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ABSTRACT 

 

Myocardial infarction is the most serious manifestation of coronary artery disease 

and the cause of significant levels of mortality and morbidity worldwide. 

Galectin-1 (GAL-1) and Galectin-3 (GAL-3) are beta galactoside binding lectins 

with diverse functions. Hypoxia inducible factor-1 alpha (HIF-1α) is a 

transcription factor mediating early and late responses to myocardial ischemia. 

We aim to study the direct effects of ischemia on GAL-1, GAL-3 and HIF-1α in 

the heart. Male C57B6/J and GAL-3 knockout mice were used for our two disease 

models.  In the Myocardial infarction (MI) model, the left anterior descending 

artery of the heart is permanently ligated to create ischemia in the anterior 

myocardium.  In the Ischemia reperfusion model (IR), the artery is temporarily 

ligated for a specific period of time and then reperfusion is established. Heart 

samples were processed for immunohistochemical and immunofluorescent 

labeling, western blotting, Enzyme linked immunosorbent assay and quantitative 

real time PCR.  Inflammatory, Apoptotic and Oxidative stress markers were also 

studied.  We show for the first time that GAL-1, GAL-3 and HIF-1α levels in the 

left ventricle are raised in early ischemic period in conjunction with a 

predominant antiapoptotic activity in the heart.  Our identification of the pattern 

of expression of GAL-1, GAL-3 and HIF-1α in the heart during the first 24 hours 

following acute MI has helped in understanding early molecular changes in this 

event and may provide methods to overcome serious complications.  Our work 

further showed that GAL-3 acted as a regulator of proinflammatory and 

antiapoptotic mechanisms in the myocardium after myocardial infarction that will 

shape the future course of the disease. GAL-3 was also shown to interfere with 
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redox pathways controlling cell survival and death and plays a protective role in 

the pathogenesis of ischemia reperfusion injury in the heart.  Our work has 

contributed in understanding the local microenvironment in which GAL-3 works 

in the heart after ischemia/infarction or ischemia-reperfusion and has opened a 

new window in understanding the exact role of GAL-3 in the heart. 

 

Key words: Myocardial infarction, Ischemia reperfusion injury, Galectin-1, 

Galectin-3, HIF-1 α. 
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 ABSTRACT (ARABIC)                                              ملخص الأطروحة

العضلة القلبيه من اخطر مظاهر أمراض الشريان الإكليلي وسبب رئيسي للوفيات والمراضه ء يعتبر احتشا

هي بروتينات لها خاصية الاتحاد مع بيتا جلاكتوسايد وتتمتع  3و جالكتين  1جالكتين . في جميع انحاء العالم

نوع أ فهو عامل نسخ يساهم في الاستجابات ١-حرض لنقص الاكسجة اما العامل الم. بوظائف متنوعة

في هذا العمل، نهدف الى دراسة الاثار . المبكرة والمتأخرة الناجمة عن ضعف تروية العضلة القلبيه

و العامل المحرض لنقص  3و جالكتين  1المباشرة لنقص تروية العضله القلبيه على بروتينات جالكتين 

في   3منزوعه لجين الجلاكتين  وفئران  C57B6تم استخدام فئران نوع . في القلب نوع أ 1-الاكسجة 

ففي نموذج احتشاء العضله القلبيه قمنا بعمل عقده دائمية . المستخدمه في هذه الدراسه نموذجي التجارب

موذج نقص بينما في ن .الأمامية عضلة القلب نقص في  تروية للشريان القلبي الامامي الايسر النازل لخلق

تم  .الترويه واعادة الضخ قمنا بعمل عقده مؤقته للشريان القلبي الامامي الايسر النازل بعدها يتم اعادة الضخ

تجهيز عينات القلب لاجراء الصبغات النسيجية المناعيه و الصبغات المستشعه المناعيه و فحص التنشيف 

وكذلك تم  .يقي الكمي لتفاعل سلسة البلمرةالغربي وفحص الانزيم المرتبط المناعي وفحص الوقت الحق

أظهرنا للمره الاولى ارتفاع تركيز  .دراسة معلمات  الالتهابات والموت المبرمج للخلايا و والشد التأكسدي

نوع أ في البطين الايسر في فتره  1-و العامل المحرض لنقص الاكسجة  3و جالكتين  1بروتينات جالكتين 

و تعتبر نتائجنا عن زيادة تركيز  .التزامن مع نشاط مضاد لموت الخلايا المبرمجمبكره بعد نقص الترويه ب

نوع أ في البطين الايسرخلال  1-و العامل المحرض لنقص الاكسجة  3و جالكتين  1بروتينات جالكتين 

لتروية الاربع والعشرين ساعة الاولى بعد نقص الترويه مهمة جداً لفهم التغيرات الجزيئيه المصاحبه لنقص ا

يعمل  3بروتين جالكتينوكذلك اظهرت نتائجنا بأن  .مضاعفات خطيرة للتغلب على وسائليمكن أن توفر و

 التي ستشكلو احتشاء عضلة القلب بعد عضلة القلب فيكمنظم لآليات الألتهابات وموت الخلايا المبرمج 

في مسارات الأكسده المسيطره على يتدخل  3بروتين جالكتينوقد تبين أيضاً بأن  .للمرض المسار المستقبلي

وقد ساهم  .في القلب الضخ وأعادة ضد الأذى الناتج عن نقص التروية دوراً وقائياويلعب بقاء وموت الخليه 

في القلب بعد نقص التروية  أو نقص  3بروتين جالكتينعملنا في فهم البيئه المجهريه المحليه التي يعمل بها 

 .في القلب 3بروتين جالكتين من الدور المحدد في فهم نافذة جديدة ، وفتحتالترويه واعادة الضخ 

 

، العامل  3، جالكتين  1احتشاء عضلة القلب، نقص التروية واعادة الضخ ، جالكتين : الكلمات الرئيسية

 نوع أ 1-المحرض لنقص الاكسجة 
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1.1   Overview 

        Cardiovascular diseases (CVDs) are the number one cause of death in the 

world today.  According to the World Health Organization (WHO), more people 

die annually from CVDs than from any other cause (1).  An estimated 17.3 

million people died from CVDs in 2008 and out of these deaths,  7.3 million were 

due to coronary heart disease (1).  The number of people who will die from CVDs 

is projected to  increase to 23.3 million by 2030 (1, 2). These figures show that the 

epidemic of CVD is a global phenomenon (3) and the magnitude of this problem 

will increase.  CVDs are also the major cause of death in the United Arab 

Emirates (UAE).   Health Authority Abu Dhabi (HAAD) statistics from 2012 put 

cardiovascular diseases as the leading cause of death in Abu Dhabi comprising 

39% of all causes of deaths (4). 

        Coronary artery disease (CAD) is the leading cause of heart failure (HF).  

The Framingham Heart Study suggests that the most common cause of HF is no 

longer hypertension or valvular heart disease, as in previous decades, but rather 

CAD (5).  This shift may be related to improved survival of patients after acute 

myocardial infarction (MI) (6).  MI is the most dreaded but most likely 

manifestation of CAD.  Early diagnosis and timely intervention remains the 

cornerstone of therapy for acute MI. The standard care for the treatment of acute 

MI is primary reperfusion therapies, including primary percutaneous coronary 

intervention (PCI) and thrombolysis.  Prompt restoration of blood flow to 

ischemic myocardium on the one hand limits infarct size and reduces mortality (7) 

but on the other hand  can lead to further damage to the heart, referred to as 

reperfusion injury (8). 
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        Understanding the very early changes that occur in the myocardium after 

myocardial infarction is essential in understanding the pathophysiology of the 

disease. It is the key to devising ways that will ultimately enable diagnosing a 

cardiac ischemic event before it has caused significant damage to the heart. In 

addition, looking at the players that take part in myocardial ischemia/infarction 

(MI) and myocardial ischemia reperfusion (IR) injuries is also fundamental to our 

understanding of the critical differences between these two types of injuries.  

        In this thesis we have attempted to look at these processes in association with 

our proteins of interest Galectn-1 (GAL-1), Galectin-3 (GAL-3) and Hypoxia-

inducible factor-1 alpha (HIF-1 α). In the results and discussion chapter of the 

thesis in Sections 1, 2 and 3, we have shown that GAL-1, GAL-3 and HIF α -1 are 

expressed in the myocardium at various time points post MI.  Section 4 deals with 

how GAL-1 and GAL-3 correlate with HIF-1 α within 24 hours post MI time.  In 

Section 5, we have shown that at 24-hour post MI time GAL-3 is a pro-

inflammatory and anti-apoptotic mediator using GAL-3 knockout animals.  

Section 6 emphasizes GAL-3’s role in oxidative stress after IR injuries in the 

myocardium. Finally Section 7 explains the differences we observed in the two 

models of disease studied i.e., MI and IR and discusses GAL-3’s contribution to 

these two mechanisms of injury. 
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1.2   Review of Literature 

1.2.1 The Heart 

     “The heart has its reasons which reason knows not.”  

                                                                                                             Blaise Pascal 

        The heart beats more than 2.5 billion times in an average life time.  Its 

muscular walls contract to pump blood to all parts of the body.  Effective function 

of the heart requires an efficient oxygen delivery system.  The heart maintains a 

high level of oxygen extraction of 70% to 80% compared with 30% to 40% in 

skeletal muscle (9) which is supported by capillary density of 3000 to 4000 

compared with 500 to 2000 per 1 mm
2
 in skeletal muscle and a tight regulation of 

the coronary blood flow (10). The human heart contains an estimated 2 to 3 billion 

cardiac muscle cells which make up less than a third of the total number of cells in 

the heart. The other cell types are smooth muscle and endothelial cells of the 

coronary vasculature and the endocardium, fibroblasts and other connective tissue 

cells, mast cells, and immune system–related cells (11).  The normal anatomy of 

the heart is comprised of 4 chambers, 2 atria and 2 ventricles and 4 valves, the 

mitral, tricuspid, aortic and pulmonary.  The heart has its own vascular system 

called the coronary arterial system.  It comprises two major coronary arteries, the 

right and the left.  The two coronary ostia arise from the sinuses of Valsalva just 

above the aortic valve. The left coronary artery divides into the left anterior 

descending artery (LAD) and circumflex artery (LCX). It supplies the lateral and 

anterior walls of the left ventricle, and the anterior two thirds of the 

interventricular septum. The right coronary artery supplies the right ventricle, the 

posterior wall of the left ventricle and posterior third of the septum.  

https://www.goodreads.com/author/show/10994.Blaise_Pascal
http://global.britannica.com/EBchecked/topic/138249/coronary-artery
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        Balance between metabolic demand and supply in the myocardium is crucial 

for the survival and proper functioning of the heart. Myocardial ischemia can 

result if there is an imbalance due either to decreased coronary blood flow or 

increased requirement, giving rise to the clinical conditions of acute coronary 

syndrome or stable coronary artery disease.  Hypoxia is an integral component in 

ischemic cardiomyocytes which triggers multiple signaling pathways that cause 

these cells to adapt and subsequently survive ischemic insult (12). 

1.2.2   The Galectins family 

        Galectins are a family of β-galactoside-binding lectins (13).  Fifteen 

members have been identified and are found to be widely distributed from lower 

invertebrates to mammals (14, 15). Barondes et al.  proposed the name of 

galectins and suggested that all the galectins need to have affinity for β-

galactosides and sequence similarity in the carbohydrate binding site (13, 14). 

Galectins are classified on the basis of their biochemical structure into three 

groups (16): (a) Prototype galectins (galectins-1, -2, -5, -7, -10, -11, -13, -14 and -

15).  These contain one carbohydrate recognition domain (CRD) and a short N-

terminal sequence and can exist as monomers or non-covalent homodimers; (b) 

Tandem Repeat group (galectin-4, -6, -8, -9, and -12).  These consist of two CRDs 

linked via a short peptide sequence, and (c) Chimera-type galectins (galectin-3). 

These exist as monomers with a long N-terminal tail containing a proline-, 

glycine-, tyrosine-rich domain fused onto the CRD that allows the formation of 

oligomers (17, 18) (Fig. 1.1). 

         Galectins are highly conserved evolutionary (19). They are present in 

intracellular as well as extracellular compartments.  They lack the signal sequence 

required for secretion through the classic secretory pathway suggesting that they 
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are secreted through the non-classical pathway (20, 21).  Their extracellular 

functions are through the interactions with cell surface and extracellular matrix.  

The intracellular functions are via interaction with cytoplasmic and nuclear 

proteins (22-25).  Galectins show great diversity in functions.  From regulation of 

cell growth, apoptosis, inflammation and cell adhesion to embryonic 

development, they play variable roles at different times and under different 

conditions (15, 22, 24-29).  GAL-1 and GAL-3 are the most studied galectins of 

all and we will focus our attention on these two members with emphasis on their 

role in the heart under ischemic/hypoxic conditions. 

1.2.3   Galectin-1 

        Galectin-1 (GAL-1) is a pleiotropic dimeric protein of 14 kD participating in 

a variety of normal and pathological processes (13).  In humans it is encoded by 

the LGALS1 gene and is highly conserved across species. GAL-1 belongs to the 

galectin family of lectins and is characterized by one carbohydrate recognition 

domain (CRD) that can occur as a monomer or as a non-covalent homodimer 

consisting of subunits of one CRD (13, 26). 

        GAL-1 is ubiquitously expressed. It can act both inside cells, via sugar-

independent interactions, and outside cells displaying lectin activity (26).  GAL-1 

is secreted and found on the cell surface, as well as in the extracellular matrix.  

GAL-1’s  export from mammalian cells have been shown to occur in a 

nonclassical manner independent of the function of the endoplasmic reticulum 

(ER) and the Golgi (20). It lacks recognizable secretion signal sequences and is 

secreted via inside-out transportation involving direct translocation across the  

 

 

http://en.wikipedia.org/wiki/Gene
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Figure 1.1: Types of Galectin. 
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plasma membrane  requiring unidentified integral membrane proteins and 

cytosolic factors (30). 

In the extra cellular compartment, GAL-1 forms lattice-like complexes with 

receptors that participate in recognition of cell matrix (31-34). It binds to various 

cell matrix components in a dose-dependent and β-galactoside-dependent manner 

in the following order: laminin > cellular fibronectin > thrombospondin > plasma 

fibronectin > vitronectin > osteopontin (35). In the Intracellular compartment 

GAL-1 has been shown to be present in cells nuclei and cytosols (26). Due to its 

pervasive presence both inside and outside the cells and its production  by various 

cells of vascular, interstitial, epithelial, and immune origin (36-39), GAL-1 is 

involved  in a variety of biological functions, including cell-cell and cell-matrix 

interactions, cell adhesion, migration, invasion, metastasis, apoptosis, regulation 

of  cell cycle, RNA splicing and transcription (34, 40-44). 

        GAL-1 has both positive and negative effects on cell growth depending on 

cell type, activation status or intracellular versus extracellular forms (26). For 

example, GAL-1 is mitogenic for hepatic stellate cells (45) and mammalian 

vascular cells (46, 47) but inhibits growth in bone marrow cells (48).  The 

antiproliferative effects of GAL-1 result from the inhibition of the Ras-MEK-ERK 

pathway.  Gal-1 induces p21 transcription and selectively increases p27 protein 

stability.  This GAL-1 -mediated accumulation of p27 and p21 inhibits cyclin-

dependent kinase 2 activity which ultimately results in G1 cell cycle arrest and 

growth inhibition (49). 

        GAL-1 is also involved in apoptosis.  The events that lead to GAL-1 

mediated apoptosis involve the modulation of Bcl-2 protein production, 

cytochrome c release, activation of caspases and the participation of the ceramide 
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pathway among other pathways (50, 51).  GAL-1 is also implicated in cytochrome 

c and caspase  independent cell death which  involves the rapid nuclear 

translocation of EndoG from mitochondria (52). 

        GAL-1 is  known to be  involved in the initiation, amplification, and 

resolution of inflammatory responses (36).  GAL-1 also suppresses the secretion 

of the proinflammatory cytokine IL-2 and favors the secretion of the anti-

inflammatory cytokine IL-10 (53, 54).  GAL-1 has been shown to reduce 

transmigration of both neutrophils and mast cells into the tissue (55) and to be 

responsible for inhibiting mast cell degranulation, and eosinophil migration (56-

58).  These studies suggest that GAL-1 inhibits the migration of inflammatory 

cells. GAL-1 plays a role in neutrophil priming by inducing an oxidative burst in 

neutrophils that have extravasated into tissue (59).  GAL-1 is important in chronic 

inflammation.  It attenuates disease processes in experimental models of 

autoimmune encephalomyelitis (60), arthritis (61), colitis (62) and hepatitis (63).  

As a whole, GAL-1  functions as a homeostatic agent by modulating innate and 

adaptive immune responses (26). 

        Although GAL-1 is involved in very important functions in vitro and in vivo, 

GAL-1 null mice are viable indicating that its presence is not critical for 

mammalian development or survival (33).  

1.2.3.1   Galectin-1: a hypoxia induced protein 

        Studies have identified GAL-1 as hypoxia-induced protein.  The hypoxic 

regulation of GAL-1 at mRNA and protein levels has been demonstrated in tumor 

biology and has the potential to be used as a prognostic marker of malignancy 

(64). Under hypoxic or ischemic conditions in the brain either in vitro or in vivo, 

GAL-1 was found to inhibit the proliferation of astrocytes and attenuate 
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astrogliosis.  GAL-1 treatment reduces apoptosis of neurons, decreased brain 

infarction volume and improved neurological function induced by the ischemia, 

making GAL-1 a potential therapeutic target for attenuating neuronal damage and 

promoting recovery of brain ischemia (65).  Studies have shown that in lung 

tissue, the expression of GAL-1 is diffusely distributed throughout the interstitium 

and near to the basement membrane of vessels and airways in both normal and 

hypoxia-exposed mice. The difference is that the intensity of GAL-1staining was 

increased in hypoxia-exposed mice, which suggests that GAL-1 may be important 

in adaptive responses of murine lung to chronic hypoxia (66). The above-

mentioned studies have shown that GAL-1 is regulated by hypoxia but its exact 

mechanism remains elusive.  

        Recently, Zhao et al (67) have demonstrated that hypoxia inducible factor- 

1α (HIF- 1α) significantly increases GAL-1 expression in messenger RNA and 

protein levels in four colorectal cancer cell lines and it has been proposed that 

GAL-1 gene is a direct target of transcriptional factor HIF-1 α (66, 67).  

1.2.3.2   Galectin-1 in heart 

        GAL-1 plays a role in the development and regenerative ability of the 

muscles.  It induces non-committed myogenic cells to express myogenic markers 

and in this way increases terminal differentiation of committed myogenic cells 

(68-70).  GAL-1 is a major component of the contractile machinery in 

cardiomyocytes (71) which suggests that it must be playing an important role in 

regulating cardiac functions.  Very recently it was seen in a study by Seropian et 

al that GAL-1 expression is increased in patients with end stage chronic heart 

failure (72).  In murine models of MI it was increased at one week after MI 

suggesting a role of this lectin in post infarction remodeling (72).  GAL-1 
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knockout animals showed enhanced cardiac inflammation and the animals treated 

with recombinant GAL-1 attenuated cardiac damage which points towards a 

positive role of GAL-1 in cardiac homeostatsis and post infarction remodeling via 

preventing cardiac inflammation. 

        GAL-1’s role in the pathophysiology of the heart is an area of ongoing 

research.  Till today very little is known about the exact function of GAL-1 in the 

myocardium and in this thesis we will investigate whether there is any change in 

the endogenous production of GAL-1 in early ischemia and its pattern of 

expression in the ischemic and non-ischemic cardiomyocytes.   

1.2.4   Galectin-3 

        Galectin-3 (GAL-3) plays a central regulatory role in several diverse 

biological processes and disease states.  GAL-3 is a member of the Galectin 

family of lectins that specifically bind to N-acetyl-lactosamine-containing 

glycoproteins (13).  GAL-3 is the sole member of this family that contains one 

CRD linked to a proline, glycine, and tyrosine-rich repeat N-terminal domain 

(ND) (19).  The CRD is composed of approximately 130 amino acids and is 

responsible for the lectin activity of GAL-3.  The ND is composed of 110-130 

amino acids, lacks the carbohydrate binding activity but is essential for full 

biological activity of GAL-3(73).  GAL-3 exists in both phosphorylated and 

unphosphorylated forms.  Phosphorylated form is found in cytoplasm and nucleus 

whereas unphosphorylated form is only found in the cytoplasm (74).  

        GAL-3 is ubiquitously expressed.  It  is expressed in a variety of cells, e.g., 

endothelial and epithelial cells, activated macrophages (75-77), activated 

microglial cells (78, 79), inflammatory cells including macophages, basophils, 

mast cells, eosinophils, and neutrophils (41, 80, 81) (20, 82)  and subsets of 
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neurons (83). Galectin-3 is considered a “macrophage activation marker” due to 

the fact that its expression is up-regulated in phagocytic macrophages (84).  

  In tissues, galectin-3 is expressed in lung, spleen, stomach, colon, adrenal 

gland, uterus, ovary, prostate, kidney, heart, cerebrum, pancreas, and the liver 

(85). 

GAL-3 is distributed in the extracellular as well as intracellular 

compartments.  Extracellular GAL-3 plays a role in cell-cell adhesion, cell-matrix 

interaction and signaling (86-89).  There have been reports of extracellular GAL-3 

acting as a factor that induces apoptosis (90). Intracellular GAL-3 on the other 

hand is involved in cell proliferation, mitosis and acts as an anti-apoptotic 

mediator (91-94).  It affects K-Ras (95, 96) and Akt proteins (97, 98) and so also 

regulates differentiation, survival, and death (99, 100). Intra-nuclear localization 

of GAL-3 is well documented even in the absence of a nuclear localization signal.  

It is involved in spliceosome assembly (101) and pre-mRNA splicing (101-103).  

Also it is implicated in regulation of gene transcription (92) and Wnt/β-catenin 

signaling pathway.   

        Cellular localization of GAL-3 determines its biological functions.  Some 

cell types show intense cytoplasmic localization but do not express GAL-3 in the 

nucleus (104, 105) even if GAL-3 is overexpressed (106), suggesting  the 

importance of variable GAL-3 functions in specific cell types. Its localization 

depends on factors such as proliferation state of cells (107-111), cultivation 

conditions (112),  neoplastic progression (113-117) and transformation (118) (73). 

Its distribution in many types of cells and tissues, combined with variable 

subcellular localization signifies that GAL-3 is central to many physiological and 

pathological conditions (119, 120).  
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        GAL-3 is secreted outside the cell through non-classical pathway (121). 

Despite its lack of appropriate signal peptides GAL-3 can cross the plasma 

membrane through its interaction with extracellular matrix proteins. Secretion of 

GAL-3 is critically regulated at the plasma membrane (122).  Regulation of GAL-

3 expression is a very complex mechanism that involves many transcription 

factors and signaling pathways.  

1.2.4.1   GAL-3 in inflammation 

        GAL-3 is involved in many processes during the acute inflammatory 

response.  In addition to being highly expressed and secreted by macrophages 

(123), it causes neutrophil activation and adhesion (124), chemoattraction of 

monocytes or  macrophages (77) and activation of mast cells (125).  Intracellular 

GAL-3 is also shown to promote the survival of inflammatory cells resulting in 

persistence of inflammation (76). Secreted GAL-3 can also stimulate oxidative 

burst in neutrophils (126).  In a study involving GAL-3 knockout mice, it was 

shown that these mice developed severe pneumonia and that GAL-3 induced lung 

damage by acting as a neutrophil activating agent. Exogenous galectin-3 also 

augmented neutrophil phagocytosis of bacteria and delayed neutrophil apoptosis 

(127).  Neutrophils expression can be activated by extracellular GAL-3.  It was 

found that neutrophil survival is enhanced after incubation with exogenous 

galectin-3 (127).  The same observation regarding GAL-3 was also reported in a 

study of airway inflammation and bronchial hyper-responsiveness in a murine 

model of ovalbumin-induced asthma (27).  Peribronchial inflammatory cells and 

bronchoalveolar lavage fluid expressed large amounts of galectin-3 in 

experimental animals compared to experimental controls (128). 
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        In addition to its role in acute inflammatory responses, GAL-3 also acts as a 

very important factor in chronic inflammation and its resulting fibrosis.  In a 

mouse model of renal unilateral ureteric obstruction leading to renal fibrogenesis 

it was found that GAL-3 was raised in the kidney and played a role in renal 

myofibroblast accumulation and fibrogenesis (129).  In some instances GAL-3 

can also act as a protective factor in disease processes.  It was observed in diabetic 

mice that GAL-3 null mice developed increased proteinuria, albuminuria,  

glomerular sclerosis and more marked accumulation of glomerular advanced 

glycation endproduct (AGE) suggesting a favorable role of GAL-3 in the kidney 

(130, 131).  Therefore GAL-3 can be viewed as a regulatory molecule acting at 

various stages along the continuum from acute inflammation to chronic 

inflammation and tissue fibrogenesis (132). 

1.2.4.2   GAL-3 in Apoptosis 

        GAL-3 can act as both proapoptotic and antiapoptotic protein.  Intercellular 

GAL-3 acts as an antiapoptotic factor and extracellular GAL-3 as a proapoptotic 

factor in various states (73).  There is evidence that GAL-3 contains the anti-death 

Asp-Trp-Gly-Arg (NWGR) motif (7, 13) which is critical for its antiapoptotic 

function.  The anti-apoptotic activity of GAL-3 was also demonstrated in 

peritoneal macrophages when those from galectin-3-deficient mice were more 

sensitive to apoptotic stimuli than those from control mice (75). GAL-3 protects 

cells against apoptosis by working through different mechanisms which suggests 

that GAL-3 regulates the common apoptosis commitment step. Regarding the 

proapoptotic activity of GAL-3, Lee et al. have shown that GAL-3 overexpression 

potentiated TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) 

induced cytotoxicity (97). 
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GAL-3 translocates to the perinuclear membrane following apoptotic stimuli 

(133) (134).  It is enriched in the mitochondria and prevents mitochondrial 

damage and cytochrome c release.  GAL-3’s antiapoptotic effect is proposed to be 

due to its activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, 

which blocks loss of the mitochondrial membrane potential, resulting in inhibition 

of caspase-9 and caspase-3 activation and suppression of apoptosis  (98). 

The most interesting feature regarding GAL-3 is its expression in different 

cell types under different physiological and pathophysiological conditions.  

Although considerable work has been conducted to elucidate the pathways 

regulating its expression precise mechanism nevertheless still remains uncertain.   

1.2.4.3   GAL-3 in the heart 

        Recently published data has established a very strong role of GAL-3 in heart 

failure (135).  Sharma et al. (136) showed that a 4-week continuous infusion of 

low dose GAL-3 into the pericardial sac of healthy Sprague–Dawley rats led to 

left ventricular dysfunction, with a threefold differential increase of collagen I 

over collagen III.   In heart failure prone hearts in mice, it was also shown that 

GAL-3 was a robustly over-expressed gene in failing versus functionally 

compensated hearts (136).  Thandavarayan et al.  (137)  recently showed that 

upregulation of GAL-3 in the left ventricle is a general phenomenon of LV 

dysfunction and not confined to models with increased angiotensin II (AngII) 

signaling.  Increased Gal-3 secretion stimulates release of various mediators, such 

as transforming growth factor β and promotes enhanced macrophage and mast cell 

infiltration, cardiac fibroblast proliferation, with development of interstitial and 

perivascular fibrosis, collagen deposition, and ventricular dysfunction (136, 138). 

GAL-3 was localized at the very sites of fibrosis, colocalizing with fibroblasts and 
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macrophages and its binding sites were localized predominantly to fibrotic areas 

(136). 

        In humans, ventricular biopsies from patients with aortic stenosis with 

preserved or depressed ejection fraction were studied.  The results showed that 

GAL-3 was upregulated in the biopsies from patients with depressed ejection 

fraction (136) lending support to the notion that GAL-3 is associated with 

decompensated heart failure.  Higher levels of GAL-3 were associated with 

recurrent heart failure and increased risk of death in a number of studies (139-

142).  This has led to the use of GAL-3 levels as a prognostic marker in patients 

with heart failure. GAL-3 also predicted all-cause death (143) and demonstrated a 

relationship between GAL-3 and future heart failure and re-hospitalizations in the 

general population (144).  

        Despite its established role in heart failure, GAL-3 has not been studied 

directly in relation to cardiac ischemia. In other organs, e.g., Galectin-3 mRNA 

increased after ischemic injury in acute renal failure in rats (145). There was also 

up-regulated expression of GAL-3 in the ischemic brain following transient 

middle cerebral artery occlusion in rats and in neonatal hypoxic ischemic brain 

injury (79, 146).  In this thesis, we aim to study the direct effects of ischemia on 

GAL-3 levels in the heart very early in the course of events following myocardial 

infarction. 

1.2.5   HIF-1 alpha 

        Hypoxia-inducible factor-alpha (HIF-1α) is the master regulator of cell 

response to hypoxia (147).  It activates transcription of many genes, the protein 

products of which increase oxygen delivery or facilitate metabolic adaptation to 

hypoxia, and thus plays an essential role in the pathophysiology of ischemic 
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diseases.  HIF-1 α is a heterodimeric DNA-binding complex composed of two 

basic helix-loop-helix proteins, the constitutive expressed HIF-β or aryl 

hydrocarbon receptor nuclear translocator   (ARNT) and the oxygen sensitive 

hypoxia-inducible HIF-α (148).
  
HIFα exists in three isoforms HIF1α, HIF2α and 

HIF3α (149). which heterodimerize with ARNT (HIF-1β), ARNT2, or ARNT3 

subunit through their HLH (helix-loop-helix) and PAS (Per – period circadian 

protein, Arnt – aryl hydrocarbon receptor nuclear translocator protein, Sim – 

single-minded protein) domains.  HIF heterodimers recognize and bind to hypoxia 

response elements (HREs) in the genes that have the consensus sequence 

G/ACGTG (150) .  HIF-1α and ARNT (HIF-1β) mRNA are expressed in most of 

the mammalian tissues; though, HIF-2α, HIF-3α, ARNT2, and ARNT3 show a 

more restricted pattern of expression (151).   

1.2.5.1   Regulation of HIF-1 α 

        Normoxic conditions lead to hydroxylation of two prolyl residues by prolyl 

hydroxylases (PHDs) in the oxygen dependent degradation domain (ODDD) of 

the α-subunit of HIF-1 α.  This causes the von Hippel–Lindau tumor suppressor 

protein (pVHL) to interact with the α-subunit, targeting it for proteolysis by the 

ubiquitin–proteasome pathway (152, 153). Therefore, in normoxia HIF-α subunit 

has a very short half-life (154) and cells continuously synthesize and degrade 

HIF-α protein. Hypoxia causes inhibition of the prolyl hydroxylation, HIF-α 

protein escapes proteasomal degradation, translocates to the nucleus and 

dimerizes with HIF-1β. This complex then binds to the HRE in promoter or 

enhancer sequences of target genes (155) and results in their transcription.  HIF α 

subunits are also degraded by oxygen sensitive Factor Inhibiting HIF-1α (FIH1), 

http://en.wikipedia.org/wiki/Period_(gene)
http://en.wikipedia.org/wiki/Period_(gene)
http://en.wikipedia.org/wiki/Aryl_hydrocarbon_receptor_nuclear_translocator
http://en.wikipedia.org/wiki/SIM1
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an asparaginyl hydroxylase that stops the interaction between HIF-1α and co-

activators p300/CBP and impairs transcription (156, 157). 

 
1.2.5.2   

 
HIF-1 α in the heart 

        HIF-1α is involved in the pathophysiological responses of a variety of 

diseases, including cancer, inflammation and tissue ischemia (158).  Expression 

microarray analysis of genes induced by hypoxia showed that 45 genes were up-

regulated by hypoxia and 40 (89%) of these were regulated by HIF-1 α (159).  

There is a great body of evidence supporting the protective role of HIF-1α in 

cardiovascular pathophysiology, however, newer studies hint at a maladaptive and 

deleterious role of this transcription factor that merits further investigation.   

1.2.5.3   HIF-1 α is cardio-protective 

        An increase in the level of HIF-1α is one of the first adaptations of human 

myocardium to ischemia (160) (Fig.1.2)  HIF1α can directly reprogram the 

metabolic state in cells (158) and set it in a prosurvival mode. HIF-1 α on the one 

hand increases transcription of glucose transporters and glycolytic enzymes to 

improve glucose utilization (161-163) and on the other hand inhibits 

mitochondrial respiration (164-166) to decrease oxygen usage.  It establishes 

balance between glycolytic and oxidative metabolism that maximizes ATP 

production without increasing ROS (reactive oxygen species) levels (167). 

        HIF-1 α targets that have cardioprotective effects in the setting of ischemic 

and or ischemia/reperfusion injury include a variety of genes, including 

erythropoietin (EPO), vascular endothelial growth factor (VEGF), inducible 

nitrics oxide synthase (iNOS), hemeoxygenase-1 (HMOX-1) and cardiotrophin.  

EPO is well known for its effect on the red cell mass to increase oxygen delivery  
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Figure 1.2: Protective and deleterious effects of HIF-1α. BNIP3 indicates 

BCL2/adenovirus E1B 19 kDa protein-interacting protein3; CT-1, cardiotropin-1; 

EPO, erythropoietin; GLEN, glycolytic enzymes; GLUT, glucose transporters; 

GPER, G-protein estrogen receptor; HIGD-1, hypoxia-induced gene domain 

family-1α; HMOX-1, hemeoxygenase-1; iNOS, inducible nitric oxide synthase; 

MEN, mitochondrial enzymes; p53, tumor suppressor protein 53; ROS, reactive 

oxygen species; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; sFlt-1, 

soluble fms-like tyrosine kinase-1; VEGF, vascular endothelial growth factor. 

(Hashmi S, Al-Salam S. Hypoxia-inducible factor-1 alpha in the heart: a double 

agent? Cardiol Rev. 2012 Nov-Dec; 20(6):268-73) 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/22673235
http://www.ncbi.nlm.nih.gov/pubmed/22673235


20 
 

to the tissues in response to hypoxia (168).  This effect is protective in the long 

term but EPO is also shown to have cardioprotective effects in vivo and in vitro in 

directly improving left ventricular function and deceasing activity of the pro-

apoptotic caspase-3 by activating PI3K-Akt cell survival pathways (169, 170).
 
  

VEGF imposes cardioprotection through increased cardiac vascularization (171, 

172) while iNOS achieves this (173-175)
  
through cGMP and subsequent opening 

of mitochondrial potassium-ATP channels, hence preventing ATP depletion, 

which is advantageous in the heart. HIF-1 α target HMOX-1 is cardioprotective 

(176, 177)  via multiple pathways that involve direct cytoprotective and 

antiapoptotic effects of carbon monoxide and antioxidant effects of 

biliverdin/bilirubin and ferritin (178).  HIF-1 α is directly involved in the up-

regulation of Cardiotrophin-1 (CT-1) which protects cardiomyocytes from 

hypoxia-induced apoptosis (179, 180). 

        Cardioprotection mediated by HIF-1 α results in decreased infarct size and 

improved cardiac function. These beneficial effects were seen in murine hearts 

exposed to constitutive overexpression of HIF-1α (172).   HIF-1α contributes to 

the limitation of infarct size mainly by promoting angiogenesis (181).  Cultured 

neonatal cardiomyocytes were protected against ischemia-reperfusion injury by 

adenovirus-mediated expression of constitutively stable hybrid forms of HIF-1 α 

through induction of multiple protective genes (182). HIF-1α is also involved in 

cardioprotection by ischemic pre-conditioning and post-conditioning.  Pre-

conditioning is a phenomenon where one or more short ischemic episodes confer 

protection against cell death following the actual prolonged ischemic insult (183).  

HIF-1α is postulated to play a role by regulating mitochondrial respiration (184). 

Post-conditioning is induced by repetitive short episodes of reperfusion and 



21 
 

ischemic re-occlusion before permanent reperfusion and HIF-1α attenuates 

myocardial injury through this phenomenon (185). 

Some authors suggest a positive association of HIF-1α with ischemia-

induced coronary collateralization (186, 187)
 
which by increasing blood supply to 

hypoperfused regions of the heart confers protection to the myocardium against 

ischemic injury. 

        PHDs inhibition is another mechanism to achieve HIF-1α mediated effects. 

Mammalian cells have 3 types of PHDs: PHD1, PHD2 and PHD3. PHD2 and 

PHD3 are highly expressed in the heart (188).  Inhibition of PHD2 by 

Dimethyloxalylglycine (DMOG) and GSK360A (189, 190),
 
 short hairpin RNA 

interference (shRNA) (191)  and use of transgenic mice with cardiomyocyte 

specific PHD2 knockout (192) 
 
showed cardioprotective effects.  Up-to-date 

studies have identified HIF-1α to be a very credible candidate for gene therapy 

and this has led to encouraging results. HIF-1α gene delivery in skeletal muscle 

preceding induction of myocardial infarction has led to reduction in infarct size 

and left ventricular remodeling as well as preservation of hemodynamic function 

in vivo (193). Initial data from a clinical trial with HIF-1α delivered to ischemic 

cardiac muscle via a type 2 adenoviral (Ad2HIF) vector  is also promising (194). 

Results at one year follow up show improved ventricular function and increased 

perfusion of the myocardium which was initially viable but hypoperfused.  Newer 

studies are constantly reporting on the advantageous effects of HIF-1α. Up 

regulation of HIF-1α protected cardiac myocytes against nitrate tolerance (195) 

and improved the responsiveness of ageing myocytes to inotropic stimulation 

(196).  
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        There are considerable sex related differences in the HIF-1α response which 

merit careful consideration.  HIF protein increased significantly in both male and 

female murine hearts subjected to myocardial infarction by ligation of left anterior 

descending artery (LAD), relative to sham-operated animals, but this increase was 

60% greater in females than in males (197).
 
  mRNA expression of HIF was 

significantly increased in 24 hour post myocardial infarction in female mice hearts 

versus male and sham-operated animals. Expression of downstream HIF target 

genes was increased in proportion to the levels of HIF expression (197). Many 

studies have shown that in the cardiovascular system, estrogens play a protective 

role against ischemia (198, 199).  The ability of 17- beta estradiol (E2) to counter 

the oxygen radicals has been considered as a principal factor of overall 

cardioprotection (200). G-protein estrogen receptor (GPER), has been found 

recently to mediate the estrogen effects (201).  GPER is an HIF target gene, 

providing evidence for a new mechanism by which estrogens exert biological 

effects under hypoxic conditions. Hypoxia-induced expression of GPER may be 

included among the mechanisms involved in anti-apoptotic effects elicited by 

estrogens, particularly in a low oxygen microenvironment (202). 

        There are also significant sex differences in adaptation to chronic hypoxia 

that may reflect the different sensitivity of males and females to oxygen 

deprivation and other stresses (203). Sex dependence in development of cardiac 

hypertrophy and the reduced risk for cardiovascular diseases in females have also 

been reported in both epidemiological and experimental studies (204, 205).  In 

light of the above observations, the diagnostic and therapeutic procedures related 

to HIF-1 α have to be optimized based on sex (203). 
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1.2.5.4   HIF-1 α is cardio-deleterious  

        The first evidence for a cardio-deleterious role of HIF-1α came from a study 

by Lei et al. where knocking-out the von Hippel- Lindau gene led to stabilization 

of HIF-1α and resulted in dilated cardiomyopathy with a variety of marked 

histological findings including lipid accumulation, myocyte loss, fibrosis, and 

even malignant transformation (206). HIF- 1α was implicated in this development 

due to the observation that concomitant deletion of von Hippel- Lindau gene and 

HIF-1α in the heart prevented this phenotype and restored normal longevity. 

Bekeredjian et al (207) generated a transgene containing the human HIF-

1α cDNA with alanine substitutions at Pro402, Pro564, and Asn803 (denoted 

HIF-1a-PPN) to study  the effects of enhancing HIF-1 α activity in the adult 

animals in a normoxic environment (207).  These animals showed enhanced 

angiogenesis which was expected, but also showed ventricular dysfunction. A 

possible explanation for this observation was substantial down-regulation of the 

mRNA for sarco/endoplasmic reticulum Ca
2+

-ATPase gene  (SERCA)  (Fig.1.2) 

leading to reduced ionotropy, and ventricular dysfunction (207).  Interestingly, 

these effects were reversible on cessation of transgene expression indicating that 

the dysfunction was not related to cardiomyocyte death (207).
 
 Another study 

showed that although infarct size and perioperative mortality were significantly 

lower in the mice which lacked cardiac PHD2 compared with the PHD2-proficient 

mice, cardiac function deteriorated more rapidly in mice which lacked cardiac 

PHD2 (208).  Combined loss of PHD2 and PHD3 in the heart shows significant 

left ventricular dysfunction and premature mortality associated with myocardial 

thinning and LV dilatation, hallmarks of severe cardiomyopathy (208).
 
  

http://en.wikipedia.org/wiki/Sarcoplasmic_reticulum
http://en.wikipedia.org/wiki/Endoplasmic_reticulum
http://en.wikipedia.org/wiki/Calcium
http://en.wikipedia.org/wiki/ATPase
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        HIF1α also plays an important role in adaptive cardiopulmonary responses.  

Some studies have shown that HIF-1 plays a protective role in cardiac 

hypertrophy through maintenance of the cGMP signaling pathway (209), 

however, others have concluded that pressure-overloaded cardiac hypertrophy in 

the rat leads to abnormal regulation of HIF-1α, VEGF and BNP (210).
 
 Increased 

hemodynamic load is also known to unmask deleterious consequences of cardiac-

specific PHD2 inactivation (208).
 
 

        An interesting observation made by Bohuslavová et al. is that the hypoxic 

responses by HIF-1α target genes are differently regulated in left and right 

ventricles as a means of adaptation to sustained chronic hypoxia (203) and that the 

regulation of gene expression is significantly affected by HIF-1α deficiency. 

1.2.5.5   The heart of the matter lies in balance 

        How HIF-1α will ultimately influence the heart depends on the balance 

between its various actions.  Taking into account the results of the studies 

reviewed, these actions at times appear to act in conflict.  HIF-1α transcribes a 

number of genes that play proapoptotic or antiapoptotic roles according to tissue 

specificity and conditions (211).  HIF -1α interacts with and activates tumor 

suppressor p53, which increases mitochondrial apoptosis by inducing Bax 

production, cytochrome C release and activation of caspases 3 and 9 (212).   HIF-

1α also activates genes for the pro-apoptotic proteins NIP3 (213), BNIP3 (214), 

and Noxa (215).
 
 Regarding specific effects on the heart, HIF-1a pathway is 

potentially cardioprotective in  reducing  cytochrome c levels (166) and  inducing  

Higd-1 (hypoxia induced gene domain family-1a), a mitochondrial membrane 

protein possessing anti-apoptotic effect through inhibition of cytochrome C 

release and reduction of caspase activities (216, 217).
 
 The direct evidence of the 
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role of HIF-1α- mediated apoptosis in the cardiomyocytes came from a study 

which showed acute hypoxia for 24 hours enhanced primary neonatal rat 

ventricular myocyte apoptosis through the activation of HIF-1α.  In addition, 

hypoxia increased the expression levels of HIF-1α and proapoptotic protein Bnip3 

and when HIF-1α was inhibited by YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-

benzylindazole), there was a corresponding decrease in the level of expression of 

Bnip3 protein and the degree of apoptosis (218, 219).   

        Biological activity of VEGF is increased by the hypoxic upregulation of 

VEGF receptor-1 (VEGFR-1/Flt-1) (220).  VEGF mRNA stability is also 

increased under hypoxic conditions (221).  VEGF directly induced by HIF-1 α 

(222) is generally considered to be cardioprotective.  Both intramyocardial gene 

delivery of HIF-1α and cardiac-specific over expression of HIF-1α has led to 

increased cardiac vascularization with increased VEGF (171, 172). VEGF derived 

increased capillary vascularity in addition to being advantageous in restoring the 

delivery of blood to the heart can also contribute to cardiac dysfunction through 

changes in tissue architecture, interstitial edema, or perhaps paracrine signaling 

between endothelial cells and cardiomyocytes (208).  VEGF exerts its effects 

through its receptor vascular endothelial growth factor receptor (VEGFR).  

VEGFR-1 (or Flt-1) exists under soluble fms-like tyrosine kinase (sFlt-1) or 

membrane-bound fms-like tyrosine kinase (mFlt-1) form.  sFlt-1 is 

antiangiogenic, and mFlt-1 is proangiogenic (223).
 

 sFlt1 traps circulating 

VEGFA, VEGFB preventing their further binding to membrane associated 

VEGFRs (224). 

        Long term hibernation of cardiomyocytes was induced by conditional 

overexpression of sFlt1 which was accompanied by cardiomyocyte dysfunction 
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and reduced ventricular contraction (225). sFlt1 levels are increased in coronary 

artery disease (226) post MI (227) and in patients developing severe acute heart 

failure (228).   They are also shown to predict mortality in patients with symptoms 

of acute MI (229).  HIF-1 α upregulates sFlt1 expression (230)
 
and so this factor 

needs to be considered in the sustained HIF-1 α activity in the setting of chronic 

ischemia.  

1.2.5.6   Is there a cutoff point? 

         There is a general agreement that HIF-mediated responses appear to differ 

under conditions of acute and chronic oxygen deprivation.  The intensity and 

sustainability of HIF-1α activation are major determinants of whether the 

responses are pathological or beneficial. HIF activation is seen to be beneficial in 

the setting of acute myocardial ischemia and deleterious in chronic conditions 

(208).  Sustained angiogenesis over a long term (208), uninhibited mitochondrial 

apoptosis (212) and HIF-1 α controlled metabolic changes in the cell which may 

be adaptive over a short period of time but maladaptive if sustained over 

prolonged periods, are some possible mechanistic basis for these differences 

between acute and chronic activation of HIF. 

1.2.5.7   HIF-1 α: more questions? 

        The role of HIF-1α is extremely complex.  The heterogenousity of its effects 

on the heart is a challenge for scientists because on the one hand the therapeutic 

strategies aiming at increasing HIF-1α in the heart are very actively being pursued 

but, on the other hand, the long term effects of these modalities are yet to be made 

clear.   It is not merely a matter of acute and chronic hypoxia exposure, but the 

challenge now for scientists is to determine the cutoff or the threshold where HIF-

1α stops being beneficial and starts its detrimental effects.  A very recently 
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published study shows that in the heart, exposure to acute or chronic hypoxia does 

not involve HIF-1α stabilization (231).
  

In this study, the measured HIF-1α in 

cardiac nuclear extracts at both protein and transcriptional levels by 

immunoblotting and by qRT-PCR, showed no changes in HIF-1α protein and 

mRNA amounts (231).  
 
The authors claimed that inhibition of complex I and 

complex III of the electron transport chain in the mitochondria destabilizes HIF-

1α (232-235) 
 
and so in acute hypoxia AMPK (AMP-activated protein kinase) 

activation governs the metabolic adaptation with Bnip3 upregulation and PGC-1 

(peroxisome proliferator-activated receptor γ coactivator-1) downregulation, 

whereas in chronic hypoxic conditions up-regulation of enzymes involved in 

antioxidant defense and misfolded protein degradation and down-regulation of 

enzymes controlling anaerobic metabolism are important.  

        To add to the complexity of HIF -1α influence in our cellular functions, we 

know that HIF-1α is not only induced in hypoxia but other factors such as  

insulin-like growth factor, epidermal growth factor, interleukin-1 and Ras and Src 

oncogenes are also known to regulate it (236-240).
 
 There is a possibility therefore 

that an interplay of these and other factors-in addition to the hypoxia-creates a 

local environment that will cause HIF-1 α levels to fluctuate and exert its 

prosurvival or disadvantageous effects.  

        The effects of HIF-1 α in the heart should not be taken only in the context of 

its effects in response to decreased oxygen levels or the duration of its activity in 

ischemia but in relation to other players that are increased or decreased in 

myocardial ischemia and which can independently regulate HIF-1 α.  Further 

work needs to be done to understand these interactions so that a clearer picture 

emerges regarding the role of HIF-1 α in the heart. 
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1.2.6   Myocardial infarction and Myocardial Ischemia reperfusion Injuries 

        Myocardial infarction denotes the death of cardiac myocytes due to extended 

ischemia, which may be caused by an increase in perfusion demand or a decrease 

in blood flow.  Persistent elevation of the ST-segment on ECG indicates total 

occlusion of a coronary artery that causes necrosis of the myocardial tissue.  The 

term "acute" denotes infarction less than 3-5 days old, when the inflammatory 

infiltrate is primarily neutrophilic (241).  If coronary occlusion is removed within 

approximately 20 minutes after onset, tissue viability is preserved (242) and the 

myocardial damage is transient resulting in temporary contractile failure of the 

myocardium, but it is not associated with development of necrosis. Prolonging the 

period of acute myocardial ischemia for more than 20 minutes causes a ‘wave 

front’ of cardiomyocyte death that  begins in the subendocardium and extends 

transmurally  toward the epicardium (242).  This is the reason that when a patient 

is presented with an acute myocardial infarction, the most effective therapeutic 

intervention is timely myocardial reperfusion using thrombolytic therapy or 

primary percutaneous coronary intervention to salvage the ischemic myocardium. 

Myocardial reperfusion is the restoration of coronary blood flow, which either 

occurs spontaneously or is therapeutically induced, after a period of coronary 

occlusion. Reperfusion has the potential to salvage ischemic myocardium but 

paradoxically it can cause a wide spectrum of deleterious effects results from 

reperfusion itself when it is superimposed on already ischemic-altered 

myocardium.  The net effect depends upon the severity and duration of the 

ischemic insult before reperfusion (243). 
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1.2.6.1   Mechanism of Injury in MI 

         In severe myocardial ischemia, there is lack of oxygen which switches the 

cell metabolism to anaerobic respiration.  This leads to the production of lactate 

which decreases the intracellular pH. Glycogenolysis and anaerobic glycolysis 

with production of ATP continue for a while (244) but is ultimately inhibited by 

lactate accumulation and acidosis. In myocardial tissue, metabolic markers of 

ischemia are initially decreasing levels of creatine phosphate and ATP, followed 

by increasing lactate (245).  The change in pH causes Na
+
-H

+
 exchanger to 

extrude H
+
 which leads to an intracellular Na

+
 overload, which activates the 2Na

+
-

Ca
2+

 exchanger to function in reverse to extrude Na
+
 and leads to intracellular 

Ca
2+

 overload. Due to lack of ATP the Na
+
-K

+
 ATPase ceases to function, 

exacerbating intracellular Na
+
 overload (246). The acidic conditions during 

ischemia prevent the opening of the mitochondrial permeability transition pore 

(MPTP) at this time. 

With severe ischemia, cardiomyocyte cell death begins within 20 to 60 minutes 

after the onset and continues to nearly all cells in the ischemic area within 6 hours 

(247). The major determinants of myocardial infarct size are duration and severity 

of ischemia, size of the myocardial area at risk, and magnitude of collateral blood 

flow.  

        Alterations in the adrenergic nervous system and local alterations in the 

adrenergic receptor-adenylate cyclase system also influence the progression of 

myocardial ischamic injury. During myocardial ischemia, concentrations of 

catecholamines may rise in the ischemic tissue (248) which may impose a risk of 

further damage to the myocardium. In addition to the above mechanisms, 

myocardial ischemia and infarction may induce serious ventricular arrhythmias 



30 
 

early within the first hour of ischemia (249) which may add to the direct ischemic 

damage. 

1.2.6.2   Pathology of Acute Myocardial infarction 

        Myocardial infarction shows features of typical ischemic coagulative 

necrosis (241). Grossly, the earliest change that can be seen is pallor of the 

myocardium, which is visible 12 hours or later after the onset of irreversible 

ischemia.  The infarcted area is well defined at 2-3 days, with a central area of 

yellow discoloration surrounded by the appearance of dark mottling.  At 5-7 days, 

the central yellow area is surrounded by hyperemic borders; At 1-2 weeks, the 

borders assume a red‐grey color, from 2–8 weeks the scar starts to develop from 

the periphery to the centre and healing may be complete as early as 4-6 weeks for 

small infarcts or may take as long as 2-3 months for large ones (241, 250). 

        Microscopic appearance before 12 hours is difficult to interpret but there are 

hypereosinophilic changes of the myocyte sarcoplasms with loss of cross 

striations before neutrophilic infiltrates flood the area of infarct.   “Waviness” may 

be seen at the border of the ischemic myocardium.  Coagulative necrosis starts at 

12 hours post myocardial infarction.  There is nuclear pyknosis, early 

karyorrhexis, and karyolysis. Neutrophil infiltration is prominent at 24 hours post 

infarction which becomes extensive by 48 hours. By 5-7 days, macrophages and 

fibroblasts begin to appear in the border areas. Macrophages remove the necrotic 

myocytes.   After the first week, the number of neutrophils decline and 

granulation tissue is established. Fibroblasts actively produce collagen, and 

angiogenesis occurs in the area of healing.   The granulation tissue promotes the 

deposition of dense collagen by the second week and complete scar formation is 

completed by the second month (241). 
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1.2.6.3   Mechanism of injury in IR 

        It was thought initially that reperfusion only has a beneficial effect on the 

ischemic myocardium and there was no cell death related to myocardial 

reperfusion (243, 251, 252).  When cell death was observed after reperfusion a 

new idea emerged that reperfusion only accelerates the death of already 

irreversibly damaged cardiomyocytes during ischemia, but does not induce death 

of the cells which are still viable (253). The concept of “reperfusion injury” states 

that reperfusion by itself may be able to induce death to cells that have survived 

through ischemia (254).  There are four recognizable forms of reperfusion injury 

(255). 

1) Reperfusion-induced arrhythmias: Reperfusion can lead to cardiac 

arrhythmias which can terminate by themselves or are treated (256). 

2) Myocardial stunning: Reperfusion can also lead to a transient and reversible 

myocardial contractile dysfunction (257).   

3) Microvascular obstruction: Microvascular obstruction or  "no-reflow" 

phenomenon is the “inability to reperfuse a previously ischemic region” (258).  

The main causes of this phenomenon include capillary damage , external capillary 

compression by endothelial cell and cardiomyocyte swelling, micro-embolization 

of friable material released from the atherosclerotic plaque, platelet micro-

thrombi, the release of soluble vasomotor and thrombogenic substances, and 

neutrophil plugging (259-262). No effective therapy currently exists for reducing 

this phenomenon in patients who have undergone PCI. 

4) Lethal myocardial reperfusion injury  Reperfusion can cause death of 

cardiomyocytes that were viable at the end of the index ischemic event (8).  This 
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is called lethal myocardial reperfusion injury. We will discuss the mechanism of 

this injury in detail below.  The major contributory factors in lethal myocardial 

reperfusion injury include oxidative stress, calcium overload, mitochondrial 

permeability transition pore (MPTP) opening, and hypercontracture (263). 

        A hallmark of myocardial reperfusion is the increased generation of reactive 

oxygen species (264).  Mitochondria are the most important source of ROS in the 

myocardium.  There are many reasons for this.  Cardiomyocytes have very high 

energy demands thus contain a large amount of mitochondria (265). Mitochondria 

have all the biomolecules that are exposed to free radical reactions, e.g., they 

contain high levels of unsaturated fatty acids that are susceptible to peroxidation 

reactions (266). Mitochondria are an important source of superoxide, hydrogen 

peroxide and nitrous oxide generation during ischemia and reperfusion (267-270) 

and so regulate  ROS mediated cell death (271).  During reperfusion, the electron 

transport chain is reactivated, generating ROS.  Other sources of ROS include 

xanthine oxidase from endothelial cells and NADPH oxidase from neutrophils 

(255). ROS mediate myocardial reperfusion injury by inducing the opening of the 

MPTP, acting as a neutrophil chemoattractant, and mediating dysfunction of the 

sarcoplasmic reticulum (SR) (255).  

        At the time of myocardial reperfusion, there is an abrupt increase in 

intracellular Ca2+.  This phenomenon is termed the calcium paradox.  This is 

caused by damage to the sarcolemmal membrane and sarcoplasmic reticulum 

which are then unable to regulate Ca2+ in the cardiomyocyte. This Ca2+ overload 

can cause injury by opening the MPTP and thereby causing hypercontracture in 

the cardiomyocytes (8). 
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        Reperfusion causes rapid restoration blood flow to the ischemic area which 

results in washout of lactic acid and recovery of physiologic pH.  This 

phenomenon is termed the pH paradox.  It causes activation of  the Na
+
-H

+
 

exchanger which contributes to lethal reperfusion injury by releasing the 

inhibitory effect on MPTP opening and cardiomyocyte contracture (272). 

Mitochondrial PTP is a critical determinant of lethal reperfusion injury. It 

is a nonselective channel on the inner mitochondrial membrane. Opening of this 

channel causes loss of  mitochondrial membrane potential and uncouples 

oxidative phosphorylation, resulting in ATP depletion and cell death (273).  

Mitochondrial PTP opens in reperfusion in response to mitochondrial Ca2+ 

overload, oxidative stress, restoration of a physiologic pH, and ATP depletion 

(274, 275).  

        Neutrophils also accumulate in the infarcted myocardial tissue several hours 

after the onset of myocardial reperfusion in response to the release of the 

chemoattractants ROS, cytokines, and activated complement (255). 

        All the above described factors involved in the lethal myocardial reperfusion 

injury attenuate the full benefits of myocardial reperfusion. The importance of 

myocardial reperfusion injury is evident from the fact that it may account for up to 

50% of the final MI infarct size (255, 263). 

1.2.6.4   Pathology of IR 

        The macroscopic appearance of reperfused MI is typically haemorrhagic.   In 

the reperfused myocardium the infarcted region appears red because of trapping of 

the red cells and hemorrhage from ruptured necrotic capillaries.  Ischemic 
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myocytes following reperfusion develop ultrastructural changes which is  

indicative of cell death, but from a histological point of view they may seem 

normal (276).  There is a possibility that  most of the myocytes are already 

irreversibly injured by the time reperfusion occurs, and reperfusion is simply 

accelerating the phenomenon (277).  

        Morphologic features which are typical of reperfusion are contraction band 

necrosis, the no‐reflow phenomenon, and intramyocardial haemorrhage.  These 

changes are in addition to the coaglative necrosis that occurs in ischemic 

myocardial damage (276).  Contraction band necrosis  occurs due  to a rapid 

re‐energisation of myocytes with calcium overload (278). Contraction bands are 

seen in irreversibly injured myocytes and morphologicaly they are characterised 

by intensely eosinophilic transverse bands comprising of  closely packed 

hypercontracted sarcomeres (250).  No‐reflow phenomenon concerns small 

vessels which are either damaged or showing small thrombo‐ or athero‐emboli.  

This  leads to endothelial cell swelling which occludes the small capillaries and  

prevents local reperfusion of ischemic myocardium (279, 280).  Reperfused 

myocardial infarcts frequently appear reddish because of intramyocardial 

haemorrhage  (281).  They are caused by vascular cell damage with leakage of 

blood from the injured vessels (282). 

1.2.6.5   Antioxidants in IR 

        Most cells contain enzymatic antioxidant defense mechanisms that quickly 

tackle the ROS generated during biological processes. Antioxidants can act 

through many mechanisms such as scavenging the ROS, inhibiting the formation 

of ROS, attenuating the catalysis of ROS generation via binding to metals ions 
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and enhancing endogenous antioxidant generation (283).  There are many 

endogenous antioxidants produced within the body.  Superoxide dismutase 

(SOD), catalase and glutathione (GSH) are among the most important. 

        SOD is present in the cytoplasm as well as on the endothelial cell surface 

with either copper or zinc (CuSOD, ZnSOD) and in the mitochondria with 

manganese (MnSOD)(284).  SOD can be either reduced or oxidized to convert 

superoxide to oxygen and hydrogen peroxide (21, 285).  Hydrogen peroxide is 

subsequently converted to water by either catalase (286) or by the glutathione 

peroxidase system (287). Guarnieri et al. (288) have demonstrated that ischemia 

and reperfusion impaired superoxide dismutase activity and decreased the cellular  

glutathione-to-glutathione disulfide ratio.  Experiments using isolated heart 

models in the presence or absence of superoxide dismutase also showed ROS as 

likely mediators of reperfusion injury (289, 290).  

        The effectiveness of GSH as an antioxidant is a result of its ability to remove 

hydrogen peroxide, a reaction catalyzed by GSH peroxidase.  The oxidized 

glutathione (GSSG) is reduced back to GSH by GSH reductase.  Glutathione is an 

important antioxidant enzyme in myocardial ischemia-reperfusion injuries (291).  

Intracellular GSH status appears to be a sensitive indicator of the overall health of 

a cell, and of its ability to resist toxic challenge. Myocardial glutathione plays an 

important role in protecting the ischemic myocardium against reperfusion injury 

(292).  

        Catalase is a membrane bound enzyme which is present in peroxisomes and 

in the mitochondrial matrix (293).  Catalase activity and its mRNA expression 

was found to be higher in rabbit hearts subjected to IR injury (294) (295, 296).    
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Catalase and SOD together are important in protecting the myocardium against 

ischemia reperfusion (297, 298).  This has been shown in genetically engineered 

animal models as well as isolated heart models (299). 

        The effectiveness of antioxidants in protecting the heart against ischemia 

reperfusion injuries depends on the severity of oxidative stress and the interaction 

of antioxidants with ROS. 

1.2.6.6   The dilemma of Myocardial reperfusion 

        The model of reperfused infarction (300, 301) affects mostly a larger portion 

of left ventricle than the infarction itself (302), but reperfusion still leads to a 

faster resolution of inflammation and scar formation emphasizing the importance 

of reperfusion in restoring the viability of the myocardium. With new advances in 

medicine, the process of myocardial reperfusion continues to improve with more 

timely and effective reperfusion strategies.  PCI technology, antiplatelet and 

antithrombotic agents are very effective in maintaining the patency of the infarct-

related coronary artery, but there is still no effective therapy for preventing 

myocardial reperfusion injury.  Myocardial reperfusion injury reduces the full 

benefits of myocardial reperfusion and thus represents an important target for 

cardioprotection in patients.   
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1.3   Aims and Objectives 

        The main aim of our project was to establish a murine model of myocardial 

infarction and ischemia reperfusion injury in our lab and to use these two models 

to investigate the role of GAL-1, GAL-3 and HIF-1α in myocardial infarction and 

Ischemia reperfusion injury. Specific objectives of our work are listed as follows: 

1. Identifying the role of GAL-1, GAL-3 and HIF-1 α in early cardiac 

ischemia.  

2. Determining the expression of GAL- 1, GAL-3 and HIF-1α within cardiac 

myocytes, macrophages and endothelial cells and interstitial cells during 

ischemia. 

3. Determining the potential of using Galectins as markers for early detection 

of cardiac ischemia/infarction. 

4. Comparing the two types of myocardial injury, MI and IR in terms of their 

mechanism of injury. 

5. Investigating specific role of GAL-3 in MI and IR by using GAL-3 

knockout mice. 
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2.1   Ethical Approval 

        The Animal Research Ethics Committee of the College of Medicine and 

Health Sciences, UAE University, has approved all experimental procedures 

(Protocol No.A12/10 Murine Model of Myocardial Infarction).  All experiments 

were performed with the guidelines from the ‘Principles of Laboratory Animal 

Care’ and the ‘Guide for the care and use of laboratory animals’ published by NIH 

(NIH Publication No. 85-23, revised 1996), and specific national laws have been 

observed. 

2.2   Animal strains and experimental groups 

        C57B6/J mice and Galectin-3 knockout (KO) mice with C57B6 background 

were used in this study.  All the animals were male, aged 10-14 weeks and 

weighed 20-25g.  

        Wild type C57B6/J mice were divided into 5 groups with the following time 

points: Group I: 20 minute post MI (n=8), Group II: 30 minute post MI (n=8), 

Group III: 60 minute post MI (n = 8), Group IV: 4- hour post MI (n = 8) and 

Group V: 24- hour post MI (n =8). Samples from sham operated animals, which 

are our controls, (20 minute sham, n=7, 30 minute sham, n=7, 60 minute sham, 

n=7, 4- hour sham, n=7 and 24- hour sham, n=7) for each mentioned time points 

were also studied. Samples from non-operated normal animals (Naïve, n=7) were 

also studied. 

         Wild type C57B6/J (WT) mice and GAL-3 KO mice were also used for our 

Myocardial infarction and Ischemia reperfusion comparison experiments. WT 

24hour MI group (n=8), WT 24 hour sham group (n=8), WT IR group (n=8), 

GAL-3KO 24hr MI group (n=8), GAL-3 KO sham group (n=6) and GAL-3 KO 

IR group (n=8). 
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Separate experiments for each group (n=6) were performed for sample collection 

for RNA extraction and quantitative real time PCR.  Also, another set of 

independent experiments were conducted for respective time points for formalin 

fixed paraffin embedded tissue preparation for H&E staining, 

immunohistochemistry and immunofluorescent techniques. 

2.3   Murine model of myocardial infarction and Ischemia Reperfusion 

Injury 

        C57B6/J mice and GAL-3 KO for the experimental groups mice were 

anesthetized by an intraperitoneal injection of a combination of Ketamine (100 

mg/kg) and Xylazine (10 mg/kg).  The animal is checked by toe-pinch reflex to 

determine adequate anesthesia.  The mice were then intubated by transesophageal 

illumination using a modified 22-gauge plastic cannula and fixed on the operating 

pad in the supine position by taping all four extremities. The mice were connected 

to a mouse ventilator (Harvard apparatus Minivent Hugo Sachs Electronik) which 

supplied room air supplemented with 100% oxygen (tidal volume 0.2 ml/min., 

rate 120 strokes/min). Rectal temperature was continuously monitored and 

maintained within 36–37
o 

C using a heat pad. The lead II ECG (ADInstrument 

multi-channel recorder interfaced with a computer running Power lab 4/30 data 

acquisition software) was recorded from needle electrodes inserted 

subcutaneously. 

        Myocardial infarction was induced in the mice by permanently occluding the 

left anterior descending coronary (LAD) artery as described earlier (303, 304).  

The chest was opened with a lateral incision at the 4
th

 intercostal space on the left 

side of the sternum. Next the chest wall was retracted for better visualization of 

the heart. With minimal manipulation, the pericardial sac was removed and the 
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left anterior descending artery (LAD) was visualized with a stereomicroscope 

(Zeiss STEMI SV8). An 8-0 silk suture was passed under the LAD and ligated 1 

mm distal to left atrial appendage. The distance of 1mm was measured by a scale 

and strictly followed in all the animals to maintain constant area of infarction.  

This position induces ischemia in about 40–50% of the LV area (305).  Occlusion 

was confirmed by observing immediate blanching of the left ventricle (LV) post 

ligation. An accompanying ECG recording showed characteristic ST-elevation, 

which further confirmed ischemia. The chest wall was closed by approximating 

the third and fourth ribs with one or two interrupted sutures. The muscles returned 

back to their original position and the skin closed with 4-0 prolene suture. The 

animal was gently disconnected from the ventilator and spontaneous breathing 

was seen immediately. Postoperative analgesic (Butorphanol 2 mg/kg, s/c, 6 

hourly) was given at the end of the procedure. The animal was gently placed in a 

warm cage and temperature maintained for 2-3 hours until the animal was fully 

conscious and moving. The body temperature of the animal was strictly controlled 

at 36-38 degree Celsius throughout the procedure. 

        For our IR model, after the 8-0 silk suture was passed under the LAD, a 

small 1 mm polyethylene tubing (PE) was placed on top of the LAD and the 

suture was ligated on the top of the PE tubing without damaging the artery.  

Ischemia was confirmed by the discoloration of the left ventricle.  An 

accompanying ECG also showed corresponding ST- elevation.  After 30 minutes 

of ischemia the ligature is removed by cutting the knot on top of this PE tube. 

Reperfusion was confirmed visually and by ECG changes. Sham operated mice 

groups are our controls for MI and IR experimental groups and they exactly 

follow the same time points of corresponding MI and IR groups.  Sham operated 
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mice underwent exactly the same procedure described above, except that the 

suture passed under the LAD is left open and untied.  

2.4   Methods 

2.4.1   Sample Collection 

        According to the experimental protocol, mice were sacrificed at a designated 

time after induction of MI or IR. The method of euthanasia started with 

intraperitoneal injection of anesthetic drugs, which included a combination of 

Ketamine (100 mg/kg) and Xylazine (10 mg/kg). When the mouse was 

completely anesthetized, skin and chest wall were reopened. Blood was collected 

in EDTA vacutainers and the heart was resected, washed in ice cold phosphate 

buffered saline (PBS), the right ventricle and both atria were dissected away and 

LV was immediately frozen in liquid nitrogen and stored in a freezer at -80
o
C for 

later protein extraction. Collected blood was centrifuged at 3000 RPM for 15 

minutes. The plasma was collected, alliquoted and stored at -80
o
C until further 

analysis. Heart samples from the same time point following LAD ligation were 

also fixed in 10% buffered formal-saline for 24 hours.  Heart samples from the 

respective time points were also stored in RNA later for RNA extraction and 

subsequent Real time PCR. 

2.4.2 Protein and RNA Extraction 

2.4.2.1   Protein extraction 

        Total protein was extracted from heart samples by homogenizing with lysis 

buffer and collecting the supernatant after centrifugation. For total cell lysate, the 

left ventricular heart along with the septum samples were thawed, weighed and 

put in cold lysis buffer containing 50 mM Tris, 300 mM NaCl, 1 mM MgCl2, 3 
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mM EDTA, 20 mM b-glycerophosphate, 25 mM NaF, 1% Triton X-100, 10%w/v 

Glycerol and protease inhibitor tablet (Roche Complete protease inhibitor cocktail 

tablets). The hearts were homogenized on ice by a homogenizer (IKA T25 Ultra 

Turrax). The samples were then centrifuged at 14000 RPM for 15 minutes at 4
o
 C, 

supernatant collected, alliquoted and stored at -80
o
C until further analysis. 

Nuclear and cytoplasmic protein extraction was done following the protocol 

described elsewhere (306). Briefly, the heart LV were thawed on ice, weighed and 

homogenized on ice with buffer containing Tris HCl 10 mmol/l, CaCl2 3 mmol/l, 

MgCl2 2 mmol/l, EDTA 0.1 mmol/l, Phenylmethanesulfonyl fluoride (PMSF) 0.5 

mmol/l, Sucrose 0.32 mmol/l, Dithiothreitol (DTT) 1 mmol/l, Nonidet P-40 (NP-

40) 0.5% and Protease inhibitor cocktail 1%. The homogenates were centrifuged 

at 800 g for 10 minutes. The supernatant was removed and kept as cytoplasmic 

fraction. The pellet was washed twice with homogenization buffer without NP-40 

and resuspended with a low salt buffer containing HEPES 20 mmol/l, MgCl2 1.5 

mmol/l, KCl 20 mmol/l, EDTA 0.2 mmol/l. Glycerol 25%, PMSF 0.5 mmol/l and 

DTT 0.5 mmol/l. After incubation on ice for 5 minutes, an equal volume of high 

salt buffer containing HEPES 20 mmol/l, MgCl2 1.5 mmol/l, KCl 800 mmol/l, 

EDTA 0.2 mmol/l. Glycerol 25%, PMSF 0.5 mmol/l, DTT 0.5 mmol/l, NP-40 1% 

and protease inhibitor cocktail 1%, was added, the mixture incubated on ice for 30 

minutes, centrifuged at 14000 g for 15 minutes at 4
o
C and supernatants saved as 

the nuclear fraction. Total protein concentration was determined by BCA protein 

assay method (Thermo Scientific Pierce BCA Protein Assay Kit). 

2.4.2.2   RNA Extraction  

        The mouse LV heart samples were divided into infarcted and non-Infarcted 

tissue by using stereomicroscope.  The tissues were homogenized in TRI Reagent 
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(Ambion) and RNA was isolated by phenol-chloroform method (307). Briefly, 1 

ml of TRI Reagent and tissue samples were put in a 2 ml DNase/RNase-Free tube 

and homogenized on ice using a mechanical homogenizer (IKA T25 Ultra 

Turrax).  Homogenized samples are incubated at room temperature for 10 minutes 

with occasional vortexing.  Phase separation is achieved by adding 200ul of 

chloroform, shaking vigorously, incubating for 2-3 minutes at room temperature 

and then centrifuging at 12000 g for 15 minutes at 4
o
C. Aqueous phase is 

transferred carefully to a fresh DNase/RNase-Free tube and isopropanol is added 

to it, mixed by pipetting up and down and incubated at room temperature for 10 

minutes.  The mixture is then centrifuged for 12000 g for 15 minutes at 4
o
C, the 

supernatant obtained is discarded and 75% cold ethanol is added to it and 

centrifuged at 7500 g for 5 minutes at 4
o
C.  The supernatant is discarded and the 

pellet is washed again with 75% cold ethanol.  After the second wash the RNA 

pellet is air dried for 5-10 minutes and resuspended in nuclease-free water and 

stored at -80
o
C.  RNA was quantified using a NanoDrop spectrophotometer. 

2.4.3   Sample Processing for Histology 

        Hearts were excised, washed with ice-cold PBS and weighed. Each heart was 

sectioned into 4 equal transverse (coronal) sections, cassetted and fixed directly in 

10% buffered formalin. Sections were dehydrated in increasing concentrations of 

ethanol, cleared with xylene and embedded in paraffin. Three-um sections were 

prepared from paraffin blocks and stained with haematoxylin and eosin (H&E).  

H&E stain was performed as follows. Sections were dewaxed with xylene, 

rehydrated with graded alcohol and washed in running tap water for 5 minutes. 

Tissue sections were incubated in haematoxylin for 5 minutes followed by 

washing in tap water.  The slides were checked for bluing of the nuclei.  If the 
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intensity of blue color is high, the slides were given a quick dip in1% acid alcohol 

solution. Sections were rinsed in running tap water until a satisfactory blue colors 

of nuclei were achieved.  The slides were then stained with Eosin for 1 minute, 

washed in running tap water, dehydrated, cleared and mounted with DPX. 

2.4.4   Immunohistochemistry  

                5-um sections were prepared and mounted on 

aminopropyltriethoxysilane-coated slides. After dewaxing with xylene and 

rehydrating with graded alcohol, slides were placed in a 0.01 M citrate buffer 

solution (pH=6.0) and pre-treatment procedures to unmask the antigens was 

performed in a microwave oven for 10 minutes.  Sections were treated with 

peroxidase and protein block for 60 minutes each and then incubated overnight at 

4
o
C with anti- GAL-1 (rabbit anti-mouse polyclonal antibody 1:2500, Davids 

Biotechnologie GmbH, Germany), anti- HIF 1 a (rabbit anti-mouse polyclonal 

antibody 1:300, Davids Biotechnologie GmbH, Germany), anti- GAL-3 (rabbit 

anti-mouse polyclonal antibody 1:2500, Davids Biotechnologie GmbH, 

Germany), anti-cleaved caspase- 3(Rabbit polyclonal, ASP 175, Cell Signaling 

Technology, USA), anti-Bcl2 (Mouse monoclonal , SP66, Cell Marque, USA ), 

anti-ki67 (Rabbit monoclonal, SP6, 1:100, Cell Marque, USA), anti- 

Myeloperoxidase (MPO) (Rabbit Polyclonal, 1:2000, Santa Cruz biotechnology, 

USA), anti-cyclin D1 (Rabbit monoclonal , SP4, 1:25, Thermo Scientific, USA, 

USA ), anti- Cytochrome c (Rabbit Polyclonal, 1:400, Santa Cruz biotechnology, 

USA) and anti-Catalase (Rabbit Polyclonal, 1:400, Sigma) antibodies. Sections 

were then washed with PBS for 15 minutes in three changes and incubated with 

biotin-labeled secondary antibody (Thermo Scientific, USA) for 20 minutes at 

room temperature. Finally, sections were incubated with streptavidin–peroxidase 
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complex for 20 minutes at room temperature (Thermo Scientific, USA), 

Diaminobenzidine (DAB) chromogen (Thermo Scientific, USA) added and 

counter staining done with haematoxylin.  Appropriate positive controls were 

used. For negative control, the primary antibody was not added to sections and the 

whole procedure carried out in the same manner as mentioned above.  Positive 

and negative controls were used in every batch of slides that were stained. 

2.4.5   Immunofluorescent labeling  

        5-um sections were deparaffinized with xylene and rehydrated with graded 

alcohol. Sections were placed in EnVisionTM FLEX Target Retrieval Solution 

with a high PH (PH 9) (DAKO Cytomation, Denmark) in a water bath at 80
o
C for 

one hour.  Sections were washed with distilled water for 5 minutes followed by 

PBS for 5 minutes. Later they were incubated with anti-HIF-1 α (rabbit anti-

mouse polyclonal antibody, 1:50,Davids Biotechnologie GmbH, Germany), anti-

GAL-1 (rabbit anti-mouse polyclonal antibody, 1:50, Davids Biotechnologie 

GmbH, Germany), anti-GAL 3(rabbit anti-mouse polyclonal antibody, 

1:50,Davids Biotechnologie GmbH, Germany), anti-caspase-3 (Rabbit polyclonal, 

(CPP32) Ab-4, 1:50, Thermo Scientific TM Lab Vision, USA), anti-Ki67 (Rabbit 

monoclonal, SP6, 1:50, Cell Marque, USA) and anti-MPO (Rabbit Polyclonal, 

1:50,  Santa Cruz biotechnology, USA), anti-desmin (Rabbit polyclonal antibody, 

1:50, Santa Cruz biotechnology, USA),  anti-CD31 (Rabbit polyclonal antibody, 

1:50, Santa Cruz biotechnology, USA), anti-CD68 (Rabbit polyclonal antibody, 

1:50,  Santa Cruz biotechnology, USA), anti-Factor-8 related antigen (Rabbit 

polyclonal antibody, Ab-1,1:50, Thermo Scientific TM Lab Vision, USA ), and 

anti-Lysozyme (Rabbit polyclonal antibody, EC 3.2.1.17,1:50, DAKO 

Cytomation, Denmark), overnight at room temperature. Sections were 
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subsequently incubated with Donkey anti-rabbit Ig conjugated- Rhodamine (Santa 

Cruz Biotechnology, USA, 1:100), or with donkey anti-rabbit Alexa Fluor 488, 

(Invitrogen, USA, 1:100) antibodies. Finally, sections were mounted in water-

soluble mounting media and viewed with Olympus Fluorescent microscope. 

Immunofluorescent double labeling was done following the same procedure as 

above. The first primary antibody was labeled with fluorescein-labeled secondary 

antibody; the second primary antibody was added afterwards followed by 

fluorescein-labeled secondary antibody with different excitation colour. 

Appropriate positive control sections were used. For negative control, the primary 

antibody was not added to sections and the whole procedure carried out in the 

same manner as mentioned above. Positive and negative controls were used in 

every batch of slides that were stained. 

2.4.6   Morphometric analysis 

        Morphometric analysis of expression of our proteins of interest in 

cardiomyocytes, endothelial cells and neutrophil polymorphs was done at 

different time points following ligation of LAD using ImageJ software 

(http://rsbweb.nih.gov/ij/).  

        GAL-1 labeling was determined by counting the number of cardiomyocytes, 

endothelial cells and neutrophil polymorphs in 10 randomly-selected fields in the 

left ventricle. For GAL-1 labeling, cells were considered positive when there was 

a cytoplasmic and/or nuclear staining pattern. The labeling index for 

cardiomyocytes, endothelial cells and neutrophils were expressed as the 

percentage of labeled cells against the total number of cells enumerated.  

        For HIF-1α labeling, cells were considered positive when there was a nuclear 

staining pattern. The labeling index for cardiomyocytes, endothelial cells and 
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neutrophils were expressed in the same way as done for GAL-1. Neutrophil 

polymorphs were counted only in 24h post MI time point. 

        Cyclin D1 labeling was determined by counting the number of cells 

expressing cyclin D1 in 10 randomly selected fields in the left ventricle. For 

Cyclin D1 labeling, cells were considered positive when there was a nuclear 

staining pattern. The labeling index was expressed as the percentage of labeled 

cells against the total number of cells enumerated.  

2.4.7   Enzyme Linked Immunosorbent Assay 

        Left ventricular myocardial concentration and plasma levels of our proteins 

of interest was determined using DuoSet enzyme linked immunosorbent assay 

(ELISA) Development kit (R&D Systems, Minneapolis, MN, USA) for sandwich 

ELISA, using standard procedure according to the manufacturer’s instructions 

(Mouse galectin-1 (DY1245), Mouse galectin-3 (DY1197), Mouse Total HIF-1 α 

(DYC1935-5),  Mouse IL-6 (DY406), Mouse IL-1β/IL-1F2 (DY401), Mouse 

cleaved caspase-3 (Asp175) (DYC835-5), Mouse Total Akt-1( DYC1775-5). 96-

well plates (Nunc-Immuno Plate MaxiSorp Surface (NUNC Brand Products, A/S, 

Roskilde, Denmark), were coated with antibody specific to our proteins.  

Biotinylated detection antibody and streptavidin conjugated horseradish 

peroxidase were used for detection of captured antigens. The plates between steps 

were aspirated and washed 3 times using ELISA plate washer (BioTek ELx50).  

Captured antigens were visualized using tetramethylbenzidine (TMB)/hydrogen 

peroxide. Absorbance readings were made at 450 nm, using a 96-well plate 

spectrophotometer (BioTek ELx800). Protein levels in samples were determined 

by interpolation from a standard curve. Standards and samples were assayed in 
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duplicate. For any particular protein of interest, each assay was at least repeated 

twice. The levels were normalized to total protein concentrations. 

2.4.8   Quantitative Real Time Polymerase Chain (qRT-PCR) 

2.4.8.1   Reverse transcription 

        Reverse transcription of RNA into cDNA was done using High-Capacity 

cDNA Reverse Transcription kit (Part #4368814, PN 4374967, Applied 

Biosystems) according to the recommended protocol.  A total volume of 20ul 

reaction was prepared with 10 μl of sample mixture containing 2 μg of template 

RNA and 10 μl of master mix. The master mix for 1 reaction was prepared as 

below. 

10x RT Buffer                                     2.0μl   

25x dNTP Mix 0.8μl 

10xRTRandomPrimers  2.0μl 

MultiScribeReversetran criptase 1.0μl 

RNase Inhibitor  1.0μl 

Nuclease-free H2O 3.2μl 

Total volume 10 μl 

The RT reaction was carried out in a programmable thermal controller (GeneAmp 

PCR system 9700, Applied Biosystems Inc CA, USA) with the following 

conditions. 

 Step 1 Step 2 Step 3 Step 4 

Temp 
o
C 25

 o
C 37

o
C 85

o
C 4

o
C 

Time 10 minutes 120 minutes 5 minutes  

 

The cDNA was diluted 1:10 and stored at -80
o
C. 
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2.4.8.2   Real Time Polymerase Chain Reaction 

        The expression levels of mRNA were analyzed using target specific TaqMan 

gene expression assays using the 7500 Real-Time PCR system (Applied 

Biosystems Inc CA, USA). The reaction mix of 20 ul contained 5 µL of sample, 

10 uL of TaqMan
® 

Gene Expression Master Mix (Part # 4369016), 1ul of Primer 

probe mix and 4 ul of nuclease free water. Each well was run in duplicate for gene 

of interest and reference primer 18S rRNA (Applied Biosystems).  The following 

primers and probes, purchased from Applied Biosystems, were used for TaqMan 

real-time RT-PCR reactions: 

HIF-1α:  Mm00468869_m1 

GAL-1:  Mm00839408_g1 

GAL-3:  Mm00802901_m1 

Rn 18S: Mm03928990_g1 

        The PCR reaction was carried out as follows: 95°C for 3 minutes, followed 

by 95°C for 15 seconds, 55°C for 15 seconds, 72°C for 1 minute X 40 cycles, then 

followed by 95°C for 15 seconds, then 60°C for 15 seconds and finally 95°C for 

15 seconds. Data acquisition was done by using 7500 software v2.0.6 (Applied 

Biosystems, US).  Analysis was carried out using the comparative Ct method. The 

level of GAL-1, GAL-3 and HIF-1α expression was normalized to 18S rRNA and 

fold changes calculated relative to expression in sham operated LV heart tissue 

using the formula 2
-ΔΔCt

. Many aspects of MIQE guidelines were taken into 

consideration for methods and analysis (308). 
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2.4.9   Sodium dodececyl-sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) and Western Blotting  

        Total protein extracts (30 ug) from each sample were resolved by SDS 

PAGE on 12% polyacrylamide gels using a vertical electrophoresis tank Biorad 

Mini ProteanTetra Cell system.  Samples were electrophoresed at 200 volts using 

electrophoresis buffer for 35-40 minutes, adjacent to pre-stained molecular weight 

markers (PageRuler Prestained Protein Ladder,Thermo scientific).  The protein on 

gels was transferred onto nitrocellulose membranes (Whatman, GE Healthcare ) 

using the semi dry blotting system (Pierce Fast Semi-Dry Blotter, Thermo 

scientific). Non-specific binding sites were blocked by incubation with 5% non-fat 

dry milk solution in Phosphate Buffered Saline (PBS)-Tween 20 (0.1%) (PBST) 

for one hour at room temperature. The membranes were subsequently incubated 

overnight with Primary antibody anti-GAL-3 (rabbit anti-mouse polyclonal 

antibody 1:1000, Davids Biotechnologie GmbH, Germany) and anti-GAL-1 

(rabbit anti-mouse polyclonal antibody 1:5000, Davids Biotechnologie GmbH, 

Germany), diluted in blocking buffer at 4
o 

C. Membranes were also incubated 

overnight 4
o
C for Beta-actin antibody (1:5000, Abcam, USA) diluted in PBST to 

control for equal loading. Blots were then incubated with horseradish peroxidase-

conjugated secondary antibodies (rabbit anti-mouse Thermo-Pierce) and 

developed using ECL plus substrate (Thermo Pierce). Protein bands were 

visualized by a laser scanner (Typhoon FLA 9500). Appropriate positive control 

samples were used with each run.  
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2.4.10   Troponin-I Assay 

        Mouse cardiac troponin I levels in plasma were measured by using a high 

sensitivity mouse cardiac troponin-I Elisa kit (2010-1-HSP, Life Diagnostics, Inc.) 

according to the manufacturer’s instructions. 

2.4.11   Glutathione Assay 

        Total glutathione level in the heart protein extract was measured by a 

Glutathione Assay kit (CS0260 Sigma-Aldrich).  The sample was first 

deproteinized with 5% 5-sulphosalicylic acid, centrifuged to remove precipitated 

protein and then assayed for glutathione.   

2GSH +DTNB ---› GSSG +2 TNB 

GSSG +NADPH + H
+ 

-------------------------------------› 2 GSH +NADP
+ 

The combined reaction: 

DTNB + H
+
 + NADPH-------------------------------------› 2 TNB +NADP

+ 

Glutathione (GSH) cause a continuous reduction of 5, 5’-dithiobis (2-nitrobenzoic 

acid) (DTNB) to TNB and the GSSG forms was recycled by glutathione reductase 

and NADPH.  The yellow product, 5-thio-2-nitrobenzoic acid (TNB) was 

measured spectrophotometrically at 412nm by a kinetic read at 1 minute interval 

for 5 minutes.   Glutathione standard solutions were used to generate a standard 

curve and GSH levels calculated using Megallan6 software. 

2.4.12   Superoxide dismutase (SOD) activity assay 

Superoxide dismutase (SOD) activity was measured using the SOD determination 

kit (19160 Sigma-Aldrich).  Dojindo’s highly water-soluble tetrazolium salt, 

WST-1 (2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-

Glutathione reductase 

Glutathione reductase 

 
GSSG/GSH 
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tetrazolium, monosodium salt) produces a water-soluble formazan dye upon 

reduction with a superoxide anion. The rate of the reduction with O2 is linearly 

related to the xanthine oxidase (XO) activity, and is inhibited by SOD, therefore, 

the IC50 (50% inhibition activity of SOD) is determined by a colorimetric 

method.  The samples were added to the 96-well plate. Appropriate blanks were 

also set up according to the manufacturer’s instructions. WST working solution 

and enzyme working solution were added to the samples, incubated at 37 
o 

C for 

20 minutes and absorbance was read at 450 nm.  SOD activity (inhibition rate %) 

was calculated by an equation: 

SOD activity (inhibition rate %) = {[(Ablank 1 - Ablank 3) - Asample - Ablank 

2)]/ (Ablank 1 - Ablank 3)} x 100. 

2.5   Bioinformatic Analysis 

        We used the bioinformatic analysis program Clustalw2 available on the 

Internet (http://www.ebi.ac.uk/Tools/msa/clustalw2/) to find out the core HIF-1α 

binding motif ‘RCGTG’, the Hypoxia response element (HRE) (150) in the 

promoter region of the mouse and human GAL-1 gene. 

2.6   Statistical Analysis 

        Statistical analysis was conducted using IBM SPSS Statistics version 20. 

Data are presented in mean ± Standard Error.   Statistically significant differences 

(p<0.05) were calculated between experimental group and corresponding sham-

operated group for each time point by Student t test. One-way ANOVA was used 

to test for differences among the various time points within the MI groups. Chi 

square test was used to assess differences in the expression of GAL-1 and HIF-1α 

in cardiomyocytes & endothelial cells at different time points following MI for 

morphometric analysis. 
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3.1.1   Background 

        Galectin-1 (GAL-1) is a prototypical member of the galectin family of 

lectins. It is a divalent 14.5-kDa protein characterized by one carbohydrate 

recognition domain (CRD) that can occur as a monomer or as a non-covalent 

homodimer (13, 26).  

        GAL-1 is produced by a variety of vascular, interstitial, epithelial, and 

immune cells (36-39). GAL-1 is present both inside and outside cells, and has 

both intracellular and extracellular functions.  The extracellular functions require 

the carbohydrate-binding properties while the intracellular functions are 

associated with protein-protein interactions (26).  GAL-1 lacks recognizable 

secretion signal sequences and does not pass along the standard endoplasmic 

reticulum/Golgi pathway (20). GAL-1 is secreted through the non-classical 

pathway via inside-out transportation involving direct translocation across the 

plasma membrane (30).  In the extracellular compartment GAL-1 regulates cell-

cell and cell-matrix interactions, the immune response, apoptosis, and neoplastic 

transformation. In the intracellular compartment it regulates cell cycle, RNA 

splicing and transcription (34, 40-44).  Intracellular GAL-1 has been shown to be 

present in cells nuclei and cytosols (26).  Although GAL-1 is involved in very 

important functions in vitro and in vivo, GAL-1 null mice are viable indicating 

that its presence is not critical for mammalian development or survival (33).  

        GAL-1 is a hypoxia-induced protein.  Studies have shown that GAL-1 is an 

important mediator in the adaptive responses of murine lung to chronic hypoxia 

(66). The expression of GAL-1 was increased throughout the interstitium and near 

to the basement membrane of vessels and airways in the lung of hypoxia-exposed 

mice as compared to the control mice.  In the brain, under hypoxic or ischemic 
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conditions, both in vitro and in vivo, GAL-1 was found to attenuate the 

proliferation of astrocytes.  It reduced apoptosis of neurons, decreased brain 

infarction volume, improved neurological function and promoted recovery of 

brain ischemia (65). GAL-1 is also regulated by hypoxia at the gene  and protein 

levels in some tumors (64). The above-mentioned studies have shown that GAL-1 

is regulated by hypoxia but its exact mechanism remains elusive. 

        GAL-1 is a major component of the contractile machinery in cardiomyocytes 

(71) which suggests that it must be playing an important role in regulating cardiac 

functions but its exact pathophysiological role in the heart is unknown.  In the 

present study we investigated if there is any change in the endogenous production 

of GAL-1 in early ischemia and its pattern of expression in the ischemic and non-

ischemic cardiomyocytes.  For this purpose we have employed Murine model of 

Permanent ligation of Left anterior descending artery (LAD).  Details can be seen 

in the Material and Methods section (p.40) of this dissertation. 

3.1.2   Results 

3.1.2.1   Electrocardiographic Study 

        The ECG records for mice groups, 20 minute, 30 minute, 60 minute, 4 hour 

and 24 hour following permanent ligation of LAD show persistent ST elevations. 

The ECG for 20 min, 30 min and 60 min post LAD ligation groups were 

monitored for the whole duration of time whereas for 4 hours and 24 hours post 

MI groups it was monitored for the first 15 minutes (Fig 3.1). We have used 

persistent elevation of ST- segment in the ECG as a control for selection of 

animals to be included in our study. 
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3.1.2.2   GAL-1 in the heart tissue 

        GAL-1 concentration in Left ventricular (LV) heart tissue of naïve group is 

66.32±4.69 ng/mg. GAL-1 concentration in LV tissue is significantly increased at 

20 minutes (148.91±6.65 vs. 117.20±4.45 ng/mg P = 0. 001*) and 30 minutes 

(117.45±3.49 vs 101.79±2.63 ng/mg, P = 0.004*) post MI groups compared to 

corresponding sham operated control groups (Table 3.1) (Fig 3.2 A). GAL-1 

values at 60 minutes and 4 hours post MI groups show a higher tendency than 

their corresponding sham operated control groups but do not reach statistical 

significance (100.43±3.05 vs 94.99±2.76 ng/mg, P = 0.208 and 97.01±3.31 vs 

91.07±3.26 ng/mg, P = 0.224). At 24-hour post MI group, GAL-1 concentration 

in sham-operated control group is slightly higher than its corresponding MI group 

(85.24±2.42 ng/mg vs 75.71±3.87) but shows no statistical significance. GAL-1 

values in LV in all MI groups are higher than the baseline naïve control group.  

This is also shown in the corresponding blots where the difference between MI 

and Sham blots is seen in the first hour post MI time points (Fig. 3.3). 

There was a statistically significant difference between the different time points 

within the MI groups as determined by one-way ANOVA (F (4,35) = 40.693, p = 

.000). A Tukey post-hoc test revealed that the 20 minutes post MI GAL-1 level 

(M = 148.9, 95% CI [133.18, 164.6]) is significantly higher than the 30 minutes 

(M = 117.4, 95% CI [109.2, 125.72], p = 0.00), 60 minutes(M = 100.43.9, 95% CI 

[93.22, 107.65], p = 0.00), 4 hour (M = 97.01, 95% CI [89.18, 104.84], p = 0.00) 

and 24 hour post MI group (M = 75.71, 95% CI [66.57, 84.86], p = 0.00 ). 30 

minutes post MI. 
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Figure 3.1: Electrocardiography of the heart at 20 minute, 30 minute, 60 minute, 

4-hour and 24-hour post MI groups showing ST elevation compared to normal 

ECG in sham operated groups. 
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A. 

 

 

B. 

 

 

Figure 3.2 (A) The graph represents left ventricular GAL-1 concentrations at 20 

min, 30 min, 60 min, 4 hour and 24 hour post myocardial infarction with 

corresponding sham operated groups in C57BL6 mouse heart. Control represents 

non-operated normal animal heart. (B) GAL-1 mRNA expression in the ILV 

(Infarcted left ventricle) and NILV (Non-infarcted left ventricle) expressed as fold 

changes relative to sham at respective time points post MI (* shows p<0.05). 
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Table 3.1: GAL-1 levels in ng/mg of total protein at different time points post 

myocardial infarction.   

Groups n Mean (ng/mg) Std Dev Std  Error p value 

Naïve 7 66.32 12.39 4.69  

20 min MI 8 148.91 18.81 6.65 

0.001* 

20 min sham 8 117.20 12.57 4.45 

30 min MI 8 117.45 9.88 3.49 

0.004* 

30 min sham 7 101.79 6.97 2.63 

60 min MI 8 100.43 8.63 3.05 

0.208 

60 min sham 7 94.99 7.29 2.75 

4 hour MI 8 97.01 9.36 3.31 

0.224 

4 hour sham 7 91.07 8.63 3.26 

24 hour MI 8 75.71 10.94 3.87 

0.079 

24 hour sham 6 85.24 5.92 2.42 

* shows p<0.05. 

 

 

Table 3.2:  Fold changes in GAL-1 mRNA expression in the ILV (Infarcted left 

ventricle) and NILV (Non-infarcted left ventricle) relative to sham at respective 

time points post MI. 

 

 
Sham 

NILV ILV 
P 

value† 

20 min Post MI 1.0139 1.0299 1.0504 0.746 

30 min Post MI 1.0508 1.1841 1.6064 0.026* 

60 min Post MI 1.0176 1.0354 1.5278 0.129 

4 hr Post MI 1.0119 1.0632 1.3229 0.007* 

24 hr Post MI 1.0082 1.4205 2.9667 0.00* 

† shows p values comparing ILV and sham groups for respective time points. 
* shows p<0.05 
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Figure 3.3 Western blot for detection of GAL-1 and beta actin in respective time 

points post MI with corresponding sham. 
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GAL-1 value is also higher than the 4 hour (p = 0.015), and 24 hour time point (p 

= 0.00). 30 minute post MI GAL-1 value is also higher than 60 minute post MI 

group but does not reach statistical significance (p = 0.058). 60 minute post MI 

group value is significantly higher than the 24 hour MI group (p = 0.002) and 4 

hour MI level is significantly higher than 24 hour post MI time point (p = 0.01). 

        In normal hearts, GAL-1 is mainly seen to be expressed by cardiomyocytes 

and endothelial cells (Fig. 3.4). The expression is more pronounced in the right 

ventricle as compared to the left ventricle (Fig. 3.4, D, E, F). In the left ventricle, 

GAL-1 is mainly expressed by endothelial cells and few cardiomyocytes (Fig. 3.4, 

E). A very characteristic staining pattern is seen in immunofluorescent labeling of 

GAL-1, which gives a mesh-like staining pattern of myocardium (Fig. 3.4 G, H, 

I). There is an increase in the expression of GAL-1 in the LV as compared with 

sham operated heart sections.  

        In MI groups, the expression of GAL-1 is well demarcated in the area 

supplied by LAD artery at 24- hour, 20, 30, 60 minute and 4- hour following MI 

(Fig. 3.5, 3.6, 3.7, 3.8, 3.9 respectively). Both cardiac myocytes and endothelial 

cells show high expression of GAL-1 (Fig. 3.5 E, 3.6 F, 3.7 F, 3.8 F). In addition, 

there are foci of low or no expression of GAL-1 surrounded by areas of high 

expression (Fig. 3.5, 3.6, 3.7, 3.8, 3.9 ).  The number of cardiac myocytes that 

express GAL-1 is decreased as the time following ligation is increased. This 

phenomenon is also seen to a lesser extent in endothelial cells. Hence, areas of 

low or no expression of GAL-1 increase in size and become more demarcated as 

we reach 4 hours and then 24 hours following MI (Fig. 3.9 E, F, G & 3.8  D, E, F, 

G, H). In 24 hour post MI, the GAL-1 expression is seen in areas surrounding the 

infarction (Fig. 3.8 E, F, G, H& I). There is no expression of GAL-1 in the dead 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g005
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g005
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g005
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g005
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g005
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g006
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g007
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g008
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g009
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g009
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g009
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g004
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cardiomyocytes hence, these areas are very sharply demarcated (Fig. 3.9 E, F, G, 

H& I). Neutrophil polymorphs, which are abundant at 24 hour post MI group, also 

show high expression of GAL-1 (Fig. 3.9 G& H). GAL-1 shows many patterns of 

staining in the heart at different time points following MI which include diffuse 

cytoplasmic staining (Fig. 3.6 G& I), Z bands staining (Fig. 3.5 H), cell 

membrane staining (Fig. 3.4 G, H, I) and nuclear staining (Fig. 3.5  E&F). 

3.1.2.3   GAL-1 mRNA expression in post MI heart tissue 

        GAL-1 gene expression is first seen to be significantly increased at 30 min 

post MI time points in the infarcted part of left ventricle compared to the sham.  

GAL-1 mRNA at 4 hour and 24 hour post MI group is also significantly high in 

the Infarcted LV as compared to Sham.  60 min post MI GAL mRNA is higher 

than the Sham but does not reach statistical significance (p=0.129).  (Refer to 

Table 3.2 and Fig. 3.2 B for fold differences in the GAL-1 mRNA expression in 

the infarcted and non infarcted left ventricular tissue compared to the sham 

operated LV tissue). 

3.1.2.4   GAL-1 Levels in Plasma 

        Plasma GAL-1 concentration in naïve group is 8.71±0.83 ng/ml. Plasma 

GAL-1 concentration is significantly raised at 4 hour (15.05±1.09 vs 9.91±1.35 

ng/ml, P = 0.012*) and 24 hour (22.59±0.42 vs 17.86±0.93 ng/ml, P = 0.001*) 

post MI groups compared to corresponding sham operated control.  

 

 

 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g007
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g006
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g005
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g006
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Figure 3.4: GAL-1 expression in naïve heart.  

A. Low power view of the heart showing the left ventricle (arrow head), 

interventricular septum (thick arrow) and right ventricle wall (thin arrow), H&E 

stain. B&C are representative sections of the left and right ventricles respectively, 

H&E stain. D. showing low and focal expression of galectin-1 in the wall of the 

right ventricle (thin arrow) and the interventricular septum (thick arrow). E. A 

representative section of left ventricle showing mild expression of galectin-1 by 

endothelial cells (arrow head). F. A representative section of right ventricle 

showing low cytoplasmic expression of galectin-1 by cardiac myocyte (arrow 

head) and endothelial cells (thin arrow). G, H&I, immunofluorescent labeling of 

sections of the heart showing a net-like pattern of galectin-1 staining of cardiac 

myocytes (thin arrow) and cytoplasmic staining of endothelial cells (arrow head). 
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Figure 3.5: GAL-1 expression 20 minutes following ligation of LAD.  

A. Low power view of the heart showing a high expression of galectin-1 in the 

anterior wall of left ventricle in the area supplied by LAD (thin arrow) and the 

interventricular septum (thick arrow). There is also increase in the expression of 

galectin-1 in the right ventricle (arrow head). B. Sham operated heart showing 

lower expression of galectin-1 in the left ventricle and right ventricle (thin arrow). 

C. Negative control section of the heart showing absence of galectin-1 staining. D, 

E&F. Representative sections of the left ventricle from area supplied by LAD 

showing high cytoplasmic expression of galectin-1 by cardiac myocytes (thin 

arrow D). High power views show a well demarcated area of high cytoplasmic 

expression of galectin-1 by cardiac myocytes (thin arrow) and endothelial cells 

(arrow head, E&F), There is also nuclear expression of galectin 1 by cardiac 

myocytes (thick arrow E&F), streptavidin- biotin immunoperoxidase method. G, 

H&I. Representative section from left ventricle shows a well demarcated area of 

high cytoplasmic expression of galectin-1 by cardiac myocytes (thin arrow).There 

is also high expression of galectin- 1 in the Z bands (arrow head), Alexa Fluor 488 

immunofluorescent technique. 
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Figure 3.6: GAL-1 expression 30 minutes following ligation of LAD.  

 

A. A low power view of the heart showing a high expression of galectin-1 in the 

anterior wall of left ventricle in the area supplied by LAD (thin arrow) and the 

interventricular septum (thick arrow). There is also increase in the expression of 

galectin-1 in the right ventricle (arrow head), streptavidin- biotin 

immunoperoxidase method. B. Sham operated heart showing lower expression of 

galectin-1 in the left ventricle and right ventricle (thin arrow), streptavidin- biotin 

immunoperoxidase method. C. Negative control section of the heart showing 

absence of staining of galectin-1. D. A galectin-1 positive control section from 

prostate gland showing cytoplasmic expression of galectin- 1 by prostatic acini. E, 

F & G. Representative sections of the left ventricle from areas supplied by LAD 

showing high cytoplasmic expression of galectin-1 by cardiac myocytes (thin 

arrow), streptavidin- biotin immunoperoxidase method. H, I&J. Representative 

sections from left ventricle showing a well demarcated area of high cytoplasmic 

expression of galectin-1 by cardiac myocytes (thin arrow), Alexa Fluor 488 

immunofluorescent technique. 
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Figure 3.7: GAL-1 expression 60 minutes following ligation of LAD.  
 

A& B, A low power view of the heart showing a high expression of galectin-1 in 

the anterior wall of left ventricle in the area supplied by LAD (thin arrow) and the 

interventricular septum (thick arrow). There is also increase in the expression of 

galectin-1 in the right ventricle (arrow head), streptavidin- biotin 

immunoperoxidase method. C. Sham operated heart showing low expression of 

galectin-1 in the left ventricle and right ventricle (thin arrow), streptavidin- biotin 

immunoperoxidase method. D. Negative control section of the heart showing 

absence of staining of galectin-1. E, F & G, Representative sections of the left 

ventricle from areas supplied by LAD showing high cytoplasmic expression of 

galectin-1 by cardiac myocytes (thin arrow) surrounding areas of low or absence 

of expression (star shape), streptavidin- biotin immunoperoxidase method. H, I& 

J, Representative section from left ventricle showing a well demarcated area of 

high cytoplasmic expression of galectin-1 by cardiac myocytes (thin arrow), 

Alexa Fluor 488 immunofluorescent technique. 
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Figure 3.8: GAL-1 expression 4 hours following ligation of LAD.  
 

A.A low power view of the heart showing a high expression of galectin-1 in the 

anterior wall of left ventricle in the area supplied by LAD (thin arrow) and the 

interventricular septum (thick arrow). There is also increase in the expression of 

galectin-1 in the right ventricle (arrow head), streptavidin- biotin 

immunoperoxidase method. B. Sham operated heart showing low expression of 

galectin-1 in the left ventricle (thin arrow) and right ventricle (arrow head), 

streptavidin- biotin immunoperoxidase method. C. Negative control section of the 

heart showing absence of staining of galectin-1. D. Representative section of the 

left ventricle from area supplied by LAD showing high cytoplasmic expression of 

galectin-1 by cardiac myocytes (thin arrow) surrounding areas of low or no 

expression (star shape), streptavidin- biotin immunoperoxidase method. E&F, 

Representative section of the left ventricle from area supplied by LAD showing a 

well demarcated area of high cytoplasmic expression of galectin-1 by cardiac 

myocytes (thin arrow), streptavidin- biotin immunoperoxidase method. G, H&I. 

Representative section from left ventricle showing a well demarcated area of high 

cytoplasmic expression of galectin-1 by cardiac myocytes (thin arrow) 
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Figure 3.9:  GAL-1 24 hours following ligation of LAD.  

 

A. A high power view of left ventricle in an area supplied by LAD showing 

coagulative necrosis (thin arrows) accompanied by heavy neutrophil polymorphs 

infiltration (arrow heads), H&E. B. A low power view ofthe heart showing areas 

of high expression of galectin-1 (thick arrows) surrounding areas of no expression 

(star shape) in the left ventricle and interventricular septum in the area supplied by 

LAD, streptavidin- biotin immunoperoxidase method. C. Sham operated heart 

showing lower expression of galectin-1 in the left ventricle and right ventricle 

(thick arrows), streptavidin- biotin immunoperoxidase method. D. Negative 

control section of the heart showing absence of staining of galectin-1. E, F&G. 

Representative section of the left ventricle from area supplied by LAD showing 

high cytoplasmic expression of galectin-1 by cardiac myocytes (thick arrow), 

surrounding areas of no expression (thin arrow). Many neutrophil polymorphs are 

also showing cytoplasmic expression of Galectin-1(arrow head), Streptavidin- 

biotin immunoperoxidase method. H, I&J. Representative section from left 

ventricle showing a well demarcated area of high cytoplasmic expression of 

galectin-1 by cardiac myocytes (thick arrow) surrounding areas of no expression 

(thin arrow), many neutrophil polymorphs (arrow head) show cytoplasmic 

expression of Galectin-1, Alexa  Fluor 488 immunofluorescent technique.  
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groups (Fig. 3.10). Plasma GAL-1 values at 30 minute and 60 minute post MI 

groups are not significantly different from their corresponding sham-operated 

control groups (15.49±1.29 vs 14.06±0.78 ng/ml and 14.27±0.72 vs 

13.33±1.49 ng/ml). 

3.1.2.5   Morphometric analysis 

        The frequency of cardiomyocytes expressing GAL-1 in 20 and 30 minute 

post MI groups is higher than other MI groups and show statistically significance 

when compared with 24-hour post MI group (Chi squared = 6.779 with 1 degree 

of freedom, P = 0.009* and Chi squared = 9.968 with 1 degree of freedom, P = 

0.001*, respectively).   The frequency of endothelial cells expressing GAL-1 in 20 

minute post MI group is higher than other MI groups and shows statistical 

significance when compared with 60 minute, 4-hour and 24-hour post MI groups 

(Chi squared = 4.282 with 1 degree of freedom, P = 0.03*, Chi squared = 6.627 

with 1 degree of freedom, P = 0.01*, Chi squared = 9.29 with 1 degree of 

freedom, P = 0.002*, respectively). The frequency of endothelial cells expressing 

GAL-1 in 30 minutes post MI group is significantly higher than 24-hour post MI 

groups (Chi squared = 3.931 with 1 degree of freedom, P = 0.047*).   The 

frequency of endothelial cells expressing GAL-1 is significantly higher than 

cardiomyocytes at 20 minute, 30 minute, 60 minute, 4-hour and 24-hour post MI 

groups (Chi squared = 42.4 with 1 degree of freedom, P = 0.0001*, Chi squared = 

25.9 with 1 degree of freedom, P = 0.0001*, Chi squared = 31.1 with 1 degree of 

freedom, P = 0.0001*, Chi squared = 34.3 with 1 degree of freedom, P = 0.0001*, 

Chi squared = 38.8 with 1 degree of freedom, P = 0.0001*, respectively).  
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The frequency of neutrophil polymorphs expressing GAL-1 is significantly higher 

than cardiomyocytes and endothelial cells at 24-hour post MI groups (Chi squared 

= 69.8 with 1 degree of freedom, P = 0.0001* and Chi squared = 5.72 with 1 

degree of freedom, P = 0.016*, respectively).  A decrease in the number of 

cardiomyocytes and endothelial cells that express GAL- 1 is associated with the 

increase in post MI time. Neutrophil polymorphs were counted at 24-hour 

following MI as they are not seen before 4 hour post MI time (Table 3.3). 

3.1.3   Discussion 

Galectins are highly conserved, from fungi to mammals with their existence 

dating back more than 800 million years. This suggests that these endogenous 

proteins must be serving an important purpose (309-311).   Although GAL-1 

knockout mice fail to show any abnormalities (33), but knocking down GAL-1-

like protein in the zebrafish shows defects in muscle development and 

disorganized muscle fibers (312). There is also evidence that GAL-1 has a 

significant role in the regeneration of muscles (68, 313, 314). 

Galectin-1 is endogenous to the heart.  The level of expression in cardiomyocytes 

is among the highest compared to other organs of the body (71).  In accordance 

with a previous report (71) , our immunohistochemistry and immunoflorescence 

staining of heart sections show that it is expressed in cardiac muscles as diffuse 

cytoplasmic staining, as an organized Z bands staining, as a membranous staining 

and as nuclear staining.  
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Figure 3.10:  Plasma GAL-1:  The graph represents ratio of GAL-1 

concentration in myocardial infarction to sham operated C57BL6 mice.  4 hour 

and 24 hour post myocardial infarction show significant difference from sham 

operated mice (* p<0.05). 

 

 

 

Table 3.3 : Morphometric analysis of expression of GAL-1 in cardiomyocytes, 

endothelial cells and neutrophil polymorphs at different time points following 

ligation of LAD. 

Galectin-1 Morphometric analysis 

Post MI Time 

points 

Cardiomyocytes 

% 

Endothelial cells 

% 

Neutrophils  

  % 

20 MINUTES 49 92 0 

30 MINUTES 53 87 0 

60 MINUTES 41 81 0 

4 HOURS 36 78 0 

24 HOURS 30 75 89 
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        Acute MI in our mice model shows an increase in the level of GAL-1 in the 

heart at a very early stage in the course of events.  We show a significant increase 

in tissue GAL-1 levels at 20 minutes and 30 minutes following MI as compared to 

related sham operated control groups.  The values at 60 minutes and 4 hours are 

also higher than their corresponding sham operated control groups but do not 

reach statistical significance (Fig. 3.2).  These results demonstrate that there is a 

transient rise in the GAL-1 level in the LV within one hour of permanent ligation 

of LAD. This is supported by one-way ANOVA and Tukey post-hoc test analysis 

of MI groups which show GAL-1 values at 20 and 30 minutes MI group are 

significantly higher than other MI groups. 

        The immunohistochemical and immunofluorescent staining patterns for 

GAL-1 in cardiac muscles are also very characteristic and supportive of this 

finding.  The increased expression of GAL-1 in the left ventricle is very well 

demarcated in the MI group in all tested time points.  We also noticed that as the 

time of ischemia increases from 20 minutes to 4 hours and then 24 hours we are 

able to recognize areas of low or no expression of GAL-1 being surrounded by 

areas of high expression of GAL-1. The well demarcated areas of no or low 

expression of GAL-1 are increased as the time of ischemia increases which means  

that as time proceeds dying cells will stop expression of GAL-1 in the area 

supplied by LAD, while survived cells in the ischemic zone, which are seen at the 

periphery of infarction zone, are showing high expression of GAL-1, which might 

explain the absence of statistical significance at 60 minute, 4-hour and 24-hour 

post MI time points when compared to corresponding sham operated control 

groups. This is supported by our morphometric analysis which shows a significant 

decrease in the frequency of cardiomyocytes and endothelial cells that express 
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GAL-1 with the increase of post MI time.  This phenomenon is clearly seen in 24 

hour post MI sections (Figure 3.9 E, F, G, H, &I) where GAL-1 is observed to be 

high in the surviving cardiomyocytes and invading neutrophil polymorphs in the 

immunohistochemical and immunofluorescent- stained sections, while dead cells 

in the infarction zone do not show any expression which explains the absence of 

statistical significance in our ELISA results at this time point.  

        GAL-1mRNA in the infarcted tissue is detected to be higher at 30 minute 

post MI time compared to Sham.  GAL-1 mRNA is also significantly increased at 

4 hour and 24 hour post MI time points.  This result indicates that the increase in 

GAL-1 at the protein level in early post MI time is due to transcriptional pressure 

from transcription factors like HIF-1α that have come into play due to 

Ischemic/hypoxic injury to the myocardium. 

        Another significant finding of our study is that GAL-1 plasma level is 

significantly high around 4 hour and 24 hour post MI compared to sham operated 

control mice (Fig. 3.10).   There can be two possible explanations for this 

phenomenon.  We know that GAL-1 is present in the heart tissue in significant 

amounts, acute myocardial infarction and subsequent cell membrane damage and 

necrosis promotes its leakage outside the cells into the blood.  This phenomenon 

is similar to the raised Troponin-I protein (315)  that escapes the injured 

cardiomyocytes and can be detected in the blood. The other explanation for raised 

plasma levels is that GAL-1 in heart tissue is increased in early ischemic period 

due to increased transcriptional pressure from transcriptional factors that come 

into action in response to hypoxia and is secreted from the heart through the non-

classical pathway.  We suspect that plasma GAL-1 levels in the first hour post 

infarction signify an increase in transcription of the protein and leakage from the 
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cells, whereas, at 4 hour and 24 hour post MI, the high GAL-1 plasma levels are 

mainly due to leakage of this protein from cardiomyocytes. 

We have observed in our study that the levels of GAL- 1 in sham operated 

animals were higher than the non- operated naïve animals. This increase in sham 

operated animals can be due to factors related to surgical stress.  There have been 

reports in germane literature that there is stress-induced increase of GAL-1 in 

serum which is regulated by the sympathetic nervous system (316).  As there is 

some degree of mechanical/surgical stress applied to the sham operated mice we 

suggest that GAL-1 levels seen in sham groups may be the result of these factors. 

For these reasons we made sham operated groups as our controls for all time 

points, and all our statistics were done in comparison between MI groups and 

sham-operated groups to take out the effect of mechanical/surgical stress from the 

real ischemic effect due to ligation of LAD. In all early MI groups the values of 

GAL-1 are higher than corresponding sham groups and show statistical 

significance at certain time points. So the significant rise of GAL-1 levels at 

certain time points in MI groups when compared to sham-operated groups is 

purely due to ischemia and not surgical stress. 

3.1.4   Conclusions 

        We show for the first time that GAL-1 level in the LV is increased in early 

ischemic period.  We also report for the first time that in mouse model of 

myocardial infarction plasma GAL-1 level is significantly raised as early as 4 

hours of the event.  This is significant because it can help in understanding the 

very early changes that occur in the myocardium after acute infarction and help 

devise ways to an early diagnosis and save viable tissue before permanent damage 

sets in. Raised plasma GAL-1 levels in this early phase of infarction in the mice is 
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significant in terms of its potential use as a biomarker for MI, but  further studies 

are still needed to elaborate on its role. 
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Section 2: Galectin-3 is expressed in the 

myocardium very early post myocardial 

infarction 
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3.2.1   Background 

        Galectin-3 (GAL-3) is ~35 kDa protein.  It is a unique chimera-like galectin 

that has one C-terminal carbohydrate recognition domain (CRD) connected to a 

long N-terminal domain (ND) (19).  It is found on the cell surface and within the 

extracellular matrix, as well as in the cytoplasm and the nucleus of cells. Its 

localization depends on factors such as cell type and proliferation status (107-

111), cultivation conditions (112), neoplastic progression (113-117) and 

transformation (73, 118).  The distribution in many types of cells, together with 

varied subcellular localization, indicates galectin-3 has many different roles in 

normal and pathophysiological conditions (119, 120).  

        Intracellular GAL-3 is involved in regulating cell differentiation, survival, 

and death (99, 100), through its effect on mitosis, proliferation of cells and anti-

apoptotic mechanisms (91-94).  Extracellular GAL-3 mediates cell-cell adhesion, 

cell-matrix interaction and signaling (86-89)  and pro-apoptotic mechanisms (90).  

GAL-3 is expressed in a variety of cells, e.g., endothelial and epithelial cells, 

activated macrophages (75-77), activated microglial cells (78, 79), inflammatory 

cells including macrophages, basophils, mast cells, eosinophils, and neutrophils 

(20, 41, 80-82).  In tissues, GAL-3 is expressed in the lungs, spleen, stomach, 

colon, adrenal gland, uterus, and ovary and at a lower level in kidney, heart, 

cerebrum, pancreas, and the liver (85). 

        GAL-3 plays a very well documented role in heart failure (135).  Higher 

levels were associated with recurrent heart failure and increased risk of death in a 

number of studies (139-142).  This has led to its use as a prognostic marker in 

patients with heart failure.  GAL-3 also predicted all-cause death (143) and 

demonstrated a relationship with future heart failure and rehospitalizations in the 
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general population (144). Despite its established role in heart failure, GAL-3 has 

not been studied directly in relation to cardiac ischemia. In other organs, e.g., in 

kidneys GAL-3 mRNA increased after ischemic injury in acute renal failure in 

rats (145). There was also up-regulated expression of GAL-3 in the ischemic brain 

following transient middle cerebral artery occlusion in rats and in neonatal 

hypoxic ischemic brain injury (79, 146).  We aim to study the direct effects of 

ischemia on GAL-3 levels in the heart very early in the course of events following 

myocardial infarction (MI).   

3.2.2   Results 

3.2.2.1   Left ventricular GAL-3 level is increased within one hour post MI 

        GAL-3 level in the naïve heart was measured to be 1754.86 ± 103.51 pg/mg. 

We observed an increase in GAL-3 protein level in the left ventricular heart tissue 

as early as 30 min post MI as compared to sham operated animals (2623.69 ± 

61.90 vs 2373.59 ± 72.72 pg/mg, p=0.021*) (Fig. 3.11 and Fig. 3.12). GAL-3 

levels are continuously high in the heart till 24 hour post MI time point (Table 

3.4).  This is also shown in the corresponding blots where the difference between 

MI and Sham blots till 24 hour post MI time points is shown (Fig. 3.12) 

        Immunohistochemistry results show that in the normal naïve heart, GAL-3 is 

mainly seen to be expressed by endothelial cells and only a few cardiomyocytes. 

The expression is more prominent in the right ventricle as compared to the left 

ventricle and GAL-3 is mostly seen as a cytoplasmic staining (Fig. 3.13).  In MI 

groups, the expression of GAL-3 is well demarcated in the area supplied by LAD 

artery in all the time points tested (Fig. 3.14, 3.15, 3.16, 3.17, and 3.18).  Both 

cardiac myocytes and endothelial cells show high expression of GAL-3.  GAL-3 
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is seen as diffuse cytoplasmic staining, Z bands staining, cell membrane staining 

and nuclear staining at the different post MI time points.  At 30 min, 60 min and 

4-hour post MI groups (Fig. 3.15, 3.16, 3.17 respectively) we see that the intensity 

and pattern of staining is the same although higher than the 20 min post MI group 

(Fig. 3.14).  GAL-3 shows both nuclear and cytoplasmic staining.  The 24 hour 

post MI group has a very characteristic pattern.  There is very high expression in 

the area of LAD supply surrounding an area of very low or no expression 

(Fig.3.18).  We observed that the area showing no expression is the area of the 

infarct consisting of dead cardiomyocytes and the surviving cardiomyocytes and 

endothelial cells surrounding the infarct are showing very high GAL-3 staining 

(Fig. 3.18).   Neutrophil polymorphs, which are abundant in the area of the infarct 

at 24 hour post MI are the only cells in the infarct region that show high 

expression of GAL-3 (Fig. 3.18). The sharp demarcation between completely dead 

cardiomyocytes and those which survived is very characteristic at this time point. 

3.2.2.2   GAL-3 mRNA expression in post MI groups 

        GAL-3 gene expression is first seen to be significantly increased at 60 min 

post MI time points in the infarcted part of left ventricle compared to the sham 

(p=0.032*).  GAL-3 mRNA at 4 hour and 24 hour post MI group is also 

significantly high in the Infarcted LV as compared to Sham (p=0.012*, p=0.00*).  

30 min post MI GAL mRNA is higher than the Sham and almost reaching 

statistical significance (p=0.056) (Table. 3.5, Fig. 3.19). 
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A. 

 
 

 

B. 

 

 

 

Figure 3.11 (A) GAL-3 levels measured by ELISA in the LV of post MI heart 

compared to sham operated hearts at respective time points.  (B)Time course of 

GAL-3 protein levels in the LV for the first 24 hours post MI.  * shows p<0.0 

 

 

 



82 
 

Table 3.4: GAL-3 levels in pg/mg of total protein at respective points post 

myocardial infarction 

 

Heart 

Galectin-

3 pg/mg 

Groups N Mean Std Dev Std Error  
p 

value 

Control 7 1754.86 273.86 103.51  

20 min MI 8 2257.52 259.05 91.59 
0.135 

20 min sham 8 2422.93 140.17 49.56 

30 min MI 8 2623.69 175.09 61.90 
0.021* 

30 min sham 7 2373.59 192.39 72.72 

60 min MI 8 2470.46 178.59 63.14 
0.029* 

60 min sham 7 2153.66 311.86 117.87 

4 hours MI 8 2648.68 236.28 83.54 
0.015* 

4 hours sham 7 2302.82 239.76 90.62 

24 hour MI 

 
8 14543.3 4799.95 1697.04 

0.01* 
24 hour Sham 

 
8 4784.59 773.57 273.49 
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Figure 3.12:  Western blot for detection of GAL-3 and beta actin in respective 

time points post MI with corresponding sham. 
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Figure 3.13:  GAL-3 expression in naïve heart.  

Naïve heart: A, Low power view of the cross section of the murine heart showing 

low cytoplasmic GAL-3 in the left ventricle, interventricular septum and right 

ventricle wall (arrow heads).  B, showing expression of GAL-3 in the wall of the 

right ventricle (black arrow head) and interventricular septum (white arrow head), 

Streptavidin- biotin immunoperoxidase method. C, Immunofluorescent labeling of 

sections of the naïve heart showing pattern of GAL-3 staining. D, Cardiac 

myocytes (arrow head) show a characteristic sub-sarcolemmal distribution while 

and nuclear staining (arrow), Alexa Fluor 488 immunofluorescent technique.  E, 

GAL-3 positive control section from prostate gland showing cytoplasmic 

expression in prostatic acini, Streptavidin- biotin immunoperoxidase method. F, 

Negative control section of the heart showing absence of GAL-3 staining, 

Streptavidin- biotin immunoperoxidase method. 
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Figure 3.14: GAL-3 expression at 20 min post MI 

A, Low power view of the cross sectional area of the heart showing a patchy 

expression of GAL-3 in the anterior wall of left ventricle in the area supplied by 

LAD, interventricular septum and the right ventricular wall (arrow heads). B, 

Sham operated heart showing lower expression of GAL-3 in the left ventricle and 

right ventricle (arrow heads). C. Representative sections of the left ventricle from 

area supplied by LAD showing high cytoplasmic expression of GAL-3 by cardiac 

myocytes (arrow head). D, High power views show a well demarcated area of 

high cytoplasmic expression of GAL-3 by cardiac myocytes bordering with area 

of no expression of GAL-3. Streptavidin- biotin immunoperoxidase method.  

E&F, immunoflorescence pattern of GAL-3 in the area of LV supplied by LAD 

showing fields of cardiomyocytes with higher cytoplasmic expression of GAL-3 

(E) (arrow heads).  High power view (F) shows GAL-3 expression in 

cardiomyocytes (arrow head) with prominent staining of cross striations and 

endothelial cell (thin arrow). Alexa Fluor 488 immunofluorescent technique.  
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Figure 3.15:   GAL-3 expression at 30 min post MI 

A low power view of the cross sectional area of the heart showing expression of 

GAL-3.  The high expression is confined to the area supplied by LAD in the 

anterior wall of left ventricle. B, Sham operated heart showing lower expression 

of GAL-3 in the left ventricle and right ventricle (arrow heads).C&D, 

Representative sections of the left ventricle from area supplied by LAD showing 

high cytoplasmic expression of GAL-3 by cardiac myocytes (arrow head) 

interspersed with cardiomyocytes with low expression. D, High power view 

shows expression of GAL-3 in the cardiac myocytes cytoplasm (arrow heads), 

nucleus (thick arrow) and endothelial cells (thin arrow), Streptavidin- biotin 

immunoperoxidase method.  E&F, immunofluorescent pattern of GAL-3 in the 

area of LV supplied by LAD showing cardiomyocytes with higher cytoplasmic 

expression of GAL-3 (E) (arrow heads).  High power view (F) shows GAL-3 

cytoplasmic expression in cardiomyocytes (arrow head), nuclear expression in 

cardiomyocytes (thick arrow) and endothelial cell (thin arrow). Alexa Fluor 488 

immunofluorescent technique. 
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Figure 3.16:  GAL-3 expression at 60 min post MI 

A, Low power view of the heart showing a high expression of GAL-3 in the 

anterior wall of left ventricle in the area supplied by LAD, interventricular 

septum(arrow heads) and right ventricle (thin arrow). B, Sham operated heart 

section showing low expression in the corresponding areas. C&D, Representative 

sections of the left ventricle from area supplied by LAD showing high 

cytoplasmic expression of GAL-3 by cardiac myocytes (arrow head) interspersed 

with cardiomyocytes with low expression. D, High power view shows expression 

of GAL-3 in the cardiac myocytes cytoplasm (arrow heads), nucleus (thick arrow) 

and endothelial cells (thin arrow). Streptavidin- biotin immunoperoxidase method.  

E&F, immunofluorescent pattern of GAL-3 in the area of LV supplied by LAD 

showing cardiomyocytes with higher cytoplasmic expression of GAL-3 (E) (arrow 

heads).  High power view (F) shows GAL-3 cytoplasmic expression in 

cardiomyocytes (arrow head), nuclear expression in cardiomyocytes (thick arrow), 

prominent cross striations with z-band staining (thin arrows) and endothelial cell 

(curved arrows). Alexa Fluor 488 immunofluorescent technique. 
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Figure 3.17: GAL-3 expression at 4 hour post MI 

 

A, Low power view of the heart showing a high expression of GAL-3 in the 

anterior wall of left ventricle in the area supplied by LAD, interventricular 

septum(arrow heads) and right ventricle (thin arrow). B, Sham operated heart 

section showing low expression in the corresponding areas. C, Representative 

sections of the left ventricle from area supplied by LAD showing high 

cytoplasmic expression of GAL-3 by cardiac myocytes (arrow head) diffusely 

surrounding the area of cardiomyocytes with low expression. D, High power view 

shows expression of GAL-3 in the cardiac myocytes cytoplasm (arrow heads) 

nucleus (thick arrow) and endothelial cells (thin arrow).  Z-band staining is also 

seen (curved arrow), Streptavidin- biotin immunoperoxidase method.  E&F, 

immunofluorescent pattern of GAL-3 in the area of LV supplied by LAD showing 

cardiomyocytes with higher cytoplasmic expression of GAL-3(E) (arrow heads).  

High power view (F) shows GAL-3 cytoplasmic expression in cardiomyocytes 

(arrow head), nuclear expression in cardiomyocytes (thin arrow), prominent cross 

striations with z-band staining (thick arrows) and endothelial cell (curved arrows). 

Alexa Fluor 488 immunofluorescent technique. 
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Figure 3.18: GAL-3 expression at 24 hour post MI 

A, Low power view of the heart showing a high expression of GAL-3 in the anterior wall of left 

ventricle in the area supplied by LAD, interventricular septum (arrow heads) and right ventricle 

(thin arrow).  Left ventricular area also shows a cluster of inflammatory cells showing intense 

staining with GAL-3 (thick arrow). B, Sham operated heart section showing low expression in the 

corresponding areas.  C.  Representative section of the left ventricle from area supplied by LAD 

showing high cytoplasmic expression of GAL-3 by cardiac myocytes (arrow heads), surrounding 

areas of no expression. Many neutrophil polymorphs (thick arrows) are also showing cytoplasmic 

expression of GAL-3.  D, High power view showing a well demarcated area of high cytoplasmic 

expression of GAL-3 by cardiac myocytes (arrow heads) and endothelial cells (thin arrow).  

Numerous neutrophil polymorphs expressing GAL-3 (thick arrows) are also seen in the section 

scavenging the dead cardiomyocytes. Streptavidin- biotin immunoperoxidase method. E&F, Alexa 

Fluor 488 immunofluorescent labeling of GAL-3 in the area of LV supplied by LAD showing 

cardiomyocytes with higher cytoplasmic expression of GAL-3 which is sharply demarcated from 

the surrounding dead cardiomyocytes infiltrated with GAL-3 expressing neutrophil polymorphs 

(E) (arrow heads).  High power view (F) shows GAL-3 cytoplasmic expression in cardiomyocytes 

(arrow head), nuclear expression in cardiomyocytes (thin arrow) and neutrophil polymorphs (thick 

arrow). Alexa Fluor 488 immunofluorescent technique. 
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Figure 3.19: GAL-3 mRNA expression in the ILV (Infarcted left ventricle) and 

NILV (Non-infarcted left ventricle) expressed as fold changes relative to sham at 

respective time points post MI (*shows p<0.05). 

 

 

 

 

 

 

 
 

Figure 3.10:  The graph represents ratio of plasma GAL-3 concentration in 

myocardial infarction to plasma GAL-3 concentration in sham operated mice 

C57BL6 mice. 24 hours post myocardial infarction show significant difference 

from sham operated mice (*shows p < 0.05). 
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Table 3.5: Fold changes in GAL-3 mRNA expression in the ILV (Infarcted left 

ventricle) and NILV (Non-infarcted left ventricle) relative to sham at respective 

time points post MI  

 

 
Sham 

Non-Infarcted 

LV (NILV) 

Infarcted LV 

(ILV) 
P value† 

20 min Post MI 1.0155 1.2611 1.2409 0.212 

30 min Post MI 0.9540 1.0726 1.4731 0.056 

60 min Post MI 0.8091 0.7048 1.9180 0.032* 

4 hr Post MI 1.0426 1.2885 2.9926 0.012* 

24 hr Post MI 1.1183 4.0330 13.2393 0.00* 

† shows p values comparing ILV and sham groups for respective time points (* shows p<0.05). 

 

3.2.2.3   Plasma GAL-3 levels are significantly increased at 24 hour post MI 

        Plasma GAL-3 values in the naive control group were 44278.98 ± 3684.88 

pg/ml.  GAL-3 plasma levels were significantly raised at 24 hour post MI 

compared to sham operated mice (120220.94±20702.83 vs 96542.77±4935.79   

p=0.01*).  There was no significant difference between MI groups and sham 

groups at earlier time points (Fig. 3.20).  

3.2.3   Discussion 

        Myocardial Infarction is the leading cause of heart failure. The association of 

GAL-3 with heart failure is already well established so it becomes important to 

know when GAL-3 starts to appear after MI and whether ischemia regulates it at 

transcriptional or translational levels in the myocardium.  Permanent LAD ligation 

in mice is a very appropriate in vivo model to study the very early changes that 

occur in the heart following occlusion of blood flow to the myocardium.   

Our results show that GAL-3 starts to increase in the left ventricle in the 

area of infarction within one hour of ischemia/hypoxia.  GAL-3 stays high till 4 
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hour post MI after which at 24 hour post MI it increases several fold compared to 

the sham operated animals.  GAL-3mRNA is also detected to be high at one hour 

post MI time point in the infarcted tissue which stays high till 24 hours time point.  

An interesting observation was that GAL-3mRNA increases in the infarcted tissue 

at 60 min and 4 hours time points but as the time of ischemia/infarction increases 

to 24 hours, the expression increases and spreads to the non-infarcted tissue of the 

left ventricle surrounding the infarcted area.   

        We know that GAL-3 is important in the inflammatory response which plays 

a role in cardiac remodeling (317).  The several fold increase in the protein as well 

as mRNA levels of GAL-3 at 24 hour post MI is understandable.  At this time a 

full fledge inflammatory response is underway in the infarcted myocardium, there 

is coagulative necrosis and the area is flooded with neutrophils, which also 

expresses GAL-3.  The increase in myocardial GAL-3 levels in the first 4 hours of 

MI gives us an insight into how the myocardium reacts immediately after the 

ischemic insult.  The neutrophil polymorphs have not yet reached the area of 

infarction and the response seen at these earlier time points is purely due to the 

resident cells, which are mainly the cardiomyocytes and the endothelial cells.   

Our immunohistochemistry and immunofluorescent staining results show 

that GAL-3 is expressed by cardiomyocytes and endothelial cells during the early 

ischemic event and it co-localized with desmin in cardiomyocytes and factor 8-

relaed antigen in endothelial cells (Fig. 3.27).  In a study on heart failure model on 

Ren-2 rats, GAL-3 was shown to be expressed in fibroblasts and macrophages, 

but not with cardiomyocytes (136).  This difference may be due to the difference 

in disease models used in the two studies. The appearance of GAL-3 at this early 

time following MI is very significant in terms of its causal or consequential role in 
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heart failure.  We believe that GAL-3 increase at this early time post MI is an 

immediate response of the myocardium to hypoxia or ischemia.   

        Plasma GAL-3 levels were high at 24 hour post MI time point compared to 

sham operated animals which was expected due to the several fold high GAL-3 

protein and mRNA levels seen in the LV tissue. 

        We have observed in our study that the levels of GAL-3 in sham operated 

animals were higher than the non-operated naïve animals. The reason for this 

increase is not clearly known, but may involve a generalized stress response to the 

sham surgical procedure.    It has been reported in traumatic brain injury model 

that animals exposed to sham surgery  had higher GAL-3 levels when compared 

to naïve animals (318). As there is some degree of mechanical/surgical stress 

applied to the sham operated mice we suggest that GAL-3 levels seen in sham 

groups may be the result of these factors. For these reasons we made sham 

operated groups as our controls for all time points, and all our statistics were 

calculated in comparison between MI groups and sham-operated groups to take 

out the effect of mechanical/surgical stress from the real ischemic effect due to 

ligation of LAD. In all early MI groups the values of GAL-3 are higher than 

corresponding sham groups and show statistical significance at certain time 

points. So the significant rise of GAL-3 levels at certain time points in MI groups 

when compared to sham-operated groups is purely due to ischemia and not 

surgical stress. 

        Although a contributory role for GAL-3 in the pathophysiology of heart 

failure is already defined, we think that GAL-3 at early time point post MI works 

to sustain the myocardium against the initial injury.  Further studies need to be 

carried out for proper assessment of GAL-3 in cardiovascular disease specially 
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after Myocardial infarction to ascertain when GAL-3 becomes responsible for the 

onset and progression of cardiac fibrosis and reduced ventricular function (144). 

3.2.4   Conclusion 

        We have shown for the first time that GAL-3 is increased at both 

transcriptional and translational level in the LV in early ischemic period.  We 

have also shown for the first time that GAL-3 is produced by cardiomyocytes and 

endothelial cells in early post MI time which is significant because it can help in 

understanding the mechanism of very early response of the myocardium after 

acute infarction and help devise ways to save the viable tissue before permanent 

damage sets in.  
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Section 3:  Hypoxia Inducible factor-1 alpha 
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3.3.1   Background 

        Hypoxia-inducible factor (HIF) is a set of transcription factors that regulate 

the cellular response to hypoxia (147).  HIF is a heterodimeric DNA-binding 

complex composed of two basic helix-loop-helix proteins, the constitutive 

expressed HIF-β or aryl hydrocarbon receptor nuclear translocator  (ARNT) and 

the oxygen sensitive hypoxia-inducible HIF-α (148).
 
HIF-α heterodimerizes with 

ARNT (HIF-1β), recognizes and binds to hypoxia response elements (HREs) in 

the genes that have the consensus sequence G/ACGTG (150). The α-subunit is 

degraded during normoxia mainly through a proteasome-dependent pathway (152, 

153) after hydroxylation of two proline residues by prolyl-hydroxilases (PHDs) 

(319, 320). During hypoxia, PHDs are inhibited and HIF-1 α subunit accumulates, 

dimerizes with HIF-1β and drives expression of HIF target genes (155).  Hypoxia 

contributes significantly to the pathophysiology of major human disease, 

including myocardial and cerebral ischemia, cancer and pulmonary hypertension  

and so HIF-1α is a major player in the mechanism of injury in these diseases 

(158). 

        HIF-1 alpha role in the heart is shrouded with many conflicting reports (321) 

as discussed in detail in the review of literature of this dissertation, however there 

is a general agreement that increase in the level of HIF-1α is one of the first 

adaptations of the myocardium to ischemia (160).  Here we look at the HIF-1 α 

levels in the myocardium very early following MI in the mouse model of 

permanent LAD ligation.  
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3.3.2   Results 

3.3.2.1   HIF-1 α in heart tissue 

        HIF-1 α concentration in LV tissue of the naïve group is 31.97±2.18 pg/mg 

of total protein.  HIF-1 α protein concentration shows a significant increase in the 

LV at 20 minutes following MI group compared to sham operated control group 

(95.5±12.4 vs 65.6±0.7 pg/mg, P = 0.047*) (Table 3.6) (Fig. 3.21). HIF-1 α 

values in the MI groups are higher than corresponding sham operated groups at 30 

minutes, 60 minutes and 4-hour groups but show no statistical significance 

(36.34±2.62 vs 30.54±1.42 pg/mg, 40.85±4.6 vs 40.01±5.15 pg/mg, and 

59.35±3.22 vs 54.98±4.26 pg/mg,). The 24-hour HIF-1 α level in sham-operated 

group appears to be higher than the MI group but does not reach statistical 

significance (46.65±2.42 vs 40.75±2.61 pg/mg). HIF-1 α value in LV in all MI 

groups is higher than the baseline naïve control group. The pattern of HIF-1 α 

protein expression in the LV after permanent ligation of LAD shows a transient 

significant peak at 20 minutes following MI, which declines afterwards but still 

remains high compared to the naïve control animal group (Table 3.6) (Fig. 3.21). 

As we observed a peak of HIF-1 α at 20 minutes post MI time point, so we did a 

separate experiment for 20 minutes time point to measure the HIF-1 α 

concentration in the nuclear and cytoplasmic extracts of the LV. The results show 

a significant rise of HIF-1 α concentration in the nuclear extract of the MI group 

compared to the sham operated group (87.84±5.41 vs 70.75±3.72 pg/mg, p = 

0.03*) (Table 3.7) (Fig. 3.22 ). 

 

 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-t001
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-t001
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g002
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-t002
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Figure 3.21: HIF-1 α concentrations at 20 mins, 30 mins, 60 mins, 4 hours and 24 

hours post myocardial infarction with corresponding sham operated groups in 

C57BL6 mouse left ventricle. Control represents non-operated normal animal 

heart (*shows p<0.05).  

 

 

 

Figure 3.22:  HIF-1 α levels in nuclear and cytoplasmic extracts of LV mouse 

heart at 20 minutes following MI (*shows p<0.05). 
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Table. 3.6 : HIF-1 α levels in pg/mg of total protein at different time points post 

myocardial infarction.  

 

Groups Number Mean(pg/mg) Std. Dev. Std.  Error p value 

Naive 7 31.97 5.78 2.18  

20 min MI 8 95.49 35.09 12.41 0.047* 

20 min sham 7 65.58 1.86 0.70  

30 min MI 8 36.34 7.39 2.62 0.103 

30 min sham 6 30.54 3.47 1.42  

60 min MI 8 40.85 12.98 4.59 0.904 

60 min sham 7 40.01 13.61 5.15  

4- hour MI 8 59.35 9.12 3.22 0.421 

4- hour sham 7 54.98 11.28 4.26  

24 hour MI 7 40.75 6.89 2.61 0.123 

24-hour sham 7 46.65 6.41 2.42  

* shows p<0.05 

 

 

Table. 3.7:  HIF-1 α levels in pg/mg total protein in nuclear and cytoplasmic 

fractions of left ventricular heart tissue at 20 min post myocardial infarction  

HIF-1α (LV) Groups N Mean Std. Dev Std. Error P value 

Nuclear 

fraction pg/mg 
20 min MI 6 87.05 13.24 5.41 0.032* 

 20 min Sham 6 70.75 9.11 3.72  

Cytoplasmic 

fraction pg/mg 
20 min MI 6 38.16 3.60 1.47 0.125 

 20 min Sham 6 34.11 4.70 1.92  

* shows p<0.05 
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        There was a statistically significant difference between the different time 

points within the MI groups as determined by one-way ANOVA (F (4,34) = 

14.672, p = .000). Tukey post-hoc tests showed that the 20 min post MI HIF-1 α 

level (M = 95.48, 95% CI [66.15, 24.82]) was significantly higher than 30 minute 

(M = 36.34, 95% CI [30.15, 42.53], p = 0.00), 60 minute (M = 40.85, 95% CI 

[30.00, 51.7], p = 0.00), 4 hour (M = 59.35, 95% CI [51.72, 66.98], p = 0.003), 

and 24 hour post MI groups (M = 40.75, 95% CI [34.37, 47.13], p = 0.00). 

        The expression of HIF-1α is predominantly seen in the nuclei of endothelial 

cells (Fig. 3.23 A) in the naïve heart. The expression of HIF-1 α in the nuclei of 

cardiomyocytes is very low and in few cells in naïve heart. There is a higher 

nuclear expression of HIF-1 α by cardiac myocytes and endothelial cells in the 

area supplied by LAD artery at 20 (Fig. 3.23  E, G, H) and 30 minute (Fig. 3.23 I, 

K, L), groups when compared with 60 minute (Fig. 3.23 M, O, P), 4 hour (Fig. 

3.23 Q, S, T), and 24 hour (Fig. 3.9 K) following MI groups and all sham operated 

groups. In 60 minutes (Fig. 3.23 M, O, P) and 4 hours (Fig. 3.23 Q, S, T), we 

noticed a decrease in the number of cardiac myocytes that expresses HIF-1 α and 

most of the cells that express HIF-1 α are endothelial cells. In the 24 hour post MI 

group the expression of HIF-1α is in the nuclei of few cardiomyocytes and more 

endothelial cells in areas surrounding the infarction while cardiomyocytes in the 

center of infarction does not show any expression of HIF-1α (Fig. 3.9 K). On the 

contrary, many infiltrating neutrophil polymorphs in the center of infarction show 

nuclear expression of HIF-1 α (Fig. 3.9 K). As early as 60 minutes following MI 

we can identify an area of infarcted cardiomyocytes that do not express HIF-1 α 

(Fig. 3.23 M),  this area is more obvious at 4 hours (Fig. 3.23 Q) and 24 hours 

following MI (Fig. 3.9 K). 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g003
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g003
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g003
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g003
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g003
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g003
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g003
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g003
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g003
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g003
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g003
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g004
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Figure 3.23:  HIF-1 α expression of the heart.  

 

A. Representative section of naïve heart showing nuclear expression of HIF-1 by 

a few endothelial cells (arrow head), streptavidin- biotin immunoperoxidase 

method. B. Negative control section showing no HIF-1 a staining, streptavidin- 

biotin immunoperoxidase method. C. Positive control section of mouse placenta 

showing nuclear staining of HIF-1 a by trophoblastic cells, Rhodamine, 

immunofluorescent technique. D. Negative control section for HIF-1 a. 

Rhodamine, immunofluorescent technique. E,I,M&Q shows representative 

sections from the anterior wall of left ventricle in the area supplied by LAD 20 

min, 30 min, 60 min and 4 hours following ligation of LAD, showing variable 

nuclear staining of HIF-1 a by cardiac myocytes at different time points (arrow 

head) and endothelial cells (thin arrow), streptavidin- biotin immunoperoxidase 

method. F,J,N&R shows their corresponding Sham operated hearts showing low 

nuclear expression of HIF-1 a by few endothelial cells (thin arrow), streptavidin- 

biotin immunoperoxidase method. Low and high power views of the left ventricle 

20 min (G&H), 30 min (K&L), 60 min (O&P) and 4 hours (S&T) following 

ligation of LAD showing high nuclear staining of HIF-1 a by cardiac myocytes 

(arrow head), Rhodamine, immunofluorescent technique. 
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3.3.2.2   HIF-1 alpha mRNA expression at 20 mins post MI: 

        As HIF-1 alpha protein level was significantly high at 20 mins post MI time 

point.  We checked the mRNA level at this point which showed no upregulation 

of mRNA at 20 min post MI time point (Table 3.24). 

3.3.2.3   Morphometric analysis 

        The frequency of cardiomyocytes expressing HIF-1 α in 20 minute post MI 

group was significantly higher than 30 minute, 60 minute, 4-hour and 24-hour 

post MI groups (Chi squared = 9.158 with 1 degree of freedom, P = 0.002*, Chi 

squared = 34.1 with 1 degree of freedom, P = 0.0001*, Chi squared = 57.001 with 

1 degree of freedom, P = 0.0001*, Chi squared = 84.5 with 1 degree of freedom, P 

= 0.0001*, respectively).  The frequency of endothelial cells expressing HIF-1 α 

in 20 minute post MI group is significantly higher than 30 minute, 60 minute, 4-

hour and 24-hour post MI groups (Chi squared = 12.3 with 1 degree of freedom, P 

= 0.0004*, Chi squared = 36.5 with 1 degree of freedom, P = 0.0001, Chi squared 

= 49.1 with 1 degree of freedom, P = 0.0001, Chi squared = 54.3 with 1 degree of 

freedom, P = 0.0001*, respectively). The frequency of endothelial cells expressing 

HIF-1 α is significantly higher than cardiomyocytes at 4-hour and 24-hour post 

MI groups (Chi squared = 6.84 with 1 degree of freedom, P = 0.008* and Chi 

squared = 17.04 with 1 degree of freedom, P = 0.0001*, respectively).  

        The frequency of neutrophil polymorphs expressing HIF-1 α was 

significantly higher than cardiomyocytes and endothelial cells at 24-hour post MI 

groups (Chi squared = 81.9 with 1 degree of freedom, P= 0.0001* and Chi 

squared = 27.9 with 1 degree of freedom, P= 0.0001*, respectively).   A decrease 

in the number of cardiomyocytes and endothelial cells that express HIF-1 α is 
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Figure. 3.24: HIF-1α mRNA expression at 20 min Post MI time point in  the 

ILV (Infarcted left ventricle) and NILV (Non-infarcted left ventricle) expressed as 

fold changes relative to sham at respective time points post MI. 

 

 

 

 

Table 3.8: Morphometric analysis of expression of HIF-1α in cardiomyocytes, 

endothelial cells and neutrophil polymorphs at different time points following 

ligation of LAD. 

HIF-1α Morphometric analysis 

 

Post MI time 

points 

 

Cardiomyocytes 

% 

 

Endothelial cell 

s% 

 

Neutrophil 

Polymorphs % 

 

20 MINUTES 

 

83 

 

94 

 

0 

30 MINUTES 63 75 0 

60 MINUTES 42 56 0 

4 HOURS 29 48 0 

24 HOURS 17 45 82 

 

 

* 
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associated with the increase in post MI time. Neutrophil polymorphs were counted 

at 24-hour following MI as they are not seen before 4 hour post MI time (Table 

3.8). 

3.3.3   Discussion 

        HIF-1 α levels in the LV show a significant increase in 20 minute post MI 

group compared to sham operated control group (Fig. 3.21, 3.22). In addition, 

HIF-1 α value in the MI groups at 30 minutes, 1 hour and 4 hours are higher than 

corresponding sham operated control groups but shows no statistical significance. 

This is supported by one-way ANOVA and Tukey post-hoc test analysis of MI 

groups which shows HIF-1 α value at 20 minute MI group is significantly higher 

than other MI groups. Moreover, HIF-1 α values in all MI groups are higher than 

the baseline non-operated naïve control groups. We show for the first time a 

transient peak in LV HIF-1 α level at 20 minutes following MI, which declines 

afterwards.  The immunohistochemical and immunofluorescent staining results 

are very characteristic and supportive of this pattern (Fig. 3.23).  

        We believe that in our experiments, the initial increase in HIF-1 α levels in 

the LV is due to stabilization of HIF-1 α as a result of low intracellular level of 

oxygen secondary to complete ligation of LAD artery.  This observation is 

supported by our real time PCR results that show no upregulation of HIF-1 α 

mRNA at this early time point.  We also observed a decrease in LV level of HIF-1 

α as the time of ischemia increased. We think that as the time of ischemia 

increases the cardiomyocytes become necrotic and HIF-1 α level go down due to 

protein degradation. As previously mentioned in the methods section (p. 42), we 

took only the LV protein extraction, so the mass of heart tissue is similar between 

samples. If the cells in the middle of the infarct are necrotic and HIF- 1 α is 
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degraded as the time of ischemia increases then it is understandable that the levels 

of HIF-1 α in the 1 hour, 4-hour and 24-hour post MI groups are not significantly 

higher than corresponding sham operated groups.   

        HIF-1 α is being expressed by the nuclei of cardiomyocytes and endothelial 

cells follows the same pattern seen in immunohistochemical and 

immunofluorescent-stained sections and we are able to see that as the time of 

ischemia increases the number of cells with high expression of HIF-1 α  

decreases. This is supported by our morphometric analysis which shows a 

significant decrease in the frequency of cardiomyocytes and endothelial cells that 

express HIF-1 α with the increase of post MI time. Another observation pertinent 

to HIF-1 α staining was that while the expression of HIF-1 α decreases in 

cardiomyocytes as the time of ischemia increases, its expression in endothelial 

cells essentially remains the same. A possible explanation for this can be related 

to the fact that endothelial cells are proliferating cells that participate in healing 

process of the infarcted zone and in the formation of collaterals while survived 

cardiomyocytes do not proliferate. We think that when continuous ischemia 

damages the cardiomyocytes its expression is lost but the surrounding endothelial 

cells keep on proliferating and expressing HIF-1 α. HIF-1 α is a protective factor 

that mediates the survival of injured cardiomyocytes in the setting of ischemic 

injury by transcribing a variety of cardioprotective genes including erythropoietin, 

vascular endothelial growth factor, inducible nitric oxide synthase, 

hemeoxygenase-1 and cardiotropin (321) . So we think that presence of HIF-1 α is 

protective in the early post MI time point tested.  

        We have observed in our study that the level of HIF-1 α in sham operated 

animals was higher than the non-operated naïve animals. This increase in sham 
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operated animals can be due to factors related to surgical stress. One of the studies 

(322) demonstrated that HIF-1 α protein in the myocardium could be induced by 

mechanical stress to the heart. As there is some degree of mechanical/surgical 

stress applied to the sham operated mice we suggest that HIF-1 α levels seen in 

sham groups may be the result of these factors. For these reasons we make sham 

operated group as our control for all time points, and all our statistics were done in 

comparison between MI groups and sham-operated groups to take out the effect of 

mechanical/surgical stress from the real ischemic effect due to ligation of LAD.  

The significant rise of HIF-1 α levels at certain time points in MI groups when 

compared to sham-operated groups is purely due to ischemia and not surgical 

stress. 

3.3.4   Conclusions 

We report for the first time that HIF-1 α is significantly increased at 20 minutes 

following myocardial infarction.   
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Section 4:  HIF-1 α correlates with GAL-1 and 

GAL-3 in Early Myocardial Infarction 
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3.4.1   Background 

3.4.1.1   GAL-1 and HIF-1α 

        GAL-1 has been identified as a hypoxia-induced protein in a number of 

studies (64-66).  Recently, Zhao et al. (67) have demonstrated that HIF- 1 α 

significantly increased GAL-1 expression in messenger RNA and protein levels in 

four colorectal cancer cell lines and it has been proposed that GAL-1 gene is a 

direct target of transcriptional factor HIF-1 α (66, 67). HIF-1 α itself is a 

transcription factor mediating early (160) as well as late responses to myocardial 

ischemia (323).  We tried to establish whether there is any correlation between 

GAL-1 and HIF-1 α in the ischemic myocardium at early post MI time points in 

the murine model of permanent LAD ligation. 

3.4.1.2   GAL-3 and HIF-1 α 

        GAL-3 has been linked to hypoxic/Ischemic injuries in a number of studies 

in the kidneys, and brain (79, 145, 146). We have also shown in our work that 

GAL-3 is expressed in relation to cardiac ischemia very early in the post MI 

period. There is experimental evidence that GAL-3 expression is dependent on 

HIF-1 α activity. It was shown on nucleus pulposus cells that upregulation of HIF-

1α caused an elevation in GAL-3 promoter activity and deletion of HIF-1 caused 

loss of galectin-3 promoter activity. HIF-1 null cells also showed minimal 

expression of GAL- 3. These results support the observation that GAL-3 is an 

HIF-1 transcriptional target and that HIF-1 serves as a major regulator of GAL-3 

expression (324).   



108 
 

We sought to discover whether there was any correlation between GAL-3 and 

HIF-1 α in the ischemic myocardium at early post MI time points in the murine 

model of permanent LAD ligation. 

3.4.2   Results 

3.4.2.1   Co-localization of GAL-1 and HIF-1 α 

        Co-localization of GAL-1 and HIF-1 α cardiomyocytes and endothelial cells 

is shown in Fig. 3.25. All cardiac myocytes that show nuclear expression of HIF-1 

α also express GAL-1 in the cytoplasm and some nuclei. All endothelial cells that 

show nuclear expression of HIF-1 α also express GAL-1 in the cytoplasm and 

some nuclei. GAL-1 expression in cardiomyocytes is confirmed by co-localizing 

it with Desmin (Fig. 3.26 C). GAL-1 and HIF-1 α expression in endothelial cells 

is shown with co-localization with CD31 (Fig. 3.26 F&O, respectively). Few 

tissue histiocytes, which express CD68, also show co-localization with GAL-1 

and HIF-1 α (Fig. 3.26 I& L respectively). In general, few tissue histiocytes are 

noticed during the first 24 hours following MI. 

3.4.2.2   GAL-3 co-localize with HIF-1 α in early post MI 

        GAL-3 and HIF-1 α co-localize in cardiomyocytes and endothelial cells are 

shown in Fig. 3.27 C. All cardiac myocytes that show nuclear expression of HIF-1 

α also express GAL-3 in the cytoplasm and some nuclei and endothelial cells that 

show nuclear expression of HIF-1 α also express GAL-3 in the cytoplasm and 

some nuclei.  GAL-3 expression in cardiomyocytes is shown by co-localizing it 

with Desmin (Fig. 3.27 F).  GAL-3 expression in endothelial cells is shown with 

co-localization with factor-8 related antigen (Fig. 3.27 I).  GAL-3 presence in the 

neutrophil polymorphs is also confirmed by co-localization with lysozyme and 
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Figure 3.25: Co-localization of Galectin-1 and HIF-1 α. A,D,G,J,M, Q show 

representative sections of the left ventricle from areas supplied by LAD in 20 

minutes (low power view), 20 minutes (high power view), 30 minutes, 60 

minutes, 4 hours and 30 minutes (high power view) following MI respectively, 

showing high cytoplasmic expression of galectin-1 by cardiac myocytes (thin 

arrow), Alexa Fluor 488 immunofluorescent technique. B,E,H,K,N,W show 

representative sections of the left ventricle from areas supplied by LAD in 20 

minutes (Low power view), 20 minutes (high power view), 30 minutes, 60 

minutes, 4 hours and 30 minutes (High power view) following MI respectively 

showing high nuclear expression of HIF-1a by cardiac myocytes (thin arrow), 

Rhodamine immunofluorescent technique. C,F,I,L,P,X shows Co-localization of 

galectin-1 and HIF-1 a in the same sections at the respective time points. (arrow 

head), Alexa Fluor-Rhodamine immunofluorescent technique. 
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Figure 3.26:  Co-localization of GAL-1, HIF-1 α, CD31, desmin and CD68. A,D,G, 

Representative section of the left ventricle from areas supplied by LAD showing high 

cytoplasmic expression of galectin-1 by cardiac myocytes, endothelial cells and 

histiocytes respectively (thin arrows). J, showing high cytoplasmic expression of CD68 in 

tissue histiocytes (thin arrows) and M showing high cytoplasmic expression of CD31 in 

endothelial cells (thin arrows). Alexa Fluor 488 immunofluorescent technique. B. 

showing high cytoplasmic expression of desmin by cardiac myocytes (thin arrow), E. 

showing high cytoplasmic expression of CD31 by endothelial cells (thin arrow), H. 

showing high cytoplasmic expression of CD68 by histiocytes (thin arrow), K. showing 

high nuclear expression of HIF-1 a by histiocytes (thin arrow), N. showing high nuclear 

expression of HIF 1 a by endothelial cells (thin arrow), Rhodamine, immunofluorescent 

technique. C. Co-localization of galectin-1 and desmin in cardiac myocytes. F. 

Colocalization of galectin-1 and CD31 in endothelial cells (arrow head), I. Co-

localization of galectin-1 and CD68 in histiocytes (arrow head), L. Colocalization of 

CD68 and HIF-1 a in tissue histiocytes (arrow head), O. Co-localization of CD31 and 

HIF-1 a in endothelial cells (arrow head). Alexa Fluor 488-Rhodamine 

immunofluorescent technique. 
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Figure 3.27:  Co-localization of GAL-3, HIF-1 α, desmin, factor 8 related antigen, lysozyme 

and myeloperoxidase (MPO). A, shows representative section of the left ventricle from areas 

supplied by LAD showing expression of GAL-3 by cardiac myocytes (thick arrows) and 

endothelial cells (arrow heads), Alexa Fluor 488 immunofluorescent labeling. B shows HIF-1 

alpha expression in the nuclei of the same section, Rhodamine immunofluorescent labeling and C 

represents the co-localization of GAL-3 and HIF-1 α. D, shows GAL-3 expression by 

cardiomyocytes (thick arrows) Alexa Fluor 488 –DAPI-immunofluorescent labeling, E shows the 

same section with cytoplasmic expression of desmin, Rhodamine immunofluorescent labeling and 

F shows the co-localization of GAL-3 with desmin in cardiomyocytes (nuclei stained by DAPI). G 

shows GAL-3 expression in the endothelial cells (thin arrows) and cardiomyocytes (arrow head), 

Alexa Fluor 488 immunofluorescent labeling, H shows endothelial cells expressing factor-8 

related antigen (thin arrows) in the same section, Rhodamine immunofluorescent labeling and I, 

shows the colocalization of GAL-3 and factor-8 related antigen in the endothelial cells. J, shows 

lysozyme staining in the neutrophil polymorphs (arrow heads), Alexa Fluor 488 –DAPI-

immunofluorescent labeling, K, shows neutrophil polymorphs expressing GAL-3 (arrow heads)in 

the same section, Rhodamine-DAPI- immunofluorescent labeling, and L shows the double labeling 

of GAL-3 and lysozyme in the neutrophil polymorphs. M , shows myeloperoxidase expression in 

the neutrophil polymorphs (arrow heads), Alexa Fluor 488 –DAPI-immunofluorescent labeling, N, 

shows neutrophil polymorphs expressing GAL-3 (arrow heads)in the same section, Rhodamine-

DAPI- immunofluorescent labeling, and O shows the double labeling of GAL-3 and 

myeloperoxidase in the neutrophil polymorphs. 
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myeloperoxidase (MPO) in the neutrophils (Fig. 3.27, L and O). 

3.4.2.3   Bioinformatic analysis results 

        The output from the clustalw2 program is shown in Fig. 3.32.  We found at 

least 4 potential HREs in the promoter region of Human GAL-1 gene (Fig.3.32, 

A&B) and potential HREs in the promoter region of mouse GAL-1 gene (Fig. 

3.32, C&D). Bioinformatic analysis shows that there are two potential HREs 

(hypoxia response elements) in the promoter region of GAL-3 gene (324).  

3.4.2.4   Proliferation and Apoptosis in Early Post Myocardial Infarction 

        Our staining with Ki-67 showed that there is a low proliferative activity in 20 

minute, 30 minute, 60 minute and 4-hour post MI sections (Fig. 3.29).  However, 

in 24 hour post MI sections we are able to clearly see an increase in the expression 

of Ki-67 in the endothelial cells in the area of infarction (Fig. 3.29 U&V) while 

the relevant sham operated sections show very low expression of Ki-67 (Fig. 3.29 

X). 

        We also found that there is very low expression of caspase-3 and cleaved 

caspase-3 at 30 minutes, 60 min and 4 hours time points (Fig. 3.30 D, E, F). At 24 

hour post MI group, however, we do find an increase in the expression of caspase-

3 and cleaved caspase-3 activity (Fig. 3.30 A, C), compared to the sham group 

(Fig. 3.30 B). The expression of caspase-3 and cleaved caspase-3 was seen  

 

 

 

 

 

 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g015
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g015
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g015
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086994#pone-0086994-g015
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A. 

 

 

B. 

 

Figure  3.28: (A) Pattern of GAL-1 and HIF-1 α  in the heart from 20 min post 

MI till 24 hour post MI time points. (B) Pattern of GAL-3 and HIF-1 α in the heart 

from 20 min post MI till 24 hour post MI time points. 
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Figure 3.29: Ki-67 proliferative activity in the left ventricle.  
 

A, B, C, D, Low Ki-67 proliferative activity in normal left ventricle showing 

nuclear staining of Ki-67 in one interstitial cell (arrow head). E, F, G, 20 minutes 

MI; I,J, K, 30 minutes MI; M,N,O 60 minutes MI; Q,R,S, 4-hour MI, Low Ki-67 

proliferative activity: showing nuclear staining of Ki-67 in few endothelial cells 

(arrow head) in left ventricle. U, V, W, 24-hour MI, high Ki-67 proliferative 

activity showing nuclear staining of Ki-67 in a large number of endothelial cells 

(arrow head) in the infarction area of left ventricle. H, L, P, T, X, showing faint 

nuclear staining of Ki-67 in one endothelial cell in 20 minutes, 30 minutes, 60 

minutes, 4-hours and 24 hour sham-operated left ventricle. A, E, I, M, Q, U are 

stained by Streptavidin-Biotin immunoperoxidase method. The others are stained 

by Alexa Fluor 488 immunofluorescent technique. 
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Figure 3.30:  Apoptotic activity in the left ventricle.  

 

A. showing high expression of caspase- 3 in cardiac myocytes (arrow head) 

surrounding the necrotic area, endothelial cells (thin arrow), and neutrophil 

polymorphs (thick arrow) in 24-hour post MI, Alexa Fluor 488 

immunofluorescent technique. B. showing no expression of caspase 3 in 24-hour 

sham-operated left ventricle. C, showing high expression of cleaved caspase- 3 in 

cardiac myocytes (thick arrows). Many apoptotic bodies (arrow head) are seen in 

the infarcted area of left ventricle, streptavidin- biotin immunoperoxidase method. 

D, showing very low apoptotic activity, only one cell stained with anti-cleaved 

caspase 3 (arrow head) in the area of infraction in the left ventricle of 4-hour post 

MI, streptavidin- biotin immunoperoxidase method. E, F, Showing no staining 

with anti-cleaved caspase 3 in the left ventricle of 30 minutes and 60 minutes post 

MI, streptavidin- biotin immunoperoxidase method 
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Figure 3.31: Bcl2 activity in left ventricle.  

 

A, B, C, D, showing high cytoplasmic expression of bcl2 by cardiac myocytes 

(thick arrow), and endothelial cells (arrow head) at 30 minutes post MI in an area 

supplied by LAD in the left ventricle, streptavidin- biotin immunoperoxidase 

method. E, F, showing very low expression of bcl2 in few endothelial cells (arrow 

head) in the left ventricle of naïve and 30-minutes sham operated heart. 

Streptavidin- biotin immunoperoxidase method. 
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in cardiac myocytes and endothelial cells in the area of infarction. Many apoptotic 

bodies, expressing cleaved caspase-3, are seen in the area of infarction (Fig. 3.30 

C) at 24-hour following MI. 

Bcl-2 expression is increased in the 30 minutes post infarction time in the 

LV in the area of infarction of the left ventricle (Fig. 3.31 A–D). Its expression is 

seen in the cardiomyocytes and endothelial cells.  However, the expression in the 

endothelial cells is considerably greater than the cardiomyocytes. The Sham group 

showed faint staining of bcl-2 and only in the endothelial cells. 

3.4.3   Discussion 

        We have shown co-localization of GAL-1 and HIF-1 α in cardiac myocytes 

and endothelial cells in LV sections from areas supplied by LAD at different time 

points in the first 4 hours following MI. Cardiomyocytes and endothelial cells that 

show nuclear expression of HIF-1 α also show cytoplasmic and nuclear 

expression of GAL-1, while cells that do not express HIF-1 α also show no 

expression of GAL-1, which might indicate a possible correlation in the 

expression of both proteins. 

         In Fig. 3.9 K, L, M, we are able to show co-expression of GAL-1 and HIF-1 

α in surviving cardiomyocytes and endothelial cells at the periphery of infarction 

zone while dead cardiomyocytes in the centre of infarction do not show any 

expression, which might also support a possible correlation between both proteins. 

In the same figure, we are also able to show co-expression of GAL-1 and HIF-1 α 

by neutrophil polymorphs that infiltrate the myocardium following MI to digest 

dead cells and facilitate their removal at a later time by macrophages. Those 

neutrophil polymorphs are moving in between dead cells in the ischemic zone, so 

they are expected to be under hypoxic condition.  Therefore, they are expressing 
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HIF-1 α, as hypoxia can stabilize HIF-1 α and prevent its proteasomal 

degradation. At the same time, we notice those invading neutrophil polymorphs 

are also expressing GAL-1, which might also support a possible correlation. 

In Fig. 3.28 we show the pattern of GAL-1 and HIF-1 α in the heart from 

20 minutes till 24 hours post MI time points. It shows both proteins follow the 

same pattern in the first 24 hours following MI and their co-localization seen by 

immunofluorescent staining further supports our idea that GAL-1 is a possible 

transcriptional target of HIF-1 α in the heart at least in the early period after MI. 

We also found potential HREs in the promoter region of GAL- 1 through 

bioinformatics analysis (Fig. 3.32). This is supported by a previous study (67), 

which also showed that there are seven potential HREs within 2.2 kb region 

upstream the transcriptional start site of GAL-1. We suggest that in our 

experiment, GAL-1 gene transcription by HIF-1 α can lead to increased 

expression of GAL-1 in cardiomyocytes, which might also prove to be 

cardioprotective due to its anti-inflammatory properties (60, 61). As the time of 

ischemia increases, cells in the centre of the infarct loose HIF-1 α and 

consequently GAL-1 while the surrounding surviving cells express high levels of 

HIF-1 α and subsequent GAL-1 to limit damage and prevent further injury  

         We have also shown co-localization of GAL-3 and HIF-1 alpha in 

cardiomyocytes and endothelial cells in the area of infarction in the LV (Fig. 

3.27).  Cardiomyocytes and endothelial cells that show nuclear expression of HIF-

1 α also show cytoplasmic and nuclear expression of GAL-3, while cells that do 

not express HIF-1 α they also show no expression of GAL-3.  This indicates a 

possible correlation also in the expression of both proteins.   
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Recent studies have indicated that GAL-3 expression is dependent on HIF-1 α 

activity. It was shown on nucleus pulposus cells that upregulation of HIF-1α 

caused an elevation in galectin-3 promoter activity and deletion of HIF-1 α caused 

loss of GAL-3 promoter activity (324). HIF-1 α null cells also showed minimal 

expression of GAL-3. These results support the observation that GAL-3 is an 

HIF-1 α transcriptional target and that HIF-1 α serves as a major regulator of 

GAL-3 expression (324).  Bioinformatic analysis shows that there are two 

potential HREs (hypoxia response elements) in the promoter region of GAL-3 

gene (324).  We therefore believe that GAL-3 is a transcriptional target of hypoxia 

induced HIF-1 α in the early post MI heart and that its role in myocardial ischemia 

needs to be elaborated.  

         To further look into the biological role underlying the early expression of 

GAL-1, GAL-3 and HIF-1 α in cardiomyocytes, we looked at the pro-apoptotic 

and anti-apoptotic proteins at these early time points.  Pro-apoptotic caspase-3 and 

cleaved caspase-3 were found to have a very low expression at early time points 

post MI, while in the 24-hour post MI group the expression is increased in the 

area of infarction compared to the sham operated group (Fig. 3.31). Moreover, the 

anti-apoptotic Bcl-2 expression is high at early time points, especially in 30 

minute post MI group, in the area of infarction (Fig. 3.32). Regarding GAL-1, and 

HIF-1 α, we can see that in the early post MI time points there is predominantly 

antiapoptotic activity in the left ventricle which correlates with the high tissue 

GAL-1 and HIF-1 α levels at that time. While in 24-hour post MI time point we 

have high apoptotic activity which correlates with low tissue levels of GAL-1 and 

HIF-1 alpha at that time. This further supports our concept that GAL-1 and HIF-1 
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alpha are part of the prosurvival mode of action of the cell after ischemic insult at 

least in the early myocardial infarction time. 

         Gal-3 is shown to regulate survival in some tissues (98) but how Gal-3 

regulates survival in cardiomyocytes still remains to be determined.  One way of 

mediating its pro-survival effects is through its role in apoptosis. The first 

molecule in the cytosol identified as a GAL-3 ligand in vivo was Bcl-2, a 

molecule involved in regulation of apoptosis (93). We have shown earlier (325) 

that the anti-apoptotic Bcl-2 expression is high at early time points, especially in 

30 minute post MI group, in the area of infarction which points towards an anti-

apoptotic role of GAL-3 in early MI. We have shown that in the early post MI 

time points the total caspase-3 activity and Cleaved caspase-3 activity is low (325) 

so we can conclude that  there is predominantly antiapoptotic activity in the left 

ventricle which correlates with the high tissue GAL-3 levels at that time.   

Given the upregulation of GAL-3 in the myocardium very early after MI 

and its correlation with HIF-1 α and anti-apoptotic proteins we believe that it may 

be part of a pro-survival mechanism of the myocardium to deal with the 

ischemic/hypoxic insult which can possibly be a part of the prosurvival gene 

expression profile transcribed by HIF-1 α.   

        Although a contributory role for GAL-3 in the pathophysiology of heart 

failure is already defined, we believe that GAL-3 at early time point post MI 

works to sustain the myocardium against the initial injury.  Further studies need to 

be conducted for proper assessment of GAL-3 in cardiovascular disease especially 

after myocardial infarction to see when GAL-3 becomes responsible for the onset 

and progression of cardiac fibrosis and reduced ventricular function (144). 
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Figure 3.32: Potential HREs in the promoter region of GAL-1 gene. 

  

A, Human GAL-1 promoter with consensus sequence ACGTG (-1075). B, Human 

GAL-1 promoter with consensus sequence CACGC (2519, 2533, 2935). C, Mouse 

GAL-1 promoter with consensus sequence NCGTG (2978). D, Mouse GAL-1 

promoter with consensus sequence TGCAC (2640). 

 

 

        We found that in the early post MI time there is low proliferative activity in 

the LV (Fig. 3.29), so we are unable to comment on any proliferative role of 

GAL-1, GAL-3 and HIF-1 α at these time points. While in 24-hour post MI group, 

where we have a very high level of GAL-3, we noticed an increase in the 

proliferative activity of endothelial cells around the area of infarction (Fig.3.29, 

U&V) when compared with the sham-operated group, as part of the attempts to 

increase vascularity in the ischemic area to overcome low perfusion as well as 

participating in the healing process (326). 

3.4.4   Conclusion 

        We show for the first time that GAL-1 and GAL-3 levels in the LV are 

increased in early ischemic period which can possibly be a part of the prosurvival 

gene expression profile transcribed by HIF-1 α.  

 
 



122 
 

 

 

 

 

 

 

 

Section 5: Galectin-3 is an antiapoptotic and 

proinflammatory mediator at 24 hours post 

myocardial infarction 
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3.5.1   Background 

        Galectin-3 (GAL-3) has been associated with heart failure (HF) in recent 

years (144). Increased levels of GAL-3 were related to recurrent HF and increased 

risk of death in a number of studies (139-142).  GAL-3 was found to be up-

regulated in animal models of HF even before the development of HF (136) which 

makes it very interesting to determine what happens in the heart when GAL-3 

levels are high after myocardial infarction and before the development of HF 

symptoms and signs. 

        Myocardial Ischemia/Infarction is a complex process involving different 

mechanisms and pathways culminating in cardiac structural and  contractile 

dysfunction (327). It is closely associated with an inflammatory reaction, which is 

necessary for  healing and scar  formation (328). Experimental and clinical studies 

have shown that the inflammatory response to myocardial infarction is associated 

with the induction of cytokines such as tumor necrosis factor (TNF)-α, interleukin 

(IL)-1β, and IL-6 (329-331). 

        Apoptosis in addition to necrosis is a mechanism which mediates cardiac 

myocyte death during ischemic injury (253, 332-336). Hypoxia was shown to be 

the proximate stimulus for myocyte apoptosis (337) and alone was able to induce 

apoptosis in primary cultures of neonatal and adult cardiac myocytes (338). 

Apoptosis is a highly regulated process in which several regulatory proteins 

participate.  It is the balance between these regulatory proteins that decides the 

fate of the cell. Bax, bcl-2, Caspase-3, and cytochrome c are some of these 

proteins related to apoptosis that have been studied in myocardial infarction (339). 

Inflammation and apoptosis play a crucial role in MI and the question whether 

these processes affect cardiomyocyte loss is extremely important.  There are 
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potential ways to inhibit inflammation and apoptosis and such inhibition can 

result in reduction in infarct size and improved myocardial function. To tackle 

these interrelated issues, it is first necessary to identify key regulatory molecules 

that mediate these two mechanisms. 

        GAL-3 is involved in many processes during the acute inflammatory 

response.  In addition to being highly expressed and secreted by macrophages 

(123), it causes neutrophil activation and adhesion (124), chemoattraction of 

monocytes or  macrophages (77) and activation of mast cells (125).  Intracellular 

GAL-3 is also shown to promote the survival of inflammatory cells resulting in 

persistence of inflammation (76). 

        Regarding the role of GAL-3 in apoptosis, there is evidence that GAL-3 

contains the anti-death Asp-Trp-Gly-Arg (NWGR) motif (7, 13) which is critical 

for its antiapoptotic function.  The anti-apoptotic activity of GAL-3 was also 

demonstrated in peritoneal macrophages when those from galectin-3-deficient 

mice were more sensitive to apoptotic stimuli than those from control mice (75). 

GAL-3 protects cells against apoptosis by working through different mechanisms 

which suggest that GAL-3 regulates the common apoptosis commitment step. 

        As our previous results show substantial increase in the GAL-3 levels in the 

cardiomyocytes, endothelial cells and neutrophil polymorphs in the heart as well 

as plasma at 24 hours post MI time point, we tried to investigate if this high GAL-

3 at 24 hours post MI time has any role in inflammation and apoptosis in the 

heart.  We used male C57BL6 mice and GAL-3 KO mice with the same 

background strain to look for inflammatory and apoptotic markers in 24 hour post 

myocardial infarction heart samples. 
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3.5.2   Results 

3.5.2.1   GAL-3 is a proinflammatory mediator at 24 hour post MI time 

        IL-6 levels were significantly higher in the LV of GAL-3 wild type mice at 

24-hour post MI time point as compared to GAL-3 KO mice (98.91 ± 11.26 vs 

67.39 ± 8.84 pg/mg, p=0.05) as measured by ELISA (Fig. 3.34 A) .  This was also 

reflected in the plasma where GAL-3 wild type plasma levels were higher than 

GAL-3 KO plasma (Fig. 3.34 C) (Table. 3.9)  IL-1β in the LV tissue also showed 

higher values in the GAL-3 wild type compared to GAL-3 KO (53.38 ± 7.66 vs 

40.85 ± 5.99 pg/mg, p=0.21) but did not reach statistical significance (Fig. 3.34 

B).  We also did immunohistochemical staining of 24 hour MI sections with 

myeloperoxidase (MPO). MPO is an indicator of neutrophil polymorphs (PMN) 

presence in tissues and is very important during inflammatory processes, so we 

used MPO as an inflammatory marker (340).  24 hour MI heart sections are 

visibly full of PMNs as part of the acute inflammatory response following MI.  

Both GAL-3 wild type and GAL-3 KO LV sections showed neutrophils 

expressing MPO. We observed no significant difference in the MPO expression or 

the number of neutrophil polymorphs between the GAL-3 wild type and GAL-KO 

heart sections (Fig. 3.35). 
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 A. 

 

 B. 

 

Figure 3.33:  (A) left ventricular GAL-3 concentrations at 24 hours post 

myocardial infarction with corresponding sham operated groups in wild type 

C57BL6 and GAL-3 KO mouse heart. (B) Plasma GAL-3 levels in the same 

groups (*shows p<0.05). 
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   B. 

  

   C. 

 

Figure 3.34:  (A) left ventricular IL-6 (B) IL1β concentrations at 24 hours post 

myocardial infarction in wild type C57BL6 and GAL-3 KO mouse heart and (C) 

Plasma IL-6 levels in the same groups (*shows p<0.05). 
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Table 3.9.  IL-6 and IL-1β levels in pg/mg of total protein in LV of wild type and 

GAL-3 KO mice at 24-hour post MI.  

Inflammatory markers 

in the Heart 

Mean Wild type± 

S.E pg/mg 

Mean GAL-3 

KO± S.E pg/mg 
p value 

IL-6 98.91 ± 11.26 67.39 ±  8.84 0.05* 

IL-1β 53.38 ± 7.66 40.85 ± 5.99 0.21 

* Denotes p < 0.05, S.E = Standard error of mean 

 

 

 

 

Figure 3.35: This figure shows myeloperoxidase (MPO) expression in the 

neutrophil polymorphs at the site of infarction in the heart sections of GAL-3 wild 

type (A,B,C) and GAL-3 KO (D,E,F) groups.  Arrow heads show neutrophil 

polymorphs expressing MPO. Streptavidin- biotin immunoperoxidase method (A, 

B, D, E) and Alexa Fluor 488 immunofluorescent technique (C, F). 
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3.5.2.2   GAL-3 has an anti-apoptotic role at 24 hour post MI time 

        Cleaved Capase-3 activity was measured by ELISA in the tissue homogenate 

of LV of 24 hour post MI hearts in the wild type and GAL-3 KO mice.  Our 

results show that Cleaved Caspase-3 is significantly raised in the KO group as 

compared to the wild type (2257.64 ± 75.99 vs 1600.49 ± 89.45 pg/mg, *p=0.00) 

(Figure 3.36 B). Immunohistochemical staining of the heart tissue sections 

showed a granular cytoplasmic and nuclear expression of cleaved caspase-3 in 

apoptotic cells in the area of infarction in both the GAL-3 wild type and GAL-3 

KO groups.  The number of apoptotic cells that express Cleaved Caspase-3 in the 

GAL-3KO group was significantly higher than the wild type group (Fig. 3.37).   

Immunohistochemical staining of other players of apoptosis was also 

carried out.  The expression of cytochrome c was cytoplasmic mainly seen in the 

cardiomyocytes but endothelial cells and neutrophil polymorphs also stained 

positive.  We found increased intensity of expression of cytochrome c at 24 hour 

KO MI group as compared to sham.  The number of cardiomyocytes expressing 

cytochrome c was also higher in the GAL-3 KO group than GAL-3 wild type 

group (Fig. 3.37).   

Bcl-2 was expressed by cardiac myocytes and endothelial cells in the area 

of infarction in GAL-3 wild type mice. While in GAL-3 KO group there was no 

expression of Bcl2 in the area of infarction (Fig. 3.37). 

24 hour post MI time is associated with high proliferative activity in the 

myocardium so we stained our sections with cyclin D1 to see if raised GAL-3 

levels have any relation to the proliferative activity in the heart.  Cyclin D1 

showed characteristic nuclear expression mainly in the endothelial cells 

concentrated in the area of infarction. Some Neutrophils also stained positive for  
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   B. 

.  

 C. 

 

.  

Figure 3.36: (A) Plasma concentrations of Troponin I at 24 hours post myocardial 

infarction with corresponding sham operated groups in wild type C57BL6 and 

GAL-3 KO mouse heart.  (B) left ventricular Cleaved Caspse-3 and (C) Total 

Akt-1 concentrations at 24 hours post myocardial infarction in wild type C57BL6 

and GAL-3 KO mouse heart (*shows p<0.05). 
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Figure 3.37: Apoptotic markers in myocardial infarction 

 

A&B represents low power view of heart sections showing higher expression of 

cytochrome c in GAL-3 KO MI (B) than GAL-3 wild type MI (A). C&D show 

high power view of GAL-3 wild type (C) and GAL-3 KO MI heart section (D) 

expressing cytochrome c in the cytoplasm of cardiomyocytes.  The intensity and 

extent of staining in KO group is higher than the wild type, Streptavidin-biotin 

immunoperoxidase method. 

E&F represents low power view of heart sections expressing bcl2 in GAL-3 wild 

type MI (E) and GAL-3 KO MI (F) groups. G&H are the high power views of 

these sections showing increase in bcl2 immunostaining in the wild type group 

(G) compared to GAL-3 KO (H) group, Streptavidin-biotin immunoperoxidase 

method. 

I&J represent heart sections from the GAL-3 -wild type MI group showing 

cleaved caspase-3 expression in apoptotic cells (arrow head)in the area of 

infarction.  K&L represent heart sections from GAL-3 KO MI group showing 

increase in the number of apoptotic cells expressing cleaved caspase-3 (arrow 

head). 
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cyclin D1.  We found no significant difference in the number of cells stained or 

the intensity of expression between GAL-3 wild type and GAL-3 KO post MI 

groups (Fig. 3.38).  Total Akt-1 was measured in LV tissue homogenates by 

ELISA and heart sections stained for phospho-Akt showed no significant 

differences between the GAL-3 wild type and GAL-3 KO groups (Fig. 3.36 C). 

3.5.2.3   GAL-3 and Oxidative stress 

        Superoxide dismutase (SOD) and Total Glutathione were measured in the 

LV homogenate and found to be not significantly different between Wild type MI 

and GAL-3 KO groups (Fig. 3.39). 

3.5.2.4   GAL-3 and Troponin I 

        There was no significant difference between the plasma troponin I values 

between the 24-hour post MI GAL-3 wild type and GAL-3 KO groups.  Both of 

the groups show clear rise of Troponin I as compared to corresponding shams but 

fail to show any differences between the GAL-3 KO and GAL-3 wild type (Fig. 

3.36 A). 

3.5.3   Discussion 

        The functions of GAL-3 are diverse depending upon its localization within 

the tissue. It may be extracellular, cytoplasmic or nuclear (107, 108, 110, 111).  

To understand the precise function of GAL-3 in regulating different biological 

functions requires that specific in vivo model systems be used (341).  Our model 

is a murine model of MI where the LV has undergone infarction and the LV as a 

whole is used to look for changes that may have occurred in wild type and GAL-3 

KO hearts. 
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Figure 3.38:  A represents cyclin D1 expression in the heart section for GAL-3 

wild type MI group showing a characteristic nuclear expression (arrow heads) in 

the cardiomyocytes.  B show the heart sections from the GAL-3 wild type sham 

operated group clearly showing a decrease in number of cardiomyocytes 

expressing cyclin D1.  C&D represent the GAL-3 KO MI and GAL-3 KO sham 

heart sections respectively showing increased number of cardiomyocytes 

expressing cyclin D1 in MI as compared to the sham group.  No difference was 

observed in the GAL-3 wild type MI and GAL-3 KO MI heart sections. 
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    B. 

 

 

 

 

Figure 3.39: (A) SOD % inhibition activity and (B) total Glutathione levels in the 

LV at 24 hours post myocardial infarction with corresponding sham operated 

groups in wild type C57BL6 and GAL-3 KO mouse heart. 
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        Previously we have shown that after 24 hours of permanent ligation of LAD, 

the LV tissue of wild type mice showed a significant increase in GAL-3 level in 

MI group when compared with corresponding sham group and that it was being 

produced by cardiomyocytes, endothelial cells and neutrophils. This significant 

increase prompted us to investigate the role of GAL-3 in relation to inflammation 

and apoptosis in the heart.   

        Our results here show that IL-6 levels were significantly higher in the GAL-3 

wild type mice as compared to GAL-3 KO after 24 hours of permanent ligation of 

LAD.  Plasma IL-6 also showed the same pattern of increase as the LV tissue.  

This means that GAL-3 plays a role in the regulation of IL-6 production in the LV 

of the heart 24 hours post MI. This was previously seen in breast cancer cells 

where upregulation of IL-6 involved activation of the  Ras/MEK/ERK pathway 

which was activated by GAL-3 (96). IL-6 role in ischemia and hypoxia is well 

established.  Studies have shown that IL-6 is produced by cultured neonatal 

cardiac myocytes in response to hypoxic stress (342) and by cardiac myocytes in 

vitro and in vivo in response to ischemia (343).  IL-6 plasma levels have also been 

shown to be elevated in acute MI after short periods of coronary occlusion (343). 

Here we report that in the Heart LV the high GAL-3 levels regulate IL-6 

production and so point towards its proinflammatory role in MI.  Our results did 

not show any difference in the LV IL-1β levels between GAL-3 wild type and 

GAL-3 KO mice suggesting that GAL-3 has no regulatory effect on IL-1β at 24 

hours post MI time point.  Our immunohistochemical staining of neutrophils with 

MPO in the 24 hour post MI heart sections also showed no significant differences 

between the number of neutrophil polymorphs between GAL-3 wild type and 

GAL-3KO.  Also the expression of MPO was not different between the two 
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groups.  A previous study has shown that GAL-3 can directly activate both mouse 

and human neutrophils (127). GAL-3 KO mice were also shown to produce a 

reduced inflammatory response after the induction of peritonitis (76) implying 

that intracellular GAL-3 promoted the survival of inflammatory cells resulting in 

the prolongation of inflammation  (76).  Our model did not demonstrate any 

difference in the neutrophils number or activity between GAL-3 wild type and KO 

groups which may be due to the difference in the mechanism of disease studied.  

Here we are studying the infarcted myocardium which may behave in a 

completely different way than peritonitis, for example. In the immune system, 

GAL-3 displays both pro- and anti-inflammatory roles depending on the target 

cell type, whether GAL-3 is acting exogenously or endogenously, its expression 

level and other inflammatory factors (76).  We report here that at 24- hour post MI 

time GAL-3 has a predominant proinflammatory role in the myocardium.   

        Regarding the role of apoptosis in MI, we know that there are two major 

apoptotic pathways namely intrinsic and extrinsic pathway.  Intrinsic apoptotic 

signaling causes cytochrome c release from the mitochondria. Cytochrome c in 

the cytosol initiates the formation of “apoptosome,” which consists of cytochrome 

c, caspase adaptor proteins such as Apaf-1, and caspases (344-346) and results in 

caspase activation, a commitment step for apoptosis induction. Extrinsic apoptotic 

signals are mediated by cell-surface death receptors, including tumor necrosis 

factor, Fas and TRAIL receptor families. The death domains of the death receptor 

form the “death-inducing signaling complex,” where caspases are activated.   

GAL-3 has been found to be critically involved in apoptosis depending on its 

subcellular localization. Intracellular GAL-3 can inhibit apoptosis (93) whereas 

extracellular GAL-3 induces apoptosis (90). Our results show that proapoptotic 
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protein like Cleaved caspase-3 and Cytochrome c are significantly high in GAL-3 

KO group as compared to GAL-3 wild type.  We checked anti apoptotic Bcl-2 and 

found that its expression is considerably reduced in GAL-3 KO compared to 

GAL-3 wild type.  Our results suggest that at 24 hour post MI time, GAL-3 is 

controlling the apoptotic pathway by negatively regulating the proapoptotic 

proteins and increasing the anti-apoptotic bcl-2.  Studies have shown that in 

ischemia induced apoptosis in rats there was a decrease in bcl-2 protein values and 

an increase in the expression of Bax (336).  It has already been shown by us that 

the level of proapoptotic proteins was significantly higher in MI group compared 

to sham.  We also know that GAL-3 translocates to the perinuclear membrane 

following apoptotic stimuli (133) (134). It is enriched in the mitochondria and 

prevents mitochondrial damage and cytochrome c release.  Caspase-3 is a critical 

downstream protease in the apoptotic cascade (347, 348).  In this study we show 

that at 24 hour post MI time GAL-3 is acting as an antiapoptotic molecule which 

is evident by higher expression of bcl2 in GAL-3 wild type mice when compared 

with GAL-3 KO mice as well as a lower expression of Cytochrome c in GAL-3 

wild type mice than GAL-3 KO mice.   This leads to a lower number of apoptotic 

cells in GAL-3 wild type mice than GAL-3 KO mice.  Knocking out GAL-3 gene 

leads to increase in cleaved caspase -3 activity and apoptotic cells in the area of 

infarction. 

        To investigate if anti apoptotic activity of GAL-3 is associated with its ability 

to activate Akt signaling, we checked total Akt-1 levels in LV tissue 

homogenates.  Akt is an anti-apoptotic protein, activated by phospholipid products 

of phosphatidylinositol 3-kinase (PI3K) and is a downstream target of PI3K in cell 

survival signaling (349).  We found higher levels of Total Akt-1 in the GAL-3 
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wild type group compared to the GAL-3KO group but the trend did not reach 

statistical significance. Thus it is not clear if the anti apoptotic role of GAL-3 at 

24 hours post MI time is due to Akt activation. PI3K/AKT pathway can be 

activated by multiple factors and there are many players that are working at the 

same time in the infarcted myocardium of the heart, GAL-3 being one of them. 

        We also stained our heart sections for cyclin D1 to see if GAL-3 has any 

effect on the proliferative activity of 24-hour post MI myocardium.  GAL-3  has 

been shown to activate cyclin D1 which is important for cardiac fibroblast 

proliferation leading to myocardial fibrosis and heart failure (92).  Nuclear GAL-3 

expression may cause these effects through enhanced cyclin D1 promoter activity 

(24). Although cyclin D1 activity was seen to be significantly increased in MI 

groups as compared to sham operated animals we found no differences between 

GAL-3 wild type and GAL-3 KO groups suggesting that at this time point post MI 

GAL-3 does not affect the proliferation of cardiac fibroblast. 

        Our study demonstrates here that at 24 hours after the infarction the high 

GAL-3 levels in the myocardium are mediating a proinflammatory and anti 

apoptotic environment that may shape the future course of the disease.  

Inflammation will cause healing and scarring which if excessive can  lead to 

adverse cardiac remodeling progressing to heart failure (350).  Anti apoptotic 

mechanism in cardiomyocytes on the one hand may be beneficial as it may protect 

the cardiomyocytes against death and prevent myocyte loss though on the other 

hand may prove to be deleterious.  The rescued cardiomyocytes may not remain 

functional or may undergo necrosis later or maybe apoptosis is a mechanism by 

which the heart limits the extent of a more destructive process of necrosis with its 

accompanying inflammation (337).  In addition, inhibition of apoptosis in the 
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neutrophil polymorphs can prolong its stay in the infarcted myocardium 

potentiating the effect of inflammation and destruction (127).   Apoptosis can 

therefore be considered a double edged sword which can work in either way.  

Considering the Troponin I levels in the plasma of GAL-3 wild type and GAL-3 

KO mice we found that the levels were not significantly different in the two 

groups.  Troponin I can be taken as a marker of cardiomyocyte necrosis (351, 

352) and can be indirectly linked to the infarct size necrosis (351, 352).  We can 

suggest from this result that GAL-3 may have no effect on infarct size. The level 

of oxidative stress was also not significantly different between the two groups. 

        Lieberthal et al. showed that the severity and duration of ATP depletion 

determines the mechanism of death (353).  ATP concentration below a certain 

threshold become necrotic, whereas an ATP value above that threshold induces 

apoptosis (353)  

        At 24-hour post infarction time the predominant form of cell injury is 

necrosis. Ischemia/ infarction in cardiomyocytes results in metabolic inhibition 

with ATP depletion and favors necrotic cell death, whereas metabolic inhibition 

under ATP replenishing conditions, which happens with ischemia/reperfusion, 

increases the proportion of apoptotic cells (353, 354).  The predominant mode of 

cell death here in our model is cardiac myocytes coagulative necrosis and so it is 

very likely that GAL-3 role in apoptosis is not very prominent at 24 hour 

permanent ligation model. 

        Our previous experimental results have shown that GAL-3 expressed very 

early after MI may be part of the survival mechanism of the cardiomyocytes after 

ischemia or infarction.  Along the same continuum, other studies have linked 

GAL-3 to fibrosis and heart failure (138). We, therefore, propose that GAL-3 
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should be viewed as regulatory molecule acting in the myocardium at various 

stages of myocardial infarction.  

3.5.4   Conclusion 

In conclusion we showed in our study that after 24-hour of permanent 

ligation of LAD GAL-3 levels are high which regulate proinflammatory and 

antiapoptotic mechanisms in the myocardium that will shape the future course of 

the disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



141 
 

 

 

 

 

 

 

 

 

Section 6:  Galectin-3 reduces myocardial 

damage in Ischemia/Reperfusion injury 
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3.6.1   Background 

        Early and successful myocardial reperfusion after an acute myocardial 

infarction is the most effective strategy for salvaging the myocardium and 

improving the clinical outcome. This process of restoring blood flow to the 

ischemic myocardium can, however, induce myocardial reperfusion injury and 

can paradoxically reduce the beneficial effects of myocardial reperfusion. The 

injury results in the death of cardiac myocytes that were viable immediately 

before myocardial reperfusion (8).  This is the reason that despite optimal 

myocardial reperfusion, the rate of death after an acute myocardial infarction 

approaches 10% (355), and the incidence of cardiac failure after an acute 

myocardial infarction is almost 25%. 

        Reperfusion injury can cause four types of cardiac dysfunctions.  The first 

type is myocardial stunning, when despite restoration of coronary flow, the 

myocardium shows mechanical dysfunction (356).  The second type is the no-

reflow phenomenon,  when there is a failure to reperfuse an ischemic area (258, 

259). The third type is the reperfusion arrhythmia (357) and the last type is lethal 

reperfusion injury.  The concept of this unique type of injury was first introduced 

when researchers noticed (358) that a large fraction of cellular enzymes were 

released not during hypoxia, but on sudden reoxygenation (358) emphasizing the 

point that  reoxygenation of ischemic myocardium generates a degree of 

myocardial injury that greatly exceeds the injury induced by ischemia alone (358). 

        Experimental studies have shown that the reperfusion of ischemic 

myocardium generates oxidative stress (359).  The generations of reactive oxygen 

species (ROS) act as the central mediators of ischemia-reperfusion injury. These 

species can initiate spontaneous, and self-propagating radical reactions with 
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biomolecules that can impair myocardial function by activating intracellular 

proteolytic enzymes and induce cell death by initiating mitochondrial permeability 

transition (264).  O2
•−

 is the parent radical involved in reperfusion (360, 361).  

This  was earlier shown as part of ROS generation in an intact dog model (362). 

Most cells including cardiomyocytes contain enzymatic antioxidant defense 

mechanisms that quickly convert ROS to water. These antioxidant systems 

include superoxide dismutase, catalase, and the glutathione redox system (363). 

Superoxide dismutase (SOD) is one of the most important antioxidant 

enzymes, which can be either reduced or oxidized to convert O2 •− to O2 and 

H2O2(285) (21). H2O2 is then converted to water by catalase (286) or by the 

glutathione peroxidase system (287). Experiments using isolated heart models in 

the presence or absence of superoxide dismutase also showed ROS as likely 

mediators of reperfusion injury (289, 290). The effectiveness of GSH as an 

antioxidant is a result of its ability to remove hydrogen peroxide, a reaction 

catalyzed by GSH peroxidase.  The oxidized glutathione (GSSG) is reduced back 

to GSH by GSH reductase.  Glutathione is an important antioxidant  (291) and 

plays an important role in protecting the ischemic myocardium against reperfusion 

injury (292). Catalase also provides significant antioxidant protection to the 

myocardium against ischemia reperfusion (297, 298).   

        So far we know that GAL-3 is closely associated with myocardial infarction 

in the early post MI time point and later with myocardial fibrosis and heart failure.  

We want to further investigate its role in ischemia-reperfusion injuries as this 

phenomenon is extremely relevant to the early intervention after acute MI and will 

open a door to look at this molecule from a new perspective. We have used a 
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murine model of Ischemia-reperfusion in the heart where a period of 30 min 

ischemia was followed by 24 hours of reperfusion. 

3.6.2   Results 

3.6.2.1   GAL-3 is increased after Ischemia-reperfusion injury in the heart 

        GAL-3 levels were significantly higher in the LV of GAL-3 wild type mice 

at 30 min ischemia and 24 hour post reperfusion time point as compared to sham 

operated mice (7861.99± 768.82 vs 4784.59 ± 273.49 pg/mg, p=0.00) as 

measured by ELISA (Fig. 3.40 A).  Our immunohistochemistry results also show 

significantly increased expression of GAL-3 in the heart section of IR group as 

compared to sham operated animals (Fig. 3.41). 

3.6.2.2   GAL-3 decreases myocardial injury in IR model 

        To assess the extent of myocardial injury we checked plasma Troponin I 

levels in GAL-3 Wild type IR group and GAL-3 KO IR group.  The results show 

that Troponin I levels were significantly increased in the plasma of GAL-3 KO IR 

group as compared to the GAL-3 Wild type IR group (8.97 ± 1.38 vs 3.73  ± 1.17 

ng/ml, p=0.012) (Fig. 3.40 B). 

3.6.2.3   GAL-3 and oxidative stress in IR 

        To assess the effect of GAL-3 on the oxidative stress we measured the status 

of the anti oxidant enzymes SOD and Total Glutathione in the LV tissue protein 

extract in the GAL-3 wild type IR group and GAL-3 KO IR group.  Total 

glutathione levels were significantly raised in the GAL-3 wild type IR group (Fig. 

3.42 A) compared to the GAL-3 KO IR group (5.77 ± 0.51 vs 3.13 ± 0.32 nmoles/ 

mg protein, p=0.001).   
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   A. 

 

   B. 

 

Figure 3.40:  (A) left ventricular GAL-3 concentrations in the wild type C57BL6 

IR group and GAL-3 KO IR group with their corresponding shams. (B) Plasma 

troponin I levels in the same groups (*shows p<0.05). 
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Figure 3.41:  A&B represents low power view of heart sections showing GAL-3 

expression in IR group (A) as compared to Sham operated control group (B).   

Expression is seen as more intense staining in the LV area supplied by LAD 

(arrow heads) as well as right ventricular wall (thin arrow) (A). C&D show high 

power view of IR (C) and sham heart section (D) expressing GAL-3 in the 

cytoplasm of cardiomyocytes (arrow head) and nuclei (thin arrow) (C). The 

intensity and number of positive staining in IR group is higher than the Sham. 

Streptavidin- biotin immunoperoxidase method. 
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    A. 

 

    B. 

 

Figure 3.42: (A) left ventricular Total GSH concentrations in the wild type 

C57BL6 IR group and GAL-3 KO IR group. (B) left ventricular SOD inhibition 

activity in the same groups (*shows p<0.05). 
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Figure 3.43 :  A&B represent a low power view of heart sections showing a significantly 

increased expression of catalase (thin arrows) in the area supplied by the LAD in GAL-3 wild type 

IR group (A) as compared to the GAL-3 KO IR (B) group, Alexa Fluor 488 immunofluorescent 

labeling.  C&D represent high power view of heart section showing cardiomyocytes (thin arrows) 

and inflammatory cells (arrow heads) expressing catalase in GAL-3 wild type IR group (C).  GAL-

3KO IR group shows comparatively fewer cardiomyocytes expressing catalase and mainly 

expressed by inflammatory cells (arrow heads), Alexa Fluor 488 immunofluorescent labeling. 

E, shows a high power view of GAL-3 wild type IR group showing catalase expression by 

cardiomyocytes (arrow heads), inflammatory cells (thin arrows). Some neutrophil polymorphs are 

surrounding a dead cardiomyocyte (thick arrow).  F, represents a corresponding high power view 

of heart section from the GAL-3 KO IR group with visibly lower catalase expression in 

cardiomyocytes (thick arrow) and mainly expressed by inflammatory cells (arrow heads). Alexa 

Fluor 488 immunofluorescent labeling.  G&I show the low and high power view of the heart 

section of the GAL-3 wild type IR group expressing catalase as a diffuse cytoplasmic staining in 

cardiomyocytes (arrow heads) and endothelial cells (thick arrow). Streptavidin- biotin 

immunoperoxidase method.  H&J represent low and high power views of the GAL-3 KO IR group 

showing a lower expression of catalase by cardiomyocytes (arrow heads), endothelial cells (thick 

arrow) and inflammatory cells (thin arrows). Streptavidin- biotin immunoperoxidase method. 



149 
 

SOD levels were also significantly raised in the GAL-3 wild type IR group as 

compared to GAL-3 KO IR group (13.5267 ± 1.47122 vs 9.5785 ± 0.75898, 

p=0.041) (Fig. 3.42 B).  Immunohistochemical and immunofluorescent stained 

sections of the LV show increased expression of catalase in GAL-3 wild IR group 

than in GAL-3 KO group (Fig. 3.43). 

3.6.2.4   GAL-3 role is proinflammatory and anti-apoptotic in IR 

        Cleaved Capase-3 activity was measured by ELISA in the tissue homogenate 

of LV of 24 hour post MI hearts in the GAL-3 wild type IR and GAL-3 KO IR 

mice.  Our results show that Cleaved Caspase-3 is significantly raised in the GAL-

3 KO group as compared to the GAL-3 wild type (2367.14 ± 124.99 vs 2001.12 ± 

103.80 pg/mg, *p=0.045) (Fig. 3.44 A).  Immunohistochemical staining of heart 

tissue sections showed a granular cytoplasmic and nuclear expression of cleaved 

caspase-3 in apoptotic cells in the LV, in the area supplied by LAD, in both the 

GAL-3 wild type IR and GAL-3 KO IR groups.  The number of apoptotic cells in 

the GAL-3KO IR group was higher than the GAL-3 wild type IR group (Fig. 

3.45).  The expression of cytochrome c was cytoplasmic mainly seen in the 

cardiomyocytes but endothelial cells and neutrophil polymorphs also stained 

positive.  We found increased intensity of expression of cytochrome c in the LV, 

in the area supplied by LAD, in GAL-3 wild type IR group and GAL-3 KO IR 

group as compared to sham.  The cardiomyocytes expressing cytochrome c was 

also comparatively higher by intensity and number of cells in GAL-3 KO IR 

group than GAL-3 wild type IR group (Fig. 3.45). 

Immunohistochemical staining of Bcl-2 expression in LV sections have 

shown Bcl-2 was expressed by cardiac myocytes and endothelial cells in the LV, 
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    A. 

 

    B.   

 

    C. 

 

Figure 3.44: (A) left ventricular cleaved caspase-3 in the wild type C57BL6 IR 

group and GAL-3 KO IR group. (B) left ventricular IL-6 and (C) IL-1β in the 

same groups (*shows p<0.05). 
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Figure 3.45:  A&B represents low power view of heart sections showing 

cytochrome c expression in GAL-3 wild type IR (A) and GAL-3 KO IR (B) 

groups. C&D show high power view of GAL-3 wild type (C) and GAL-3 KO IR 

heart section expressing cytochrome c in the cytoplasm of cardiomyocytes.  The 

intensity and number of positive staining in KO group is higher than the wild 

type. Streptavidin- biotin immunoperoxidase method.E&F represents low power 

view of heart sections expressing bcl2 in GAL-3 wild type IR (E) and GAL-3 KO 

IR (F) groups. G&H are the high power views of these sections showing increase 

in bcl2 immunostaining in cardiac myocytes (arrow heads) and endothelial cells 

(thin arrows) in the GAL-3 wild type group (G) compared to GAL-3 KO (H) 

group. Streptavidin- biotin immunoperoxidase method. I&J represent high power 

views of heart sections from the GAL-3 wild type MI group showing cleaved 

caspase-3 expression in apoptotic cells (arrow heads) in the area of infarction.  

K&L represent high power views of heart section from the GAL-3 KO MI group 

showing increase in the number of apoptotic cells expressing cleaved caspase-3, 

(arrow heads). Streptavidin- biotin immunoperoxidase method. 
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in the area supplied by LAD, in GAL-3 wild type IR mice and GAL-3 KO IR 

mice. The expression of Bcl2 was comparatively higher by intensity and number 

of cells in GAL-3 wild type mice than in Gal-3 KO mice (Fig. 3.45).  

IL-6 levels were significantly higher in the LV of GAL-3 wild type IR as 

compared to GAL-3 KO IR mice (61.22 ± 7.14 vs 44.45 ± 2.03 pg/mg, p=0.041) 

as measured by ELISA (Fig. 3.44 B).  IL-1β in the LV did not show any 

difference between the wild type IR compared to GAL-3 KO IR (37.3355 ± 

3.68054 vs 38.0934 ± 1.32297 pg/mg) (Fig. 3.44 C)  We also conducted 

immunohistochemical staining of IR sections with myeloperoxidase (MPO). MPO 

is an indicator of neutrophil polymorphs (PMN) presence in tissues and is very 

important during inflammatory processes, so we used MPO as an inflammatory 

marker (340).  IR heart sections are visibly full of PMNs as part of the acute 

inflammatory response.  Both GAL-3 wild type IR and GAL-3 KO IR LV 

sections showed neutrophils expressing MPO.  We observed no significant 

difference in the number of MPO expressing neutrophils in the GAL-3 wild type 

IR as compared to the GAL-KO IR heart sections (Fig. 3.46). 
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Figure 3.46: This figure shows myeloperoxidase (MPO) expression in the 

neutrophil polymorphs at the site of infarction in the heart sections of GAL-3 wild 

type IR (A,C) and GAL-3 KO IR (B,D) groups.  Arrows show expression of MPO 

by neutrophil polymorphs stained by Streptavidin- biotin immunoperoxidase 

method (A, B) and Alexa Fluor 488 immunofluorescent technique (C, D). 
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3.6.3   Discussion 

        Blumgart et al. (364) reported pathologic observations  that extensive 

infarction occurred when coronary occlusion was maintained for 40 minutes or 

longer, while occlusions of 5–20 minutes did not result in infarction. With 

occlusions of intermediate duration, the extent of necrosis depended on the time to 

reperfusion (365).  After 30 minutes of Ischemia followed by 24 hours reperfusion 

we create an environment where ischemic damage is limited to a time when 

irreversible damage starts to occur and 24 hour reperfusion time gives adequate 

time for reperfusion related changes to take place. Our results here show that there 

is significant increase in GAL-3 levels in the heart LV of IR mice as compared to 

sham which signifies that GAL-3 plays a role in the ischemia/reperfusion injury in 

the heart. 

        Most interestingly, we found a significant difference in the plasma levels of 

troponin I between GAL-3 wild type IR and the GAL-3 KO IR mice groups.  We 

found that the troponin I levels were significantly higher in GAL-3 KO group than 

the GAL-3 wild type group depicting that GAL-3 is regulating troponin I levels in 

the IR model.  This observation made us explore the cause of this change.  In MI 

where the predominant injury was myocardial necrosis we failed to find a 

significant difference between troponin I values between GAL-3 wild type and 

GAL-3 KO groups suggesting that GAL-3 has no obvious role in regulating 

cardiomyocytes necrosis in 24 hour permanent ligation model.  In IR, however, 

GAL-3 is decreasing the myocardial injury as shown by lower troponin I levels in 

GAL-3 IR mice. In support of our observation we noticed more anti-apoptotic and 

less pro-apoptotic protein expression in GAL-3 wild IR group than in GAL-3 KO 
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IR group, leading to more apoptotic cells in GAL-3 KO IR group supporting the 

anti apoptotic role of GAL-3 in IR. 

        Oxidative stress plays a major role in causing IR injuries in the heart.  To see 

if GAL-3 in IR causes any change in the level of anti oxidant enzymes to counter 

the oxidative stress we tested the SOD levels and Total Glutathione levels in the 

heart LV and stained the heart sections for catalase. 

        Our results show that both the SOD and Glutathione levels were significantly 

increased in the GAL-3 wild type IR as compared to the GAL-3 KO IR. This 

signifies that GAL-3 is associated with an increase in the anti oxidant activity in 

the IR injured myocardium.   The immunohistochemical and immunofluorescent 

staining results also show higher expression of catalase in GAL-3 wild type IR 

mice than in GAL-3 KO IR mice which also supports an anti-oxidant role of 

GAL-3. 

SOD, Glutathione and catalase are the most important cellular defense mechanism 

against oxidative injury and are the major intracellular redox buffer in ubiquitous 

cell types (366) (367). Accumulating evidence suggests that the intracellular redox 

status regulates various aspects of cellular function (367). 

GAL-3 actions with regards to oxidative stress are variable.  Some studies 

point to its role as an inducer of ROS, but other studies explain its role as a 

molecule that is protective against ROS mediated injuries.  In an ischemia 

reperfusion model in the kidney it was shown that ROS production was more 

prominent in GAL-3 wild type control mice as compared to GAL-3 knockout 

mice (368). Early data have also demonstrated that GAL-3 could stimulate 

superoxide production by neutrophils (126) and by monocytes (123). Thus the 

presence of GAL-3 produces more ROS and more damage.  However, here we 
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found increased anti-oxidant activity in the LV myocardium after IR in 

conjunction with less myocardial damage.  There can be many explanations for 

this phenomenon. The function of antioxidant systems is to modify the highly 

reactive oxygen species to form intermediate which no longer pose a threat to the 

cell.  A balance is essential between oxidation and antioxidant’s level in the 

system for healthy biological integrity to be maintained.  In previous studies,  

ischemia and reperfusion impaired superoxide dismutase activity and decreased 

cellular glutathione-to-glutathione disulfide ratio suggested  that the extent of 

superoxide anion radical  produced at reperfusion exceeded the capacity of 

endogenous cellular antioxidant systems (288).  However, the same oxidative 

stress can lead to increase in the antioxidant capacity and so the increase we 

witness in the antioxidant enzymes may be due to the increase in the oxidative 

stress.  This phenomenon was observed in a study by Bandeira et al. when the 

total SOD activity and the lipid peroxidation were higher in diabetics compared to 

non-diabetics (369).  Another study by Savu et al also showed increase in anti-

oxidant capacity despite high levels of oxidative stress (370). 

        GAL-3 has been reported to interfere with ROS generation (94).  It is 

suggested that GAL-3 might interfere with very early stages of cell death that are 

associated with perturbation of mitochondrial homeostasis and subsequent 

formation of ROS.   Some studies have indicated GAL-3 to be protective in 

ischemia reperfusion injuries.  It was found to be involved in the kidney 

regeneration following ischemia reperfusion injury (371). Also, it was shown to 

play a protective role against liver ischemia reperfusion injury (372).  Thus the 

increase in the anti-oxidant activity linked to GAL-3, observed in the present 

study, may suggest two possibilities. Either it is the result of a possible adaptive 
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response, probably due to the increased production of the oxidative radicals or due 

to the inherent role of GAL-3 in decreasing oxidative stress.  The second 

possibility holds more weight as this anti-oxidant activity is in conjunction with a 

lower cleaved caspase-3 and lower Troponin I level in GAL-3 wild IR group 

when compared with GAL-3 KO group. Our results also point towards a 

proinflammatory and antiapoptotic activity of GAL-3 in the heart after IR injury.  

This is in accordance with our results from MI groups. 

3.6.4   Conclusion 

GAL-3 can interfere with redox pathways controlling cell survival and 

death and plays a protective a role in the pathogenesis of ischemia reperfusion 

injury in the heart. 
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Myocardial Ischemia-Reperfusion: A 
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3.7.1   Background 

 

        Coronary Heart Disease affects the heart due to the detrimental effects of 

acute myocardial infarction (MI) and Ischemia-reperfusion injury (IR).  

Understanding the mechanism underlying these two processes is important as 

these two types of injuries are interrelated as well as different.  Prolonging the 

period of acute myocardial ischemia for more than 20 minutes causes a “wave 

front” of cardiomyocyte death that  begins in the subendocardium and extends 

transmurally  toward the epicardium (242).  This is the reason for why when a 

patient is presented with an acute myocardial infarction, the most effective 

therapeutic intervention is timely myocardial reperfusion using thrombolytic 

therapy or primary percutaneous coronary intervention to salvage the ischemic 

myocardium. The process of reperfusion, the very event critical for survival, can 

itself cause injury to the cardiomyocytes, a phenomenon known as the 

‘reperfusion injury’ (8, 243, 263). 

        During acute myocardial ischemia, the lack of oxygen switches the cell 

metabolism to anaerobic respiration, with lactate accumulation, ATP depletion, 

Na
+ 

and Ca
2+ 

overload and inhibition of myocardial contractile function (246, 

255).  Reperfusion results in reactivation of electron transport chain which 

generates ROS.  ROS induces opening of MPTP, contributing to intracellular Ca
2+

 

overload, lipid peroxidation of cell membrane, and oxidative damage to DNA.  In 

addition there is neutrophil accumulation in response to ROS, cytokines and 

complement. All these processes can independently induce cardiomyocyte death 

of the acutely ischemic myocardium (8, 243, 263).  

        Oxidative stress, apoptosis and inflammation are the most important 

mechanisms that are initiated during ischemia and continue over several hours 
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into reperfusion (255).  Understanding the contribution of these processes to MI 

and IR is essential to look for therapeutic measures that can help reduce the 

myocardial infarct size.  In order to investigate these processes, we compared the 

pathology and the oxidative, apoptotic and inflammatory changes in these two 

models of MI and IR.  Our MI model has permanent LAD ligation for 24 hours 

and our IR model has LAD ligation for 30 minutes followed by reperfusion for 24 

hours.  

3.7.2   Results 

3.7.2.1   Histological changes in MI and IR models 

        The main histologic change in acute MI at 24-hour time point is coagulative 

necrosis of cardiomyocytes with heavy neutrophil polymorphs infiltration (Fig. 

3.47). The ischemic cardiomyocytes appear eosinophilic with loss the cross 

striation and disappearance of the nuclei.   LV sections studied 24 hours after IR 

injury show necrosis of cardiomyocytes with interstitial edema and accumulation 

of RBCs in the interstitial space with many neutrophil polymorphs infiltration the 

injured myocardium (Figure 3.48). These features are seen both in wild type mice 

and in GAL-3 KO mice (Fig. 3.47, 3.48). 

3.7.2.2   Inflammatory mediators are raised in the MI model 

        IL-6 levels in the LV of the MI group were significantly raised as compared 

to the IR group (98.91 ± 11.26 vs 61.22 ± 7.14 pg/mg, *p=0.013).  Plasma IL-6 

was also significantly increased in the MI group as compared to the IR group 

(465.98 ±167.47 vs 59.68±9.61 pg/ml, *p=0.046) (Fig. 3.49 A&B). 
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Figure 3.47:  A&B represent high power views of wild type MI heart sections 

showing characteristic ischemic cardiomyocytes appearing eosinophilic with loss 

of cross striations (thin arrow) and neutrophil polymorphs (arrow heads) flooding 

the infarcted area.  C&D show the corresponding heart sections from GAL-3 KO 

MI group showing the same changes as stated above. H&E staining method. 
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Figure 3.48: A&B represent high power views of wild type IR heart sections 

showing injured cardiomyocytes with interstitial edema (thick arrow), RBCs in 

the interstitial spaces (thin arrow) and neutrophil polymorphs infiltration (arrow 

heads).  C&D show the same histological features in the GAL-3 KO IR heart 

sections. 
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    A. 

 

    B. 

 

    C. 

 

Figure 3.49:  (A) left ventricular IL-6 concentrations (B) Plasma IL-6 levels and 

(C) left ventricular IL-1β concentrations in 24 hour MI and IR groups (*shows 

p<0.05). 

 



164 
 

Heart LV IL-1β concentrations were not significantly different between the 

groups (Fig. 3.49 C).  Immunohistochemical staining of the heart section with 

Myeloperoxidase (MPO) showed significant differences between the MI and IR 

groups.  The number of neutrophils as well as the intensity of staining was 

increased in the MI group as compared to the IR group.   

3.7.2.3   Apoptotic markers are raised in the IR model 

Heart LV cleaved caspase-3 levels were significantly increased in the IR 

group as compared to the MI group (2001.12 ±103.80 vs 1600.49 ± 89.44 pg/mg 

protein. *p=0.01) (Fig.  3.50 A) Immunohistochemical staining of the heart 

sections with cleaved caspase-3 also showed more apoptotic cells in the IR group 

as compared to the MI group (Figure 3.51). Cytochrome c was also seen to be 

increased in the heart sections from the IR group as compared to the MI group by 

immunohistochemistry.  The expression is cytoplasmic seen predominantly in 

cardiomyocytes, but endothelial cells and neutrophil polymorphs also stained 

positive for it (Fig. 3.51).  

The anti apoptotic protein Bcl-2 was seen to be expressed by 

cardiomyocytes and endothelial cells.  The expression was higher in the IR 

compared to the MI groups (Fig. 3.51). 

3.7.2.4   Antioxidant enzyme levels in MI and IR models 

        The levels of antioxidant enzymes are not significantly different between the 

MI group and the IR group.  Heart LV Total Glutathione levels was 46.71 ± 9.41 

pg/mg in the MI group as compared to the IR group, which showed 37.34 ± 3.68 

pg/mg.   
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    A. 

 

    B. 

 

Figure 3.50:  (A) left ventricular cleaved caspase-3 concentrations and (B) 

Plasma troponin I levels in 24 hour MI and IR groups (*shows p<0.05). 
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Figure 3.51:  A&B represents low power view of heart sections showing 

cytochrome c expression in MI (A) and IR (B) groups. C&D show high power 

view of MI (C) and IR heart section expressing cytochrome c in the cytoplasm of 

cardiomyocytes.  The intensity and number of positive staining in IR group is 

higher than the MI. Streptavidin- biotin immunoperoxidase method. 

E&F represents low power view of heart sections expressing bcl2 in MI (E) and 

IR (F) groups. G&H are the high power views of these sections showing increase 

in bcl2 immunostaining in cardiac myocytes (arrow heads) and endothelial cells 

(thin arrows) in the IR group (G) compared to MI (H) group. Streptavidin- biotin 

immunoperoxidase method. 

K&L represent high power views of heart sections from the MI group showing 

cleaved caspase-3 expression in apoptotic cells (arrow heads) in the area of 

infarction.  I&J represent high power views of heart section from the IR group 

showing increase in the number of apoptotic cells expressing cleaved caspase-3, 

(arrow heads). Streptavidin- biotin immunoperoxidase method. 
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    A. 

 

    B. 

 

Figure 3.52:  (A) left ventricular Total glutathione concentration and (B) left 

ventricular SOD % inhibition activity in 24 hour MI and IR groups (*shows 

p<0.05). 
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Heart LV SOD inhibition activity was also not different among the MI and IR 

group (11.26 ±2.12 % vs 13.53 ±1.47 %) (Fig. 3.52). 

3.7.2.5   Troponin I is raised in the MI model 

        Troponin I, a marker of cardiomyocytes necrosis is significantly increased in 

the MI group as compared to the IR group (12.58 ± 0.82 vs 3.73 ±1.17 ng/ml, 

*p=0.00) (Fig. 3.50 B). 

3.7.3   Discussion 

        For many years, it was thought that myocardial reperfusion is only beneficial 

and that there was no cell death related to it (243, 251, 252).  Later when 

cardiomyocytes death was seen in the reperfused myocardium, it was postulated 

that they are the already irreversibly damaged cardiomyocytes that were fated to 

die during ischemia (253).  The concept of reperfusion injury was presented when 

it was shown that reperfusion induced death in cardiomyocytes that were viable 

during ischemia (358).  Comparisons between these two types of injuries are still 

continuing till today because of two main reasons.  First, it is almost impossible to 

estimate the effects of reperfusion (254) and second, despite advances in 

antithrombotic, anti-platelet and PCI technologies, there is still no effective way to 

prevent the myocardial reperfusion injury (255). 

Our study attempts to show substantial differences in the local 

microenvironment of the myocardium between these two modes of injury and 

analyze these changes keeping in focus our protein of interest GAL-3. 

        The MI model shows an inflammatory response associated with induction of 

IL-6 in the heart LV as well as plasma.  This model was also associated with an 

increase in the neutrophil polymorphs number in the infarction related 
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myocardium as compared to the reperfused myocardium. Raised troponin I also in 

the MI group shows increased necrosis in this model which is an indirect estimate 

of the infarct size.   The results comparing the MI and IR model show that in MI 

there is increased myocardial damage via ischemic necrosis and inflammatory 

mechanisms.  IR model also shows inflammation but it is unclear whether the 

inflammatory response that accompanies an acute MI contributes to the 

pathogenesis of  myocardial reperfusion injury or whether it is a reaction to the 

acute myocardial injury (373).  

        Our IR model showed enhanced proapoptotic mediators in the myocardium 

as compared to the MI model.  This means that the main mode of cardiomyocyte 

death in IR is apoptosis.  It was shown by Lieberthal et al.  that the severity and 

duration of ATP depletion determines the mechanism of death: cells with an 

intracellular ATP concentration below a certain threshold become necrotic, 

whereas an ATP value above that threshold induces apoptosis (353) (354).  As MI 

model is related to more ATP depletion as compared to IR model where 

reperfusion may replenish the ATP stores, the main mechanism of cell death is 

caspase activated apoptosis in IR model. 

        Perhaps the most interesting observation made in our study is the level of 

antioxidant enzymes measured in the MI and IR models.  We did not find 

significant differences between the groups signifying that the level of antioxidant 

enzymes is approx the same whether the myocardium is subjected to 24 hours of 

permanent ischemia or whether it is subjected to 30 mins of ischemia followed by 

24 hours of reperfusion.  We submit that this observation should be looked at 

from a fresh angle.  There is ample evidence that the level of oxidative stress 

generated in reperfusion injuries is considerably more than mere ischemic injury. 
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In the first few minutes of myocardial reperfusion, a burst of oxidative stress (358, 

374) is produced by a variety of sources. Organelles may begin to produce 

reactive oxygen species.  Myocytes produce both hydrogen peroxide and 

superoxide radicals (375). The electron transport chain of mitochondria is also a 

potential source of free radicals in both the endothelial cell and myocyte (376).  

This detrimental oxidative stress mediates myocardial injury and cardiomyocyte 

death.  The same oxidative stress can lead to increase in the antioxidant capacity 

and so the level of antioxidant enzymes capacity may reflect the oxidative stress 

(369). The level of oxidative stress and subsequent anti oxidant protection in IR is 

dependent on the time of ischemia before reperfusion is initiated and the 

reperfusion time (263, 377, 378).  However,  controversies do exist in this respect 

(379).  Our MI and IR model showing the same level of anti-oxidant capacity may 

be related to the particular ischemia and reperfusion time in our models. 

        We have analyzed our protein of interest GAL-3 in MI model and IR model 

separately in previous chapters and observed that in MI model GAL-3 acts as a 

proinflammatory and anti apoptotic mediator with no effect on the cardiomyocyte 

necrosis.  In the IR model, GAL-3 (in addition to being proinflammatory and 

antiapoptotic mediator) also acts as a regulator of antioxidant activity in the 

myocardium and leads to a decrease in cardiomyocyte necrosis and indirectly 

decreased infarct size.  The difference of GAL-3 activity in these two models as 

seen in our experiments shows that these two processes of cardiomyocyte injury 

are indeed very distinct and the local microenvironment of the myocardium 

determines the particular roles of molecules and enzymes that are part of their 

pathogenesis.  
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A number of investigators have shown that radical scavengers including 

superoxide dismutase and catalase are capable of eliminating the oxidative stress 

radicals thus protecting the reperfused myocardium (366, 380) and limit infarct 

size in experimental models of myocardial infarction.   We believe that in 

ischemia followed by reperfusion there is increased oxidative stress and GAL-3 

through its action in positively regulating the antioxidant players, leads to a 

decrease in cardiomyocytes necrotic death and infarct size.  We also believe that 

as the main mode of death in ischemia reperfusion is apoptosis, GAL-3’s anti 

apoptotic activity may also have contributed to the decrease in cardiomyocyte 

injury. 

3.7.4   Conclusion 

        Our results are significant in terms of IR injuries as the main goal in 

treatment of acute infarction is early revascularization with reperfusion.  

Reperfusion affects a larger portion of the left ventricle than infarction alone (302) 

so reperfusion injury may act as an independent determinate of cardiac 

remodeling in addition to infarct size. GAL-3 is now recognized as a definite 

player in cardiac remodeling and progression to heart failure so understanding the 

local microenvironment in which GAL-3 works after ischemia/infarction or 

ischemia-reperfusion can open a new window in understanding the exact role of 

GAL-3 in the heart. 

 

 

 

 



172 
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4.1   General conclusions 

        Cardiovascular disease is a major cause of disability and premature death 

throughout the world.  Individual cardiovascular procedures are also among the 

most expensive (381) compared to other diseases. Various studies and surveys 

have shown that even developed nations are finding it nearly impossible to
 
meet 

the costs of curative care (382), so prevention and early diagnosis of 

cardiovascular diseases is the keystone of management in this millennium.  There 

is extensive research going on all over the world to fully understand the 

mechanisms and pathways that may contribute to coronary artery disease. 

Myocardial infarction causes injury of the cardiomyocytes resulting in necrosis, 

and subsequent fibrosis and scar formation leading to adverse cardiac remodeling, 

which is the precursor of heart failure.  Early and successful myocardial 

reperfusion is the most effective strategy for salvaging the myocardium and 

improving the clinical outcome. Reperfusion itself can paradoxically cause injury 

to the myocardium and reduce the beneficial effects of myocardial reperfusion. 

Despite optimal myocardial reperfusion, the rate of death after an acute 

myocardial infarction approaches 10% (355), and the incidence of cardiac failure 

after an acute myocardial infarction is almost 25%. 

         In this thesis, we have investigated the mechanism of injury of myocardial 

infarction and ischemia reperfusion in association with GAL-1, GAL-3 and HIF-1 

α.  We have demonstrated that GAL-1, GAL-3 and HIF-1α are expressed in the 

myocardium within the first hour of the ischemic episode.  This expression along 

with the anti-apoptotic environment in the myocardium in the early post MI 

period suggests that Gal-1, Gal-3 and HIF-1 α may be part of the prosurvival 

mechanism of action of cardiomyocytes immediately after exposure to hypoxia.  
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We have also demonstrated that GAL-3 acts as a pro-inflammatory and anti-

apoptotic mediator within a day of myocardial infarction and plays a modulatory 

role in oxidative stress related ischemia reperfusion injury. 

The main findings in this thesis related to the points described above are as 

follows: 

 

 There is a transient rise in the GAL-1 level in the LV within the first hour 

of permanent ligation of LAD.  The increased expression of GAL-1 in the 

left ventricle is very well demarcated in the MI group in all tested time 

points.  As the time of ischemia increases the dying cells stop expressing 

of GAL-1 in the area supplied by LAD, while surviving cells, which are 

seen at the periphery of infarction zone, show high expression of GAL-1. 

GAL-1mRNA in the infarcted tissue is detected to be significantly higher 

at 30 min and is significantly increased at 4 hours and 24 hours post MI 

time points.  This result indicates that the increase in GAL-1 at the protein 

level in early post MI time is due to transcriptional pressure from 

transcription factors that have come into play due to Ischemic/hypoxic 

injury to the myocardium.  Another significant finding of our study is that 

GAL-1 plasma level is significantly high around 4 hours and 24 hours post 

MI time compared to sham operated control mice. We believe that heart 

GAL-1 levels in the first hour post infarction signify an increase in 

transcription of the protein whereas, at 4 hours and 24 hours post MI, the 

high GAL-1 plasma levels are due to leakage of this protein from injured 

cardiomyocytes as well as increased transcription of this protein. 
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 GAL-3 increases in the left ventricle in the area of infarction within the 

first hour of ischemia/hypoxia.  GAL-3 stays high till 4 hours post MI after 

which at 24 hours post MI it increases several fold compared to the sham 

operated animals.  GAL-3mRNA is also detected to be high at one hour 

post MI time point in the infarcted tissue, which stays high till 24 hours 

time point.  Thus, GAL-3 is increased at both transcriptional and 

translational level in the LV in early ischemic period.    GAL-3 is 

expressed by cardiomyocytes and endothelial cells during the early 

ischemic event as it co-localized with desmin in cardiomyocytes and factor 

8-relaed antigen in endothelial cells.  

 We show for the first time a transient peak in the level of HIF-1 α in LV at 

20 minutes following MI.  We suggest that this increase is due to 

stabilization of HIF-1 α as a result of low intracellular level of oxygen 

secondary to complete ligation of LAD artery.  This observation is 

supported by our real time PCR results that show no upregulation of HIF-1 

α mRNA at this early time point.  We also observed a decrease in LV level 

of HIF-1 α protein as the time of ischemia increased. We think that as the 

time of ischemia increases the cardiomyocytes become necrotic and HIF-1 

α level go down due to protein degradation.  HIF-1 α was also seen to be 

expressed by the nuclei of cardiomyocytes and endothelial cells.  Another 

observation pertinent to HIF-1 α staining was that while the expression of 

HIF-1 α decreases in cardiomyocytes as the time of ischemia increases, its 

expression in endothelial cells essentially remains the same.  This is due to 

the fact that endothelial cells are proliferating cells that participate in 

healing process of the infarcted zone and in the formation of collaterals 
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while survived cardiomyocytes do not proliferate, when continuous 

ischemia damages the cardiomyocytes its expression is lost but the 

surrounding endothelial cells keep on proliferating and expressing HIF-1α.  

It has already been reported that HIF-1 α is a protective factor that 

mediates the survival of injured cardiomyocytes in the setting of ischemic 

injury by transcribing a variety of cardioprotective genes including 

erythropoietin, vascular endothelial growth factor, inducible nitric oxide 

synthase, hemeoxygenase-1 and cardiotropin (321). We propose that the 

presence of HIF-1 α in the myocardium is protective in the early post MI 

time point tested. 

 We have demonstrated that the high GAL-1 and GAL-3 levels in the LV in 

early ischemic period are part of the prosurvival gene expression profile 

transcribed by HIF-1 α.  GAL-1 has been identified as a hypoxia-induced 

protein in a number of studies (64-66).  GAL-3 also has been linked to 

hypoxic/Ischemic injuries in the kidney, and brain (79, 145, 146). We have 

shown co-localization of GAL-1 and GAL-3 with HIF-1 α in cardiac 

myocytes and endothelial cells in LV sections from areas supplied by 

LAD at different time points following MI. Cardiomyocytes and 

endothelial cells that show nuclear expression of HIF-1 α also show 

cytoplasmic and nuclear expression of GAL-1 and GAL-3 while cells that 

do not express HIF-1 α also show no expression of GAL-1 and GAL-3.   

This indicates a possible correlation in the expression of both proteins.  

This colocalization is prominent in the surviving cardiomyocytes and 

endothelial cells at the periphery of infarction zone while dead 

cardiomyocytes in the centre of infarction do not show any expression. At 
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24-hour post MI time point the infarcted area is flooded with neutrophil 

polymorphs, which also show nuclear expression of HIF-1 α.  These 

neutrophil polymorphs are moving in between dead cells in the ischemic 

zone, and so are under hypoxic condition. Hypoxia stabilizes HIF-1 α and 

prevents its proteasomal degradation resulting in expression of HIF-1 α by 

these neutrophils, which at the same time show co-expression of GAL-1 

and GAL-3. Bioinformatic analysis shows seven potential HREs (hypoxia 

response elements) within 2.2 kb region upstream the transcriptional start 

site of GAL-1 (67), and two potential HRE’s in the promoter region of 

GAL-3 gene (324).  We therefore propose that GAL-1 and GAL-3 are 

transcriptional targets of HIF-1 α in early post MI. 

 We have shown that early expression of GAL-1, GAL-3 and HIF-1 α in 

cardiomyocytes correlates with a predominant antiapoptotic activity in the 

left ventricle.  Pro-apoptotic caspase-3 and cleaved caspase-3 were found 

to have a very low expression, while anti-apoptotic Bcl-2 expression was 

high at early time points post MI.  A decrease in apoptosis is an indicator 

of promoting the survival of cells.  This supports our concept that GAL-1, 

GAL-3 and HIF-1 alpha are part of the prosurvival mode of action of the 

cell after ischemic insult at least in the early myocardial infarction time 

 We have shown that GAL-3 levels are high, after 24 hours of permanent 

ligation of LAD, which regulate proinflammatory and antiapoptotic 

mechanisms in the myocardium. GAL-3 plays a proinflammatory role in 

the LV by regulating IL-6 production and is controlling the apoptotic 

pathway by negatively regulating the proapoptotic proteins, Cleaved 

caspase-3 and Cytochrome c, and increasing the anti-apoptotic bcl-2.  Our 
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previous experimental results have shown that GAL-3 expressed very 

early after MI may be part of the survival mechanism of the 

cardiomyocytes after ischemia or infarction.  Along the same continuum, 

other studies have linked GAL-3 to fibrosis and heart failure (138). We, 

therefore, propose that GAL-3 should be viewed as regulatory molecule 

acting in the myocardium at various stages of myocardial infarction.  

 Our results here show that there is significant increase in GAL-3 levels in 

the heart LV of IR mice as compared to sham which signifies that GAL-3 

is playing a role in the ischemia/reperfusion injury in the heart.  Oxidative 

stress is a major component of the IR injury. Our results show that both 

the SOD, Glutathione and catalase levels were significantly increased in 

the GAL-3 wild type IR as compared to the GAL-3 KO IR. This signifies 

that GAL-3 is associated with an increase in the anti oxidant activity in the 

IR injured myocardium.   SOD, Glutathione and catalase are the most 

important cellular defense mechanism against oxidative injury and are the 

major intracellular redox buffer in many cell types (366) (367).  GAL-3, 

through its action in positively regulating the antioxidant players, leads to 

a decrease in cardiomyocytes necrotic death and infarct size as evidenced 

by a significantly lower troponin I level in the plasma of GAL-3 wild mice 

as compared to GAL-3 KO mice subjected to IR injury.  We therefore 

suggest that GAL-3 can interfere with redox pathways controlling cell 

survival and death and thus plays a protective a role in the pathogenesis of 

ischemia reperfusion injury in the heart.   

 Finally, we have compared our MI and IR models and discussed the 

different mechanism of injuries with respect to GAL-3.  In our MI model 
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GAL-3 was found to be a proinflammatory and anti-apoptotic mediator 

with no effect on the cardiomyocytes necrosis.  In IR model GAL-3 in 

addition to being proinflammatory and antiapoptotic mediator also acts as 

a regulator of antioxidant activity in the myocardium and leads to decrease 

in cardiomyocytes necrosis and indirectly decreased infarct size.  The 

difference of GAL-3 activity in these two models as seen in our 

experiments show that these two processes of cardiomyocytes injury are 

indeed very distinct and the local microenvironment of the myocardium 

determines the particular roles of molecules and enzymes that are part of 

their pathogenesis. Our results are significant in terms of IR injuries 

because the main goal in treatment of acute infarction is early 

revascularization with reperfusion.  Reperfusion affects a larger portion of 

the left ventricle than infarction alone (302) so reperfusion injury may act 

as an independent determinate of cardiac remodeling in addition to infarct 

size. GAL-3 is now recognized as a definite player in cardiac remodeling 

and progression to heart failure so understanding the local 

microenvironment in which GAL-3 works after ischemia/infarction or 

ischemia-reperfusion can open a new window in understanding the exact 

role of GAL-3 in the heart. 
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4.2   Future directions 

        Research on Galectins in the heart has gained momentum in the past few 

years.  GAL-1 has not been studied extensively in relation to myocardial 

ischemia.  However, GAL-3 is actively being studied in laboratories as well as in 

clinical trials on a global scale to elucidate its role in heart failure.  Our work 

showed that GAL-3 acts according to the microenvironment of the myocardium.  

This has opened a new door and a chance to look at GAL-3 from a fresh 

perspective.  More work needs to be done to investigate GAL-3 in ischemia 

reperfusion injury in particular to find out other players that work in association 

with GAL-3 and may help attenuate IR injury.   

        There is a pressing need to study GAL-1 and GAL-3 in the heart in 

association with other co-morbidities like diabetes or atherosclerosis. Heart 

diseases are seldom found alone in patients in clinical practice, so in future it is 

important to include these co-morbidities in the animal model.  
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