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ABSTRACT

A number of driving engines are required for earthquake loss estimation and
mitigation, including an inventory of exposed systems, seismic hazards of the study
area and fragility relationships. The number of existing buildings in the UAE that
may be at risk because of insufficient seismic design provisions cannot be
underestimated. A crucial role in the recovery period following an earthquake is also
played by emergency facilities. Therefore, a systematic seismic vulnerability
assessment of a diverse range of reference structures representing pre-seismic code
buildings and emergency facilities, in a highly populated and seismically active area
in the UAE, has been conducted in this study. Detailed structural design and fiber-
based modeling were carried out for nine reference structures. Forty earthquake
records were selected to represent potential earthquake scenarios in the study area.
Three limit states, namely Immediate Occupancy, Life Safety and Collapse
Prevention, were selected based on inelastic analysis results as well as the values
recommended in previous studies and code provisions. Over 8000 inelastic pushover
and incremental dynamic analyses are performed to assess the lateral capacity and to
derive a wide range of fragility relationships for the reference structures.
Vulnerability functions were also developed for the buildings that proved to have
unsatisfactory performance, and hence proposed to be retrofitted using different
mitigation techniques. It was concluded that pre-code structures were significantly
more vulnerable than emergency facilities. This is particularly true for low-rise
buildings due to their inefficient lateral force resisting systems. Far-field records
have much higher impact compared with near-source ground motions. The results
reflect the pressing need for the seismic retrofit of pre-code structures to reduce the

probability of collapse, and for certain emergency facilities to ensure their continued



Vil
service. Four retrofit approaches are therefore assessed, namely reinforced concrete
jacketing, fiber reinforced polymers wrapping, adding buckling restrained braces and
installing externally unbonded steel plates. The highest positive impact of retrofit are
observed on the pre-code buildings, especially frame structures, since they were only
designed to resist gravity and wind loads. The reductions achieved in the
vulnerability of the retrofitted structures confirmed the effectiveness of the

techniques selected for upgrading the seismic performance of buildings and

mitigating earthquake losses in the study area.

Keywords: vulnerability assessment, pre-code buildings, emergency facilities,

inelastic dynamic simulations, seismic retrofit, UAE
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CHAPTER 1: INTRODUCTION

1.1 Introduction

The main components of earthquake loss estimation and mitigation systems
are the inventory, seismic hazard and vulnerability. Concerning the inventory of the
exposed systems, pre-seismic code buildings may experience a high risk of damage,
and hence their vulnerability should be thoroughly assessed. This category of
buildings usually undergoes low levels of strength and ductility as they were
designed and constructed without proper seismic design provisions. A vital role in
the recovery period following an earthquake is also played by emergency facilities
such as hospitals and fire stations. In spite of being constructed according to seismic
design provisions, they should receive considerable attention to ensure their
readiness and continued operation following earthquakes. Recent studies
emphasized the significance of assessing the vulnerability of pre-seismic code
buildings and emergency facilities, and the pressing need to reduce their seismic
losses (e.g. Bruneau & Reinhorn, 2007; Bruno et al., 2000; Ghobarah et al., 1998;

Liel et al., 2010; Ramamoorthy et al., 2008; Ray-Chaudhuri & Shinozuka, 2010)

Earthquake loss mitigation of substandard and critical structures represented
in the building inventory may require the adoption of efficient retrofit techniques.
Seismic retrofit of structures has been experimentally and numerically investigated in
several previous studies. The mitigation measures include for instance: Reinforced
Concrete (RC) jacketing, Fiber Reinforced Polymers (FRP) wrapping, adding new
shear walls, use of Externally Unbonded Steel Plates (EUSP), and installing
Buckling Restrained Braces (BRBSs), (e.g. Elnashai & Pinho, 1998; Fahnestock et al.,
2007; Moehle, 2000; Saadatmanesh et al., 1997). Such mitigation measures can

upgrade the seismic response of structures to higher performance levels. This
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emphasizes the importance of selecting the proper retrofit techniques, particularly for

buildings of high importance and those with poor seismic performance.

As for the seismic hazard, although the United Arab Emirates is generally
known to be a region of stable seismic activity, recent events indicated that the
region may be prone to damaging earthquakes (e.g. Al Marzooqi et al., 2008; NCMS,
2014; USGS, 2014). Seismic hazard studies Available for the UAE concluded that
seismic activities are attributed to the Zagros fold and thrust belt, Makran subduction
zone, Oman Mountains and local fault lines and the Zendan-Minab faulting system
(e.g. Abdalla & Al-Homoud, 2004; Aldama-Bustos et al., 2009; Malkawi et al.,
2007; Shama, 2011; Sigbjornsson & Elnashai, 2006). Even though no human or
monetary losses were reported from recent events, the repeated reports of
earthquakes have raised concerns regarding the vulnerability of the existing building
stock in the region and the associated risk. Non-negligible consequences are
expected if the seismic risk of the building stock is overlooked, particularly for
substandard and emergency facilities. This highlights the significance of reliable loss

estimation and hazard mitigation strategies for the built environment in the UAE.

Finally, few vulnerability and seismic loss assessment studies have been
carried out recently for the UAE (Abu-Dagga et al., 2010; Al Shamsi, 2013; Mwafy,
2012a). None of the available studies have been carried out based on reliable
inventory data; wide range of reference structures with different characteristics
representing the building stock; detailed design and modeling approaches; a diverse
range of input ground motions representing different seismic scenarios in the study
area; reliable limit states or systematic approaches for developing fragility

relationships. The above-mentioned discussion underlines the pressing need for
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comprehensive loss estimation and hazard mitigation studies for this region,

particularly for pre-code buildings and emergency facilities.

1.2 Scope and Objective

A systematic seismic vulnerability assessment of a diverse range of buildings
representing the pre-seismic code and emergency structures in a highly populated
and seismically active area in the UAE, was conducted in this study. This enables the
direct implementation of a wide range of fragility relationships representing different
structures and earthquake scenarios in a loss estimation and hazard mitigation system

for the UAE. The main objectives of the present study are as follows:

1. Derive the fragility relationships of a wide range of reference structures by
performing Inelastic Pushover Analyses (IPAs) and Incremental Dynamic
Analyses (IDAs) using detailed numerical models and diverse seismic scenarios.

2. Propose suitable retrofit techniques for the reference structures that proved to
have unsatisfactory performance, and reassess their seismic performance after

retrofit through newly developed fragility functions.

1.3 Report Organization

The organization of this work follows the sequence of the research carried out
and presented herein. This thesis consists of seven chapters starting with an
introduction, going through a literature review, the design, modeling, performance
assessment and ending with conclusions and recommendations. The focus of

different chapters is as follows:
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Chapter 1: Introduction

Discusses the background and motivation for this research, defines the

problem and states the main objectives.

Chapter 2: Literature Review

This chapter reviews the current state of knowledge related to UAE
seismicity, to select seismic scenarios and representative ground motions for the
study region. Previous vulnerability assessment studies related to pre-seismic code
buildings and emergency facilities, hazard mitigation techniques for medium
seismicity regions and approaches for deriving fragility relationships are also

critically reviewed.

Chapter 3: Selection and Design of Reference Structures

This chapter discusses the selection and design of a diverse set of reference
structures representing pre-seismic code buildings and emergency facilities
according to the building codes that were implemented at the time of construction.
The design information is used in the numerical modeling phase discussed in Chapter

4.

Chapter 4: Modeling and Input Ground Motions

The approach adopted for modeling the reference structures for the multi-
degree-of-freedom IPA and IDA using the fiber modeling technique is covered in
this chapter. The wide range of earthquake records selected to represent the tectonic

settings of the study area are also presented.
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Chapter 5: Performance Assessment of Existing Structures

This chapter discusses the vulnerability assessment approach of the reference
structures using fiber-based numerical models, IPAs and IDAs. It provides insights
into the performance criteria and explains the approach of developing a diverse set of
simulation-based fragility relationships for the reference structures using different

earthquake scenarios.

Chapter 6: Performance Assessment of Retrofitted Structures

The chapter focuses on the assessment of the retrofitted structures using IPAs
and IDAs, and the development of their fragility relationships. This chapter also
compares between the limit state exceedance probabilities before and after retrofit to

understand the impact of retrofit on reducing seismic losses.

Chapter 7: Conclusions and Recommendations

The main findings of this study as well as recommendations for future work

are discussed in this chapter.



CHAPTER 2: LITERATURE REVIEW

2.1 Seismic Risk Assessment Framework

One of the early frameworks for the seismic risk assessment includes, for
instance, the six primary components shown in Figure 2.1 (Kircher et al., 2006).
Each of these components is required for a comprehensive loss estimation study.
However, the degree of sophistication required and the associated cost varies greatly.
The modular approach of the methodology permits estimates based on simplified
models and limited inventory data, as well as refined estimates based on more

extensive inventory data and detailed analyses.

The above-mentioned modular methodology is implemented in the loss
estimation platform HAZUS, which enables users to limit their studies to selected
losses. For example, a user may wish to ignore induced damage when computing
direct losses or to study the effect of proposed code changes upon losses to buildings
without having to consider lifelines. This would eliminate a portion of the flow
diagram shown in Figure 2.1. A limited study may be desirable for a variety of
reasons including budget and inventory constraints, or the need for answers to very
specific questions. For the UAE, Mwafy (2012a) discussed a framework for
developing a loss estimation system in this region. The study utilized three main
driving engines for the earthquake loss estimation systems, including: (a) seismic
hazard; (b) inventory of the exposed systems; and (c) vulnerability relationships. The
framework presented in the latter study for seismic loss estimation in the UAE is

portrayed in Figure 2.2.
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Figure 2.1: Primary modules of HAZUS Earthquake (Kircher et al., 2006)
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2.2 Building Inventory

2.2.1 Pre-Seismic Code Buildings

The building stock in the UAE, an area with relatively low-to-medium
seismicity, includes many old RC buildings. The earthquake risk of these buildings is
particularly significant as most were designed without adequate seismic design
provisions. In order to assess the seismic risk associated with these buildings and
propose retrofit strategies that reduce the possible losses, it is necessary to accurately
predict the response of pre-seismic code buildings under different earthquake

scenarios representing the UAE seismicity.

Recent reports of seismic events in regions of low-to-moderate seismicity,
such as the UAE, have led to concerns regarding safety and the vulnerability of RC
buildings, in which ductile detailing was not explicitly provided in the design
process. In some cases such as relatively tall buildings, although the design may have
considered lateral forces due to wind loads, it is still important to carry out a
complete seismic evaluation since higher vibration mode effects may increase the
seismic demands in the mid to upper levels of the structure. Seismic vulnerability
assessment of existing concrete buildings in which the non-seismic detailing is
explicitly included in the evaluation procedure is of immense value to structural
engineers. A brief review of previous studies related to the performance assessment

of pre-code structures is presented below.

Ghobarah and his co-workers (1998; 1999b) evaluated the performance of an
existing non-ductile structure designed according to the ACI-318 (1963) code and
compared it to the performance of the same structure when designed according to a

recent version of the code. Different performance levels were defined for the
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structure in terms of the level of damage. The results obtained from dynamic analysis
and static pushover analysis provided the probability of various degrees of damage
expected when the existing structure is subjected to different ground motion levels.
The comparison with the current code-designed building provided a reference case
for the expected damage in a well-designed and detailed ductile structure. The study
concluded that the existing non-ductile structure was more vulnerable compared to

the well-designed and ductile one.

Bruno et al. (2000) carried out an analytical study on a pre-code reference
structure. It was concluded that: a) the seismic performance of pre-code buildings
without masonry panels was very poor, and the Effective Peak ground Acceleration
(EPA) corresponding to collapse did not exceed 0.1g; b) the presence of masonry
infill increased the EPA corresponding to collapse to 0.2g; c¢) inadequately
distributed and located masonry panels may result in concentrated inelastic strain.
Retrofit solutions suggested in the above-mentioned study included the introduction

of shear walls and dissipative bracings.

Ramamoorthy et al. (2006; 2008) derived vulnerability functions to assess the
seismic response of RC frame buildings designed mainly for gravity loads. Five
buildings of various heights (one-, two-, three-, six-, and ten-stories) were used to
represent RC frame buildings. Seismic structural capacity values were chosen to
match the performance levels as specified in FEMA-356 (2000), or as calculated by
pushover analyses. For each building, fragility estimates were obtained by assessing
the conditional probability that the drift demand reaches or exceeds the drift capacity
for a given earthquake spectral acceleration. Fragility estimates, formulated as a
function of the fundamental building period and spectral acceleration, were generated

to measure the seismic vulnerability of gravity load designed RC frame buildings.
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Liel (2008), Haselton et al. (2010) and Liel et al. (2010) evaluated the collapse
safety of RC frames in seismic areas by assessing two sets of archetype structures,
including modern (ductile) and old (non-ductile) RC frame buildings. Archetype
structures varied in height (from 2 to 12 stories) and framing systems (perimeter and
space frames), and were designed according to the UBC (1967) and IBC (2003)
building code provisions. The ductile (2003) RC frames demonstrated superior
seismic performance for all heights and framing systems when compared to the non-
ductile (1967) RC frames. Modern RC frame structures were able to withstand higher
intensity ground motions and were capable of undergoing more significant
deformations before collapse. Collapse margin ratios for the ductile RC frames were
approximately three times larger than those of non-ductile frames. In terms of the
mean annual frequency of collapse, non-ductile RC frame structures had significantly

higher risk of collapse at a typical California high-seismic site.

The latter studies concluded that reinforcement detailing in beams, columns
and joints in modern RC frames improved the element deformation capacity and
reduced strength and stiffness deterioration as the structure deforms. Capacity design
promoted yielding in beams, spreading damage and energy dissipation more over the
height of the structure in the ductile RC frames. These improvements in component
and system-level performance lead to the differences in collapse safety quantified in
the above-mentioned studies. Among the regular set of structures evaluated, tall
perimeter non-ductile RC frame structures were most susceptible to side-sway
collapse because of their low lateral overstrength and flexibility. Space-frame
structures, which have more axial load levels in columns, may experience column
shear failure and subsequent loss of column load-bearing capacity, potentially

leading to progressive structural collapse. Modest detailing improvements in beams,
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columns and joints, such as those that might have been employed in California
design practice in the 1960s, improved the seismic performance of non-ductile RC
frames in some cases, but fall significantly short of modern code levels. The collapse
performance assessments conducted in the latter studies quantified differences in

safety for ductile and non-ductile RC structures.

It has been shown from the above-mentioned brief review that most of the
previous studies focused on a few building configurations or systems. Previous
studies were also directed to certain regions of high seismicity such as the west coast
of the U.S. and Italy. No specific vulnerability assessment studies were carried out
for pre-code structures in the UAE. Moreover, some of the previous studies adopted
simplified seismic assessment approaches including the limited number of reference

structures, modeling approaches, seismic scenarios and definition of limit states.

2.2.2 Emergency Facilities

Proper functioning of critical facilities such as acute care hospitals, fire
stations, police station and schools are essential in the aftermath of a severe
earthquake. For these facilities to remain operational, not only their structural
systems must remain safe for continued occupancy, but also their non-structural
components/systems must remain functional. For certain acute care hospitals, non-
structural components may include elevators, stairs, HVAC systems, water systems
for usable water and fire suppression, communications and utility systems, electric
power systems as well as a variety of medical equipment for life support, laboratory
testing, operations and other primary and secondary needs for patient care. In a
severe earthquake event, critical facilities must remain operational in order to lead

the emergency response and assist injured people with immediate medical care. For
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hospitals, since the evacuation of seriously ill patients may be very difficult, their
proper functioning in the aftermath of a seismic event is of utmost important.
Furthermore, replacing or repairing heavily damaged critical facilities may take
decades. For example, several hospitals in Los Angeles, U.S.A., were non-functional
even a decade after the 1994 Northridge Earthquake and, thus deprived regional

communities of service.

A number of studies have been carried out to seismically upgrade and retrofit
the structural and non-structural components in critical facilities. Developments
following the 1971 San Fernando Earthquake, U.S.A., in the seismic design and
construction of buildings were significant. For instance, the Olive View Hospital
building, which was severely damaged by the San Fernando earthquake and rebuilt
conforming to the new design regulations in California, did perform well structure-
wise under the 1994 Northridge Earthquake. A brief review of previous studies
related to the performance assessment of critical facility structures will be presented

below.

Bruneau and Reinhorn (2007) conducted a study that highlighted the concept
of seismic resilience and the methodology describing how it can be quantified for
acute care facilities. Relationships between seismic performance, fragility curves,
and resilience functions were described. The interdependency of structural and non-
structural resilience were illustrated for systems having either linear-elastic or
nonlinear-inelastic structural behavior. The methods proposed to quantify resilience
can be used to provide a comprehensive understanding of damage, response and
recovery. The resilience functions explained the time variation of damage and its
relationship to response and recovery. The framework proposed by Bruneau and

Reinhorn (2007) to quantify resilience can also help the decision process towards
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providing seismic mitigation, or the planning process, to guide response and

recovery.

Elnashai et al. (2009) presented a comprehensive earthquake impact
assessment for the central U.S.A., which employed an analysis methodology
comprising three major components: hazard, inventory and fragility. The hazard
characterized not only the shaking of the ground but also the consequential transient
and permanent deformation of the ground due to strong ground shaking as well as
fire and flooding. The inventory comprised all assets in the study region, including
the built environment and population data. Vulnerability functions related the
severity of shaking to the likelihood of reaching or exceeding damage states. Social
impact models were also included and employed physical infrastructure damage
results to estimate the effects on exposed communities. Whereas the modeling
software packages used, provided default values for all of the above, most of these
default values were replaced by components of traceable provenance and higher

reliability than the default data.

The inventories in the latter study contained various types of critical
infrastructure that are key inventory components for earthquake impact assessment.
Transportation and utility inventories were improved while regional natural gas and
oil pipelines were added to the inventory, alongside high potential loss facility
inventories. New fragility functions were derived for both buildings and bridges to
provide more regionally applicable estimations of damage for these infrastructure
components. Default fragility values were used to determine damage likelihood for

all other infrastructure components.
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The results of the Elnashai et al. (2009) study confirmed that three states were
heavily affected, namely Tennessee, Arkansas and Missouri. Moreover, the state of
Illinois and Kentucky were also affected but to a lesser extent. A large number of
buildings were damaged in the study region. Near the rupture zone, damage to
critical facilities was considerable in the counties impacted, including 3,500 damaged
bridges and hundreds of thousands of disruptions and leakages to both local and
regional pipelines. Roughly 2.6 million houses were without electrical power after
the earthquake. A large number of hospitals, mostly located near the rupture zone,
were damaged. Tens of thousands of injuries and fatalities were reported.
Considerable travel delays were also expected and hence obstructed rescue and
evacuation. 15 large bridges were also out of service. Millions of people were
displaced to temporary shelters. The total estimated direct economic losses were

$300 billion, while indirect losses were double this number.

Ray-Chaudhuri and Shinozuka (2010) developed an approach for the
identification of essential components in critical facilities, whose fragility reduction
lead to an optimal seismic retrofit of the system. For a hospital building, the
procedure represented a systematic approach that integrates component fragilities,
seismic response of the hospital structure and system fragilities. Sensitivity analysis
was performed to identify the sensitive components within complex systems such as
the water and electric power systems. The analysis also reflected that a significant
enhancement of fragility at component level is needed in order to reduce the system’s
annual probability of failure. The conclusions drawn from the numerical results

obtained in this study were valid only for the specific examples considered.
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2.3 Seismic Hazard Studies in the UAE

Several seismic hazard studies have been published during the past few years
for the UAE and its surroundings. These studies were carried out due to raised
awareness of the threat posed by earthquakes in the region (Abdalla & Al-Homoud,
2004; Al-Haddad et al., 1994; Al Marzooqi et al., 2008; Aldama-Bustos et al., 2009;
Jamali et al., 2006; Khan et al., 2013; Mwafy et al., 2006; Pasucci et al., 2008;

Rodgers et al., 2006; Shama, 2011; Sigbjornsson & Elnashai, 2006)

2.3.1 Tectonic Settings of the UAE

Surrounded by a series of definite tectonic boundaries, the UAE is situated on
the northeast of the Arabian plate. The regional tectonic setting is shown in
Figure 2.3 (Aldama-Bustos et al., 2009). The Dead Sea faults, in the northwest
direction, run to the Taurus Mountains through the east of the Turkish plate. The
northern edge of the Arabian plate is defined primarily by the Zagros thrust and fold
belt. The rest of the north-eastern side of the Arabian plate is defined by the Makran
subduction zone where the Arabian plate subducts underneath the Eurasian plate.
The Arabian and African plates diverge across the Gulf of Aden in the southeast. The
Red Sea boundary outlines the interface between the latter two plates in the
southwest direction. The final boundary defining the Arabian plate is the Owen
fracture zone which is a transform boundary that separates the Arabian and Indian
plates in the east. Aside from these major boundaries, the Arabian plate is a stable
zone that does not exhibit any noticeable hint of internal deformation during the late
Tertiary. The interior of the Arabian plate has not experienced any noteworthy
seismic events over the past twenty decades and may be considered as a stable

tectonic region (Reches & Schubert, 1987; Vita-Finzi, 2001).
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Figure 2.3: Tectonic setting of the Arabian plate (Aldama-Bustos et al., 2009)

At longitudes near the UAE, the Arabian plate is currently moving northwards
at a rate of approximately 22+2 mm/year with respect to the Eurasian plate (Vernant
et al., 2004). The above-mentioned movement occurs due to a combination of the
subduction of the Arabian plate beneath the Eurasian plate and also the intra-
continental shortening throughout Iran. Figure 2.4 also shows the presence of some
active tectonic structures in the Oman mountains close to the UAE (Aldama-Bustos
et al., 2009). The deformation related to this mountain range along with the
boundaries of the Zagros fold and thrust belt and the Makran subduction zone,
represent the key seismic sources that may affect the seismic hazard for sites within

the UAE.
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Available seismic hazard studies for the UAE suggest that local seismic

activities could be attributed to one of the following geological sources:

The Zagros fold and thrust belt: is about 200 km wide and is categorized as one
of the most active seismic zones in the world. The Zagros region was the source
of numerous large earthquakes (Mb~7) in the past. The UAE is located at the
southeastern end of the Zagros thrust.

The Makran subduction zone: this seismic source starts from the Gulf of Oman
and extends through the Indian Ocean, bordering southern Pakistan. The Makran
subduction zone lies approximately 750km away from the UAE. Historical
records show that the largest earthquake recorded in this region was an event
with a surface-wave magnitude (Ms) of 8.0.

The Oman Mountains and local fault lines: Many local fault lines are located in
the northeastern part of the UAE extending up to the Oman mountains, which
are located in northern Oman. Numerous faults lie in this region, which include
the Dibba line, Wadi Shimal fault and the Wadi Ham fault. In addition to these
faults, the Oman Thrust Front is another seismic source that runs through the
Oman mountains (Aldama-Bustos et al., 2009).

The Zendan-Minab fault system: The region where the Zagros fold and thrust
belt join the Makran subduction zone contains diverse complex faults. The

linking fault line between these two regions is known as the Zendan-Minab fault.
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Figure 2.4: Plate tectonic setting of the Oman Sea (Jamali et al., 2006)

2.3.2 Previous Hazard Assessment Studies

Abdalla and Al-Homoud (2004) investigated the seismic hazards of the UAE
and its surroundings based on a probabilistic approach. Seismic maps were presented
as a guide for determining the design earthquake for different regions of the studied
area. The area studied spanned several countries with diverse tectonic and geologic
structures as well as various local geotechnical conditions. Although the results
indicated that the UAE has low-to-moderate seismic hazard levels, high seismic
activities in the north part of UAE deserve attention. The study indicated that the
Northern Emirates are the most seismically active part. The recommended design
Peak Ground Acceleration (PGA) on bedrock ranged between 0.1g and 0.2g for
Dubai and between 0.22g to 0.38g for the Northern Emirates for a return period of
475 years and 1900 years, respectively. It was concluded that this level of PGA on

bedrock, together with the amplification of local site effects, can cause structural
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damage to key structures and lifeline systems. Therefore, earthquake effects should

be taken into consideration when designing major structures in the region.

Sigbjornsson and Elnashai (2006) and Mwafy et al. (2006) presented a site-
specific study for Dubai which employed the most recent earthquake data available
and modern established procedures for probabilistic seismic hazard assessment.
According to the study, the recommended PGA values for Dubai were 0.16g and
0.22g for return periods of 475 and 2475 respectively. Acceleration and displacement
spectra suitable for modal analysis were also presented. Generated acceleration
records for the two main scenarios of near-moderate and far-severe earthquakes were
given for the purposes of a response history analysis of structures. The significance
of including both scenarios in the seismic analysis and design was emphasized by
presenting results from an advanced dynamic analysis of a high-rise structure. The
two scenarios yielded results that were 200% to 500% different, in terms of force and
displacement, respectively. The studies concluded that the ground acceleration
values, spectra and strong-motion records recommended for design are reliable and
should be used with confidence. The approach utilized for assessment of two
fundamentally different earthquake scenarios was also recommended for use in

regions where near and distant earthquake hazards exist.

Malkawi et al. (2007) carried out a study for the seismic hazard assessment
and mitigation of earthquake risk in the UAE. The study concluded that the UAE is
located in a region of low-to-moderate seismic activities, and its seismicity increases
from southwest to northeast. The northern part of UAE is the most active seismic
part due to its location near the causative sources and requires special care in

engineering design. The recommended design PGA ranges from 0.0g for a 475 years
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return period (50 years life time and 10% probability) in southwest regions to 0.35g
for a 3000 years return period in the northeast region. The maximum regional
magnitude was determined to be 8.7+0.54 Mb. Although this is a very high value and
of low probability, if it occurs in the study region it may cause a significant effect

even if its hypocenter is distant.

Pasucci et al. (2008) presented the results of a probabilistic seismic hazard
assessment undertaken for the Arabian Peninsula region in terms of ground motions
on rock and spectral accelerations at short and long periods for various cities.
Uncertainties in seismic sources and ground motion models were incorporated in the
seismic hazard model using a logic-tree framework. The study concluded that the
seismic hazard level is low with expected bedrock horizontal PGA in the range of
0.04g to 0.069g for a 475 year return period, and 0.06 to 0.11g for a 2475 year return
period, with slightly higher values for cities close to the more seismically active

regions.

Aldama-Bustos et al. (2009) conducted a probabilistic assessment of seismic
hazard in terms of ground motions in rock for three cities in the UAE. The study was
performed within a logic-tree framework to account for uncertainties in the models
for seismic sources and ground-motion prediction. The results supported the
conclusions of previous studies that the hazard levels in the UAE are low except in
more northerly areas such as Ras Al Khaimah. The hazard calculations presented in
this study demonstrated that the hazard is dominated by local seismicity, particularly
at longer return periods. It is important to bear in mind, however, that the study did
not consider the effect of surface soil deposits, which significantly amplify long-
period motion generated by large-magnitude distant earthquakes in the Zagros and

Makran regions. This could affect the high-rise structures dominating the skyline of
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Dubai. The latter study concluded that the results should not be treated as definitive
regarding the seismic design considerations for Dubai without considering local soil

effects.

2.4 Vulnerability Relationships

2.4.1 Vulnerability Assessment of Buildings

Fragility analysis is an important task in seismic risk studies. Researchers have
developed methods to perform fragility analysis, motivated by the increasing interest
in obtaining accurate estimates of earthquakes losses. Fragility curves, the main
output of a fragility analysis, are excellent tools for retrofit decisions, damage
estimation, loss estimation and disaster response planning. Fragility functions for
buildings are lognormal functions that relate the probability of attaining or exceeding

a building damage state to a given intensity measure.

The input ground motions are scaled using Ground Motion Intensity (GMI)
such as PGA and spectral acceleration (S,). Wen et al. (2004) proposed the following

expression for deriving the fragility relationships:

P(LS|GMI) = 1- D(Acp-Apgmi/( \/ BZD|GMI+BéL+B§/I)) (2.1)

where:

P(LS|GMI) is the probability of exceeding a limit state given the GMI;

@: is the standard normal cumulative distribution function;

AcL: In (median of drift capacity for a particular limit state);

Aoemi © In (calculated median demand drift given the ground motion intensity

from the fitted power law equation);
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e Ppjemi : demand uncertainty = /In (1+s?) , where s? is the standard error of the
demand drift data;
e Bco: is drift capacity uncertainty;

e Pwm: is modeling uncertainty.

Fragility analysis is conducted to evaluate the relative seismic safety margins
of structures with varying characteristics and input motion intensities. Uncertainties
associated with structural capacity and imposed earthquake demand are accounted
for by probabilistically treating structural response and seismic hazards. The most
significant uncertainties in vulnerability assessment studies are:

a) Input ground motions;

b) Structural systems;

c) Structural characteristics (e.g., height and period);
d) Analytical modeling;

e) Analysis method,;

f) Performance criteria; and

g) Material properties;

Some of the uncertainties are random, while others are due to the lack of
knowledge, as discussed by Wen et al. (2004). In order to account for the
abovementioned uncertainties, the typical approach is to conduct Monte Carlo
simulations. These simulations require a large number of inelastic response history
analyses, which are demanding and expensive particularly when deriving fragility
relationships for a wide range of structures with different structural systems. It is,
therefore, more practical to focus on the dominant factors that control the
probabilistic response, while estimating the impact of other uncertainties based on

the conclusions of previous studies. Several studies concluded that material
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properties have little impact on the structural response, particularly at high ground
motion intensities, compared with the variability of ground motions (Kwon &
Elnashai, 2006). Researchers also investigated the sensitivity of structures to major
variables. It was found that uncertainties in ground motions are more significant than
those in structural properties. Less significant uncertainties may be assumed
deterministic such as those related to analytical modeling and analysis method. It is
important to note that the reliable modeling approach, such as the fiber-based
modeling, and analysis methods, such as the incremental dynamic analysis, are the
most suitable for deriving vulnerability curves. The aforementioned approaches

significantly contribute in reducing uncertainty compared with other alternatives.

Seismic performance criteria of structures, which are related to the level of
damage, have received focused attention. The performance levels considered in
seismic provisions and several previous studies include the following (ASCE/SEI-41,
2013; Ashri & Mwafy, 2014; Jeong et al., 2012; Mwafy, 2012b; SEAOC, 1999):

e Collapse Prevention (CP): allows for a small margin of safety against collapse
during a severe earthquake.

e Life Safety (LS): indicates a significant damage to the building lateral force
resisting system, but maintains a large margin against collapse.

e Immediate Occupancy (10): where relatively minor damage may occur to the
building, and the lateral force-resisting elements retain their initial strength and

much of their original ductility.

Other performance levels have been also recommended by seismic provisions
such as the Operational Performance (OP) criterion (ASCE/SEI-41, 2013). However,

it is impractical to design structures to meet the OP performance level since all



Chapter 2: Literature Review 24

utilities required for normal operation must be available after the earthquake. This is

particularly true for standard structures (FEMA, 2009).

The Interstory Drift Ratio (IDR) is usually considered as the primary
performance criterion as it is related to performance levels in ASCE/SEI-41 (2013)
and in several other provisions (e.g. Eurocode, 2004). ASCE/SEI-41 (2013) adopts
IDR corresponding to the 10, LS and CP limit states for ductile concrete wall
structures as well as for pre-code frame structures, which are 0.5%, 1.0% and 2.0%.
For modern frame structures the latter provisions recommend an IDR of 1%, 2.0%
and 4.0% for the same performance criteria, respectively. A thorough review is
carried out in the present study to confirm the limit states used for deriving fragility
curves. Table 2.1 summarizes recommended values from previous studies, which
covered the three categories of buildings considered in the current study, namely pre-
seismic frame structures, pre-seismic wall structures and well-designed frame

structures. An example of a typical fragility curves is also shown in Figure 2.5.

Table 2.1: Summary of IDRs for different limit states and structural systems

Reference Structure
Selection Approach Pre-code Frames | Pre-code Walls | Modern Frames
Limit State - Interstory Drift (%)
IO LS CP |10 LS CP | 10 LS CP
ASCE/SEI-41, 2013 050 1.00 2.00 1.00 2.00 4.00
3 Ghobarah, 1998 1.00 2.00 3.28
5 Wood, 1991 - 16% 1.36
= | Wood, 1991 - 50% 1.88
é Wood, 1991 - 84% 2.60
E Dymiotis et.al., 1999 - 16% 1.90
§ Dymiotis et.al., 1999 - 50% 4.00
] Dymiotis et.al., 1999 - 84% 6.70
Ghobarah et.al., 1999 0.70 110 250 0.40 1.80 3.00
_ Ramamoorthy et.al., 2008 - 16 % | 0.33 0.56
8 g | Ramamoorthy et.al., 2008 - 50 % | 0.50 0.98
% '§ Ramamoorthy et.al., 2008 - 84 % | 0.75 1.71
$ @ | Lieletal, 2010 - 16 % 3.26
Liel et.al., 2010 - 50 % 4.17
Liel et.al., 2010 - 84 % 5.34

10: Immediate Occupancy, LS: Life Safety, CP: Collapse Prevention
16%: 16 percentile of the results; 50%: 50 percentile; 84%: 84 percentile
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Figure 2.5: Typical fragility curve (Mwafy, 2012a)

2.4.2 Previous Vulnerability Assessment Studies for the UAE

Abu-Dagga et al. (2010) conducted a seismic fragility assessment where the
buildings stock in Sharjah, UAE, was represented by 13 model building types
according to their height, use and structural systems. Seismic fragility analysis was
performed using simple ETABS (CSI, 2011) models for each building type and the
associated fragility curves were prepared. The fragility curves were used to estimate
the seismic potential losses in Sharjah. It was concluded in this study that the low-
rise structures would be responsible for more than half of the human and structural
losses in the study area. This result could be due to two main reasons: that these
buildings were not designed to resist any lateral load, and that the closeness of the
periods of these buildings and the period of the ground motions used in the study. It
is worth noting that the study by Abu-Dagga et al. (2010) focused on a limited study
area and employed simplified modeling and assessment approaches. This study has
already highlighted the need for a more comprehensive and reliable seismic risk

assessment for Sharjah.
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Mwafy (2012a) conducted a pilot study for the development of fragility
relationships, which constitute an essential driving engine in loss assessment
systems, in the UAE. The study included the selection, structural design and
developed fibre-based simulation models for six reference structures representing a
range of modern shear wall buildings in the UAE. The selection and scaling of
twenty input ground motions representing long (Set 1) and short (Set 2) source-to-
site distance earthquake scenarios anticipated in the study area were discussed. Limit
state criteria for deriving fragility curves were selected based on the mapping of local
and global response from IPAs and IDAs. The measured seismic response from IDAs
was related to ground motion intensity through a statistical model to derive the
fragility relationships of the reference structures. The differences between the
fragility functions obtained from the two seismic scenarios employed in the study of
Mwafy (2012b) were significant for all buildings. The probability of exceeding
various limit states was higher and the slopes of the curves were steeper under the
effect of the Set 1 earthquake scenario when compared to Set 2. These were
attributed to the high spectral amplifications and effective durations of the Set 1
ground motions, which amplified the most significant modes of vibration for high-
rise buildings. Under the effect of both Set 1 and 2 events, limit states were exceeded
at higher ground motion intensities for taller buildings, which implied that
earthquakes have a higher impact on low-rise structures. The study confirmed the
vulnerability of shear wall buildings to the severe distant seismic scenario anticipated

in earthquake-prone areas of the UAE.

Al Shamsi (2013) assessed the seismic risk for buildings in Dubai. The study
area was divided into sectors based on usage, buildings and population distribution

data, satellite images and field visits. Only five reference structures, ranging from 2
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to 16 stories, representing the building stock of Dubai were modeled using IDARC
(Park et al., 1987). Earthquake records representing far-field events were used. The
records were adjusted to match a target spectrum representing local seismicity.
Dynamic analysis was performed and fragility curves were developed for the
reference structures. Performance limit states were adopted from ASCE/SEI (2007).
The performance of each building was evaluated at three levels of hazard: the
Maximum Considered Earthquake level (MCE); the design level, which
corresponded to two-thirds of the MCE level; and twice the MCE level. Human
losses and economic losses were estimated in the study by Al Shamsi (2013). It was
concluded that the probabilities of exceeding the CP limit state for the reference
structures were below 20% at the design and MCE levels. The shorter buildings
exhibited better performance than the taller ones. The seismic risk maps illustrated
that the estimated number of fatalities at the MCE level were generally low, and that
economic and human losses were higher in the commercial zone. Based on the
modeling assumptions and analyses performed in this study, there were no major

concerns regarding the vulnerability of the representative buildings in Dubai.

More studies focusing on developing vulnerability functions for
contemporary buildings in the UAE with varying structural systems and heights are
in progress (Ashri & Mwafy, 2014). Al Waile et al. (2014) also proposed a
framework for developing fragility relations for high-rise RC buildings based on
verified modeling approaches in the UAE. Moreover, Mwafy et al. (2014b) have
recently carried out a study on relative safety margins of code-conforming vertically

irregular high-rise buildings in the UAE.

It has been observed from the brief review presented above that few seismic

hazard assessment studies have been performed for the UAE and the surrounding
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region. In addition, none of the available studies were carried out based on reliable
inventory data; a wide range of reference structures with different characteristics
representing the building stock; detailed design and modeling approaches; selection
of input ground motions to represent different seismic scenarios in the study area and
the adoption of reliable limit states and approaches for developing fragility curves.
The present study takes into consideration the above-mentioned shortcomings, and
hence represents a systematic and comprehensive vulnerability assessment study for

the UAE.

2.5 Seismic Design Loads and Wind Effects

Structural dynamics is a type of structural analysis which covers the behavior
of structures subjected to dynamic loading. Dynamic loads include wind, traffic,
earthquake and blast loads. Dynamic analysis is used to determine different response
parameters such as displacements, story drifts, story shear forces and building base
shear. Dynamic analysis for single degree of freedom structures can be carried out
manually, but for complex structures finite element analysis should be used to

calculate the mode shapes and frequencies.

2.5.1 Seismic Loads

Earthquake loads consist of the inertia forces of the building mass that result
from the shaking of its foundation by a seismic event. Frame buildings, which are
light and flexible, are usually less vulnerable to earthquakes than buildings which are
heavy and brittle. Although earthquake loads are complex, uncertain and potentially
more damaging than wind loads, they do not occur as frequently compared with wind

loads. Lateral load resisting systems for earthquake loads are similar to those for
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wind loads. The wind load is an external force, the magnitude of which depends
upon the height of the building, the velocity of the wind and the amount of surface
area that the wind attacks. The earthquake load, on the other hand, depends on the
mass, stiffness and strength of the structural system and the acceleration of the
earthquake. It is clear that the applications of these two types of loads are different.
To estimate the seismic design loads of typical structures, two approaches are used:
(i) the Equivalent Lateral Force Procedure (ELFP), and (ii) modal response spectrum
analysis, in which the modal frequencies of the structure are analyzed and then used
in conjunction with earthquake design spectra to estimate the maximum modal

responses.

As outlined in the general procedures and the site-specific procedures of
ASCE-7 (2010), the ground motion accelerations, represented by response spectra
and coefficients derived from these spectra, shall be determined. Conditions of use of
these methods depend on the seismic use group and site characteristics of the
structure. The procedure for determining the design spectral response acceleration is
as follows:

1. Determine the mapped maximum considered earthquake spectral response
accelerations at short periods, Ss, and at 1-second period, S;, using the spectral
acceleration maps in ASCE-7 (2010). Linear interpolation is allowed for sites
inbetween contours. Acceleration values obtained from the maps are given in %g,
where g is the gravitational acceleration.

2. Obtain the site class in accordance with ASCE-7 (2010). Site class (A, B, C, D, E
or F) is obtained based on the average shear wave velocity, vs; average standard
penetration resistance, N; or the average undrained shear strength, S,. These

parameters represent average values for the top 100ft (30m) of soil.
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3. Calculate the maximum considered earthquake spectral response acceleration,
adjusted for site class effects, at short period, Sus , and at 1-second period, Sy,
in accordance with ASCE-7 (2010).

4. Estimate the design spectral response accelerations at short period, Sps and 1-
second period, Sp; in accordance with ASCE-7 (2010).

5. Using the parameters determined in the previous steps, the general response

spectrum is obtained in accordance with ASCE-7 (2010).

2.5.2 Wind Effects

Wind is a phenomenon of great complexity because of the many flow
situations generated from contact with structures. Wind is measured according to the
direction from which the wind is blowing as well as its speed. Winds of shorter
durations with higher bursts are called wind gusts. This experience of sudden gusts
of rushing air is called gustiness or turbulence. Long-duration winds have various
names according to their average strength such as breeze, gale, storm, hurricane and
typhoon (Ali, 1994). The Synoptic winds, Shamal winds and thunderstorms are three
different wind phenomena, which illustrate the configuration of winds in the UAE
(Hubert et al., 1983; Hussain, 2012). Although there have been several important
studies done on the structure of wind in the UAE, further research is needed to
quantify the profiles of the Shamal winds and thunderstorms, so that they can be

incorporated in design codes (Ali, 1994; Hubert et al., 1983; Hussain, 2012).

Calculating wind loads is essential in the design of wind force-resisting
systems, including structural members, components and cladding. Wind engineering
is concerned with the effect of wind on the natural and built environment and the

possible damage which may result from wind. Wind engineering involves analyzing
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the wind impact on structural and non-structural components as well as wind comfort
near buildings. The structural design of buildings accounts for strong gusts, as well
as extreme winds such as in a tornado, hurricane or heavy storm, which may cause
extensive destruction. Wind may be the governing load in the analysis and design of

a certain class of structures such as tall buildings.

Wind loads are composed of static and dynamic components. Wind forces also
increase with building height, as the effect of ground friction decreases. Wind
response is quite sensitive to both stiffness and mass, and the lateral response can be
reduced by changing these parameters. The detailed procedure described in wind
codes is sub-divided into static analysis and dynamic analysis methods. The static
approach assumes that the building is a fixed rigid body with its fixed end at the
ground. The static method is appropriate for structures with limited height and
unsuitable for tall structures of exceptional height, slenderness, or vulnerability to
vibration. The dynamic method is recommended for tall, slender or vibration-prone
buildings. The design codes not only provide detailed design guidance with respect
to dynamic response, but also state specifically that a dynamic analysis is a must to
determine the overall force on structures with a large height (length) to breadth ratio,

and a first mode frequency less than 1 Hz (e.g. ASCE-7, 2010).

2.6 Seismic Rehabilitation of Structures

There are a number of circumstances where it may become necessary to
increase the load-carrying capacity of a structure in service. These include a change
of loading or use, and the cases of structures that have been damaged or deteriorated.
This concern is more obvious in pre-code structures and emergency facilities as they

experience poor seismic performance, and the urgent need to meet stringent



Chapter 2: Literature Review 32

performance criteria for operational readiness, respectively. In the past, the increase
in strength was provided by casting additional reinforced concrete, dowelling in
additional reinforcement or externally post-tensioning the structure. More recently,
attaching steel plates to the surface of the tension zone using adhesives and bolts was
used to strengthen concrete structures. Even more recently, the use of FRP sheets,
generally using carbon fibres, was developed using the same basic techniques as for
steel-plate bonding (Arya et al., 2002). This section highlights general seismic
rehabilitation provisions and practices related to the present study, and summarizes

the findings of previous studies.

2.6.1 FEMA-547 Seismic Rehabilitation Provisions

FEMA-547 (2006) provides a selected compilation of seismic rehabilitation
techniques that are practical and effective. The descriptions of techniques include
detailing and constructability tips. The main goals of the document are to:

+ Describe rehabilitation techniques commonly used for various building types,

* Incorporate relevant research results;

+ Discuss associated details and construction issues; and

 Provide suggestions to engineers on the use of new products and techniques.

Chapter 12 and 13 of FEMA-547 (2006) discuss concrete moment frame and

concrete shear wall systems, respectively, which are considered in the current study.
The proposed rehabilitation techniques for the concrete moment frame are: (i) add
steel braced frame (connected to a concrete diaphragm); (ii) add concrete or masonry
shear wall (connected to a concrete diaphragm); (iii) provide collector in a concrete
diaphragm; (iv) enhance the column with fiber-reinforced polymer composite

overlay; and (v) enhance the column with concrete or steel overlay. The proposed
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rehabilitation techniques for the concrete shear wall systems are: (i) enhance shear
wall with fiber-reinforced polymer composite overlay; (ii) enhance deficient
coupling beam or slab; (iii) enhance connection between slab and walls; and (iv)
reduce flexural capacity of shear walls to reduce shear demand. For the sake of
brevity, the detailed description of these conventional techniques and general
guidelines used for each type of the two systems along with detailed drawings, are to

be found in FEMA-547 (2006).

2.6.2 Previous Seismic Rehabilitation Studies

Saadatmanesh et al. (1997) conducted an investigation into the flexural
behavior of earthquake-damaged RC columns repaired with FRP wraps. Four column
specimens were tested to failure under severe reversed inelastic cyclic loading. The
columns were repaired with FRP wraps and retested under simulated earthquake
loading. The test specimens were designed to model non-ductile concrete columns in
existing highway bridges constructed before modern seismic design provisions. FRP
composite wraps were used to repair areas near the column footing joint. The results
indicated that the repair technique was effective. Both flexural strength and
displacement ductility of the repaired columns were higher than those of the original
columns.

Moehle (2000) reviewed different approaches of seismic retrofit for concrete
building in the US, in which two general techniques were described. The first
technique, involves global modification of the structural system. The structural
modifications are designed so that the demands on the existing structural and non-
structural components are less than their capacities. This approach includes the

addition of structural walls, steel braces or base isolators. Another approach involves
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the local modification of isolated components of the structural and non-structural
systems. The objective of the latter approach is to increase the deformation capacity
of deficient elements. This will prevent such elements from reaching their identified
performance criteria. This approach includes the addition of concrete, steel or FRP
jackets. It was concluded that global modification schemes are more common in the
US than local modification schemes. However, difficulties in developing accurate
models of foundation flexibility and conservative acceptance criteria for existing

components may require the use of some combination of the two approaches.

Taghdi et al. (2000) conducted an experimental study which indicated that the
steel strip system, proposed to retrofit low-rise masonry and concrete walls, is
effective in increasing their in-plane strength, ductility and energy dissipation
capacity. The details and connections used to ensure continuity between the steel
strip system, foundation and top beam also enhanced the sliding friction resistance. It
was shown that the anchor bolts along the vertical strips can be placed to provide
lateral supports to the end bars of the existing reinforced concrete/masonry walls,
helping to eliminate their premature buckling. It was also recommended to pay
attention to the wall shear strength since the ultimate strength of walls retrofitted,

using only vertical steel strips, can be limited by their less-ductile shear failure.

Ye et al. (2003) tested eight RC column specimens under constant axial load
and lateral cyclic load. Two specimens were strengthened using Carbon Fiber
Reinforced Polymer (CFRP) sheets after being loaded to imitate strengthening with
damage, while one specimen was strengthened under a sustained axial load to imitate
strengthening under service conditions. Based on the experimental results, a
confinement factor of CFRP and an equivalent transverse reinforcement index were

suggested. The study concluded that the ductility of RC columns can be substantially
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improved by strengthening using wrapped CFRP sheets due to the confinement from
CFRP. The CFRP contribution to confinement can be represented by the
confinement factor, which is the ratio of the average CFRP strain in the plastic hinge
zone of the column at displacement to the CFRP fracture strain. The amount of
CFRP needed for the seismic strengthening of RC columns can be determined using

the suggested equivalent transverse reinforcement index.

Ghobarah and Galal (2004) conducted an experimental study which included
testing three RC short columns under cyclic lateral loads and constant axial load. The
first specimen represented columns designed according to a current code (CSA,
1994). The second specimen was identical to the first one but rehabilitated using
anchored carbon fiber sheets. The third specimen represented existing non-ductile
short column designed according to pre-1970 codes and rehabilitated using anchored
CFRP. The study concluded that short RC columns designed according to the current
code failed in brittle shear when subjected to lateral cyclic displacements. The
strengthening of a short RC column that contains both a high and low percentage of
transverse reinforcement (i.e. designed according to current code and pre-1970
codes, respectively) using anchored CFRP sheets prevented the brittle shear failure
of the former and improved the displacement ductility and energy dissipation
capacity of both columns. Both steel rods and fiber anchoring techniques were
effective in improving the column confinement and in reducing the concrete bulging
at column sides. Although there was no test conducted on a column wrapped with
FRP without anchors to compare it with, the high strains measured in the steel

anchors confirmed the important contribution of the anchors to column confinement.

Tremblay et al. (2004) carried out two sub-assemblage tests as well as

designing and analyzing a sample three-story building, which showed that the design
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forces for capacity protected elements can be reduced considerably when adopting
BRB frames compared to Conventional Braced Frames (CBF) structures. Non-linear
dynamic analysis of the buildings studied confirmed that low-rise BRB frames
designed according to NBCC (2005) provisions with R = 4.0 can exhibit reasonable
seismic performance. The results indicated, however, that the inelastic demand was
concentrated on the bottom floor, resulting in core strain demand exceeding the

design values, especially when short brace cores were used.

Fahnestock et al. (2007) conducted an analytical and experimental study on
the seismic behavior of BRBs with Concrete Filled steel Tubular (CFT) columns at
the ATLSS Center, Lehigh University. They investigated the seismic performance of
this type of frame, to evaluate existing design criteria, and to calibrate analytical
models. A 4-story prototype building was designed with BRBFs as the lateral load
resisting system. Design criteria were taken from the IBC (2000) and the SEAOC
(1999) provisions for BRBFs. The analysis program DRAIN-2DX was used to model
a one-bay prototype frame including material and geometric nonlinearities. A
statistical summary of the analysis results was developed at the design and MCE
input levels. The LS performance level was the target level for the design earthquake
and the CP performance level was the target level for MCE. The study observed an

acceptable BRBF behavior at the above-mentioned seismic input levels.

Di Ludovico et al. (2008) conducted full-scale tests for an under-designed RC
structure with and without FRP retrofit. The experimental results provided by the
structure in the ‘as-built’” and FRP-retrofitted configurations highlighted the
effectiveness of the FRP technique in improving the global performance of the
under-designed RC structure in terms of ductility and energy dissipation capacity.

This goal was achieved by confining the column ends and preventing brittle
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mechanisms (i.e. exterior joints and column shear failure). The design equations used
for shear strengthening of exterior beam-column joints and of the wall-type column
were found effective to quantify the FRP laminates needed to enable the structure to
fully exploit its improved deformation capacity, given by the increased ductility of
the FRP-confined columns. A pushover analysis provided results close to the
experimental outcome, confirming the effectiveness of the FRP retrofit in increasing
the global deformation capacity of the ‘as-built’ structure by improving its

displacement capacity at a significant damage limit state.

Di Sarno and Manfredi (2010) assessed the seismic performance of a typical
RC existing building designed for gravity loads only. A fibre-based three-
dimensional finite element model was developed to assess the non-linear earthquake
response of the non-ductile reference building. The existing two-story framed
structure exhibited high vulnerability, and hence an effective strategy scheme for
seismic retrofit was employed. Such a scheme comprised BRBs placed along the
perimeter frames of the building. The BRBs possess slightly higher compressive
strength than tensile strength. Member buckling was prevented and hence the cyclic
energy dissipation was large and stable. Non-linear pushover and dynamic response
history analyses were carried out for both the ‘as-built’ and retrofitted structures to
investigate the efficiency of the adopted intervention strategy. A set of seven code-
compliant natural earthquake records were selected and employed to perform
inelastic history analyses at serviceability (operational and damageability limit states)
and ultimate limit states (life safety and collapse prevention limit states). The
comparison between the results obtained from nonlinear analyses demonstrated that
both global and local lateral displacements were reduced after the seismic retrofit of

the existing system. Lateral drifts of the retrofitted structure were uniformly
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distributed along the height, and damage localizations were inhibited, especially at
ultimate limit states. The estimated response factor of the retrofitted structure was on
average equal to 5.0, which corresponds to the value utilized in seismic codes for
ordinary RC moment resisting frames and steel framed structures equipped with

BRBs.

Mwafy and Elkholy (2012) carried out a pilot study to select an effective
retrofit approach for mitigating the seismic risk of the pre-code school building stock
in a medium seismicity region. In this study, a three-story structure was selected to
represent the aforementioned category of buildings. The structural elements of the
reference structure were rehabilitated through the use of two retrofit techniques,
namely RC jackets and FRP wrap of columns. The investigation of two additional
alternatives for the applications of these retrofit techniques was included in this
study. All columns were retrofitted as the first alternative. However, to reduce the
cost, only ground story columns were strengthened in the second one. In addition, to
obtain the most effective solution, two different thicknesses of FRP sheets and three
types of FRP material properties were also assessed and compared. Models were
developed using both the Improved Applied Element Method (IAEM) and the fiber-
based modeling approach. Fragility relationships were generated to describe the
observed damage before and after the application of retrofit techniques. The
retrofitted buildings showed a significant increase in the seismic performance
compared with the pre-code counterpart. RC jackets provided the lower probability

of damage which supported selecting it over other alternatives.
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2.6.3 Comparative Evaluation of Retrofit Techniques

Based on the above-mentioned brief review, a number of retrofit approaches
are selected in the present study to enhance the seismic performance of buildings.
This section provides a comparative evaluation of different retrofit techniques
selected herein. Concrete jacketing is the conventional form of retrofit. Different
combinations of constituent materials, fiber structures and methods of application
have made FRP composites an attractive alternative for seismic retrofit. Steel plate
installment, especially for wall elements, is considered as preferable option in many
cases. Finally, BRBs have recently proved to be an excellent solution for seismic
retrofit in frame structures. The advantages and disadvantages of various retrofit
techniques are summarized in Table 2.2.

Table 2.2: Advantages and disadvantages of retrofit techniques

Technique Advantage Disadvantage
RC Jacketing o Increases flexural strength and ¢ High occupant disturbance, and
stiffness, e Labor intensive work.
¢ Durable,
¢ Good fire resistance, and
e Low cost.

FRP Wrapping

¢ Easy to handle and apply,

e Effective in shear, flexural, and
confinement retrofit, and

o Low occupant disturbance.

¢ High material cost,
o Needs skilled labor, and
e Low fire resistance.

Steel plates e Easy to handle and apply, e Large amount of welding/bolting
¢ Readily available, and required,
e Low occupant disturbance. e Corrosion,
¢ High installation cost, and
o Low fire resistance.
BRBs ¢ Low occupant disturbance, ¢ Needs professional skilled labor, and

¢ Energy dissipative behavior,

e Easy post-earthquake
investigation and replacement if
needed, and

e Fast erection.

e Ductility properties strongly affected by
the material type and geometry of the
yielding steel core segment.

2.7 Concluding Remarks

The main driving engines of the earthquake loss estimation systems used are:

(@) seismic hazard; (b) inventory of the exposed systems; and (c) vulnerability
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relationships. As they may experience a high risk of damage, pre-seismic code
buildings have to be studied thoroughly. A number of peer-reviewed studies that
carried out on this category of buildings were reviewed The literature review
concluded that pre-seismic code buildings suffer from low levels of ductility and
strength as they were designed and constructed without proper seismic provisions. A
crucial role in the recovery period succeeding an earthquake is played by emergency
facilities. In spite of being constructed according to modern seismic design
provisions, considerable attention should be paid to this type of building. A number
of previous studies on critical facilities were reviewed. These studies emphasized the
important role of these building and the need to reduce the damage. This may require
the application and adoption of mitigation measures in order to achieve the optimum
performance during earthquakes. The presented study focuses on the vulnerability
assessment of the above-mentioned two categories of buildings and their mitigation

measures which emphasize the significance of this study.

Previous seismic hazard studies for the Arabian Peninsula, including the
UAE, where reviewed. The UAE is influenced by a number of seismic sources,
including the Zagros and Makran sources. The results of previous studies indicated
that the design PGA value corresponding to a return period of 475 years for Dubai
ranges between 0.05g and 0.32g. Due to the large variation of the recommended
design PGA for Dubai in previous studies, the conclusions of three peer-reviewed
studies were adopted in the present study. For Dubai, a design PGA of 0.16g, which
represents the design PGA for a 10% probability of exceedance in 50 years, was
adopted. Dubai and the Northern Emirates are vulnerable to two different seismic

scenarios: (i) severe earthquakes with a relatively long epicentral distance; and (ii)
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moderate events with short source-to-site distance, typically originating from local

seismic faults.

The seismic performance assessment of buildings based on a fragility analysis
was also reviewed. Different performance limit states recommended in design
provisions were summarized, including Immediate Occupancy (10), Life Safety (LS)
and Collapse Prevention (CP). Uncertainties in fragility analysis were highlighted
and methodologies to reduce these uncertainties were studied. The derivation of
fragility curves using a detailed fiber modeling approach and inelastic dynamic
collapse analyses was implemented in the present study, based on this literature
review to reduce the uncertainty. The literature review reflected the pressing need for
developing comprehensive fragility relationships for different building classes which

is taken care in the current study.

Few seismic hazard assessment studies were carried out for the Arabian
Peninsula in general, and for the UAE in particular. In addition, none of the available
studies were carried out based on reliable inventory data; a wide range of reference
structures with different characteristics representing the building stock, detailed
design and modeling approach, selection of input ground motions to represent
different seismic scenarios in the study area and the adoption of reliable limit states
and approaches for developing fragility curves. The present study takes into
consideration the above-mentioned shortcomings, and hence represents a systematic

vulnerability assessment study for the UAE.

Extensive research has been directed towards the seismic rehabilitation of
structures both experimentally and numerically. Code provisions, as well as several

studies regarding this area of research, were reviewed. Several retrofit techniques and
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mitigation measures were investigated and recommended in previous studies,
including RC jacketing, FRP wrapping, adding new wall elements, the use of steel
plates, installing buckling restrained braces, and others. Based on the results of
previous studies and the applicability and suitability of the investigated buildings and
study region, four techniques were adopted in the present study, namely RC

jacketing, FRP wrapping, installing BRBs and the use of EUSP.
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CHAPTER 3: SELECTION AND DESIGN OF
REFERENCE STRUCTURES

3.1 Selection of Representative Buildings

The selected building inventory in this study includes the building stock in
Dubai, Sharjah and Ajman, which represent highly populated earthquake-prone areas
in the UAE. One of the major challenges is assembling a database for the existing
building stock in the study area (Figure 3.1). This is a due to the rapid changes in the
exposed inventory and the lack of reliable surveys. Some governmental institutions
have partial inventory databases, but the available databases do not contain all the
required structural information. Such information is needed to appropriately
categorize buildings for seismic risk assessment. Therefore, the building inventory
data used in the present study was collected in another study by conducting several
site visits and using high resolution satellite images (Mwafy, 2012b; Mwafy, 2013).
The area studied is divided into twelve zones; each has common characteristics and

features.

Point A B C D E F G H
North |25° 04’ 17°7|25° 03 40°°|25° 05° 48°|25° 04 35°|25° 12° 25°?|25° 13° 47°°|25° 17° 23°°|25° 25° 41’
East |55° 07’ 30°’|55°08” 15°°|55° 10° 57°*|55° 12° 43°*|55° 18 57°°|55° 17° 26°°|55° 21° 33°°|55° 31’ 14>

Figure 3.1 Study aréé
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In total 79861 buildings were counted and classified in different categories
(Mwafy, 2012b). The building inventory of Dubai, Sharjah and Ajman was classified
according to two criteria. This is mainly due to the significance of the classification
criteria of the exposed building stock in risk analysis. The classification criteria were:
() function and (ii) construction date in which various heights have been considered

ranging from 2 to 40 stories, as discussed below.

3.1.1 Selection Based on Construction Date

The study area includes a significant amount of the existing inventory that
were designed and constructed in accordance with different building codes. The
UAE was classified as zone ‘0’ in the Uniform Building Code (UBC, 1997).
Therefore, old buildings were not designed to resist seismic loads. Hence, the
buildings inventory was categorized into two categories based on their construction
date, namely before 1991 (pre-code) and after 1991 (contemporary). The buildings in
the contemporary category have adequate structural capacity in terms of strength and
ductility since they are designed according to modern design codes. The pre-code
structures were only designed to resist gravity and wind loads. This second category
of buildings may include design deficiencies. An illustration of the building
classification according to their construction date in different zones is shown in
Figure 3.2. It is clear that almost half of the building stock represents modern

buildings (49 %), while the other half is pre-code (51 %).
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Zone 1-6

Figure 3.2: Buildings classification according to their construction date (Mwafy,
2013)

3.1.2 Selection Based on Risk Category

Critical facilities play an important role in the recovery period subsequent to
an earthquake. Essential and emergency facilities include but are not limited to:
hospitals, police stations, fire stations and schools, which may serve as emergency
shelters. In any seismic event, in order to guarantee an effective emergency response,
the readiness of these buildings after earthquakes is significant. According to ASCE-
7 (2010), the building inventory in the present study was classified into four
categories, namely risk category I, I, Il and 1V. Figure 3.3 depicts the distribution
of buildings in different zones according to their risk category. It was shown that
80% of the building stock is for buildings with standard occupancy (i.e. risk category
I1), which is defined as residential and office buildings. The buildings that represent a
low risk to human life in the case of failure (i.e. risk category 1) are 19% of the
inventory. These category | buildings are mainly located in zones 6, 7, 11, and 12.
Less than 0.5% of the buildings stock is for buildings with risk categories Il and 1V,

which are located in zones 7, 8, and 11.
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Figure 3.3: Building classification according to risk category (Mwafy, 2013)

Based on the above-mentioned classifications, five pre-code RC buildings of
2, 8, 18, 26, and 40 stories, and four modern essential structures, namely fire station
police station, hospital and school, were selected and fully designed for the purpose
of the current study. Figure 3.4 and Figure 3.5 show the selected buildings from the
study area that represent pre-code structures and emergency facilities. Table 3.1
summarizes the characteristics of the nine reference structures, while Figure 3.6 to
Figure 3.13 show the structural layout of the buildings. It is noteworthy that the 18
and 26-story buildings share the same layout. The selected layouts represent typical
architectural layouts from the study area. For the pre-code frame structures, the
height of the ground story is 5.0m, while the height of all other stories is 3.5m. For
pre-code wall structures, the height of all stories is 3.2m, while the ground story is
4.5m. Emergency structures have a typical story height of 4.0m, while the ground

floor is 5m except for the fire station which is 5.5m. The hospital building has one
basement of 3.5m height.
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Figure 3.4: Selected real buildings from the study area to represent pre-seismic code structures (Mwafy, 2013)
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Table 3.1: Summary of the selected buildings (Mwafy, 2013
Building [Classification]  Buildings No. of [Story height (m)|  Total
Number L L . .
Reference criteria description stories | B | GF | TE | height (m)
1 BO-02 e @ 2 - |50]35 8.5
S 8
2 BO-08 = °g 8 - |50[35| 285
o O =
3 BO-18 gg §§ 18 [32]45(32| 589
4 BO-26 @ Z 35 26 |32]45|32| 845
5 BO-40 3 a 40 [32|45[32| 1293
6 FS Fire station 2 - |55(4.0 9.5
c
7 PS SS | Policestation | 2 | - [50[40] 9
[&]
8 sC g5 School 3 | - [50[40] 13
9 HO Hospital 6 35(50|4.0 245
B: Basement, GF: Ground Floor, TF: Typical Floor
® © © ®
16 L
4.0 4.0 ‘ 4.0——4.0—]
© T = —O
5.0
I | | | I
@ + —@
1330 T T T
Q t L3 £ & —Q
. |
I | | I
@ : NI
5 6 o o o

Figure 3.6: Layout of the 2-story building showing different structural members
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Figure 3.7: Layout of the 8-story building showing different structural members
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3.2 Design Approach

Three-dimensional (3D) finite element (FE) models were developed for the
buildings investigated in the present study using the structural analysis and design
program ETABS (CSI, 2011). Figure 3.14 depicts the layouts and 3D models of the
reference buildings. The five pre-seismic code buildings are designed and detailed
specifically for the purpose of the current study according to the building codes that
were implemented at the time of construction (BS8110, 1986). Pre-seismic code
buildings are defined in this study as those built in the study area before 1991 when
seismic design provisions might be disregarded. As discussed earlier, the UBC
provisions (1997) recommended the use of Seismic Zone ‘0’ for the cities of Abu
Dhabi and Dubai, UAE. Revised seismic design criteria have been adopted in the
UAE based on the recommendations of recent seismic hazard studies (e.g. Abdalla &
Al-Homoud, 2004; Mwafy et al., 2006). Therefore, wind loads are the only lateral
loads considered in design of the pre-code structures to represent the real situation
before 1991 (BS8110, 1986). The following parameters are needed to define the

wind loads in the study area, including:

1-  Wind direction angle, ¢, depends on the considered direction.
2-  Front net pressure coefficient, Cp,

3- Rear net pressure coefficient C,,

4- Effective height, He: Ground story to top story.

5- Effective wind speed, Ve: 45 m/s.

6- Size effect factor of standard method, C,

7- Dynamic augmentation factor, C;,



Chapter 3:

Selection and Design of Reference Structures

54

>
- —
= S
o >
< o
g T
. @)
@) T
oM
>\
—
o
—
w
O
[e\]
3 S
[oe]
— 2
O [&)
N | | n
@) I ®)
o wn
o (o Il
[@][ee)]
Ol -
O —
oM 1l
| |
[
> o
< =
o) 5}
o 2
o [)
@) o
o wn
o
c
) S
17 =
N w
o 2
I 8 L
I m &P

Sa.N)oN.S 3p02-alid Ko@éﬁjewg

Figure 3.14: Layouts and three-dimensional design models of the reference structures
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The permanent loads used in the design of pre-code buildings include the
superimposed dead load of 4.0 kN/m?and the self-weight. The live load is 2.0 kN/m?,
except for staircases and exit ways which are 4.8 kN/m® The design is carried out
carefully for each building to obtain the optimum cross sections for different
structural elements. To accurately represent the pre-code structures, the material
properties that were utilized at the time of construction were considered. The
concrete strength ranges from 20 to 40 MPa in vertical elements, while a concrete
strength of 20 MPa is used for low-rise buildings and horizontal elements. Mild steel
is used in the design with a yield strength of 240 MPa. Pre-code buildings with such
material properties are likely to be more vulnerable to earthquake loads due to the
large cross sections, heavy mass and inadequate detailing as compared to modern

code-designed structures.

The four emergency buildings were designed and detailed in the current study
according to modern building codes (ACI-318, 2011; ASCE-7, 2010). Wind loads
are estimated using ASCE-7 (2010) based on an exposure category ‘C’ and basic
wind speed of 45m/s. The seismic loads were also estimated using ASCE-7 (2010)
with a soil class ‘C’, as per the recommendations of recent hazard assessment studies
and design provisions for the UAE (Abdalla & Al-Homoud, 2004; ADIBC, 2013;
Mwafy et al., 2006). The 0.2 sec spectral acceleration, the 1.0 sec spectral
acceleration and the Long-period transition period are 0.84g, 0.25g, and 8s,
respectively. The response modification coefficient (R) and the importance factor (1)
were selected for each of the four buildings as per the structural system and risk
category. The live load adopted for emergency facilities is 3.80 kN/m? while the
permanent loads include the self-weight of structural elements as well as

superimposed dead loads of 4.0 kN/m?.
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3.3 Design Results

An iterative design process was carried out using ETABS (CSI, 2011) under
all load combinations recommended by ACI-318 (2011) and BS8110 (1986). Floor
slabs were designed using the design program SAFE (CSI, 2011). Figure 3.15 to
Figure 3.31 depict the reinforcement details of floor slabs and the cross sections of
the vertical elements used in the nine buildings. Table 3.2 to Table 3.22 summarize
the design information of vertical structural members, the reinforcement details for

the slabs and the reinforcement schedule of the coupling beams.
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Figure 3.15: Typical reinforcement details for the floor slabs of the 2-story building

C1 at the foundation level C2 at the foundation level

Figure 3.16: RC cross-sections used in the design of the 2-story building
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Table 3.2: Vertical members design summary of the 2-story building

Section C1 Cc2
Location of section All stories All stories
Vertical steel ratio (%) 1.15% 1.13%
VL. Reinforcement 6#14 6#12
HL. Reinforcement #10@200mm #10@200mm
Demand/Capacity (D/C) Ratio 0.905 0.659
Column section mm x mm 200x400 200x300
Concrete strength (fc') MPa 20 20
Table 3.3: Floor slabs reinforcement of the 2-story building
Top and bottom mesh #12@?200
Bar mark Additional top rebars Length (m)
AT1 #12@200 2
AT?2 #22@200 1.5
AT3 #12@200 15
AT4 #22@200 5.5
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Figure 3.18: RC cross-sections used in the design of the 8-story building
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Table 3.4: Vertical members design summary of the 8-story building
Section < €2 &
C1A C1B C2A C2B
Location of section base Floor no.5 base Floor no.5 base
Vertical steel ratio (u%) 2.9% 1.00% 1.63% 1.00% 3.74.%
VL. Reinforcement 20#26 16#14 14#20 12#14 16#25
HL. Reinforcement | #12@200mm | #10@200mm | #12@200mm | #10@200mm | #10@200mm
(D/C) Ratio 0.967 0.721 0.93 0.645 0.81
Pier section mm x mm 300x1200 250x1200 300x900 250x900 300x700
(fc) MPa 20 20 20 20 20
Table 3.5: Floor slabs reinforcement of the 8-story building
Top and bottom mesh #12@200
Bar mark Additional top rebars Length (m)
AT1 #25@250 3
AT2 #22@250 15
AT3 #22@250 6
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Figure 3.19: Typical reinforcement details for the floor slabs of the 18-story and 26-
story buildings
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COREL1 at the foundation level

P1 at the
foundation level
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floor 3
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COREL1 at floor 8

Figure 3.20: RC cross-sections used in the design of the 18-story building
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Figure 3.21: RC cross-sections used in the design of the 26-story building
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Table 3.6: Vertical members design summary of the 18-story building
. P1
ol PIA PiB PIC
Location of section base Floor no.3 Floor no.8
Vertical steel ratio (1%) 3.19% 2.04% 2.1%
VL. Reinforcement 40#40 40#32 32#32
HL. Reinforcement #10-200mm #10-200mm #10-200mm
Links #10-430mm #8-380mm #8-330mm
Design/Capacity (D/C) Ratio 0.987 0.994 0.987
Pier section mm x mm 450x3500 450x3500 350x3500
Concrete strength (fc)) MPa 28 24 20
; Corel
Sl CorelA CorelB
Location of section base Floor no.8
Vertical steel ratio (1%) 1.13% 1.00%
VL. Reinforcement 140#20 100#20
HL. Reinforcement #8-200mm #8-200mm
Links #8-330mm #8-140mm
(D/C) Ratio 0.996 0.701
Core thickness (mm) 250 200
(fc') MPa 24 20
Table 3.7: Vertical members design summary of the 26-story building
Section bl
P1A P1B P1C P1D P1E
Location of section base Floor no.3 | Floor no.8 |Floorno.12 | Floor no.17
Vertical steel ratio (u%) 3.9% 3.11% 1.72% 1.34% 1.00%
VL. Reinforcement 66#40 52#40 42#32 36#26 36#20
HL. Reinforcement #12-200mm | #12-200mm | #8-200mm | #8-200mm | #8-200mm
Links #12-510mm | #12-510mm | #8-380mm | #8-340mm | #8-260mm
(D/C) Ratio 0.998 1.00 1.00 0.922 0.969
Pier section mm x mm 600x3500 600x3500 550x3500 | 550x3500 | 400x3500
(fc") MPa 28 24 24 24 20
Section Salor
CorelA CorelB CorelC
Location of section base Floor no.8 | Floor no.17
Vertical steel ratio (u%) 1.1% 1.0% 1.0%
VL. Reinforcement 160#20 121#20 97#20
HL. Reinforcement #10-200mm | #8-200mm | #8-200mm
links #10-430mm | #8-300mm | #8-190mm
(D/C) Ratio 0.999 0.849 0.572
Core thickness (mm) 300 250 200
(fc') MPa 28 24 20
Table 3.8: Floor slabs reinforcement of the 18-story building
Top & bottom mesh #12@200
Bar mark Additional top rebars Length (m)
AT1 #12@200 45
AT2 #12@200 6
AT3 #12@200 2.5
AT4 #16@200 13
AT5 #12@200 2.5
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Table 3.9: Floor slabs reinforcement of the 26-story building
Top & bottom mesh #12@200
Bar mark Additional top rebars Length (m)
ATl #16@200 4.5
AT2 #12@200 6
AT3 #12@200 25
AT4 #16@200 13
ATS #12@200 25
Table 3.10: Coupling beams reinforcement of the 18-story building
Beam Beam Dimensions Reinforcement
Model | Location Width Depth Diagonal Diagonal Horizontal Vertical
B (mm) | T(mm) bars ties bars ties
CBL | Basel | 250 | 1000 | 25443 | #le@ioo | 14#22@150 | #10@150
(2 layers) (2-legs)
10#20@150 #10@200
CB1 | Floorno.8 200 1000 22#43 #14@150 (2 layers) (2-legs)
Table 3.11: Coupling beams reinforcement of the 26-story building
Beam Beam Dimensions Reinforcement
Model | Location Width Depth | Diagonal Dla_gonal Horizontal bars Ve_rtlcal
B (mm) | T(mm) bars ties ties
CB1 Basel 400 1000 28#43 #16@100 14#22@150 #10@150
(2 layers) (2-legs)
Floor 10#20@150 #10@200
CB1 0.8 300 1000 22#43 | #14@150 (2 layers) (2-legs)
Floor 10#16@200 #10@250
CB1 17 200 1000 16#43 | #12@200 (2 layers) (2-legs)
@ 8400 @ 8400 @ 8400 @ 8400 @ 8400 @
42000
P15
B A, ey | [
® FE S S !
! ! !
S cB2 > gl | Beat7
S S o \
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Figure 3.22: Typical reinforcement details for the floor slabs of the 40-story

buildings
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Table 3.12: Floor slabs reinforcement of the 40-story building
Top & bottom mesh # 12@ 200
Bar mark Additional top rebars Length (m)
AT1 #16@ 200 4.5
AT?2 #20@ 200 6.5
AT3 #16@ 200 25
AT4 #16@ 200 115
AT5 #16@ 200 7
AT6 #16@ 200 13
AT7 #16@ 200 25
Table 3.13: Coupling beams reinforcement of the 40-story building
Schedule of coupling beams for 40 floors
Beam Beam Dimensions Reinforcement
. Width Depth Diagonal Diagonal Horizontal Vertical
Model Location B (mm) | T(mm) bars ties bars ties
Ch1 Basel 400 1000 | 28#43 | #6@100 | 1#22@150 | #10@150
(2 layers) (2-legs)
Cbl | Floorno.9 | 300 | 1000 | 22#43 | #14@iso | 10F19@150 | #10@200
(2 layers) (2-legs)
Cbl | Floornol | 250 1000 | 16443 | #12@200 | 10#16@250 | #10@250
(2 layers) (2-legs)
Cbl | Floorno2o | 200 | 1000 | 14#36 | #10@2s0 | °f14@250 | #10@250
(2 layers) (2-legs)
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Figure 3.24: Typical reinforcement details for the floor slabs of the fire station

C1 at the foundation level C2 at the foundation level
Figure 3.25: RC cross-sections used in the design of the fire station

Table 3.15: Vertical members design summary of the fire station

Section C1 C2
Location of section base base
Vertical steel ratio (u%) 4.0% 3.67%
VL. Reinforcement 10#32 10#29
HL. Reinforcement #12@200mm #10@200mm
Demand/Capacity (D/C) Ratio 0.95 0.9
Pier section mm x mm 400x500 300x600
Concrete strength (fc') MPa 40 40
Table 3.16: Floor slabs reinforcement of the fire station
Top and bottom mesh #12@?200
Bar mark Additional top rebars Length (m)
AT1 #12@200 25
AT2 #12@200 2
AT3 #12@200 3

00 00 ¢
|
.
|

®

I I
| c1 C1j

Figure 3.26: Typical reinforcement details for the floor slabs of the police station
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C1 at the foundation level C2 at the foundation level C3 at the foundation level
Figure 3.27: RC cross-sections used in the design of the police station
Table 3.17: Vertical members design summary of the police station
Section Cl C2 C3
Location of section base base base
Vertical steel ratio (u%) 2.87 % 3.83% 3.89%
VL. Reinforcement 8#29 6#36 8#32
HL. Reinforcement #10@200mm #12@200mm #12@200mm
Demand/Capacity (D/C) Ratio 0.99 0.95 0.97
Pier section mm x mm 300x600 300x500 300x550
Concrete strength (fc') MPa 32 32 32
Table 3.18: Floor slabs reinforcement of the police station
Top and bottom mesh #12@200
Bar mark Additional top rebars Length (m)
AT1 #12@200 2.5
AT?2 #12@200 2
AT3 #20@200 6
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Figure 3.28: Typical reinforcement details for the floor slabs of the hospital
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C1 at floor 2 C2 at floor 2 C3 at floor 2
Figure 3.29: RC cross-sections used in the design of the hospital
Table 3.19: Vertical members design summary of the hospital
Section &t g2 C
C1A C1iB C2A C2B C3A C3B
Location of section base 2nd floor base 2nd floor base 2nd floor
Ve”'c"’ELf,}oe)e' rato | 51706 | 3.49% 2.29% 3.3% 2.56% 3.5%
VL. Reinforcement 14#32 12#32 12#32 10#29 12#32 12#29
HL. Reinforcement #12@200 | #12@200 | #12@200 | #10@200 | #12@200 | #10@200
mm mm mm mm mm mm
(D/C) Ratio 0.96 0.91 0.85 0.9 0.93 0.89
Pier section
500x1000 | 300x900 | 400x900 | 300x600 | 400x900 | 300x900
mm X mm
(fc') MPa 40 40 40 40 40 40
Table 3.20: Floor slabs reinforcement of the hospital
Top and bottom mesh #13@200
Bar mark Additional top rebars Length (m)
AT1 #16@200 4
AT?2 #16@200 2
AT3 #12@200 2
AT4 #16@200 7
AT5 #19@200 4
® 9 6 9 © 0 9 9 9
“——4,5 ‘ 4.5 ‘ 4.5 ‘ 4.5;‘£—4,5—T—4.5 ‘ 45—7——4,5——“
© N SR S G T(:T’ EEs e
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C1 at the foundation level C2 at the foundation level C3 at the foundation level
Figure 3.31: RC cross-sections used in the design of the school
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Table 3.21: Vertical members design summary of the school

Section C1l C2 C3
Location of section base base base
Vertical steel ratio (u%) 2.20% 2.64% 3.14%
VL. Reinforcement 6#29 6#32 10#29
HL. Reinforcement #10@200mm #12@200mm #10@200mm
Design/Capacity (D/C) Ratio 0.9 0.95 0.88
Pier section mm x mm 300x600 300x600 300x700
Concrete strength (fc') MPa 32 32 32

Table 3.22: Floor slabs reinforcement of the school building

Top and bottom mesh #12@?200

Bar mark Additional top rebars Length (m)
AT1 #12@200 2.5
AT?2 #12@200 2
AT3 #19@200 7

3.4 Comments on the Design Results

An iterative design process was adopted during the design of the reference
buildings. This was undertaken by targeting a Demand over Capacity (D/C) ratio as
close as 1.0 to guarantee both safety and cost-effective design. It is important to note
that the design procedure of this study may not be the typical design practice in
everyday applications. In many cases, the overstrength values may be very high and
the demand/capacity ratios may be considerably lower than the unity. Such practices
will not satisfy the optimum design concept where both satisfactory performance and
cost-effective design is achieved. The above-mentioned iterative design process is
therefore adopted in the present study due to the high uncertainty related to the real
design concepts and the level of overstrength exhibited by the building inventory of

the study area.

The design provisions implemented at the construction time of the pre-
seismic code buildings were considered to represent the real case scenario. For
instance, boundary elements were not considered in shear walls and core walls,

unlike the shear walls in modern buildings. This reflects the design provisions and
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construction practices for non-seismically designed buildings which were

implemented in the study area before 1991.

Although pre-seismic code structures, especially multi-story buildings, were
designed to resist gravity and wind loads only, large cross sectional areas were
produced for vertical elements due to the low material strength used in the design.
These large cross sections would add additional mass and stiffness to pre-code
buildings. Along with the lack of efficient reinforcement and detailing, such large
mass will attract higher inertia forces. This will undoubtedly increase their
vulnerability to earthquake loads. On the other hand, wind loads in pre-code low-rise
frame structures were considerably lower than their high-rise counterparts. This
resulted in small cross sections in the former buildings which may increase their

vulnerability under the effect of strong earthquakes.

The effect of considering the lateral loads (i.e. seismic loads in emergency
facilities and wind loads in pre-code structures) in the design of floor slabs was also
investigated. The results confirmed that the difference in the top and bottom
reinforcement may exceed 100%, particularly at the slab supports (i.e. connection to
columns, shear walls and core walls). The difference at the mid-span was marginal.
The results confirmed the significance of considering the lateral loads in the design
of floor slabs, which may be ignored by practicing engineers. Neglecting the lateral
loads in the design of floor slabs may endanger the structure and lead to premature

yielding under the design earthquake.
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CHAPTER 4: MODELING AND INPUT GROUND
MOTIONS

4.1 Fiber Based Modeling

The fibre modeling technique was used to idealize the reference structures for
the multi-degree-of-freedom Inelastic Pushover Analysis and Incremental Dynamic
Analysis using the inelastic analysis platform ZEUS-NL (Elnashai et al., 2012).
ZEUS-NL is a contemporary inelastic analysis software employing the fiber
modeling approach. This program was originally developed at Imperial College
London during the past two decades, and has been comprehensively verified on
member and structure levels against experimental tests carried out in Europe and the
U.S.A. (e.g. Abdelnaby et al., 2014; Jeong & Elnashai, 2005; Kwon & Elnashai,

2006).

Reinforcing steel, confined and unconfined concrete are effectively idealized
to enable monitoring of stresses and strains during the inelastic simulations. Each
structural member is divided into three segments to allow for more accurate
representation of longitudinal reinforcement and prediction of steel yielding,
concrete crushing and shear capacity of structural members (Elnashai & Mwafy,
2002). The verifications of numerical models were conducted by comparing the

periods of vibration of different models used in both design and inelastic analyses.

4.1.1 Material Modeling

A nonlinear constant confinement model was selected to represent the
concrete behavior with a crushing strain, g, of 0.002 and a confinement factor

varying from 1 to 1.2 according to reinforcement detailing. The compressive strength
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concrete, f.’, ranges between 20 to 35 MPa for pre-code structures and between 35 to
40 MPa for emergency facilities. A bilinear elasto-plastic model is used for modeling
the reinforcing steel with a strain hardening rate, puE, of 0.005, Young’s modules, E,
of 200000 MPa and a yield strength, oy, of 240 MPa and 420 MPa for the pre-
seismic code and emergency facilities, respectively. The constitutive relationships of

materials are illustrated in Figure 4.1.

Stress

Strain

»

Compressive Strain

ft

(a) Uniaxial constant confinement (b) Bilinear elasto-plastic steel model
concrete model

Figure 4.1: Material models used in the reference structures idealization (Elnashai et
al., 2012)

4.1.2 Member and Section Modeling

To model each structural member, three Cubic Elasto-Plastic Frame (CEPF)
elements capable of representing the cracking and spread of vyielding were
implemented. The CEPF element can adequately model space frames with geometric
and material non-linearities. For the evaluation of element forces, numerical
integration was performed at two Gauss sections for each CEPF element. For this
purpose, the section at each Gauss point is divided into a number of fibers
(monitoring points), the stress-strain relations of which are considered during the

integration. For single-material sections such as those used for modeling rigid arms,
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50 monitoring points were used. For more complicated sections with several
materials such as those used for modeling walls, columns and beams this number
was increased to 200 or more, to arrive at a more accurate representation of concrete

and steel bars and more reliable response prediction.

The element local x-axis lies on the line defined by the element end nodes
(Figure 4.2). This representation of the structural elements enables the monitoring of
the steel yielding and concrete crushing throughout the element during the inelastic
analysis, with the aid of a post processor in the form of a macro enabled Excel
spreadsheets. Two rigid arms (i.e. the length between the center line and the face of
the vertical element idealizing the wall) were also employed to attach the slab/beam
ends on each side with shear walls. Several cross-sections were used from the ZEUS-
NL library to model slabs, connecting beams, shear walls, cores and rigid arms.
These include RC rectangular, flexural wall, hollow core and steel rectangular cross-
sections, as shown in Figure 4.3. Figure 4.4 depicts a summary of the numerical

modeling approach for the nine reference structures investigated in the present study.
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Figure 4.2: Cubic elasto-plastic 3D frame element (Elnashai et al., 2012)
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(3]
©
A (1]
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T-section Flexural wall section
©
A: External section height
o o a: Stirrup height
B: External section width
b: Stirrup width
Al 5 C: Height of fully confined region
(1) D: Internal stirrup width
d: internal section width
Hollow RC rectangular section Legend

Figure 4.3: Different cross-sections used to model the reference buildings for
inelastic analysis (Elnashai et al., 2012)
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4.1.3 Structural Modeling

ZEUS-NL is capable of effectively performing 3D modeling and inelastic
response history analyses of multi-story structures. The 3D dynamic response
simulations are computationally demanding, this is particularly true for high-rise
structures when assessed using a wide range of input ground motions. Two-
dimensional (2D) idealizations have therefore been adopted for the seismic
assessment of the high-rise wall structures, while 3D models are developed for the
multi-story frame structures, as shown in Figure 4.4. IPAs and IDAs and carried out
to assess the seismic response of the nine reference buildings using the ZEUS-NL

platform described above.

The wall structures were simplified to 2D framing systems, as described in
Figure 4.5. It is assumed that the four Lateral-Force Resisting Systems (LFRSS)
resist the seismic forces in the transverse direction of the 40-story structure, while
one LFRS resists the entire lateral force of the 26 and 18 story structures, as shown in
Figure 4.5 and Figure 4.6. For the 40-story structure, each of the framing systems in
the transverse direction, which are loaded with 25% of the total mass of the building,
consists of two external shear walls and an internal core. The LFRSs in the transverse
direction of the 40-story building is the critical framing system when compared with
the longitudinal counterpart, as confirmed from previous studies carried out on
comparable layouts (Mwafy et al., 2014a). Therefore, the framing system in the

transverse direction is only considered in the IPAs and IDAs discussed hereafter.

The 26 and 18 story structures have symmetric framing systems in both
longitudinal and traverse direction. Therefore one LFRS resists the seismic forces in
both horizontal orthogonal directions, as shown in Figure 4.5(a). This LFRS is

loaded with 100% of the total mass of the building. For the frame structures, since
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3D models are developed, the entire mass of the building is implemented in the

ZEUS-NL models. Gravity loads are applied as point loads at frame element nodes.

The mass is characterized by lumped mass elements and distributed in the same

pattern implemented for gravity loads in the IPAs and IDAs.
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Figure 4.5: LFRSs of shear wall supported structures
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18 story - BO-18

2 story- BO-02

Police station - PS School - SC

Figure 4.6: Developed finite element and fiber based models for reference structures

4.2 Selection of Ground Motions

The dynamic behavior of a structure during an earthquake depends on the

characteristics of the applied earthquake records. Thus, input ground motions are a
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key component of seismic risk studies as they significantly affect the output results
of the fragility curves. Ground motion parameters that are of interest include PGA,
the ratio of peak ground acceleration-to-velocity (a/v), soil condition, magnitude and
epicentral distance. There are three types of ground motion records: (i) real records,
which are recorded from seismic monitoring stations; (ii) synthetic records, which
are generated using seismological models with pre-determined ground motion
parameters; and (iii) artificial records, which are generated to match a target
spectrum (Yamamoto & Baker, 2013). When performing a seismic risk study, it is
preferable to use real ground motions retrieved from local and regional sources in the

area of interest.

Based on the results of recent seismic hazard assessment studies by Khan et
al. (2013), Shama (2011), Aldama-Bustos et al. (2009), Mwafy et al. (2006),
Sigbjornsson and Elnashai (2006) and Abdalla and Al-Homoud (2004), the following
conservative design criteria for the study area (Dubai, Sharjah and Ajman, UAE)
were adopted:

e A conservative design PGA of 0-16g was adopted for the study area based on the
derived hazard curve for Dubai by Sigbjornsson and Elnashai (2006). This value
represents the design PGA for a 10% probability of exceedance in 50 years, which
represents a mean return period of 475 years.

e Dubai and the Northern Emirates are vulnerable to two different seismic
scenarios: (i) severe earthquakes with a relatively long epicentral distance; and (ii)
moderate events with short source-to-site distance, typically originating from local

seismic faults.
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Based on the above-mentioned criteria, two sets of earthquake records
representing the study area were selected for inelastic dynamic simulations. Both the
PEER Ground Motion Database (PEER, 2013) and the European Strong-Motion
Database (Ambraseys et al., 2004) were thoroughly searched to select 40 natural
records that represent the aforementioned earthquake scenarios, namely far-field
records and near-source events (e.g. Mwafy et al., 2006). Basically, the selection was
conducted on two stages. Stage one: initial filtering, and stage two: response spectra
matching. For stage one, the filtering of databases was carried out according to pre-
defined criteria which represent site specific properties. These criteria are:

(i) epicentral distance,
(i) magnitude,

(iii)  soil condition,

(iv) PGA, and

(v)  alvratio.

The above mentioned criteria however represent the first stage of attaining
the natural records, which resulted in about 500 records. Stage two includes plotting
the spectral acceleration for each of these records against the design code spectra of
the study area (ADIBC, 2013). The response spectra of the selected records was
extracted and scaled to the recommended design intensity of the study area (i.e. a
PGA of 0.16g). In the latter stage, 20 near-source records matching the short period
portion of the code response spectra, and 20 far-field records matching the long
period portion, were selected for IDAs, as described in Figure 4.7. The response
spectra of the selected 40 input ground motions, that represent the near-source and
far-field seismic scenarios with the current design spectra for the study area for soil

classes C and D, are illustrated in Figure 4.8 and Figure 4.9. Table 4.1 and Table 4.2
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show a summary of the selected near-source and far-field records, respectively. The

acceleration time-histories of the selected natural records for the two scenarios are

depicted in Figure 4.10 and Figure 4.11.
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Selected near-source records
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Figure 4.11: Selected far-field records
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Figure 4.11 (Cont’d): Selected far-field records



Chapter 4: Modeling and Input Ground Motions 87

4.3 Concluding Remarks

Two and three-dimensional idealizations for wall and frame structures,
respectively, were developed using ZEUS-NL to assess the seismic response of the
nine reference buildings using IPAs and IDAs. The reference wall buildings were
idealized based on the LFRSs in the transverse direction, while 3D models were
developed for frame structures. The LRFSs in the transverse direction of the
reference structures were considered in the present study as compared to the
longitudinal counterpart due to the higher vulnerability in the former direction. In
this modeling approach, different structural elements and material properties were
represented at the member and the section levels. This enabled monitoring of the
stress/strain response in different structural elements throughout the multi-step

analysis.

Forty natural input ground motions were carefully chosen and employed in
the present study to effectively account for the uncertainty in ground motions. These
scenario-based earthquake records were selected based on a number of criteria to
represent the study area. The selected records were scaled to the design ground
motion intensity based on the recommendations of previous seismic hazard studies
before applying to the reference structures. This approach ensures that the reference
structures were assessed under input ground motions representing diverse seismic

scenarios representing the study area.
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CHAPTER 5: PERFORMANCE ASSESSMENT
OF EXISTING STRUCTURES

5.1 Introduction

The baseline models of the nine reference structures considered in the present
study were subjected to a series of Eigenvalue analyses, IPAs and IDAs to assess
their seismic performance. These analyses were entirely performed using detailed
fiber-based numerical models (Elnashai et al., 2012). The ZEUS-NL platform
accounts for material inelasticity and geometric non-linearity, as discussed in
Chapter 4. It is noteworthy that the 3D ETABS models for the reference structures
were only used in the design process, as explained in Chapter 3. The following
analyses were carried out using ZEUS-NL for the nine reference buildings:

e Free vibration (Eigenvalue) analyses;
e IPAs using different lateral load patterns;
e Extensive IDAs using the 40 natural ground motions representing two seismic

scenarios, as discussed in Chapter 4.

In total, over 5000 inelastic multi-step analyses of nine multi-degree-of-
freedom systems were performed and their large output files processed and stored in
spreadsheets. The results of these analyses were used in the seismic vulnerability
assessment of the nine reference buildings using fragility relationships. Moreover,
about 3000 additional analyses were performed to assess the vulnerability of the
structures that proved to have unsatisfactory performance, and hence retrofitted using
different mitigation techniques. The results of the retrofitted structures will be

discussed in Chapter 6.
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5.2 Free Vibration Analysis

The Eigenvalue analysis was performed to extract the natural frequencies and
mode shapes of a structure. This analysis is important as a predecessor to dynamic
analysis because knowledge of the natural frequencies and mode shapes helps to
provide insights into the dynamic response. In the free vibration analysis, the
stiffness and mass distribution of the structure are needed to run the analysis without
the application of loads. The results of mode shapes and elastic periods in the
transverse directions are only utilized in the present study as it is the most vulnerable

direction when compared with the longitudinal direction, as discussed in Chapter 4.

The ETABS 3D models developed for the design of the nine reference
buildings were utilized for verifying the ZEUS-NL 2D/3D models before performing
the extensive inelastic pushover and time-history analyses. Table 5.1 summarizes the
periods of the nine reference buildings from both the fiber-based and design models.
It is clear that the periods of the design models are slightly longer (within 13%
difference) than the periods of the fiber-based models. This difference is justified by
the consideration of actual material strength values and steel reinforcement in the
fiber-based models, which increase stiffness and shorten periods. Even though the
2D fiber-based models developed using ZEUS-NL for the wall structures do not
account for the vertical elements at boundaries, which have marginal lateral stiffness,
the results verify the adopted modeling approach. It is important to note that ZEUS-
NL fiber-based models are used for assessing the capacity in the post-elastic range
and predicting the inelastic seismic demand of the nine reference buildings, as

discussed hereafter.

Figure 5.1 and Figure 5.2 portrays the first three modes of vibration for the

five pre-code structures and the four emergency facilities, respectively. These results
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are obtained from the ZEUS-NL fiber element models discussed in Chapter 4. The
Eigenvalue analysis is also used as a preliminary verification tool of the inelastic

analysis models, as discussed in a subsequent section.

It is noteworthy that the reference structures are modeled using ZEUS-NL by
employing different idealization approaches. The 40-story building is divided into
four framing systems in the transverse direction, while each of the 18 and 26 story
buildings are represented by one framing system. Moreover, 3D models are
employed in the case of the frame buildings, including the 2 and 8 story buildings
and the four emergency facilities. It is interesting to note that despite the different
modeling approaches for the nine reference structures, the difference observed
between the fundamental periods obtained from the ETABS 3D and the ZEUS-NL
2D/3D models in the transverse direction is less than 13% as shown in Table 5.1.
This difference is mainly due to efficiently representing the reinforcement in the
ZEUS-NL models in addition to employing the actual/mean material strength values
in the ZEUS-NL models instead of the nominal/characteristic strength used in the
design. The Eigenvalue results verify the numerical models and lend weight to the

results obtained from the present study.

Table 5.1: Summary of buildings fundamental periods (T1) from fibre-based and
design models

Category Building T, Fiber-based models | T,, Design models | Difference (%)

BO-02 0.780 0.880 12.8%
28 BO-08 1.344 1.396 3.9%
g ‘§ BO-18 1.432 1572 9.8%
T F BO-26 2.370 2.457 3.7%

BO-40 3.901 3.755 3.7%
> 0 FS 0.746 0.764 2.4%
&= PS 0.656 0.702 7.0%
GE) th SC 0.817 0.891 9.1%
w HO 1.294 1.365 5.5%
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5.3 Inelastic Static Pushover Analysis

The inelastic pushover analysis was conducted for the case study buildings to
estimate the lateral strength and deformation capacity, and to identify the possible
failure mechanisms of the buildings. This analysis procedure reduces the
computational effort significantly as compared with IDA, which requires the use of a

wide range of input ground motions as well as scaling and applying each record

incrementally up to collapse. Displacement-controlled pushover analyses are
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conducted for the fiber-based models of the nine case study buildings. This analysis
involves applying the distributed gravity load to the structure and then applying an
increasing lateral loads. A predefined lateral load pattern such as uniform or inverted
triangular loads is distributed along the building height. The analysis is carried out
until a predefined limit state or a target displacement of the structure is attained,
while controlling the top displacement. With the incremental increase in the
magnitude of lateral loading, probable weak areas along with failure modes of the

structure can be spotted.

The pushover analysis is used to verify the structural performance of
buildings, including for the following purposes: (i) to estimate the lateral capacity of
the structure by plotting the total base shear versus top displacement, which helps
capturing premature weakness or failure; (ii) to estimate the distribution of inter-
story drift that accounts for the lateral strength and stiffness; (iii) to estimate and
verify the overstrength values at different strength levels; and (iv) to estimate the

expected plastic hinges, damage and failure mechanisms to the structure.

5.3.1 Estimation of Lateral Capacity

The response of the reference structures is examined under two lateral
loading patterns, namely a uniform lateral load distribution (PU), which is used for
the wall structures, and an inverted triangular lateral load pattern (PT), which is
considered in the case of frame structures. The PT load pattern represents the
deformed shape of the structure when it vibrates in its fundamental mode. This load
distribution is suitable for low-rise structure. The PU load pattern represents the
distribution of the mass of the structure, and is more suitable for obtaining

conservative estimates of the lateral capacity of multi-story buildings (Mwafy &
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Elnashai, 2001). The lateral strength, first yield in structural elements, global yield
and first local failure were monitored and mapped on the lateral capacity curves of

the reference structures, as shown in Figure 5.3 to Figure 5.5.

The global yield was evaluated from an elastic-perfectly plastic idealization
of the capacity envelopes. The initial stiffness was estimated as the secant stiffness
passing through the capacity envelope at 75% of the ultimate strength (Park, 1988).
In this approach, it is considered that the global yield is the starting point of the post-
elastic branch. The ultimate capacity of the structure is calculated at the maximum
base shear, as shown in Figure 5.3 to Figure 5.5. It was shown from the results that
the steel yielding starts in horizontal structural elements and is followed by vertical
elements in all reference structures expect the 2, 8 and 18 story buildings, which
represent deficiencies in pre-code structures. The large wall sections in the 26 and 40
story buildings prevented the yielding in vertical elements occurring first. Inter-story
drift ratios were also studied for any possible strength or stiffness deficiencies, as
shown in Figure 5.6 and Figure 5.7. The results indicate that although the pre-code
structures have moderate IRDs at their ultimate strength, their deformations increase
rapidly afterwards, particularly for frame structures. This is clear from the rapid

strength degradation shown in Figure 5.3.
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Figure 5.5: The capacity curves of the emergency structures
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Figure 5.6: Distribution of inter-story drift ratios of the pre-code structures at the

ultimate strength
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Figure 5.7: Distribution of inter-story drift ratios of the emergency structures at the
ultimate strength

5.3.2 Monitoring of Member Yielding and Failure

Predicting the development of plastic hinges caused by excessive loads such
as earthquakes plays a significant role in evaluating maximum stable deformation
capacities of concrete structures. Plastic hinging is defined in the present study when
the strain at the outermost layer of the main steel reinforcement surpasses the yield
strain of the steel. The steel yielding development is determined under the uniform

and inverted triangular load distributions for the wall and frame structures,
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respectively. Figure 5.3 to Figure 5.5 indicate that pre-code structures experience
poor performance, especially for the low-rise buildings. Plastic hinges in the 2, 8 and
18-story buildings occur in vertical elements first, then are followed by horizontal
elements due to the absence of capacity design. The 26 and 40-story buildings do not
experience such poor performance due to vertical element large capacities. For
emergency facilities, the first yield always occurs in the horizontal elements before
vertical members. This strong-column weak-beam concept is in agreement with the
code principle of having energy dissipation concentrated in horizontal elements. The
mapping of steel yielding in the reference structures is illustrated in Figure 5.8 and

Figure 5.10.

Concrete crushing in vertical elements is defined when the strain of the
confined concrete region reaches the crushing strain of concrete, which is estimated
as per Mander et al. (1988). Figure 5.9 and Figure 5.11 demonstrates the spread of
concrete crushing in walls and columns in the pre-code and emergency structures,
respectively. It is noticeable that crushing typically occurs at the base of the vertical
elements or where an observable reduction in the section capacity is implemented in
the design. Concrete crushing is also observed at higher stories in certain buildings,
which is consistent with the results of previous studies (e.g. Di Ludovico et al.,

2008).

It was shown from the mapping of plastic hinges all over the framing systems
of the reference structures that emergency facilities have a lower number of plastic
hinges in vertical structural members than pre-code structures. The latter category
represents buildings that lack efficient LFRSs unlike the emergency facilities which

characterize well-designed structures. The above-mentioned observations for the
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seismic performance of each category of the investigated buildings are emphasized

from the incremental dynamic analyses as presented in subsequent sections.
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Figure 5.10: Plastic hinge distributions in the vertical structural elements of the
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5.4 Incremental Dynamic Analysis

Conventional IPA cannot represent the dynamic behavior of structures with a
large degree of precision since it is based on a predefined lateral load distribution. It
may not capture some important deformation modes that occur in a structure
subjected to severe earthquakes, particularly for long period and irregular structures.
To overcome the shortcomings of pushover analysis, extensive IDAs are carried out

for the nine reference structures.

In concept, the IDA is a computational analysis method which is used to
evaluate precisely the performance of structures under seismic loads with increasing
severity. This analysis includes executing multiple non-linear inelastic response
history analyses of a structural model under a suite of selected ground motion records
(40 in the current study); each is scaled to several levels of seismic intensity (e.g.
Mwafy & Elnashai, 2001; Vamvatsikos & Cornell, 2002a). A set of wisely selected
ground motion records to outfit the hazard/design spectra of the study area helps to
provide a precise evaluation of the seismic performance of structures. The scaling
levels are properly selected to force the structure through the entire range of
behavior, from elastic to inelastic and lastly to global dynamic instability, where the
structure experiences collapse. Suitable post processing can illustrate the results in
terms of an IDA curve for each ground motion record. Additional results were
obtained for IDA such as the base shear and top displacement histories as well as the
distribution of IDR with respect to the building height. The stress-strain response is
also processed to assess the formation of plastic hinges of structural elements, which

is a method for evaluating limit states.
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A significant time and effort is dedicated for conducting the IDAs, which is
performed for each of the nine reference structures using the selected forty natural
far-field and near-source ground motions, as discussed earlier. For the far-field
records, each record is incrementally scaled from a PGA of 0.08g t01.20g using a
scaling factor of 0.08g. For the near-source input ground motions, the records are
scaled from a PGA of 0.32¢g to 4.8g using a scaling factor of 0.32g. This is intended
to capture the structural behavior at diverse limit states until the structure reaches
collapse. The local and global response parameters of the nine reference structures
such as IDR, top displacement, base shear and member yielding and, failure are

therefore obtained from over 5000 IDAs.

Figure 5.12 and Figure 5.13 present sample results of the IDR distributions
for the nine reference buildings at twice the assumed design PGA (i.e. 0.32g) and
half the design PGA (0.08) for near-source and far-field records, respectively. It was
observed from the IDA sample results that the IDR distributions vary based on the
characteristics of each seismic scenario. The effect of higher modes of vibration is
more pronounced under the effect of the near-source records, as compared to the far-
field counterpart. Indeed, these results show the higher deformations and
vulnerability of the reference structures under the effect of far-field seismic scenario

as compared to the near-source counterpart.
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5.5 Performance Criteria

Seismic performance criteria for structures, which are related to the level of
non-structural and structural damage, have received attention in recent years.
Therefore defining reliable performance criteria is critical when performing a
fragility analysis. Recent studies and design guidelines have used IDR for the
evaluation of structural damage. Design guidelines provide a detailed description of
the expected structural damage at each performance level (e.g. ASCE/SEI-41, 2013).
Damage patterns and failure modes are influenced by the relative size and aspect
ratio of components that include frames, shear walls and other core systems as well
as the overall configuration of the building. The analytical fragility assessment
requires a suitable way to track damage patterns for the evaluation of system
response. The performance criteria considered in this study are Collapse Prevention,
(CP) Life Safety (LS) and Immediate Occupancy (10O), as discussed in Chapter 2

(ASCE/SEI-41, 2013; SEAOC, 1999).

Studying the structural performance at both the global and local response
levels provides a clear understanding of the behavior of the structure during an
earthquake. The local and global seismic behavior of the reference structures are
therefore assessed using IPA and IDA to provide insights into performance limit
states. Along with a comprehensive literature review on performance limit states,
extensive post processing of the time history analysis results was performed in order
to select acceptable values, taking into consideration refined approaches for seismic
performance assessment. These assessment methods and approaches are described in

detail in subsequent sections.
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5.5.1 First Yield and Crushing using IPA

Figure 5.3 to Figure 5.5 depict the IPA results, including mapping the local
response with the global capacity envelopes for the nine reference buildings. The
global yielding and first concrete crushing are shown in the abovementioned figures.
Figure 5.8 to Figure 5.11 show a wide spread of plastic hinges for the nine reference
buildings unlike concrete crushing which is limited to certain locations. The concrete
crushing is observed at a high level of loading mainly at the foundation levels and at
the capacity changes of vertical elements. Despite considering wind loads in the
design, the results show the wide spread of plastic hinges of pre-seismic code
buildings. On the other hand, emergency facilities show fairly good performance and
fewer numbers of plastic hinges, particularly in vertical elements, as a result of

adopting design provisions and higher risk category.

5.5.2 Strength Degradation using IPA

A 10% reduction in ultimate strength is considered as an approach to define
the CP limit state. This approach was proposed by Park (1988) and implemented in
previous studies (e.g. Mwafy & Elnashai, 2001). As shown from Figure 5.3 to
Figure 5.5, this condition was not satisfied in the reference structures except for the
pre-code frame buildings. Shear wall structures do not reach such degradation in
strength due to their lateral force design to wind loads, which result in large wall and
core cross section and reinforcement. Moreover, emergency facilities are designed to
modern seismic provisions. Hence, this category of buildings does not experience
rapid strength degradation. Figure 5.14 illustrates the 10% strength reduction of the

8-story building which is observed at an IDR of 2.96%.
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Figure 5.14: 10% reduction in strength for the 8-story building

5.5.3 Shear Response using Time History Analysis (THA)

Acceptable seismic response of RC structures entails that brittle failure
modes be prevented. Since it is common practice to depend on the ductile inelastic
flexural response of plastic hinges to reduce the strength requirements for structures
responding to strong seismic attacks, it is necessary to inhibit the brittle shear failure
modes by ensuring that shear strength exceeds the shear corresponding to maximum
feasible flexural strength. Exceptional care is needed when plastic hinges form in
columns because the shear strength is a function of the flexural ductility. As plastic
hinge rotations/curvature increase, the widening of flexure-shear cracks reduces the
capacity for shear transfer by aggregate interlock, and the shear strength is reduced

(Priestley et al., 1994).

Since pre-code structures lack efficient transverse reinforcement, as they
were designed without taking into consideration seismic loads, shear failure may
govern the selection of certain limit states. Figure 5.15 and Figure 5.16 present
sample results for the shear demand versus capacity of an internal column in the 2

and 8-story buildings, respectively. The results presented are for critical long-period
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input ground motions, which are scaled to a high intensity level corresponding to the
CP limit state. The experimentally verified shear strength model used to check the
shear failure possibility in structural members was proposed by Priestley et al.
(1994). The shear strength obtained using the design code is also shown as a

reference (BS8110, 1986).

For the 2-story building, the results of the former model clearly show a
significant drop in shear strength due to increasing ductility to a level that matches
the code shear strength. It is shown from these sample results that the columns of the
reference structures are dominated by flexure rather than shear, as the demand does
not exceed either of the Priestley or the code shear strength models. It is important to
note that to arrive at a final decision regarding the significance, or otherwise, of shear
as a controlling failure criterion in seismic loss estimation, a comprehensive shear
assessment study using diverse input ground motions and a wide range of buildings
with different systems should be undertaken. Such a study is urgently needed for

future research.
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Figure 5.15: Shear response of an internal column in the 2 story building (‘Chi-Chi-
TAPO10’ input ground motion and a PGA of 1.5 the design value)
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5.5.4 First Yield and Crushing using THA

Based on THA, first steel yielding and concrete crushing are monitored and
investigated. Post-processors and spread sheets are utilized for monitoring the local
and global performance criteria during THA. A representative structure from each
building category is investigated as follow: (i) the 8-story building to represent pre-
code frame structures, (ii) the 26-story building to represent pre-code shear wall
structures, and (iii) the 6-story hospital building to represent emergency facilities.
The most critical seismic scenario is considered for obtaining the IDR value
associated with the first steel yielding in any structural element, or concrete crushing
in confined concrete in vertical elements, which are associated with the 10 and CP
limit states, respectively. The 16, 50 and 84 percentiles are obtained based on the
results of the twenty far-field records. Generally, the 16 percentile is considered in
the present study to represent a conservative limit state. Table 5.2 depicts the first

steel yielding that occurred in structural elements during THA, which is considered
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as the 10 limit state, while Table 5.3 illustrates the concrete crushing that occurred in

vertical elements which is considered as the CP limit state.

Table 5.2: First steel yielding in three representative reference structures using THA
and 20 input ground motions representing far-field seismic scenario

8-story 26-stor Hospital

No. | Record ref. 527y TIDR(%)| PGA(q) |IDR(%)| PGA(q) | IDR(%)
1 FF1 0.08 0.52 0.16 0.31 0.24 0.81
2 FF2 0.08 0.41 0.08 0.34 0.16 1.21
3 FF3 0.16 0.47 0.16 0.34 0.24 1.78
4 FF4 0.16 0.45 0.16 0.33 0.32 0.86
5 FF5 0.16 0.47 0.16 0.33 0.24 0.87
6 FF6 0.16 0.35 0.16 0.33 0.16 0.76
7 FF7 0.16 0.46 0.16 0.35 0.24 0.81
8 FF8 0.16 0.47 0.16 0.28 0.16 0.91
9 FF9 0.16 0.63 0.16 0.37 0.16 1.16
10 FF10 0.08 0.35 0.08 0.17 0.24 1.34
11 FF11 0.16 0.43 0.16 0.34 0.24 0.64
12 FF12 0.16 0.39 0.16 0.31 0.48 1.07
13 FF13 0.16 0.45 0.08 0.32 0.56 1.26
14 FF14 0.08 0.55 0.16 0.31 0.24 0.81
15 FF15 0.08 0.70 0.08 0.33 0.16 0.88
16 FF16 0.08 0.60 0.08 0.33 0.16 1.01
17 FF17 0.08 0.54 0.16 0.32 0.16 1.13
18 FF18 0.08 0.47 0.16 0.31 0.24 0.93
19 FF19 0.08 0.55 0.16 0.35 0.24 0.85
20 FF20 0.08 0.40 0.16 0.30 0.24 1.01
16 percentile 0.395 16 percentile 0.32 16 percentile 0.773
50 percentile 0.475 50 percentile 0.39 50 percentile 0.978
84 percentile 0.571 84 percentile 0.48 84 percentile 1.236

Table 5.3: First confined concrete crushing in vertical elements in three
representative reference structures using THA and 20 input ground motions
representing far-field seismic scenario

8-story 26-story Hospital

No. | Record ref. ™52y [IDR (%)| PGA(q) | IDR(%) | PGA(q) | IDR (%)
1 FF1 0.24 4.06 0.24 1.044 0.24 3.830
2 FF2 0.16 3.57 0.16 0.565 0.16 2.980
3 FF3 0.24 3.44 0.16 0.495 0.24 1.630
4 FF4 0.32 1.81 0.32 1.015 0.32 3.010
5 FF5 0.24 2.5 0.24 0.626 0.24 3.060
6 FF6 0.16 3.01 0.16 1.261 0.16 2.460
7 FF7 0.24 3.9 0.24 0.880 0.24 3.210
8 FF8 0.16 3.18 0.16 0.688 0.16 3.140
9 FF9 0.16 3.65 0.16 0.536 0.16 2.980
10 FF10 0.24 3.04 0.16 1.008 0.24 3.260
11 FF11 0.24 3.05 0.24 0.747 0.24 3.240
12 FF12 0.48 3.57 0.32 0.880 0.48 3.110
13 FF13 0.56 3.19 0.24 0.588 0.32 2.650
14 FF14 0.24 2.63 0.24 1.218 0.24 3.240
15 FF15 0.16 3.35 0.16 0.565 0.16 3.400
16 FF16 0.16 3.93 0.16 1.037 0.16 3.380
17 FF17 0.16 3.48 0.16 0.956 0.16 2.880
18 FF18 0.24 4.02 0.24 0.846 0.24 3.560
19 FF19 0.24 3.75 0.24 0.495 0.24 2.950
20 FF20 0.24 3.98 0.24 0.956 0.24 2.720
16 percentile 2.96 |16 percentile| 1.784 16 percentile 2.91
50 percentile 3.38 |50 percentile| 2.271 50 percentile 3.16
84 percentile 4.00 |84 percentile|] 2.890 84 percentile 3.44
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5.5.5 Global Yield and Collapse using IDA Curves

In order to generate the IDA curves, an equivalent time period for each of the
nine reference structures is calculated. The equivalent period is used to obtain the
corresponding spectral acceleration for the twenty far-field earthquake records. The
equivalent periods are calculated from the first three inelastic periods weighted by
the mass participation ratios obtained from a Fourier analysis of the top inelastic
response (Table 5.4), (Al Waile et al., 2014). Vamvatsikos and Cornell (2002b)
proposed an approach for estimating the 10 and CP limit states from IDA curves. In
this method, the 10 limit state is at the first slope change in the linear part of the
curve. The CP performance criterion is set at a 20% reduction in slope. Figure 5.17

shows the IDA curves for three representative buildings.

Table 5.4: Equivalent periods for nine reference structures

@ | Elastic period Mass Participation (MP, %) Inelastic period at the design

£ SMP earthquake value g
- e
@ | T1| T2 | T3 | Model | Mode2 | Mode3 (%) T1 T2 T3 ’
2-St |0.78/0.28| -- 96 4 - 100 1.71 0.50 - 1.66
8-St [1.34/0.42|0.22 79 11 5 94.74| 2.73 0.86 454 12.61
18-St |1.43/0.33|0.13 69 16 5 90.75| 2.73 0.71 0.33 |2.24
26-St|2.37|0.59|0.25 67 17 6 89.88| 3.94 1.04 050 |3.18
40-St|3.90|1.07|0.48 63 16 7 86.42| 6.83 1.79 0.78 |5.41
FS |0.75|0.18| -- 93 7 - 99.97| 0.94 0.23 - 0.89
PS |1.29|0.17| -- 93 7 - 99.95| 1.15 0.31 - 1.10
SC |0.66|0.23]0.12 86 12 2 99.96| 1.53 0.40 0.18 |1.36
HO |0.82|0.60|0.22 72 14 4 90.18| 2.73 0.76 0.49 |2.31

"Toq= X T*MP;
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Figure 5.17: CP limit states for three representative buildings using 20 far-field
records
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5.5.6 Selection of Limit States

The performance criteria adopted in the present study takes into consideration
the results presented in previous sections as well as those recommended by the code
provisions and previous experimental and analytical studies presented in Chapter 2,
as follows:

e For the pre-code frame and wall structures, the 10 limit states are determined
from the IDA curves based on the 16 percentile of the IDR at the first indication
of non-linear response (Vamvatsikos & Cornell, 2002a).

e The IDA results indicated a significantly higher limit states compared with
previous studies. Hence, the CP limit state of pre-code frames is determined
based on the first crushing in confined concrete and 10% strength reduction of
ultimate capacity, which are obtained from THA and IPA, respectively (Mwafy
& Elnashai, 2001; Park, 1988). The strain corresponding to the crushing of
confined concrete is obtained as per Mander et al. (1988).

e For the pre-code wall structures, the CP performance limit state is determined
from THA based on the 16 percentile of the IDR at the first indication of
crushing in the confined concrete of shear walls. The THA results are considered
since this analysis is more reliable compared with IPA for high-rise structures.

e For emergency facilities, the IDA results indicated significantly higher limit
states compared with previous studies (Dymiotis et al., 1999; Ghobarah et al.,
1999a). Therefore, the 10 limit state is selected based on the conclusions of
design provisions and a previous study that covered a wide range of well-
designed structure with different characteristics (ASCE/SEI-41, 2013; Ashri &

Mwafy, 2014).
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e The CP limit state is determined according to the statistical analysis of several

previous test results (Dymiotis et al., 1999).

e Finally, the LS performance level is generally considered 50% of the CP value

(ASCE/SEI-41, 2013).

Table 5.5 summarizes the literature review and results of the present study,

which are used to select different limit states. All of the selected performance criteria

are consistent with the results obtained from the current study, previous experimental

studies (e.g. Dymiotis et al., 1999; Ghobarah et al., 1998; Wood, 1991); previous

analytical studies (Ghobarah et al., 1999a; Liel et al., 2010; Ramamoorthy et al.,

2008), and the code provisions (ASCE/SEI-41, 2013).

Table 5.5: Summary of IDRs corresponding to different limit states

Reference Structure
Emergenc
Selection Approach Pre-code Frames Pre-code Walls Facilgi tiesy
Limit State*- Interstory Drift Ratios, IDRs (% *
10 LS CP 10 LS CP 10 LS CP
ASCE-41, 2007 0.50 1.00 2.00 1.00 2.00 4.00
¢ | Ghobarah, 1998 1.00 2.00 3.28
S | Wood, 1991 - 16% 1.36
(_"’6 Wood, 1991 - 50% 1.88
% Wood, 1991 - 84% 2.60
E | Dymiotis et.al., 1999 - 16% 1.90
§ Dymiotis et.al., 1999 - 50% 4.00
uw | Dymiotis et.al., 1999 - 84% 6.70
» | Ghobarah et.al., 1999 0.70 110 250 040 1.80 3.00
% Ramamoorthy et.al., 2008 - 16 % | 0.33 0.56
% Ramamoorthy et.al., 2008 - 50 % | 0.50 0.98
'S | Ramamoorthy et.al., 2008 - 84 % | 0.75 1.71
S| Lieletal., 2010 - 16 % 3.26
§ Liel etal., 2010 - 50 % 4.17
Liel et.al., 2010 - 84 % 5.34
IPA, first yield and crushing 0.67 3.74 | 0.33 159 | 0.85 3.67
- IPA, 10% strength reduction 2.96
S | THA-16% 0.40 2.96 | 0.32 1.78 | 0.77 2.91
2 | THA -50% 0.48 3.38 | 0.39 2.27 | 0.98 3.16
S | THA - 84% 0.57 4.00 | 0.48 2.89 | 1.24 3.44
5 IDA - 16% 0.39 4.13 | 0.34 2.83 | 0.65 6.49
IDA - 50% 0.57 5.43 | 0.62 3.83 | 1.00 8.79
IDA - 84% 0.84 7.14 | 1.13 518 | 1.54 11.9
Selected Limit State 039 148 29 |034 089 1.78 |1.00 2.00 4.00

10: Immediate Occupancy, LS: Life Safety, CP: Collapse Prevention
IPA: Inelastic Pushover Analysis, THA: Time History Analysis, IDA: Incremental Dynamic Analysis

“LS limit state is considered 50% of the CP counterpart
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5.6 Derivation of Fragility Relationships using IDA

The fragility curve is a plot of the PGA along the horizontal axis versus the
probability of exceedance along the vertical axis. Fragility curves account for the
uncertainty and variability related to capacity and demand. These relationships are
substantial for the assessment of monetary losses and taking seismic retrofit
decisions. The possible approaches for deriving fragility curves were discussed in
Chapter 2. It was concluded that generating damage data using inelastic multi-
degree-of-freedom simulations is the most accurate and cost-effective option. Hence,
this approach is adopted in the current study. In terms of time and effort, this option
is computationally demanding since a large number of analyses are required in order

to represent the ground motion uncertainty.

Fragility curves can be directly incorporated with seismic hazard maps and
inventory data using earthquake loss estimation software to provide a tool for
formulating risk reduction policies. The following six constituents are needed for
deriving fragility relationships:

(i)  Selection and design of reference structures;

(i) Developing of analytical models and selection of analysis procedure;
(ili) Uncertainty modeling and selection of input ground motions;

(iv) Selection of performance criteria;

(v) Selection of an approach for deriving fragility functions; and

(vi) Selection of scaling approach.

The first five components were already covered in detail in Chapters 2 to 5.
Several intensity measures were used and employed in previous studies such as the
design PGA, Spectral Acceleration (S,), and Spectral Displacement (Sq). The input
ground motions are scaled in the present study using their PGA, which is selected as

the input ground motion intensity for deriving vulnerability relationships. Scaling
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earthquake records using their PGAs in the inelastic simulations relates the seismic
forces directly to the input accelerations. This simple scaling approach agrees with
the method adopted by design codes, and therefore used in several previous studies

(ASCE-7, 2010; Kwon & Elnashai, 2006; Mwafy et al., 2014a; Mwafy, 2012b)

To account for the input ground motion uncertainty, forty natural ground
motions (20 far-field and 20 near-source) were selected in the present study to
represent the most critical seismic scenarios in the study region, as explained in
Chapter 4. For the derivation of vulnerability relationships using IDAs, the nine
analytical models of the reference structures are combined with the forty input
ground motions. Each input ground motion is scaled to different intensity (PGA)
levels. The inelastic response history analyses are carried out for the nine reference
structures up to the fulfillment of the 10, LS and CP performance levels discussed
earlier. A PGA scaling increment of 0.08g, which corresponds to half the design
earthquake and 0.32g, which corresponds to twice the design PGA, are selected for
far-field and near-source records, respectively. To attain all limit states, more than
fourteen analyses are conducted for each building-input ground motion in each of the
two seismic scenarios, starting from a PGA of 0.08g and ending with a PGA of 1.20g

for far-field records, and from 0.32g to 4.8g for near-source records.

A large number of IDAs are performed to develop the fragility functions of
the nine reference structures. The developments of plastic hinges and concrete
crushing in various structural elements are traced. In addition, monitoring global
response parameters such as IDR, top displacement and base shear is conducted in
order to provide more understanding into the level of structural damage. As shown in
Figure 5.18, 280 response points (PGA versus IDR) are plotted for each of the nine
buildings from each seismic scenarios. Response results recorded far beyond collapse

were excluded in the regression analysis and the development of fragility curves.
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Regression analyses were performed for IDA results to develop fragility

relationships.

Figure 5.18 shows the statistical distributions employed to estimate the
probability of exceeding each of the selected limit states at different ground motion
intensity levels. The vulnerability curves are generated by plotting the probability
values versus PGAs. The fragility relationships of the reference structure are shown
in Figure 5.19. The results show that the steepness of the fragilities decreases as the
limit state changes from 10 to CP. For pre-seismic code buildings, the probability of
exceeding different limit states is higher for low-rise frame buildings. This indicates
that earthquakes have less impact on high-rise wall structures. This statement is
confirmed under the effect of both severe distant and moderate close events. This is
attributable to the efficiency of shear walls in controlling drift and to the lower
contribution of the fundamental mode of vibration to seismic response with an

increase in the building height.

The wvulnerability curves generally reflect the differences between the
fragilities obtained from the two seismic scenarios (far-field and near-source)
employed in the present study. Under the effect of the far-field ground motions, the
slopes are sharper and the probability of exceeding various limit states is much
higher compared with near-source events. This is more pronounced in the pre-code
frame structures. The seismic response of the pre-code high-rise buildings (i.e. 18, 26
and 40 stories) is acceptable at the design PGA when subjected to the near-source
records, as shown in Figure 5.19 (f, h and j). The results confirm that the earthquake
scenario has a significant influence on the seismic risk of multi-story buildings.
These findings support the observations discussed above about the higher
vulnerability of the pre-code buildings to severe distant earthquakes compared with

moderate close events. The low impact of short-period records on seismic
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performance is noticeable for all reference buildings, and it follows the findings of
previous analytical studies (e.g. Mwafy, 2012b). At the design PGA level, the four
emergency facilities show satisfactory seismic performance under all seismic

scenarios, with a higher impact from far-field records.
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Figure 5.18: IDA results of the nine reference structures obtained from forty input
ground motions along with the power law equations
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Figure 5.18 (cont’d): IDA results of the nine reference structures obtained from forty

input ground motions along with the power law equations
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Figure 5.19 (cont’d): Fragility relationships of the nine reference structures obtained

from IDAS
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To provide more representative results from the derived fragility curves, limit
state probabilities are estimated at the design and twice the design PGAs for far-field
earthquake records, and at twice and four times the design for near-source records
(Figure 5.20 and Figure 5.21). Two main observations are evident: pre-code
structures are significantly more vulnerable compared with emergency facilities.
Moreover, far-field records have much higher impact on the reference structures over
the near-source records. The large increase in the probabilities of various limit states
is also clear when the PGAs are doubled (i.e. twice and four times the design
intensities for far-field and short-period records, respectively). The results presented
in Figure 5.19 and Figure 5.20 reflect the need for seismic rehabilitation of pre-code
structures to prevent collapse. Also, in spite of the good performance of modern code
designed emergency buildings, and taking into consideration their important role
during and after an earthquake, it is preferable to perform a precautionary retrofit for

such facilities to minimize seismic losses.
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As discussed in Chapter 2, simulation-based fragility curves can be generated
either using simplified methods such as the inelastic pushover analysis or by
employing a more comprehensive methods such as the incremental dynamic analysis.
The latter approach is adopted in the current study due to its ability to account for
several sources of uncertainty such as the variability in ground motions and modeling
approaches. A number of previous seismic vulnerability assessment studies were
directed towards deriving fragility curves based on a simplified approach (e.g.
Bilgin, 2013; Borzi et al., 2008; Giovinazzi et al., 2006; Kappos & Panagopoulos,

2010; Moharram et al., 2008; Polese et al., 2008; Rossetto & Elnashai, 2005).

For instance, Borzi et al. (2008) presented a simplified pushover-based
method for the development of vulnerability curves for gravity load designed RC

frame buildings. The definition of whether or not a building survives a limit
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condition was based on displacements, which were correlated with building damage.
It was emphasized in the above-mentioned study that further research is still required
before the methodology is applicable to full-scale loss assessment applications.
Figure 5.22 shows a sample fragility curves for two structures that are comparable to

those investigated in the present study, namely BO-02 and BO-08.
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Figure 5.22: Developed fragility curves for comparable 2 and 8-story frame pre-code
structures (Borzi et al., 2008)

The study of Borzi et al. (2008) was selected to provide a simple comparison
between the fragility curves developed using simplified approaches with those
developed using the detailed modeling and analysis techniques adopted in the present
study due to the common formats of the fragilities of the two studies. It was shown in
Figure 5.22 that at a PGA of 0.32g the probability of exceeding the CP limit state is
0.55 and 0.19 for the 2 and the 8-story buildings, respectively. The results of the
present study confirm that for the far-field records the probability of exceeding the
CP limit state at a PGA of 0.32g is 0.79 and 0.17 for the 2 and 8-story buildings,
respectively. On the other hand, for the near-source input ground motions, the
probability of exceeding the CP limit state at a PGA of 0.32g were marginal for the 2
and 8-story buildings, as shown in figures 5.19 and 5.20. It is clear that the Borzi et

al. (2008) results are consistent with the findings of the present study in terms of the
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higher vulnerability of low-rise structures. Moreover, the probabilities of exceeding
the CP limit state from the above-mentioned study were between the values obtained
in the present study from the far-field and near-source seismic scenarios. The
comparison clearly shows the advantages of the detailed modeling and analysis
approaches implemented in the present study, which account for several sources of

uncertainty as well as the impact of different seismic scenarios on fragilities.

5.7 Concluding Remarks

The nine reference structures were subjected to a series of Eigenvalue
analyses, IPAs and IDAs to assess their seismic performance. These analyses were
performed using detailed fiber-based numerical models to predict the inelastic
seismic demands of the reference buildings. In total, over 5000 inelastic multi-step
analyses of nine multi-degree-of-freedom systems were performed. Additional
analyses were performed to assess the vulnerability of the structures that proved to
have unsatisfactory performance, and hence were retrofitted using different

mitigation techniques.

The response of the nine reference structures at different limit states was
investigated thoroughly using IPA under lateral load patterns recommended by the
design provisions and previous studies. The lateral capacities, IDRs, plastic hinges
and shear capacities were observed and investigated. For emergency facilities, the
first indication of steel yielding was observed in horizontal members followed by
vertical members. This is in agreement with the strong-column weak-beam code
concept of having energy dissipation concentrated in horizontal elements. Pre-code
structures lack this concept, especially the low-rise ones, and hence resulted in poor

performance. Mapping of plastic hinges for the nine reference structures showed
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significantly better performance for the emergency facilities over the pre-code
structures, which was reflected on the total number of plastic hinges particularly in

vertical elements.

It was noted from the IDA results that the use of diverse input ground
motions produced a marginally different maximum IDRs in the same scenario, while
produced significantly different IDRs when comparing the two earthquake scenarios
with each other. Significantly higher IRDs were recorded in the pre-code structures
due to their poor performance and the lack of sufficient seismic detailing. This
caused the spread of plastic hinges in horizontal and vertical elements, leading to the
formation of story mechanisms. In order to derive the fragility relationships of the
reference structures, three limit states were selected and defined based on extensive
inelastic analysis results as well as values recommended in previous analytical and
experimental studies and code provisions. The IDA results were utilized to derive a

wide range of fragility relationships under two seismic scenarios.

The limit state exceedance probabilities were evaluated in order to provide
insights into the safety margins of the reference structures. Far-field records
represented the worst case scenario compared to near source events. Pre-code
structures were significantly more vulnerable compared with emergency facilities. A
large increase in the limit states exceedance probabilities was observed when the
design input ground motion was doubled. The results reflected the need of seismic
rehabilitation for pre-code structures to reduce the probability of collapse, and for
certain emergency facilities to improve their seismic performance and ensure their

continuous service following a strong earthquake.
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CHAPTER 6: PERFORMANCE ASSESSMENT
OF RETROFITTED STRUCTURES

6.1 Introduction

It was shown in Chapter 5 that the performance of existing pre-seismic code
RC frame and wall buildings in the UAE may not meet the recommended objectives,
particularly for low-rise structures under far-field seismic events. Moreover,
emergency facilities showed certain levels of damage associated with far-field events
at twice the design intensity value that will require precautionary retrofit to minimize
their seismic losses and ensure their continuous performance during and after
earthquakes. Several retrofit strategies are available to enhance the main parameters
related to the seismic performance of buildings, namely strength, stiffness and
ductility. In order to achieve the desired strength of structures, certain targets have to
be met. Selected reference structures with inadequate response are retrofitted in the
current study to achieve the desired seismic performance. A number of steps should

therefore be followed to meet this objective, including (Figure 6.1):

(i) Setand define the new target design objective;

(if) Obtain most conservative spectral acceleration values from code spectrum and
relevant seismic scenarios;

(iii) Select a suitable retrofit technique, apply new seismic loads and redesign; and

(iv) Verify the retrofitted structure.

In this study, four retrofit techniques are considered, namely, (i) FRP
wrapping of columns; (ii) RC jacketing of columns; (iii) adding BRBs to RC frames

and (iv) adding EUSP to shear walls and core walls.
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6.2 Design of Strengthening Techniques

Different retrofit techniques were designed in order to obtain the desired
target response. Because of their impact in providing lateral stability and gravity load
resistance, the major focus for determining a realistic retrofit approach is mainly
dependent on vertical members. FEMA-547 (2006) discussed two retrofit techniques
among others, namely RC jacketing and FRP wrapping of columns, which are
applicable to the deficiencies in global strength and stiffness. The RC jacketing
approach is applicable to strength and stiffness deficiencies, and to the lack of strong
column-weak-beam detailing. FRP wrapping of columns primarily improves shear
strength and confinement. Two other retrofit techniques were recommended in
previous studies and hence considered in the present study, namely adding BRB and
EUSP to frames and shear walls, respectively (Di Sarno & Manfredi, 2010;
Fahnestock et al., 2007; Taghdi et al., 2000; Tremblay et al., 2004). The above
mentioned techniques were applied for the reference buildings depending on their

efficiency and suitability.

6.2.1 RC Jacketing

Enlarging the existing column cross-section with a new RC jacket is an
effective retrofit technique, yet a conventional one. The surface of the existing
concrete should be roughened, then dowels are drilled into the existing concrete to
achieve the required composite action. After installing transverse and longitudinal
reinforcing steel around the existing column, the concrete jackets are constructed
using cast-in-place concrete. Figure 6.2 shows a typical retrofit of rectangular
columns. Some of the drawbacks of this retrofit method include the need for

formwork and the difficulties in casting and vibrating due to access limitations at the
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top of the column. Besides, major disturbance to occupants and the close of the

buildings in some cases represent additional shortcomings for this technique.

Upgrading a deficient concrete column using this conventional method
enhances the lateral resistance of moment resisting frames because of the increase in
the column-to-beam strength ratio. In the current study, RC jacketing is applied to
the 2, 8-story and hospital buildings. The design of the RC jackets is dependent upon
the required strength. For the 2 and 8-story buildings, all columns are enlarged to
achieve the required strength as per the code recommendations (ASCE-7, 2010). On
the other hand, only internal columns are enlarged in the case of the hospital building
to achieve this value since this emergency facility was already designed to seismic
code provisions. The precautionary retrofit of the reference hospital is intended to
improve its seismic performance to ensure its continuous operation. Table 6.1 depicts
the design summary of RC jacketing for three reference structures, while Figure 6.3

to Figure 6.5 illustrate the retrofitted column cross-sections.

FRP OPENING FOR
UTILITY PENETRATION

ADDITIONAL FRP
REINFORCEMENT

AT OPENINGS
ROUND CORNER

,—ROUGHEN SURFACE

DRILLED DOWELS — (% OF EXISTING COLUMN

FRP COMPOSITE
OVERLAY

CONFINING HOOPS EXISTING CONCRETE

PROVIDE CLEARANCE COLUMN

FOR 135° HOOK

CONCRETE JACKET E] - NOTE: g <15
D&b g 36"
RECTANGULAR COLUMN .
(@) RC jacketing (b) FRP overlays

Figure 6.2: Typical retrofit of rectangular columns (FEMA-547, 2006)
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Table 6.1: Design summary of RC jacketing for three reference structures

New column section CIN C2N C3N

2-story (all stories) Jacket thickness (mm) 100 100
VL. reinforcement 8#8@260 8#12@230

Ground- | Jacket thickness (mm) 100 100 100

o £ | 4"story | VL Reinforcement | 20#16@200 | 14#12@220 | 12#10@250

sl & 578" | Jacket thickness (mm) 100 100
5 story VL. Reinforcement 16#10@250 14#10@250
@ _ Ground- | Jacket thickness (mm) 100
£ | 8“story | VL. reinforcement 16#10@250

% 4™.6™ | Jacket thickness (mm) 100

story VL. reinforcement 10#10@250

*Confining hoops of #10@200mm are used

C1N at the foundation level C2N at the foundation level

Figure 6.3: Retrofitted RC columns of the 2-story building

¥ w* L ® L] w L 13 L] L]
o

C1N at the foundation level C2N at the foundation level C3N at the foundation level

C1N at floor 5 C2N at floor 5
Figure 6.4: Retrofitted RC columns of the 8-story building

C2N at the foundation level C2N at floor 2

Figure 6.5: Retrofitted RC columns of the hospital
6.2.2 FRP Wrapping

FRP overlays are better than concrete jacketing in terms of disruption and
construction time although they are relatively expensive. Existing columns cross-
sections are wrapped with unidirectional fibers. These fibers are oriented

horizontally. The wrapping of the FRP sheets prevents lateral buckling for
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longitudinal bars and also improves concrete compression behavior as they increase
the confinement, which increases strength and stiffness of the column, but not to the
limit of concrete jacketing (FEMA-547, 2006; Mwafy & Elkholy, 2012). An
additional retrofit approach, in which the existing column cross-section is wrapped
with FRP overlays, is considered in the present study. High strength FRP overlays
are used in this retrofit technique based on a review of previous experimental and
analytical studies covering FRP with different characteristics (e.g. Lam & Teng,
2003; Wei & Wu, 2012). The selected FRP overlays have a thickness of
0.33mml/layer, elastic modulus of 257 GPa and tensile strength of 4519 MPa. In the
present study, FRP wrapping is applied to the 2-story pre-code building, police
station and school, in which the FRP wrapping criteria recommended by design
codes is fulfilled (FEMA-547, 2006). This retrofit technique is not recommended by
seismic design provisions for medium-rise frame buildings and high-rise wall
structures, which have large columns and wall cross-sections with high aspect ratio.
The number of retrofitted columns and FRP overlays is dependent upon the target
lateral strength of the building. In the 2-story pre-code building, all columns are
wrapped with 3 overlays, while only internal columns are wrapped with 2 and 3

overlays in the case of the police station and school, respectively.

6.2.3 Buckling Restrained Braces

The design of BRBs (Figure 6.6) is based upon results from qualifying cyclic
tests in accordance with the procedures and acceptance criteria (AISC, 2010).

Qualifying test results are based upon one of the following:

a) Tests that are conducted specifically for the project,
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b) Tests reported in research or documented tests performed for other projects,

which is the case considered in the current study (Figure 6.6).

The steel core (yielding steel bar) shall be designed to resist the entire axial
force of the brace. The brace design axial strength, ¢pPysc (LRFD), and the brace
allowable axial strength, Pys./Q (ASD), in tension and compression, in accordance

with the limit state of yielding, shall be determined as follows:

Pyse= Fysc Asc (6.1)
where;
A = cross-sectional area of the yielding segment of the steel core,
Fysc = specified minimum vyield stress of the steel core, or actual yield stress of the
steel core as determined from a coupon test,
$ =0.90 (LRFD)

Q=167 (ASD)

1200

800 —

/‘Steel core, Ac 400 _

-400

-800

4 R— Outer Steel Tube

-1200

Figure 6.6: Typical BRB specimen (left) (Tremblay et al., 2004), adopted BRB test

result (right) (Tremblay et al., 2008)

In the present study, the BRB retrofit technique was applied to the 8-story
pre-code building. The BRBs are added to the middle bays of the external frames, as
discussed hereafter. The axial force of the brace is obtained from the 3D design

model (refer to Figure 3.14 and Figure 3.17). According to equation 6.1, the required
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steel core area to resist the entire axial force in the brace is 2200mm?. Based on a
brief literature review of previous experimental studies, the test results reported in
the study of Tremblay et al. (2008) were adopted. Figure 6.6 show the load-
deformation cyclic test of a BRB sub-assemblage. Finally, the core encasement and
the filling material vary according to the manufacturer, and hence they are not

specified herein.

6.2.4 Steel Plates

Two possible ways of achieving an increase in strength without affecting
stiffness of the walls are by the addition of External Unbonded Reinforcing Bars
(EURB) or EUSP. When loaded horizontally, the wall will undergo vertical
elongation (due to rotation and cracking) which will axially extend the external
rebars or steel plates. In the EUSP scheme considered in the current study, steel
plates are bolted to the wall by anchor bolts and steel angles. The level of strength
increase can be controlled by the area (Elnashai & Pinho, 1998; Taghdi et al., 2000).
In the present study, steel plates were designed using the 3D ETABS models (CSI,
2011), in the form of an additional steel area at the ends of the shear and core walls

(Figure 6.7).

= .

(-

Figure 6.7: Retrofitted RC cross-sections of the wall buildings
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6.3 Modeling of Strengthening Techniques

The above-mentioned retrofit techniques were implemented to the fiber
models of the reference buildings using the ZEUS-NL (Elnashai et al., 2012). The
detailed modeling approach of each of the techniques, namely RC jacketing, FRP

wrapping, the installment of BRBs and EUSP is described below.

6.3.1 RC Jacketing

An RC jacket with a rectangular cross-section from the ZEUS-NL library is
used to model the retrofitted RC columns in the 2-story and 8-story pre-code
buildings and the hospital. Section height, section width and external and internal
stirrup widths are needed to define this section, as shown in Figure 6.8. A steel yield
strength of 460 MPa was used, while the original concrete strength of the reference

structures was used to obtain the required composite action.

A: Section height

a. External stirrup height
B: Section width

b: External section width
C: Internal stirrup height
c: Internal stirrup width

Figure 6.8: RC jacket with a rectangular section (Elnashai et al., 2012)

6.3.2 FRP Wrapping

A trilinear FRP model is used for the modeling of FRP overlays with initial

stiffness of 257 GPa and tensile strength of 4519 MPa. The FRP overlays are added
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to the original concrete sections with the required thickness obtained in desgin. The

constitutive relationship of the FRP material is illustrated in Figure 6.9.

Stress

fit

E;

E

| .
»
Tensile Strain

Figure 6.9: Trilinear FRP model (Elnashai et al., 2012)

6.3.3 Buckling Restrained Braces

Using the test results shown previously in Figure 6.6, different parameters are
extracted in order to accurately model the BRB behavior. Joint element with trilinear
asymmetric elasto-plastic curve is used to model the BRB (Figure 6.10). Ten
parameters are required by ZEUS-NL to model the BRB, including different stiffness
and displacement values which describe the tension-compression response. Table 6.2

summarizes the required parameters.

K;II . K*,
77777 ——— 7‘ ‘l:‘::'
/ ©
“,"drz dy ;
;‘;' ; d* d*, displacement
7 K
K3

Figure 6.10: Trilinear asymmetric elasto-plastic curve (Elnashai et al., 2012)
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Table 6.2: Parameters used for modeling the BRB trilinear asymmetric joint element

Parameter Description Value
K" Initial stiffness (positive displacement region) 80000 N/mm
d; Positive displacement where the stiffness changes from K*oto K*; 10 mm
K" Stiffness of second branch (positive displacement region) 571 N/mm
d*, Positive displacement where the stiffness changes from K, to K*, 70 mm
K", Stiffness of third branch (positive displacement region) 0 N/mm
K% Initial stiffness (negative displacement region) 80000 N/mm
d, Negative displacement where the stiffness changes from K7 to K’y -11 mm
K’y Stiffness of second branch (negative displacement region) 4898 N/mm
d, Negative displacement where the stiffness changes from K’; to K', -49 mm
K" Stiffness of third branch (negative displacement region) 0 N/mm

The member representing the BRB brace is divided into two segments
connected at the middle with the BRB joint element described above. The BRB joint
element has six Degrees of Freedom (DOFs). The axial DOF is utilized to model the
hysteresis behavior of the BRB, while the other five DOFs are restrained. The ends
of the BRB brace member have pin connection with concrete beam-column

connections, as described in Figure 6.11.

The BRB modeling verification is carried out for the 8-story pre-code
building using IPA and THA simulations. The BRB response at three story levels
(ground, middle and top stories) was obtained. Figure 6.12 shows sample results at
the three aforementioned levels. Moreover, the BRB response is also monitored
using THA at two ground motion intensities, namely the design and 5 times the
design PGA. Figure 6.13 illustrates the hysteresis behavior of the BRB during THA.
The results validate the adopted modeling approach of the BRB using test results

shown in Figure 6.6.
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DOF1

DOF 1: represents the axial
hysteresis behavior of the BRB

Joint element
with zero length

DOF 2-6: Considered fixed to
prevent any transitional or
— ® |rotational movements, high
linear stiffness value have
been assigned to satisfy this
P20, |condition

th.

Encasing /\%
mortar

Yielding steel bar

Unbonding matcrial
used between steel bar
and mortar

R L LY

e e g e e e e R e e L L e g

Steel Tube M

Figure 6.11: BRB modeling concept
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Figure 6.12: BRB load-displacement relationships obtained from IPA at three
different story levels
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Figure 6.13: BRB load-displacement relationships at the design PGA (top) and five
times the design (bottom) PGA
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6.3.4 Steel Plates

The steel plates obtained from the design are modeled in ZEUS-NL using
steel reinforcement having the same vyield strength and area. The added steel area is
represented at the ends of the shear and core walls. The yield strength of the steel

plates is 240 MPa.

6.4 Impact of Retrofit on Lateral Capacity

The four different retrofit techniques were implemented in the ZEUS-NL
models of the reference structures as discussed earlier. Pushover analysis was
performed for each system after implementing the rehabilitation approach. Pre-code
frame structures (BO-02 and BO-08) were provided with two retrofit alternatives,
while one retrofit technique was employed for other buildings. Table 6.3 summarizes
the IPA results for the eight retrofitted structures. For the 2-story building, RC
jacketing of columns results in higher stiffness and strength over the FRP retrofit
approach due to increasing cross-section sizes, as shown in Figure 6.14 (a). For the
8-story building, the BRBs produce higher stiffness and strength over the RC
jacketing, but results in reduced ductility due to the sudden failure in such retrofit
technique when it reaches its ultimate axial capacity, as shown in Figure 6.14 (b).
Both RC jacketing and FRP wrapping of columns significantly enhance the ductility
for the 2 and 8-story pre-code structures. A shown in Figure 6.14 (c-e), adding EUSP
to the shear walls of the pre-code wall structures has a marginal impact on stiffness,

while it increases the strength to the required design level (i.e. V4*Qy).

For the emergency facilities, FRP wrapping of columns has a very minor

effect on the initial stiffness, as shown in Figure 6.14 (f and g). For the hospital
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building, RC jacketing of internal columns improved both the initial stiffness and

ultimate strength, as shown in Figure 6.14 (h). All of the retrofit techniques produce

the required strength according to the applied design loads. The higher impact of

rehabilitation approaches are observed in the pre-code buildings over emergency

facilities, especially the pre-code frames, since they were only designed to resist

gravity and wind loads.

Table 6.3: Summary of IPA results for existing and retrofitted structures

Original design oad '\.lew. Lateral load| Original | Strength of | Strength of
- (kN) seismic . . .

Building design load increase | strength |alternative # 1|alternative #

Wind EQ (KN) (%) (KN) (KN) 2 (kN)

BO-02 110 655 495 605 1450 (FRP) | 2048 (RCJ)

BO-08 968 2341 142 3763 7167 (RCJ) |8786 (BRB)
BO-18 1966 10852 452 24951 (38162 (EUSP)
BO-26 2879 12298 327 19912 (37896 (EUSP)
BO-40 6707 23117 245 45898 (62226 (EUSP)
PS 429 3358 3790 13 10788 | 13177 (FRP)
SC 632 1902 2795 47 5936 6445 (FRP)
HO 1422 6670 9801 47 16978 | 19649 (RCJ)
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Figure 6.14: The capacity curves for existing and retrofitted structures
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6.5 Impact of Retrofit on Seismic Performance

The same procedures employed in Chapter 5 for deriving the fragility curves
of the reference structures are used herein to generate new fragility relationships for
the retrofitted structures. IDAs were performed using the selected wide range of
input ground motions and then regression analyses were conducted. Fragility curves
were derived and limit state exceedance probabilities generated. As mentioned
earlier, only long-period earthquake records were employed in this task since they
represent the most significant seismic scenario. Figure 6.15 depicts the regression

analysis results for the 280 IDAs undertaken for each retrofitted structure.

Fragility curves were generated and plotted for each building separately as
shown in Figure 6.16. In order to observe the performance enhancement, the fragility
curves of both the original and retrofitted structures were plotted in Figure 6.17. For
the 2-story pre-code structure, both of the implemented retrofit techniques (RC
jacketing and FRP wrapping of columns) improve the seismic performance
differently. The seismic performance improvements are noticeable in both
approaches but with a higher extent in the RC jacketing technique over the FRP
wrapping approach. For the 8-story structure, nearly the same performance
improvement is observed for the employed techniques, namely the RC jacketing of
columns and the BRBs. On the other hand, slight enhancement in the seismic
performance is achieved after adding steel plates to the shear walls of the pre-code
wall structures. Comparable marginal improvements are observed in the police
station and school buildings with the FRP wrapping of internal columns. Finally,
slopes of the fragilities become less steep for the 6-story hospital after the RC
jacketing of internal columns compared with the original structure, as shown in

Figure 6.17.
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A better comparison of the seismic performance of the original and retrofitted
structures is achieved by comparing between the limit state exceedance probabilities
of existing and retrofitted structures. Figure 6.18 depicts the 10, LS and CP limit
state exceedance probabilities before and after employing different rehabilitation
techniques for the eight retrofitted structures. The impact of different retrofit
techniques on the limit state exceedance probabilities varies among the different limit
states. For the pre-code frame structures, the highest reduction in the limit state
exceedance probabilities is observed for the RC jacketing and BRB approaches. The
observed high improvement in the seismic performance of the pre-code frame
structures is attributed to their original poor performance unlike the pre-code wall

structures and emergency facilities.

The enhancement achieved in the seismic performance of the reference
structures using the selected retrofit approaches confirms the success of such retrofit
techniques to upgrade the seismic performance to reach the target levels and reduce
the earthquake losses in the study area. The pre-code frame structures come as top
priority when implementing earthquake mitigation programs due to their wide

spreading and high vulnerability in the study area (refer to Figure 3.2).
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Figure 6.16: Fragility curves of retrofitted structures using 20 long period records
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Figure 6.17: Fragility curves before and after retrofit using 20 long period records
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6.6 Concluding Remarks

The reference structures that did not meet the code recommended objectives
were retrofitted in the current study to achieve the desired seismic performance. A
number of steps were followed to upgrade the buildings, including: (i) set and define
the new target design objective; (ii) obtain most conservative spectral acceleration
values from code spectrum and relevant seismic scenarios; (iii) select a suitable
retrofit technique, apply new seismic loads and redesign, and finally (iv) verify the
performance of the retrofitted structure. Four retrofit techniques were considered,
namely FRP wrapping of columns, RC jacketing of columns, adding BRBs to RC

frames and installing EUSP to shear walls and core walls.

RC jacketing was applied to the 2 and 8-story pre-code structures as well as
hospital building. In the 2 and 8-story buildings, all columns were enlarged, while
only internal columns were retrofitted in the case of the hospital building. FRP
overlays were applied to the 2-story pre-code structure as well as to the police station
and school buildings. In the 2-story pre-code building, all columns were wrapped
with 3 FRP overlays, while only internal columns were wrapped with 2 and 3 in
overlays in the case of the police station and school buildings, respectively, to
achieve the target performance levels. The experimentally verified RC jacket
rectangular section and FRP model from ZEUS-NL library were employed to model

the RC jacketing and FRP wrapping retrofit techniques.

The design and modeling of BRBs was based on results obtained from
previous cyclic tests. The BRB retrofit technique was implemented in the external
frames of the 8-story pre-code building. The member representing the BRB brace is

divided into two segments connected at the middle with asymmetric joint element.
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Pushover and dynamic response simulations proved the effectiveness of the BRB
modeling approach. The EUSP retrofit approach was implemented to the pre-code

wall structures due to its effectiveness and applicability.

The IPA results of the 2-story pre-code building indicated that the RC
jacketing of columns result in higher stiffness and strength compared with the FRP
technique. In the 8-story building, although the BRB approach produced higher
stiffness and strength than the RC jacketing of columns, it had an unfavorable impact
on ductility due to sudden failure when it reaches its ultimate axial capacity. For the
pre-code wall structures, EUSP had a marginal impact on stiffness, while it enhanced
the strength to the target level. FRP wrapping of internal columns had minor effect
on the stiffness of the police station and school buildings. For the hospital building,
RC jacketing of internal columns improved both the initial stiffness and ultimate
strength. The highest impacts on the lateral capacity were observed in the pre-code
buildings over emergency facilities, especially the pre-code frames, since they were

only designed to resist gravity and wind loads.

The derived fragility relationships of the retrofitted 2-story pre-code structure
using RC jacketing and FRP wrapping of columns improved the seismic performance
to a higher extent for the former technique. For the 8-story structure, nearly the same
performance improvement was observed form both the RC jacketing of columns and
BRBs. On the other hand, slight enhancement in the seismic performance was
achieved after adding steel plates to the shear walls of the pre-code wall structures.
Comparable marginal improvements were observed in the police station and school
buildings with the FRP wrapping of internal columns. The fragility slopes decreased
for the 6-story hospital after the RC jacketing of internal columns compared to the

original structure.
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The impact of different retrofit techniques on the limit states exceedance
probabilities varied among the different limit states. For the pre-code frame
structures, the highest reduction in the limit state exceedance probabilities was
observed for the RC jacketing and BRBs approaches. The observed high
improvement in the seismic performance of the pre-code frame structures was
attributed to their original poor performance unlike the pre-code wall structures and
emergency facilities. The achieved enhancement in the seismic performance of the
reference structures using the selected retrofit approaches confirmed the success of
such rehabilitation approaches to upgrade the seismic performance to reach the target

levels and reduce the earthquake losses in the study area.
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CHAPTER 7: CONCLUSIONS AND
RECOMMENDATIONS

7.1 Synopsis

The number of buildings in the existing inventory that may be at risk because
of insufficient seismic design provisions cannot be underestimated. A crucial role in
the recovery period following an earthquake is also played by emergency facilities.
Hence, this study focused on the probabilistic seismic vulnerability assessment of a
diverse range of reference buildings representing substandard and emergency
structures in a highly populated and seismically active area in the UAE. The

following main tasks were undertaken to achieve the objectives of the present study:

Selection, Design and Modeling of Reference Buildings

Five pre-seismic code buildings and four emergency facilities were selected
based on an on ground survey to represent the architectural layouts commonly
adopted for buildings in the UAE. An iterative design process was adopted by
targeting a D/C ratio as close as possible to unity to ensure both safety and cost-
effectiveness. The material properties and design provisions implemented at the
construction time of the pre-seismic code buildings were taken into account. Lateral
actions from wind loads were considered in the design of pre-code buildings, while
those from seismic forces were accounted for in the design of the modern emergency
facilities. Detailed two and three-dimensional fiber-based idealizations for wall and
frame structures, respectively, were developed using a verified inelastic analysis
platform to assess the seismic response of the buildings using IPAs and IDAs. The

fiber-based models developed were verified by comparing their dynamic



Chapter 7: Conclusions and Recommendations 157

characteristics with those obtained from the 3D design models and with those

reported in other studies.

Forty far-field and near-source earthquake records were carefully chosen
based on the conclusions of previous studies to represent the study area and account
for the uncertainty in ground motions. These scenario-based earthquake records
consisted of 20 long-period earthquakes of magnitude 6.93 to 7.64 with epicentral
distances of 91 km to 161 km as well as 20 short-period earthquakes of magnitude

5.14 to 6.04 with epicentral distances of 6 km to 30 km.

Vulnerability Assessment of Reference structures

The nine reference structures were subjected to a series of Eigenvalue
analyses, IPAs and IDAs to assess their dynamic characteristics, lateral capacities
and seismic performance. Over 5000 inelastic multi-step analyses of nine multi-
degree-of-freedom fiber-based numerical models were performed. The lateral
capacities, IDRs, plastic hinge distributions and shear response were monitored and
compared. Three limit states were defined based on extensive IPA and IDA results as
well as the values recommended in previous analytical and experimental studies and
code provisions. The IDA results were utilized to derive a wide range of fragility
relationships of the pre-code buildings and emergency facilities in the UAE under
two earthquake scenarios. The limit state exceedance probabilities were compared
for different buildings and seismic scenarios to provide insights into the vulnerability

of the building inventory and the need for seismic hazard mitigation.
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Vulnerability Assessment of Retrofitted Structures

About 3000 additional inelastic analyses were performed to assess the
vulnerability of the reference structures that proved to have unsatisfactory
performance, and hence retrofitted using different mitigation techniques. The
procedure followed to upgrade the buildings involves defining a new target design
objective, obtaining the most conservative spectral acceleration parameters, selection
and design of a suitable retrofit technique, and finally verifying the retrofitted
structures using IPA and IDA. Four retrofit techniques were considered, namely FRP
wrapping of columns, RC jacketing of columns, adding BRBs to RC frames and
installing EUSP for shear walls and core walls. Fragility curves were derived and
limit states exceedance probabilities were generated to arrive at conclusions

regarding the effectiveness of the adopted mitigation actions.

7.2 Summary of Conclusions

The most important observations and conclusions from the present study are

summarized below:

Design and Modeling Verification of Reference Buildings

Although the pre-seismic code structures, especially multi-story buildings,
were designed to resist gravity and wind loads only, large cross sections were
produced for vertical elements due to the low material strength used at the
construction time. These large cross sections added additional mass and stiffness to
pre-code buildings. In addition to the lack of efficient reinforcement and detailing,
such mass attracted high inertia forces and increased the vulnerability of this class of

structures. Wind loads of pre-code low-rise structures were considerably lower than
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their high-rise counterparts. This reduced the lateral capacity of the former buildings,
and hence increased their vulnerability. The design results also confirmed the
significance of considering the lateral loads in the design of floor slabs, which may

sometimes be ignored by practicing engineers.

Despite the different modeling approaches of the nine reference structures for
design and vulnerability assessment, the observed discrepancies between the
dynamic characteristics obtained from the 3D finite element models and the detailed
fiber-based idealizations were insignificant. These minor differences were due to
employing the actual/mean material strength values in the latter models rather than
the nominal/characteristic values used in the design, in addition to the effective

representation of reinforcing steel.

Vulnerability Assessment of Pre-code Buildings and Emergency Facilities

For emergency facilities, the first indication of steel yielding was observed in
horizontal members, which was followed by vertical members. This is in agreement
with the strong-column weak-beam concept of having energy dissipated mainly in
horizontal elements. Pre-code structures lacked this concept, especially the low-rise
building, due to their inefficient lateral force design under wind loads. Mapping the
number and sequence of plastic hinges of the nine reference structures, particularly in
vertical elements, showed significantly better performance for the emergency

facilities over the pre-code structures.

The use of input ground motions representing the same earthquake scenario
produced marginally different maximum IDRs, unlike when comparing the seismic
demands from two different seismic scenarios. Far-field records had much higher

impact on the reference structures over the near-source records. High IDRs were



Chapter 7: Conclusions and Recommendations 160

recorded in the pre-code frame structures at moderate-to-high ground motion
intensity levels due to their inefficient LFRSs. This increased the spread of plastic
hinges in horizontal and vertical elements, leading to the formation of story
mechanisms. The limit state exceedance probabilities provided insights into the
relative safety margins of different structures. At the design PGA, pre-code structures
were significantly more vulnerable compared with emergency facilities. A large
increase in the exceedance probabilities of various limit states was clear when the
PGAs were doubled. The results reflected the urgent need of seismic retrofit for all
pre-code structures to reduce their seismic losses and for certain emergency facilities
to improve their seismic performance and ensure their continued service following a

strong earthquake.

Seismic Vulnerability Assessment of Retrofitted Structures

Pushover analysis results confirmed that the RC jacketing of columns
effectively increased both the initial stiffness and ultimate strength when compared
with the FRP wrapping technique. The BRB retrofit approach, although produced
higher stiffness and strength than the RC jacketing of columns, had an unfavorable
impact on ductility due to the premature failure when it reaches its ultimate axial
capacity. The EUSP retrofit technique had a marginal impact on stiffness, while it

enhanced the strength to the target level.

The seismic performance of the retrofitted buildings from the derived fragility
relationships using IDAs was consistent with that from IPA results. Lower
vulnerability was observed when the columns of the 2-story pre-code structure were
retrofitted with RC jacketing compared with that of FRP wrapping. For the 8-story

structure, the improvements in seismic performance using RC jacketing of columns
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and BRBs were comparable. Marginal enhancements in seismic performance were
achieved when implementing the EUSP retrofit technique to the pre-code wall
structures. Comparable improvements were observed in the police station and school
buildings with the FRP wrapping of internal columns. The fragilities decreased when
the 6-story hospital was retrofitted using RC jacketing of internal columns. The
observable improvements in the seismic performance of the pre-code frame
structures were attributed to their original poor performance unlike the pre-code wall
buildings and emergency facilities. The reduced vulnerability of the retrofitted
structures confirmed the effectiveness of the selected retrofit approaches for

mitigation of earthquake losses in the study area.

7.3 Recommendations for Future Research

Based on the findings and conclusions of the present study, the following

recommendations are proposed for future studies:

1. A detailed study is urgently needed to compile all information related to the
building and infrastructure inventories in the UAE from different municipalities
and government agencies in a unified database to be used in developing a
comprehensive loss estimation system for the UAE.

2. A comprehensive shear assessment study using a wide range of reference
structures with different systems and diverse input ground motions is urgently
needed to arrive at a final decision regarding the significance or otherwise of
shear as a controlling failure criterion in seismic loss estimation.

3. A further study is required to assess the impacts of the combined horizontal and
vertical components of ground motion on local response and limit state criteria,

particularly shear response, and hence on the fragilities.
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4.

In order to represent the study area more comprehensively, it is recommended to
investigate the vulnerability of all other classes of structures represented in the
building inventory such as industrial structures, government facilities and
infrastructure.

More research is needed to cover other retrofit alternatives along with a
comprehensive feasibility study to arrive at the most efficient and cost-effective

mitigation approaches for mitigating earthquake losses in the UAE.
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APPENDIX A: SAMPLE IDA RESULTS

Table A.1: Incremental dynamic analysis results showing inter-story drift ratios of
reference buildings at different PGA levels for 20 far-field records

. Story Drift (%)
HIGINEE Earthquake PCAB0-02]B0-08]BO-18]B0-26]B0-40] FS | PS | SC | HO
bu.crv Bucharest 0.08| 1.04 | 0.99 | 0.37 | 0.25 | 0.26 | 0.15 | 0.68 | 0.90 | 1.10
0.16| 2.13 | 1.65 | 0.71 | 0.50 | 0.50 | 0.36 | 1.33 | 1.81 | 2.11
024 — | 1.94 | 098 | 0.78 | 0.77 | 059 | 1.66 | 2.29 | 2.92
032 — | 257 | 1.27 | 1.09 | 1.08 | 0.84 | 2.37 | 3.12 | 3.27
040 — | 3.8 | 1.65 | 1.46 | 1.41 | 1.00 | 2.92 | 4.26 | 4.26
048] — | 3.68 | 2.06 | 1.85 | 1.69 | 1.38 | 3.55 | 5.45 | 5.26
056 — | 4.08 | 2.43 | 2.18 | 1.94 | 1.72 | 4.70 | 6.89 | 6.21
064 — | 438 | 2.77 | 2.44 | 212 | 2.14 | 6.20 | 9.92 | 7.05
072 — | 461 | 3.08 | 2.63 | 2.25 | 2.63 | 8.16 | — | 7.83
080 — | 479 | 339 | 2.73 | 2.56 | 322 | — | — | 851
088 — | 497 | 369 | 2.77 | 2.85 | 391 | — | — | 912
096 — | 515 | 398 | 2.90 | 310 | 470 | — | — | 9.67
104] — | 529 | 426 | 319 | 339 | 560 | — | — | —
112| — | 595 | 453 | 354 | 367 | 663 | — | — | —
hmi.crv Hector Mine-Indio 0.08| 1.24 | 0.44 | 0.20 | 0.24 | 0.34 | 0.17 | 0.44 | 1.01 | 0.52

0.16] 1.96 | 1.08 | 0.33 | 0.41 | 0.57 | 0.35 | 1.07 | 1.77 | 1.09
0.24| 3.80 | 1.66 | 0.61 | 0.62 | 0.80 | 0.56 | 1.72 | 2.18 | 1.93

032] - | 172107 ]120|095)|0.79 | 3.19 | 248 | 2.76
040 - | 2111231441113 104|391 | 288 | 3.23
048] - | 231114183132 | 132|393 | 344|315
056| - | 243 | 143|213 | 148 | 165|445 | 4.78 | 3.73
064 - | 253|168 | 236 | 158 | 2.05| 523 | 6.04 | 4.27
072] - | 272|182 ] 251|168 | 255 | 596 | 6.77 | 4.63
080 -- |319|185) 266 | 196 | 3.10 | 6.73 | 6.80 | 4.87
088 --- | 365|268 | 289|219 | 374|747 | 6.67 | 521
0.96| --- | 377|453 |314 | 236 | 456 | 7.98 | 6.77 | 5.53
104 - [ 376|529 | --- | 250|537 |85 | 711 | 5.62
1.12] - 417 | 430 | - 259 | 6.00 | - 7.30 | 5.82

tap90.crv Hector Mine- Mecca 0.08] 1.13 | 0.72 | 0.29 | 0.29 | 0.30 | 0.21 | 0.54 | 0.85 | 1.02
0.16| 1.97 | 1.40 | 061 | 0.64 | 048 | 048 | 1.50 | 1.94 | 1.93
0.24| 3.18 | 1.90 | 0.79 | 1.04 | 0.75 | 0.79 | 2.71 | 2.61 | 2.69

032 - | 245097 | 144 |1.08 | 1.08 | 3.24 | 3.42 | 3.35
040] - | 294|134 ]181 | 141|138 |418 | 374|427
048] - | 341191231172 ) 184|587 | 379 ]|5.20
056 --- | 3.89 | 252 | 310 | 2.02 | 240 | 7.92 | 4.25 | 6.06
0.64| --- | 440 ) 3.07 | 868 | 227 | 3.09 | --- | 433 | 6.88
072 - | 494|357 | - |246 401 | - [ 478|771
0.80| --- - [ 399 | --- | 259|504 -- |548 | 858
0.88| --- - | 431 | - | 269|612 | --- | 6.22 | 949
0.96| --- - | 459 | - | 280|735 ]| - [7.06 | -
1.04] --- - | 562 | - |292 868 | --- |85 | -
1.12 6.71 3.06 | 9.89

ev.crv Loma Prieta-Emeryville [0.08| 1.46 | 0.46 | 0.29 | 0.26 | 0.30 | 0.20 | 0.63 | 1.62 | 0.63
0.16| 251 | 0.85 | 0.48 | 0.54 | 0.58 | 0.45 | 1.50 | 2.37 | 1.24
0.24| 3.34 |1 1.20 | 065 | 0.84 | 0.90 | 0.71 | 245 | 2.87 | 1.73
0.32| 455181 | 086 | 1.12 | 1.21 | 1.00 | 3.58 | 3.22 | 2.20

040| -- | 247|104 | 146 | 142 | 1.33 | 448 | 3.72 | 3.02
048] - | 304112183 | 156 | 173|512 | 433 | 3.98
056| - | 351 | 132)204 | 166|212 | 594 | 4.87 | 5.02
064 --- | 385|167 |222 | 175|251 | 6.62 | 5.29 | 6.00
0.72| - | 411|207 | 250 | 187 | 3.10 | 7.13 | 5.57 | 6.87
080 -- | 431|246 | 278|211 | 382 | 754|576 | 7.59
0.88] --- | 448 | 284|352 | 234|459 | 7.88 | 588 | 8.18
0.96] - | 480 ) 3.20 | 488 | 256 | 5.35 | 8.20 | 5.97 | 9.42
1.04] --- | 498 | 350 | 6.25 | 2.77 | 6.06 | 846 | 6.02 | ---

112 --- | 507 | 369909 |297 | 671 | 866 | 6.06 | --




Appendix A: Sample IDA results 173

Table A.1 (cont’d): Incremental dynamic analysis results showing inter-story drift
ratios of reference buildings at different PGA levels for 20 far-field records

ggb.crv Loma Prieta-ggb 0.08] 1.12 | 041 | 0.23 | 0.23 | 0.24 | 0.14 | 0.65 | 1.03 | 0.51

0.16| 2.68 | 0.77 | 0.40 | 045 | 045 | 034 | 1.36 | 1.85 | 1.04

0.24] 430 | 112 | 0.54 | 0.72 | 0.64 | 0.55 | 2.15 | 2.70 | 157

0.32] 419 | 146 | 0.76 | 0.99 | 0.87 | 0.78 | 2.63 | 3.36 | 2.02

0.40| 6.40 | 1.89 | 1.00 | 1.25 | 1.14 | 1.04 | 3.35 | 3.76 | 241

0.48--- 228 | 123 | 151 | 145 | 1.34 | 421 | 3.87 | 2.87
0.56 |--- 263 | 142 | 177 | 1.75 | 1.70 | 511 | 3.73 | 3.44
0.64 |--- 298 | 154 | 2.07 | 205 | 2.15 | 6.16 | 4.12 | 4.02
0.72--- 333|160 | 239|233 | 271|739 | 465 | 459
0.80--- 370 | 1.78 | 2.74 | 2.60 | 3.38 | 9.17 | 5.17 | 5.14
0.88--- 407 | 205 | 3.09 | 2.84 | 4.18 |12.09 | 5.67 | 5.69
0.96 |--- 445 | 235 | 3.38 | 3.06 | 5.09 [1531| 6.17 | 6.25
1.04}--- 483 | 269 | 3.60 | 3.26 | 6.11 |16.20| 6.66 | 6.84
1.12- 521 | 3.02 | 3.81 | 3.43 | 7.22 |1550| 7.14 | 7.44

Ipa.crv Loma Prieta-Alameda  |0.08| 0.68 | 0.77 | 0.39 | 0.37 | 0.23 | 0.33 | 0.47 | 0.79 | 1.00

0.16] 2.00 | 1.20 | 0.64 | 0.56 | 0.45 | 0.70 | 0.93 | 1.79 | 1.72

0.24] 422 | 193 |1 082 ] 0.72 | 068 | 1.05 | 1.37 | 2.60 | 2.41

032] - | 2681141099094 ]139]185] 319|351
040 -- | 321 | 148|136 | 125|172 | 241 | 429 | 4.66
048] -- | 339|185 | 173|156 | 214 | 3.18 | 548 | 5.72
056] --- | 334|222 | 203|186 | 269 | 423 | 6.71 | 6.61
0.64] - | 356|238 |235]|213 328|564 |791 | 724
0.72] - | 432|240 | 274|237 394|764 ]09.02 ]| 758
080 -- | 513 | 267|312 | 259 | 465 | -- -- | 7.67
0.88] -- | 584|307 |350 | 278|540 | -- -- | 749
096 --- | 894|345 385|295 |618 | -- -- | 6.99
1.04] --- - | 378|417 | 310 | 695 | --- —-- | 691
1.12 - 410 | 543 | 324 | 771 7.84

Ipo.crv Loma Prieta-Oakland  [0.08]| 0.73 | 0.35 | 0.18 | 0.23 | 0.20 | 0.16 | 0.61 | 0.71 | 0.47

0.16] 1.71 | 0.78 | 0.32 | 0.52 | 0.37 | 0.38 | 1.47 | 1.45 | 0.98

0.24] 2.15 | 140 | 0.50 | 0.86 | 0.53 | 0.61 | 2.31 | 1.99 | 1.63

0.32] 296 | 202 | 0.70 | 1.18 | 0.71 | 0.85 | 2.86 | 2.33 | 241

0.40| 490 | 256 | 092 | 1.45 | 092 | 1.10 | 3.00 | 2.69 | 3.26

048] --- | 304118 | 169 |1.09 | 135|354 |327 411
056 --- | 343149 |189 121 175|405 | 3.88 | 497
0.64| --- | 372 ]175]200 | 133|221 | 451 | 450 | 584
0.72] - 391209198 | 146 | 253 | 498 | 5.05 | 6.73
080 -- | 405|261 )19 | 158 | 294|532 ]| 551|759
088 --- | 418 | 3.06 | 2.06 | 1.69 | 3.37 | 5.58 | 5.96 | 8.40
096 --- | 426|335 | 215|177 | 3.63 | 6.00 | 6.38 | 8.95
104 --- | 433|350 ) 223|185 ] 420|643 | 6.81 | 9.38
1.12 437 | 345 | 230 | 198 | 485 | 7.25 | 7.28 | 9.68

Ipb.crv | Loma Prieta-Berkeley LBL |0.08] 0.93 | 0.33 | 0.18 | 0.23 | 0.18 | 0.21 | 0.80 | 0.62 | 0.41

0.16] 1.60 | 0.70 | 0.33 | 0.48 | 0.36 | 0.50 | 1.59 | 1.34 | 0.86

0.24] 2.04 | 112 | 042 | 069 | 054 | 0.79 | 2.35 | 1.94 | 1.35

0.32] 263 | 1.58 | 0.56 | 1.01 | 0.74 | 1.05 | 3.32 | 2.28 | 1.89

0.40| 3.15 | 2.08 | 0.71 | 1.38 | 0.97 | 1.30 | 4.05 | 2.61 | 2.48

0.48| 3.63 | 253 | 094 | 1.75 | 1.21 | 1.72 | 434 | 292 | 3.12

056| 422 | 286 | 1.27 | 2.16 | 144 | 225 | 435 | 3.14 | 3.76

0.64| 6.70 | 3.05 | 1.58 | 257 | 1.66 | 2.85 | 4.77 | 3.42 | 441

072 - | 310|184 ]292 | 186 | 3.51 | 562 | 3.84 | 4.99
0.80] --- | 3.03 | 2.04 | 3.20 | 2.05 | 4.20 | 6.48 | 4.25 | 5.47
088 - | 295|215 | 340|222 | 491 | 735 | 4.66 | 5.85
096 --- | 323|213 |6.22 | 238 | 559 | 8.19 | 5.08 | 6.12
1.04] --- | 381|242 | 965|253 |6.21 | 9.01 | 550 | 6.26

112| - | 444|275 | --- | 267 | 6.75 | 9.81 | 592 | 6.27
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Table A.1 (cont’d): Incremental dynamic analysis results showing inter-story drift
ratios of reference buildings at different PGA levels for 20 far-field records

ch.crv Chi-Chi-1LA013 0.08| 1.40 | 0.68 | 0.39 | 0.38 | 0.39 | 0.31 | 0.77 | 1.34 | 1.12

0.16] 3.09 | 1.62 | 0.69 | 0.65 | 0.72 | 0.60 | 1.74 | 2.52 | 2.16

024 434 | 285|131 | 1.16 | 0.97 | 0.94 | 2.29 | 351 | 345

0.32] - | 356 | 1.77 | 1.63 | 1.39 | 1.23 | 3.51 | 4.21 | 4.81
040 -—- [ 3.09 | 1.98 | 1.83 | 1.64 | 1.54 | 548 | 4.98 | 6.04
048] -—- | 3.38 | 1.79 | 2.16 | 2.01 | 1.78 | 6.54 | 5.75 | 6.33
056 - | 4.68 | 2.34 | 2.44 | 2.42 | 2.20 | 7.28 | 6.83 | 6.34
0.64] - | 535 | 2.26 | 2.67 | 2.77 | 2.71 | 8.25 | 8.10 | 6.08
0.72| - | 5.68 | 441 | 3.01 | 3.11 | 3.33 | 9.37 | 9.35 | 6.98
0.80] -—- | 6.55 | 8.36 | 3.30 | 3.55 | 403 | — | —— | 7.68
088 -—- | — | — | 330401495 — | — |829
096 — | — | — | — | 438596 | — | — | —
1.04] — | =~ | = | — | 457708 -~ | — | —
12| — | = | = | — [459 828 — | — | —

tap32.crv Chi-Chi-ILA030 0.08] 1.33 | 0.48 | 0.22 | 0.31 | 0.34 | 0.25 | 1.04 | 1.23 | 057

0.16] 2.14 | 0.99 | 0.40 | 0.46 | 0.61 | 0.59 | 1.59 | 1.88 | 1.25

0.24] 261 | 1.49 | 054 | 093 | 0.82 | 094 | 241 | 2.46 | 1.78

0.32] 3.56 | 2.07 | 0.72 | 1.40 | 0.99 | 1.29 | 354 | 3.24 | 2.46

040 -- | 269|108 | 175|129 | 159 | 414 | 3.50 | 3.59
048] -- |322| 149232 |162 | 181 | 4.01 | 3.75 | 4.83
056| --- | 354|183 | 276|186 | 215 | 5.66 | 3.75 | 5.92
064 - | 415|204 |3.02 | 205 | 267 | 6.06 | 494 | 6.57
0.72| --- -~ | 223|321 | 226|318 | 573|581 | 720
0.80| --- - | 245 | 758 | 263 | 3.68 | 6.47 | 6.79 | 7.76
0.88| --- - | 27| --- | 311|415 | 728 | 758 | 7.94
0.96| --- - | 312 | --- | 356|458 |784 817 | --
1.04] --- - [ 351 | --- | 399|501 833|89%] | -
1.12] - - 405 | - 436 | 542 | 8.75 | 9.93

tap05.crv Chi-Chi-TAP005 0.08/ 1.41 | 0.76 | 0.29 | 0.35 | 0.3 | 0.19 | 0.67 | 1.11 | 0.86

0.16] 2.62 | 1.65 | 0.53 | 0.67 | 0.57 | 043 | 2.64 | 2.22 | 2.01

024|299 | 217 | 1.05| 1.05 | 0.84 | 0.70 | 3.47 | 2.73 | 3.19

0.32] 485 | 259 | 167 | 1.35 | 112 | 0.99 | 419 | 3.05 | 3.98

040| - | 2741199220 | 145 | 135|486 | 3.32 | 431
048] --- | 289|193 | 252|181 | 181 | 549 | 3.59 | 4.67
056 --- | 328 | 200 | 282 | 210 | 246 | 598 | 4.46 | 4.97
0.64| --- | 362|217 | 3.10 | 218 | 3.36 | 6.49 | 556 | 5.24
0.72] --- | 389 | 240|333 |221 | 461|718 | 6.61 | 599
080 -- | 416|262 | 352|247 |6.04 | 771|721 | 6.66
088 --- |501) 292|581 273 | 730|848 | 755 | 7.09
0.96| --- - |33 | - |303|815| - [7.79| 724
1.04] --- -~ | 375 | - |332]883| - [994] 775
1.12 4.23 3.61 | 9.54 9.18

tap10.crv Chi-Chi-TAP010 0.08/ 1.48 | 1.25 | 0.31 | 0.39 | 0.33 | 0.18 | 0.59 | 1.08 | 1.40

0.16] 2.21 | 2.01 | 0.99 | 0.73 | 0.59 | 0.42 | 2.08 | 1.96 | 2.63

024 - | 281 )145| 110|082 | 0.68 | 3.50 | 2.45 | 3.85
032 - |335]176| 139|115 0.96 | 433 | 2.89 | 4.65
040| -- | 379 |205]217 | 149 | 130 | 524 | 392 | 534
048 - | 422 | 247|241 | 176 | 1.72 | 599 | 580 | 596
056 --- | 617|291 | 257|204 | 231|657 | 7.75 | 7.00
0.64| --- - | 327 274|231 |310 | 717 | 8.33 | 8.63
0.72| - --- | 358|292 | 253|419 | 795|698 | --
0.80| --- - | 377|321 | 295 | 557 | 936 | -- ---
0.88| --- -~ | 363|373 343|704 | -- --- ---
0.96| --- - | 466 | 589 | 385|836 | -- == —
1.04] --- - | 511 | 868 | 415939 | -- == —

112 — | = [502 520|448 | — | — | — | —
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Table A.1 (cont’d): Incremental dynamic analysis results showing inter-story drift
ratios of reference buildings at different PGA levels for 20 far-field records

tap21.crv Chi-Chi-TAP021 0.08| 0.89 | 1.02 | 0.38 | 0.26 | 0.30 | 0.18 | 0.47 | 0.82 | 1.19

0.16] 2.79 | 1.63 | 0.92 | 0.55 | 0.55 | 0.39 | 0.99 | 1.62 | 2.29

024 - | 178144098 | 085|063 | 174 | 2.33 | 2.88
032] --- | 203 ] 144|160 | 120|090 | 292 | 2.84 | 2.94
040| -- | 227 | 159|201 | 150 | 1.20 | 442 | 3.13 | 3.49
048] - | 269|172 ]222 | 186 | 1.58 | 567 | 4.71 | 3.88
056 --- |322)193|226 | 216 | 2.06 | 7.03 | 840 | 4.16
0.64| --- | 368|237 |262|250 | 270|912 | - | 492
072 - | 401 | 293|503 | 282|349 | -- --- | 5.85
080 -- | 425|344 | - |316 | 447 | - —-- | 6.84
088 -- | 480|379 | - |348 568 | -- - | 7.68
0.96| --- - | 438 | - | 374|711 | -- - | 833
1.04] --- - | 564 | - | 411|872 | -- -—-- | 8.88
112 - - 6.29 4.76 9.17

tap95.crv Chi-Chi-TAP095 0.08| 1.15 | 0.45 | 0.28 | 0.30 | 0.24 | 0.26 | 0.59 | 0.67 | 0.61

0.16] 2.59 | 1.07 | 046 | 0.69 | 0.42 | 0.54 | 1.30 | 1.83 | 1.31

0.24| 446 | 1.55 | 0.80 | 091 | 058 | 0.81 | 1.89 | 2.93 | 1.92

0.32] 3.82 | 1.89 | 1.02 | 1.31 | 0.80 | 1.07 | 2.60 | 3.53 | 2.58

0.40| 441 | 261 | 1.37 | 1.43 | 1.09 | 1.34 | 3.17 | 413 | 2.96

048] -- | 311|168 | 168 | 140 | 1.73 | 3.87 | 4.40 | 3.87
056] -- | 350|194 )220 | 172|214 | 496 | 445 | 4.88
064 - |385|222]|252|197 | 255|626 | 451 | 5.78
0.72] - | 411|259 |274 1216|294 | 771 | 462 | 6.51
080 -- |428|292]299|232|330]|919 517 | 732
088 -- | 452 | 284|326 | 244|363 | - |574]|832
096 - | 494|281 |325|251|387| - |616]| --
1.04] --- | 714 | 3.09 | 415 | 257 | 407 | - | 636 | --
1.12] - - 3.37 | 456 | 2.71 | 4.46 6.60 | -

mat.crv Manjil-Tonekabun 0.08) 1.19 | 0.61 | 0.30 | 0.23 | 0.24 | 0.29 | 0.63 | 1.09 | 0.73

0.16] 258 | 1.09 | 0.51 | 052 | 0.44 | 0.60 | 1.44 | 2.04 | 1.54

0.24] 3.083 | 1.56 | 0.79 | 0.60 | 0.65 | 0.92 | 1.85 | 2.76 | 2.16

0.32] 483 | 1.73 | 098 | 0.67 | 091 | 1.22 | 1.98 | 3.38 | 2.79

040| -- | 213104089 | 128|149 | 260 | 4.04 | 3.15
048] - | 242|125 | 111|162 | 166 | 2.88 | 4.34 | 3.40
056 --- | 259|153 | 114|193 | 187 | 508 | 3.80 | 3.99
0.64| --- | 270|178 | 140 | 220 | 235 | 722 | 452 | 445
072] - | 279|198 | 169 | 245 | 298 | 8.46 | 458 | 4.75
080 --- | 288|213 | 223|266 | 3.72| 888 | 512 | 4.89
088 --- |3.01) 230|275 | 286 | 454 | 9.04 | 6.00 | 4.95
0.96] --- | 320 | 236 | 3.11 | 3.03 | 536 | 9.24 | 6.77 | 5.04
104 --- [ 342|229 335|317 | 619|914 | 739 | 5.36
112 --- | 3.65| 226 | 352 | 327 | 7.06 | 9.19 | 7.94 | 5.68
maa.crv Manjil-Abhar 0.08| 0.67 | 0.48 | 0.23 | 0.57 | 0.23 | 0.16 | 0.57 | 0.70 | 0.41

016 1.38 | 1.27 | 0.34 | 0.83 | 041 | 0.35 | 095 | 1.14 | 1.31

0.24] 2.33 | 258 | 0.78 | 1.38 | 0.62 | 0.54 | 1.44 | 144 | 2.24

0.32] 441 | 330 | 142 | 1.35 | 0.80 | 0.75 | 1.63 | 1.66 | 4.26

040| -- |334|205]152|097 100|182 195|533
048] - | 353|238 | 171|111 | 126|242 | 337 | 642
056 --- | 357|222 | 191|122 | 150 | 297 | 455 | 6.62
0.64| --- | 376 | 255|220 | 134|180 | 334|516 | 6.44
0.72] - | 570 | 2.86 | 254 | 1.63 | 2.05 | 3.47 | 5.65 | 6.78
0.80| --- - [ 312 | 287 | 190 | 231 | 475 | 5.56 | 6.28
0.88| --- - [ 340|318 | 2.16 | 2.66 | 5.65 | 6.90 | 7.00
0.96| --- -—- | 407 | 345 | 242 | 3.06 | 7.02 | 8.80 | 7.52
1.04] --- - | 498 | 368 | 281 | 3.50 | 894 | --- —

112 - - | 504 392|317 | 401 | -- --- ---
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Table A.1 (cont’d): Incremental dynamic analysis results showing inter-story drift
ratios of reference buildings at different PGA levels for 20 far-field records

iza.crv Izmit-Ambarli 0.08| 1.44 | 0.49 | 0.29 | 0.27 | 0.36 | 0.19 | 1.19 | 1.30 | 0.56

0.16] 2.74 1 0.87 | 045 | 081 | 0.62 | 048 | 2.05 | 2.29 | 1.17

024|321 | 116 | 0.68 | 1.05 | 0.92 | 0.80 | 3.24 | 3.14 | 1.70

0.32] 393 | 151082 | 134|116 | 115 | 3.80 | 3.80 | 2.19

0.40| 5.08 | 214 | 099 | 1.83 | 1.47 | 1.66 | 4.64 | 406 | 2.61

048] -- | 283|110 189 | 2.00 | 2.35 | 528 | 449 | 2.95
056 --- | 316|138 | 237|245 | 261 | 565 | 5.29 | 3.90
064 --- | 382|172 | 259|284 | 347|582 |594 |516
0.72| --- --- | 213|248 | 317 | 436 | 6.01 | 6.28 | 6.44
0.80| --- - | 601|294 | 344 | 507 | 793 | 6.09 | 7.48
0.88| --- -~ | 686 | 338 | 367|558 | - |599|8.17
0.96| --- - | 274 |1210| 3.77 | 6.08 | --- | 6.78 | 8.23
1.04] -- - | 307 | 403|387 |644 | --- | 751|830
112 - - | 386|411 |39 |[684 | - |[820 | --
izz.crv 1zmit-Zeytinburnu 0.08) 0.69 | 0.35 | 0.24 | 0.23 | 0.15 | 0.20 | 0.28 | 0.71 | 0.45

0.16] 1.31 | 0.63 | 0.42 | 0.46 | 0.27 | 045 | 0.73 | 1.73 | 0.89

0.24] 271 | 099 | 052 | 0.66 | 0.39 | 0.70 | 1.11 | 256 | 1.17

0.32) 3.88 | 1.47 | 0.73 1 094 | 064 | 094 | 1.30 | 2.76 | 1.64

0.40| 3.32 | 205 | 091 | 1.08 | 096 | 1.15 | 217 | 3.24 | 2.12

048 --- | 248 | 121|112 |1.27 | 136 | 2.88 | 3.71 | 2.67
0.56| --- | 276|154 | 131 | 153|163 | 3.28 | 3.98 | 3.52
0.64| --- 290|169 | 1.58 | 1.73 | 1.97 | 3.58 | 4.10 | 4.56
0.72| --- 302|184 | 181|188 | 236 | 426 | 4.04 | 5.10
0.80| --- | 356|188 | 200|198 | 275 | 558 | 4.01 | 5.25
0.88| --- | 4.05| 197 | 221 | 2.07 | 3.16 | 8.10 | 4.29 | 5.07
0.96| --- | 442 | 221|238 | 216 | 3.58 | 8.14 | 453 | 4.99
1.04| --- 489 | 243 | 257 | 214 | 399 | 7.36 | 4.88 | 5.12
1.12| --- 986 | 261 | 272 | 216 | 444 | 7.08 | 541 | 5.44
kob.crv Kocaeli- Bursa 0.08| 1.39 | 0.59 | 0.32 | 0.32 | 0.58 | 0.19 | 0.48 | 1.22 | 0.71

0.16] 2.68 | 1.32 | 049 | 0.70 | 1.08 | 0.46 | 1.49 | 2.56 | 1.42

0.24] 466 | 1.99 | 0.81 | 1.09 | 151 | 0.70 | 2.29 | 3.14 | 2.50

032] - | 236|119 ] 156 | 171092 | 3.69 | 3.48 | 3.30
040| -- | 246|130 | 252|228 | 1.13 | 5.06 | 3.98 | 4.00
048] --- | 285|152 | 258 | 280 | 1.33 | 6.07 | 4.93 | 444
056 --- |344 183 | -- |[322 | 173 | 6.67 | 554 | 485
064 - | 412229 | - |354]219|7.02 | 6.27 | 564
0.72| --- - | 378| --- | 380 | 265|696 | 724 |6.73
0.80| --- - | 373 | --- | 402|307 | 758 | 840 | 744
0.88| --- - | 389 | - | 423|395 |862 970 | 824
0.96| --- - | 455 | - | 451 | 485|945 | - |9.96
1.04] --- - | 389 | -—- | 487|576 | -- --- —
1.12 5.21 6.73

koh.crv Kocaeli-Hava Alani 0.08/ 0.99 | 0.47 | 0.26 | 0.22 | 0.45 | 0.13 | 0.78 | 0.64 | 0.56

0.16] 2.09 | 1.27 | 045 | 047 | 081 | 0.29 | 1.61 | 1.34 | 1.31

024|292 | 162 | 0.78 | 1.14 | 1.16 | 0.54 | 2.16 | 2.22 | 2.36

0.32] 6.33 | 1.84 | 1.08 | 1.46 | 1.56 | 0.81 | 2.32 | 3.50 | 2.83

040 -- | 220 115] 215|193 | 1.07 | 2.68 | 4.06 | 3.07
048] - | 254|143 | 245|226 | 132|357 | 3.73 | 343
056| --- | 2.69 | 1.78 |108.16| 2.60 | 1.59 | 5.13 | 4.36 | 3.93
0.64] --- | 371|212 |1641| 2.84 | 2.05 | 6.23 | 542 | 4.34
0.72] - | 481|224 121.35| 3.00 | 257 | 7.36 | 6.24 | 4.53
0.80| --- -~ | 269 | 338|315 | 3.04 | 860 | 6.86 | 5.26
0.88| --- - | 326|370 | 333|339 946 | 723 | 578
0.96| --- -~ | 383|420 | 3.72 | 3.86 | 940 | 7.40 | 6.74
1.04] --- - | 373 935|400 | 460 | 925 | 7.69 | 7.74

112 - - | 397 | --- [ 438|537 | - [811]| --
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Table A.2: Incremental dynamic analysis results showing inter-story drift ratios of
reference buildings at different PGA levels for 20 near-source records

. Story Drift (%)
FlE e PCA50-02/B0-08]B0-18]B0-26]B0-40] FS | PS | SC | HO
0394.crv Coalinga-04(394) 0.32] 0.93 | 0.36 | 0.20 | 0.23 | 0.19 | 0.38 | 0.62 | 0.16 | 0.48

0.64|201)0.73]031]043|035|0.79]1.30 | 0.30 | 1.00
0.96] 259 [ 1.14 | 046 | 057 | 0.51 | 1.14 | 1.97 | 042 | 1.50
128|248 | 145 068 | 0.73 | 0.65 | 1.43 | 2.50 | 0.53 | 1.95
1.60] 3.08 | 1.72 | 0.90 | 0.90 | 0.81 | 1.88 | 2.75 | 0.64 | 2.31
1921390 194|114 |1.08 096|234 |287|0.75]270
224|467 | 210 | 140|131 109|274 | 348 | 0.87 | 3.08
2.56| 538 | 223 | 1.56 | 1.54 | 1.20 | 3.09 | 4.52 | 0.98 | 3.39

2.88| --- | 234|163 |1.78|1.29|343|545]| 110 | 3.62
3.20| --- [244 168|199 | 135|376 | 6.09 | 1.22 | 3.79
352| --- | 252175218 | 139 | 410 |6.33|1.33|3.90
3.84| --- | 2.60|1.83 233|142 |4.42|6.28| 1.44] 3.99
416 --- | 267 | 190|242 | 144|474 ]6.10 | 1.55 | 4.05
448 --- | 282|197 | 247|146 | 505|582 | 1.65 | 4.11
c0395.crv Coalinga-04(395) 0.32| 0.43 ] 0.22 | 0.12 | 0.11 | 0.10 | 0.15 | 0.33 | 0.12 | 0.31

0.64] 063 | 043 | 028 | 0.17 | 0.17 | 0.31 | 0.62 | 0.24 | 0.60
0.96] 0.81 | 0.64 | 041 | 0.26 | 0.24 | 0.45 | 0.90 | 0.34 | 0.89
128|111 | 0.85 | 0.51 | 0.37 | 0.30 | 0.61 | 1.20 | 0.44 | 1.17
1.60| 1.43 | 1.03 | 0.62 | 0.46 | 0.35 | 0.77 | 1.50 | 0.53 | 1.42
192|176 | 118 | 0.72 | 053 | 0.39 | 0.93 | 1.69 | 0.61 | 1.64
22412111132 |0.82)059|045]110|1.83]0.69 | 1.82
2.56| 246 | 1.43 | 0.91 | 0.63 | 0.50 | 1.27 | 2.00 | 0.77 | 1.94
2.88| 282 | 1.53 | 1.00 | 0.68 | 0.55 | 1.45 | 2.15 | 0.85 | 2.04
3200318 | 161 |1.08)0.72|060 | 163|227 |0.92] 216
352|354 |167 116 0.75|0.65 | 182 | 237|099 | 231
3.841 391 | 173 122|078 |0.70 | 2.01 | 2.49 | 1.06 | 2.44
416|443 1178 | 1.29 | 0.82 | 0.74 | 220 | 2.69 | 1.12 | 2.57
448|518 |1 189 | 1.34 | 0.87 | 0.78 | 2.40 | 2.88 | 1.19 | 2.68
c0405.crv Coalinga-04(405) 0.32] 0.94 | 041 | 021 | 0.29 | 0.19 | 0.35 | 0.63 | 0.15 | 0.56
0.64] 159 {089 | 038 | 044 |1 0.28 | 0.69 | 1.20 | 0.32 | 1.10
0.96] 2.03 | 1.20 | 055 | 0.53 | 0.41 | 1.01 | 2.17 | 0.46 | 1.49
1.28] 228 | 1.43 |1 0.60 | 0.73 | 0.52 | 1.37 | 2.83 | 0.61 | 1.92
1.60] 2.34 | 1.66 | 0.73 | 0.99 | 0.63 | 1.86 | 2.69 | 0.76 | 2.29
192|250 | 1.85 090 | 1.46 | 0.73 | 2.36 | 3.80 | 0.91 | 2.59
2241281 | 202 | 113|174 088|275 |4.85|1.08 | 2.83
256|309 | 217 | 143 | 173|103 | 3.04 | 562 | 1.22 | 3.00
2.88| 344 |1 231 | 168 | 1.67 | 1.18 | 3.25 | 6.16 | 1.35 | 3.20
3.20) 364 | 254 | 1.78 | 1.78 | 1.30 | 3.37 | 6.37 | 1.46 | 3.46
352|385 |273 189|189 |142 | 346|642 |158]3.79
3.84| 431 | 288 | 2.02 | 1.94 | 1.53 | 401 | 644 | 1.70 | 4.29

416| - [ 299|217 194|163 |461 645|181 | 4.87
448 --- |13.09 | 237|201 172|528 |653| 192|535
cl.crv Coyote Lake 032 117 0.99 | 0.28 | 0.32 | 0.19 | 0.53 | 0.78 | 0.18 | 0.87

0.64| 219 {149 | 064 | 0.62 | 0.38 | 1.04 | 1.70 | 0.35 | 2.21
0.96] 245176 | 099 | 0.85 | 0.63 | 1.42 | 2.12 | 0.50 | 2.62
128|398 | 217 | 1.13 | 0.97 | 0.87 | 1.96 | 2.52 | 0.65 | 2.84

160 --- | 235|157 109|109 |259|275)|0.82]351
192 --- | 2241178127 122|320 |323)|1.01 393
224| - | 267312138 | 126|375 369|128 |4.57
256 - | 326|228 |158 138425382 154|555
2.88| --- 380|265 |205]|1.60 471|406 |1.75]6.14
3.20| - | 427|248 | 217|180 |512|453 | 191 |6.07
3.52| --- | 487|227 (209|203 548|515 | 2.06 | 5.96
3.84| - 592|243 204|226 |581 574|211 597
416 -- —- | 260|194 224|609 |748 | 217 | 6.19

448| --- - | 293|119 |266 |63 | --- |218]6.35
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Table A.2 (cont’d): Incremental dynamic analysis results showing inter-story drift
ratios of reference buildings at different PGA levels for 20 near-source records

fri.crv Friuli (aftershock) 0.32] 0.52 | 0.30 | 0.21 | 0.13 | 0.13 | 0.21 | 0.42 | 0.11 | 0.32

0.64]0.84 | 053 031 ]025]0.23|0.46 | 0.85|0.23 | 0.61

0.96| 1.08 | 0.70 | 0.44 | 0.38 | 0.33 | 0.71 | 1.24 | 0.34 | 0.89

1281137 | 093|055 061042095 |15 |045] 121

1.60( 180 | 1.17 | 0.71 | 0.83 | 051 | 1.20 | 1.84 | 0.57 | 1.50

1.92]1 234 | 1.36 | 0.89 | 0.98 | 0.57 | 1.45 | 1.98 | 0.68 | 1.77

224|287 | 156 |1.04 | 1.07 | 063 | 1.69 | 2.17 | 0.80 | 1.98

256|336 178|114 ]110]0.68 | 1.95| 2.60 | 0.91 | 2.30

2.88|1 380|198 |121]110]0.72|220|3.01]|1.03] 264

3.20| 423 | 217 | 1.28 | 1.06 | 0.77 | 2.44 | 3.37 | 1.14 | 3.00

352|463 | 232135097 082|264 ]|373| 126 3.33

3.84| 5.06 | 245|140 | 1.05 | 086 | 2.76 | 4.08 | 1.37 | 3.66

4.16]| 6.28 | 255 | 146 | 1.17 | 091 | 290 | 441 | 1.48 | 3.99

448|816 | 262 | 1.58 | 1.27 | 0.95 | 2.97 | 4.76 | 1.59 | 4.28

HOL.crv Hollister-04 0.32| 1.07 | 0.48 | 0.41 | 0.27 | 0.26 | 0.42 | 0.70 | 0.29 | 0.63

0.64| 2.16 | 0.93 | 0.58 | 0.58 | 0.50 | 0.86 | 1.42 | 0.55 | 1.25

0.96] 3.00 133073092075 |142 | 208 0.79 | 1.86

1.28| 403 | 1.64 | 0.90 | 1.28 | 1.02 | 2.08 | 2.54 | 1.01 | 2.37

1.60( 4.03 | 2.01 | 1.17 | 1.64 | 1.29 | 2.78 | 293 | 1.22 | 2.74

192|527 | 232 | 147 | 198 | 1.54 | 341 | 3.57 | 1.41 | 3.04

224| - | 259|180 | 228|176 |3.95 | 4.06 | 1.65] 3.60
256 - | 284215254 193|484 |445]189|4.21
2.88| --- | 3.08 | 248 | 277 | 205|572 | 492|213 | 479
320 - 330 280|297 |213 | 650 | 574 | 2.35| 5.38
352| - |351|311)314|218|7.16|6.59 | 258|596
3.84| - |371|341)1328|220|7.70|7.49]280]6.51
416] - [391 369|338 |220|814|840 301|704
448| --- | 447 | 3.96 | 347 | 218 | 8.49 | 9.35|3.20 | 7.56
la.crv Lazio Abr. Y 0.32] 1.51 | 0.70 | 0.32 | 0.34 | 0.27 | 0.46 | 1.03 | 0.29 | 0.89

0.64| 217|114 | 058 | 0.64 | 057 | 0.90 | 1.79 | 0.55 | 1.61

0.96| 3.57 | 1.58 | 0.80 | 0.88 | 0.90 | 1.32 | 3.43 | 0.82 | 2.36

128|424 1189 | 104|145 130|188 | 422|110 | 3.12

160 --- | 213130169 |166 | 274|534 | 137 | 3.68
192 --- | 242|163 |200|196 |3.75|6.31|1.72 | 4.07
224| - | 270|183 | 244|217 | 456 | 6.55 | 2.02 | 4.36
2.56| --- | 287|207 |273]|233|573|6.28 | 2.07 | 4.56
2.88| --- | 3.04 224|288 |247 |7.02|6.28 | 2.29 | 453
3.20| - | 387|236 | 293|259 |867|651]|262]4.80
3.52| --- 619|254 1297|269 |9.99|6.80 | 278 | 5.16
3.84| --- - | 317 |29 | 279 | --- | 7.14 | 281|555
416| -- -~ 330|295 |28 | --- | 7.96 | 2.84 | 5.98
4.48 3.63 | 2.98 | 2.89 8.71 | 2.90 | 6.51

liv.crv Livemore-02 0.32] 0.93 | 0.36 | 0.20 | 0.23 | 0.19 | 0.38 | 0.62 | 0.16 | 0.48

0.64( 201073 ]031]043|035|0.79 ]| 1.30 | 0.30 | 1.00

0.96( 259 | 114 | 046 | 057 | 051 | 1.14 | 1.97 | 0.42 | 1.50

1.28] 248 | 1.45 ] 0.68 | 0.73 | 0.66 | 1.43 | 2.50 | 0.53 | 1.95

1.60| 3.08 | 1.72 | 0.90 | 0.90 | 0.81 | 1.88 | 2.75 | 0.64 | 2.31

192|389 | 194|114 108|096 | 234|287 |0.75 ]| 2.70

224|467 | 210 | 140 | 1.31 | 1.09 | 2.74 | 3.48 | 0.87 | 3.08

2.56| 5.38 | 2.23 | 1.56 | 1.54 | 1.20 | 3.09 | 4.52 | 0.98 | 3.39

288 - [ 234|163 179|129 |343 |545]|1.10 | 3.62
320 - [ 244|169 199135376 |6.09]|122]3.79
352| - |252|175)219|139]4.10|6.33]|1.33]3.90
3.84| - | 260 183|233 |142 442|628 |1.44 ]399
416| --- | 267 | 190|242 | 144|474 |6.10 | 1.55 | 4.05

448| --- | 282|197 | 247|146 |505]582|165] 411
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Table A.2 (cont’d): Incremental dynamic analysis results showing inter-story drift
ratios of reference buildings at different PGA levels for 20 near-source records

ml2.crv Mammoth Lake-02 0.32| 0.65 | 0.31 | 0.17 | 0.21 | 0.16 | 0.19 | 0.46 | 0.11 | 0.35

064|114 1058 | 031041029 ]0.39|0.89|0.22 | 0.69

0.96| 142 |1 081 | 0.46 | 0.62 | 0.39 | 0.60 | 1.32 | 0.32 | 1.01

1.28|1.67 | 1.03 | 0.64 | 0.83 | 0.46 | 0.80 | 1.73 | 0.41 | 1.35

1.60] 2.21 | 1.28 | 0.82 | 1.03 | 0.58 | 1.00 | 2.10 | 0.50 | 1.68

1.92]1 2.81 | 1.50 | 1.00 | 1.21 | 0.70 | 1.27 | 2.39 | 0.59 | 2.03

224|344 | 171 1118 | 137 | 083 | 1.58 | 2.61 | 0.69 | 2.38

256|411 191 136|150 )09 189|276 |0.78 | 2.73

2.88| 481 | 209 | 154|163 |1.07 219|284 |0.87 | 3.08

3.20| 553 | 226 | 1.70 | 1.75 | 1.18 | 2.47 | 2.85 | 0.96 | 3.45

3.52| 625|243 187|186 |1.28 | 272|324 ]|1.04]3.79

3.84| --- | 258|203 ]197 136|294 |368|1.12]4.13
416] - [ 279218 | 206|144 314|414 118|444
448| --- | 3.07 | 232 | 215|151 |3.30 | 463 | 124|473
ml6.crv Mammoth Lake-06 0.32] 0.54 | 0.26 | 0.16 | 0.16 | 0.14 | 0.25 | 0.31 | 0.09 | 0.33

0.64| 1.26 | 047 | 0.27 | 0.24 | 0.22 | 0.42 | 0.70 | 0.18 | 0.64

0.96| 1.53 | 0.65 | 041 | 0.37 | 0.31 | 0.63 | 1.09 | 0.28 | 0.91

128|198 | 0.83 | 0.56 | 0.55 | 0.41 | 0.83 | 1.42 | 0.39 | 1.13

1.60( 219 | 1.01 | 0.63 | 0.71 | 050 | 1.01 | 1.66 | 0.49 | 1.30

1.92] 2.78 | 1.20 | 0.66 | 0.82 | 0.58 | 1.16 | 1.81 | 0.60 | 1.46

2241315139 ]0.74]0.89 066129219 ]0.70 ]| 171

256|330 | 155 | 0.79 | 0.99 | 0.73 | 1.48 | 2.53 | 0.80 | 2.04

2.88] 354|168 | 087 105|079 | 172|280 | 0.90 | 2.35

3.200 415|180 | 0.99 | 1.23 | 0.89 | 1.93 | 3.08 | 1.00 | 2.62

3.52| 485|198 |1.09 139099213335 110 2.85

3.84| 555|215 119|152 |1.08|232]3.63 ]| 120 3.03

4161621 {230 132|168 |118 | 248 | 391|129 319

4.48 2451144 1180|131 | 268|419 138 3.37

mon.crv Montenegro (aftershock) [0.32| 0.83 | 0.53 | 0.31 | 0.29 | 0.22 | 0.53 | 0.53 | 0.13 | 0.77

0.64| 1.60 | 1.05 | 0.62 | 0.58 | 0.40 | 0.92 | 1.00 | 0.27 | 1.64

096 238131071077 | 058|128 )1.49 |0.39] 223

1281297 | 1.71 1096 | 096 | 0.79 | 1.74 | 1.97 | 0.53 | 2.54

1.60| 3.71 | 223 | 1.28 | 1.23 | 1.00 | 2.16 | 2.43 | 0.66 | 2.60

1921380 | 271 163|140 | 123|246 | 291 | 0.81 | 3.06

224|470 | 3.15 | 1.98 | 1.57 | 145 | 2.65| 3.33 | 0.96 | 3.70

2.56| --- [350 232182163 |293]|385| 111431
2.88| --- [ 382|258 |209|178|343 |447 126|491
320 - | 440|273 ]|229 | 187 | 391 |494]|142|5.67
3.52| --- | 503|298 |246|1.93 437|518 | 1.58 | 6.38
3.84| --- | 575|315 |259 197|482 533|174 722
416| --- | 654|349 |268 | 198|524 |6.27 | 1.90 | 8.05
448| --- | 951 | 375|287 |198 | 565|713 | 2.05] 8.89
nor.crv Northridge-06 0.32] 0.60 | 0.38 | 0.18 | 0.21 | 0.16 | 0.36 | 0.53 | 0.14 | 0.53

0.64| 1.03 ] 0.73 | 0.30 | 0.45 | 0.30 | 0.64 | 0.96 | 0.28 | 0.99

0.96( 1.29 | 1.04 | 043 | 0.71 | 044 | 099 | 1.34 | 042 | 1.45

1281159 | 1.28 | 0.63 | 093 | 057 | 1.37 | 1.64 | 0.56 | 1.81

1.60( 1.80 | 1.50 | 0.87 | 1.08 | 0.68 | 1.75 | 1.87 | 0.68 | 2.03

192201 |171)113|120|0.79 | 210|209 |0.80 | 2.18

224|237 {190 | 1.40 | 1.30 | 0.89 | 2.40 | 248 | 0.91 | 2.47

2.56| 273 | 207 | 1.64 | 1.37 | 0.97 | 2.64 | 2.90 | 1.02 | 2.74

2.88]310 | 223|186 | 146|103 ]286 |332]| 113|299

320|349 | 237 | 2.04 | 151|107 | 3.04 | 375|122 |3.21

352|389 |249 221|159 |111 320|417 |133]3.39

3.84| 4.36 | 260 | 2.36 | 1.63 | 1.13 | 3.29 | 4.60 | 1.42 | 3.55

4.16| 488 | 2.69 | 248 | 1.62 | 1.15 | 3.61 | 4.99 | 1.52 | 3.69

448|539 | 277 | 259 | 164|115 |397 | 534161379
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Table A.2 (cont’d): Incremental dynamic analysis results showing inter-story drift
ratios of reference buildings at different PGA levels for 20 near-source records

um.crv Umbria Ma. 0.32] 1.45 | 058 | 0.26 | 0.31 | 0.38 | 0.58 | 1.39 | 0.44 | 0.74

064|183 | 1.06 | 0.54 | 0.66 | 0.63 | 1.24 | 3.07 | 0.72 | 1.48

0.96] 229 | 153 | 0.85|1.16 | 0.83 | 2.01 | 3.69 | 0.94 | 2.12

1281343 1198|121 157|107 |274|342 113|251

1.60| 462 | 270 | 1.55 | 1.84 | 1.25 | 3.29 | 4.16 | 1.33 | 3.02

192 - |3.09)186 (182|138 388|470 | 151 |4.33
224| - 314|214 197|147 496|506 | 1.67 | 550
2.56| --- [3.05)|239]290|1.60 595|536 |1.81 |5.68
2.88| --- | 306|262 |211 188 |6.82|569 194|545
320 - |369|281)|223|213|7.62|6.07| 205|549
352| - | 461|298 |4.08|230]|839|6.72]| 220 6.09
384 - 884|351 | --- |238[9.08|7.05]|237]6.65
416 -- —- 404 | --- | 236|974 | 754|266 | 7.28
4.48 5.19 2.28 8.48 | 2.85 | 8.73

wn589.crv | Whittier Narrows-01(589) |0.32| 1.34 | 0.46 | 0.26 | 0.32 | 0.30 | 0.38 | 1.29 | 0.23 | 0.66

064|187 | 101 | 044 | 0.72 | 055 | 0.88 | 243 | 0.46 | 1.48

0.96] 265 | 159 | 061 | 1.06 | 0.68 | 1.44 | 2.96 | 0.67 | 2.37

128 285|229 112134079 |1.91]3.25]|0.90 | 3.08

160 299 | 224 | 143 | 151 | 1.05 | 241 | 3.78 | 1.12 | 3.74

1.921 382 | 248 | 1.62 | 1.60 | 1.25 | 2.89 | 4.06 | 1.33 | 3.81

2241524 | 276 | 1.74 | 1.65 | 1.43 | 3.77 | 4.90 | 1.53 | 4.40

256 - [ 296|182 |176|164|469 578|173 |494
288 - 312190186 | 177|539 |653]190]5.27
320 - [325|1.95)|205| 186|583 | 714|205 | 547
352| - [ 335|196 |208]|186|6.10| 761|218 |5.59
384| - |374|204)218| 187|637 791|227 |5.72
416| - | 422|211 |217|187|6.67 |8.07 | 234|577
4.48 47112241219 |1.90|6.95|8.03 | 239|579

wn601.crv | Whittier Narrows-01(601) [0.32| 0.99 | 0.45 | 0.28 | 0.22 | 0.25 | 0.42 | 0.57 | 0.14 | 0.57

0.64| 1.88 | 0.85 | 0.50 | 0.38 | 0.42 | 0.85 | 1.21 | 0.29 | 1.02

0.96| 2.04 | 1.20 | 0.67 | 0.55 | 0.56 | 1.30 | 1.91 | 0.46 | 1.47

128|259 | 147 |1 0.77 | 0.75 | 0.67 | 1.80 | 2.43 | 0.65 | 1.87

1.60| 3.01 | 1.67 | 0.91 | 1.00 | 0.78 | 2.34 | 3.07 | 0.83 | 2.22

1921339192 |1.02 117 | 090 | 2.87 | 3.56 | 1.02 | 2.82

224|378 | 203 | 1.16 | 1.32 | 1.02 | 3.34 | 3.90 | 1.20 | 3.32

2.56| 416 | 204 | 1.29 | 143|113 | 3.75 | 416 | 1.38 | 3.67

2.88]4.46 | 245|142 | 147|125 ] 4.08 | 440 | 1.56 | 3.88

3201471 | 283 | 154 | 146 | 1.36 | 441 | 465 | 1.73 | 3.96

3.52| 478 | 3.18 | 1.72 | 151 | 145 | 474 | 491 | 191 | 3.80

3.84| 539 | 347 | 1.92 | 1.55 | 152 | 5.04 | 5.17 | 2.08 | 3.85

416| --- | 3741222161168 |564|548 | 225|420

448| --- [ 400|238 |1.65|184|6.28 | 597 | 243|455
wn619.crv | Whittier Narrows-01(619) [0.32| 0.69 | 0.37 | 0.20 | 0.23 | 0.15 | 0.27 | 0.63 | 0.14 | 0.49

0.64| 1.38 | 0.80 | 0.36 | 0.40 | 0.30 | 0.58 | 1.23 | 0.27 | 1.01

0.96( 245 | 1.28 | 0.57 | 0.66 | 0.44 | 0.90 | 1.54 | 0.41 | 1.58

128|277 | 1741074 1084 | 056 | 1.22 | 1.70 | 0.55 | 2.21

1.60| 226 | 2.11 | 0.87 | 0.98 | 0.73 | 1.58 | 1.84 | 0.68 | 2.72

192|319 | 235|116 | 108 | 093 |1.90 | 199 |0.81 | 3.20

224|380 | 252 | 146 | 1.16 | 1.18 | 2.39 | 242 | 0.93 | 3.58

2.56| 410 | 263 | 1.70 | 1.28 | 144 | 292 | 2.88 | 1.06 | 3.89

2.88| 487 | 268 | 1.83 | 145 | 1.70 | 347 | 3.31 | 1.20 | 4.12

320 - | 265|184 168|193 ]399 |381|135]4.46
352| - 260|194 )192|209 |448 | 420|150 |4.87
3.84| - | 263|197 |218 | 220|491 |440 | 166 |5.17
416| --- 1290|199 | 242|226 | 526|452 | 1.83 | 545

448| --- [ 323|198 | 254|229 |553|4.75| 200 | 550
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Table A.2 (cont’d): Incremental dynamic analysis results showing inter-story drift
ratios of reference buildings at different PGA levels for 20 near-source records

wn626.crv | Whittier Narrows-01(626) |0.32| 0.69 | 0.30 | 0.17 | 0.19 | 0.20 | 0.33 | 0.57 | 0.15 | 0.42

0.64| 1.56 | 0.59 | 0.28 | 0.34 | 0.37 | 0.64 | 1.08 | 0.29 | 0.81

0.96] 1.92 1 0.92 | 0.42 | 0.56 | 0.53 | 0.96 | 1.56 | 0.42 | 1.16

1281198 | 1.20 | 0.55 | 0.76 | 0.67 | 1.33 | 2.09 | 0.54 | 1.51

160 271 | 145 0.74 | 090 | 081 | 1.74 | 2.71 | 0.65 | 1.81

1921 331|169 | 093 | 1.03 | 0.95 | 2.14 | 3.27 | 0.75 | 2.12

224|376 {192 111|119 )1.08 | 264|378 |0.83]241

256|403 210|127 | 138|119 316|418 |0.92 | 2.68

288|412 | 225|142 | 157|129 | 3.66 | 440 | 1.00 | 2.96

3.20| 405|239 | 156|174 |136|4.10]452]1.09 ] 3.20

3.52| 467 | 250 | 1.68 | 1.85 | 1.42 | 453 | 453 | 1.17 | 3.42

3.84| 526 | 260 | 1.82 | 194 | 146 | 494 | 445 | 1.25 | 3.60

416] - [285]194 206|149 |525|444 131|378

4.48 3.24 1 205 | 2.01 | 1.52 | 5.62 | 4.90 | 1.40 | 4.06

wn629.crv | Whittier Narrows-01(629) |0.32] 1.36 | 0.36 | 0.32 | 0.20 | 0.29 | 0.32 | 0.81 | 0.31 | 0.46

0.64| 1.87 | 0.69 | 051 | 045|041 | 0.67 | 1.57 | 0.61 | 0.96

0.96| 2.77 | 1.07 | 068 | 0.80 | 0.58 | 1.04 | 2.29 | 0.91 | 1.41

128|359 | 143 1096|120 | 079|151 ]352]| 119 |1.89

160 --- 180121 |172]098 | 211|340 145|231
192 - | 225139 |169|113|281|431]|167|6.20
224| - | 267|164 182|119 |342 514|179 348
256 - |[3.00 191284134383 |481|183]3.76
2.88| - [323 214|369 | 147 | 403 | 464 | 1.85 |14.03
3.20| --- | 341|237 |415| 158|414 532|192 |10.04
352| - [369 258|515 | 176 | 414|652 | 210 |1241
3.84| - | 454|273 | 714|207 | 413 |8.05]| 2.28 | 6.67
416 -- —- | 347 | - | 234|459 | - |246 | --
4.48 3.90 2.53 | 5.25 2.62

wn639.crv | Whittier Narrows-01(639) |0.32| 0.97 | 0.29 | 0.22 | 0.17 | 0.23 | 0.31 | 0.75 | 0.18 | 0.41

0.64| 1.62 | 0.59 | 0.46 | 0.40 | 0.40 | 0.68 | 1.54 | 0.32 | 0.79

0.96| 2.49 |1 0.96 | 0.64 | 0.67 | 057 | 1.06 | 215 | 046 | 1.21

128|316 | 1.35 | 0.78 | 0.99 | 0.73 | 1.52 | 2.55 | 0.60 | 1.65

1.60( 3.79 | 1.73 | 0.90 | 1.26 | 0.89 | 2.01 | 2.92 | 0.74 | 2.08

192|431 | 207 | 1.08 | 1.49 | 1.03 | 253 | 3.53 | 0.87 | 2.56

2241525 (236|127 | 166|116 | 3.01 | 410 | 1.01 | 3.01

256| --- | 258|148 | 175|127 | 3.47 | 458 | 1.16 | 3.40
288| - | 275170176 | 137|385 498131372
320 - | 288|188 | 171|144 ]4.09|532]|1.46]4.00
3.52| --- 298|201 |167 146 |4.15|567|1.63 425
3.84| - [ 306|216 | 156|145 |4.12|6.00 | 1.80 | 447
416| --- 313|222 |175|153|446|6.38 | 197|464
4.48 3251227 | 192 | 165|489 | 675|214 | 4.84

wn645.crv | Whittier Narrows-01(645) |0.32] 1.39 | 0.50 | 0.30 | 0.35 | 0.34 | 0.49 | 1.35 | 0.38 | 0.59

0.64| 237 | 112 | 052 | 0.89 | 059 | 1.02 | 2.87 | 0.66 | 1.35

0.96( 380|186 | 098|114 083|170 3.11 | 0.87 | 213

1.28| --- | 257|148 |167 105|244 |387|1.05]3.14
160 --- |325]|212 (216|123 |297 564|119 | 435
192 - | 374|272 210|136 | 359 | 7.44 | 1.30 | 5.66
224| - | 408 |3.04 202|164 484|897 143|649
256| - 433314199197 (631 | --- |157]6.90
288| - 4493322141231 |797| - |177]731
320 - | 455|341 )|233|262|974| -—- |204]|755
352| - | 452|348 | 254|293 | --- —- | 234 | 7.69
3.84| --- | 587|328 |266|321 | -- - | 258 | 7.81
4.16| -- - | 331|314 |347 | - - | 2.69 | 7.82

448 - -—-- | 353|359 |368]| -- —- | 271 ] 7.92
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Figure A.1: Base shear response histories of the 8-story building under twenty short-
period records scaled to twice the design (0.32g) earthquake intensity
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Figure A.2: Top displacement response histories of the 8-story building under twenty
short-period records scaled to twice the design (0.32g) earthquake intensity
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Figure A.3: Base shear response histories of the 8-story building under twenty long-
period records scaled to the design (0.16g) earthquake intensity
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Figure A.4: Top displacement response histories of the 8-story building under twenty
long-period records scaled to the design (0.169) earthquake intensity
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Figure A.5: Base shear response histories of the 26-story building under twenty
short-period records scaled to twice the design (0.32g) earthquake intensity



Appendix A: Sample IDA results

187

150 =
[ PRI AV A WY A W A
=0 PN W A A A W
Z 5 WA WALV WA VTN
2100 AR \
= \ hd
:;ig Time (sec)

0 5 10 15 20 25 30
= iZ M A c0395
£
\%f 0 ——\/Wk = —N\MM ffffff
a-10
£ v

30 Time (sec)

0 2 4 6 8 10 12 14 16
) fri
g :2 N JaVA )

g o JaVAY [\ /
= ""\V/V \\/\ /f
" :22 Time (sec)
0 2 4 6 8 10 12
100 |
H \hoag a
E 50
O N I\”n”\f\ M AMN At A
a \JV\VVU' VV A ARV Wy vy
&-s0 '
Time (sec)
100 0 5 10 15 20 25 30 35
€ Zz A L n N ml2
£, JVY. N [\
g VWS N\
: Y — v
=0 Y Time (sec)
0 0 2 4 6 8 10 12 14
100
_ mon
E N
o Y P AL A A
dul P VY
'_100 Time (sec)
o 5 10 15 20 25 30

: 0

40
T 2 1l wn601
£ 2 Wb,
= 0 =l AR A LA S —_———_——
N M’/\”!\' N\_/\VMNJ\AMN
a ::Z V Time (sec)

o 5 10 15 20 25 30 35
o Wn626
E 40 M PN
£ 5 WM MY P T T
g% JUPNRN |1 VAN AN Y N A A VY WY A W
a3 0 MUEA L NV VT ]

2 40 WA N ANV
= 4 VWV
:gg Time (sec) |

0 5 10 15 20 25 30
o ) Wn639
E 2 | Ap
S o “ul\”.n'/\ it \vﬂ MAAMAAA AR,

g A
= '22 Time (sec)
i 0 5 10 15 20 25 30

mi

Top Disp.

Top Disp. (mm) Top Disp. (mm) Top Disp. (mm) Top Disp. (mm)
o

Top Disp. (mm)

c0394
il
IA. ”” /\/\v/\/\l\n/\ »
Time (sec)
0 2 4 6 8 10 12 14 16
T 0405
AW A A A, AA/\AI\/\/\
R IMTAM A
v Vu M
Time (sec)
0 5 10 15 20 25
hol
|
Aa
Han M VN T WA S,
77 W W NV
W
v Time (sec)
0 5 10 15 20 25
A liv

Al imnmns
1
. TLime (sec) |
0 2 4 6 8 10 12 14 16
A ml6
VI M WA
Ve \n
vV \/
Tlme(sec)v
0 2 4 6 8 10 12
N A A\ nor
AN A AN TN
JN VAV VSN
D U N A WY A VAR VA
\ A\
V_ N
Time (sec)
0 1 2 3 4 5 6 7 8
A wn589
An“m\ /\AAAI\VA A
VV”UVVVVVVV \/ LA vAVAY
u Time (sec)
0 5 10 15 20 25
» wn619
Al
i
VAL p\
\ ] v\I \/"\/\AI\/\:\I‘\JV\ﬂ
V\vl Lk Time (sec))
0 5 10 15 20 25
i wn629
'ﬂ”Iﬂ A v A AN )
AL AT (L (U 1R ) JVL N L W
TR T A T VAN
W VW
Time (sec)
0 5 10 15 20 25 30 35 40
wn645
ﬂvA /\nr’\J\f\ Mo A s
kuw v Y
Time (sec)
0 5 10 15 20 25 30 35

Figure A.6: Top displacement response histories of the 26-story building under
twenty short-period records scaled to twice the design (0.329) earthquake intensity
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Figure A.7: Base shear response histories of the 26-story building under twenty long-
period records scaled to the design (0.16g) earthquake intensity
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Figure A.8: Top displacement response histories of the 26-story building under
twenty long-period records scaled to the design (0.169) earthquake intensity
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Figure A.9: Base shear response histories of the hospital building under twenty short-
period records scaled to twice the design (0.32g) earthquake intensity
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Figure A.10: Top displacement response histories of the hospital building under
twenty short-period records scaled to twice the design (0.32g) earthquake intensity
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Figure A.11: Base shear response histories of the hospital building under twenty
long-period records scaled to the design (0.169) earthquake intensity
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Figure A.12: Top displacement response histories of the hospital building under
twenty long-period records scaled to the design (0.169) earthquake intensity
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