants of the L-type Ca
2+

 channels: Cav1.1 (α1S), 1.2 (α1C), 1.3 (α1D) and 1.4 

(α1F) of which Cav1.2 (α1C) subunit is the cardiac specific L-type Ca
2+

 channel 

subunit (Table 1.1) (Minor, Jr. and Findeisen, 2010). 

In the presence of Ca
2+

, the currents are rapidly inactivated via a 

Ca
2+

/calmodulin-dependent mechanism (Ferreira, et al., 1997). This process is 

crucial for limiting Ca
2+

 entry during long cardiac APs. Moreover, reuptake of 

Ca
2+ 

by the sarcoplasmic reticulum (SR) during prolonged depolarization can  
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Ca
2+

 

current 

type 

α1 

subunits 

Conductance, 

pS 

Activation 

threshold 

Inactivation 

rate 

Location and 

Functions 

References 

L Cav1.1 

Cav1.2 

Cav1.3 
Cav1.4 

25 High Slow Excitation 

contraction 

coupling in 
muscle, cardiac 

pacemaking, 

endocrine 

secretion and 
neuronal Ca

2+
 

transients 

Bodi, et al., 

2005; 

Catterall, et 
al., 2005b; 

Cens, et al., 

2006.  

N Cav2.1 20 High Moderate Neurons only; 
neurotransmitter 

release 

Catterall, et 
al., 2005b; 

Minor, Jr. and 

Findeisen, 

2010. 

P/Q  Cav2.2 10-20 High Fast Neurons only; 

neurotransmitter 

release 

Catterall, et 

al., 2005b; 

Minor, Jr. and 
Findeisen, 

2010. 

R Cav2.3 - High - Neurons only; 

neurotransmitter 
release 

Catterall, et 

al., 2005b; 
Minor, Jr. and 

Findeisen, 

2010. 

T Cav3.1 
Cav3.2 

Cav3.3 

5-10 Low Fast Cardiac sinoatrial 
node, neurons; 

repetitive spiking 

and spike activity 

Catterall, et 
al., 2005b; 

Minor, Jr. and 

Findeisen, 
2010; 

Catterall, 

2011. 

 

Table 1.1 Subunit composition and function of Ca
2+

 channel types 
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result in the recovery from Ca
2+

-dependent inactivation, and enable secondary 

depolarization (Grant, 2009). The carboxyl termini of L-type Ca
2+

 channels have 

multiple Ca
2+ 

binding sites and Ca
2+

/calmodulin-dependent kinase activity. 

Binding of calmodulin to these domains has been shown to cause Ca
2+

-dependent 

inactivation of L-type Ca
2+

 channels (Bodi, et al., 2005; Cens, et al., 2006). 

Importantly, using Ba
2+

 as a charge carrier removes the Ca
2+

-induced inactivation. 

In other words, activation of L-type Ca
2+

 channels in the presence of Ba
2+

 results 

in inward Ba
2+

 currents that activate rapidly, but inactivate slowly (Ferreira, et al., 

1997).  

In comparison to L-type Ca
2+

 channels, there are three α1 subunit variants 

of T-type Ca
2+

 channels: Cav3.1 (α1G), 3.2 (α1H) and 3.3 (α1I) (Zhang, et al., 2013). 

These channels are activated at much more negative membrane potentials 

(activation starts at -60 mV), inactivated rapidly, have a small single channel 

conductance (<10 pS), and are insensitive to the conventional L-type Ca
2+

 channel 

antagonists dihydropyridines, phenylalkylamines and benzothiazepines (Bodi, et 

al., 2005; Zhang, et al., 2013). While L-type Ca
2+ 

channels are important in 

maintaining the plateau phase of AP in ventricular cells, both L-type and T-type 

Ca
2+

 channels play a role in generating the AP in cells that are involved in 

rhythmic electrical behavior; sinoatrial node and atrioventricular node (Catterall, 

et al., 2005b; Bodi, et al., 2005; Zhang, et al., 2013).  

1.1.3 Myocardial Ca
2+

 handling 

The importance of Ca
2+ 

signaling in the heart has been appreciated for 

decades. With each heartbeat, Ca
2+

 concentration in the cytosol of cardiac 

myocytes is elevated approximately 10-fold from a resting level of about 100 nM 

to ~1 μM (Bodi, et al., 2005). The levels of cytosolic Ca
2+ 

control the activation of 
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contractile proteins. In other words, the onset, the duration and the intensity of 

myocardial contraction are strictly controlled by intracellular [Ca
2+

]i. The 

electrical activation with the spreading of the AP throughout the heart initiates 

contraction by causing a transient increase in cytosolic Ca
2+ 

concentration, leading 

to a brief (~400 ms) Ca
2+

 transient (Bers, 2002).  

The AP generates the cytosolic Ca
2+ 

transient via a process called Ca
2+

-

induced Ca
2+ 

release (Fabiato, 1983; Eisner, et al., 2013) (Figure 1.4). During this 

process, the influx of a small amount of Ca
2+ 

via voltage-gated L-type Ca
2+ 

channels located in the T-tubules, induces Ca
2+ 

release from the SR by activating 

ryanodine receptor 2 (RyR2). This leads to a considerable amplification of the 

initial Ca
2+

 influx to a level required for the optimal binding of Ca
2+

 to the 

myofilament protein troponin C in the troponin complex on the thin filament, 

which in turn switches on the contractile machinery (Bodi, et al., 2005). The 

troponin complex is composed of troponin C (TnC or the Ca
2+ 

binding subunit), 

troponin I (TnI, involved in inhibition of actin-myosin interaction in the absence 

of Ca
2+

), and troponin T (TnT which binds the troponin complex to tropomyosin, 

another filament protein) in a stoichiometric ratio of 1:1:1 (Gomes, et al., 2002). 

The thin (actin) and thick (myosin) filaments slide along each other driven by 

ATP hydrolysis resulting in muscle shortening and force production. Relaxation 

occurs after 100-200 ms when Ca
2+ 

gradually decays back to diastolic levels. In 

this case, tropomyosin is positioned such that actin and myosin cannot interact 

leading to the relaxation of cardiac muscle cell (Huke and Knollmann, 2010).  

Calcium
 
homeostasis is particularly important in cardiac muscle cells. The 

decline in cytosolic Ca
2+ 

concentration is due to termination of Ca
2+ 

release from 

the SR (inactivation of RyR2) and rapid removal of Ca
2+ 

from the cytosol. Two  
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Figure 1.4 Ca
2+

-induced Ca
2+

 release and Ca
2+

 cycling in a cardiac cell: Ca
2+

 

entry via the L-type Ca
2+

 channel causes the release of Ca
2+

 from the SR via RyR 

resulting in Ca
2+

 transient and muscle contraction. Relaxation occurs by the Ca
2+

 

being taken back into the SR by SERCA and pumped out of the cell by NCX. The 

inset shows the amplitude of the Ca
2+

 transient as a function of SR Ca
2+

 content. 

Modified from Eisner, et al., 2013. 
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major routes are responsible for Ca
2+ 

removal from the cytosol: the SR Ca
2+

-

ATPase (SERCA2a) that uses ATP to pump Ca
2+ 

back into the SR and the 

sodium-calcium exchanger (NCX) (Ottolia, et al., 2013) (Figure 1.4). Under 

physiologic conditions, NCX removes approximately the same amount of Ca
2+ 

that entered the cell through L-type Ca
2+ 

channel in order to maintain the cellular 

Ca
2+ 

balance (Bridge, et al., 1990). Sarcolemmal Ca
2+

-ATPase and the 

mitochondrial Ca
2+ 

uniport are considered minor players in Ca
2+ 

homeostasis, 

although there is accumulating evidence that they can also influence the levels of 

Ca
2+

 in cellular Ca
2+ 

stores and modify excitation-contraction coupling (Dedkova 

and Blatter, 2013; Ottolia, et al., 2013). 

As mentioned earlier, the amplitude of the Ca
2+ 

transient determines the 

level of myofilament activation, and therefore the magnitude of contraction. The 

two main factors that determine the amount of Ca
2+ 

released from the SR and the 

amplitude of the Ca
2+ 

transient are: the amplitude of the L-type Ca
+2+ 

current 

(Trafford, et al., 2001), and the Ca
2+ 

concentration in the SR (Shannon, et al., 

2000). The SR Ca
2+ 

concentration can be increased by the stimulation of 

SERCA2a activity and prolongation of the duration of the AP, and decreased by 

the stimulation of NCX working in the forward mode (Ottolia, et al., 2013). 

In general, any alternation in Ca
2+ 

flux results in an overall change in 

contractility (Ottolia, et al., 2013). For example, a persistent reduction in cellular 

Ca
2+ 

efflux, not matched by a decrease in Ca
2+

 influx, results in an increased 

cellular Ca
2+

 which
 
will accumulate in the SR rather than the cytoplasm. The 

increased amount of Ca
2+

 in SR typically results in larger Ca
2+ 

transients and 

therefore contractility (Bassani, et al., 1995; Shannon, et al., 2000). Conversely, 

an increase in Ca
2+ 

efflux will deplete SR stores and depress contractility.  
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Under in vivo conditions, the main modulator of Ca
2+ 

transient amplitude is 

β-adrenergic stimulation that is mediated by cAMP/PKA which has three main 

actions on Ca
2+ 

signaling (Catterall, 2011). First, it stimulates the L-type VGCCs 

to increase the amount of Ca
2+ 

that enters during each AP. Second, it 

phosphorylates the protein phospholamban (PLB) to reduce its inhibitory effect on 

SERCA2a pump, which is then able to increase the luminal Ca
2+ 

concentration so 

that more Ca
2+ 

is released from the SR. Third, cAMP/PKA phosphorylates the 

RyR2, thereby enhancing its ability to release Ca
2+ 

(Frank, et al., 2003). Therefore, 

the activation of both L-type Ca
2+ 

channel and SERCA2a leads to a substantial 

increase in the amplitude of Ca
2+ 

transients.  

1.1.4 Role of the Na
+
/Ca

2+
 exchanger in calcium homeostasis 

The NCX is a plasma membrane transport protein and is considered as the 

main extrusion pathway for Ca
2+ 

from ventricular myocytes. It is directly involved 

in the regulation of excitation-contraction coupling by means of modulating Ca
2+ 

efflux, SR Ca
2+

 load (Bers, et al., 1989; Bers and Weber, 2002), SR Ca
2+

 release 

(Litwin, et al., 1998) and Ca
2+ 

spark frequency (Goldhaber, et al., 1999). This is 

likely to contribute, alongside other proteins such as SR Ca
2+

-ATPase and 

calmodulin, as an effective buffering mechanism to maintain steady-state Ca
2+ 

flux during short term Ca
2+ 

transients.  

The NCX can extrude intracellular Ca
2+ 

across the cell membrane against 

its chemical gradient by using the downhill gradient of Na
+
. It is widely accepted 

that the stoichiometry of this ion exchange occurs such that while one positive 

charge (Ca
2+

) go out, three positive charges (3 Na
+
) are taken up by the cell (Bers, 

2002; Bers and Weber, 2002). Therefore, NCX activity is electrogenic. Under 
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resting conditions, NCX functions in forward mode. However, NCX is 

bidirectional and can also mediate Ca
2+

 entry and outward movement of Na
+
.
 
This 

is referred to as the reverse mode. The direction and amplitude of the NCX current 

is governed by Na
+
 and Ca

2+
 gradients across the cell membrane, as well as, the 

membrane potential. The most recognized action of NCX is its Ca
2+ 

removal in the 

forward mode at membrane voltages less than the equilibrium potential, which 

under physiological conditions, is about -50 mV to -60 mV (Reuter, et al., 2005; 

Ottolia, et al., 2013). 

Recently, the molecular structure of NCX protein has been elucidated 

(Figure 1.5) (Morad, et al., 2011). It has been shown that mammalian NCX forms 

a multigene family of homologous proteins comprising three isoforms. Sodium-

calcium exchanger 1 (NCX1) was the first NCX cloned and is highly expressed in 

cardiac muscle and brain and to a lesser extent in many other tissues (Hilgemann, 

et al., 2013; Lytton, 2007). Sodium-calcium exchanger 2 (NCX2) is expressed 

primarily in the brain (Canitano, et al., 2002), while sodium-calcium exchanger 3 

(NCX3) is expressed in the brain, as well as, skeletal tissue (Canitano, et al., 2002; 

Lytton, 2007).  

The cardiac NCX1 consists of 970 amino acids with a molecular weight of 

about 110 kDa. Although recent crystal structure of NCX1 strongly supports the 

presence of 10 transmembrane segments (Ren and Philipson, 2013), biochemical 

analysis has indicated the presence of nine transmembrane segments, and a large 

hydrophilic group with conserved regions between transmembrane segments five 

and six. The N- and C-termini are located on the external and internal sides, 

respectively (Shigekawa and Iwamoto, 2001; Ren and Philipson, 2013).  
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Figure 1.5 Hypothetical functional organization of Na
+
/Ca

2+
 exchanger: The 

critical residues T731, T723, and S722 are important for cAMP-dependent 

regulation. Detailed structures have only been determined for the Ca
2+

-binding 

domains β1 and β2. The detailed arrangement and function of all other 

components, including the α-helices of the transmembrane-spanning (top) and α-

catenin-like (αCat) domains and the unstructured linker sequences (S1, S2, A/B-

CDEXF) remain to be ascertained. Adapted from Morad, et al., 2011.  
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Similar to Ca
2+

 channels, NCX is also regulated allosterically by [Ca
2+

]i
 

(Ottolia, et al., 2013). In addition, the activity of NCX is regulated by the 

signaling lipid phosphatidylinositol-4,5-bisphosphate (PIP2) (Hilgemann and Ball, 

1996), free radicals, pH and temperature, as well as, PKA (Schulze, et al., 2003; 

Wei, et al., 2003) and PKC (Blaustein and Lederer, 1999; Iwamoto, et al., 1996). 

However, the physiological significance of these factors as in vivo regulators of 

NCX remains to be established.  

1.2. The endocannabinoid system 

1.2.1 Introduction 

The psychoactive properties of the plant Cannabis sativa have been known 

to man for thousands of years. The popularity of marijuana, one of the most 

commonly used drugs of abuse, reflects its powerful effects on sensory 

perception, learning and anxiety. Non-psychoactive uses of marijuana include 

pain relief, muscle relaxation, attenuation of nausea and vomiting and treatment of 

multiple sclerosis (Pertwee, 2001; Howlett, 2002; Smith, 2004). Despite its use for 

centuries, it is only during the last few decades that the biological basis of the 

effects of marijuana and its bioactive ingredients, collectively called cannabinoids, 

has begun to unfold (Kunos, et al., 2000). In the 1960s, Δ
9
-tetrahydrocannabinol 

(THC) was discovered as the primary psychoactive component of Cannabis sativa 

(Mechoulam and Gaoni, 1965; Mechoulam, et al., 1995). However, it is important 

to note that Cannabis contains over 60 chemicals with closely related structures. 

Among them, THC, cannabinol and cannabidiol are the most commonly studied 

cannabinoids (Di Marzo, V, 2006).  

The isolation of THC paved the way for the development of THC-based 

ligands and led to the discovery of cannabinoid receptors. The first cannabinoid 
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binding site in rat brain was identified in 1988 (Devane, et al., 1988), and the 

receptor was cloned later in 1990 (Matsuda, et al., 1990). This receptor was 

named cannabinoid receptor 1 (CB1). The second receptor, cannabinoid receptor 2 

(CB2), was discovered shortly after (Munro, et al., 1993). 

In earlier studies, the presence of opiate receptors in the mammalian brain 

(Pert and Snyder, 1973) has led to the discovery of endogenous opioid peptides. 

Therefore, several groups have searched for endogenous ligands that mimic the 

action of Cannabis. Only in the early nineties, similar to the opioid system, 

cannabinoid receptors were found to have endogenously produced ligands 

(Devane, et al., 1992). These are now called the endocannabinoids.  

The endocannabinoid system (ECS) is a complex and ubiquitously 

expressed signaling system which includes several neuromodulatory lipids 

(endocannabinoids), their receptors and a set of enzymes that synthesize and 

degrade endocannabinoids. The ECS has been identified in most human organs 

and tissues, and has important regulatory roles in a wide range of normal and 

pathological processes, such as pain, energy homeostasis, fertility, immune 

response and behavior (Rodriguez de, et al., 2005; De and Di, V, 2009a).  

1.2.2 Endocannabinoids 

Endocannabinoids belong to a family of polyunsaturated fatty acid-based 

compounds synthesized from the lipid precursors in the plasma membranes of 

virtually all types of cells ranging from neurons and endocrine cells to skeletal 

muscle fibers and cardiomyocytes (Pacher, et al., 2006). They are implicated in a 

wide variety of physiological processes including memory, immunity, sleep, pain 

sensation, perception, reproduction (Martin, et al., 1999) and cardiovascular 

functions (Clapper, et al., 2006; Sterin-Borda, et al., 2005; Randall and Kendall, 
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1997). To date, the two most extensively studied endocannabinoids are N- 

arachidonoylethanolamine (AEA), also known as anandamide (from the Sanskrit 

‘ananda’ for happiness, joy or enjoyment), and its glycerol ester analogue 2-

arachidonoylglycerol (2-AG). Anandamide was first described in 1992 (Devane, 

et al., 1992). However, 2-AG was discovered as the second endocanabinoid a few 

years later (Mechoulam, et al., 1995; Sugiura, et al., 1995) (Figure 1.6).  

In addition to AEA and 2-AG, other endocannabinoids with similar fatty 

acid-based chemical structures were also identified during the last decade, 

including, 2-arachidonylglycerol ether (noladin ether) (Hanus, et al., 2001), N-

arachidonoyl-dopamine (NADA) (Bisogno, et al., 2000), and virodhamine (Porter, 

et al., 2002) (Figure 1.6). Virodhamine has a very similar structure to AEA, but 

opposite orientation around the arachidonic acid (AA)-ethanolamine bond (Porter, 

et al., 2002). Likewise, noladin ether and 2- AG are structurally similar (Figure 

1.6). However, pharmacological characterization of these chemicals has not been 

well established. 

Anandamide belongs to a group of chemicals termed N-acylethanolamines 

(NAEs). Other NAEs are not usually considered as endocannabinoids but are 

produced by the same enzymes that synthesize AEA. In recent years, several 

studies have shown that these chemicals play a role in vascular control (Ho, et al., 

2008), food intake, energy balance (Borrelli and Izzo, 2009) and neuroprotection 

(Hansen, et al., 2000; Hansen, 2010). Two of these NAEs, oleoylethanolamide 

(OEA) and palmitoylethanolamide (PEA) have been extensively investigated as 

they are present at higher concentration than the endocannabinoids in many 

mammalian tissues (Alexander and Kendall, 2007; Lambert and Muccioli, 2007) 

(Figure 1.7). 
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Figure 1.6 Chemical structures of the proposed endocannabinoids. Adapted 

from Di Marzo, 2009 
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Figure 1.7 Chemical structures of anandamide and related N-

acylethanolamines. 
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1.2.3 Endocannabinoid receptors 

As mentioned earlier, to date, at least two endocannabinoid receptors have 

been identified and cloned based on their pharmacological properties and gene 

structure. The CB1 receptors are principally located in the central nervous system, 

where they are highly abundant and appear to participate in negative retrograde 

signaling (Matsuda, et al., 1990; Mackie, 2008). In addition, they are found in 

several peripheral tissues including the heart and the vasculature (Ishac, et al., 

1996; Bonz, et al., 2003; Liu, et al., 2000). The CB2 receptors, on the other hand, 

are expressed primarily in the immune system (Munro, et al., 1993) and 

hematopoietic cells (Valk and Delwel, 1998), but recently their presence in the 

brain (Van, et al., 2005), liver (Mallat and Lotersztajn, 2008; Mackie, 2008), 

myocardium (Montecucco, et al., 2009; Defer, et al., 2009), vascular endothelial 

and smooth muscle cells (Rajesh, et al., 2007), have also been demonstrated. Both 

receptors are G protein-coupled receptors (GPCRs) with seven transmembrane 

spanning domains (Howlett, et al., 1990). Most of the G proteins linked to the 

cannabinoid receptors are inhibitory proteins (Gi/o). They are sensitive to pertussis 

toxin (PTX) and inhibit adenylyl cyclase (AC) activity and thus, inhibit the 

formation of cAMP (Pertwee, 2006). However, coupling of cannabinoid receptors 

to PTX-insensitive Gq protein has also been reported in recent studies (Straiker, et 

al., 2002; McIntosh, et al., 2007). 

The CB1 receptor can be activated by both AEA and 2-AG, although 2-AG 

is more potent, and AEA is often considered to be a partial agonist (Hillard, 

2000). Similarly, both endocannabinoids are agonists of CB2 receptor, although 

again 2-AG is more potent. Both AEA (KD values for CB1 and CB2 receptors are 

61-543 nM and 279-1940 nM, respectively) and 2-AG (KD values for CB1 and 
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CB2 receptors are 58-472 nM and 145-1400 nM, respectively) have greater 

affinities for CB1 receptor than CB2 receptor (Munro, et al., 1993; Pertwee, 2006; 

Pertwee, et al., 2010). It appears that the selectivity of endocannabinoids varies 

significantly. For example, the endocannabinoid noladin ether is a selective CB1 

receptor agonist, while virodhamine is a partial CB2 agonist and a CB1 receptor 

antagonist. On the other hand, NADA appears to be a selective agonist for CB1 

receptor (Pertwee, et al., 2010; Pertwee and Ross, 2002). 

1.2.4 Synthesis and metabolism of anandamide 

Endocannabinoids are synthesized predominantly via the cleavage of 

membrane phosphoglyceride precursors (Bisogno, 2008). As the endocannabinoid 

precursors are physiological chemical constituents of cell membranes, it is the 

anatomical location of endocannabinoid synthesizing enzymes and receptors that 

dictate their activity and therefore, their physiological roles in cellular 

environments (Di, Marzo, et al., 2007). Endocannabinoids are often referred to as 

signaling molecules which are synthesized “on demand” and in neurons, at least, 

endocannabinoids are synthesized and released very rapidly (within tens of 

milliseconds) upon stimulation (Alger and Kim, 2011).   

As mentioned earlier, the biosynthetic pathway for AEA is thought to 

involve the breakdown of pre-formed arachidonoyl phospholipids in the cell 

membrane (Figure 1.8). It was shown that the primary route for AEA biosynthesis 

is the formation of N-arachidonoyl phosphatidylethanolamine (NAPE) (Hiley, 

2009) which is produced by the transfer of AA from phospholipids to the nitrogen 

atom of phosphatidylethanolamine. Subsequently, it is transformed into AEA via 

multiple pathways, the most direct of which is catalyzed by Ca
2+

-sensitive NAPE- 
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Figure 1.8 Mechanisms of anandamide formation and deactivation: The 

formation of AEA is thought to include the synthesis of the AEA precursor N-

arachidonoyl phosphatidylethanolamine (NAPE) catalyzed by the enzyme N-

acyltransferase and then the cleavage of NAPE to yield AEA, catalyzed by 

phospholipase D (upper panel). AEA can be internalized by cells through a high 

affinity transport mechanism; the endocannabinoid transporter. Once inside the 

cell, it can be hydrolyzed by FAAH to yield arachidonic acid and ethanolamine 

(lower panel). Modified from Piomelli, 2003. 
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selective phospholipase D (NAPE-PLD) (De Petrocellis and Di Marzo, 2009a). 

This enzyme catalyzes the hydrolysis of the bond between phosphate and 

ethanolamine resulting in the formation of AEA and phosphatidic acid.  

Endocannabinoid signaling is terminated by a rapid clearance from the 

extracellular milieu (half-life is seconds to minutes) (De Petrocells, et al., 2004). 

Studies suggest that following cannabinoid receptor activation, AEA is taken up 

by cells via a facilitated transport mechanism mediated by a putative anandamide 

membrane trasporter (AMT) (Bari, et al., 2006; Piomelli, 2003) followed by 

intracellular degradation. Although data from several biochemical and 

pharmacological studies support the existence of an AMT, this is a controversial 

topic, and the structure of AMT protein remains to be identified at the molecular 

level (De Petrocellis, et al., 2004). Currently, it is well established that AEA is 

predominantly degraded in the cytosol under the action of FAAH to ethanolamine 

and AA (Hiley, 2009; Deutsch and Chin, 1993; Cravatt, et al., 1996). On the other 

hand, 2-AG is predominantly broken down by a specific monoacylglycerol lipase 

(MAGL) (Vandevoorde and Lambert, 2005). In vitro experiments indicate that 

endocannabinoids are also substrates for oxidative metabolism via 

cyclooxygenase (Fowler, 2007) and lipoxygenase (Kozak, et al., 2002) pathways. 

Fatty acid amide hydrolase was identified in 1996 (Cravatt, et al., 1996). It 

has multiple substrates, but exhibits specificity for the long-chain amides of 

ethanolamine (Schmid, et al., 1985). There are two isoforms of FAAH, FAAH-1 

and FAAH-2, which share approximately 20 % DNA sequence homology, 

although, the catalytic site is relatively well conserved (Wei, et al., 2006a). The 

two isoforms are differentially expressed across tissues. In human kidney, liver, 

lung and prostate both isoforms are expressed. However, only FAAH-1 levels are 
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high in human brain, small intestine and testis. FAAH-2 is predominantly 

expressed in the heart (Wei, et al., 2006a). It is important to note that the two 

isoforms have different substrate specificity, with FAAH-1 having significantly 

greater hydrolytic activity on AEA than FAAH-2 (rates of hydrolysis in 

nmol/min.mg are 17±1 and 0.46±0.04, respectively) (Wei, et al., 2006a). Due to 

the pharmacological implication of modulating endocannabinoid levels, in recent 

years, several inhibitors have been synthesized (Fowler, et al., 2001). For 

example, URB597, JP104, OL-92 and OL-135 are potent inhibitors of FAAH 

(Michaux, et al., 2006; Min, et al., 2011). However, these inhibitors differ in their 

selectivity. While JP104 is a potent inhibitor of both FAAH-1 and FAAH-2 (Wei, 

et al., 2006b), URB597 is more potent at FAAH-2 (Piomelli, et al., 2006). 

FAAH is a membrane bound enzyme (McKinney and Cravatt, 2005) and is 

thought to form homodimers (Bracey, et al., 2002). The location and structure of 

FAAH may allow the hydrolysis of AEA within the close vicinity of plasma 

membrane (McKinney and Cravatt, 2005). Indeed, the rate of AEA hydrolysis in 

tissues from FAAH knockout mice is 50-100 fold reduced, and AEA 

concentrations in the brain (Cravatt, et al., 2001; Lichtman, et al., 2002) and liver 

(Tourino, et al., 2010) are elevated significantly.  

In recent years, FAAH has emerged as a target for modulating 

endocannabinoid signaling (Ahn, et al., 2008) with a therapeutic potential in 

anxiety, pain and various inflammatory disorders (Cravatt, et al., 2001; Cravatt, et 

al., 2004). In the heart, FAAH plays a key role in controlling endocannabinoid-

induced myocardial tissue injury in pathological conditions associated with acute 

oxidative stress (Mukhopadhyay, et al., 2011). It was found that AEA induced 

enhanced cell death in human cardiomyocytes that were pretreated with FAAH 
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inhibitor, and enhanced sensitivity to reactive oxygen species (ROS) generation in 

inflammatory cells of FAAH knockouts, all of which suggest a role for FAAH in 

controlling tissue injury (Mukhopadhyay, et al., 2011). 

1.2.5 Cellular and molecular mechanisms of endocannabinoid actions 

1.2.5.1 Signal transduction mechanisms  

Signal transduction through CB1 and CB2 receptors is mediated by G-

protein (Gi/o) which couples negatively to AC and thus, inhibits cAMP generation. 

Modulation of intracellular cAMP concentration regulates PKA phosphorylation, 

and thereby results in major changes in cAMP-dependent signal transduction 

pathway (Demuth and Molleman, 2006). In fact, the first characterized CB1 

receptor signal transduction response was the inhibition of AC by micromolar 

concentration of THC in neuroblastoma cells (Howlett and Fleming, 1984). 

Subsequent studies demonstrating the blockade of this response by PTX treatment 

suggested that Gi/o type G-proteins are involved (Howlett, et al., 1986). Typical 

Gi/o -mediated intracellular events coupled to CB1 activation are the inhibition of 

VGCCs of most types, including P/Q (Twitchell, et al., 1997), N (Wilson, et al., 

2001) and L-type (Gebremedhin, et al., 1999; Straiker, et al., 1999) channels and 

the stimulation of potassium channels such as KIR channels (McAllister, et al., 

1999) and mitogen-activated protein kinase (MAPK) (Derkinderen, et al., 2001).  

 In the central nervous system, the role of endocannabinoids in retrograde 

signaling has been well established. It has been shown that the activation of 

presynaptic CB1 receptors controls the release of several neurotransmitters, such 

as glutamate and GABA (Lovinger, 2008; Foldy, et al., 2006). Synthesis of 

endocannabinoids occurs following the release of excitatory neurotrasmitters and 

their diffusion outside the synaptic region. The action of glutamate on its receptor 
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in the postsynaptic membrane leads to the release of intracellular Ca
2+

 and the 

opening of VGCCs. An elevated level of Ca
2+

 activates the enzymes responsible 

for endocannabinoid synthesis from lipid precursors. Anandamide and/ or 2-AG 

are released and following retrograde diffusion in the synaptic cleft, presynaptic 

CB1 receptors are activated. This activation results in the inhibition of VGCCs or 

activation of K
+
 channels resulting in decreased intracellular Ca

2+ 
concentration, 

preventing further neurotransmitter release from the presynaptic terminal 

(Vaughan and Christie, 2005). 

Recent studies indicate that the interaction of cannabinoids with G proteins 

is not limited to Gi/o subtype. Evidence suggests that CB1 receptors can also 

interact with Gs protein under conditions of PTX treatment that prevents the 

receptor’s interaction with Gi/o protein (Howlett, et al., 1986). CB2 receptors, in 

contrast, do not seem to couple to Gs subtype, suggesting further differences 

between CB1 and CB2 receptor signaling (Glass and Felder, 1997). For example, 

stimulation of cAMP accumulation by HU-210 (the synthetic analogue of THC) 

and CP 55,940 (a highly potent cannabinoid agonist) was observed after PTX 

treatment of Chinese hamster ovary (CHO) cells expressing the human CB1 but 

not CB2 receptors (Calandra, et al., 1999; Glass and Felder, 1997). In addition to 

the dual coupling of cannabinoid receptors to Gs and Gi/o proteins, the presence of 

distinct isoforms of AC in different cellular preparations has also been shown to 

contribute to the diversity of cannabinoid actions. To date, nine isoforms of AC 

have been identified (AC-I, AC- II, AC-III, AC-IV, AC-V, AC-VI, AC-VII, AC- 

VIII and AC-IX) (Demuth and Molleman, 2006). The isoform AC-I is found 

mainly in the brain while the isoforms AC-V and AC-VI are highly expressed in 

brain and heart. When monkey kidney (COS-7) cells expressing exogenous CB1 



32 

 

receptors were transfected with each AC isoform in turn and stimulated with the 

cannabinoid agonists HU-210 and WIN 55,212-2, the isoforms AC-I, AC-V, AC-

VI and AC-VIII were shown to be inhibited, whereas, AC-II, AC-IV and AC-VII 

were stimulated by CB1 receptor activation (Rhee, et al., 1998). Collectively, all 

these results suggest that CB1 receptors may be dually coupled to both Gs and Gi/o 

proteins in some systems. It is likely that the contrasting effects of cannabinoids 

on AC activity could be attributed to the specific isoform present in different 

cellular preparations. However, physiological significance of these diverse 

coupling mechanisms of cannabinoid receptors to various G-proteins needs further 

investigation.  

Another effect described for both CB1 and CB2 receptors is the modulation 

of intracellular Ca
2+ 

concentration. CB1 receptor agonists, including AEA and 2-

AG, were shown to directly stimulate the hydrolysis of PIP2 by phospholipase C 

(PLC-β) with subsequent release of IP3 followed by Ca
2+

 mobilization from the 

endoplasmic reticulum via either Gq-mediated or Gi/o-mediated mechanisms 

(Sugiura, et al., 1996; Ho, et al., 1999; Lauckner, et al., 2005). In NG108-15 cells 

(Sugiura, et al., 1996) and in cultured cerebellar granule cells (Netzeband, et al., 

1999), cannabinoid receptor agonists have been shown to increase intracellular 

Ca
2+

 concentration by releasing Ca
2+ 

from
 
IP3-sensitive stores. It appears that these 

effects of cannabinoids are sensitive to CB1 antagonism and PTX treatment 

(Sugiura, et al., 1996; Netzeband, et al., 1999).  

Activation of CB2 receptors has also been shown to increase intracellular 

Ca
2+

 levels, although, CB2 receptor-mediated Ca
2+

 responses are less pronounced 

than the potent CB1 receptor-mediated effects (Felder, et al., 1995; Zoratti, et al., 

2003). In calf pulmonary endothelial cells, Zoratti et al., observed CB2-dependent 



33 

 

increase in cytosolic Ca
2+ 

via activation of PLC and a subsequent release of Ca
2+

 

from IP3-sensitive stores (Zoratti, et al., 2003).  

However, in some other experiments, cannabinoid-induced Ca
2+

 release 

has been shown to be associated with the release of nitric oxide (NO). For 

example, in cultured human arterial endothelial cells, AEA evoked an increase in 

intracellular Ca
2+

 concentration in an SR141716A-sensitive manner. This increase 

was shown to be coupled to NO release (Fimiani, et al., 1999). In human umbilical 

endothelial cells, intracellular Ca
2+

 increase was insensitive to PTX and only 

marginally blocked by SR141716A. Anandamide also significantly increased NO 

synthase activity (Mombouli, et al., 1999). Collectively, these results suggest that 

CB1 receptor-dependent and independent increase in intracellular Ca
2+ 

and 

subsequent NO production may account for some of the vasodilator actions of 

AEA. However, the increase in intracellular Ca
2+

 concentration seems at odds 

particularly with cannabinoid inhibition of neuronal excitability which is thought 

to be caused by VGCCs inhibition. In addition to NO synthase activation 

mechanism, it is possible that subcellular localization of signaling pathways could 

explain this paradox. For example, it may be envisaged that Ca
2+ 

release from 

intracellular stores in excitable cells can be inhibitory through activation of Ca
2+

-

dependent K
+ 

channels, leading to hyperpolarization. This would then prevent the 

activation of VGCCs and large Ca
2+

 influx (Demuth and Molleman, 2006).  

In addition to the second-messenger pathways described above, functional 

modulation of various ion channels and receptors by endocannabinoids has also 

been demonstrated. One of these ion channels is the transient receptor potential 

(TRP) channel which constitutes a large and a functionally versatile family of 

cation-permeable transmembrane proteins. To date, vanilloid receptors (TRPV1) 
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are the best characterized TRP channels. They are primarily heat receptors 

expressed in sensory neurons and their activation leads to Ca
2+

 entry and 

neurotransmitter release (Demuth and Molleman, 2006). 

The realization that AEA is chemically similar to capsaicin, an agonist of 

TRPV1 channel (Di Marzo, et al., 1998) lead to the discovery that AEA can serve 

as an agonist not only on cannabinoid receptors but also on TRPV1 channels. For 

example, the TRPV1 receptor-mediated vasodilatory effect of AEA in rat and 

guinea pig arteries has been shown to be blocked by the TRPV1 antagonist 

capsazepine (Zygmunt, et al., 1999). Similarly, application of AEA (10 µM) 

causes activation of TRPV1 receptors in cultured cells transfected with rat or 

human TRPV1 receptors or in neurons of neonatal rat dorsal root ganglia 

(Zygmunt, et al., 1999; Smart, et al., 2000; Ross, et al., 2001). Furthermore, the 

ability of AEA to stimulate TRPV1 receptors appears to be regulated by the state 

of activation of protein kinase A and protein kinase C (Premkumar and Ahern, 

2000; Di Marzo, et al., 2002). In this context, it is important to note that co-

localization of cannabinoid receptors and TRPV1 channels have made the 

interpretation of some experiments difficult (Hermann, et al., 2003; Di Marzo and 

Cristino, 2008).  

In recent years, it has been shown that endocannabinoids are ligands for 

peroxisome proliferator-activated receptors (PPARs) (O'Sullivan, et al., 2005; 

Lenman and Fowler, 2007). PPARs are nuclear transcription factors that are 

highly expressed in metabolically active tissues such as liver, adipose, skeletal 

muscle and heart (Stienstra, et al., 2007). These receptors play key roles in 

regulating cellular differentiation, lipid metabolism and inflammation (Glass and 

Ogawa, 2006). In the heart, these receptors can modulate myocardial lipid 
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metabolism, as well as, glucose and energy homeostasis (Lee, et al., 2011). 

Cannabinoid-related agonists identified to date for PPARs include AEA, 2-AG, 

OEA, THC, NADA and cannabidiol (Fu, et al., 2005; O'Sullivan, et al., 2009a; 

O'Sullivan, et al., 2009b; O'Sullivan, et al., 2005; Rockwell, et al., 2006). In some 

studies, it has been shown that the anti-inflammatory effects of AEA and 2-AG 

are sensitive to PPARs antagonism (Rockwell and Kaminski, 2004; Rockwell, et 

al., 2006). In addition, a study carried by O’Sullivan et al., has shown that the 

endocannabinoid AEA, activates PPARs in rat aorta, leading to NO-dependent 

relaxation (O'Sullivan, et al., 2009a). Activation of PPARs in the heart by some 

endocannabinoids may represent a novel mechanism for endocannabinoid 

regulation of the cardiovascular system (O'Sullivan, et al., 2009a).  

Further to these well-recognized endocannabinoid targets, emerging 

evidence demonstrates that, beyond their receptor-mediated effects, AEA and 

other cannabinoid-receptor ligands are able to alter the functional properties of 

ligand-gated ion channels in a cannabinoid receptor-independent manner (Oz, 

2006). Direct effects of endocannabinoids include modulation of the function of 

serotonin type 3 (5-HT-3) receptors (Oz, et al., 2002), nicotinic acetylcholine 

receptors (Jackson, et al., 2008; Oz, et al., 2004a; Butt, et al., 2008), muscarinic 

acetylcholine receptors (Christopoulos and Wilson, 2001) and glycine receptors 

(Hejazi, et al., 2006; Xiong, et al., 2012). 

In addition to ligand-gated ion channels, endocannabinoids have been 

shown to interact with several classes of voltage-gated ion channels in a 

cannabinoid receptor-dependent and independent manner (Oz, 2006). Evidences 

for both mechanisms are discussed in the following section.  
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1.2.5.2 Receptor-dependent and independent effects of endocannabinoids on 

voltage-gated ion channels 

1.2.5.2.1 Effects on Na
+
 channels 

Endocannabinoids have been shown to inhibit directly the functions of 

voltage-gated Na
+
 channels (VGSCs) in neuronal structures. In an earlier study, 

Nicholson et al., have demonstrated the ability of AEA and WIN 55, 212-2 to 

inhibit VGSCs (activated by veratridine) in mouse synaptosomes (Nicholson, et 

al., 2003). The cannabinoids also blocked the veratridine-induced release of 

neurotransmitters from synaptosomes including GABA and glutamate. The CB1 

antagonist AM251 did not attenuate Na
+
 channel inhibition (Nicholson, et al., 

2003). In addition, AEA and WIN 55, 212-2 were able to displace the binding of 

[
3
H]batrachotoxinin A 20-α-benzoate ([

3
H]BTX-B) to VGSCs (Nicholson, et al., 

2003). Together, the data suggest that cannabinoids can directly modulate the 

activity of VGSCs, depressing synaptic transmission in the brain, and in turn, 

reduce both excitatory and inhibitory neurotransmitter release. 

In rat dorsal root ganglion neurons, AEA inhibited both tetrodotoxin 

(TTX)-sensitive and TTX-resistant Na
+
 currents in a concentration-dependent 

manner. This inhibition was not reversed by the CB1 antagonist AM251, the CB2 

antagonist AM630 and the vanilloid receptor antagonist capsazepine, suggesting a 

direct action of AEA on Na
+ 

channels (Kim, et al., 2005). In a study carried out by 

Duan et al., 2-AG and NADA were found to modify the binding of [
3
H]BTX-B to 

VGSCs of mouse brain and inhibit their function in vitro (Duan, et al., 2008). 

These effects were not influenced by the application of the CB1 receptor 

antagonist AM251. It was concluded that 2-AG and NADA directly inhibit Na
+
 

channel function, which contributes to the suppression of neuronal excitation and 

inhibition of neurotransmitter release in the presynaptic membranes (Duan, et al., 
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2008). A recent study has shown that AEA blocks sensory neuronal Na
+
 channel 

isoform Nav1.7 in stably transfected human embryonic kidney (HEK) 293 cells 

(Theile and Cummins, 2011). However, inhibition of VGSCs is not limited to 

endocannabinoids. Other members of NAEs family have also been shown to act 

on Na
+
 channels. In mouse brain synaptosomes, OEA inhibited the binding of 

[
3
H]BTX-B. In addition, OEA at a concentration of 10 μM, decreased peak Na

+
 

currents in cultured N1E-115 neuroblastoma cells in a voltage-dependent manner, 

and caused a hyperpolarizing shift in the inactivation curve of the channel. In this 

respect, the effect of OEA reflects the actions of local anesthetic drugs used as 

antiarrhythmic agents. Therefore, OEA is likely to regulate cardiac cell 

excitability (Nicholson, et al., 2001). Indeed, a recent study in neonatal 

cardiomyocytes showed that the two NAEs, SEA and OEA, influenced the 

voltage-dependence of activation, inactivation, and the kinetics of Na
+
 currents 

(Voitychuk, et al., 2012). These effects may in part be responsible for the decrease 

in cardiomyocytes’ excitability by these lipids under normal as well as 

pathological conditions. Interestingly, the effects of endocannabinoids such as 

AEA and 2-AG on cardiac Na
+
 channels have not been reported. 

1.2.5.2.2 Effects on Ca
2+

 channels 

In earlier studies it has been shown that AEA, WIN 55, 213-2, and CP 55, 

940 act via CB1 receptors to decrease Ca
2+ 

influx in NG 108-15 cells (Mackie and 

Hille, 1992; Mackie, et al., 1993). This effect was blocked by pretreatment with 

PTX, demonstrating its mediation by Gi/o protein, and was independent of cAMP 

pathway, as the response was not reversed by the addition of 8-Bromo-cAMP 

(Mackie and Hille, 1992; Mackie, et al., 1993). Similarly, in rat superior cervical 

ganglion neurons transfected with CB1 receptors, WIN55,212-2 and CP55,940 
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inhibited N-type Ca
2+

 currents in a PTX-sensitive manner (Pan, et al., 1996). 

Another study in rat striatal neurons indicated that WIN55,212-2 inhibited 

corticostriatal glutamatergic synaptic transmission in an SR141716A-and a PTX-

sensitive manner. The inhibition of N-type Ca
2+

 channels was thought to mediate 

this effect as ω-conotoxin abolished the WIN55,212-2-mediated synaptic 

inhibition (Huang, et al., 2001). On the other hand, another study has reported the 

direct effect of AEA (1-10 µM) on N-type VGCCs in superior cervical ganglion 

neurons that do not express endogenous cannabinoid receptors. The effect 

persisted in the presence of either SR141716A or PTX. However, 2-AG (10 µM) 

did not have similar effects (Guo and Ikeda, 2004).  

In cultured rat hippocampal neurons, AEA, WIN55,212-2 and CP55,940 

inhibited N- and P/Q type Ca
2+

 currents in an SR 141716A- and PTX-sensitive 

manner (Twitchell, et al., 1997; Shen and Thayer, 1998). In the presence of 

SR141716, Win55,212-2 (nanomolar concentrations) inhibited N-Type VGCCs 

by only 2 % (Shen and Thayer, 1998). Interestingly, at concentrations higher than 

1µM, Win55,212-2 inhibited N-Type VGCCs in a manner independent of 

SR141716A. In addition, the inactive stereoisomer WIN55,212-3 (micromolar 

concentrations) also inhibited Ca
2+

 currents in an SR141716A-insensitive manner. 

Collectively, these findings indicate that at micromolar concentrations, the effects 

of WIN55,212-2 are not mediated by CB1 receptors, suggesting a direct effect of 

cannabinoids on N-type VGCCs.  

In addition to neuronal Ca
2+

 channels, modulation of T-type Ca
2+

 channels 

by endocannabinoids has also been demonstrated in several studies. Previously, 

direct inhibitory effect of AEA on T-type VGCCs has been reported (Chemin, et 

al., 2001). T-type VGCCs are known to contribute to pacemaker activity in the 
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central nervous system and in the heart. All three cloned T-type VGCCs (α1H, α1I 

and α1G) which were transfected in HEK 293 and CHO cells and endogenously 

expressed in NG 108-15 cells, were inhibited by AEA in the concentration range 

of 0.01-10 µM (Chemin, et al., 2001). This inhibitory effect was not mimicked by 

synthetic cannabinoids including WIN55,212-2, CP55,940 and HU-210, and was 

not blocked by SR141716A (Chemin, et al., 2001). Notably, AEA continued to 

inhibit T-type VGCCs in excised inside-out patches of HEK-293 cells (Chemin, et 

al., 2001) suggesting that the effect of AEA is membrane delimited, and is not 

mediated by second messenger pathway. Furthermore, the effect of AEA was 

mimicked by methanandamide (metAEA), the metabolically stable analogue of 

AEA (Abadji, et al., 1994), indicating that the metabolic products of AEA 

hydrolysis, such as AA and ethanolamine, are not involved in the inhibition of T-

type Ca
2+ 

currents (Chemin, et al., 2001). From these observations it was 

suggested that AEA directly inhibits T-type VGCCs by acting on the cell 

membrane. A more recent study supporting these finding was carried out by Ross 

et al. (Ross, et al., 2009). Human recombinant T-type VGCCs expressed in HEK 

293 cells and native mouse T-type VGCCs were used to test the effect of the 

endocannabinoid NADA. The results of this study have shown that NADA 

robustly inhibits both human recombinant and native mouse T-type VGCCs (The 

rank order of potency was (pEC50) of CaV3.3 (6.45) ≥ CaV3.1 (6.29) > CaV3.2 

(5.95)) (Ross, et al., 2009). These results were broadly similar to those previously 

reported for AEA (Chemin, et al., 2001; Chemin, et al., 2007). 

Besides N-type and T-type Ca
2+

 channels, L-type Ca
2+

 channels have also 

been shown as target proteins for endocannabinoids. In cat cerebral arterial 

smooth muscle cells, it was found that activation of CB1 receptors inhibits L-type 
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VGCCs, resulting in cerebral vasodilation (Gebremedhin, et al., 1999). 

WIN55,212-2-and AEA induced concentration-dependent inhibition of peak L-

type Ca
2+ 

current. The inhibitory effects of both ligands were abolished by PTX 

pretreatment and by the CB1 antagonist SR141716A. In addition, both 

WIN55,212-2 and AEA produced concentration-dependent relaxation of pre-

constricted cerebral arterial segments that was abolished by SR141716A 

(Gebremedhin, et al., 1999). These findings suggest that CB1 receptor and its 

endogenous ligand may play an important role in the regulation of cerebral arterial 

tone by modulating the influx of Ca
2+

 through L-type VGCCs (Gebremedhin, et 

al., 1999). Furthermore, in isolated rat ventricular myocytes, AEA (1, 10 and 100 

nM) caused a concentration-dependent inhibition of L-type Ca
2+

 current and 

shifted the current-voltage relationship curve of the Ca
2+

 current. Anandamide 

(100 nM) shifted the steady-state inactivation curve to the left and the recovery 

curve to the right (Li, et al., 2009). Blockade of CB1 receptors with AM251, but 

not CB2 receptors with AM630, eliminated the effect of AEA on L-type VGCCs. 

These data suggest that AEA suppresses L-type VGCCs in cardiac myocytes 

through the activation of CB1 receptors (Li, et al., 2009). 

The above mentioned studies have indicated that cannabinoids inhibit L-

type Ca
2+

 channels by the activation of CB1 receptors. However, the CB1 receptor-

independent modulation of L-type Ca
2+

 channels by cannabinoids has also been 

reported. In 1988, Janis et al., isolated a lipid fraction from bovine brain and 

showed that AEA inhibits the specific [
3
H] nitrendipine binding to L-type Ca

2+
 

channels in rat cardiac membranes, and it blocks Ca
2+ 

currents in GH3 pituitary 

cells (Janis, et al., 1988). Further studies in cortical membranes have also 



41 

 

identified AEA as an endogenous modulator of L-type Ca
2+

 channels (Johnson, et 

al., 1993). 

T-tubules of the skeletal muscles are known to be the richest source of L-

type VGCCs. In T-tubule membrane vesicles from rabbit skeletal muscle fibers, 

AEA inhibited the binding of dihydropyridine (DHP) ([
3
H]PN200-110), 

phenylalkylamine ([
3
H]D888), and 1,5-benzothiazapine ([

3
H]diltiazem) class of 

Ca
2+ 

channel antagonists with IC50 values of 4 µM, 8 µM and 29 µM, respectively 

(Shimasue, et al., 1996). In addition, functional studies in T-tubule membranes 

indicated that AEA (1-10 µM) and metAEA can inhibit the depolarization-

induced 
45

Ca
2+

 fluxes mediated by the activation of L-type Ca
2+

 channels in a 

manner that was insensitive to SR141716A or PTX (Oz, et al., 2000). Further 

studies on T-tubule membranes showed that not only AEA, but also 2-AG (1-10 

µM), inhibited 
45

Ca
2+ 

fluxes and displaced the specific binding of DHP (Oz, et al., 

2004a). However, direct effects of these endocannabinoids on L-type Ca
2+

 

channels were not mimicked by the major psychoactive cannabinoid compound of 

marijuana, THC, and synthetic CB1 receptor agonists CP55,940 and WIN55,212-

2.  

In adult rat ventricular myocytes, the effect of AA, the metabolic product 

of AEA hydrolysis, on L-type Ca
2+

 channels was also studied (Liu, 2007). It was 

found that the exposure to AA directly alters the voltage dependence of gating 

properties of L-type Ca
2+

 channels, and thereby, reduces L-type Ca
2+ 

current, 

which accounts for AA inhibition of contraction and Ca
2+

 transient in rat 

ventricular myocytes (Liu, 2007). In a more recent study, it was found that the 

synthetic cannabinoid A-955840 inhibits the function of L-type Ca
2+

 channels in 
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rabbit heart in a manner that is not sensitive to CB1 and CB2 antagonists (Su, et 

al., 2011). 

1.2.6 Role of endocannabinoids in the cardiovascular system 

The cardiovascular effects of cannabinoid compounds have been 

recognized for several decades (Randall, et al., 2002; Pacher, et al., 2005a). In 

humans, the acute effect of smoking Cannabis usually manifests as an increase in 

heart rate with no significant change in blood pressure (Kanakis, et al., 1976). 

However, chronic use of marijuana in man, as well as, both acute and prolonged 

administration of THC to experimental animals, have been shown to cause long 

lasting decrease in blood pressure and heart rate (Benowitz and Jones, 1975). 

Because of the well-known effects of cannabinoids on the central nervous system, 

early research on their cardiovascular effects concentrated on the ability of these 

compounds to inhibit sympathetic tone as their mechanism of action (Vollmer, et 

al., 1974).  

Since the discovery of the endocannabinoid system, regulation of various 

cardiovascular functions by these molecules has been studied extensively (Pacher, 

et al., 2005a; Pacher and Kunos, 2013). In both in vitro and in vivo studies, 

endocannabinoids have been shown to exert complex cardiovascular effects, both 

mediated by receptor-dependent and independent mechanisms. In experimental 

animals and humans (depending on the route of administration, duration and 

dose), the cardiovascular effects of endocannabinoids may include CB1-mediated 

bradycardia/tachycardia, hypotension, and depressed cardiac contractility 

(Malinowska, et al., 2012). Mechanisms of these effects involve modulation of 

autonomic outflow through sites of action at presynaptic autonomic nerve 

terminals and in the central nervous system, as well as direct effects on 
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myocardium and the vasculature (Pacher, et al., 2005a). Despite evidences on the 

presence of CB2 receptors in the myocardium (Mukhopadhyay, et al., 2007; 

Bouchard, et al., 2003; Montecucco, et al., 2009) and a few recent studies 

implicating this receptor in myocardial protection (Bouchard, et al., 2003; 

Montecucco, et al., 2009), its role in cardiomyocytes remains elusive. Although 

the endocannabinoid system appears to play a limited role in cardiovascular 

regulation under normal physiological conditions, it may become overactivated 

and play important protective and/or detrimental roles in various disease 

conditions (Mukhopadhyay, et al., 2008). The various cardiovascular effects of the 

endocannabinoid system are described in the following sections. 

1.2.6.1 Cardiovascular effects of endocannabinoids in vivo 

Systemic administration of cannabinoids in anesthetized rats and mice 

causes hypotension and bradycardia by peripheral inhibition of sympathetic 

outflow and increased vagal activity, respectively (Pacher, et al., 2005a). 

Anandamide was found to elicit a triphasic blood pressure response with 

bradycardia (Figure 1.9) (Varga, et al., 1995; Varga, et al., 1996; Lake, et al., 

1997a; Malinowska, et al., 2012) similar to that reported earlier for THC 

(Siqueira, et al., 1979). The initial phase of the response consisted of bradycardia 

(with brief secondary hypotension) that lasted for a few seconds only, and was 

believed to be vagally mediated, as it was abolished by atropine treatment and 

vagotomy. This vagal component was followed by a brief pressor response which 

persisted in the presence of α-adrenergic blockade, and also in rats in which 

sympathetic tone was abolished by pithing, and was thus not sympathetically 

mediated (Varga, et al., 1995). 
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Figure 1.9 Typical traces showing the influence of AEA on cardiovascular 

parameters in anaesthetized rat. Adapted from Malinowska et al., 2012. 
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The pressor component, which constitutes the second phase, was also 

unaffected by CB1 receptor antagonists and it persisted in CB1 knockout mice 

(Jarai, et al., 1999; Pacher, et al., 2004), indicating the lack of involvement of CB1 

receptors. The exact mechanism of this vasoconstrictive response is not well 

understood, however, direct action on the vascular smooth muscle has been 

proposed (Jarai, et al., 1999). Although the central involvement in the pressor 

response was ruled out, centrally administrated cannabinoids can increase the 

activity of sympathoexcitatory neurons in the cardiovascular regulatory centers 

(Niederhoffer and Szabo, 1999). Therefore, the potential exists that cannabinoids 

may increase blood pressure via actions on the central nervous system. Currently 

known mechanisms of cannabinoid receptor signaling would suggest that they 

principally act via inhibition of neurotransmitter release, suggesting that the 

central sympathoexcitatory effects of cannabinoids may be mediated by 

disinhibition of inhibitory neurons. 

 The third phase of AEA effect was hypotension associated with moderate 

bradycardia that lasted for 2-10 minutes (Varga, et al., 1995; Varga, et al., 1996; 

Lake, et al., 1997a). Interestingly, the third phase was absent in conscious 

normotensive rats (Stein, et al., 1996; Lake, et al., 1997a) but present and more 

prolonged in conscious, spontaneously hypertensive rats (Lake, et al., 1997b; 

Batkai, et al., 2004b). Since sympathetic tone is known to be low in conscious 

undisturbed normotensive rats (Carruba, et al., 1987), these observations appear to 

be compatible with a sympatho-inhibitory mechanism, underlying AEA-induced 

hypotension and bradycardia. The reduction of the sympathetic tone by AEA is 

also compatible with early findings with THC, where experimental manipulations 

to decrease sympathetic tone resulted in a parallel decrease in the depressor 
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response to THC (Vollmer, et al., 1974). Likewise, AEA was unable to reduce 

blood pressure in anesthetized rats after cervical transection of the spinal cord or 

after blockade of α-adrenoreceptor (Varga, et al., 1995). The finding that metAEA 

causes similar but more prolonged hypotension and bradycardia, eliminates the 

possibility that the effects of AEA are mediated indirectly by a metabolite (Kunos, 

et al., 2000).  

Several lines of evidence implicate CB1 receptors in AEA-induced 

hypotension and bradycardia. For example, these effects are effectively inhibited 

by the selective CB1 receptor antagonist SR141716A (Lake, et al., 1997a; Varga, 

et al., 1995). This finding was supported by the total absence of cannabinoid-

induced hypotension and bradycardia in CB1 receptor-knockout mice (Ledent, et 

al., 1999). Interestingly, in a study carried out by Jerai et al., it was found that 

AEA-induced mesenteric vasodilation persisted in mice deficient in CB1 receptors 

or in both CB1 and CB2 receptors, suggesting a vasodilatory effect through a site 

distinct from CB1 or CB2 receptors (Jarai, et al., 1999). Further evidence for the 

involvement of CB1 receptors is that the rank order of the hypotensive and 

bradycardiac potency of a series of cannabinoid analogs, including AEA, is 

identical to the rank order of potency of the same substances for binding to the 

CB1 receptors in rat brain (Lake, et al., 1997a). 

Studies have shown that stimulation of presynaptic CB1 receptors inhibits 

norepinephrine release on peripheral sympathetic nerves, both in vitro (Ishac, et 

al., 1996; Vizi, et al., 2001) and in vivo (Varga, et al., 1996; Malinowska, et al., 

1997), which has a major impact on blood pressure regulation. A recent study 

showed that the use of AM3506 (a FAAH inhibitor) in rodents revealed that the 

antihypertensive effects of endogenously elevated AEA levels are mediated via 
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activation of CB1 receptors in the central nervous system, and a reduction in 

sympathetic tone (Godlewski, et al., 2010). Wagner et al., showed that 

cannabinoids are potent coronary and cerebral vasodilator agents in the rats in vivo 

(Wagner, et al., 2001b). In the same study, the synthetic cannabinoid HU-210 (as 

a full agonist for CB1 receptors ) and AEA (as a partial agonist for CB1 receptors), 

differed in their effects on cardiac output and systemic vascular resistance 

(Wagner, et al., 2001b). Previous studies have also demonstrated that AEA caused 

SR141716A-sensitive coronary vasorelaxation in isolated perfused rat hearts 

(Randall and Kendall, 1997; Fulton and Quilley, 1998), implicating the 

involvement of cannabinoid receptors. 

An in vivo study by Ellis et al. demonstrated that AEA causes 

cerebrovascular relaxation in the rat that was sensitive to indomethacin 

application, indicating that the effect was likely mediated by stimulating the 

release and metabolism of endogenous AA (Ellis, et al., 1995). 

1.2.6.2 Cardiovascular effects of endocannabinoids in vitro 

The vasorelaxant effects of AEA are complex and appear to involve 

multiple cellular and molecular mechanisms. Anandamide has been shown to act 

via the release of endothelium-derived NO in a range of human blood vessels and 

the right atrium (Bilfinger, et al., 1998). Vasorelaxant effects were also seen in the 

rat isolated mesenteric (Randall, et al., 1996; Randall, et al., 1997; Plane, et al., 

1997) and coronary vasculature (Randall and Kendall, 1997). However, in both 

preparations, AEA-induced relaxation was insensitive to cyclooxygenase 

inhibitors, endothelial denudation and inhibition of NO synthesis.  

Further studies on the mechanism of AEA-induced vasorelaxant effect 

suggest that K
+ 

channels are also involved in their actions. For example, the 
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endothelium-independent relaxations by AEA in the mesentery (Randall, et al., 

1996; White and Hiley, 1997) were blocked by raising extracellular K
+
, 

suggesting that AEA-induced responses are mediated by the activation of K
+
 

channels (Randall, et al., 1996; Plane, et al., 1997; White and Hiley, 1997; White 

and Hiley, 1998). Furthermore, relaxation to AEA was also sensitive to K
+ 

channel blockade with tetraethylammonium (TEA) (Randall, et al., 1997). In line 

with these findings, AEA was found to inhibit delayed rectifier K
+
 channels in rat 

aortic and hepatic arterial myocytes (Zygmunt, et al., 1997; Van, I and Vanheel, 

2000). The effect of endocannabinoids on Ca
2+

-activated K
+ 

channels has been 

equivocal. Whereas several studies in rat mesenteric arteries suggested a role for 

the large conductance Ca
2+

-activated K
+ 

(BKCa) channels (Plane, et al., 1997; 

Ishioka and Bukoski, 1999), others did not (White and Hiley, 1997; Ishioka and 

Bukoski, 1999; Fulton and Quilley, 1998). In addition to K
+
 channels, Ca

2+
 

channels have also been shown to be modulated by endocannabinoids. For 

example, AEA-induced relaxation has been attributed to the inhibition of L-type 

VGCCs in cat cerebral arterioles (Gebremedhin, et al., 1999). However, another 

study has suggested that inhibition of Ca
2+ 

mobilization mediates AEA effect in 

rat hepatic arteries (Zygmunt, et al., 1997).  

Interestingly, the relaxant effect of AEA shows a significant tissue 

selectivity as it does not relax certain blood vessels such as rat carotid arteries 

(Holland, et al., 1999) and the rat aorta (Herradon, et al., 2007). However, AEA 

does relax rat hepatic and guinea pig basilar arteries (Zygmunt, et al., 1999) and 

the bovine coronary artery. Therefore, it is possible that there are regional and 

species differences in the actions of endocannabinoids. 
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In several studies in rat coronary, mesenteric, renal and rabbit mesenteric 

arteries, the vasorelaxant effects of AEA were antagonized by SR141716A, 

suggesting the involvement of CB1 receptors (Randall, et al., 1996; Deutsch, et al., 

1997; White, et al., 2001; Fulton and Quilley, 1998; Chaytor, et al., 1999). In 

contrast, the relaxant effect of AEA in other studies in rat mesenteric and bovine 

coronary arteries was insensitive to SR141716A (Plane, et al., 1997; Pratt, et al., 

1998; Zygmunt, et al., 1999). In a study done in rat mesenteric and hepatic 

arteries, and in guinea pig basilary artery, it was reported that AEA-induced 

relaxation was unrelated to either endothelium or cannabinoid receptor, but 

attributable to activation of TRPV1 receptors located on the perivascular sensory 

nerves causing the release of the vasodilatory peptide calcitonin gene-related 

peptide (CGRP) (Zygmunt, et al., 1999). Similarly, involvement of TRPV1 

receptors in the mesenteric vasodilator action of metAEA has also been suggested 

(Ralevic, et al., 2000). In this study, CGRP receptor antagonist and capsazepine 

inhibited the response to metAEA supporting the involvement of TRPV1 channels 

in the vasorelaxant action of AEA (Ralevic, et al., 2000). 

In contrast to the increasing knowledge on the vascular effects of 

endocannabinoids, little is known about the effects of endocannabinoids on 

cardiac muscle. In earlier studies, the cardiodepresssant effects of HU-210 and 

AEA, have been shown in isolated electrically stimulated human artrial 

appendages (Bonz, et al., 2003) and in isolated Langendorff rat hearts (Ford, et al., 

2002). These in vitro studies are in agreement with earlier in vivo studies, 

indicating that AEA reduces both cardiac contractility and total peripheral 

resistance (Batkai, et al., 2004b). In isolated section of human right atrium (atrial 

appendage), AEA, metAEA and HU-210 dose-dependently decreased the 
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contractile performance. The negative inotropic effect was blocked by AM251 but 

not AM630. Indomethacin did not prevent the depression of contractility by AEA, 

and metAEA displayed the same effects as AEA (Bonz, et al., 2003). 

Furthermore, AEA continued to decrease the contractile performance in the 

presence of L-NAME, an inhibitor of nitric oxide synthase (NOS) (Bonz, et al., 

2003). These findings suggest that the effects of AEA on contractile function are 

not mediated by CB2 receptor activation, NO, or prostanoid release. Consistent 

with these findings, HU-210 decreased left ventricular pressure in isolated 

perfused rat heart (Maslov, et al., 2004; Krylatov, et al., 2005), and decreased 

myocardial contractility without a major effect on the total peripheral resistance 

(Pacher, et al., 2005a). 

In an electrophysiological study in rat cardiac papillary muscle, AEA, at 

low concentrations (0.1-1µM), decreased the AP duration in a concentration-

dependent manner and suppressed the amplitudes of cardiac APs (Li, et al., 2009). 

Furthermore, AEA inhibited L-type Ca
2+ 

currents in ventricular myocytes. 

Blockade of CB1 receptors with AM251, but not CB2 receptors with AM630, 

eliminated the effect of AEA suggesting that the effects of AEA are mediated 

through CB1 receptors (Li, et al., 2009). In another study in rat heart, Ford et al., 

showed that AEA induces negative inotropic responses in isolated Langendorff 

heart (Ford, et al., 2002). Interestingly, the cannabinoid anatagonists SR141716A, 

AM281 and SR144528 significantly blocked the negative inotropic responses to 

AEA that were not significantly affected by AM251, AM630 and capsazepine, 

which led the authors to propose a novel site distinct from the classic CB1 and CB2 

receptors (Ford, et al., 2002). 
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In addition to cannabinoid receptor-dependent effects in the heart, 

endocannabinoids can also interact directly with several classes of cardiac 

voltage-gated ion channels in a cannabinoid receptor-independent manner. For 

example, AEA is a potent blocker of potassium channel Kv1.5 which is highly 

expressed in human atria, and contributes to AP repolarization of human atrial 

myocytes (Barana, et al., 2010; Amoros, et al., 2010; Moreno-Galindo, et al., 

2010). Concurrent with these results, AEA has been also shown to block cardiac 

Kv4.3 potassium channel in a receptor-independent manner (Amoros et al., 2010). 

Overall, these earlier studies suggest that cannabinoids have negative inotropic 

action on cardiac muscle. However, the role of cannabinoid receptors in mediating 

this effect is currently not clear. 

1.2.6.3 Endocannabinoid system in cardiovascular disease  

Despite the presence of cannabinoid receptors, endocannabinoids and their 

metabolizing enzymes, the molecular mechanisms and physiological significance 

of the endocannabinoid system in the cardiovascular system under normal and 

pathological conditions are not fully understood. It has been widely accepted that 

the endocannabinoid system plays a limited role in cardiovascular regulation 

under normal physiological conditions, which is supported by the normal blood 

pressure, myocardial contractility and baroreflex sensitivity of cannabinoid 

receptor, or FAAH knockout mice (Pacher, et al., 2005b; Pacher, et al., 2006). 

Baseline cardiovascular parameters, systolic and diastolic functions, and 

baroreflex sensitivity were found to be similar in FAAH−/− and FAAH
+/+ 

mice. 

This suggests that, under normal physiological conditions, the absence of FAAH 

does not lead to the appearance of an endocannabinergic tone on the 

cardiovascular system (Pacher, et al., 2005b). In addition, in normotensive mice, it 
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was found that baseline blood pressure is similar in CB1-knockout mice and their 

wild-type littermates (Ledent, et al., 1999). However, in many pathological 

conditions such as heart failure, the endocannabinoid system may become 

overactivated and may contribute to hypotension/cardiodepression through 

cardiovascular cannabinoid receptors (Manitiu, 2013). 

The levels of AEA, but not 2-AG, are elevated in the hearts of FAAH
-/- 

mice (Pacher, et al., 2005b). Interestingly, these mice also show decreased 

deterioration of cardiac function with age relative to their FAAH
+/+

 littermates 

(Batkai, et al., 2007), which may be due to the enhancement of the effects of 

endogenous AEA. The finding of measurable levels of AEA in mouse heart 

contrasts with an earlier report that AEA was undetectable in lipid extracts of 

normal rat heart, although 2-AG was present (Schmid, et al., 2000). Nevertheless, 

it seems that both synthetic and metabolic pathways for endocannabinoids are 

present in the mammalian heart. However, the capacity for producing NAPE 

precursor appears to be low in several species, including humans (Moesgaard, et 

al., 2002), and with the exception of mice, the evidence for AEA synthesis and 

activity is generally circumstantial. On the other hand, alterations in 

endocannabinoid system tone has been suggested to be associated with various 

pathological states as a result of the altered expression of cannabinoid receptors, 

endocannabinoid metabolizing enzymes and synthetic pathways, in a tissue 

specific and time-dependent manner (Pacher and Kunos, 2013). 

Earlier studies in cardiac muscle have shown that a considerable elevation 

in NAEs content can occur under hypoxic conditions when extensive membrane 

degradation occurs during myocardial infarction (Schmid, et al., 1996; Epps, et 

al., 1979; Epps, et al., 1982). In fact, accumulation of NAEs during pathological 
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conditions was first observed in experimental myocardial infarction induced by 

ligation of coronary arteries in canine heart (Epps, et al., 1982; Epps, et al., 1979).  

In cultured human coronary artery endothelial cells (Rajesh, et al., 2010) 

and cardiomyocytes (Mukhopadhyay, et al., 2010), CB1 activation has been shown 

to promote stress signaling, cell death, and decreased contractility (Pacher, et al., 

2008; Montecucco and Di Marzo, 2012). Furthermore, in several pathological 

conditions (e.g. shock, heart failure, cardiomyopathies and advanced liver 

cirrhosis), the endocannabinoid system may become activated to promote 

hypotension and cardiodepression through cardiovascular CB1 receptors (Pacher, 

et al., 2006; Pacher, et al., 2008). In rat models of acute and chronic myocardial 

infarction, studies with CB1 agonists/antagonists yielded conflicting results. For 

example, the findings by Wagner et al. indicated that the activation of CB1 

receptors contributes to severe hypotension after experimental myocardial 

infarction in rats. In this study, the selective CB1 antagonist SR141716A 

prevented post-myocardial infarction hypotension, but aggravated early 

endothelial dysfunction and worsened mortality (Wagner, et al., 2001a). In a 

subsequent study, the authors reported a deleterious effect of CB1 antagonism with 

AM251 on cardiac function in a chronic myocardial infarction model. On the 

other hand, treatment with the synthetic agonist HU-210 prevented hypotension 

and endothelial dysfunction in aortic rings isolated from treated rats (Wagner, et 

al., 2003). A possible explanation of the conflicting results in these two studies 

might be the involvement of non-CB1 receptor mediated effects.  

More recent evidence suggested a cardioprotective role of CB1 

antagonism. The role of the endocannabinoid system was explored in a model of 

doxorubicin (DOX)-induced heart failure (Mukhopadhyay, et al., 2010). 
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Following DOX administration, the tissue AEA content, but not CB1/CB2 receptor 

expression, was elevated in the myocardium and also in cardiomyocytes exposed 

to DOX in vitro, suggesting activation of the endocannabinoid system. 

Pretreatment of mice with CB1 antagonists, SR141716A and AM281, not only 

improved DOX-induced cardiac dysfunction, but also attenuated the DOX-

induced cell death in vivo and in vitro. These observations suggest that the 

cytoprotective role of CB1 antagonists in cardiac pathologies may extend beyond 

the hemodynamic effects.  

Other studies have also supported the role of the endocannabinoid system 

in cellular metabolism and viability. For example, AEA was shown to limit the 

damage induced by ischemia-reperfusion in rat isolated hearts (Underdown, et al., 

2005; Lepicier, et al., 2007). Similarly, AEA has been shown to protect the heart 

from adrenaline-induced arrhythmias (Ugdyzhekova, et al., 2001) and arrhythmias 

induced by ischemia-reperfusion through the stimulation of CB2 receptors 

(Krylatov, et al., 2002). Furthermore, using potent CB2 receptor agonists and 

knockout mice, it has been demonstrated that CB2 receptor activation has a 

protective effect against myocardial ischemic-reperfusion injury (Hajrasouliha, et 

al., 2008). Another study in isolated rat heart provided direct evidence of the 

potential cardioprotective role of endocannabinoids and AEA-related mediator 

signaling in ischemia-reperfusion injury was investigated (Lepicier, et al., 2003). 

Interestingly, it was shown that perfusion with PEA and 2-AG, but not AEA, 

decreased myocardial damage in isolated rat hearts. In addition, infarct size was 

limited by either a selective CB1 agonist (arachidonoyl-2chloroethylamide; 

ACEA) or a selective CB2 agonist (JWH015). However, PEA is supposedly 

inactive at CB1 and CB2 receptors, a fact supported by the finding that PEA was 
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devoid of activity when administered to rat isolated heart (Ford, et al., 2002). In 

contrast, AEA causes negative inotropy and coronary vasodilatation in rat isolated 

hearts (Ford, et al., 2002). It is therefore interesting that AEA failed to reduce 

myocardial infarction injury while PEA and 2-AG were effective. In a subsequent 

study in isolated rat heart, however, AEA perfusion reduced the infarct size, 

which was blocked by either CB1 or CB2 antagonism, using SR141716A or 

SR144528, respectively. However, using Arachidonoyl cyclopropylamide 

(ACPA; CB1 agonist) and JWH-133 (CB2 agonist) could not mimic the effect of 

AEA, suggesting the involvement of a novel cannabinoid site of action 

(Underdown, et al., 2005). 

Activation of CB2 receptors in inflammatory cells and endothelium has 

been suggested to attenuate TNF-α-induced endothelial inflammatory response, 

chemotaxis, and adhesion of inflammatory cells to the activated endothelium. 

Subsequent release of various proinflammatory mediators (key processes involved 

in the initiation and progression of atherosclerosis, restenosis and reperfusion 

injury) (Mach, et al., 2008; Pacher and Hasko, 2008), and smooth muscle 

proliferation have also been proposed to be decreased after the activation of CB2 

receptors (Rajesh, et al., 2007). However, the role of myocardial CB2 receptors 

during ischemia-reperfusion and other cardiovascular pathologies is currently not 

well established. 
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The main objectives of the current study are: 

1. To test the effects of AEA on contractility and Ca
2+ 

signaling in rat 

ventricular myocytes. 

2. To test the effects of AEA on the characteristics of cardiac action 

potential.  

3. To study the effects of AEA on cardiac voltage-activated inward Na
+
 (INa) 

and Ca
2+

 (IL,Ca) currents, which are the major inward currents shaping the 

action potential in ventricular myocyte.  

4. To study the effects of AEA on cardiac sodium-calcium exchanger (NCX). 
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2. MATERIALS AND METHODS 

2.1 Experimental animals 

The work was performed with approval of the Animal Research Ethics 

Committee of the College of Medicine and Health Sciences (Al Ain, UAE). The 

original stock of Wistar rats were purchased from Harlan Laboratories (Oxon, 

England). Animals were bred at our own Animal Facility from the original stock. 

The animals were housed in polypropylene cages (43 x 22.5 x 20.5 cm; six rats/ 

cage) in climate and access controlled rooms (22-24 °C; 50 % humidity). The day/ 

night cycle was 12 h/12h. Food and water were provided ad libitum. The food was 

standard maintenance diet for rats purchased from Emirates Feed Factory (Abu 

Dhabi, UAE).  

2.2 Ventricular myocyte isolation 

Ventricular myocytes were isolated from adult male Wistar rats (264 ± 19 

g) according to previously described technique (Howarth, et al., 2002). The 

animals were euthanized using a guillotine and hearts were removed rapidly and 

immersed in cold perfusate to limit any ischemic injury during the period between 

excision and the restoration of vascular perfusion. Having cleared extraneous 

tissue, the aorta was carefully eased over the tip of the cannula and mounted for 

retrograde perfusion according to Langendorff method. The Langendorff 

apparatus (Figure 2.1) employed a roller (peristaltic) pump (Minipuls3, Gilson, 

France) which was set to deliver isolation solution at a constant flow rate (8 

ml/minute/g weight of tissue) and at 36-37 ˚C with a solution containing (mM):  
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Figure 2.1 Langendorff apparatus: Arrangement of the system (upper panel), 

heat exchanger and heart warming jacket (lower left panel) and cannulated heart 

(lower right panel). 
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130 NaCl, 5.4 KCl, 1.4 MgCl2, 0.75 CaCl2, 0.4 NaH2PO4, 5 HEPES, 10 glucose, 

20 taurine, and 10 creatine set to pH 7.3 with NaOH. 

Once the heart contraction had stabilized, perfusion was continued for 4 

minutes with Ca
2+

-free isolation solution containing 0.1 mM EGTA, and then for 

6 minutes with cell isolation solution containing 0.05 mM Ca
2+

, 0.75 mg/ml 

collagenase (type 1; Worthington Biochemical Corp, USA) and 0.075 mg/ml 

protease (type X1 V; Sigma, Germany). Ventricles were then excised from the 

heart, minced and gently shaken in a collagenase-containing isolation solution 

supplemented with 1 % BSA for 4 minutes at 36-37 °C. The suspension was then 

filtered through a nylon mesh (pores of 300 μm). Tissue remaining in the nylon 

mesh was re-suspended in collagenase-containing isolation solution supplemented 

with 1 % BSA and shaken for 4 minutes at 36-37 °C. The filtrate suspension of 

cells was centrifuged at 400 rpm for 1 minute. Subsequently, the supernatant was 

removed and the cell pellet was re-suspended in isolation solution containing 0.75 

mM Ca
2+

. This process was repeated four times. Ventricular myocytes were 

collected from second, third and fourth shakes and stored at 4 °C. Experiments 

were performed in ventricular myocytes that displayed rod-shaped morphology 

and regular striations (Figure 2.2). 

2.3 Measurement of ventricular myocyte shortening 

Shortening of myocytes was recorded using a video edge detection system 

(VED-114, Crystal Biotech, USA) (Figure 2.3; for the arrangement of the 

recording system used for video edge detection experiments). This system is used 

for measuring the length or width of cells or small tissues in real-time. The video 

edge detection system was composed of a high-speed video camera (Myotrac, 
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Crystal Biotech, UT, USA), an analog dual-edge detector (VED-114, Crystal 

Biotech, USA), a data logging device (CED-1401+, Cambridge Electronic Design, 

Cambridge, Cambridge, UK), a PC and a monitor. The system is able to record up 

to 240 length measurements per second.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Micrographs of ventricular cells: The upper panel shows a collection 

of viable (rod-shaped) and nonviable (round-shaped) ventricular myocytes. The 

lower panel shows a single freshly isolated ventricular myocyte. Myocytes were 

typically 80-120 μm in length.  
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Figure 2.3 The recording system used for video edge detection and Ca
2+

 

imaging experiments: The system includes an anti-vibration table (A), a Faraday 

cage (B), an inverted microscope (C), a cell superfusion system (D) with a 

temperature control system (E), a video edge motion detector (F), a 

microfluorescence photometry system (G) and an electrical stimulator (H).  
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Ventricular myocytes were first allowed to settle on the glass bottom of a 

Perspex chamber mounted on the stage of an inverted microscope (Axiovert 35, 

Zeiss, Germany). Cells were then electrically stimulated at 1 Hz to produce 

contraction by means of two platinum electrodes positioned around the 

circumference of the chamber and connected to an electrical stimulator (SD-5, 

Grass Instruments, USA). Using a microscope equipped with a high-speed 

camera, the cell is positioned so that the axis of contraction runs from left to right 

on the video screen. The cursors were positioned over the edges of the cell (Figure 

2.4). The raster line was adjusted to move the cursors upwards or downwards. The 

edge detector triggers on the first large white/black or black/white transition 

within the left cursor and the last white/black or black/white transition within the 

right cursor. Switches set the desired transition type (black/white or white/black) 

and the threshold for each cursor. Under these conditions, slightly defocusing the 

cell image can enhance the edge contrast. A white dot within each cursor shows 

the edge as detected by the system. An analog voltage output proportional to the 

distance between the two edges is conveyed to the data logging device 

(CED1401+, Cambridge Electronic Design, Cambridge, UK), and to the 

computer. Data were acquired and analyzed with Signal Averager software v 6.37 

(Cambridge Electronic Design, UK). 

Myocytes were superfused (3–5 ml/min) with normal Tyrode (NT) 

containing (in mM): 140 NaCl, 5 KCl, 1 MgCl2,10 glucose, 5 HEPES and 1.8 

CaCl2 (pH 7.4). Inflow of superfusate to the chamber was controlled by two 

micropumps (P07002-39/P07002-33, Cole-Parmer, USA). Outflow and the level 

of fluid in the chamber was controlled by a glass tube dipping into the chamber 

and connected to a waste bottle which in turn was connected to a service vacuum  
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Figure 2.4 Video edge motion detection: The upper panel shows the video edge 

motion detector. The lower panel shows a ventricular myocyte with video edge 

cursors positioned across the edges of the cell. 

  



64 

 

line. The temperature of the chamber solution was regulated by a temperature 

controller (TC-20, NPI, Germany), which comprised a heating coil wound around 

the inflow line, a thermistor located in the chamber and the control system. 

Resting cell length (RCL), time to peak (TPK) shortening, time from peak to half 

relaxation (THALF) and amplitude of shortening (expressed as a % of resting cell 

length) were measured under these conditions.  

2.4 Western immunoblot assay 

Ventricles were obtained from normal Wistar rats as described earlier in 

section 2.2. In the first step, tissue samples were flash-frozen in liquid nitrogen 

and stored at -80 °C for later use. After thawing, tissue extracts were prepared by 

homogenization on ice with RIPA buffer (Pierce Biotechnology, IL, USA) 

supplemented with protease inhibitors (Roche, GmbH, IN, USA). Later, the 

extracts were clarified to remove the cellular debris by centrifugation at 13000 

r.p.m. for 15 minutes at 4 ºC. Protein content in the extracts was determined using 

the Lowry assay (BioRad). A measure of 50 µg protein was resolved in 12 % 

SDS-PAGE and was transferred onto nitrocellulose membranes (GE Healthcare, 

UK). Blocking was performed for 2 hours at room temperature with 5 % non-fat 

skimmed milk powder prepared in phosphate buffer solution (PBS) containing 0.1 

% Tween 20 (Sigma, CA, USA). After washing with phosphate-buffered saline 

0.1 % Tween 20 (PBST), the membranes were probed with either rabbit 

polyclonal CB1 (Cayman Chemicals, 1: 1000 dilution) or with an antibody raised 

against the last 15 residues of rat CB1 or CB2 antibody (Cayman Chemicals, 1: 

1000 dilution) overnight at 4 ºC. After subsequent washing with PBST, the 

secondary antibody (goat anti- rabbit) coupled with HRP (horseradish peroxidase) 

(GE Biosciences, UK) was added and the blots were incubated at room 
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temperature for 1 hour. Later, the membranes were developed using a 

chemiluminescence detection kit (Super Signal-West Pico Substrate, Pierce). To 

confirm uniform loading, the membranes were stripped and re-probed with β-actin 

(Chemicon, CA, USA). 

2.5 Measurement of intracellular Ca
2+

 concentration  

In order to measure intracellular Ca
2+

 concentration, ventricular myocytes 

were loaded with the fluorescent indicator fura-2 AM (F-1221, Oregon, Molecular 

Probes, USA) (Howarth, et al., 2002). Fura-2, a polyamino carboxylic acid, is an 

ultra violet light-excitable ratiometric Ca
2+

 indicator. In its salt form, fura-2 can be 

introduced into the cell by microinjection. As an acetoxymethyl (AM) ester, it can 

passively diffuse across cell membranes. Once inside the cell, the esters are 

cleaved by intracellular esterases to yield cell-impermeable fluorescent indicators. 

Upon binding to Ca
2+

, fura-2 AM exhibits an absorption shift that can be observed 

by scanning the excitation spectrum at wavelengths between 300 nm and 400 nm, 

while monitoring the fluorescence emission at wavelength ~ 510 nm.  

The fluorescence photometry system was used to generate excitation light 

and collect emissions (Cairn Research, Kent, UK). A monochromator, comprising 

the light source (75 W Xenon arc lamp), rapid galvanometer diffraction grating 

and automated exit slit generated excitation light of required wavelength, 

bandwidth and intensity. In the case of fura-2 AM, the excitation light alternated 

rapidly between 340 and 380 nm. The light was transmitted from the source via a 

liquid light guide and various mirrors and a FLUAR 40x/1.30 (ultraviolet 

transmitting) oil-immersed objective to the fura-2 AM loaded cell. A 400 nm long 

pass dichroic filter reflected light < 400 nm to the cell. Light emitted from the cell 
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was directed through the objective and through a 600 nm long pass dichroic filter 

which transmitted red bright field light > 600 nm to a high-speed video camera 

(Myotrac, Crystal Biotech, UT, USA) so that the cell could be visualized on a 

monitor. Finally, fluorescence light < 600 nm was directed via a 480 nm long-

pass emission filter to a bi-alkali photomultiplier tube (C151, Cairn Research, 

Kent, UK) and thence, as a high voltage signal, to the control system (C208, Cairn 

Research, Kent, UK). The control system collected 340 and 380 nm signals and 

generated a ratio (340/380 nm) signal. These signals were conveyed via a data 

logging device (CED-1401+, Cambridge Electronic Design, Cambridge, UK) to 

the computer for processing and for display on the computer monitor. The 

340/380 fura-2 AM ratio provided the index of intracellular Ca
2+

.  

In our experiments, 6.25 µl of a 1 mM stock solution of fura-2 AM 

(dissolved in DMSO) was added to 2.5 ml of cells to give a final fura-2 AM 

concentration of 2.5 µM. Myocytes were shaken gently for 10 minutes at room 

temperature. After loading, myocytes were centrifuged, washed with normal 

Tyrode to remove extracellular fura-2 AM and then left for 30 minutes to ensure 

complete hydrolysis of the intracellular ester. In order to measure intracellular 

Ca
2+ 

concentration, myocytes were alternately illuminated by 340 nm and 380 nm 

light using a monochromator (as mentioned earlier) which changed the excitation 

light every 2 milliseconds. The resulting fluorescence emitted at 510 nm was 

recorded by the photomultiplier tube and the ratio of the emitted fluorescence at 

the two excitation wavelengths (340/380 ratio) was calculated to provide an index 

of intracellular Ca
2+ 

concentration. 

Data were acquired and analyzed with Signal Averager software v 6.37 

(Cambridge Electronic Design, UK). Resting fura-2 ratio, TPK Ca
2+

 transient, 
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THALF decay of the Ca
2+ 

transient, and the amplitude of the Ca
2+ 

transient were 

measured in electrically stimulated (1 Hz) myocytes. 

2.6 Measurement of sarcoplasmic reticulum Ca
2+

 content 

 Sarcoplasmic reticulum (SR) Ca
2+

 release was assessed using previously 

described technique (Howarth, et al., 2002; Bassani, et al., 1995). After 

establishing steady state Ca
2+

 transients in electrically stimulated (1 Hz) myocytes 

maintained at 35–36 ˚C and loaded with fura-2, stimulation was paused for a 

period of 5 seconds. Caffeine (20 mM) was then applied for 10 seconds using a 

solution switching device customized for rapid solution exchange. Electrical 

stimulation was resumed and the Ca
2+

 transients were allowed to recover to steady 

state levels. SR-releasable Ca
2+

 was assessed by measuring the area under the 

curve of the caffeine-evoked Ca
2+

 transient. Fractional release of SR Ca
2+

 was 

assessed by comparing the amplitude of the electrically evoked steady state Ca
2+

 

transients with that of the caffeine-evoked Ca
2+

 transient and refilling of SR was 

assessed by measuring the rate of recovery of electrically evoked Ca
2+

 transients 

following application of caffeine. 

2.7 Assessment of myofilament sensitivity to Ca
2+

 

In some cells shortening and fura-2 ratio were recorded simultaneously. 

Myofilament sensitivity to Ca
2+

 was assessed from phase-plane diagrams of fura-2 

ratio vs. cell length by measuring the gradient of the fura-2-cell length trajectory 

during late relaxation of the twitch contraction (Spurgeon, et al., 1992). The 

position of the trajectory reflects the relative myofilament response to Ca
2+

 and 

hence, can be used as a measure of myofilament sensitivity to Ca
2+

. 
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2.8 Electrophysiological recording of whole-cell currents (Patch clamp 

technique) 

2.8.1 Pipettes 

The pipettes for recording in ventricular myocytes were fabricated from 

filamented BF 150-86-10 borosilicate glass (OD= 1.5 mm, ID= 0.86 mm, Sutter 

Instruments Co., CA, USA) using a horizontal puller (Sutter Instruments Co., CA, 

USA). In order to get a good contact between the electrode and the cell membrane 

without damaging the cell membrane, the electrode tips were fire-polished using a 

microforge (Zeiss ID03, Germany). Electrode resistance ranged between 2.0 and 

4.0 MΩ as assessed in our standard pipette and extracellular solutions using the 

pClamp 10 software.  

2.8.2 Seal Penetration 

Whole-cell version of the patch clamp technique was used to measure ion
 

currents (see Figure 2.5; for the arrangement of the patch clamp setup). Cells were 

mounted on the stage of an inverted phase-contrast microscope (Nikon diaphot, 

Tokyo, Japan). The output signals were filtered at 5 KHz with an 8 pole filter, and 

stored on the hard disk of a computer for off-line analysis. The pipette, which had 

a small positive internal pressure in order to keep the tip clean, was pushed gently 

onto the cell surface by using a three-axis micromanipulator (ACCi UI, 

Scientifica, UK). A tight seal (gigaseal) between the membrane and the tip of the 

pipette (1-10 GΩ) was obtained by the application of suction through the pipette. 

Further suction disrupted the membrane under the tip of the pipette allowing the 

pipette solution to dialyze the cell (Figure 2.6). The experiments were carried out 

at room temperature (22–24 ºC) in order to ensure a longer survival time of 

patched cells and a better time resolution of the membrane currents. 
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Figure 2.5 Patch clamp experimental setup: The patch pipette with internal 

recoring electrode (A) and reference electrode (B) are connected to the headstage 

(C) which is mounted on a micromanipulator (D). Isolated cells are visualized 

with an inverted light microscope (E). The microscope, the micromanipulator, and 
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headstage are placed on an anti-vibration table (F) to isolate these components 

from vibrations that may interfere with gigaseal formation and placed in a Faraday 

cage (G) to shield the setup from ambient electrical noise. The flow of the currents 

into the pipette can be recorded using a highly sensitive amplifier (H) which is 

connected to an analog to digital converter (digitizer) (I), where the signal is 

digitized and sent to a computer for data analysis. A computer screen (J) is used 

for monitoring experiments and for data display. 
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Figure 2.6 Schematic presentation of whole cell configuration of patch clamp 

technique. 
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The membrane currents of cardiac ventricular myocytes were recorded 

using an Axopatch 200B amplifier (Molecular Devices, Downington, PA, USA) 

linked to an A/D interface (Digidata 1322; Molecular Devices) connected to an 

IBM computer.  

Cells that had stable currents from the third to fifth minutes after 

penetration of the membrane were used in the majority of our experiments. Drugs 

were tested once the whole-cell currents had reached a stable level (usually 10 

minutes after obtaining the whole-cell configuration). A series of voltage steps 

were applied to determine the current-voltage relationship. Different drugs were 

then added directly to the bath solution and the change in the magnitude of current 

was monitored continuously. In some cells the bath solution was changed to 

assess the recovery after washout of tested compound.  

The rate of solution flow to the recording chamber was controlled by two 

micropumps (Micropump Inc., WA, USA). Changes of external solutions and 

application of drugs were performed using a multi-line perfusion system with a 

common outflow connected to recording chamber. Electrophysiological data were 

analyzed using pClamp 10.2 (Molecular Devices, Union City, CA) and Origin 7.0 

(OriginLab Corp., Northampton, MA) software. The amplitudes of the currents 

were normalized to cell membrane capacitance (nA/pF).  

2.8.3 Measurement of action potentials 

2.8.3.1 Protocol for measuring action potentials 

APs were measured using the current clamp mode of the whole-cell patch 

clamp technique. After giga seal formation, the membrane was ruptured with 

gentle suction to obtain whole cell configuration. The generation of APs was 
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evoked by 0.9-1 nA depolarizing current pulses of 4 ms duration applied at a 

frequency of 0.2 Hz. During a typical experiment, the following protocol was 

employed: first, whole-cell configuration was established and 4 to 5 minutes 

dialysis of the myocytes with pipette solution was allowed to ensure the 

equilibrium conditions between the pipette solution and intracellular milieu. 

Subsequent to achieving stable recordings of baseline electrical activity (Vrest and 

AP parameters), myocytes were exposed to the tested drug for 10 to 15 minutes 

and subsequently it was washed out. 

2.8.3.2 Solutions 

Basic extracellular solutions used for electrophysiological recordings 

contained (in mM): 144 NaCl, 5.4 KCl, 1.8 CaCl2, 1.2 MgCl2, 1 NaH2PO4, 10 

HEPES, 10 glucose, and pH 7.4 (adjusted with NaOH). Recording patch pipettes 

were filled with intracellular solution containing (in mM): 10 KCl, 10 KOH, 105 

K-aspartate, 15 NaCl, 1 MgCl2, 10 HEPES, 4 Mg-ATP, 5 Sucrose, and рН 7.2 

(adjusted with HCl).  

2.8.4 Measurement of Na
+ 

currents 

2.8.4.1 Protocol for measuring Na
+ 

currents 

For recording of sodium currents (INa), data were elicited from a holding 

potential of -80 mV and depolarized with 50 ms pulses to +60 mV in 10 mV 

increments every 10 seconds. Steady-state activation (SSA) curves of INa before 

and after AEA application were derived by fitting the respective current-voltage 

relationship (I-V) with the product of Boltzmann equation which describes 

voltage-dependence of SSA. This allowed us to determine if the drug influences 
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the parameters of INa SSA, the voltage of half-maximal activation (V1/2) and the 

slope factor (k). 

The conductance was calculated using the following equation, G = I/(Vm - 

Vrev), where I is the current amplitude, Vm is the test potential and Vrev is the 

reversal potential. The corresponding steady-state activation curves were obtained 

by normalizing the conductance to the peak conductance. The normalized 

conductances (G/Gmax) were then plotted against the test potentials and fitted 

with the Boltzmann equation: 

G /Gmax=1/ 1+exp[−(Vm−V1/2)/ k]  

where V1/2 is the voltage at half-maximal conductance and k is the slope factor. 

In order to determine if the drug influences the properties of VGSCs 

inactivation, we compared steady-state inactivation (SSI) dependencies of INa in 

the absence and presence of tested drug. SSI curves were acquired using a 

standard voltage protocol consisting of a prolonged (400 ms) preconditioning 

pulse to various Vm in the range of -100 mV to +70 mV which was immediately 

followed by the constant INa activating test pulse to Vm= -20 mV. SSI-dependency 

was plotted as normalized amplitude of INa at Vm= -20 mV against the value of 

conditioning Vm. Current amplitude was normalized to the peak current (I/Imax), 

and plotted against each conditioning potential. The steady-state inactivation 

curves were fitted with the Boltzmann function, 

I /Imax=1/ 1+exp[(Vm−V1/2)/ k] 

where V1/2 is the voltage at which half the channels are available for opening, and 

k is the slope factor.  
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2.8.4.2. Solutions 

Extracellular solution for recordings of INa consisted of (in mM): 100 

TEACl, 40 NaCl, 10 Glucose, 1 MgCl2, 5 CsCl, 0.1 CaCl2, 1 NiCl2, and 10 

HEPES (adjusted to pH 7.3 with CsOH). Intracellular solution contained (in mM) 

135 CsCl, 5 NaCl, 10 EGTA, 10 HEPES and 1 MgATP (adjusted to pH 7.25 with 

CsOH).  

2.8.5 Measurement of
 
L-type Ca

2+
 currents 

2.8.5.1 Protocol for measuring L-type Ca
2+ 

currents 

For recording of Ca
2+

 currents (IL,Ca), data were elicited from a holding 

potential of −50 mV to membrane potentials ranging from -70 mV to +70 mV in 

10 mV increments for 300 ms. Elimination of contaminating INa during recording 

of ICa was achieved by applying voltage step-pulses from relatively depolarized Vh 

of -50 mV, which produced steady-state INa inactivation. 

The conductance was calculated using the following equation, G = I/(Vm - 

Vrev), where I is the current amplitude, Vm is the test potential and Vrev is the 

reversal potential. The corresponding steady-state activation curves were obtained 

by normalizing the conductance to the peak conductance. The normalized 

conductances (G/Gmax) were then plotted against the test potentials and fitted 

with the Boltzmann equation: 

G /Gmax=1/ 1+exp[−(Vm−V1/2)/ k]  

where V1/2 is the voltage at half-maximal conductance and k is the slope factor. 

The steady-state inactivation curves were obtained using a standard 

voltage protocol, in which 1 second preconditioning pulses from a holding 
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potential of -50 mV were elicited in the voltage range of -70 mV to +70 mV in 10 

mV increments which was immediately followed by the constant IL,Ca activating 

test pulse to Vm= +10 mV. SSI-dependency was plotted as normalized amplitude 

of IL,Ca at Vm= +10 mV against the value of conditioning Vm. Current amplitude 

was normalized to the peak current (I/Imax), and plotted against each conditioning 

potential. The steady-state inactivation curves were also fitted with the Boltzmann 

function, 

I /Imax=1/ 1+exp[(Vm−V1/2)/ k] 

where V1/2 is the voltage at which half the channels are available for opening, and 

k is the slope factor.  

2.8.5.2 Solutions 

In order to prevent the cells from contracting during patching, they were 

first patched in a Ca
2+

 free solution which consisted of (in mM): 120 NaCl, 1 

EGTA, 10 MgCl2, 10 Glucose, 10 HEPES, 1 NaH2PO4 and 5 KCl. Once the whole 

cell configuration was obtained, the recoding solution was applied. The whole-cell 

bath solution contained (in mM): 95 NaCl, 50 TEACl, 2 MgCl2, 2 CaCl2, 10 

HEPES and 10 Glucose (adjusted to pH 7.35 with NaOH). The pipette solution 

contained (in mM): 140 CsCl, 10 TEACl, 2 MgCl2, 2 HEPES 1 MgATP and 10 

EGTA (adjusted to pH 7.25 with CsOH).  

2.8.6 Measurement of Na
+
/Ca

2+
 exchanger currents in cardiomyocytes 

2.8.6.1 Protocol for measuring Na
+
/Ca

2+
 exchanger currents 

INCX was recorded using a descending voltage ramp from +100 mV to -100 

mV from a holding potential of -40 mV for 2 seconds duration. As described 

previously (Hinde, et al., 1999), INCX was measured as current sensitive to nickel 
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(Ni
2+

). Therefore, Ni
2+

-insensitive components were subtracted from total currents 

to isolate INCX.  

2.8.6.2 Solutions 

The cells were first patched in a Ca
2+

-free solution as described previously 

(section 2.7.5.2). External solution contained (in mM): 150 NaCl, 5 CsCl, 2 

CaCl2, 2 MgCl2, 10 HEPES, 10 Glucose (pH=7.4). Nifedipine (10 µM), Oubain 

(100 µM), and Niflumic acid (30 µM) were used to block Ca
2+

, Na
+
-K

+
 ATPase, 

and Cl
-
 currents, respectively. 10 mM nickel chloride solution was used to block 

INCX. K
+
 currents were minimized by Cs

+
 substitution for K

+
 in both pipette and 

external solutions. The pipette solution contained (in mM): 120 CsCl, 20 NaCl2, 

10 TEACl, 2 MgCl2, 1 CaCl2, 10 HEPES, 1 MgATP and 10 BAPTA (pH= 7.2 

with CsOH). The combination of 10 mM BAPTA and 1 mM Ca
2+

 in the pipette 

solution gave a free [Ca
2+

]i of 20 nM (calculated with the “Maxchelator program”; 

WEBMAX v 2.10, Stanford, CA, USA, which was supplied by Dr. D. Bers).  

2.9 Biochemical assessment of cell viability and membrane integrity of 

ventricular cardiomyocytes 

2.9.1 MTT cell viability assay 

The effect of AEA on cell viability was measured using MTT assay which 

is based on the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium 

(MTT) bromide into formazan crystals by the mitochondrial succinate 

dehydrogenase of viable cells. Cells were plated in 96-well plates at a density 

10,000 cells/well in a Ca
2+

-free
 

solution (See section 2.6.4.2 for solution 

composition). Cell count was estimated by mixing 20 µl of cells with 180 µl of 

trypan blue and counting the number of viable cells using a hemocytometer. Cells 

were incubated for 40 minutes with or without tested drug at 37 °C in a 5 % CO2 
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humidified atmosphere. 2 μl of Triton X-100 (9 % in water solution) per 100 μl 

original volume was used as a positive control to produce cell lysis. After 

incubation, 25 μl of MTT (5 mg/ml) were added to each well and the plates were 

incubated for a further 3 h at 37 °C. Then the plates were centrifuged at 1500 rpm 

for 5 minutes and the solutions were carefully decanted from all the wells. The 

formazan crystals that formed were then solubilized in a 200 μl of DMSO. The 

colored solution was quantified at 570 nm using Perkin Elmer Victor-3 

Spectrophotometer. The cytotoxicity was expressed as percentage over control. 

2.9.2 Homogenous membrane integrity assay 

Membrane integrity was assessed using the CytoTox-ONE Assay 

(Promega, Madison, USA). This is a rapid, fluorescent measure of the release of 

lactate dehydrogenase (LDH) from cells with a damaged cell membrane. The test 

is based on the conversion of resazurin into resorufin as shown in figure 2.7. 

Generation of the fluorescent resorufin product is proportional to the amount of 

LDH, and therefore the number of lysed cells. Cells were plated in 96-well plates 

at a density 10,000 cells/well in a Ca
2+

-free solution (See section 2.6.4.2 for 

solution composition). Cell count was estimated using a hemocytometer (as 

mentioned in the previous section). Cells were incubated for 40 minutes with or 

without tested drug. A volume of CytoTox-ONE Reagent equal to the volume of 

the solution containing the cells was then added and incubated for 10 minutes 

after which a stop solution was added to each well and the fluorescent signal was 

measured. 2 μl of Triton X-100 (9 % in water solution) per 100 μl original volume 

was used as a positive control to produce maximum LDH release (cell lysis). All 

average fluorescence values were subtracted from background fluorescence. The 

fluorescence was recorded with an excitation wavelength of 560 nm and an  
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Figure 2.7 Release of LDH from damaged cells: LDH release is measured by 

supplying lactate, NAD
+
, and resazurin as substrates in the presence of 

diaphorase. Generation of the fluorescent resorufin product is proportional to the 

amount of LDH. 
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emission wavelength of 590 nm and the percent toxicity of experimental drug was 

calculated as follows: 

Percent toxicity = 100 X (experimental-background) / (maximum LDH release- 

background) 

2.10 Preparation of drugs and stock solutions 

Experimental solutions were prepared from stocks immediately prior to 

each experiment. Therefore, the cells were perfused with the freshly made bath 

solutions containing the desired concentrations of the drugs. 

2.10.1 Anandamide and methanandamide 

AEA (MW 347.5) and metAEA (MW 361.56) were purchased from 

Ascent Scientific, Cambridge, UK). AEA was already dissolved in ethanol (5 

mg/ml). The concentration of AEA was 14.4 mM. From this stock solution, 7 µL 

of AEA were taken to obtain a final test concentration of 1 µM. Similarly, 70 µL 

of AEA were taken to achieve a final test concentration of 10 µM. Therefore, the 

ethanol concentrations in the control and in presence of AEA were in the range of 

0.007-0.07 % (v/v). MetAEA was also dissolved in ethanol (5 mg/ml) and 

metAEA solution was prepared in the same way as AEA solution. Stock solutions 

were kept at -20 °C until their use. 

2.10.2 Cannabinoid receptor antagonists 

AM251 (MW 555.24) and AM630 (MW 504.37) were purchased from 

Ascent Scientific, Cambridge, UK). AM251 was dissolved in ethanol (8 mg/ml 

ethanol) to make a final stock concentration of 14.4 mM. From this stock solution, 

7 µL were taken to get a final test concentration of 1 µM. However, AM630 did 

not dissolve easily in ethanol and larger volumes of ethanol were required to 
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completely dissolve it (the highest concentration of stock solution of AM630 that 

could be obtained was 2 mM). In this case, the final concentration of ethanol 

would be 0.05 %. Therefore, AM630 was dissolved in dimethyl suphoxide 

(DMSO) (7 mg/ml) to get a final stock concentration of 14.4 mM. From this stock 

solution, 7 µL were taken to get a final test concentration of 1 µM. Stock solutions 

of AM251 and AM630 were kept at -20 °C until their use. 

SR141716 (MW 500.25) was purchased from Sigma-Aldrich (St. Louis, 

MO, USA). SR144528 (MW 475.2) was obtained through NIDA drug supply 

system (Baltimore, USA). Both drugs were dissolved in DMSO. The final 

concentration of DMSO used in the experiments did not exceed 0.007 % (v/v) 

(Bonz, et al., 2003). 

2.10.3 Pertussis toxin 

PTX was purchased from Sigma-Aldrich (St. Louis, MO, USA). PTX was 

dissolved in distilled water and stock solution of 250 µg/500 ml was kept in the 

refrigerator. Cells were incubated with PTX (2 µg/ml) for 3 hours at 37 °C 

(control cells to this group were incubated in the same conditions with distilled 

water only). 

2.10.4 Indomethacin 

Indomethacin (MW 357.8) was purchased from Tocris (Ballwin, MO, 

USA) and a stock solution of indomethacin was prepared in ethanol. Cells were 

incubated with 30 µM indomethacin for 30 minutes (control cells to this group 

were incubated in the same conditions with ethanol only). 
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2.10.5 URB597 

The FAAH inhibitor URB597 (MW 338.4) was purchased from Tocris 

(Ellisville, MO, USA). URB597 was dissolved in ethanol to make a 20 mM stock 

solution. Cells were incubated with 1 µM URB597 for 45 minutes at 37 °C 

(control cells to this group were incubated in the same conditions with ethanol 

only). 

2.10.6 N-ethylmaleimide  

N-ethylmaleimide (NEM) (MW 125.3) was purchased from Sigma-Aldrich 

(St. Louis, MO, USA). Stock solution of NEM (40 mM) was prepared in ethanol. 

Cells were incubated with 50 µM NEM for 30 minutes at 37 °C (control cells to 

this group were incubated in the same conditions with ethanol only). 

2.10.7 Clenbuterol 

Clenbuterol (MW 313.65) was purchased from Sigma-Aldrich (St. Louis, 

MO, USA) and was dissolved in distilled water. Cells were perfused with 

clenbuterol at a concentration of 30 µM. 

2.10.8 BRL-37344 

BRL-37344 (MW 385.82) was obtained from Tocris (Ballwin, MO, USA) 

and was dissolved in distilled water. Cells were perfused with BRL37,344 at a 

concentration of 1 µM.  

All materials mentioned elsewhere were purchased from Sigma-Aldrich 

(St. Louis, MO, USA). 
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2.11 Data analysis 

Each experiment was performed on several myocytes from different 

hearts. The results of the experiments were expressed as mean ± standard error of 

the mean (S.E.M.). Statistical significance was evaluated using paired t-test 

(within the same cell analysis) or independent sample t-test and one way ANOVA 

followed by Bonferroni Post-hoc analysis (for analysis of data from different 

groups). Statistical analysis of the data was performed using Origin 7.0 software 

(OriginLab Corp., Northampton, MA) and IBM SPSS statistics version 20. On all 

graphs (*) denotes statistical significance with P<0.05, between specified values, 

or if not specified to the respective control. 
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3. RESULTS 

3.1 Anandamide inhibits ventricular myocyte shortening 

In initial control experiments and in line with earlier studies conducted 

under similar conditions (Danziger, et al., 1991; Delbridge, et al., 2000; Bebarova, 

et al., 2010), bath application of control solution (NT) containing ethanol at the 

highest concentration used in contractility studies (0.07 % v/v; used as vehicle for 

10 µM AEA) caused 18-20 % inhibition of the shortening (n=7-10; P<0.05 

compared to 0 time point) in experiments lasting up to 20-25 minutes in response 

to electrical stimulation (1Hz; 60 pulses delivered every 1 minute). No further run 

down of the shortening amplitudes was observed. However, unless it was stated 

otherwise, ethanol was included routinely in control solutions during shortening 

and Ca
2+

 transient experiments.  

In the first set of experiments, the effect of AEA on the contractility of 

acutely isolated rat ventricular myocytes was tested. Figure 3.1A shows typical 

records of shortening in an electrically stimulated (1 Hz) myocyte superfused with 

either NT (containing 0.007 % ethanol in all experiments) or NT + 1 µM AEA. 

The amplitude of shortening was significantly reduced up to 47.3 ± 2.6 % of 

control (n=12-14; P<0.05) (Figure 3.1B), when the concentration of AEA was 

increased in the range of 10 nM to 10 µM compared to NT.  

The negative inotropic effect (decrease of shortening amplitudes) by AEA 

could be due to degradation products of AEA such as AA. For this reason, we 

investigated the effects of metAEA, a non hydrolyzable analog of AEA (Abadji, et 

al., 1994) and URB597, an inhibitor of FAAH enzyme (Kathuria, et al., 2003).   
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Figure 3.1 Effects of AEA and metAEA on ventricular myocyte shortening: 

(A) Typical records of shortening in an electrically stimulated (1 Hz) ventricular 

myocyte superfused with either NT or NT + 1 µM AEA and during washout with 

NT. (B) Bar graph showing the mean amplitudes (AMP) of shortening expressed 

as a percentage of control values, and in presence of AEA (1 nM to 10 µM). Data 

are analyzed using ANOVA and are expressed as means ± S.E.M., n = 12-14 

cells. * indicates statistically significant difference at the level of P < 0.05. (C) 

Bar graph showing the mean amplitudes (AMP) of shortening expressed as a 

percentage of control values, and in presence of metAEA (1 nM to 10 µM). Data 

are analyzed using ANOVA and are expressed as means ± S.E.M., n = 7-8 cells. * 

indicates statistically significant difference at the level of P < 0.05. 
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In cardiomyocytes treated for 10 minutes with 0.1-10 µM metAEA (Figure 

3.1C), the extent of inhibition was not significantly different from that of AEA 

(n=7-8; P>0.05). Similarly, pretreatment with 1 µM URB597 for 45 minutes at 37 

ºC (Kathuria, et al., 2003; Amoros, et al., 2010) did not alter the extent of AEA 

inhibition (Figure 3.2A). In the absence and presence of URB597 treatment, AEA 

(1 µM) inhibited myocyte shortening by 62.7 ± 8.4 % of controls and 68.2 ± 4.8 % 

of controls, respectively. There were no statistically significant differences in the 

inhibitory effect of AEA between control (NT+ 0.007 % ethanol after 45 minutes 

pretreatment) and URB597 pretreated cells (n=9-11; P>0.05). We have also tested 

whether cyclooxygenase products of AEA metabolites would mediate the 

observed actions of this compound. The results indicated that the extent of 

myocyte shortening was not significantly different after incubating the cells with 

30 µM indomethacin, a cyclooxygenase inhibitor, for 30 minutes (n=8-11; 

P>0.05) (Figure 3.2B).  

Furthermore, the effect of synthetic cannabinoid WIN55,212-2 on 

myocytes shortening was also tested. When compared to AEA, application of 1 

μM WIN55,212-2 did not cause a significant alteration in the amplitudes of 

myocyte shortening (n=7; P>0.05). 

Among other contraction parameters measured, resting cell length (RCL) 

was not significantly altered (n=12-14; P>0.05) by 10 minutes superfusion with 

AEA (1 nM to 1 µM). However, increasing the concentration of AEA to 10 µM 

caused a small but statistically significant reduction of RCL in about 60 % of cells 

tested (n=12-14; P<0.05). Similarly, time to peak (TPK) shortening was 

significantly reduced (n=12-14; P<0.05) to 90.2 ± 4.2 ms by 10 µM AEA 

compared to 104.7 ± 1.7 ms in NT. 
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Figure 3.2 Effects of preincubation with URB597 or indomethacin on AEA-

induced inhibition of ventricular myocyte shortening: (A) Bar graph showing 

the effect of AEA on the mean amplitude (AMP) of shortening expressed as 

percentage of control values in NT containing 0.007 % ethanol or after 45 minutes 

incubation with 1 µM URB597 at 37 ºC. Data are analyzed using ANOVA and are 

expressed as means ± S.E.M., n=9-11 cells. (B) Bar graph showing the effect of 

AEA on the mean amplitudes (AMP) of shortening expressed as percentage of 

control values in NT containing 0.007 % ethanol or after 30 minutes incubation 

with 30 µM indomethacin at 37 ºC. Data are analyzed using independent sample t-

test and are expressed as means ± S.E.M., n=8-11 cells.  
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3.2 Ventricular myocytes express cannabinoid receptors 

In order to test for the involvement of cannabinoid receptors in the effect 

of AEA on myocyte shortening, the expression of these receptors in the 

ventricular tissue was confirmed by Western blot analysis. Figure 3.3 shows that 

both CB1 and CB2 receptors (MW about 63 kDa and 40 kDa, respectively) are 

expressed in the ventricular tissue of Wistar rats. 

3.3 Cannabinoid receptors are not involved in the effect of anandamide on 

myocyte shortening 

To test whether the inhibitory effect of AEA on myocyte shortening is 

mediated by the activation of cannabinoid receptors, the effects of established 

antagonists of CB1 and CB2 receptors on AEA inhibition of shortening amplitudes 

were studied. Two structurally different CB1 receptor antagonists (AM251 with a 

Ki of 7.5 nM; Figure 3.4A and SR141716 with a Ki of 1.8 nM; Figure 3.4B) 

(Pertwee, 2006; Shire, et al., 1999) and two CB2 receptor antagonists (AM630 

with a Ki of 32.1 nM; Figure 3.4C and SR144528 with Ki of 0.6 nM; Figure 3.4D) 

(Pertwee, 2006; Shire, et al., 1999) were tested. At 300 nM concentration, these 

antagonists were not able to reverse the inhibitory effect of AEA on the shortening 

amplitudes of cardiomyocytes (n=8-12; P>0.05).  

Since the activation of both CB1 and CB2 receptors are mediated by Gi/o 

subtypes of G-proteins (Pertwee, 2006), the effect of inhibitors of Gi/o proteins 

such as PTX and N-ethylmaleimide (NEM) on AEA-induced inhibition of 

cardiomyocyte shortening were examined (Figures 3.5A and 3.5B). Preincubation 

of cardiomyocytes in either PTX (2 µg/ml, 3 hours at 37 ºC) or NEM (50 µM for 

30 minutes at 37 ºC; (Oz, et al., 2007b)) did not alter the extent of AEA inhibition 

of cardiomyocyte shortening (n=9-12; P>0.05).   
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Figure 3.3 Expression of CB1 and CB2 receptors in rat heart: Expression of 

CB1 and CB2 receptors in the heart of control Wistar rats (n= 3) were analyzed by 

Western blotting. 
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Figure 3.4 Effects of cannabinoid receptor antagonists on AEA-induced 

inhibition of cardiomyocyte shortening: Bar graphs showing the mean 

amplitudes (AMP) of shortening expressed as a percentage of control values in 

presence of CB1 receptor antagonist AM251 (A), CB1 receptor antagonist 

SR141716 (B), CB2 receptor antagonist AM630 (C), and CB2 receptor antagonist 

SR144528 (D). Data are analyzed using ANOVA and are expressed as means ± 

S.E.M., n= 8-12 cells for each group. * indicates statistically significant difference 

at the level of P < 0.05. 
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Figure 3.5 Effects of pertussis toxin and N-ethylmaleimide on AEA-induced 

inhibition of cardiomyocyte shortening: (A) Bar graph showing the effect of 

AEA on the mean amplitudes (AMP) of shortening expressed as a percentage of 

control values and pertussis toxin pretreatment. (B) Bar graph showing the effect 

of AEA on the mean amplitudes (AMP) of shortening expressed as a percentage 

of control values and N-ethylmaleimide (NEM) pretreatment. Data are analyzed 

using independent sample t-test and are expressed as means ± S.E.M., n = 9-12 

cells.   
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In order to test the effectiveness of the experimental protocols used to 

investigate the role of G-proteins, the efficacy of PTX or NEM pretreatments on 

clenbuterol (β2 adrenergic receptor agonist)-induced inhibition of cardiomyocyte 

shortening was tested. In agreement with earlier studies (Siedlecka, et al., 2008), 3 

hours pretreatment with 2 µg/ml PTX (Figure 3.6A) or 30 minutes pretreatment 

with 50 µM NEM (Figure 3.6B) effectively blocked the inhibitory effect of the β2 

adrenoreceptor agonist clenbuterol (30 µM) on cardiomyocyte shortening (n=10-

12; P<0.05). 

3.4 Anandamide inhibits intracellular Ca
2+ 

transients 

In these experiments, the effect of 10 minutes bath application of 1 µM 

AEA on the resting intracellular Ca
2+

 levels and on the amplitudes and kinetics of 

Ca
2+

 transients elicited by electrical-field stimulation were investigated. Typical 

records of Ca
2+

 transients in a myocyte superfused with either NT or NT + 1 µM 

AEA and during washout with NT are shown in Figure 3.7A. The effects of 1 µM 

AEA on resting fura-2 ratio, TPK Ca
2+

 transient, THALF decay of Ca
2+

 transient, 

and AMP of Ca
2+

 transients are shown in Figure 3.7B-E, respectively. Although, 

AEA has been shown to alter intracellular Ca
2+

 levels in various types of cells [for 

review, (Goodfellow and Glass, 2009)], application of 1 µM AEA for 10 minutes 

did not cause a significant alteration in resting fura-2 ratio and TPK Ca
2+

 transient 

(n=21-24 cells; P>0.05) (Figure 3.7B and C). However, THALF decay of the Ca
2+ 

transients and AMP of the Ca
2+

 transients were significantly reduced by 1 µM 

AEA to 118.9 ± 5.5 ms and 0.243 ± 0.032 fura-2 ratio units compared to 129.3 ± 

5.2 ms (n=24 cells; P<0.05) and 0.326 ± 0.024 fura-2 ratio units (n =24 cells; 

P<0.05) in controls, respectively (Figure 3.7D and E).  
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Figure 3.6 Effect of pretreatment with PTX or NEM on G-protein mediated 

inhibition of cardiomyocyte shortening by clenbuterol: Data are analyzed using 

independent sample t-test and are expressed as means ± S.E.M., n = 10-12 cells. 
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Figure 3.7 Effects of AEA on amplitude and time-course of intracellular Ca
2+

 

in ventricular myocytes: (A) Typical records of Ca
2+

 transients in an electrically 

stimulated (1 Hz) ventricular myocyte superfused with either NT or NT + 1 µM 

AEA and during washout with NT; scale bar indicates 0.1 fura-2 ratio unit (RU). 

Also shown resting fura-2 ratio (340/380 nm) (B), time to peak (TPK) Ca
2+

 

transient (C), time to half (THALF) decay of the Ca
2+

 transient (D) and amplitude 

(AMP) of the Ca
2+

 transient (E). Myocytes were maintained at 35-36 °C and 

superfused with AEA for 10 minutes. Data are analyzed using paired t-test and are 

expressed as means ± S.E.M., n=21-24 cells. * indicates statistically significant 

difference at the level of P < 0.05.  
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3.5 Anandamide has no effect on sarcoplasmic reticulum (SR) Ca
2+

 transport 

The effect of 1 µM AEA on Ca
2+

 transport was investigated in myocytes 

exposed to 20 mM caffeine. Figure 3.8A shows a typical recording illustrating the 

protocol used in these experiments. Initially, the myocyte was electrically 

stimulated at 1 Hz. Electrical stimulation was then turned off for 5 seconds and 

caffeine was applied for 10 seconds using a rapid solution exchanger device. 

Electrical stimulation was then restarted and the recovery of intracellular Ca
2+

 was 

recorded during a period of 60 seconds. Sarcoplasmic reticulum Ca
2+

 content was 

assessed by measuring caffeine-evoked Ca
2+

 release (area under the caffeine-

evoked Ca
2+

 transient), and fractional release of Ca
2+

, by comparing the amplitude 

of the electrically evoked steady-state Ca
2+

 transients with that after caffeine 

application in the presence of either NT or NT + 1 µM AEA. Fractional release of 

SR Ca
2+ 

was not significantly altered in the presence of 1µM AEA compared to 

NT (0.749 ± 0.024 in AEA versus 0.753 ± 0.028 in controls; n =23 cells; P>0.05; 

Figure 3.8B). The area of caffeine-evoked Ca
2+

 transient (Figure 3.8C) and 

recovery of the Ca
2+

 transient during electrical stimulation following application 

of caffeine (Figure 3.8D) were also not significantly altered in myocytes exposed 

to 1 µM AEA compared to control cells (n = 21-23 cells; P>0.05). 

3.6 Anandamide has no effect on myofilament sensitivity to Ca
2+

 

The effects of AEA on myofilament sensitivity to Ca
2+

 were also 

investigated. These experiments investigated whether AEA decreases the 

mechanical responses by altering the affinity of the contractile machinery of the 

ventricular myocytes to intracellular Ca
2+ 

(Spurgeon, et al., 1992). A typical 

record of myocyte shortening and fura-2 ratio and phase-plane diagrams of fura-2 

ratio versus cell length in myocytes exposed to NT are shown in Figure 3.9A.  
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Figure 3.8 Effect of AEA on sarcoplasmic reticulum Ca
2+

 transport: (A) 

Typical record illustrating the effects of electrical stimulation (ES) and rapid 

application of caffeine on fura-2 ratio in a rat ventricular myocyte. Also shown are 

mean amplitude of SR fractional release of Ca
2+

 (B), area under the caffeine-

evoked Ca
2+

 transient (C) and recovery of electrically evoked intracellular Ca
2+

 

after application of caffeine (D). Data are analyzed using paired t-test and are 

expressed as means ± S.E.M., n = 21-23 cells. 
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Figure 3.9 Effect of AEA on myofilament sensitivity to Ca
2+

: (A) Typical 

records of myocyte shortening, fura-2 ratio and phase-plane diagrams of fura-2 

ratio vs. cell length in a myocyte exposed to NT. The arrow indicates the region 

where the gradient was measured. B-D show the effect of 1 µM AEA on the mean 

gradient of the fura-2–cell length trajectory during late relaxation of the twitch 

contraction during the periods 500-600 (B), 500-700 (C) and 500-800 ms (D) 

Data are analyzed using paired t-test and are expressed as means ± S.E.M., n = 23-

30 cells. 
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The gradient of the trajectory reflects the relative myofilament response to 

Ca
2+

 and hence, has been used as a measure of myofilament sensitivity to Ca
2+

 

(Spurgeon, et al., 1992). The gradients of the fura-2-cell length trajectory during 

late relaxation of the twitch contraction, measured during the periods 500-600 ms 

(Figure 3.9B), 500-700 ms (Figure 3.9C), and 500–800 ms (Figure 3.9D), were 

not significantly altered in the presence of 1 µM AEA, suggesting that 

myofilament sensitivity to Ca
2+

 is not reduced by AEA (n = 23-30 cells; P>0.05). 

3.7 Anandamide suppresses the action potentials in ventricular myocytes 

Generation of the cardiac AP requires a specific temporal activation 

pattern of several ion channels. Anandamide has been shown to influence the 

functional properties of these channels either directly or indirectly [for reviews, 

(Oz, 2006; Goodfellow and Glass, 2009)]. Therefore, in this set of experiments, 

the effect of AEA on cardiac APs was investigated. In agreement with earlier 

studies in rat cardiomyocytes (Danziger, et al., 1991; Delbridge, et al., 2000; 

Bebarova, et al., 2010), AP waveforms remained unchanged in the presence of 

ethanol concentrations up to 0.07 % (v/v). 

Patch-clamped cardiomyocytes were exposed to AEA while continuously 

monitoring their Vrest and APs in the current clamp mode. The generation of APs 

was evoked by 0.9-1 nA depolarizing current pulses of 4 ms duration applied at a 

frequency of 0.2 Hz. A typical experimental protocol included: 1) the 

establishment of the whole-cell configuration, 2) 4 to 5 minute dialysis of the 

myocytes with pipette solution to ensure equilibrium conditions between the 

pipette solution and intracellular milieu, 3) recording of the myocytes baseline 
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electrical activity following stabilization of Vrest and AP parameters, 4) exposure 

of the myocytes to AEA for 10 to 15 minutes, and 5) washout of AEA.  

In initial experiments, effects of AEA were tested on the passive 

membrane properties of cardiomyocytes. The passive properties of the ventricular 

cells from controls were not significantly different from those of the AEA-treated 

cells. Resting membrane potentials (mean ± SEM) were -76.3 ± 1.7, and -74.2 ± 

1.6 mV in control (n=11) and AEA treated (n=14) myocytes, respectively. The 

mean cell capacitance in the control group of cells was 109.6 ± 12.8 pF, whereas 

in the AEA treated cells was 104.7 ± 11.6 pF. The input resistance was 82.3 ± 

13.4 MΩ in control cells and 85.6 ± 11.8 MΩ in AEA treated cells. In control 

cells, these passive membrane properties were not altered significantly in 

experiments lasting up to 25 to 30 minutes.  

In agreement with earlier studies in rat ventricular myocytes [for a review, 

(Antzelevitch, et al., 1991)], two main types of waveforms were observed 

according to the duration of their APs; endocardial (with long AP durations, 

Figure 3.10A; 44.6 ± 2.9 ms; n=23 cells) and epicardial (with short AP durations; 

Figure 3.10B; 14.9 ± 1.6 ms; n=26 cells) myocytes. Resting membrane potentials 

were -77.6 ± 1.3 mV in endocardial cells, and -78.5 ± 1.4 mV in epicardial cells 

(Figure 3.11A). Similar to earlier findings (Antzelevitch, et al., 1991), the 

amplitudes of APs (122.6 ± 8.9 mV versus 110.7 ± 7.1 mV) (Figure 3.11B) and 

maximal rate of rise (dV/dtmax) values (177.3 ± 8.4 V/s versus 141.6 ± 7.2 V/s) 

(Figure 3.11C) in endocardial cells were higher than those of epicardial cells  
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Figure 3.10 Effect of AEA on the excitability of ventricular myocytes: Representative recordings of APs in controls (dark grey area), in the 

presence of 1 μM AEA (light grey area) and after washout (striped area) in ventricular endocardial (A) and epicardial (B) myocytes; the insets 

on panels A and B show the time course of the action potential duration (APD60) and resting potential (Vrest) changes in response to AEA 

application (indicated by horizontal bars).  
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Figure 3.11 Summary of the effect of AEA on the amplitude and the shape of 

APs in cardiomyocytes: Quantification of the changes in Vrest (A), AP amplitude 

(B), AP maximal rate of rise (C) and AP duration (D), characterized by APD60 in 

controls (dark grey bars) and in response to 0.1 μM (cross hatched bars) or 1 μM 

AEA (light grey bars). Data are analyzed using ANOVA and are expressed as 

means ± S.E.M. from 8 to 12 myocytes for each group. * indicates statistically 

significant difference at the level of P < 0.05. 
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At concentrations of 0.1 µM and 1µM, AEA consistently shortened the 

duration of AP in both cell types (measured at 60 % of repolarization, APD60; 

Figure 3.11D), with a hyperpolarizing shift in Vrest (Figure 3.11A). Changes in AP 

shortening in response to AEA (1 µM) application were noticeable within 1-2 

minutes (insets to Figures 3.10A and 3.10B). Recoveries were usually partial and 

required longer time. Similar effect of AEA was observed in 5 cells recorded at 

physiological temperatures (35-36 °C). APD60 decreased from 33.8 ± 4.6 ms in 

controls to 21.4 ± 3.2 ms in the presence of AEA (n=5; P<0.05). 

Effects of AEA on Vrest (Figure 3.11A), and APD60 (Figure 3.11D) 

reached a statistically significant level at 1 µM AEA (n=8-12 cells for each group; 

P<0.05). However, AP amplitude (Figure 3.11B) and dV/dtmax of AP (Figure 

3.11C) were not altered significantly in both types of cells at 0.1 µM and 1 µM 

AEA (n=10-12 cells for each group; P>0.05).  

At higher concentration (10 µM), AEA caused 5-10 mV depolarization 

(Figures 3.12A, 3.12B and 3.13A) in endocardial (n=18 cells; P<0.05) and 

epicardial cells (n=24 cells; P<0.05) and decreased significantly the AP 

amplitudes and dV/dtmax in both types of myocytes (Figures 3.13B and 3.13C; 

n=18-24 cells; P<0.05). AEA (10 µM) also caused a significant decrease in APD60 

(Figure 3.13D). However, in a subgroup of endocardial (5 out of 18) and 

epicardial (4 out of 24) cells, AEA, although caused a significant depolarization 

and a significant decrease in AP amplitude and maximum rate of rise of AP, it did 

not alter APD60 values significantly. 
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Figure 3.12 Effects of high concentration of AEA on the excitability of ventricular myocytes: Representative recordings of APs in controls 

(dark grey area), in the presence of 10 μM AEA (light grey area) and after washout (striped area) in ventricular endocardial (A) and epicardial 

(B) myocytes; the insets on panels A and B show the time course of the action potential duration (APD60) and resting potential (Vrest) changes in 

response to AEA application (indicated by horizontal bars).  
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Figure 3.13 Summary of the effect of high concentration of AEA on the 

amplitude and the shape of APs in cardiomyocytes: Quantification of the 

changes in Vrest (A), AP amplitude (B) AP maximal rate of rise (C) and AP 

duration (D), characterized by APD60 in controls (dark grey bars) and in response 

to 10 μM AEA (light grey bars). Data are analyzed using paired t-test and are 

expressed as means ± S.E.M. from 18 to 24 myocytes (for A-C) and from 13 to 20 

(for D). * indicates statistically significant difference at the level of P < 0.05. 
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3.8 Cannabinoid receptors are not involved in the effect of anandamide on 

the action potentials in ventricular myocytes 

In these experiments, the effects of CB1 receptor antagonist AM251 (0.3 

µM) and CB2 receptor antagonist AM630 (0.3 µM) on AEA-induced changes in 

the AP duration of endocardial and epicardial myocytes were investigated. The 

effect of AEA on APD60 remained unaltered in the presence of AM251 (n=5-7 

cells; P>0.05; Figure 3.14A). Similarly, pretreatment with AM630 did not cause a 

significant effect on AEA-induced changes in APD60 in both endocardial and 

epicardial myocytes (n=5-7 cells; P>0.05; Figure 13.4B). Since the actions of 

cannabinoid receptors (CB1 and CB2) are mediated by the activation of Gi/o 

proteins sensitive to PTX treatment, we tested whether PTX pretreatment (2 

µg/ml, 3 hours at 37 ºC) alters AEA-induced changes in AP duration in 

endocardial and epicardial myocytes. PTX did not cause a significant alteration in 

the effects of AEA on both endocardial and epicardial myocytes (n=5-7 cells; 

P>0.05; Figure 3.14C).  

3.9 Anandamide inhibits voltage-dependent Na
+
 channels in ventricular 

myocytes 

Previous studies have indicated that AEA has significant antiarrhythmic 

effects (Ugdyzhekova, et al., 2001; Li, et al., 2009). Since voltage-activated 

inward Na
+
 (INa) and Ca

2+
 (IL,Ca) currents are the major ion currents shaping the 

action potential in ventricular myocytes, we have conducted a series of 

experiments under conditions that enable reliable isolation of either INa or IL,Ca in 

voltage-clamp mode. In the first set of experiments, INa was typically elicited by 

pulses from -80 mV to +60 mV for 50 ms. Figure 3.15A shows recordings of INa 

in ventricular myocytes before and after application of 10 µM AEA. 
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3.14 Effect of cannabinoid receptor antagonists and PTX pretreatment on 

AEA-induced changes in myocyte excitability: (A) Effect of CB1 receptor 

antagonist AM251 (0.3 µM) on AEA-induced changes in APD60 in endocardial 

and epicardial myocytes. APD60 was presented in control and in the presence of 1 

µM AEA, 0.3µM AM251, and 1 µM AEA + 0.3µM AM251. (B) Effect of CB2 

receptor antagonist AM630 (0.3 µM) on AEA-induced changes in APD60 in 

endocardial and epicardial myocytes. APD60 was presented in control and in the 

presence of 1 µM AEA, 0.3 µM AM630, and 1 µM AEA + 0.3 µM AM630. (C) 

Effect of PTX treatment on AEA-induced changes in APD60 in endocardial and 

epicardial myocytes. Changes are presented in control, in presence of 1 µM AEA, 

in control + PTX, and in presence of 1µM AEA + PTX. Data are analyzed using 

ANOVA and are expressed as means ± S.E.M., from 5 to 7 myocytes of each 

type; * indicate statistically significant difference at the level of P<0.05. 
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Figure 3.15 Effect of AEA on INa in rat ventricular myocytes: (A) AEA 

inhibits INa recorded using whole cell voltage clamp mode of patch clamp 

technique. INa was recorded during 50 ms voltage pulses to -20 mV from a holding 

potential of -80 mV. Current traces were recorded before (control) and after 10 

minutes application of 10 μM AEA. (B) Maximal currents of VGSCs presented as 

a function of time in the presence of vehicle (0.07 % ethanol) and 10 μM AEA 

(n=5-6 cells). (C) Representative recordings of INa in response to the depicted 

pulse protocol under control conditions and after application of 10 μM AEA. (D) 

Normalized and averaged I-V relationships of control INa (filled circles) and INa in 

the presence of 10 μM AEA (open circles) determined by applying a series of step 

depolarizing pulses from -80 mV to +60 mV in 10 mV increments for a duration 

of 50 ms. Data are analyzed using paired t-test and are expressed as means ± 

S.E.M. from 5 to 7 cells.   



109 

 

The effect of AEA was detectable within 2-3 minutes and reached a steady-state 

level within 10-15 minutes. The recovery was partial during the experiments 

lasting up to 25 to 30 minutes (Figure 3.15B).  

With 40 mМ Na
+
 outside and Cs

+
 as the major intracellular cation, inward 

INa in response to incremental step depolarizations (Vm, 10 mV increment) applied 

from a holding potential Vh= -80 mV, INa started to activate at Vm= -60 mV, and 

reached maximal amplitude at about Vm=-30 mV. At more positive potentials the 

inward current decreased, reversing its direction at an apparent reversal potential 

(Vrev) of around +60 mV. Traces of INa in the absence and presence of 10 µM 

AEA were presented in Figure 3.15C. AEA inhibited INa without causing 

significant changes in the I-V relationship. The I-V relationship for INa is 

illustrated in Figure 3.15D. AEA inhibited INa without changing the threshold, 

peak and reversal potentials. 

In this study, AEA was dissolved in ethanol, and therefore, we have tested 

the effect of ethanol as a vehicle. In agreement with earlier studies (Danziger, et 

al., 1991; Bebarova, et al., 2010), our results indicate that maximal amplitudes of 

INa were altered after 10 minutes vehicle application in experiments lasting up to 

20 to 25 minutes (Figure 3.16A). Due to the effect of vehicle, we have tested each 

concentration of AEA and vehicle separately and plotted the concentration 

response curve after subtraction of vehicle effect. The effect of increasing AEA 

and corresponding ethanol concentrations and corrected concentration-response 

curve were presented in Figure 3.16B.  

In order to exclude the possibility of the involvement of degradation 

products of AEA in the inhibition of INa, the effect of 10 µM metAEA was tested.  
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Figure 3.16 Effect of increasing AEA and vehicle concentrations on INa 

recorded in rat ventricular myocytes: (A) Effects of AEA (0.1 to 30 µM) and 

corresponding vehicle concentrations on the maximal amplitudes of INa currents. 

Data are analyzed using paired t-test and are expressed as means ± S.E.M. from 5 

to 7 cells. (B) Corrected concentration response curve for the inhibitory effect of 

AEA on INa. The amount of inhibition induced by the vehicle was subtracted from 

the AEA-induced inhibition at corresponding AEA concentrations. Data was fit 

with logistic equation using Origin data analysis software. 
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10 minute application of metAEA caused a significant inhibition of INa (36 ± 4 % 

of controls; n=5 cells; P>0.05). 

Steady-state activation (SSA) curves of INa, before and after AEA 

application, were derived by fitting the respective I-V relationships with the 

product of Boltzmann equation (Figure 3.17A). This allowed us to determine if 

AEA influences the parameters of INa SSA: the voltage of half-maximal activation 

(V1/2) and slope factor (k). In controls, V1/2 and k values were -45.2 mV and 7.1 

mV, respectively. In the presence of 10 µM AEA, V1/2 and k values were -42.3 

mV, and 7.5 mV. There were no statistically significant differences between 

controls and AEA-treated cells (n=8-10 cells; P>0.05). 

In order to determine if AEA influences the properties of inactivation of 

VGSCs, SSI dependencies of INa in the absence and presence of AEA were 

compared. Steady state inactivation curves were acquired using a standard voltage 

protocol consisting of prolonged (400 ms) conditioning pre-pulse to various Vm, 

in the range of -100 mV to +70 mV, which was immediately followed by a 

constant INa activating test pulse to Vm= -20 mV. Steady state inactivation-

dependency was plotted as normalized amplitude of INa at Vm= -20 mV against the 

value of conditioning Vm The fit of the obtained data points using the Boltzmann 

equation (Figure 3.17B) has indicated that under control conditions, V1/2 and k 

values were -70.2 mV and -5.8 mV, respectively. In the presence of 10 μM AEA, 

V1/2 and K values were -81.4 mV and -5.1 mV, respectively. Thus, AEA induced a 

significant hyperpolarizing shift in the voltage-dependence of SSI of cardiac 

VGSCs (-11.4 mV; P<0.05). Comparison of INa currents, in the absence and  
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Figure 3.17 Effect of AEA on steady state activation and inactivation of INa in 

rat ventricular myocytes: (A) Steady-state activation (SSA) and (B) steady-state 

inactivation (SSI) curves of INa in the absence (filled circles) and presence of 1 

μM AEA (open circles). (C) Voltage-dependence of INa inactivation time constant 

(τi) under control conditions (filled circles) and in the presence of 1 μM AEA 

(open circles). Data are analyzed using paired t-test and are expressed as means ± 

S.E.M., are from 7 cells. * indicates statistically significant difference at the level 

of P < 0.05. 
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presence of AEA, revealed noticeable acceleration of the current's inactivation 

kinetics by AEA. Quantification of the time constant of INa inactivation (τi), by 

fitting the currents' decay phase with exponential functions, showed that AEA (10 

μM) significantly reduced τi in the range of Vm between -50 mV and +20 mV 

(Figure 3.17C). Furthermore, the results of this study show that the inhibitory 

effect of AEA on the maximal amplitudes of INa was not significantly affected by 

PTX pretreatment (Figure 3.18).  

3.10 Anandamide inhibits voltage-dependent Ca
2+

 channels in ventricular 

myocytes 

The effect of AEA on the L-type Ca
2+

 currents (IL,Ca) was also tested. 

Figure 3.19A shows a typical record of IL,Ca elicited by applying a single 300 ms 

voltage pulse to +10 mV from a holding potential of -50 mV in rat ventricular 

myocyte before and after 10 minutes superfusion with 1µM AEA. Time course of 

the effect of AEA on the density of IL,Ca was presented in Figure 3.19B. The 

effects of AЕА were also investigated on the biophysical properties of IL,Ca in rat 

ventricular myocytes. L-type Ca
2+

 current was recorded in the presence of 

intracellular Cs
+
 and extracellular TEA

+
 to suppress K

+
 currents, while retaining 

95 mM Na
+
 in the extracellular solution. Elimination of contaminating Na

+
 current 

during recording of IL,Ca was achieved by applying voltage step-pulses from 

relatively depolarized Vh of -50 mV, which produced steady-state INa inactivation 

(Voitychuk, et al., 2012). As evident from original recordings and I-V 

relationships (Figures 3.19C and D), IL,Ca had a much slower kinetics in response 

to step depolarization, and activated at more positive potentials than INa: it started 

to appear at Vm= -30 mV, reached maximum at around Vm= +10 mV, and 
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Figure 3.18 Effect of PTX pretreatment on AEA inhibition of the maximal INa 

amplitudes. Black bars indicate controls. Data are analyzed using independent 

sample t-test and are expressed as means ± S.E.M., from 6 to 8 cells. 
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Figure 3.19 Effect of AEA on IL,Ca in rat ventricular myocytes: (A) AEA 

inhibits IL,Ca recorded using whole-cell voltage-clamp mode of patch clamp 

technique. IL,Ca was recorded during 300 ms voltage pulses to +10 mV from a 

holding potential of -50 mV. Current traces recorded before (control) and after 10 

minutes application of 1 μM AEA. (B) Maximal currents presented as a function 

of time in the presence of vehicle (0.007 % ethanol) and 1 μM AEA (n=5 cells). 

(C) Representative recordings of IL,Ca in response to the depicted pulse protocol 

under control conditions and after application of 1 μM AEA. (D) Normalized and 

averaged I-V relationships of control IL,Ca (open circles) and IL,Ca in the presence of 

1μM AEA (filled circles) determined by applying a series of step depolarizing 

pulses from-70mV to +70 mV in 10 mV increments for a duration of 300 ms. Data 

are analyzed using paired t-test and are expressed as means ± S.E.M. from 5 to 7 

cells.  
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decreased at higher voltages approaching zero at about Vm= +60 mV (Figure 

3.19D). 

Current density of IL,Ca was also altered after 10 minutes application of 

ethanol in experiments lasting up to 20 to 25 minutes. Effects of increasing AEA 

and corresponding ethanol concentrations on IL,Ca and corrected concentration-

response curve were presented in Figure 3.20.  

In order to exclude the possibility of involvement of degradation products 

of AEA in the inhibition of IL,Ca, the effect of 1 µM metAEA was tested. MetAEA 

caused a significant inhibition of Ca
2+

 currents (46 ± 4% inhibition of controls; 

n=5 cells; P<0.05). In addition, the effect of FAAH inhibition on AEA-induced 

inhibitory effect was tested. Pretreatment with 1 µM URB597 for 45 minutes at 37 

ºC (controls incubated with 0.007 % ethanol alone) did not alter the extent of AEA 

inhibition of L-type Ca
2+

 currents. In the absence and presence of URB597, AEA 

(1 µM) inhibited L-type Ca
2+

 currents to 32.7 ± 3.6 % of and 35.3 ± 4.2 % of 

controls, respectively (n=5-7; P>0.05). 

AEA produced a depolarizing shift of IL,Ca SSA by 12.6 mV (i.e., V1/2= -

9.4 ± 0.3 mV, in control, to V1/2= +3.2 ± 0.2 mV, in the presence of AEA) and 

hyperpolarizing shift of IL,Ca SSI by 4.3 mV (i.e., from V1/2= -18.9 ± 0.1 mV, in 

control, to V1/2= -23.2 ± 0.1 mV, in the presence of AEA) with little influence on 

the slopes of respective dependencies (k= 7. 2 ± 0.4 mV and k= -5.3 ± 0.3 mV for 

the control activation and inactivation, respectively, vs. k= 6.9 ± 0.3 mV and k= -

5.1±0.2 mV for the AEA-modified activation and inactivation, respectively), 

which altogether resulted in the notable reduction of I L,Ca “window current” 

responsible for the stationary Ca
2+

 entry in the range of membrane  
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Figure 3.20 Effects of increasing AEA and vehicle concentrations on IL,Ca 

recorded in rat ventricular myocytes: (A) Effects of AEA (0.1 to 30 µM) and 

corresponding vehicle concentrations on the maximal amplitudes of IL,Ca. Data are 

analyzed using paired t-test and are expressed as means ± S.E.M., from 5 to 7 

cells. (B) Corrected concentration response curve for the inhibitory effect of AEA 

on IL,Ca. The amount of inhibition induced by the vehicle was subtracted from 

AEA-induced inhibition at corresponding AEA concentrations. Data was fit with 

logistic equation using Origin data analysis software.  
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 potentials from -40 mV to +10 mV (Figure 3.21A and 3.21B). Thus, the 

mechanism of AEA action on cardiac L-type VGCC most likely involves 

influence on channel gating that reduces “window current” as well as partial 

blockade of the ion-conducting pathway that decreases current amplitude. 

In line with earlier reports (Soldatov, et al., 1998), kinetic analysis of I L,Ca 

currents were fit to double-exponential function with fast (τf) and slow (τs) 

inactivation time constants. Comparison of IL,Ca currents in the absence and 

presence of AEA revealed noticeable acceleration of the current's inactivation 

kinetics by AEA. Quantification of the time constants of IL,Ca inactivation showed 

that AEA (1μM) significantly reduced τi in the range of Vm -20 mV and +10 mV 

(Figure 3.21C).  

In earlier electrophysiological studies, sidedness of AEA actions on 

various ion channels has been reported (Oz, 2006). For this reason, the effect of 

intracellular application of AEA by including AEA (1µM) inside the patch 

electrode was tested (Figure 3.22). The extent of AEA inhibition (compared after 

15 minutes of AEA exposure) was not significantly different between intracellular 

and extracellular AEA applications (n=11-14 cells; P>0.05). 

In order to test if the modulation of Ca
2+

 binding site can mediate the 

effect of AEA on the inactivation kinetics of L-type VGCCs, extracellular Ca
2+

 

was replaced with Ba
2+

 and the effect of AEA on Ba
2+

 currents (IBa) through L-

type VGCCs was tested. In line with earlier studies (Soldatov, et al., 1998), 

inactivation of IBa fit to mono-exponential decay function (Figure 3.23A) with 

significant voltage-dependency. In the presence of AEA, inactivation time
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Figure 3.21 Effect of AEA on steady state activation and inactivation of IL,Ca 

in rat ventricular myocytes: (A) Steady-state activation (SSA) and (B) steady-

state inactivation (SSI) curves of IL,Ca in the absence (filled circles) and presence 

of 1 μM AEA (open circles). (C) Voltage-dependent fast (triangles) and slow 

(circles) inactivation time constants (τi) of IL,Ca under control conditions (filled 

circles and triangles) and in the presence of 1μM AEA (open circles and 

triangles). Data are analyzed using paired t-test and are expressed as means ± 

SEM. from 5-6 cells. * indicates statistically significant difference at the level of P 

< 0.05. 
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Figure 3.22 Effect of sidedness of AEA application on IL,Ca in rat ventricular 

myocytes: Comparison of the intracellular and extracellular application of AEA 

on the maximal inhibition of IL,Ca. Data are analyzed using independent sample t-

test and are expressed as means ± S.E.M. from 11-14 cells. 
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constant (Figure 3.23A and 3.23B), and the maximal amplitudes of IBa were 

significantly inhibited compared to control values (n=7-8 cells; P<0.05). 

Since the known cannabinoid receptors CB1 and CB2 [for a review, 

(Pertwee, et al., 2010)] are coupled to PTX sensitive Gi/o type G-proteins, we have 

tested whether the inhibitory effects of AEA on L-type VGCCs are mediated by 

the activation of cannabinoid receptors. In the presence of 0.3 µM AM251 and 0.3 

µM AM630, AEA (1µM) inhibition of IL,Ca remained unaltered. Application of 

AM251 or AM630 alone did not have a significant effect on the amplitudes of 

IL,Ca (Figure 3.24) (n=6-9 cells; P>0.05). Furthermore, the results of this study 

show that the inhibitory effect of AEA on the maximal amplitudes of I L,Ca was not 

affected by PTX pretreatment (Figure 3.25).  

In positive control experiments, PTX, as it has been reported earlier 

(Zhang, et al., 2005), effectively attenuated the inhibitory actions of BRL-37344, a 

β3 adrenergic receptor agonist, on IL,Ca recorded in ventricular myocytes (Figures 

3.26A and 3.26B) indicating that G-proteins are functionally coupled to their 

target receptors. 
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Figure 3.23 Effect of AEA on Ba
2+

 currents mediated by L-type VGCCs: (A) Traces of normalized Ca
2+

 and Ba
2+

 currents through L-type 

VGCCs. Normalized Ba
2+

 current in the presence 1 µM AEA is also presented in the figure. (B) Effect of 1 µM AEA on the maximal amplitudes 

and the inactivation kinetics of Ba
2+

 currents. Data are analyzed using paired t-test and are expressed as means ± S.E.M. from 7-8 cells.* 

indicates statistically significant difference at the level of P <0.05. 



123 

 

 

Figure 3.24 Effects of cannabinoid receptor antagonists on AEA inhibition of 

L-type VGCCs: Effects of CB1 antagonist AM251 (0.3 µM) and CB2 antagonist 

AM630 (0.3 µM) on AEA (1 µM) inhibition of IL,Ca. Data are analyzed using 

ANOVA and are expressed as means ± S.E.M. from 6-9 cells.* indicates 

statistically significant difference at the level of P <0.05. 
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Figure 3.25 Effects of PTX pretreatment on AEA inhibition of L-type 

VGCCs: Percent inhibition of IL,Ca after vehicle (distilled water) and PTX (2 

µg/µl, 3hours). Data are analyzed using independent sample t-test and are 

expressed as means ± S.E.M. from 6-8 cells. 
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Figure 3.26 Effect of PTX pretreatment on BRL-37344 inhibition of IL,Ca 

recorded in rat ventricular myocytes: (A) Records of currents presenting the 

effect of BRL-37344, on IL,Ca in the absence and presence of PTX (2 µg/ml for 3 

hours in 37 °C) pretreatment. Records were obtained by applying a step 

depolarizing pulse from -50 mV to +10 mV for duration of 300 ms (B) 

Presentation of results on the effect of PTX pretreatment on BRL-37344 inhibition 

of IL,Ca. Data are analyzed using independent sample t-test and are expressed as 

means ± S.E.M. from 5-7 cells.* indicates statistically significant difference at the 

level of P<0.05. 
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3.11 Anandamide inhibits Na
+
/Ca

2+
 exchanger in ventricular myocytes 

Currents mediated by NCX1 were elicited by a descending voltage ramp 

pulses applied between +100 mV and -100 mV (dV/dt = 0.1 V/s) from a holding 

potential of −40 mV for 2 seconds. In order to verify that the currents recorded in 

our experimental conditions are mediated by the NCX1, Ni
2+

 (10 mM) was used 

routinely at the end of each experiment to determine the Ni
2+

-sensitive NCX1 

current (Figure 3.27A and 3.27B). Bath application of Ni
2+

 for 5 minutes 

reversibly suppressed INCX1, indicating that these currents are mediated by NCX1 

in cardiomyocytes (Figures 3.27A and 3.27B). Command pulses were applied 

every 15 seconds, and amplitudes of currents at +100 mV and -100 mV were 

plotted as a function of time (Figure 3.27A). Anandamide largely attenuated both 

the outward and inward components of Ni
2+

-sensitive current. The effect of AEA 

was detectable at 2-3 minutes and reached a steady-state level within 5 minutes. 

Within the time period of our experiment, the recovery was partial. Figure 3.27B 

shows representative current traces in control solution, in the presence of AEA (10 

µM) and in the presence of Ni
2+

 (10 mM). In this experiment, AEA was dissolved 

in ethanol. The maximal amplitudes of INCX1 were not altered by 10 to 15 minutes 

application of ethanol up to the concentration of 0.07% (V/V; n=6).  

Figure 3.27C shows the mean I-V relationships for Ni
2+

-sensitive INCX1 in 

control and in the presence of 10 µM AEA. INCX1 was calculated by subtracting 

the currents recorded in Ni
2+

 from the current recorded without Ni
2+

. Evaluation of 

the AEA inhibition of INCX1 at different membrane potentials (Figure 3.27D) 

indicated that AEA inhibits both outward and inward components of INCX1 equally. 
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Figure 3.27 Effect of AEA on INCX1 in rat ventricular myocytes: AEA inhibits 

INCX1 recorded using whole cell voltage clamp mode of patch clamp technique. 

(A) Time course of the effects of AEA on the inward and outward INCX1 recorded 

in a cardiomyocyte. INCX1 was elicited by 2 seconds voltage ramps from +100 mV 

to -100 mV every 15 seconds. Amplitudes of currents recorded at +100 mV and -

100 mV were presented as a function of time. Horizontal bars indicate drug 

application times. Arrows correspond to the time points for the currents shown in 

Figure 3.27B (B) Current traces were recorded in control, after 5 minutes 

application of 10 μM AEA, and following 10 mM Ni
2+

 for 5 minutes. (C) Mean I-

V relationship of NCX1 in the absence and presence of 10 µM AEA. Data points 

(mean ± S.E.M.) are from 7 cells. (D) Quantification of the extent of AEA 

inhibition of INCX1 at different membrane potentials. Data points (mean ± S.E.M.) 

are from 6 cells. Paired t-test was used to compare the amplitude of current 

currents recorded at +100 mV and -100 mV.* indicates statistically significant 

difference at the level of P<0.05. 
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Collectively, these observations indicate that, AEA (10 µM) exerts an inhibitory 

effect on NCX1 in ventricular myocytes. 

The effect of increasing AEA concentrations on the outward (measured at 

+100 mV) components of INCX1 was demonstrated in Figure 3.28. AEA inhibited 

INCX1 in a concentration-dependent manner with IC50 values of 4.7 µM. The effect 

of metAEA was also tested to avoid the likely confounding effects of degradation 

products and oxygenated metabolites on NCX1. At a concentration of 10 μM, 

metAEA also caused a significant inhibition of exchanger current (Figure 3.29A). 

Furthermore, the effect of AEA on NCX1 in the presence of the specific FAAH 

inhibitor URB597 was also tested. After incubation of cardiomyocytes with 1 µM 

URB597 for 1 hour, AEA continued to inhibit the function of NCX1 (Figure 

3.29B) further suggesting that the intact AEA molecule, but not the degredation 

products, mediates its effect on the exchanger.  

In the presence of 1 µM AM251 and 1 µM AM630, AEA (10 µM) 

inhibition of INCX1 remained unaltered (n=6-8, Figure 3.30). In addition, the results 

of this study show that the inhibitory effect of AEA on the maximal amplitudes of 

INCX1 was not affected by PTX pretreatment (Figure 3.31A). In positive control 

experiments (section 3.10), PTX, as it has been reported earlier (Zhang, et al., 

2005), effectively attenuated the inhibitory actions of BRL-37344, a β3 adrenergic 

receptor agonist, on L-type VGCCs recorded in ventricular myocytes (Figure 

3.26). GDP-β-S is also commonly used to inhibit the responses mediated by the 

activation of G-protein receptors (Bondarenko, et al., 2013). For this reason, the 

effect of AEA in the presence of GDP-β-S in intracellular solution was tested. 

After the inclusion of GDP-β-S (1mM) in pipette solution, AEA continued to 

inhibit NCX1 (Figure 3.31B).  
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Figure 3.28 Effect of increasing AEA concentration on INCX1 in rat 

ventricular myocytes: AEA inhibits INCX1 in a concentration-dependent manner. 

Ni
2+

-sensitive current was measured at +100 mV. Data points (mean ± S.E.M.) are 

from 6 to 8 cells. 
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Figure 3.29 Effects of metAEA and URB597 on INCX1 in rat ventricular 

myocytes: (A) Effect of 10 µM metAEA on net INCX1 (after subtraction of current 

in10 mM Ni
2+

). Data points (mean ± S.E.M.) are from 5 cells. (B) Effect of 10 µM 

AEA on INCX1 in cardiomyocytes incubated with 1 µM URB597 for 1 hour. Data 

points (mean ± S.E.M.) are from 6 cells. Paired t-test was used to compare the 

amplitude of current currents recorded at +100 mV and -100 mV.* indicates 

statistically significant difference at the level of P<0.05. 
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Figure 3.30 Effects of cannabinoid receptor antagonists on AEA inhibition of 

INCX1 recorded in ventricular cardiomyocytes: (A) Time course of the effects of 

CB1 antagonist AM251 (1 µM) on AEA inhibition of INCX1. (B) Effect of 1 µM 

AM251 on AEA inhibition of net NCX1 current at different membrane potentials 

(after subtraction of current in 10 mM Ni
2+

). (C) Time course of the effects of CB2 

antagonist AM630 (1 µM) on AEA inhibition of INCX1 (D) Time course of the 

effect of 1 µM AM630 on AEA inhibition of INCX1 at different membrane 

potentials (after subtraction of current in 10 mM Ni
2+

). Data points (mean ± 

S.E.M.) are from 6-8 cells. Paired t-test was used to compare the amplitude of 

current currents recorded at +100 mV and -100 mV.* indicates statistically 

significant difference at the level of P<0.05. 
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Figure 3.31 Effects of PTX pretreatment and intracellular application of 

GDP-β-S on AEA inhibition of INCX1 in ventricular cardiomyocytes: (A) 

Effect of PTX pretreatment on AEA inhibition of INCX1. Amplitudes of inward and 

outward components of INCX1 were measured at +100 mV and -100 mV, 

respectively. Data points (mean ± S.E.M.) are from 6 cells. (B) Effect of GDP-β-S 

inclusion in the patching pipette on AEA inhibition of INCX1. Amplitudes of 

inward and outward components of INCX1 were measured at +100 mV and -100 

mV, respectively. Data points (mean ± S.E.M.) are from 7 cells. Data are analyzed 

using paired t-test. * indicates statistically different from the control values at the 

level of P<0.05.  
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3.12 Anandamide has no effect on cell viability in ventricular myocytes 

Cell viability was assessed using the MTT assay. Cell death was induced 

by 1 % Triton X-100 (Abood, et al., 2001). The effect of AEA (10 µM) on cell 

viability of ventricular cardiomyocytes was examined after 40 minutes treatment. 

As shown in figure 3.32A, no change in cell morphology was seen. On assaying 

the effect of AEA on cell viability, no significant change in cell viability was 

observed (Figure 3.32B).  

3.13 Anandamide has no effect on membrane integrity in ventricular 

myocytes 

Membrane integrity was assessed using the lactate dehydrogenase (LDH) 

assay. LDH is a soluble enzyme located in the cytosol which is released into the 

surrounding culture medium upon cell damage or lysis, a process that commonly 

correlates with both apoptosis and necrosis (Bonfoco, et al., 1995). The levels of 

LDH released into the surrounding media can, therefore, serve as a reliable 

measurement for cytotoxicity. Cell death was induced by 1 % Triton X-100 

(Abood, et al., 2001) and was set to be total LDH activity (100 %). Data from 

control and treated cells were normalized to total LDH release and calculated as 

percentage cytotoxicity. Results of the LDH assay are summarized in Figure 3.33. 

As depicted in the figure, no significance difference in LDH activity was observed 

between vehicle and AEA-treated cells. 
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Figure 3.32 Effect of AEA on morphological characteristics and cell viability 

of ventricular cardiomyocytes: (A) Ventricular cardiomyocytes were treated 

with either vehicle or 10 µM AEA for 40 minutes. (B) Effect of vehicle, AEA, or 

metAEA on cell viability as determined by MTT assay. Data are analyzed using 

ANOVA and are expressed as means ± S.E.M. of five independent experiments. * 

indicates statistically different from the control values at the level of P<0.05.  
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Figure 3.33 Cytotoxicity of AEA as assessed by LDH assay: Cells are treated 

with vehicle or vehicle + AEA (10 μM) for 40 minutes. Values represent means ± 

S.E.M., expressed as a percentage of the total LDH activity induced by 1 % Triton 

X-100. Data are analyzed using independent sample t-test and are expressed as 

means ± S.E.M. 
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4. DISCUSSION 

 

The results of this study indicate for the first time that impaired Ca
2+

 

signaling underlies the negative inotropic actions of AEA in rat ventricular 

myocytes, and that direct interaction of AEA with ion channel(s) shaping APs, 

rather than the activation of known cannabinoid receptors, mediate, at least in 

part, the effects of AEA on myocyte contractility. These findings also show that 

AEA-induced alterations in APs of myocytes are due to direct inhibition of 

voltage-dependent Na
+
 and Ca

2+
 channels. In addition, the results of this study 

indicate for the first time that under normal conditions, AEA can directly inhibit 

the activity of NCX1 in ventricular myocytes. 

Systemic administration of AEA causes complex hemodynamic changes 

involving phases of both increased and decreased blood pressure as well as 

changes in heart rate and contractility (for reviews, Randall, et al., 2004; Batkai 

and Pacher, 2009). It has been suggested that these cardiovascular actions of 

endocannabinoids involve multiple sets of cellular and molecular mechanisms 

(Randall, et al., 2004; Malinowska, et al., 2012). In addition to receptor-mediated 

and direct actions of endocannabinoids on muscular structures, neuronal and 

endothelial cells have also been shown to be influenced by AEA and its metabolic 

products (Oz, 2006). 

The use of video edge detection in individual myocytes has several 

advantages over in vivo experiments and traditional in vitro systems such as 

Langendorff-perfused heart preparation, since it allows measurement of 

contractility at single-cell level in a relatively isolated environment and excludes 

the influence of autonomic nerve endings, gap-junctions, neurotransmitter uptake 

system, and coronary perfusion status (Oz et al., 2006; Malinowska, et al., 2012). 



139 

 

For example, AEA has been reported to inhibit noradrenaline release from atrium 

subjected to electrical field stimulation (Goodfellow and Glass, 2009) and to 

enhance vagal activity (for a review, Malinowska, et al., 2012) in in vivo and in in 

vitro muscle preparations. Similarly, the modulation of the functional properties of 

dopamine (DA), serotonin, and glycine transporters and gap junctions (Venance, 

et al., 1995) by AEA and AA has been reported in neurons, cultured neurons, glia, 

and synaptosomal preparations (Chen, et al., 2003; Pearlman, et al., 2003; Steffens 

and Feuerstein, 2004; Oz, et al., 2010). However, it is unlikely that these reuptake 

mechanisms are involved in our studies on ventricular myocytes. Therefore, using 

acutely isolated ventricular myocytes, we have been able to bypass various 

potential target sites for AEA, and focus on characterizing its action on 

cardiomyocytes. 

4.1 Myocyte shortening and intracellular Ca
2+

 measurements experiments 

 In myocyte shortening experiments, bath application of AEA caused a 

significant reduction in the maximal shortening amplitudes without causing 

significant alteration in the time course of myocyte contraction. Negative-

inotropic actions of AEA might be attributed to the impaired release of Ca
2+

 from 

the SR. In fact, AEA and other various cannabinoid receptor agonists have been 

reported to modulate the ryanodine sensitive intracellular Ca
2+

 stores and Ca
2+

-

ATPase activity in various cell types (Epps, et al., 1982; Mombouli, et al., 1999; 

Zhuang, et al., 2005; Rao and Kaminski, 2006); for recent reviews, (Goodfellow 

and Glass, 2009; De and Di, V, 2009b). However, in our recent study (Al Kury, et 

al., 2014a), we have shown that binding of ryanodine to SR membranes was not 

altered by AEA. Similarly, in the presence of AEA (0.1 and 1 µM), passive Ca
2+
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release from SR membrane vesicles remained unchanged. In line with these 

findings, in the current study, the amplitude and kinetics of caffeine-induced Ca
2+

 

release from intracellular Ca
2+

 stores were not altered by AEA. Collectively, these 

results indicate that ryanodine-sensitive intracellular Ca
2+

 stores are not involved 

in the negative inotropic effects of AEA. 

On the other hand, the decrease in THALF decay and AMP of the Ca
2+

 

transient by AEA during twitch responses may be due to increased uptake of 

cytosolic Ca
2+

 to SR. In fact, our recent study (Al Kury, et al., 2014a), indicates 

that AEA, (0.1 and 1 µM) caused a significant increase in Ca
2+

-ATPase activity in 

cardiac SR membranes suggesting that increased Ca
2+

 uptake by SR might 

contribute to the observed changes in Ca
2+

 transients. Interestingly, NAEs with 

varying carbon chain lengths (Epps, et al., 1982) and fatty acid-based compounds, 

such as AA, have also been shown to modulate the activity of Ca
2+

-ATPase in 

cardiac and skeletal SR membranes. Potentiation of the Ca
2+

-ATPase activity 

without altering Ca
2+

 release and ryanodine-binding to the Ca
2+

 release channel 

may account for the decrease in THALF decay and amplitude of the Ca
2+

 transient 

caused by AEA (1 µM). Decreases in THALF decay and amplitudes of the Ca
2+

 

transients by low concentration of AEA (1 µM) during twitches, but not caffeine-

induced Ca
2+

 transients, may suggest that compared to caffeine-induced responses 

which involve the release of large amounts of Ca
2+

 from SR, fast Ca
2+

 transients 

during electrical stimulations are relatively more sensitive to alterations in Ca
2+

-

ATPase activity.  

Activation of cannabinoid receptors alters the levels of second messengers 

such as cAMP, cGMP and protein kinase C (Demuth and Molleman, 2006; 

Goodfellow and Glass, 2009) which are known to be involved in tuning the Ca
2+
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sensitivity of the contractile proteins. However, sensitivity of contractile proteins 

to intracellular Ca
2+

 remains unchanged in the presence of AEA, suggesting that 

phosphorylation and de-phosphorylation of the contractile proteins do not play a 

significant role in the negative inotropic actions of AEA. An earlier study in 

isolated rat atria demonstrated that AEA caused negative inotropic effects by 

decreasing cAMP and increasing nitric oxide (NO) levels (Sterin-Borda, et al., 

2005). However, AEA still decreased contractile performance in the presence of 

L-NAME, a NOS inhibitor, excluding a NO-mediated negative inotropic effect on 

human atrial muscle (Bonz, et al., 2003). Similarly, in another study in rat isolated 

heart, the negative inotropic actions of synthetic cannabinoid HU-210 were not 

correlated with the intracellular concentrations of cAMP and cGMP (Maslov, et 

al., 2004). Collectively, these findings, in agreement with the results of the current 

work, suggest that the effects of AEA on myocyte contractility are not related to 

changes in intracellular Ca
2+

 release machinery or sensitivity of myofilaments to 

Ca
2+

. Furthermore, in the presence of AEA (1 µM), intracellular Ca
2+

 levels and 

resting cell length of ventricular myocytes remain unaltered suggesting that AEA 

does not significantly affect Ca
2+

 homeostasis under resting conditions.  

In several earlier investigations, it has been reported that in the 

concentration range used in our study, AEA activates TRP channels such as 

TRPV1 receptors and causes increased levels of intracellular Ca
2+

 in various cell 

types (De and Di, V, 2010; Bradshaw, et al., 2013). However, TRP channels are 

not likely to be involved in the observed actions of AEA in cardiomyocytes for the 

following reasons. First, TRP channels are highly permeable to Ca
2+

 and their 

activation causes increased intracellular Ca
2+

 concentrations. However, 

application of AEA (0.1 to 1 µM) does not cause any alteration in intracellular 
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Ca
2+

 levels. Secondly, any opening of TRP channels would be associated with 

decreased input resistance of the cell, and we have not observed a detectable 

change in the input resistance of myocytes during voltage clamp experiments. 

Thirdly, in earlier studies, TRPV1 channels, the main TRP channel subtype that is 

activated by AEA, are not expressed in adult cardiomyocytes (Dvorakova and 

Kummer, 2001).  

AEA is metabolized by FAAH and degradation products such as AA, and 

AA derivatives have been shown to cause negative inotropic actions in 

cardiomyocytes (Hoffmann, et al., 1995; Mamas and Terrar, 2001; Liu, 2007). 

However, metAEA, the non-hydrolyzed analogue of AEA (Abadji, et al., 1994), 

also decreases the shortening of myocytes. In addition, AEA continues to inhibit 

myocyte shortening after pretreatment of these cells with URB597, a specific 

inhibitor of FAAH (Piomelli, et al., 2006). Furthermore, the negative inotropic 

effects of AEA are also insensitive to indomethacin application, indicating that the 

effect was unlikely to involve the stimulation of the release and metabolism of 

endogenous AA. These findings provide evidence that degradation products of 

AEA are not involved in the observed effects of this compound. Collectively, 

myocyte shortening experiments indicate that the negative inotropic effect of AEA 

results from a direct interaction of AEA with ventricular myocytes, rather than its 

action on nerve endings and neurotransmitter uptake systems that have been 

reported in various neuronal structures (Ishac, et al., 1996; Oz, et al., 2010). 

4.2 Involvement of cannabinoid receptors in the negative inotropic effect  

Involvement of cannabinoid receptors in the negative inotropic actions of 

cannabinoids has been reported in several earlier studies (Ford, et al., 2002; Bonz, 

et al., 2003; Sterin-Borda, et al., 2005; Su, et al., 2011). However, the results of 
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these investigations have not been conclusive (for reviews, Malinowska, et al., 

2012; Randall, et al., 2004; Mendizabal and Adler-Graschinsky, 2007). Both 

cannabinoid receptor-dependent and -independent mechanisms have been 

suggested (Malinowska, et al., 2012). While Ford et al., showed that in rat cardiac 

muscle, the inhibitory effect of AEA on contractility was not reversed in the 

presence of CB1 (SR141716A) and CB2 (SR144528) receptor antagonists (Ford, et 

al., 2002), Bonz et al. reported that AEA, metAEA, and HU-210 decreased 

contractile performance in human atrial muscle via activation of CB1 receptors 

(Bonz, et al., 2003). In another study in rat atria, AEA was suggested to have 

negative and positive inotropic effects mediated by the activation of CB1 and CB2 

receptors, respectively (Sterin-Borda, et al., 2005). Under our experimental 

conditions, two structurally different CB1 antagonists AM251 (0.3 μM) and 

SR141716 (0.3 μM) are not able to reverse the inhibitory effect of AEA on 

cardiomyocyte shortening. Similarly, two different CB2 antagonists AM630 (0.3 

μM) and SR144528 (0.3 μM) fail to antagonize AEA-induced decrease of 

cardiomyocyte shortening. However, at higher concentrations such as 1 μM, these 

antagonists themselves show inhibitory actions on cardiomyocyte shortening 

(n=9-12). To our knowledge, the negative inotropic actions of relatively high 

concentrations of AM251 and AM630 have not been reported previously. 

However, negative inotropic actions of SR141716 and SR144528 on the 

contractile functions of isolated rat heart have also been attributed to their direct 

effects on the contractility of cardiomyocytes (Krylatov, et al., 2005). Earlier 

studies on cardiac muscle and other preparations also indicate that cannabinoid 

receptor antagonists with different chemical structures can have off-target binding 
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sites on various ion channels and enzymes (Ford, et al., 2002; Batkai, et al., 

2004a; Patil, et al., 2011; Baur, et al., 2012).  

4.3 Action potential measurements 

During excitation-contraction coupling, alterations in the amplitudes and 

kinetics of cardiac APs are closely associated with corresponding changes in the 

contractility of myocytes. In agreement with several earlier electrophysiological 

studies on rat ventricular myocytes, we have identified two distinctly different 

groups of cells displaying either epicardial (short duration) or endocardial (long 

duration) APs (for a review, Antzelevitch, et al., 1991). In the current study, low 

AEA concentration (0.1 µM) does not cause significant alterations in amplitudes 

and kinetics of APs in either epicardial or endocardial myocytes (Figure 3.11). 

However, there is a slight hyperpolarization in Vrest values, which reaches a 

statistically significant level at 1 µM AEA. At this concentration, AEA decreases 

the durations of APs without significantly affecting the amplitudes and dV/dtmax of 

APs. At higher concentration (10 µM), AEA induces changes in AP duration 

accompanied with depolarization of the Vrest and decreases of dV/dtmax in the 

endocardial and epicardial ventricular myocytes, suggesting that AEA acts on 

multiple ion channels with different potencies. Importantly, no change in APD60 

was observed in a subpopulation of cells, suggesting that some of the actions of 

AEA on these channels are cell specific. 

Although, this is the first patch clamp study investigating the effect of 

AEA on the cardiac APs, an earlier report using intracellular recording methods in 

rat papillary muscle fibers reported that AEA, in the concentration range of 1-100 

nM, potently inhibited AP durations in an AM251 sensitive manner (Li, et al., 

2009), suggesting that activation of CB1 receptors mediated the negative inotropic 
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actions of AEA. However, under the experimental conditions of this study, 

changes on neither amplitudes nor kinetics of epicardial and endocardial APs are 

detectable until 1 μM concentration of AEA. Importantly, the effects of AEA on 

the duration of both types of APs are not reversed in the presence of CB receptor 

antagonists tested; AM251 and AM630 (Figure 3.13A and B). In addition, AEA 

continues to affect AP duration after PTX pretreatment (Figure 3.14C). It is likely 

that differences in methods (patch clamp versus intracellular sharp electrode 

recording) and preparations (ventricular myocytes versus intact muscle fibers with 

nerve endings and gap junction connections) used in these studies may account for 

some of the discrepancies.  

In summary, based on the insensitivity of the effect of AEA on myocyte 

shortening and action potential shortening to CB1 and CB2 antagonists, as well as 

to the pretreatments with PTX and NEM, it is likely that AEA decreases myocyte 

shortening and shortens AP duration in a manner that is independent of CB1 and 

CB2 cannabinoid receptors.  

4.4 Experiments with voltage-dependent Na
+ 

channels 

In cardiac muscle, extracellular Ca
2+ 

required to trigger Ca
2+

 release from 

SR enters through L-type VGCCs which are opened during the AP. The results 

using voltage-clamp mode of whole-cell patch clamp technique indicate that in 

agreement with the changes in the amplitudes, duration and dV/dtmax of APs, AEA 

caused significant inhibition of voltage-dependent Na
+ 

and L-type Ca
2+

 channels 

in cardiomyocytes. Furthermore, the results indicate that the inhibition of these 

channels by AEA is not sensitive to CB1 or CB2 receptor antagonists. These 

findings are in agreement with the direct inhibition of Na
+
 and L-type Ca

2+
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channels observed in earlier studies. For example, AEA, at similar or higher 

concentrations, has been shown to inhibit directly the functions of voltage-gated 

Na
+ 

channels in neuronal structures (Nicholson, et al., 2003; Kim, et al., 2005; 

Duan, et al., 2008), L-type Ca
2+

 channels (Oz, et al., 2000; Oz, et al., 2004b) and 

various types of K
+
 channels (Oz, et al., 2007a; for a review, Oz, 2006). 

In cardiac muscles, VGSCs are almost exclusively represented by their 

TTX-resistant Nav1.5 isoform (Catterall, et al., 2005a). Therefore, the changes in 

the biophysical properties of INa by AEA, namely induction of the hyperpolarizing 

shift in the voltage-dependence of its SSI can be attributed to their effects on the 

gating of Nav1.5 channel. A hyperpolarizing shift of the SSI indicates that a 

higher proportion of VGSCs would be inactivated at resting membrane potential 

and therefore, substantially fewer channels would be available for activation, 

resulting in a decreased amplitude and rate of rise during the upstroke of the AP.  

Our previous radioligand studies indicated that the specific binding of 

[
3
H]BTX-B to ventricular muscle membranes was inhibited by metAEA. In 

addition, the results with CB1 and CB2 antagonists suggested that the effect of 

metAEA on VGSCs was not mediated by the activation of CB1 or CB2 

cannabinoid receptors (Al Kury, et al, 2014b, article In Press). Earlier 

investigations have shown that local anesthetics and class I antiarrhythmics also 

interact with the binding site for [
3
H]BTX-B on the cardiac sodium channel 

(Sheldon, et al., 1994). It is likely that AEA synthesized during cell stress can bind 

to Nav1.5 channel and modulate the actions of local anesthetics and class I 

antiarrhythmics. Although, this to our knowledge, is the first demonstration of the 

direct inhibitory action of AEA on a muscle type voltage-dependent Na
+
 channel, 

in several earlier investigations, AEA, at similar or higher concentrations, has 
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been shown to inhibit directly the function of VGSCs in neuronal structures 

(Nicholson, et al., 2003; Kim, et al., 2005; Duan, et al., 2008). In agreement with 

our findings, both AEA (Theile and Cummins, 2011) and its metabolite AA 

(Bendahhou, et al., 1997) have been shown to increase the inactivation of Na
+
 

channels. Inhibition of VGSCs by AEA would slow the conduction of 

depolarization and modulate the automaticity in the ventricles.  

In conclusion, the inhibitory effect of AEA, on VGSC, which is the major 

inward current during the upstroke (phase 0) of the AP is in agreement with the 

results of the current-clamp experiments (Al Kury, et al., 2014a) indicating that 

AEA decreases the amplitude and initial rate of rise of the AP in ventricular 

myocytes.  

4.5 Experiments with voltage-dependent Ca
2+

 channels 

In addition to INa, AEA causes a significant inhibition of IL,Ca in 

cardiomyocytes. This current contributes to the plateau of the cardiac AP (phase 

2), therefore, its suppression causes both the decrease of plateau amplitude and the 

shortening of the AP duration. The results of this work, in agreement with an 

earlier study (Li, et al., 2009), show that AEA decreases the amplitude of the 

plateau and causes shortening of AP duration. Results also show that AEA affects 

the activation and inactivation gating of cardiac L-type VGCCs producing a 

significant reduction in I L,Ca “window current” in the range of Vm between -40 

mV and +10 mV, and inducing partial blockade of the ion-conducting pathway 

leading to decreased amplitude of I L,Ca. 

Diminished stationary Ca
2+

 entry as a consequence of smaller “window 

current” may prevent Ca
2+

 overload and cause reduction of necrosis, whereas, 

inhibition of IL,Ca may largely determine the decrease in the amplitude of AP 
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plateau and AP shortening observed in the presence of AEA. Collectively, the 

results of the electrophysiological experiments suggest that during excitation-

contraction coupling, shortening of AP due to the inhibition of L-type Ca
2+

 

channels decreases Ca
2+

-induced Ca
2+

 release from SR and causes negative 

inotropic effect of AEA reported in earlier studies. In line with this hypothesis, 

although caffeine-induced Ca
2+

 transients and myofilament sensitivity to Ca
2+

 

remain unchanged, electrically-induced Ca
2+

 transients are significantly depressed 

by AEA, further suggesting that Ca
2+

-induced Ca
2+

 release is impaired in the 

presence of AEA. Overall, AEA-mediated suppression of voltage-activated IL,Ca 

would provide a mechanism for the negative inotropic effects observed in earlier 

studies.  

The mechanism of the inhibitory effect of AEA does not seem to involve 

the Ca
2+

-induced inactivation process, since the amplitudes of Ba
2+

 currents 

through L-type VGCCs were effectively inhibited by AEA. In addition, AEA was 

equally effective upon intracellular or extracellular application suggesting that 

there is no sidedness for AEA actions on L-type VGCCs. Considering the highly 

lipophilic nature of AEA; it is not surprising that AEA can access its binding site 

from both extra and intracellular sites effectively.  

The results of our radioligand binding studies also indicated that AEA 

directly interacts with and inhibits the function of L-type Ca
2+

 channels in 

ventricular muscle membranes (Al Kury, et al., 2014b, article In Press). Although, 

to our knowledge, this is the first demonstration of the direct effects of AEA on 

the L-type VGCC in cardiac muscle, similar results demonstrating the effects 

AEA on skeletal muscle L-type VGCCs have also been described in biochemical 

studies (Oz, et al., 2000; Oz, et al., 2004a). In rabbit skeletal muscle, it has been 
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demonstrated that AEA inhibits the specific binding of [
3
H]Isradipine to skeletal 

T-tubule membranes, and directly inhibits the function of skeletal muscle L-type 

Ca
2+

 channels (Oz, et al., 2000; Oz, et al., 2004a) in a manner that is independent 

of known cannabinoid receptors. In fact, earlier studies searching for endogenous 

modulators of L-type Ca
2+

 channels have also identified AEA as a ligand for L-

type Ca
2+ 

(Johnson, et al., 1993). Subsequently, investigations indicated that the 

effects of AEA are not limited to L-type VGCCs in muscles. Different types of 

Ca
2+

 currents in neurons and other excitable cells are also inhibited directly by 

endocannabinoids such as AEA [for a recent review, (Lozovaya, et al., 2009)].  

In a recent study, it was found that the synthetic cannabinoid A-955840 

inhibits the function of L-type Ca
2+

 channels in rabbit heart in a manner 

insensitive to CB1 and CB2 antagonists (Su, et al., 2011). In another recent study, 

AEA was reported to inhibit L-type Ca
2+

 channels by the activation of CB1 

receptors (Li, et al., 2009). In this study, AEA in the concentration range of 10 nM 

to 1 µM potently inhibited the function of Ca
2+

 channels and the effect of AEA 

was reversed by CB1 receptor antagonists. In our experiments, AEA is not 

effective at concentrations lower than 0.1 µM. In addition, in our study, the 

inhibitory effect of AEA is not reversed by the antagonists of CB1 and CB2 

receptors. The differences between these two studies could be due to different 

strains of rats used (Sprague-Dawley in their study versus Wistar rats in the 

present study). Our findings suggest that neither CB1 nor CB2 receptors are 

involved in AEA inhibition of L-type Ca
2+

 channels in rat cardiomyocytes. 

Although PTX-sensitive signal transduction is well documented for cannabinoid 

agonists, cannabinoid coupling to PTX-insensitive Gq has been reported in several 

studies (McIntosh, et al., 2007; Straiker, et al., 2002; Ishii and Chun, 2002). 
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Therefore, the effect of AEA through a PTX-insensitive pathway cannot be 

excluded. However, the results of our experiments with NEM, which inactivate G-

proteins indicate that activation of G-proteins is not required for AEA actions in 

cardiomyocytes. 

Degradation products of AEA, such as AA and fatty acids-based 

compounds, have been shown to inhibit the function of cardiac L-type Ca
2+

 

channels [(Li, et al., 2009), for a review; (Oz, 2006)]. However, metAEA also 

inhibited L-type Ca
2+

 currents to the same extent with AEA. In addition, AEA 

continued to inhibit L-type Ca
2+

 currents after pretreatment of these cells with the 

specific inhibitor of FAAH, URB597 (Piomelli, et al., 2006). 

4.6 Experiments with cardiac Na
+
/Ca

2+
 exchanger 

The results of this study indicate for the first time that under normal 

conditions, AEA has a direct inhibitory effect on both the forward and reverse 

mode of NCX1 in ventricular myocytes. Under physiological conditions, 

inhibition of NCX1 operating in reverse mode is expected to decrease Ca
2+

 

entrance during cardiac action potential, and induce negative inotropic actions. 

Therefore, it is likely that the inhibition of NCX function in the reverse mode can 

cause the suppression of AP plateau and the decrease of the AP duration.  

The findings of this study suggest that neither CB1 nor CB2 receptors are 

involved in AEA inhibition of NCX in rat cardiomyocytes. Firstly, AEA 

inhibition is altered by neither CB1 nor CB2 receptor antagonists. Secondly, 

treatment with PTX or inclusion of GDP-β-S in pipette solution does not affect the 

activity of NCX1 further suggesting that G-proteins are not involved in AEA 

actions. Thirdly, in our recent study (Al Kury et al., 2014c) we have shown that 

AEA significantly inhibited NCX1-mediated currents in HEK-293 cells which do 
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not contain CB1 or CB2 receptors (Oz, et al., 2010). Collectively these results 

suggest that AEA interacts directly with NCX1 in ventricular myocytes in a 

manner that is independent of CB1 and CB2 receptors.  

 In rat odontoblasts, cannabinoid-induced Ca
2+

 influx through TRPV1 was 

recently shown to be functionally coupled to NCX-mediated Ca
2+

 extrusion 

(Tsumura, et al., 2012). However, it is unlikely that TRPV1 activation is involved 

in the effects of AEA observed in this study since adult cardiomyocytes do not 

express TRPV1 channels (Dvorakova and Kummer, 2001). In another recent 

study, it was reported that under ischemic conditions, AEA inhibits NCX1 by 

activating CB2 receptors via PTX-sensitive Gi/o proteins (Li, et al., 2013). 

However, a recent study in endothelial cells demonstrated that AEA, in the 

concentration range used in our study, significantly inhibits the activity of NCX1 

in a manner that is independent of G-protein receptors (Bondarenko, et al., 2013). 

Metabolic degradation products of AEA, such as AA and related fatty 

acids have also been shown to regulate NCX1 function (Xiao, et al., 2004). In the 

current study, the metabolically stable analogue of AEA, metAEA (Abadji et al., 

1994), also inhibits INCX1. Furthermore, in the presence of URB597, INCX1 is 

suppressed to the same extent by AEA, suggesting that the degradation products 

of AEA are not involved in the inhibition of NCX1 in cardiac myocytes. In our 

recent study in HEK-293 cells (Al Kury et al., 2014c), cell surface expression of 

NCX1, as determined from the intensity of YFP-NCX1 expression levels, was not 

altered after AEA application suggesting that AEA is not likely to alter NCX1 

trafficking to the cell surface.  

In addition to the NCX, SR Ca
2+

-ATPase (SERCA2a) also plays an 

important role in cardiac contraction and rhythmicity (Inesi, et al., 2008; Eisner, et 
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al., 2013). Under the experimental conditions of this work, we cannot rule out the 

contribution of SERCA2a to the observed actions of AEA on the function of NCX 

in cardiomyocytes. In fact, our recent study (Al Kury, et al., 2014a) indicates that 

AEA causes a significant increase in SERCA2a activity in cardiac SR membranes. 

AEA continued to inhibit the NCX1 currents in HEK-293 cells which, although 

express SERCA2 endogenously (Vafiadaki, et al., 2009), is devoid of excitability. 

Furthermore, bath application of AEA does not alter intracellular Ca
2+

 levels in 

these cell lines (Oz, et al., 2010).  

4.7 Mechanism of action of AEA 

Anandamide belongs to long-chain NAEs which are produced abundantly 

in response to tissue necrosis and cellular stress (Hansen, et al., 2000; Berger, et 

al., 2004). In fact, accumulation of NAEs was first observed in experimental 

myocardial infarction induced by ligation of coronary arteries in canine heart 

[(Epps, et al., 1979; Epps, et al., 1982), for a review, (Schmid and Berdyshev, 

2002)]. Although the content of NAEs in various mammalian tissues ranges from 

about 0.1 to 20 nmol/g (Hansen, et al., 2000), it was demonstrated that NAEs 

content increases up to 500 nmol/g (approximately 500 μM) in infarcted areas of 

canine heart during ischemia (Epps, et al., 1979). AEA constitutes minor (1-3 %) 

portion of total NAE levels (Schmid and Berdyshev, 2002), however, the partition 

coefficient of AEA is in the same order with that of AA to biological membranes 

(2-9 x10
4
) (Meves, 1994). Thus, the membrane concentration of AEA would reach 

much higher levels than those estimated for intracellular concentrations. 

It was previously reported that other NAE species, such as N-

stearoylethanolamine (SEA) and N-oleoylethanolamine (OEA), are also produced 

during ischemia and that they have significant effects on the amplitudes and 
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kinetics of APs and accompanying ionic currents. The effects of SEA and OEA 

could account for the negative inotropic actions of these compounds on 

ventricular myocytes (Voitychuk, et al., 2012). Similar to AEA, other NAEs, 

metabolic degradation products of NAEs, and structurally related compounds have 

been shown to modulate the function of voltage-gated Ca
2+

 (Voitychuk, et al., 

2012; Oz, et al., 2000; Oz, et al., 2005; Alptekin, et al., 2010) and Na
+ 

(Nicholson, 

et al., 2003; Kim, et al., 2005; Duan, et al., 2008) channels. Furthermore, AEA has 

been shown to block T-type Ca
2+

 channels (Cav3.1 and Cav 3.2) (Chemin, et al., 

2007) and cardiac Kv1.5 (Barana, et al., 2010) and Kv4.3 (Amoros, et al., 2010) 

channels in a receptor-independent manner. These effects may contribute to the 

overall actions of AEA on action potential and cardiac myocyte function. 

Therefore, in the concentrations used in this study, AEA is likely to have 

important implications regarding the contractile and electrical responses of 

ventricular myocytes to ischemia and cellular stress (Hansen, et al., 2000; Berger, 

et al., 2004; Schmid and Berdyshev, 2002). In fact, shortening of AP duration by 

AEA can be beneficial or harmful, depending on the underlying pathology. Thus, 

during acute ischemia, in which the duration of the cardiac AP is already 

shortened, a further decrease should be proarrhythmic (Den Ruijter, et al., 2007). 

However, shortening of AP duration should be beneficial in preventing those 

arrhythmias caused by triggered activities observed in conditions such as heart 

failure (Den Ruijter, et al., 2007; Den Ruijter and Coronel, 2009). 

Binding site(s) of AEA and other endocannabinoids on their target proteins 

is currently unknown. Apart from specific binding sites on the ion channels and 

receptors (Figure 4.1), AEA can accumulate and reach substantially high 

concentrations in biological membranes, thereby causing significant alterations in 
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physico-chemical properties of these membranes. As mentioned earlier, the 

membrane concentration of AEA can reach much higher levels than those 

estimated for intracellular or extracellular concentrations. It is likely that due to its 

high lipophilicity, AEA can alter the physico-chemical characteristics of the lipid 

environment, or indeed, bind to hydrophobic sites on the ion channels and regulate 

the functional properties of these proteins [(Mavromoustakos, et al., 2001); for a 

review, (Oz, 2006)]. Concentrations of AEA modulating the activities of ion 

channels and exchangers studied in our investigation appear to be within the range 

of 0.1 to 10 µM. It is not known whether these concentrations can be achieved 

under physiological conditions. The concentrations of AEA in the rat brain have 

been reported to range from 2.5 to 29 pmol/g (Schmid, et al., 2002). The 

concentration
 
of AEA in rat and human plasma is in the nM range of 0.7–8

 
nM 

and 4-20 nM, respectively (Giuffrida, et al., 2000; Bojesen and Bojesen, 1994). 

However, as mentioned earlier, due to high partition coefficients, AEA can 

effectively accumulate in cell membranes and reach significantly higher 

concentrations. Furthermore, during ischemia and cell stress, tissue concentrations 

of AEA can increase further (Epps, et al., 1979; Schmid and Berdyshev, 2002) 
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Figure 4.1 Proposed model for the actions of AEA on cellular excitability: 

According to the model, the effects of AEA are mediated by G-protein coupled 

cannabinoid receptors, ligand-gated ion channels and voltage-gated ion channels. 

CB-R, cannabinoid receptor; LGIC, ligand-gated ion channel; VGIC, voltage-

gated ion channel. Adapted from Oz, 2006. 
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It has been more than a century since the Overton-Meyer rule stated that 

membrane permeability of any molecule depends on its hydrophobicity. Although 

the Overton-Meyer rule predicts the accessibility of hydrophobic molecules such 

as various lipids, fatty acids and endocannabinoids to their membrane-delimited 

actions and hence somewhat the potency of these molecules on their target 

proteins, it does not elucidate the mechanism(s) of action of these molecules. One 

school of thought focuses on the influence of lateral pressure profiles on integral 

membrane proteins to describe how proteins sense the effects of hydrophobic 

molecules in membrane bilayers (van den Brink-van der Laan, et al., 2004), and 

hydrophobic mismatch between the lengths of the hydrophobic membrane- 

spanning domains and the bilayer thickness (Lundbaek, 2006). Changes in the 

lateral pressure profile with altered lipid composition (Cantor, 2001; Van den 

Brink-van der Laan, et al., 2004) or by partitioning of hydrophobic molecules 

(Cantor, 2001) have been shown to modulate the functions of ion channels and 

other integral membrane proteins. It has been hypothesized that if the hydrophobic 

length of the transmembrane domains of the ion channels does not match the 

hydrophobic thickness of the membrane phospholipid bilayer, such a mismatch 

would create stress between the channel and the membrane (Andersen, et al., 

1999). As a result, this tension requires that the thickness of the cell membrane be 

decreased at its contact with the interface of the transmembrane regions of the ion 

channel so that their hydrophobic regions match, and thus, affect the 

conformational state and conductance of the ion channel (Jensen and Mouritsen, 

2004). 

In an earlier study, it was suggested that alterations in the lipid order of 

synaptic membranes caused by various cannabinoids might be a necessary 
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property for their pharmacological activities (Bloom, et al., 1997). However, the 

influences of lateral membrane pressure and membrane thickness are not observed 

universally, and other membrane properties can also play roles in lipid-protein 

interactions (Lee, et al., 2005). Another school of thought on the question of how 

lipophilic molecules such as cannabinoids affect the function of ion channels 

focuses on the protein-lipid interface. Recent investigations suggest that lipids 

such as fatty acids displace or interact with lipids and/or hydrophobic amino acids 

located at the specific lipid-protein interfaces of the ion channels, rather than 

altering bulk physico-chemical properties of cell membranes (McIntosh and 

Simon, 2006). Thus, although hydrophobicity is an important factor determining 

the bioavailibilty of the drug at its action site, highly hydrophobic molecules such 

as cannabinoids may not need to change bulk membrane characteristics to alter the 

function of ion channels (Barrantes, 2004; Garcia, 2004).   

An extensive volume of work in the literature indicates that the bilayer is 

not simply an inert thin layer of lipid whose primary purpose is to provide a 

barrier to ions (McIntosh and Simon, 2006). Following their insertion into the 

fluid membrane bilayer, ion channels assume an energetically minimal 

conformational state leading to a stable structure. Importantly, the binding of 

ligands, such as AEA, leads to conformational changes associated with the 

alterations in the hydrophobic domains of the ion channels (Lee and MacKinnon, 

2004; Lee, et al., 2005; Garcia, 2004). The energetic requirements of these 

conformational changes depend on the lipid environment in which they are 

immersed (Spivak, et al., 2007). Although the exact mechanisms of action of AEA 

on ion channels and receptors are currently unknown, such interaction with 
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proteins is likely to mediate some of the pharmacological actions of AEA in the 

cardiovascular and nervous systems. 
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5. CONCLUSION 

In conclusion, the results generated from the present study, indicate for the 

first time that AEA inhibits myocyte contractility by acting on multiple target 

proteins. We have shown that AEA decreases the duration of APs and modulates 

the activity of Na
+
 and L-type Ca

2+
 channels and inhibits the function of NCX1 in 

a CB1 and CB2 receptor-independent manner. Considering massive release of 

various NAEs, including AEA, during ischemia and hypoxic conditions, further 

understanding of their action mechanisms and target proteins is essential in the 

development of better treatment modalities for these pathological conditions. 
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6. LIMITATIONS AND FUTURE WORK 

 

 The main work limitations in this study are: 

1. Physiological temperature: All patch clamp experiments were conducted at 

room temperature (22-23 °C) in order to ensure longer survival time of patched 

cells and a better time resolution of the membrane currents. Giga-ohm seals in 

patch-clamp experiments are known to be unstable at raised temperatures. For this 

reason, we chose to work at room temperature. A similar approach was taken in 

earlier studies in various cell types (Voitychuk et al., 2012; Li et al., 2013; 

Bondarenko et al., 2013).  

2. The influence of solvent: AEA was dissolved in ethanol. As with earlier studies, 

ethanol alone caused a decrease in the contractility of ventricular myocytes and 

the amplitudes of INa and IL,Ca. Therefore, for each set of experiments, it was 

necessary to test the effect of the solvent separately.  

 In order to extend our findings in this thesis, the following experiments 

can be done in the future:  

1. Our study showed that AEA can decrease the AP amplitude and shorten AP 

duration in rat ventricular myocytes which might be one of the mechanisms for 

anti-arrhythmic effect of AEA. However, the mechanism of action of AEA is not 

completely understood and the effect of AEA on the cardiac conduction system 

remains unknown. Therefore, investigating the effect of AEA on sinoatrial and 

atrioventricular nodes would be very informative. 

2. In addition to the endocannabinoid AEA, levels of 2-AG have been shown to be 

increased in a range of cardiovascular disorders. Therefore, understanding the 
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electrophysiological and pharmacological effects of this endogenous cannabinoid 

in the heart may aid in further understanding of any potential role of 2-AG in 

cardiovascular pathologies.  

3. Cardiac K
+
 channels play an important role in determining the resting 

membrane potential and the shape and duration of the cardiac AP. Although the 

effect of AEA on outward K
+ 

currents (Ito) and ATP-sensitive K
+
 currents (IATP) 

has been shown previously, the contribution of other K
+ 

conductances such as the 

rapid (IKr) and slow (IKs) components of the delayed rectifier and the inward 

rectifier (IKI) remains unknown. Therefore, studying the effect AEA on these 

conductances would help in better understanding the mechanism of action of AEA 

on cardiac cells. 

4. Since the kinetics and voltage dependence of channel gating are modified by 

auxiliary subunits of voltage gated Na
+
 and Ca

2+
 channels, studying the direct 

effect of AEA on different subunits of voltage-gated ion channels, using 

expression systems such as Chinese Hamster Ovary (CHO) or Human Embryonic 

Kidney (HEK) 293 cells, would give a more detailed picture on the mechanism of 

the direct effect of AEA on these channels.  
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