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Abstract 

 

Biofilm is a population of bacteria attached to any types of  surfaces and 

impeded in a self-produced matrix of extracellular polymeric substances.  Biofilm 

exhibit up to 1000 fold antibiotic increased resistance to a broad range of 

antimicrobial agents. Several food-transmitted microorganisms are capable of 

forming biofilms and considered as a major source of contamination, transmission 

and infection.  In the last few decades, nanoparticles has gained a great attention for 

their potential applications as antimicrobial agents. The aim of this work was to 

assess the biofilm formation capacity of food-transmitted bacteria under various 

environmental conditions and to investigate the efficacy of  different nanoparticles 

(i.e. Ag-Cu-B, Ag-Na-B, and Ag-Mg-B) to kill microbial pathogens in biofilms. 

Nanoparticles were synthesized by using co-precipitation and microwave techniques 

and characterized for their physiochemical properties by transmission electron 

microscopy and light dynamic scattering. The antibiofilm and antimicrobial 

properties of the synthesized nanoparticles were investigated using S. aureus (10 

strains), P. aeruginosa and E. coli (3strains). The findings revealed that all NPs 

significantly inhibited planktonic cells and biomass of the grown biofilms.     

Moreover, the sanitization efficacy of nanoparticles were assessed on 

stainless steel surface that commonly come into contact with food. The surfaces were 

inoculated with strains of S. aureus and Salmonella and cleaned with NPs saturated 

sanitary wipes. A significant reduction was observed in viability of the cells on the 

stainless steel surfaces. The results demonstrated that the use of NPs incorporated 

into sanitary wipes is useful method to eliminate bacteria on food contact surfaces.   

 

Keywords: Biofilm, food-transmitted bacteria,  nanoparticles, co-precipitation, 

microwave technique,  antimicrobial,  antibiofilm, sanitation. 
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Title and Abstract (in Arabic) 

 

غزاء عهٗ اَخبج انبيٕفيهى ٔاعخخذاو بعض انًشكببث انُبََٕيت نهقضبء قذسة انبكخيشيب انًُخقهت بٕاعطت انالعنوان : 

.عهيٓب  

ملخصال  

 

انبيٕفيهى ْٕ حكذط يعقذ نهكبئُبث انًجٓشيت، يخغى بإفشاص َغيج خبسج انخهيتّ يحصٍّ ٔلاصق عهٗ 

إَٔاع يخخهفت يٍ الأعطح. يخًيض انبيٕفيهى بقذسحّ عهي يقبٔيت فعبنيت انًضبداث انحيٕيت يب يصم إنٗ انف ضعف 

، ٕاعطت انغزاء بقذسحٓب عهٗ إفشاص انبيٕفيهى يقبٔيت خلايب انبكخيشيب انحشة.  حخًيض انعذيذ يٍ انبكخيشيب انًُخقهت ب

 ٔحعخبش يصذسا سئيغيبً نهخهٕد َٔقم انعذٖٔ. 

في الآَٔت الأخيشة اكخغبج انعُبصش انًحضشة بخقُيت انُبَٕ اْخًبيب كبيشاً، ٔخبصت في يجبل 

ُخقهت بٕاعطت اعخخذايٓب كًٕاد يضبدة نهبكخيشيب. ْذفج ْزِ انذساعت إنٗ قيبط يقذسة بعض إَاع انبكخيشيب ي

انغزاء عهٗ إَخبج انبيٕفيهى ححج ظشٔف بيئيت يخخهفت، ٔأيضب إنٗ ححضيش إَٔاع يخخهفت يٍ  انًشكببث انُبََٕيت 

ٔحقييى يذٖ كفبءحٓب عهٗ يحبسبت انبيٕفيهى. حى   (Ag-Cu-B, Ag-Na-B, and Ag-Mg-B)يكَّٕ يٍ 

( اعخخذاو انًبيكشٔيف ٔقذ 2نخشعيب انكيًيبئي )( طشيقت ا1ححضيش ْزِ انًٕاد انُبََٕيت ببعخخذاو طشيقخيٍ )

قيًج خصبئص ْزِ انًشكببث ببعخخذاو جٓبص انًجٓش الإنكخشَٔي ٔجٓبص ديُبييكيت حشخج انضٕء. علأة عهٗ 

رنك حى حقييى قذسة  ْزِ انًشكببث عهٗ عذة إَٔاع يٍ انبكخيشيب انًُخقهت بٕاعطت انغزاء )انبكخيشيب انعُقٕديت 

ذيَٕبط( ٔانًقبٔيت لإَٔاع عذة يٍ انًضبداث انحيٕيت عهٗ انخلايب انحشة يغانقٕنٌٕ ٔبكخيشيب ان بيت، بكيشيبانزْ

ٔانخلايب في طٕس انبيٕفيهى.  اثبخج انذساعت بأٌ ْزِ انعُبصش حًخهك انكفبءة ٔانقذسة  عهي يحبسبت ْزِ انبكخيشيب 

 انضبسة. 

في يجبل علايت انغزاء ٔرنك عٍ طشيق ببلإضبفت نزنك حى دساعت ايكبَيت اعخخذاو ْزِ انًشكببث 

بديم خُظيف ٔانخطٓيش انصحي نلأعطح انًلايغت نلأغزيت. حى حقييى فعبنيت ْزِ انًُهناعخخذايٓب كًُبديم حغخخذو 

 بعذ أٌ حى  حشبعٓب بٓزِ انًشكببث، عهٗ بكخيشيب انغبنًَٕيلا ٔانًكٕساث انعُقٕديت انزْبيت عهٗ أعطح انغخبَهظ

 عخيم ، ٔأظٓشث انُخبئج كفبءة ْزِ انًُبديم في انقضبء عهي ْزِ انًيكشٔببث يٍ عهٗ أعطح  انغخبَهظ عخيم. 

 

، انبكخيشيب انًُخقهت بٕاعطت انغزاء، انعُبصش انُبََٕيت، طشيقت انخشعيب انكيًيبئي، انبيٕفيهىمصطلحات البحث: 

  صحي.انبيٕفيهى انًيكشٔبي،  طشيقت انحضيش ببنًبيكشٔيف، يضبداث انًيكشٔببث، يضبداث
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1 

Foreword 

 

Microorganisms, including but not restricted to those causing communicable 

diseases, spread between locations that are capable of accommodating and sustaining 

them. Depending on the microorganism, these niches could be inanimate objects, as 

well as living, susceptible hosts. It is important to note, that "transmissibility", i.e. the 

capacity to reach new niches, is an important feature of pathogens, as this secures 

that the microbes can continuously encounter new environments supporting its own 

life. This capacity is equally important for microorganisms which cannot, and hence 

do not establish themselves permanently in a living host, including human beings - 

they transmit between, and subsequently colonize inanimate objects. Transmissibility 

is also crucial for those organisms, which do colonize various body-parts of man, but 

in a fashion that is not harmful to the host. These microorganisms colonize the host 

for shorter or longer periods of time and thus become part of the very complex flora, 

the microbiota, exhibiting multiple interactions with the macroorganism 

accommodating it.  

 

Members of this normal flora are often, not without unfounded 

generalization, considered non-pathogenic, as they usually do not cause perceptible 

pathological changes at the niche they colonize (e.g. the flora of the gut). However, 

this approach is misleading for several reasons. On one hand, members of the normal 

flora, once displaced within the host, may cause severe diseases as they may use 

different strategies to colonize different body parts.  Furthermore, the host may also 

respond differently when encountering the same organism at different mucosal 

surfaces or in different organs. With other words, these organisms non-pathogenic at 



 

 
 

2 

one site could be involved in endogenous infections of other body parts. A typical 

example of these complex host-parasite interactions is urinary tract infections. In the 

overwhelming majority of these cases the source is the patient's own gut flora; i.e. 

what is in the gut, what kind of bacteria are there impacts the severity and outcome 

of some extra-intestinal infections.  

 

Members of the normal flora, independently of their individual pathogenic 

potential, may contribute to the pathology of the host in another way, as well. In 

some body parts, particularly in the large intestine, the density of various 

microorganisms is enormous. This provides a unique chance for different strains and 

species to interact with each other and, importantly, to transfer genetic material. This 

phenomenon is a well-recognized driving force of microbial evolution as, by 

acquiring genes of virulence factors, it affects the pathogenic potential of the strains. 

Lately, however, an increasing attention is also being paid to the transfer of antibiotic 

resistant genes. By now it is clear that in the gut, a non-pathogenic, but highly 

resistant strain can easily transfer its resistant gene(s) to a susceptible, but highly 

pathogenic species creating, what the media like to describe as, a "superbug".  

 

Consequently, when considering and discussing the possibilities of microbial 

transmission, modes of colonization and possible interference with them, one should 

not restrict attention to the "classical", "real" pathogens, only but, simultaneously, 

should also take non-pathogens, or organisms which may have a pathogenic potential 

in one, but not at another body part into consideration. 
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As my thesis work focuses on how to interfere with the spread of 

microorganisms via food, I intentionally followed this broader approach. 
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Chapter 1. Introduction 
 

1.1 Source and transmission  

 

Bacteria regularly establish more or less permanent contacts with humans. 

These encounters, depending on the microorganism and the host, result in a variety 

of outcomes.  Beyond the microorganism and potential host, this complex and 

dynamic event, actually a sequence of events, requires a reservoir of the microbe, an 

immediate source, and a mechanism of transmission (Krämer et al., 2010).  The 

reservoir is a living organism or material in or on which an infectious agent lives and 

usually multiplies. The source is the initial point from which the microbe passes to 

the new host. In case of directly transmitted infections the source is the person 

carrying (infected with) the microbe, while in case of indirectly transmitted 

microorganisms the source can be a variety of inanimate objects, food, water or 

vectors (Krämer et al., 2010).  

 

Obviously, the source affects the possible mode of transmission. The most 

complex form of transmission takes place via living vectors, in which the 

microorganism may or may not go through a unique phase of its lifecycle (e.g. 

malaria, plague etc.). Contact transmission may take place by direct contact (i.e. by 

direct, physical contact with the infected or carrier host), or by indirect contact 

through objects (e.g. conjunctivitis, or the spread of a variety of nosocomial 

pathogens).  Droplet transmission is mediated via droplets of usually airways excreta 

(e.g. influenza, measles). Airborne transmission is the result of the transfer of the 

organisms themselves (without a droplet coat) to the susceptible host (e.g. 

tuberculosis). During common vehicle transmission a shared inanimate object (e.g. 
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food, water, contaminated medicines) are carrying the infectious particle from the 

source to the new host (Beier and Pillai, 2007; Krämer et al., 2010).  

 

The transfer of microorganism, however, is a more complex than just how 

they reach the host. This is particularly important in case of food-borne infections, 

i.e. the topic of the current theses. Food could be contaminated at any point in the 

food chain and food processing. Frequently, bacteria transfer to the food either by 

cross-contamination or re-contamination (Pérez-Rodríguez et al.,  2008) or it may 

occur either indirectly through air-borne particles or by direct contact with 

contaminated surface (Kusumaningrum et al., 2003). 

 

Airborne bacteria can be transferred through dust particles or aerosols (den 

Aantrekker et al., 2003). For example, in the meat and poultry industry the aerosols 

produced during dehiding, evisceration and carcass splitting are major routes of 

contamination (Mor-Mur and Yuste, 2010). This transmission (i.e. contamination of 

the "common vehicle of transmission") could happen through talking, coughing, 

sneezing or via a variety of activities such as sewage removal (Van Houdt et al.,  

2012) 

 

Contamination often associated with unprocessed raw material, unclean food 

surfaces and personal handling (Reij and Den Aantrekker, 2004). Bad hygiene and 

improper sanitation of the food processing environment directly contribute in the 

food borne disease outbreaks and promote the development of biofilms which may 

contain pathogenic bacteria (Chmielewski and Frank, 2003).  
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1.2. Food-borne diseases  

 

Food could transmit more than 200 known diseases (Oliver et al., 2005). The 

Centers for Disease Control and Prevention (CDC) estimates that every year 76 

million foodborne illnesses occur in US and these illness costs the country $10-83 

billion (Nyachuba, 2010).  Also, it is estimated that foodborne illness causes about 

2.2 million deaths each year, mostly in the countries of the developing world 

(Tajkarimi et al., 2013). 

 

Food borne diseases are defined as illness resulting from consumption of food 

contaminated with microbial pathogens and/or with their toxic materials (Unicomb, 

2009).  Microorganism-induced, food-related diseases can be intoxications and/or 

infections (Marriott and Gravani, 2006). During intoxication the pathological 

changes evoked are directly related to the microbial toxins consumed (e.g. 

staphylococcal intoxication, botulism).  In these cases the microorganism 

contaminates the food and while multiplies in it, produces the toxic substance(s), 

which may not be destroyed by subsequent food processing. Once ingested, some of 

these toxins may have a very rapid (few hours) effect (particularly the emetic type of 

toxins, e.g. staphylococcal or Bacillus cereus toxins), while the neurotoxins 

(botulinus toxin) take a longer time. While in these cases the actual presence of the 

microorganism, at the time of inducing the pathological changes, are not needed 

anymore, from the point of view of food-hygiene these cases do not really form a 

separate entity, as the initial step here is also the microbial contamination of the food 

(Aytac and Taban, 2014). 
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During toxico-infections the pathological effect is also induced by a toxin, but 

the toxin is being produced within the host, and the food serves just as a vehicle to 

transfer the bacterium into the macroorganism. The clinical symptoms vary 

according to the type of toxin produced (most commonly diarrhea), but the 

incubation time is longer (often 12-36 hours), as the production of the toxin within 

the host takes time (e.g. Enterotoxin producing Escherichia coli, ETEC).  Finally, a 

similar role is played by the food vehicle in "pure" infections where the pathological 

changes are (mostly) due to the interaction between the cells of the micro-, and 

macroorganism (e.g. shigellosis, salmonellosis) (Nantel, 1996). It should be noted, 

however that in some cases the clinical presentation is the result of the combination 

of both direct bacterial, as well as toxin effects (e.g. hemorrhagic colitis/hemolytic 

uremic syndrome (HUS) due to Shiga toxin producing E. coli, STEC) (Aytac and 

Taban, 2014).  

 

Importantly, beyond the common diseases dominated by enteric symptoms, 

only, some of these pathogens cause primarily systemic or focal infections, like 

meningitis due to L. monocytogenes. In case of STEC dramatic enteric symptoms 

(bloody diarrhea, hemorrhagic colitis) may precede, or accompany toxin-induced 

systemic manifestations, such as hemolytic uremic syndrome (HUS). Infections due 

to others may induce auto-aggressive immune responses leading to a variety of 

manifestations from arthritis to nerve demyelination  (e.g. reactive arthritis and 

Guillain-Barré syndrome seen after a variety of enteric infections, most commonly 

due to Yersinia and Campylobacter) (Israeli et al.,  2012; Scallan and Mahon, 2012; 

Simonet, 1999).  

 



 

 
 

8 

Outbreaks have been frequently associated with the consumption of fresh and 

minimally processed product such as fruits and vegetables.  For example, outbreaks 

caused by fruits, seeds and sprouts usually associated with Salmonella enterica, 

while outbreaks of E. coli O157:H7 have been linked, beyond beef, to leafy greens 

(Yaron and Römling, 2014). 

 

1.3. Factors facilitating microbial transmission by food 

 

Beyond technical issues related to food preparation and processing, several 

cultural, demographic, environmental and social factors, many of them changing 

rapidly, are playing roles in the transmission of the foodborne pathogens (Newell et 

al., 2010). The most important ones are 

 

 The sharp increase in population number and a demographic shift towards an 

ageing population 

 Remarkable increase in food globalization, particularly freshly produce food 

and farm animals 

 Improved transport logistics and conditions, which enable bacteria to survive 

the short time needed to get transferred even between continents 

 The enormously increased human travel and immigration with the consequent 

spread of the intestinal microfloras worldwide 

 Changing eating habits, such as the consumption of raw or lightly cooked 

food 

 Increasing in the demand for high protein foods, primarily meat and fish 

products  
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 Higher proportions of immunologically compromised individuals such as 

elderly, children and immunosuppressive groups  

 Innovating and adopting new farming practices to produce cheaper food and 

organic food as a response to consumer demands and welfare. This includes 

the use of unnatural animal feed and cramped farming conditions promoting 

microbial spread among animals 

 Increasing human involvement on native wildlife habitats  

 Climate change, for example bringing novel vectors into temperate regions or 

temperature-associated changes in contamination levels 

 

1.4. Food contamination  

 

The vehicle of transmitting microorganism entering the human hosts through 

the digestive system can be water and food. Contaminated water can directly be 

consumed (these are waterborne infections) or may contaminate the food during 

irrigation or processing (Medema, 2013). Most of the microorganism with the 

highest chance to colonize or infect a new human host derives directly or indirectly 

(i.e. via irrigation water) either from animals or from another human being (Medema, 

2013). These organisms mostly colonize the intestinal tract of these reservoirs, 

although there are exceptions from this rule (i.e. S. aureus which may contaminate 

food as a skin colonizer). 

 

  An important and unique mode of acquiring food-borne diseases is when the 

contaminated raw material is being eaten directly or without sufficient processing. 

Consumption of raw milk (e.g. brucellosis), un-pasteurized cheese (e.g. listeriosis), 
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raw fish (e.g. various Vibrio infections), meet or eggs (salmonellosis) are examples 

of this category (Unicomb, 2009). 

 

Contamination of the food can take place at any of the three main stages of 

the food chain, i.e. production in the field, processing, and preparation (Graves, 

2011; Leon and Albrecht, 2007). The raw material can be directly contaminated with 

pathogens from the animals carrying them. Some human pathogens can be present in 

the cattle gut, such as E. coli O157, Salmonella spp., in that of swine (e.g. various 

Yersinia sp.) or in the intestinal tract of poultry (e.g. Campylobacter). This 

contamination often takes place between carcasses during transportation, or while 

slaughtering (Reid et al., 2002; Roberts et al., 2005a). Fruits and vegetables can be 

contaminated with pathogenic microorganisms from the use of raw sewage, manure 

fertilizer, water (Roberts et al., 2005b). Insects, birds and rodents are also considered 

as passive vectors carrying pathogens (Reij and Den Aantrekker, 2004).  

 

Man is also an important source of food contamination. It has been reported 

that personal hygiene of the food handlers contributed to about 97% of the foodborne 

illness in food premises and home (Aa et al.,  2014). The inadequate hand-hygiene 

after visiting the toilet is probably the most critical determining factors in spreading 

enteric pathogens (Lues and Van Tonder, 2007). It should be remembered, however, 

that not only classical enteric pathogens, but pyogenic bacteria can also be 

introduced to food by hands with skin and soft tissue infections. This is the typical 

way how S. aureus contaminates food while being processed. Bacteria such as 

S.aureus, E.coli and Salmonella spp., can survive on hands and on surfaces for hours 

or days (Kusumaningrum, et al., 2003).   
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Once introduced to the food-mass, bacteria can survive for a considerable 

time. Uneven, rough, damaged surfaces of food-processing equipments are important 

to facilitate colonization and may interfere with cleaning (Reij and Den Aantrekker, 

2004).   

 

Several species of bacteria have unique feature to adhere and colonize 

surfaces (Myszka and Czaczyk, 2009).  Adherence to abiotic surfaces is, at least 

initially, mediated by physical interactions, like electric charge and/or 

hydrophobicity. However, several food-transmitted microorganisms are capable of 

forming biofilms. Cells grown in biofilms are considerably protected from all 

external noxas and hence pose a challenging problem once we try to interfere with 

food contamination. 

 

1.5. Bacterial biofilms 

  

 Biofilms are complex microbial communities composed of interacting cells 

embedded in a extracellular polymeric substance (EPS) called matrix (Yang et al., 

2012).  In biofilms these sessile cells are attached to a substratum, which could be an 

abiotic or a biotic surface, or could be an interface in between. Cells embedded in 

this matrix differ from their planktonic, free living counterparts concerning their 

growth rates and their gene expression (Donlan and Costerton, 2002; Lazar, 2011).  

 

 Biofilm are mainly composed of 90% matrix and 10% microorganism 

(Flemming and Wingender, 2010).  However, 97% of the matrix is water, which is 

capable of absorbing nutrients, metabolites and cell-lysis products. The remaining 
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3% of the EPS contains proteins, polysaccharides, DNA, RNA, peptidoglycan, lipids 

and phospholipids (Sutherland, 2001b). Polysaccharides and proteins have been 

shown to be the key components of the matrix. Also, DNA plays a role in the 

establishment of the structure. It was also demonstrated that some Gram-negative 

bacteria, e.g. S. typhimurium and E. coli, produce cellulose as EPS component. 

(Branda et al., 2005). The EPS can be neutral or poly-anionic in Gram-negative 

bacteria, while their nature is cationic in Gram- positive ones. Usually in the anionic 

type uronic acid and ketal-linked pyruvates increase the binding force through 

enhancement of the calcium and magnesium association (Vu et al., 2009). 

 

 Bacteria embedded in EPS form different structures ranging from patchy 

monolayers, heterogeneous mosaic models to mushroom or tulip-like models 

(Wimpenny et al., 2000). The architecture of the biofilm affects the dissemination of 

nutrients and chemicals within the matrix and thus results in a heterogeneous growth 

rate and physiological activities of the assembled cells (Folkesson et al., 2008).  

 

1.5.1. Biofilm formation  

 

 The formation of biofilms and their properties are affected by several factors: 

(Melo, 2003)  

 The microbial species and strains characteristic 

 The composition and roughness of the substratum 

 The composition of the fluid environment (e.g. pH, temperature and ionic 

strength) 

 The hydrodynamic of the fluid (velocity and turbulence) (Melo, 2003). 
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 Biofilm can be formed on a variety of surfaces. These can be living tissues, 

indwelling medical devices, industry equipment, portable water system piping and 

natural aquatic systems (Rodney, 2002). The stages involved in the biofilm formation 

are shown on Figure 1. 

 

 

 

 

 

 

 

 

 

Figure 1: Stages of biofilm formation (Abed et al.,  2012)  

 

 

 Usually 4 steps are distinguished in biofilm production: 

 

Stage 1:  Attachment /colonization by primary reversible adhesion between microbial 

cell surfaces and desired substratum; 

Stage 2 : Irreversible attachment; 

Stage 3: Biofilm architecture formation and maturation; 

Stage 4: Detachment and dispersal of biofilm cells  
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 During the initial stage 1 planktonic cells move towards the surface via either 

flagella or physical forces and establish a connection called reversible attachment 

and involve cell-pole mediated interactions (Clutterbuck et al., 2007). Upon contact 

bacteria roll across the surface before settling and initiating their adhesion 

(Costerton, 1999). The quality of surfaces is crucial. Preconditioning by adhesion of 

macromolecules (e.g. dust, dirt, leftover material on un-cleaned surfaces or bodily 

macromolecules in living tissues) facility this step. Regarding food environment, it is 

usually rich in nutrients, which often act as a conditioning film. The conditioning 

may change the physiochemical properties such electrostatic charges, surface free 

energy, and hydrophobicity of the surface. The physiochemical properties of the 

bacterial cell also play a role in this interaction. Initially these are weak interactions, 

like Van der Walls attraction forces, electrostatic forces and hydrophobic 

interactions. At this stage bacteria show Brownian motion and can be easily 

eliminated by the fluids' shear forces (Méndez-Vilas, 2011). 

 

 In the irreversible stage (Stage 2) flagella, fimbria, pili and EPS fibrils help 

cells to anchor to the surface through forces involving dipole-dipole interactions, 

hydrogen ionic and covalent bonding and hydrophobic interactions. All of these 

forces increase bacterial adhesion strength and the removal of these cells needs much 

greater forces, like scrapping. Attached cells start to up-regulate all the necessary 

genes that express enzymes required for EPS synthesis like a pivotal sigma factor 

(Kumar and Anand, 1998). 

 

 At stage 3 biofilms mature resulting in a complex architecture through the 

secretion of EPS. This requires quorum sensing (QS) (Clutterbuck, et al., 2007), i.e. 
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cell to cell communication. During QS cells produce and release QS molecules that 

are detected by neighboring cells thus gathering information about the density and 

structure of EPS, i.e. sensing that they are within a biofilm structure. There are 

several kinds of QS molecules including N-acyl-homoserine lactone and 4-quinolone 

which produced by Gram-negative bacteria, while the Gram-positive ones produce 

AgrD peptide (Chen and Wen, 2011). In this way cells regulate the expression of 

specific genes in response to their population density (Kolari, 2003).   

 

 The maturation of biofilms occurs in two stages. During the first stage the 

thickness of the biofilm is >10µm and there is a profound difference in protein 

expression compared to planktonic cells. In the second stage the thickness reaches up 

to 100µm and there is a significant difference in the protein expression compared to 

planktonic cells and the first maturation stage. More than 100 proteins were 

synthesized and 50% of all proteins up-regulated  (Sauer et al., 2002). 

 

 The last stage (stage 4) is detachment and dispersal of cells from the biofilm. 

These planktonic cells are considered the source of both infection and contamination 

in either clinical or public settings. Detachment usually caused by response to 

decreased nutrient levels via quorum sensing or by shearing off biofilm aggregates 

due to physical effect (Rodney, 2002).  

 

  Based on the strength and frequency of detachment dispersal has three main 

stages (Rodney, 2002; Stoodley et al., 2001): 
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 Erosion is the continual detachment of single cells and small portions of 

biofilm mostly present in thinker biofilms and in high shear environments 

 Sloughing is the rapid and massive loss of biofilm. This process results from 

the depletion of nutrient and oxygen 

 Abrasion is collision of particles from the bulk fluid with biofilm 

 

 Beside their structural role, EPS also works as a barrier to protect the embed 

cells from the effect antimicrobial agents effect and harsh environments (Eastman et 

al., 2011).   

 

 Stewart and Costerton suggested the main mechanisms how biofilms protect 

sessile cells residing in the matrix. First the rate of permeation is considerably 

reduced through the matrix limiting the amount of compounds reaching the cells 

(Stewart and William Costerton, 2001). EPS matrix may bind antimicrobial agents, 

e.g. positively charged aminoglycoside antibiotics bind to negatively charged EPS. 

The decreased concentration of drugs in the  vicinity of the cells may allow that 

hydrolyzing enzymes with even limited activity (e.g. some narrower spectrum β-

lactamases) might be sufficient to protect (Lewis, 2001).  

 

 Secondly, the alteration of the chemical microenvironment within the biofilm 

may create a niche where the drug has a limited activity. Furthermore, the 

accumulation of acidic waste products result in change in pH, which may lead some 

bacteria to enter a non-growing state in which they are more, protected from 

elimination. The alterations of the osmotic stress within biofilm change the relative 

proportion in porins in such way that limits the uptake of the drug. 
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Finally, a subpopulation of micro-organisms in the biofilm may enter a unique and 

highly protected phenotypic state of cell differentiation which are similar to spore 

formation (Stewart and William Costerton, 2001). 

 

1.5.2. Biofilms in medicine  

 

 According to the National Institute of Health of the USA 80% of bacterial 

infections were related to biofilms. These infections could include biomaterial-

related infections, chronic wounds, cystic fibrosis-related lung infections, 

endocarditis and otitis media (Fey, 2010).  In addition to that, several biofilm-

producing organism can inhabit indwelling medical devices. Hence, they are highly 

resistant to antibiotic treatment and leading to device deterioration, blockages, loss of 

function and consequently require the replacement of the device. These problems are 

particularly common in the most vulnerable population, i.e. immune-compromised 

patients (Lindsay and von Holy, 2006). 

 

 Biofilms isolated from the medical device could contain yeasts, Gram-

positive and Gram-negative bacteria. The most common medically relevant bacteria 

are Enterococcus faecalis, S. aureus, S. epidermidis, and Streptococcus viridans, E. 

coli, K. pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa considered as 

examples of the Gram-negative biofilm producers (Donlan, 2001). Devices most 

commonly colonized by biofilms are urinary and central venous catheters, prosthetic 

heart valves, contact lenses, intrauterine devices and dental unit water lines (Donlan 

and Costerton, 2002).  
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1.5.3. Biofilms in food industry  

 

 On one hand, bacterial biofilms adversely affect any system transporting 

water via increasing corrosion of piping material (Hallam et al., 2001). It has been 

reported that 95% of water microorganisms are present inside biofilms while only 5% 

are floating (Gomes et al., 2014). Despite the low nutrients level in water bacterial 

cell do colonize water pipes or other wet systems.  Poulsen reported that the number 

of planktonic cells found are 500 to 50,000 times lower than the number of cells in 

biofilm in the water system (Poulsen, 1999).  

 

 From the microbiological perspective, biofilms are predominating in water 

systems because attached cells are more resistant to chlorine and to other biocides 

than planktonic counterparts (Berry et al., 2006). Sulfate reducing bacteria in biofilm 

are responsible for deterioration of the pipelines metal where they are settled the 

anaerobic niches causing bio-corrosion and bio-fouling. Yearly, the pipeline damage 

caused by the sulfate reducing bacteria cost the industrial sector from 4-6$ billion in 

US (Jayaraman et al., 1999). Moreover, the growth of the biofilm in water system 

leads to decrease in water quality, increase in energy utilization and decrease in 

operations efficiency and productivity (Kumar and Anand, 1998).  

 

 But food industry is affected by another way, as well, i.e. by bacteria residing 

in biofilms and thus contaminating food. Actually, most of the microbial 

contamination of food products are biofilm-related (Cappitelli et al., 2014).  Food 

industry heavily relies, at almost every stage of the processes, on water or on some 

other kinds of liquid and the environment the food is prepared is almost always wet, 

moisten. Most of the biofilm problems in food industry are associated with 
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contamination of the water source.  Biofilm may form in any sites in the food 

environmental area such as walls, floors, pipes and drains. As well as on all food 

contact surfaces like stainless steel, aluminum, nylon, teflon, rubber, plastic, buna-N, 

and glass. Bacteria forming biofilms include pathogens and spoilage type organisms 

such as Listeria monocytogenes, Salmonella, Campylobacter, Pseudomonas and 

lactic acid producing bacteria, E. coli O157:H7; they may be present in mixed 

cultures or as a mono-species biofilm. Some pathogens, such as L. monocytogenes, 

may persist in food plants for several months, even up to several years and can 

survive in aerosol and pose a re-contamination threat (Sofos and Geornaras, 2010).  

 

 Food systems have a variety of environmental conditions that are suitable for 

biofilm formations like moisture, nutrients, and density of bacteria present in the raw 

material (Kregiel, 2014). In particular, biofilm caused damage to the ultrafiltration 

membrane which used in the dairy industry, the growth of the bacteria resulting in 

membrane blockage, product contamination, and reduction of membrane life (Tang 

et al., 2010). Furthermore, both Streptococcus thermophiles and Bacillus cereus were 

found attached to the heat exchanger in milk processing equipment (Poulsen, 1999).  

 

 Another example of the bacterial biofilm in the food facilities is 

Pseudomonas. This bacterium produces very thick ESP and can live together with 

other species biofilms. Also, Salmonella biofilms have been detected in poultry 

processing equipment in slaughter and evisceration area (Chmielewski and Frank, 

2003). 
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 As a conclusion any methods, by which in food processing environments 

microbial contamination present as biofilms, could be reduced or eliminated is of 

huge importance.  

 

1.6. Food-transmitted microorganisms studied in the current thesis 

 

There are several dozens of bacterial species that are commonly transmitted 

by food. The most common foodborne pathogens are Salmonella spp., 

Staphylococcus spp., Shigella, Escherichia coli, Listeria monocytogenes, 

Campylobacter spp. and Clostridium spp (Salazar et al., 2015). It is important to 

keep in mind, however, that not only pathogenic species, and certainly not only 

enteric pathogens enter the host via contaminated food. In the current thesis two 

food-borne pathogens causing enteric intoxications/infections (S. enterica and S. 

aureus), a microorganism which seldom causes enteric infections but very important 

in food spoilage (P. aeruginosa) and one a pathotype of E. coli which although 

colonizes the gut (and hence enters the human body orally, i.e. often by food), but 

causes infection extra-intestinally were used as model organisms.  

 

1.6.1. Staphylococcus aureus 

 

S.aureus inhabit human skin and mucosal membranes of around 15–40% of 

healthy people (Sospedra et al., 2012). Beyond being one of the most important 

infectious agents among hospital settings, S. aureus is also a common cause of 

community-acquired, mostly pyogenic infections. Furthermore, it is estimated that 

approximately quarter of a million cases of foodborne illnesses are caused by 

S.aureus in the US annually (Rodríguez-Lázaro et al. 2014).  People, especially food 



 

 
 

21 

handlers, are considered an important vehicle for the transmission of S.aureus and 

contributed directly in food contamination during preparation and serving (Sospedra, 

et al., 2012). Furthermore, it is increasingly recognized that animals, especially cattle 

suffering from mastitis are important sources mostly contaminating raw milk (Huong 

et al., 2010).  

 

The most important factors in food-associated S.aureus disease are the 

staphylococcal enterotoxins (SEs) produced by about 50% of these strains (Fetsch et 

al., 2014). Unlike most exotoxins, the SEs are relatively heat-stable withstanding 

sub-optimal heat-treatment during food preparation. In the gut SE-induced 

inflammation is considered responsible for nausea, vomiting and, less frequently, for 

diarrhea (Jett et al., 1990). In extra-intestinal infections, SEs are also associated with 

dermatitis, nasal polyposis and have super-antigenic features contributing in an 

excessive inflammatory response particularly in systemic infections (Gustafson et al., 

2014). SEs genes are located on transposons, i.e. mobile genetic elements, which 

enhance their horizontal transfer among S.aureus strains (Song et al., 2015).  

 

S. aureus is a strong biofilm former. The strains either produce 

exopolysaccharide or a protein biofilm material (Fitzpatrick et al., 2005; Vergara-

Irigaray et al., 2009).   Among clinical isolates from device-related infections 

methicillin sensitive isolates formed polysaccharide type biofilms in medium 

supplemented with NaCl, whereas once grown in glucose, polysaccharide type 

biofilms were not detected. Glucose-induced biofilm in MRSA was made of protein-

type matrix  (O'Neill et al., 2007). 
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S. aureus is a highly clonal species and clonality has been shown to affect 

biofilm production (Croes et al., 2009).  

 

1.6.2. Salmonella 

 

In the last few decades, the prevalence of salmonellosis has increased 

worldwide. It is reported that annually the species is responsible for 1.4 million 

human infections, 95% of which were foodborne ones (Wang et al., 2015) resulting 

in about 16,000 hospitalizations with nearly 600 deaths in the US (Lee et al., 2015). 

Salmonella is a Gram-negative, non-spore forming bacillus and a member of the 

family Enterobacteriaceae (Hur et al., 2012). Salmonella species are associated with 

both animal and human infections and lead to high morbidity and mortality rates 

(Sánchez-Vargas et al., 2011). In principle, human-pathogenic salmonella can be 

grouped as typhoidal and non-typhoidal salmonella, both having important roles in 

food-related infections. The members of the former group, e.g. S. typhi, are highly 

adapted to man. The source of infection is always the sick or asymptomatic human 

carrier, often by contaminating food or water. The clinical presentation is enteric 

fever (typhoid), i.e. a systemic infection with high mortality. Non-typhoidal 

Salmonella spp., on the other hand, are a zoonotic microorganisms that colonize 

various livestock species (Fashae et al., 2010; Newell, et al., 2010).  These infections 

are associated with the consumption food of animal origin, such as beef, egg and 

dairy products, and fruits and vegetables that have been contaminated with animal 

manure (Voetsch et al., 2004). The clinical presentation is gastroenteritis of varying 

severity, while in immunocompromised, it may turn systemic (i.e. bacteria is 

distributed throughout the body rather than concentrated in one area) (Andrews-



 

 
 

23 

Polymenis et al., 2009) and even may cause a variety focal infections, such as in the 

meninges, and bone or joint spaces (Van et al., 2012). 

 

1.6.3. Pseudomonas 

 

The genus Pseudomonas is a highly heterogeneous group that is abundantly 

present in natural habitats like soil, fresh water and marine environments. 

Furthermore, some species were isolated from clinical instruments, aseptic solutions, 

cosmetics and medical products. (Franzetti and Scarpellini, 2007). The most 

important member of the family, P. aeruginosa, is considered a typical opportunistic 

pathogen. It is the third most common pathogen responsible for extra-intestinal 

nosocomial, urinary, blood-stream, airway and soft tissue  infections (Matyar et al., 

2010).   

 

Pseudomonas spp. are rarely associated with foodborne illnesses (Pagedar 

and Singh, 2014), although seldom gastroenteritis may result from the consumption 

of contaminated food (Myszka and Czaczyk, 2009). However, Pseudomonas is one 

of the most important food-spoiling organisms that deteriorates food, changes food 

textural (Myszka and Czaczyk, 2009) and produce volatile compounds which 

considered the main source of the off-flavor compounds in food (Franzetti and 

Scarpellini, 2007).  Pseudomonas spp. present in the food rich in proteins such as 

meat, poultry, milk and fish and in several ready-to-eat products (Gram et al., 2002) 

 

P. aeruginosa is an excellent biofilm former and is often resistant to multiple 

antibiotics (Liu et al., 2012). Most of the strains involved in the infections possess 
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different surface virulence factors which facilitate their colonization and adherence 

(Mesaros et al., 2007). There are no major differences in virulence between clinical 

and environmental isolates (Naves et al., 2008a). 

 

1.6.4. Extraintestinal pathogenic Escherichia coli 

 

A variety of E. coli pathotypes can cause enteric infections spreading to the 

susceptible host via food or water (Newell, et al., 2010). Another groups are 

permanent or temporary members of the gut microbiota. The regular presence of 

these strains makes them markers of fecal contamination and indicators of poor 

hygiene and sanitation conditions. Some of them, i.e. the extra-intestinal pathogenic 

E. coli (ExPEC), may cause serious infections outside of the gut once displaced from 

the intestine (Köhler and Dobrindt, 2011; Vejborg and Klemm, 2009). Nevertheless, 

their natural habitat is also the gut and these strains also typically enter the 

macroorganism through food (Capita et al., 2014).  

 

ExPEC strains cause considerable morbidity, mortality and increased health 

care costs (Johnson et al., 2010). The most common infection is urinary tract 

infections. Globally, around 130 to 175 million uncomplicated urinary tract infection 

UTI cases occurred each year and E.coli strains were responsible of 80% of those 

cases (Caroline et al., 2010).  Annually the treatment of UTIs in the US healthcare 

costs $3.1 billion (MacVane et al., 2014).  

 

Nowadays, ExPEC strains are increasingly resistant to a variety of 

antibiotics. Perhaps the most serious threat is the resistance of extended spectrum 
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beta-lactam antibiotics (3
rd

 and 4
th

 generation cephalosporins and in some cases 

carbapenems) due to the production of extended spectrum beta-lactamases (ESBLs) 

and carbapenemases. The ESBL genes are commonly located on plasmids which 

promote its spread between different strains (Cantón et al., 2012). The prevalence of 

E.coli harboring ESBLs genes is increasing in animals (Aidara-Kane et al., 2013), 

primarily in poultry where the 3
rd

 generation of cephalosporin (ceftiofur) used in 

chicks and broiler eggs (James et al., 2007).  Actually, bacteria contaminating 

poultry products are increasingly considered as the reservoir for ESBL genes for 

human pathogens. For instance, there was a notable increase in the prevalence of 

ESBL-producing E. coli in poultry meat retailed in Spain from 62.5% to 93.3% 

between 2007 to 2010 respectively (Aidara-Kane et al., 2013) 

  

ESBL-producing E. coli, particularly those expressing the so called CTX-M-

15 type enzymes are widely spread globally. This phenomenon is closely linked to 

the emergence of a clone carrying the O25b cell wall antigen and belonging to 

sequence type 131 (ST131) (Platell et al., 2011). Various reasons may associate with 

the increased prevalence of this clone e.g. its capability to exchange genetic material 

(Rogers et al., 2011). Importantly, ingestion of contaminated food or water (Peirano 

and Pitout, 2010) have been noted to contribute to the spread of ST131.  

 

Taken together, although ExPEC in general, and ST131 in particular, are not 

enteric pathogens, they have a huge impact on human health and food appears to be 

important in transmitting these bacteria. Consequently, their biological features, e.g. 

their capacity to form biofilm carries considerable importance from the perspectives 

of this research work.  



 

 
 

26 

1.7. Possible interference with food-born transmission of microorganisms 

 

 Food safety includes adherence to certain guidelines at all possible stages of 

the food chain. Some of these rules, particularly those related to the last stage, i.e. 

food preparation, are ancient, culturally embedded, mostly common sense procedures 

(Fleckenstein et al., 2010), while others, applied from agricultural production to 

industrial scale food preparation and processing are strictly regulated by government 

agencies. Some are general rules, most related to hygiene, while others target the 

prevention of contamination with specific pathogens (Examples of such list of 

guidelines for the USA can be seen at: 

http://www.fda.gov/Food/GuidanceRegulation). As during food processing the role 

of biofilms are increasingly recognized in contamination and in microbial 

transmission, the prevention of its development and its elimination are possible ways 

to improve food safety. 

 

1.7.1. Controlling the biofilm problem 

 

 In principle there are two ways to control biofilms. The most important 

strategy is to prevent their formation by adopting one of several approaches. This can 

either be achieved by eliminating bacteria before they could form biofilms or by 

using surfaces resistant to biofilm formation. This latter approach means that the 

physiochemical properties of surfaces are modified or coated with either 

antimicrobial agents or other substances, such as benzyldimethyldodecylammonium 

chloride and silver (Srey et al., 2013).    

 

http://www.fda.gov/Food/GuidanceRegulation
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 The methods used to eliminate existing biofilms can be physical, chemical 

and biological. Physical control includes super-high magnetic fields, ultrasound 

treatment, high pulsed electrical fields and low electrical fields combined with 

biocides (Kumar and Anand, 1998). Chemical methods usually represent different 

types of biocides and sanitizers and they must be effective enough to eliminate EPS 

in order to facilitate their penetration to the viable cells. The combination of physical 

and chemical methods could increase their efficacy against biofilms. Halogens, 

peroxygens, acids, and quaternary ammonium compounds are the major compounds 

used in the food industry. However, their effectiveness is limited by the presence of  

soil, water hardness, temperature of applications and the ability to the physically 

contact to microorganisms (Chmielewski and Frank, 2003; Myszka and Czaczyk, 

2009).  

 

 Biological approaches have advantages over the other two methods. They 

have higher effectiveness, lower toxicity, more sustainability and less bacterial 

resistance. The most important examples of this method are quorum quenching (QQ), 

enzymes; energy uncoupling, cell wall hydrolysis and the application of 

bacteriophages (Malaeb et al., 2013).  

 

1.8. Nanotechnology  

 

 In his famous lecture: ―There is Plenty of Room at the Bottom‖, in 1959, 

Richard Feynman had introduced the first concept of nanotechnology (NT). He stated 

that the boundary of knowledge and technology could be found not only in physics 

but also in other nano-sized fields. Afterward, Norio Taniguchi was the first who 
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used and proposed the term "nanotechnology" in 1974 and it was referred to the 

precise and accurate tolerances required for machining and finishing materials 

(Ashby et al., 2009a). Later on, significant discoveries had been developed in 

different fields and more investment has been spent particularly in the field of 

fullerenes and carbon tubes (Miyazaki and Islam, 2007). Today, the term 

"nanotechnology" indicates a technology of design, fabrication, and applications of 

nanostructures and nanomaterials (Cao and Wang, 2011) . 

 

 The word "nano" is derived from Greek and means “dwarf” referring to tiny 

things with the size one billionth of a meter (10
-9

 m) (Narayanan and Sakthivel, 

2010). The national Nanotechnology Initiative has proposed the definition of 

nanotechnology as ―the understanding and control of matter at dimensions of roughly 

1-100 nm‖, where the materials below the sub-microscopic level were produced by 

manipulating their atoms and molecules (Adams and Barbante, 2013). 

  

1.8.1. Nanoparticles  

 

 Nanoparticles are recognized as the essential backbone of nanotechnology 

where assembling of precursor particles and related structures is fundamental of 

developing nanostructure materials (Roco, 1999). Previously, particles characterized 

by their small size less than 100 nm were termed as ultra-fine particles or submicron, 

but since 2000 the word nanoparticle has become the term accepted (Kruis and Joshi, 

2005). The denotations proposed by different organizations are summarized in 

Table1 (Horikoshi and Serpone, 2013).  

 



 

 
 

29 

Table 1: Definitions of nanoparticles used by different organizations 

Organization Nanoparticles definition 

ISO A particle spanning 1–100 nm (diameter) 

ASTM An ultrafine particle whose length  in 2 or 3 places is 1–100 nm 

NIOSH 
A particle with diameter between 1 and 100 nm, or a fiber spanning 

the range 1–100 nm. 

SCCP At least one side is in the nanoscale range. 

BSI All the fields or diameters are in the nanoscale range. 

BAuA All the fields or diameters are in the nanoscale range. 

ISO- International Organization for Standardization, ASTM- American Society for 

Testing and Materials, NIOSH- National Institute for Occupational Safety and 

Health, SCCP- Committee on Consumer Products, BSI- British Standards Institution, 

BAuA- Bundesanstalt für Arbeitsschutz und Arbeitsmedizin. 

 

 

Generally, NPs can be defined as materials with two or three dimensions between 1 

to 100 nm (Fahrner, 2005). Precisely, NPs are amorphous semi-crystalline 0-

dimension nanostructures with dimensions larger than 10 nm, and relatively larger 

(≥15%) size dispersion, whereas, the nanostructures materials smaller in size (1-10 

nm) and narrow size distribution called nanoclusters (Fahlman, 2011).  

 

1.8.2 Classification of nanoparticles  

 

 NPs originate from two main routes. Incidental NPs are byproducts of various 

processes, while engineered NPs are intentionally prepared for specific purposes 

(Iavicoli et al., 2013). Nano-materials (NMs) can be categorized based on origin, 

dimensions and structural content. NMs have been classified into 4 categories based 

on the number of their dimensions which are not restricted to the nanoscale range 

(Ashby et al., 2009b). These are 0-dimension (nanoparticles), 1-dimension 
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(nanorods, nanowires or nanotubes), 2-dimension (thin nanofilm, nanolayers) and 3-

dimension (dispersions of NPs and bundles of nanowires (Ashby et al., 2009b; 

Vollath, 2013). 

 

 NMs are also categorized based on their major constituents, organic and 

inorganic, into 3 classes, [1] organic polymer (e.g. emulsions, liposomes and 

dendrimers), [2] inorganic metallic (e.g. metals, metals oxides and magnetic 

materials), [3] semiconductor (e.g. quantum dots) (Luo and Stutzenberger, 2008). 

 

1.8.3. Synthesis of nanoparticles  

 

 Nano-materials are synthesized through two main techniques, i.e. the top-

down and bottom-up methods (Figure 2).  The experimental condition of NPs 

production in both laboratory and industrial areas should be controlled in order to 

produce identical NPs in terms of size, morphology, chemical composition, crystal 

structure and monodispersity (Ju-Nam and Lead, 2008). 

 

 The top-down approach is more applicable for the commercial purpose in 

which the bulk materials were reduced to their nano-size by different ways, such as 

milling, nanolithography or precision engineering (Azeredo, 2009). The bottom-up 

approach is commonly used for chemical and biological synthesis of NPs where 

atoms or molecules are combined to molecular structures (Narayanan and Sakthivel, 

2010). In this method the NPs assembled are generally produced from bulk materials 

(solid phase) to generate the nanofraction of the materials by using various 
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distribution tools (Ju-Nam and Lead, 2008) such as milling and lithography (Cao and 

Wang, 2011). 

 

 

                 Figure 2: The synthesis of nanoparticles (Fahlman, 2011).  

 

  

 Grinding system (e.g. dry and wet grinding), mechanochemical methods (e.g. 

mills and ultrasonic wave) and mechanical alloying methods are examples of this 

approach (Horikoshi and Serpone, 2013). 

 

 NPs can be build up from the bottom atom by atom, molecule by molecule or 

cluster by cluster (Cao and Wang, 2011). The techniques based on this method are 

summarized in Table 2.  
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Table 2: Nanoparticle preparation techniques (Vemal et al.,  2011) 

Method Description of method Advantages Disadvantages 

Molecular 

bean 

 

Beams are directed towards specific 

metal targets using a variety of 

methods; laser vaporization, pulsed 

arc, ion and magnetron sputtering. 

This creates clusters of metallic 

nanoparticles including nanoparticles  

 Any type of nanoparticle or nanoalloy 

can be created from metallic/alloy 

targets.  

 Nanoparticle synthesis is quick and not 

lengthy 

 Process is expensive, and requires 

equipment setup in most cases 

Chemical 

reduction 

Use of precursor salts, reducing agents 

and stabilizer to synthesize 

nanoparticles. In most cases a catalyst 

and some heating is used. 

 Can readily produce bulk quantities of 

nanoparticles and nanoparticles .  

 Process can be easily scaled up to meet 

mass manufacturing needs.  

 Process enables synthesis of particles 

close to 1 nm and this can easily be 

controlled.  

 Process is relatively cheaper compared 

to other synthesis methods since the 

technology is quite standard. 

 Mass use of chemicals and some 

may be harmful to the 

environment.  

 Processing is time consuming and 

depends on many parameters. 

Thermal 

decompositio

n of metals 

Thermal decomposition of metal or 

metal complexes (for nanoparticles ) is 

produced using high temperature 

mediums or solvents. 

 Nanoparticles can be created at 

relatively low temperatures. 

 Process can create nanoparticles in a 

wide range of sizes. 

 Requires use of chemicals and 

solvents, which may be harmful to 

the environment. 

Ion 

implantation 

This method is used to create NPs  by 

implanting two or more metal ions 

into a specific matrix. This generates 

metallic/bimetallic clusters. 

 Metallic ions can be implanted into 

exact positions in a matrix.  

 Various combinations of ions can be 

used to yield nanoalloy clusters. 

 Requires equipment setup which is 

relatively expensive compared to 

chemical reduction. 
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Table 2. - cont.   

Method Description of method Advantages Disadvantages 

Electro-

chemical 

synthesis 

Using an electrolysis cell and two 

electrodes of metallic elements, 

bimetallic NPs/nanoparticles  can be 

created in solution. Core–shell 

structures have also been created via 

this method. 

 Various nanoparticles  combinations 

can be synthesized.  

 Cell setup is rather easy and does not 

need extensive equipments. 

 Use of chemicals as electrolytes 

which may yield harmful/toxic gases 

as by products from the process. 

Radiolysis Radiolysis of an aqueous solution of 

metal ions to produce nanoparticles. 

This method has also been used to 

create nanoparticles /bimetallic 

particles. 

 Irradiation of molecules is able to 

create nanoparticles with a wide 

range of sizes, as well as very narrow 

sizes. 

 Requires expensive equipment setup.  

 Radiation is harmful to the health of 

living organisms, including humans.  

 The use of this method requires 

extensive clearance from concerned 

authorities. 

Sonochemica

-l synthesis 

Irradiation of metal salt solutions 

using ultrasound to create 

nanoparticles and nanoparticles. 

 Sonic wave irradiation is able to 

create narrow particle sizes. 

 

Biosynthesis Biological means are used to 

synthesize nanoparticles and 

nanoparticles  using microorganisms 

or plants. Synthesis of nanoparticles 

using these mediums can make the 

nanoparticles more bio-compatible. 

 This method is cheap and uses sources 

from nature.  

 The method does not produce waste 

detrimental to human beings.  

 Does not require extensive equipment 

setup. 

 This method is slow and takes time. 
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 The manufacturing of the NPs involves three main steps: co-precipitation 

or nucleation, growth and agglomeration. NPs tend to agglomerate, under the 

action of Van der Waals forces, as a way to decrease their high surface area 

(Ribeiro and Leite, 2009). This approach is divided into gaseous phase methods 

and liquid phase methods. The liquid phase methods are the major technique to 

engineer NPs and they can be sub-divided into liquid/liquid methods and 

sedimentation methods. Gel-sol process is a prime example of sedimentation 

method and greatly used in metal oxides NPs synthesis. Chemical reduction of the 

metal ions is a typical example of liquid/liquid method (Horikoshi and Serpone, 

2013). 

 

1.8.3.1. The chemical reduction method  

 

 The reduction method is applicable to produce either monometallic or 

bimetallic NPs from their transition metal salts in a dry powder form by using 

different types of stabilizers and reducing agents with narrow size distribution 

(Bönnemann and Richards, 2001). Also, it is easy to control the primary structure 

(e.g. size, shape, composition) of the NPS (Toshima et al., 2008).  

 

 The principle of the chemical reduction is that the transition metals are 

reduced to produce a zerovalent metal colloids in aqueous (hydrosols) or organic 

media (organosols) (Boönnemann and Nagabhushana, 2008). Several steps are 

involved. First the process starts with the reduction of the metal precursor by a 

reducing agent, followed by elementary nucleation. After the nuclei are formed, 

they grow slowly via deposition onto the solid surface till the complete formation 
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of NPs (Yu et al., 2008). Various types of stabilizers could be used at any stage of 

synthesis to prevent NPs agglomeration (Hubenthal, 2011). 

 

 Bimetallic NPs has a potential synergetic effect (Toshima et al., 2008), 

diversity structures, and composition (Liu et al., 2014). Generally, bimetallic NPs 

categorized into four divisions based on their structure:  

 

 Core shell segregated structure, a shell of one type of atom surrounds a 

core of the other atom. 

  Hetero-structure is formed by independent nucleation process and growth 

of two kinds of metal. Atoms of the two different metals share a mixed 

interface or have only a small number of bonds.   

 Intermetallic or alloyed structure, a homogeneous mixture of two metals 

exists in the form of a solid solution. 

 Multi-shell structure, layered or onion-like alternating shells that are 

usually metastable or stable exist (Liu et al., 2014).  

 

1.8.3.2. The biological, “green chemistry” method 

 

 The main advantages of the green method are the utilization of nontoxic 

materials, the use of environment friendly solvents and of renewable, 

biodegradable materials, and the minimized energy requirement (Aiad et al., 

2014; Stevanović et al., 2012). Green chemistry is a bottom-up method where the 

microbial enzymes or the plant phytochemicals are responsible for metals 

reduction (Nath and Banerjee, 2013).  
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Many types of bacteria have been known to produce metal structures either intra 

or extracellular (Nath and Banerjee, 2013) as a resistance mechanism or to 

conserve energy for growth (Hennebel et al., 2009). For instance, Pseudomonas 

stutzeri is resistant to silver, and this property is attributed to the intracellular 

accumulation of silver crystals of approximately 200 nm in diameter with a well-

defined composition and shape (Hennebel et al., 2009). Various microbes are well 

known to reduce Ag metal to NPs, e.g. K. pneumoniae, E. coli, and Enterobacter 

cloacae has been investigated in this regard (Sharma et al., 2009). 

 

 In the recent decade, various biological agents have been investigated to 

produce different types of metallic nanoparticles like copper, zinc, titanium, gold, 

and silver NPs (Durán and Marcato, 2012; Durán et al., 2011; Manjumeena 

Rajarathinam et al., 2013). Polymers like chitosan, starch, and polypeptide also 

have been studies for their application as reducing and stabilizing agent in NPs 

preparation (Zhao et al., 2014). 

 

1.9. Properties of nanoparticles  

 

 The unique properties of NPs are attributed to their small size, and to the 

high surface to volume ratio resulting in a high percentage of atoms on the 

particle’s surface. Consequently, reactivity is increased and, depending on the 

application, it can provide increased surface catalysis, improved loading of the 

surface or greater release of ions into solution (Perni et al., 2014). Their ultrafine 

size is similar to that of biological macromolecules like proteins and structures 

like viruses (Fadeel and Garcia-Bennett, 2010). These unique characteristics 
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include shape, surface properties, purity, stability, molecular weight, composition, 

identity and solubility (Lin et al., 2014).  

 

 The full understanding of the physiochemical characteristic of NPs is 

important to realize their toxicity to biological system (Oberdörster et al., 2005). 

Some NPs have tendency to form aggregates or agglomerates under ambient 

condition. Various forces play a role in NP-NP interactions such as weak van der 

Waals forces and stronger polar and electrostatic or covalent interactions. This 

kind of interaction forces between either NP-NP or NP-aqueous solution are the 

basis for chemical and physical processes (Niazi and Gu, 2009). 

 

 Size is one of the most critical factors among NPs properties as it could 

play an important role in physiological interactions. For example, it regulates NPs 

movement, penetration and localization of specific targets (Amol S Amritkar et 

al., 2011). Surface composition is also an important factor relevant to the 

dissolution, aggregation and accumulation of NPs. Surface charge controls the 

dispersion stability or aggregation of nanoparticles (Lin et al., 2014).  

 

1.10. Characterization of nanoparticles 

 

 Various physical and chemical techniques, such as separation, 

spectrometric and microscopy techniques, have been employed to characterize the 

NPs' composition, morphology, coating and size (Peralta-Videa et al., 2011) 

(Capaldi Arruda et al., 2015). Separation methods mostly developed for the size 

determination (Shen and Yu, 2009). Cloud-point extraction, chromatographic 
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methods, electrophoresis and density-gradient centrifugation are the most 

frequently used methods (Liu et al., 2012). Among these HPLC is considered the 

most powerful and efficient technique because it capable to separate small sizes 

(<10 nm) NPs (Capaldi Arruda et al., 2015).  

 

 Electron microscopy, transmission and scanning electron microscopy are 

used to visualize nanoparticles and determine their size, polydispersity, and shape 

(Maskos and Stauber, 2011). On the other hand, the spectrometric methods, X-ray 

diffraction, dispersive spectroscopy X-ray and inductively Coupled Plasma Mass 

Spectrometry (ICP-MS) are used to quantify the elementary information of NPs 

(Capaldi Arruda et al., 2015).  

 

 Zeta potential has also been used to characterize the surface charge of 

NPs. Those particles with high Zeta potential value, (above ±30), usually exhibit 

stability in suspension because the surface charge prevents aggregation of those 

NPs (Lin et al., 2014).   

 

1.11. Application of Nanoparticles  

 

 Their small size, in combination with the chemical composition and 

surface structure gives NPs their unique features and huge potential for 

applications (Bouwmeester et al., 2009; de Faria et al., 2014). This is the driving 

force behind developing new products with new properties to meet the increased 

demand in the industrial areas (de Faria, et al., 2014). The enormous potential of 

the technology is shown by the fact that three to four new nanotechnology 
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consumer products introduced into the markets weekly (Gajewicz et al., 2012). It 

is speculated that nanotechnology markets will reach 1 trillion dollars by 2015. 

Nanotechnology has been involved in four main areas nanomedicine, 

nanofabrication, nanometrology and nanomaterials or nanoparticles (Aitken et al.,  

2006). Nanotechnology has caused a dramatic change in many disciplines from 

science, industry to agriculture (Yao et al., 2013). 

 

 Application of NT has considerably increased recently and it is estimated 

that in 2010 only $1.64 billion were spent on the advancement of 

nanotechnologies in the US (Cushen et al., 2012). Due to their capacity to adsorb 

and carry drugs, probes and protein, they have been widely used in the different 

medical fields (Nath and Banerjee, 2013) such as pharmaceuticals, medical 

imaging and diagnosis, cancer treatment, implantable materials, and tissue 

regeneration (Etheridge et al.). Furthermore, nanoscale materials are used for 

cosmetics, house paints, clothing, and computers (Vaseashta, 2009). 

 

1.11.1 Application of nanotechnology in food sector  

 

 In nature, several food ingredients have nanoscale properties, e.g. the 

native beta-lactoglobulin food protein has about 3.6nm length. Nanotechnology 

could be utilized all through the food sector "from farm to fork" (Sekhon, 2010) 

as summarized in Figure 3.  
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 Figure 3: Application of nanotechnology in the food sector  

 

 The main purposes of applying NT in the food area are to improve food 

quality and safety. NPs have been used to alter food texture, encapsulate food 

components, develop new tastes and sensation, control flavor release and 

bioavailability of nutritional components (Chaudhry et al., 2008). Along with that, 

the new innovation in NTs help to create new food packaging materials with 

enhanced mechanical, barrier, antioxidant and antimicrobial properties (Jiménez 

and Ruseckaite, 2012).  

 

 In order to enhance the functionality of the packaging material, they were 

manufactured from nanocomposites that are comprised of a single, or mixture of 

polymers with at least one organic or inorganic nano-filler such as SiO2, clay, 

TiO2, silicates, and noncellulose. These new formula are capable to enhance 

mechanical properties, e.g. stiffness, toughness, tensile, shear strength, and 

barriers properties for the diffusion of the permeant molecules 

(Mihindukulasuriya and Lim, 2014).   
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Recently, plenty of polymers have been innovated as nanocomposite film such as 

Durethan. This nanomaterial film is enriched with an enormous number of silicate 

nanoparticles that reduce entry of oxygen and other gases and the exit of moisture, 

thus preventing food from spoiling (Sekhon 2010). Clay nanoparticle is another 

example of nanocomposities emerged on the market as food packaging materials. 

The nanoclay mineral used in these nanocomposites is montmorillonite which has 

a natural nano-layer structure that limits the permeation of gases, and provides 

substantial improvements in gas barrier properties of nanocomposites. This 

material has a potential use in a variety of food-packaging applications, such as 

processed meats, cheese, as well as in extrusion-coating applications for fruit 

juices and dairy products, or co-extrusion processes for the manufacture of 

carbonated drinks bottles (Chaudhry et al. 2008).  

 

  Currently, antimicrobial nanocomposite films where incorporated into 

food packaging materials to work as growth inhibitor, killing agents or antibiotic 

carries. Polymers based their structure on silver NPs mostly are used as 

antimicrobial coating films (Azeredo, 2009). Zapata and coworkers demonstrated 

that polyethylene nanocomposites coated with Ag NPs has 99.99 % of efficacy 

against bacteria compared with the uncoated one (Zapata et al., 2011).  

 

 It has been claimed that Ag NPs exhibit other functions beside their 

antimicrobial effect, such as extending shelf life of fruits and vegetables through 

absorption and decomposition of ethylene, and retarding senescence (Azeredo, 

2009). Furthermore, Cu-nanofiber was shown to enhance the package tensile 
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strength and worked as oxygen barriers and antimicrobial agent when it 

incorporated with high density polyethylene (Bikiaris and Triantafyllidis, 2013). 

 

 NP-based biosensors have been shown to improve sensitivity, specificity 

and carry the promise to develop new innovations to detect pathogens. Three 

nanotechnologies have been proposed for this purpose i.e. nanoarrays, nanofluids 

and nanotransduction (Driskell and Tripp, 2009). Yang and coworkers reported 

that a test based on NPs capable to detect of E. coli O157 inoculated in ground 

beef with as low detection limit as 1.6 x10 cfu/ml. Along with that, this 

technology was sensitive enough to detect L. monocytogens in mono or two 

species biofilm models (Yang et al., 2008). Moreover, nanosensors were 

developed for traceability and monitoring condition of food during transportation 

and storage (K.A. Abbas et al., 2009) where these sensors can interact with either 

food components or external environment and generate a response in correlation 

with the food status such as oxygen indicators (Mihindukulasuriya and Lim, 

2014), food freshness sensor (Maynor et al., 2007), and time-temperature 

indicators (Zeng et al., 2010). 

 

  NPs have a great impact on the water and wastewater treatments where 

they have been engineered as a filter membrane with excellent properties. 

Membranes were designed with nano-adsorbents materials that are capable to 

remove organic and inorganic contaminates in water (Qu et al., 2013). Along with 

what mentioned above, also NPs used as carriers of synthesized pesticides (de 

Oliveira et al., 2014), nanoceuticals (Chellaram et al., 2014), animal feed 

nanosupplements and mycotoxin binders (Handford et al., 2014). 
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1.11.2. Antimicrobial and anti-biofilm effect of metals and nanoparticles 

 

Although various metals are essential micronutrients for bacterial growth, 

some of them are toxic at certain level such as iron, zinc, cobalt, copper and nickel 

(Matyar et al., 2014). The mechanism of toxicity of  metals is strongly dependent 

on its oxidation state and on the role of the structure or function of chemical 

species in the cell.  Most of the metals ions can bind to thiol groups, affecting the 

activity of essential enzymes or the role of structural proteins. Similarly, metals 

cations may displace essential cations within the enzymes, modifying their 

functionality or causing an imbalance of the redox state of the cell leading to 

oxidative stress (Borsetti et al., 2009). Some toxic metals have potency to inhibit 

and kill sessile cells and increase detachment of bacteria and EPS from biofilms. 

The effectiveness of the metal depends on metal speciation and concentration and 

on microbial species. It has been documented that at certain metal concentrations,  

EPS production may be enhanced and this may lead to retardation of metal 

transport in EPS matrix (Yang et al., 2013). 

 

In recent years, the use of metals in the form of nanoparticles as 

antimicrobial agents has gaining noticeable attention (Allaker et al., 2011). 

Different types of nanomaterials like copper, zinc, titanium, magnesium, gold, 

alginate and silver were introduced but silver NPs have proved to be most 

effective NPs (Rai et al., 2009). Also, metal oxide showed a remarkable 

antibacterial activity due to high surface areas and unusual crystalline 

morphologies with a high number of edges and corners, and other potentially 

reactive sites (Sathyanarayanan et al., 2013). 
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  The antimicrobial mechanisms of metal NPs is attributed to their high 

surface to volume ratio rather than to the effect of metal-ion release. Such 

characteristics allow nanoparticles to interact closely with cell membrane, damage 

their structure, and inactivate bacterial enzyme (Sathyanarayanan, et al., 2013). 

The potency of NPs is determined by their physical properties (i.e. size and shape) 

and their chemical composition and stability (Ivask et al., 2012). Size has a strong 

reverse relationship with NPs antimicrobial activity, i.e. smaller size Ag NPs 

appeared to be more toxic than larger particles (Choi et al., 2009). Shape also 

affects activity of nanoparticles. It has been shown that silver nanoparticles with 

truncated triangular shape displayed the greatest bactericidal effect compared with 

spherical and rod shaped nanoparticles (Allaker, 2012).  

 

Information on the susceptibility of biofilms to nanoparticles is limited and 

their antimicrobial effects are unclear. A study conducted by Raftery and 

coworkers revealed that Ag NPs were found to inhibit biofilm formation of P. 

aeruginosa and S. epidermidis by 95 % and caused sloughing of P. putida 

biofilms (Raftery et al., 2013). Kalishwaralal and coworker reported that Ag NPs 

could directly transport into the biofilm through the water channel, diffuse 

through biofilm matrix and block the synthesis of EPS by bacteria (Kalishwaralal 

et al., 2010). Another study demonstrated that ZnO NPs produce reactive oxygen 

species (ROS) that interfere with E. coli and S. aureus biofilm formation. Also, 

superparamagnetic iron oxide showed the highest antibacterial activity against 

biofilms, they have a considerable capability to penetrate into biofilms by using 

external magnetic fields (Hajipour et al., 2012) 
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The diffusing capacity of NPs into biofilm is controlled by their mobility, 

aggregation, and toxicity. The diffusion of NPs may be restricted by (1) local 

accumulation of NPs by cells, non-diffusing macromolecules or the EPS matrix; 

(2) the porous structure of the biofilm, and (3) the adsorption of the solute to 

freely diffusing species, abiotic surface or gas bubbles (Martinez-Gutierrez et al., 

2013).  

 

 Although, application of NPs is sharply increased, the knowledge on their 

potential toxicity is still limited (Bouwmeester et al., 2009). Despite, the unique 

chemical and physical properties of NPs, their potential risk must be taken in to 

consideration. Based on their nature NPs have different potential toxicity 

mechanism (Niazi and Gu, 2009). There are three possible routes where NPs can 

access human body: dermal exposure, inhalation and ingestion (Chau et al., 2007). 

Due to the reactive surface of the small particles size, harmful free oxygen 

radicals are generated and initiate several side effects. First, NPs have high ability 

to attack cell membrane, DNA and proteins. Second, their capability to penetrate 

the body and cells enhance their access to reach sites where they are not normally 

present. Third, as their bio-distribution is unknown, it could promote their 

accumulation in the body over time which may lead to a potential hazard (Liu et 

al., 2014). The adverse health effects of the engineered nanomaterial on various 

organs could be present after long term exposure. These effects may include 

oxidative stress on immune and activation of pro-inflammatory cytokines in 

lungs, liver, heart and brain (Bouwmeester, et al., 2009). 
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Taken together, nanoparticles have several features, which make them 

attractive candidates to be used in interfering with food-contaminating 

microorganisms. During my work I intended to explore some of these 

possibilities. 
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Chapter 2. Aims and objectives  
 

In order to establish more effective preventive strategies, the long term 

aim of the study was to contribute to a better understanding of how bacteria 

colonize niches related to food-production, in particular how they establish 

biofilms on inanimate surfaces and also to clarify how metal NPs applied in forms 

of nanoparticles could eliminate some of the most common food-borne bacteria, 

prevent the formation and reduce existing biofilms. It is believed that by 

achieving our objectives an information highly relevant for combatting food-

transmitted infections could be provided. 

 

Specific objectives 

1. to investigate the biofilm producing capacity of E. coli ST131 strains, i.e. 

a multidrug resistant extra-intestinal pathogen often transmitted by food, 

under various growth conditions. 

2. to reveal the clonal nature of biofilm formation in E. coli ST131. 

3. to relate biofilm formation to particular genes 

4. to evaluate the antibacterial effect of the nanoparticles  against a selected 

groups of food-borne pathogens  

5. to investigate the capacity of the nanoparticles  to kill bacteria in existing 

biofilms. 

6. to reveal whether sensitivities in biofilms to nanoparticles  have any clonal 

relation in S. aureus 
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7. to prove  the sanitary effect of nanoparticles  against food-borne pathogens 

when applied on stain-less steal surfaces 
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Chapter 3. Materials and methods 
 

3.1.  Bacterial strains 

 

For routine susceptibility testing of planktonic and sessile cells in biofilms, 

as well as for assessing the sanitary effect of nanoparticles (NPs) clinical isolates 

methicillin resistant Staphylococcus aureus (MRSA) S800, Escherichia 

coli TPC244, SZ29659 and 90405, Pseudomonas aeruginosa AG1 and 

Salmonella BC789 were used from our own strain collection (Medical 

Microbiology and Immunology Department, College of Medicine and Health 

Sciences, UAEU). The clonality of nanoparticle efficacy in S. aureus was tested 

using 10 methicillin resistant S. aureus (MRSA) strains recovered in Tawam and 

Al Ain hospitals (Al Ain, UAE) from various clinical materials, representing 

various clonal lineages (see later). The biofilm forming capacity of E. coli ST131 

clone was tested on a pool of 115 non-repeat isolates recovered from blood and 

urine samples of patients in Tawam hospital (Al Ain, UAE) (95 isolates) and in 

three Hungarians university hospitals (Szeged, Debrecen and Budapest, Hungary) 

(20 isolates). E. coli ATCC 25922 and S. aureus ATCC 25923 were used as 

controls for antibiotic susceptibility testing. 

 

All isolates were stored in duplicates in Tryptic Soy Broth (TSB, Mast, 

UK) containing 10% glycerol (Univar, US) in two separate -80 ºC freezers being 

on independent electric circuits. Prior each experiment strains were propagated on 

Tryptic Soy Agar (TSA, Mast, UK) and incubated for 24 h at 37 ºC. 
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3.2. Susceptibility testing  

 

Qualitative antibiotic susceptibility testing was conducted by the Kirby-

Bauer (disc diffusion) method. Overnight cultures grown at 37 ºC on Mueller 

Hinton agar (MHA, Mast, UK) were used to suspend bacteria into 0.9% NaCl. 

This suspension was applied by a sterile swab (Citoswab, China) onto MHA 

plates and the antibiotic discs were placed on by an applicator, seven discs per an 

90mm dish. Plates were incubated for 18 h at 37 ºC. This mode of inoculation 

yielded a semi-confluent growth. For Gram-negative bacteria (P. aeruginosa and E. 

coli) the following antimicrobials were tested using discs (MAST: ceftazidime, 

imipenem, meropenem, gentamicin, amikacin, doxycyclin, ciprofloxacin and 

trimethoprim-sulphamethoxazole). For S. aureus the following discs were used: 

cefoxitin, mupirocin, clindamycin, erythromycin, gentamicin, amikacin, 

kanamycin, streptomycin, neomycin, rifampicin, fusidic acid, teicoplanin, 

linezolid, trimethoprim-sulphamethoxazole, ciprofloxacin and tetracycline. The 

diameters of the zone of inhibition were measured with a caliper.  

 

To determine the Minimal Inhibitory Concentration (MIC) of 

nanoparticles three to four isolated colonies were picked, suspended into 5 ml 

Mueller Hinton broth (MHB, Oxiod, UK) and incubated at 37 ºC for 4 h under 

shaking of 300 rpm. After incubation, the optical density (OD) of the culture was 

measured at 600nm (DU-70 spectrophotometer, Beckman, US) and converted to 

cfu/ml value using a standard curve. Subsequently, the suspension was diluted in 

MHB in order to obtain approximately 5x10
5 

cfu/ml.  
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Antibiotic stocks were prepared to yield doubling multiplicities of 1 mg/L 

concentration and diluted serially in 96 wells microtiter plates (Nunc, US) 

containing 50 µl MHB.  NP stock solutions at 1 mg/ml concentration were freshly 

prepared in MHB and sonicated for 20 min (Ultrasonic Homogenizer 4710 series, 

Cole-Parmer, US). Serial dilutions of NPs were prepared in a sterile 96 wells plate 

containing 50 µl MHB.  

 

Aliquots (50µl) of the bacterial suspension were dispensed into each well 

except the last one, which was used as a sterility control. Plates were sealed with 

Parafilm to avoid evaporation and were incubated at 37 ºC for 24 h under shaking 

of 250 rpm using Orbi shaker MP (Benchmark, US) to prevent sedimentation of 

the nanoparticles. On the following day, the OD of the wells was measured at 

600nm using plate reader (Tecan, Austria).  The MIC was defined as the lowest 

concentration of the test compounds that inhibited visible growth (i.e. OD not 

exceeding that of the sterility control well). All tests were performed in triplicates. 

 

For antibiotics, susceptibility was determined according to the CLSI 

guidelines (CLSI, 2014).  For nanoparticles, as they do not have established 

"clinical breakpoints" only the mg/L value was registered without any further 

interpretation. 
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3.3. Molecular methods 

 

3.3.1. DNA extraction  

 

Three to four isolated colonies of E. coli from fresh TSB culture were 

suspended in 200 µl sterile distilled water, incubated at 99 ºC for 10 min and 

centrifuged at a maximum speed (14,800rpm) for 10 minutes (Sigma Microfuge, 

US). Afterward, the supernatants were collected, transferred into new Eppendorf 

tubes, kept at 4 ºC and used as samples in PCR reactions.  

 

S. aureus DNA was extracted according to the method described (Louie et 

al., 2002).  Three to four colonies were inoculated into 95 μl Triton X lysis buffer 

and 5μl lysostaphin (400 mg/L). Samples were incubated at 37 ºC for 10 min and 

followed by another incubation at 99 ºC for 10 min. Later on, the tubes were 

centrifuged at high speed (14,800 rpm) for 10 min. Finally, the supernatants were 

transferred into new Eppendrof tubes and kept at 4 ºC until used.  

 

3.3.2. Genotyping Escherichia coli by Polymerase Chain Reaction  

 

PCR amplifications were carried on Applied Biosystems 2700 and 2720 

thermocyclers. Typically, the reaction was initiated at 94 ºC for 5 min followed by 

20-35 cycles at different annealing, denaturation and extension temperatures, 

depending on the primers used. After the last PCR cycle the product was kept for 

a final extension at 72 ºC for 7-10 min.  All genes targeted, the used primers, and 

the reaction conditions were summarized in Table 3.  
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Table 3: PCR reactions of E. coli  adhesion genes 

Gene 
Primer 

 
Sequences (5’- 3’) 

Product 

size 

Initial 

Denaturation 

 

Cycle 

 

Final 

extension 

 

Ref 

Detection of fimbria genes 

papC 
PapC f 

PapC r 

GTGGCAGTATGAGTAATGACCGTTA 

ATATCCTTTCTGCAGGGATGCAATA 220 bp 

5’ at 94˚C 

  

25X (30‖ at 94˚C, 

30‖ at ˚C 63 and 

60‖ at 72˚C) 

10’at 

72˚C 

 

(Johnson 

and Stell, 

2000) 

papAH 
PapA f 

PapA r 

ATGGCAGTGGTGTCTTTTGGTG 

CGTCCCACCATACGTGCTCTTC 
720 bp 

papEF 
PapEF f 

PapEF r 

GCAACAGCAACGCTGGTTGCATCAT 

AGAGAGAGCCACTCTTATACGGACA 
336 bp 

fimH 
FimH f 

FimH r 

TGCAGAACGGATAAGCCGTGG 

GCAGTCACCTGCCCTCCGGTA 
508 bp 

bmaE 
bmaE-f 

bmaE-r 

ATGGCGCTAACTTGCCATGCTG 

AGGGGGACATATAGCCCCCTTC 

507 bp 

 

sfa/focDE 
sfa1 

sfa2 

CTCCGGAGAACTGGGTGCATCTTAC 

CGGAGGAGTAATTACAAACCTGGCA 410 bp 

gafD 
gafD-f 

gafD-r 

TGTTGGACCGTCTCAGGGCTC 

CTCCCGGAACTCGCTGTTACT 
952 bp 

focG 
FocG f 

FocG r 

CAGCACAGGCAGTGGATACGA 

GAATGTCGCCTGCCCATTGCT 
360 bp 

afa/draBC 
Afa f 

Afa r 

GGCAGAGGGCCGGCAACAGGC 

CCCGTAACGCGCCAGCATCTC 
559 bp 

sfaS 
SfaS f 

SfaS r 

GTGGATACGACGATTACTGTG 

CCGCCAGCATTCCCTGTATTC 
240 bp 

nfaE 
nfaE-f 

nfaE-r 

GCTTACTGATTCTGGGATGGA 

GCTTACTGATTCTGGGATGGA 
559 bp 
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Cont. Table 3. 

Gene Primer Sequences (5’- 3’) 
product 

size 

Initial 

Denaturation 

 

Cycle 

 

Final 

extension 

 

Ref 

Detection of fimbria genes 

iha 
iha-I 

iha-II 

CAG TTCAGTTTCGCATTCACC 

GTA TGG.CTC.TGATGCGATGG 
1305 bp 

5’ at 94˚C 

 

35X (30‖ at 94˚C, 

30‖ at 53˚C and 

90‖ at 72˚C) 

10’at 

72˚C 

(Toma et al., 

2004) 

Detection of Autotransporter UPA&C genes 

UpaH 
upaH f 524 

upaH r 525 

AGT GAA GGG GCA AAA ACC TT 

TGA AAC CAC CAC CAT TCT GA 
328 bp 

5’ at 94˚C 

 

30X (30‖ at 94˚C, 

30‖ at 50˚C and 

60‖ at 72˚C) 

 

7’at 72˚C 

(Allsopp et al., 

2012) 
UpaB 

CO426.s-5 

CO426.s-3 

GGA AAG GCA AAG TTT CAG GG 

GGT GGT ATG TTT CTG TTT AC 
462 bp 

Detection of curli fimbriae 

Crl M571F 

M570R 

TTTCGATTGTCTGGCTGTATG 

CTTCAGATTCAGCGTCGTC 250bp 

5’ at 94˚C 

30X (30‖ at 94˚C, 

30‖ at 50˚C and 

60‖ at 72˚C) 
7’at 72˚C 

(Maurer et al., 

1998) 
CsgA M464F 

M465R 

ACTCTGACTTGACTATTACC 

AGATGCAGTCTGGTCAAC 456bp 

30X (30‖ at 94˚C, 

30‖ at 55˚C and 

30‖ at 72˚C) 

Detection of cellulose synthase gene 

BcsA BCSA74 F 

BCSA86 R 

GCAACAGATTCAATTTCTGCCCTTC 

GCACCCGCGCTGGCAGCGTATTCG 860bp 5’ at 94˚C 

35X (30‖ at 94˚C, 

30‖ at 58˚C and 

1’30‖ at 72˚C) 

7’at 72˚C 

(Zogaj et al., 

2003) 
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Cont. Table 3. 

Gene 
Primer 

 
Sequences (5’- 3’) 

product 

size 

Initial 

Denaturation 

 

Cycle 

 

Final 

extension 

 

Ref 

Detection of Autotransporter Ag43 genes 

Ag43 agn43 F 

 agn43 R 

CTGGAAACCGGTCTGCCCTT 

CCTGAACGCCCAGGGTGATA 433bp 

1’ at 95˚C 

30X (1’ at 95˚C, 

1’ at 58˚C and 1’ 

20’’at 72˚C) 

10’at 

72˚C 

(Restieri 

et al., 

2007) 

Ag43-K12 agn43K12 F 

agn43K12 R 

CCGGCGGGCAATGGGTACA 

CAGCTCTCACAATCTGGCGAC 386 bp 

Ag43-EDL agn43EDL933 F 

agn43EDL933 R 

CGTATCGCTGTGCCCGATAAC 

CCGTATACGAGTTGTCAGAATCA 707 bp 

Ag Rs218 agn43RS218 F 

agn43RS218 R 

CGGATTTCACCACCGTTAACC 

CATCCACCAGTGTTTTCCAGG 240 bp 

Ag43a-cft073 agn43aCFT073 F 

agn43aCFT073 R 

AGGCAGGAGGAACTGCCAGT 

TAAATGAGGGTGTCCCGTGCC 340 bp 

Ag43b-cft073 agn43bCFT073 F 

agn43bCFT073 R 

CAGCCGGATCTGCGGCACT 

ACTCTGGTGTTTCTGGCTGTT 440 bp 
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Amplified DNA was analyzed using 1-2% agarose gels (Promega, US) in 

the presence of ethidium bromide (Sigma, US), and then the gels were examined 

and photographed at 302nm using the Biometra Gel Documentation System 

(Biometra, Gottingen, Germany). To assess the molecular mass of the amplicons 

Gene Ruler 100 bp DNA ladder standards (Fermentas, US) were run on each gel. 

 

3.3.3. Multilocus sequence MLST typing  

 

In order to study the relatedness of the MRSA strains, their genomic DNA 

were typed by MLST method based on the protocol described by Enright 

coworkers (Enright et al., 2000). The seven housekeeping genes (arc, aroE, glpF, 

gmk, pta, tpi, yqiL) were amplified using the primers shown in Table 4. The PCR 

product was purified according to the manufacturer’s instruction with PCR and 

gel purification kit (Promega, US). The MLST was established according to the S. 

aureus MLST webpage (http://saureus.mlst.net/).  

 

3.3.4. DNA sequencing 

 

Sequencing of the column-purified PCR amplicons was carried out on 

both strands using a 3130X genetic analyzer (Applied Biosystems). The 

sequences  were aligned using the MEGA5 program (Tamura et al., 2011).  

 

 

http://saureus.mlst.net/
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Table 4: Primers and amplification parameters for Multilocus Sequence Typing of S. aureus 

Gene Primer Sequences (5’- 3’) Product 

size 

Initial 

Denaturation 
Cycle 

Final 

extension 
Ref 

arcC arcC-Up 

arcC-Dn 

5’TTG ATT CAC CAG CGC GTA TTG TC 3’ 

5’AGG TAT CTG CTT CAA TCA GCG 3’ 
456bp 

5’ at 94˚C 
30X (1’ at 94˚C, 

1’ at ˚C 55 and 1’ 

at 72˚C) 
7’at 72˚C 

(Enright, et 

al., 2000) 

aroE aroE-Up 

aroE-Dn 

5’ATC GGA AATCCT ATT TCA CAT TC 3’ 

5’GGT GTT GTA TTA ATA ACG ATA TC 3’ 
456bp 

glpF glpF-Up 

glpF-Dn 

5’CTA GGA ACT GCA ATC TTA ATC C 3’ 

5’TGG TAA AAT CGC ATG TCC AAT TC 3’ 
465bp 

gmk gmk-Up 

gmk-Dn 

5’ATC GTT TTA TCG GGA CCA TC 3’ 

5’TCA TTA ACT ACA ACG TAA TCG TA 3’ 
429bp 

pta pta-Up 

pta-Dn 

5’GTT AAA ATC GTA TTA CCT GAA GG 3’ 

5’GAC CCT TTT GTT GAA AAG CTT AA 3’ 
474bp 

tpi tpi-Up 

tpi-Dn 

5’TCG TTC ATT CTG AAC GTC GTG AA 3’ 

5’TTT GCA CCT TCT AAC AAT TGT AC 3’ 
402bp 

yqiL yqiL-Up 

yqiL- Dn 

5’CAG CAT ACA GGA CAC CTA TTG GC 3’ 

5’CGT TGA GGA ATC GAT ACT GGA AC 3’ 
516bp 
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3.3.5. Macrorestriction analysis with pulsed field gel electrophoresis 

 

In this technique a restriction endonuclease with rare cutting sites (XbaI) 

was applied to digest the entire bacterial chromosome embedded into agarose gel 

plugs to protect DNA from mechanical fragmentation. The large DNA fragments 

generated by enzymatic digestion were electrophoretically separated in an 

electrical field with changing vector of the current (Gautom, 1997). The pattern of 

the fragments provided the basis of comparison. 

 

Bacterial strains grown on TSA plates were suspended in 2 ml of cell 

suspension buffer up to a density of 3 McFarland units. Suspensions were kept on 

ice. Simultaneously, 1% plug agarose (Sigma, US) was melted in 1% SDS in TE 

buffer and kept at 54 ºC. 500 μl bacterial suspensions, 25 μl of proteinase K 

(Invitrogen, US) (20 mg/ml) and 525 μl of 1% plug agarose were combined, 

mixed carefully, quickly transferred into 1 ml syringes and kept for 15-30 minutes 

at room temperature to allow the solidification of the agarose. Aliquots of 5 ml 

cell lysis buffer and 25 μl proteinase K 20 mg/mL were distributed into 50 ml 

tubes and 1mm thick slices of agarose plugs were directly cut into them. They 

were incubated for 2 hours at 50 ºC in a shaker water bath (200 rpm) (Lab line, 

US). Subsequently, the plugs were washed twice with 10 ml of preheated sterile 

MilliQ water for 20 minutes in a 50 ºC shaker water bath. Plugs were washed four 

times for 20 minutes with 10 ml of preheated TE buffer. Finally, plugs were 

stored in 5 ml of fresh TE buffer at 4 ºC.  
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Genomic DNA within the plugs were digested overnight at 37 ºC in a 100 

μl restriction mixture made of 10μl of NE buffer 4 (Biolabs, New England), 1 μl 

of BSA (Biolabs, New England), 30 U (1.5 μl) of XbaI enzyme (Biolabs, New 

England) and 87.5 μl of sterile distilled water. Following digestion, the restriction 

mixtures were removed and the plugs were incubated in 250 μl of 0.5X TBE 

buffer for 30 minutes at room temperature. Subsequently, plugs were inserted into 

wells of 1.4% of agarose gel (Pulse Field Running Agarose A2929, Sigma,US) 

prepared in 0.5X TBE buffer. The two wells at the two sides of each gel contained 

a lambda-ladder PFGE marker (Biolabs, New England) for standardization. Gels 

were run in CHEF Mapper (Biorad, US) electrophoresis chamber in 0.5X TBE 

buffer pre-chilled to 14 ºC. The running program consisted of 26 hours run at 6 

V/cm with 120º angle and an initial switch time of 2.2 seconds and a final switch 

time of 54.2 seconds with linear ramp. 

 

The gels were stained with ethidium bromide for 20 minutes, followed by 

de-staining in MilliQ water. Bands were detected and photographed under UV 

light in a Biometra gel documentation system. Gel pictures were stored as .tif files 

for further analysis. The Gel Compare II software (Applied Maths, Sint-Martens-

Latem, Belgium) was used to analyze the banding patterns. The Unweighted Pair 

Group Method with Arithmetic Mean (UPGMA) tree graphically showing the 

level of relatedness between the isolates was created based on the Dice similarity 

coefficient (SD) (Dice, with a 1.5% position tolerance). Strains showing patterns 

with SD ≥ 80% were arbitrarily considered to represent a pulsotype. 
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3.4. Preparation of nanoparticles and their NPs 

 

Nanoparticles were prepared by the co-precipitation. Ag, Cu, Ag-Cu and 

Ag-Cu-B nanoparticles were prepared with volume ratios shown in Table 5. 

 

Table 5: Nanoparticles prepared with different volume ratios 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Composition 
Volume 

ratio 

Ag-Cu-B 

70:20:10 

60:30:10 

50:40:10 

40:50:10 

45:45:10 

40:40:20 

35:35:30 

30:30:40 

30:60:10 

20:10:10 

Ag 100 

Cu 100 

Ag-Cu 

90:10 

10:90 

80:20 

20:80 

70:30 

30:70 

60:40 

40:60 

50:50 
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3.4.1. The chemical co-precipitation method  

 

By this method nanoparticles were produced by the reduction of metal 

salts dissolved in an organic solvent or water (Ferrando et al., 2008). In this study, 

silver nitrate (AgNO3, 99.99%), copper sulfate (CuSo4) (both from Interchem, US) 

and boric acid (H3Bo3) (Panreac, Spain) salts were used as metal precursors. 

Based on each volume ratios 25 ml 0.1 M solutions of each salts were prepared in 

deionized water and sonicated for once 10 min with power output at 40% 

(maximum 100W) and pulsar 70-80% (Ultrasonic Homogenizer 4710 series, Cole 

Parmer, USA). Then, drop-wise, 1 ml of 2 M NaOH (AJAX chemical, Australia) 

was added to the mixture until the formation of black precipitate was visible. The 

mixture was sonicated for 20 more minutes while the precipitate turned to greyish 

black. The precipitate formed was rinsed three times in deionized water by 

centrifugation at 4000 rpm for 10 minutes. Washed NPs were dried at 60 ºC for 1 

h and were stored under ambient room temperature.   

 

3.4.2. The green approach: The microwave method  

 

In this technique (Mirzaei and Davoodnia, 2012), three nanoparticles were 

synthesized: Ag-Cu-B, Ag-Mg-B and Ag-Na-B, all in volume ratio of 70:20:10, 

respectively. Each NPs was prepared by mixing 0.1 M from the salts of each metal 

and 1 ml of 2 M NaOH in 50 ml borosilicate tubes. The mixtures were reacted 

under microwave oven (CEM, Discover, US), at 300 W and pressure of 1 Atm for 

5 min. The precipitates were subjected to four cycles of centrifugation and 

washing using deionized water. Finally, the NPs formed were dried at 60 ºC and 

stored under ambient room temperature.  
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3.4.3. Characterization of nanoparticles 

 

The NPs engineered were characterized by using transmission electron 

microscope (TEM, Tecnai G2, Netherlands) to measure their morphology and 

Zeta Sizer (Malvern, England) to measure their charge and size distribution.   

 

3.5. Experiments with biofilm models 

 

The biofilm model was used for two purposes: on one hand to assess the 

extent of biofilm production under various growth conditions in an important 

group of E. coli strains transmitted by food and, on the other hand, to investigate 

efficacy of nanoparticles to kill microbial pathogens in biofilms of different 

composition. For each experiments growth conditions reported to be optimal for 

biofilm production for the respective pathogens were explored (see below). For 

both type of experiments biofilms were grown in 96 wells tissue culture plates 

(Nunc). 

 

3.5.1. Biofilm formation of E. coli ST131 

 

Biofilm formation of E. coli ST131 was studied with bacteria grown in 

rich media and also in media more restricted in nutrients, in this both cases at 37 

ºC and at room temperature. While growing in nutrient restricted environment, the 

effect of anaerobiosis was also studied. 
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3.5.1.1. The nutrient rich method 

 

For the nutrient rich environment the methods of Donelli et al. was used 

with some modification (Donelli et al., 2004). E. coli strains were grown 

overnight in 2 ml Brain Heart Infusion (BHI, Oxiod, UK) at 37 ºC. Next morning,  

10 µl of these cultures were transferred into 2 ml of TSB or Luria Broth (LB, 

Invitrogen, US) with or without 1% glucose. Immediately, 100 µl aliquots of these 

suspensions were distributed into 96-wells plate, 3 wells per strain, and were 

incubated at both 37 ºC or at room temperature for 48 h. Un-inoculated wells 

containing medium only served as negative controls. Following incubation, the 

content of the wells were aspirated and the wells were carefully washed three 

times with 200 µl PBS to remove non-adherent cells. Adherent bacteria (i.e. 

biofilms) were fixed with 100 µl 2% formalin in PBS for 1 min., then were 

washed once with PBS.  Subsequently, plates were stained with 200 µl of 0.13% 

crystal violet for 20 min and rinsed three times with PBS to remove excess dye.  

After air-drying, the dye retained by the biomass was extracted (i.e. the biofilms 

lysed) with 200 µl lysis buffer. The OD of the wells was measured at 570nm by 

using plate reader (Biotek, US). The results of three separate, independent 

experiments were evaluated.  

 

The results were evaluated using an arbitrary scheme (Novais et al., 2012) 

defining the cut-off value as the mean + three standard deviations of OD of the 

sterility control (ODc). The strength of biofilm production was scored as seen on 

Table 6.  
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Table 6: Scoring system for the extent of biofilm production 

 

 

 

 

3.5.1.2. The nutrient restricted method 

 

The biofilm production of E. coli strains was also studied under nutrient-

restricted conditions (O'Toole and Kolter, 1998). Bacteria were grown in LB for 

overnight at 37 ºC.  A 10 µl of this culture was transferred into 2 ml of 1X M63 

broth supplemented with 20% casamino acid (Bacto, France) and 0.2% glucose. 

Hundred µl aliquots of the culture were distributed into wells of 96-wells tissue 

culture plates (Nunc). The plates were incubated aerobically and anaerobically at 

37 ºC and at room temperature for 18 h. Anaerobiosis was secured in a Gaspack 

Anarobic System (BBL) using AnaeroGen gas generating bags (Oxoid, UK). 

After the incubation, 25 µl of 1% crystal violet were added and the plates (i.e. to 

the original culture, this time without previous washing and fixation) kept at room 

temperature for 15 min. Then the wells were emptied, rinsed three times with 200 

µl sterile distilled water and air-dried. The lysis of biofilms, spectrophotometric 

measurements and evaluation were carried as described above. 

 

 

 

 

No biofilm  OD ≤ ODc 

Weak  ODc < OD ≤ 2XODc 

Moderate 2 ODc < OD ≤ 4X ODc 

Strong OD > 4X ODc 
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3.5.2. Susceptibility of biofilms to nanoparticles 

 

The bactericidal activity of nanoparticles on biofilms was studied by using 

the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay 

(Tang et al. 2011). The test quantitatively assesses the viability of cells based on 

their capacity to reduce the water-soluble yellow salt MTT to insoluble formazan. 

The formazan is subsequently solubilized, and its concentration is measured by 

optical density estimation at 575nm. The formazan concentration is directly 

proportional to the number of metabolically active cells in the biofilm (Tang et al. 

2011).  

 

For this purpose S. aureus and P. aeruginosa biofilms were induced by 

using the semi-quantitative method described by O’Neill and coworkers (O'Neill et 

al., 2008). Briefly, bacteria were inoculated into 2 ml BHI broth and incubated 

overnight at 37 ºC. Then, 10 μl of culture was inoculated into 2 ml BHI 

supplemented with either 1% glucose or 4% NaCl.  When E. coli was used, 10 μl 

of freshly grown culture in BHI was inoculated into 2 ml MHB. 100 µl aliquots of 

these bacterial suspensions were distributed into 11 wells of 96-wells microtiter 

plates while one well in each row left to contain sterile broth, only. Plates were 

incubated at 37 ºC for 48 h. After this incubation period all the supernatants were 

aspirated to remove the non-adherent cells and biofilms were rinsed gently once 

with 200 µl sterile distilled water.  

 

Ten wells were filled with 100 µl of serial dilutions of NPs prepared in the 

respective media representing concentrations between 500 mg/L to 0.97 mg/L and 
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incubated overnight at 37 ºC. The untreated wells were served as control. After 

exposure to NPs, the content of the wells was gently aspirated and replaced with 

150 µl PBS containing 0.3% MTT (Sigma) salt and incubated at 37 ºC for 2 h.  

 

MTT was re-solubilized in 150 µl of dimethyl-sulfoxide (DMSO, Sigma) 

solution and 25 µl of 0.1 M glycin buffer (pH 10.2) and kept for 15 minutes at 

room temperature. The amount of the formazan produced was measured at 570 

nm by using plate reader (Biotek, US).  Experiments were performed in 

triplicates.  

 

Data were presented as "percentage eradication" in the biofilm growth in 

the present of NPs compared to untreated biofilm masses. The % of eradication 

was calculated as the following equation (Pitts et al., 2003): % of biofilm 

eradication = [ (ODuntreated biofilm – OD treated biofilm)/OD untreated biofilm] x 100 

 

3.6. Sanitary effect of nanoparticles on stainless steel surfaces 

 

The antimicrobial efficacy of Ag-Cu-B NPs prepared by the co-

precipitation method applied by saturated sanitary wipes was tested on stainless 

steel surfaces that commonly come into contact with food.  S. aureus (S800) and 

Salmonella group D (BC789) strains were utilized to contaminate the surfaces. 

Two to three isolated colonies grown overnight on TSA plate were picked, 

suspended into 2 ml PBS and the optical density was set to 0.5 McFarland 

standards and used as inoculum.  The sanitary effect of the nanoparticles was 

evaluated on 1 mm thick, 10 x 10 cm stainless-steel squares (304 mirror type) 
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supplied by Emirates Italian Restaurant Equipment & Supplies (Al Ain, UAE). 

The coupons were conditioned by soaking in 70% ethanol for 24 h, rinsed with 

20% bleach and distilled water. The coupons were then autoclaved and oven-

dried.  A 0.5 ml aliquot of each inoculum was distributed and spread using sterile 

plastic spreaders over the stainless steel surfaces and air-dried for 1-2 h under 

ambient room temperature.   

 

A 7.5 x 7.5 cm squares sterile gauze swabs (Topper 8, Johnson& Johnson) 

were used as fabric wipes. The fabrics were soaked for 24 h in 100 mg/L 

nanoparticles dispersed in autoclaved tap water. Three sets of stainless steel 

coupons were contaminated. One set was used to estimate the initial level of 

contamination; the second set was treated with wipes soaked in NPs, while the 

third set was treated with wipes containing sterile tap water. Each test wipes was 

squeezed to remove excess solution before application and then surfaces were 

wiped forward and backward with the folded wipes once. Subsequently, the 

surfaces were sampled using cotton swabs (Citoswab, China) pre-wetted with 

PBS, 0, 60 and 120 min after exposure. The surface area was swabbed vertically 

and horizontally from top to down and then from left to right twice. After 

sampling, each swab was cut close to the tip and dipped into 2 ml PBS. The swabs 

were vortexed for 60s, the suspension serially diluted and the appropriate dilutions 

plated on duplicate TSA plates. The plates were incubated overnight at 37 ºC. The 

log reduction was defined as the log difference between untreated surface and 

treated one. To be considered effective sanitizers with the surface test, NPs must 

achieved at least 3 log reduction in bacterial populations (Riazi and Matthews, 

2011).  
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3.6.1 Time killing assay   

 

In order to determine the minimum exposure time for the effective 

bactericidal activity of ACBC, bacterial populations was estimated over a period 

of one hour. Surfaces were contaminated, wiped and sampled according to the 

procedures described above. After the wiping step, the number of viable cells 

were determined at 0, 15 ,30 and 60 min., respectively.  At each time, three 

coupons were swabbed.  

 

3.8.  Statistical analysis 

 

 All experiments were run in triplicates. For nanoparticles efficacy, 

statistical analysis was performed using Megastat for Microsoft excel (version 

10.2, release 2.1, Canada). Comparison were carried out at 95% confidence by 

using one-way analysis of variance (ANOVA) with post hoc Tukey test. 

 

 For the E.coli biofilm production, a generalized linear mixed effect model 

with a binomial distribution and a logit link was used. This allows taking into 

account that strains within the same level of PFGE are correlated. The function 

―glmer‖ from the package ―lme4‖ of the R software version 3.1.2 was used.  To 

select the best combinations of predictors for each dependent variable the stepwise 

forward and backward procedures were used. Before doing so, a univariate logistic 

regression was carried out. The odds ratio was used as the main measure for the 
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association between dependent and independent variables. The stepwise procedure 

uses a rejection alpha of 10%.  

 

 To compare the different growth conditions on biofilm production the 

Spearman rank correlation and Wilcoxon tests were used. 
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Chapter 4. Results 
 

4.1. Biofilm formation of E. coli ST131 strains 

 

Recently, multidrug resistant E. coli ST131 strains have been increasingly 

recognized as causative agents of various extra-intestinal infections. As most of 

these infections derive from the gut colonized by these bacteria (Dhanji et al., 

2011; Li et al., 2010) a food-related transmission is very likely (Egea et al., 2012; 

Kawamura et al., 2013; Lazarus et al., 2015; Platell, et al., 2011; Vincent et al., 

2010; Zurfluh et al., 2015). Therefore the details of biofilm formation of this 

important group of organisms were studied. 

 

4.1.1. Clonality of the E. coli ST131 strains studied 

 

A 115 independent E. coli ST131 strains were investigated. 52.2% of the 

isolates were recovered from urine while the rest was blood isolates. First, the 

distribution of clones within this sequence type was established based on the XbaI 

digested macro-restriction pattern of the isolates. Two isolates were untypable. 

The PFGE picture of the strains is shown on Figure 4. Using an 80% similarity 

cut-off value the clustering of the strains are shown in Table 7.  
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Figure 4: Macrorestriction patterns of E. coli ST131 strains 

 

The red line shows the 80% similarity threshold
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Table 7: Macrorestriction clusters of E. coli ST131 strains 

Size of the  

cluster 
N of clusters 

1 12 

2 6 

3 8 

4 3 

6 1 

7 1 

9 2 

22 1 

 

  

These data showed that the collection of strains represents a variety of 

clusters suitable for studying the biofilm forming capacity of the isolates. 

 

4.1.2. Virulence factor gene distribution of the E. coli ST131 strains studied 

 

In order to be able to correlate the biofilm forming capacity of the strains 

to known adhesin genes the strains were subjected to PCR genotyping targeting 

23 such genes and that of the blaCTX-M beta-lactamase gene characteristically 

present in the majority of ST131 isolates. The percent distribution of these genes 

is shown in Table 8. 

 

 



 

 
 

73 

Table 8: Distribution of blaCTX-M  and virulence genes among E. coli ST131 strains 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genes (%) 

blaCTX-M 78.3 

Crl 100.0 

CsgA 100.0 

BcsA 87.8 

Ag43 99.1 

Ag43 EDL933 0.0 

Ag43-K12 87.0 

Ag43-CFT073 a 53.0 

Ag43-CFT073 b 0.0 

Ag43-RS218 40.9 

PapC 18.3 

PapAH 18.3 

PapEF 13.0 

fimH 98.3 

FimH30 91.3 

BmaE 0.0 

Sfa/foc DE 0.9 

FocG 0.0 

SfaS 0.0 

GafD 0.0 

NfaE 0.9 

iha 57.4 

Afa/dra 50.4 

UpaB 99.1 



 

 
 

74 

As expected, the beta-lactamase gene blaCTX-M, causing 3rd generation 

cephalosporin resistance in the strains, was present in the majority of the isolates. 

The presence of the different adhesin genes exhibited broad variation. 

 

During the subsequent experiments the effect of various culture conditions 

on the biofilm forming capacity of the strains, as well as it relation to the clusters 

identified and to the presence of the various genes were studied.  

 

4.1.3. Biofilm forming by E. coli ST131 grown under various culture 

conditions.   

 

Altogether 12 culture conditions were studied. Biofilms were developed in 

TSB and in LB with and without glucose at 37 ºC and at room temperature and, in 

separate experiments, in different experimental settings (for the details see 

Materials and Methods) under limited nutrient conditions using M63 minimal 

medium supplemented with 20% casamino acid and 0.2% glucose at 37 ºC and at 

room temperature, under aerobic and anaerobic conditions. The strength of 

biofilm formation was scored on a scale 0-3.  

 

Table 9 shows the average score and the distribution of biofilm strength 

among the strains grown under different conditions. 
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Table 9: Distribution of biofilm strength in E. coli ST131 strains grown under 

different conditions 

 

TSB - Tryptic Soy Broth, LB - Luria Broth, CAA - M63 minimal medium 

supplemented with 20% casamino acid and 0.2% glucose ,37 - 37 ºC, RT - Room 

temperature, AE - aerobic, AN - anaerobic 

 

 

Conditions 

Score 

(X  SD) 

Frequency (%) of biofilm strength 

None 

(Score 0) 

Weak 

(Score 1) 

Moderate 

(Score 2) 

Strong 

(Score 3) 

TSB 37 0.841.09 52.2 27.0 5.2 15.7 

TSB RT 0.10.33 90.4 8.7 0.9 0.0 

TSB Glu 37 0.10.3 90.4 9.6 0.0 0.0 

TSB Glu RT 0.060.24 93.9 6.1 0.0 0.0 

LB 37 0.620.91 60.9 23.5 8.7 7.0 

LB RT 0.240.57 81.7 13.0 4.3 0.9 

LB Glu 37 0.160.36 84.3 15.7 0.0 0.0 

LB Glu RT 0.190.62 88.7 6.1 3.5 1.7 

CAA AE 37 1.650.88 12.2 25.2 47.8 14.8 

CAA AE RT 2.450.57 0.0 3.5 60.0 36.5 

CAA AN 37 2.330.54 0.0 3.5 47.8 48.7 

CAA AN RT 2.720.51 0.0 2.6 22.6 74.8 
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In the first set of experiments (using TSB and LB, i.e. rich media), 

generally speaking, all conditions induced no or weak biofilm production in the 

majority of the strains. It was shown that in rich media it is primarily the growth 

temperature that affects biofilm production, i.e. it was significantly stronger at 37 

º
C than at room temperature in TSB (Wilcoxon test, P <0.0001), as well as in LB 

(P=0.0003), while TSB somewhat outperformed LB (P=0.0244). The addition of 

glucose significantly reduced biofilm production in both media at 37 
º
C (P 

<0.0001, in both cases).  

 

This was further corroborated by the fact that the biofilm forming capacity 

of the strains, irrespective of the media used, at the same temperatures (i.e. either 

37 
º
C or room temperature) correlated well (Spearman rank correlation, P=0.01, 

correlation coefficients varying between 0.377 to 0.628) while all other 

comparisons failed to exhibit the same level of association.  

 

When low nutrient culture conditions were used (i.e. casamino acid and 

glucose supplemented M63 minimal medium), biofilm production shifted towards 

stronger scores and the majority of the isolates did produce moderate or strong 

biofilms. Importantly, under these conditions the lower growth temperature 

induced stronger biofilms (P=<0.0001) and at both temperatures anaerobic growth 

conditions favored the development of biofilms over growing at ambient air 

(P<0.0001 at both temperatures). 

 

The clonal association of biofilm production was assessed by investigating 

whether members of any of the PFGE clusters containing more than 3 members 
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exhibited a biofilm strength score beyond the XSD of the one characteristic to all 

strains grown under the same condition. Only one such clone (PFGE cluster 1) 

was identified when growing at 37 ºC in TSB. Its score was 2.25, compared to the 

average of all strains, i.e. 0.841.09. No other indication of clonality in biofilm 

production by these criteria was identified. 

 

4.1.4. Correlation between biofilm production and specific genes in E. coli 

ST131  

 

Multiple logistic regression analysis, a stepwise procedure to select the set 

of genes which presence are predictors of biofilm formation (using the grouping 

described in the Material and Methods section) identified a few associations. 

However, the associated genes exhibited a considerable variation depending on 

the growth conditions used as it is summarized in Table 10., which shows all 

significant associations revealed.  

 

Importantly, the strains positive for the CFT073a allelic variant of the 

ag43 gene, encoding Antigen 43, formed significantly more likely biofilm when 

tested in different conditions (i.e. in TSB at 37 ºC, and in nutrient limited 

anaerobic or aerobic conditions at 37 ºC  or at room temperature in anaerobic 

condition). Other allelic variants of the ag43 gene were negatively associated with 

biofilm formation, but this was observed in certain condition, only: namely, 

strains positive for ag43-K12 allele were significantly less likely to produce 

biofilm when tested in LB broth supplemented with  glucose at 37 ºC , and strains 

positive for ag43-RS218 allele were significantly less likely to produce biofilm 
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when tested in casamino acid and glucose supplemented M63 minimal media 

incubated either anaerobically at room temperature, or in ambient air at 37 ºC. 

 

Table 10: Significant associations revealed between genes and biofilm formation 

of E. coli ST131 

OR: Odds Ratio; SE: Standard Error; P: Probability Value; CI: Confidence 

Interval, TSB - Tryptic Soy Broth, LB - Luria Broth, CAA - M63 minimal 

medium supplemented with 20% casamino acid and 0.2% glucose, 37 - 37 ºC, RT 

- Room temperature, AE - aerobic, AN - anaerobic 

 

Condition Genes 

Genes 

Present 

N (%) 

With Biofilm Present 

OR SE P 95% CI 

TSB 37 

blaCTX-M 
90 

(78.3) 
4.43 2.36 0.005 1.56 – 12.60 

Ag43-

CFT073 a 

61 

(53.0) 
2.67 1.07 0.015 1.21 – 5.89 

LB 37 PapC PCR 
21 

(18.3) 
7.17 4.01 0.000 2.39 – 21.44 

LB glucose 37 Ag43-K12 
100 

(87.0) 
0.13 0.21 0.001 0.037 – 0.45 

CAA 37 AE 

Ag43-

CFT073 a 

61 

(53.0) 
3.30 1.62 0.015 1.26 – 8.63 

Ag43-

RS218 

47 

(40.9) 
0.32 0.16 0.021 0.12 – 0.84 

CAA 37 AN 
Ag43-

CFT073 a 

61 

(53.0) 
4.85 2.10 0.000 2.07 – 11.37 

CAA RT AE 

afa/dra 
50 

(50.4) 
0.42 0.17 0.032 0.19 – 0.93 

PapA PCR 
21 

(18.3) 
5.06 3.06 0.007 1.55 – 16.57 

CAA RT AN 

Ag43-

CFT073 a 

61 

(53.0) 
4.31 2.61 0.016 1.32 – 14.13 

Ag43-

RS218 

47 

(40.9) 
0.24 0.15 0.021 0.069 – 0.80 
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Other adhesin genes exhibiting significant association with biofilm 

production were the papA and papC genes of the P fimbria, the latter being 

associated with biofilm production in LB broth incubated at 37 ºC and the former 

showing association with strong biofilm production in casamino acid and glucose 

supplemented M63 minimal media incubated in ambient air at room temperature. 

In this latter condition another significant association was seen: the afimbrial 

adhesin afa/dra positive strains were less likely to form biofilm. 

 

The most interesting association was established with the presence of 

blaCTX-M extended spectrum beta-lactamase and biofilm production in TSB 

incubated at 37 ºC.  Strains carrying this antibiotic resistant gene were 4.43 times 

more likely to produce biofilm in this condition than the ones not possessing the 

gene. 

 

4.2. The effect of nanoparticles against biofilms produced by food-

transmitted bacteria 

 

4.2.1. Characterization of nanoparticles 

 

Various nanoparticles were synthesized by co-precipitation and microwave 

methods and characterized by using TEM and Zeta Sizer to measure their 

morphology, size distribution and charge. The characteristics of all NPs are given 

in Table 11. All particles had negative charge and varied in size from 27 to 84 nm. 

Ag-Cu-B NPs prepared by microwave possessed the smallest size.  
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Table 11: Physio-chemical characteristics of the nanoparticles 

NPs type 
Size 

distribution 

(nm) 

Charge  Shape 

Ag-Na-B 53 negative spherical 

Ag-Mg-B 79 negative spherical 

Ag-Cu-B 27 negative spherical 

Ag-Cu-B (co) 84 negative 
spherical and 

platelet 

 

* (co) - co-precipitation 

 

 

Transmission electron microscopic analysis revealed that the distribution 

of all NPs varied in size. Moreover, it was obvious that NPs, synthesized using the 

microwave method were spherical in shape, whereas Ag-Cu-B prepared by co-

precipitation technique have two types of morphology: spherical and platelet 

(Figure 5). 
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                       Figure 5: TEM micrographs of the NPs. Magnification 105,000X 

 

A: Ag-Cu-B, B: Ag-Cu-B, C: Ag-Na-B, D: Ag-Mg-B.  

A, C, D - microwave methods, B - co-precipitation method 

 

 

4.2.2. Antimicrobial effect of the nanoparticles on planktonic cells 

 

In order to select the most effective nanoparticles, initially, the 

antimicrobial efficacy of different NPs prepared by co-precipitation method 

against planktonic cells of S. aureus S800 was evaluated. The results are 

summarized in Table 12.  

 

 

A B 

C D 
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Table 12: MIC of various nanoparticles against planktonic cells of S. aureus 

NPs 

composition 

volume  

ratio 
MIC  (mg/L)* 

Ag 100 416.7 

Cu 100 500.0 

Ag-Cu 

90:10 166.7 

10:90 250.0 

80:20 166.7 

20:80 208.3 

70:30 166.7 

30:70 166.7 

60:40 125.0 

40:60 125.0 

50:50 125.0 

Ag-Cu-B 

70:20:10 125.0 

60:30:10 125.0 

50:40:10 104.2 

40:50:10 104.2 

45:45:10 125.0 

40:40:20 125.0 

35:35:30 125.0 

30:30:40 125.0 

30:60:10 125.0 

21:10:10 125.0 

       * average of 3 experiments 

 

The results clearly showed that mono-component Ag and Cu NPs 

exhibited considerably higher MIC values than either the Ag-Cu or Ag-Cu-B 

nanoparticles, of which some approached values as low as 100 mg/L.  

 

In an attempt to prepare highly effective NPs with unique physiochemical 

and biological characteristic and alloy with a specific volume ratio with a MIC 
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close to 100 mg/L was selected for further studies. The highly dispersed 

nanoparticles (i.e. Ag-Cu-B alloy with volume ratio "70:20:10") was chosen and 

prepared also by the microwave technique together with a new batch of the same 

alloy using the co-precipitation technique. Furthermore, the Cu metal has been 

substituted with other elements (i.e. Na and Mg, maintaining the same ratio) as a 

further attempt to improve antimicrobial activity of Ag-NPs.  

 

The antimicrobial effect of these NPs was tested against planktonic cells 

of a variety of bacteria. Multi-antibiotic resistant strains of S. aureus S800, 

P.aeruginosa AG1, and 3 strains of E.coli ST131 (TPC244, SZ29659 and 90405) 

were investigated. As shown in Table 13, it is evident that all NPs possessed 

varied antimicrobial effect against tested bacteria. Nanoparticles were the least 

active against S. aureus and the most effective one, in general, was the Ag-Cu-B 

NPs prepared by co-precipitation (Table 13).   

 

 

Table 13: Activity of the NPs against a variety of test bacteria 

NPs type 

MIC mg/L* 

S.aureus P.aeruginosa 
E.coli ST131 

90405 SZ29659 TPC244 

Ag-Cu-B 23.6 13.7 11.7 9.8 19.5 

Ag-Cu-B 

(Co) 
19.7 11.8 9.8 6.8 9.8 

Ag-Na-B 23.4 19.5 21.5 19.0 17.6 

Ag-Mg-B 23.4 17.6 13.7 15.1 13.7 

 

(Co) - co-precipitation 

* average of 3 experiments 
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4.2.3. Efficacy of nanoparticles against biofilms  

 

The same nanoparticles were also tested against the same target bacteria 

but this time grown in biofilms. For S. aureus and P. aeruginosa biofilms were 

established in BHI with 1% glucose or with 4% NaCl, while E. coli was grown in 

MHB. The biofilms were exposed to graded doses of the nanoparticles . The 

results are shown in Figures 9-11 and in Table 14 and 15. 

 

The biofilm reduction by NPs, when used in high concentration exceeded 

at least 50%, and exhibited some effect even at a concentration as low as 15.6 

mg/L irrespective of the nanoparticles, the species or growth conditions. However, 

there were some quantitative differences. As expected, based on susceptibilities of 

their planktonic cells, Gram-negative bacteria, particularly two strains of E. coli 

(SZ29659 and TPC244) were more susceptible than S. aureus. Within the latter 

species biofilms developed in 4% NaCl supplemented media.
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Figure 6: Biofilm reducing effect of nanoparticles against S. aureus S800 

 

 (Co) by coprecipitation, all other NPs were prepared by the microwave technique 
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Figure 7: Biofilm reducing effect of nanoparticles against P. aeruginosa AG1 

 

 

 (Co) by coprecipitation, all other NPs were prepared by the microwave technique 
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Figure 8: Biofilm reducing effect of nanoparticles against various E. coli ST131 strains 
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Table 14: Minimum concentration of nanoparticles causing 10% biofilm reduction 

   Concentration of nanoparticles  (mg/L) 

Strains Type of biofilm Medium Ag-Cu-B (Co) Ag-Cu-B Ag-Na-B Ag-Mg-B 

S. aureus S800 PS/PROT BHI +NaCl 7.8 7.8 7.8 7.8 

  
BHI+glucose 15.6 15.6 7.8 7.8 

P. aeruginosa AG1 
 

BHI+NaCl 7.8 3.9 3.9 3.9 

  
BHI+glucose 7.8 7.8 7.8 7.8 

E. coli SZ29659 
 

MH 1.9 3.9 0.97 0.97 

E. coli TBC 244 
 

MH 0.97 0.97 3.9 7.8 

E. coli 90405 
 

MH 7.8 7.8 3.9 1.9 

 

PS- polysaccahride, PROT - protein, BHI - Brain Heart Infusion, MH - Mueller-Hinton broth 
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Table 15: Minimum concentration of nanoparticles causing 80% biofilm reduction 

 

   Concentration of nanoparticles  (mg/L) 

Strains Type of biofilm Medium Ag-Cu-B (Co) Ag-Cu-B Ag-Na-B Ag-Mg-B 

S. aureus S800 PS/PROT BHI +NaCl 62.5 125 62.5 250 

  
BHI+glucose 31.25 62.5 31.25 >500 

P. aeruginosa AG1 
 

BHI+NaCl 15.6 31.25 7.8 7.8 

  
BHI+glucose 15.6 15.6 15.6 15.6 

E. coli SZ29659 
 

MH 15.6 15.6 15.6 7.8 

E. coli TBC 244 
 

MH 31.25 31.25 15.6 15.6 

E. coli 90405 
 

MH 31.25 31.25 31.25 31.25 

 

PS- polysaccahride, PROT - protein, BHI - Brain Heart Infusion, MH - Mueller-Hinton broth 
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i.e. being mostly polysaccharide in nature, were more resistant. Also, Ag-Mg-B 

NPs were quite ineffective in any type of Staphylococcus aureus biofilm, and 

especially the one produced in glucose supplemented media (i.e. even the highest 

concentration of it, otherwise active against other species, could not reduce the 

biofilm by 80%). Otherwise, the difference in concentrations causing min 80% or 

min 10% biofilm reduction protein and polysaccharide biofilms never exceeded 

the two-fold differences. Regarding P. aeruginosa grown under similar conditions 

the trends were the opposite, biofilm reduction effect of NPs was generally greater 

in biofilm produced in 4%NaCl supplemented media. 

 

For the other Gram-negative organism, i.e. E. coli, grown in MH all NPs 

caused at least a 80% reduction at 31.25 mg/L and for some strains even 7.8 mg/L 

was enough of exhibit the same effect. From these data no clear preference 

emerged for any of the particular NPs over the others.   

 

4.2.4. Efficacy of nanoparticles against S. aureus of different clones  

 

Randomly 9 MRSA strains capable of producing different kinds of 

biofilms when grown in different conditions were selected. First strains were 

confirmed that they are clonally independent, indeed. The results of the multi-

locus sequence typing is shown in Table 16. They showed that the strains 

represent independent lineages, indeed. 
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Next the nanoparticles were tested against the planktonic cells of the 

strains. As shown in Table 17, although there were some variations in the MIC of 

the NPs against the various strains, still the Ag-Cu-B (Co) nanoparticles were the 

most efficacious for all strains not exceeding the difference by one dilution.  

 

 

Table 16: Multi-locus Sequence types of the S. aureus strains studied 

Strains MLST type 
Type of biofilm 

Polysaccharide Protein 

12/07 ST149 + - 

75/08 ST5 + - 

172/08 SLV of ST772 + - 

205/08 ST6 + - 

274/08 ST8 - + 

T27/9 ST239 - + 

48/08 ST80 + + 

177/08 ST80 + + 

201/08 SLV of ST1 + + 

S800 ST779 + + 

    SLV: Single Locus variant, ST: sequence type 
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Table 17: Susceptibility of the S. aureus strains to different types of nanoparticles  

Strain 

Nanoparticles  (MIC mg/L) 

Ag-Cu-B (Co) Ag-Cu-B Ag-Na-B Ag-Mg-B 

12/07 46.9 46.9 93.8 46.9 

48/08 46.9 46.9 93.8 46.9 

75/08 31.3 46.9 46.9 31.3 

172/08 46.9 46.9 93.8 46.9 

177/08 31.3 46.9 62.5 46.9 

201/08 46.9 46.9 93.8 46.9 

205/08 46.9 46.9 93.8 46.9 

274/08 46.9 46.9 93.8 46.9 

T27/9 39.1 46.9 78.1 46.9 

S800 23.4 46.9 46.9 23.4 

 

 

Subsequently, the efficacy of the four nanoparticles was tested on the 

biofilms formed by these strains. The results are presented in Figures 9-17 and 

Tables 18-19. 

 

Comparing strains, it was obvious from the results the susceptibility of 

their biofilms may exhibit considerable variation. Strain T27/9, when grown in 

glucose medium promoting a protein biofilm produced a highly resistant matt for 

which extreme concentration of NPs were needed to achieve 80% reduction, and 

Ag-Na-B and Ag-Mg-B were not able to do that even the maximal concentration.  

 

Interestingly, this was not obvious when the minimum concentrations 

needed to achieve some (10%) reduction were considered. The high resistance of 

protein type biofilms was the most obvious when tested with Ag-Mg-B as this 
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alloy showed the least efficacy in achieving 80% reduction with some other 

strains, as well, e.g. S800, while other NPs achieved that at much lower 

concentrations. Nevertheless, No clear differences between the susceptibility of 

protein or polysaccharide type biofilms could be identified, as extreme resistance 

was also seen in some polysaccharide type mats, too (e.g. 201/08). 

 

A surprise finding was the highly resistant biofilm produced by 12/07 in 

glucose enriched medium, as this strain was not supposed to from protein type 

biofilms.  

 

While there were no significant differences between nanoparticles  when 

the concentrations to achieve minimal, 10% reduction was considered, in inducing 

80% reduction Ag-Cu-B (Co), particularly if prepared by co-precipitation often 

were more active than their Na or Mg containing counterparts. 
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Figure 9:  Efficacy of nanoparticles  against S. aureus 12/07  
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Figure 10:  Efficacy of nanoparticles  against S. aureus 48/08 
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Figure 11:  Efficacy of nanoparticles  against S. aureus 75/08 
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Figure 12:  Efficacy of nanoparticles  against S. aureus 172/08 
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Figure 13:  Efficacy of nanoparticles  against S. aureus 177/08 
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Figure 14:  Efficacy of nanoparticles  against S. aureus 201/08 
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Figure 15:  Efficacy of nanoparticles  against S. aureus 205/08  
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Figure 16:  Efficacy of nanoparticles  against S. aureus 274/08 
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Figure 17:  Efficacy of nanoparticles  against S. aureus T27/9 
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Table 18:  Minimum concentration of nanoparticles causing 10% biofilm reduction  

 

sniartS mlif  e fr eryT mfireT Concentration of nanoparticles  (mg/L) 

   

Ag-Cu-B (Co) Ag-Cu-B Ag-Na-B Ag-Mg-B 

12/07 PS BHI +NaCl 15.6 7.8 15.6 7.8 

  

BHI+glucose 7.8 15.6 3.9 7.8 

75/08 PS BHI +NaCl 7.8 15.6 15.6 15.6 

  

BHI+glucose 15.6 15.6 3.9 7.8 

172/08 PS BHI +NaCl 15.6 7.8 7.8 15.6 

  

BHI+glucose 15.6 15.6 1.9 7.8 

205/08 PS BHI +NaCl 7.8 15.6 3.9 7.8 

  

BHI+glucose 7.8 15.6 7.8 7.8 

274/08 PROT BHI +NaCl 31.25 15.6 31.25 31.25 

  

BHI+glucose 15.6 15.6 7.8 7.8 

T27/9 PROT BHI +NaCl 7.8 7.8 7.8 7.8 

  

BHI+glucose 7.8 7.8 3.9 3.9 

48/08 PS/PROT BHI +NaCl 7.8 7.8 7.8 7.8 

  

BHI+glucose 3.9 7.8 7.8 7.8 
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t tn.11.mafyf    

sniartS mlif  e fr eryT mfireT Concentration of nanoparticles  (mg/L) 

   

Ag-Cu-B (Co) Ag-Cu-B Ag-Na-B Ag-Mg-B 

177/08 PS/PROT BHI +NaCl 3.9 7.8 7.8 7.8 

  

BHI+glucose 3.9 7.8 7.8 1.9 

201/08 PS/PROT BHI +NaCl 3.9 7.8 7.8 7.8 

  

BHI+glucose 15.6 15.6 7.8 3.9 

S800 PS/PROT BHI +NaCl 7.8 7.8 7.8 7.8 

  

BHI+glucose 15.6 15.6 7.8 7.8 

 

PS- polysaccahride, PROT - protein, BHI - Brain Heart Infusion 
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Table 19:  Minimum concentration of nanoparticles causing 80% biofilm reduction  

 

sniartS mlif  e fr eryT mfireT Concentration of nanoparticles  (mg/L) 

   

Ag-Cu-B (Co) Ag-Cu-B Ag-Na-B Ag-Mg-B 

12/07 PS BHI +NaCl 31.25 62.5 62.5 62.5 

  

BHI+glucose 31.25 62.5 >500 >500 

75/08 PS BHI +NaCl 31.25 62.5 125 62.5 

  

BHI+glucose 62.5 62.5 31.25 125 

172/08 PS BHI +NaCl 31.25 62.5 31.25 125 

  

BHI+glucose 31.25 62.5 15.6 125 

205/08 PS BHI +NaCl 62.5 62.5 31.25 62.5 

  

BHI+glucose 31.25 62.5 62.5 31.25 

274/08 PROT BHI +NaCl 62.5 62.5 250 125 

  

BHI+glucose 15.6 62.5 31.25 15.6 

T27/9 PROT BHI +NaCl 31.25 125 62.5 125 

  

BHI+glucose 250 500 >500 >500 

48/08 PS/PROT BHI +NaCl 62.5 62.5 62.5 62.5 

  

BHI+glucose 31.25 31.25 62.5 31.25 
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t tn.11.mafyf    

sniartS mlif  e fr eryT mfireT Concentration of nanoparticles  (mg/L) 

   

Ag-Cu-B (Co) Ag-Cu-B Ag-Na-B Ag-Mg-B 

177/08 PS/PROT BHI +NaCl 62.5 125 125 62.5 

  

BHI+glucose 15.6 31.25 62.5 15.6 

201/08 PS/PROT BHI +NaCl 62.5 62.5 62.5 500 

  

BHI+glucose 31.25 31.25 62.5 31.25 

S800 PS/PROT BHI +NaCl 62.5 125 62.5 250 

  

BHI+glucose 31.25 62.5 31.25 >500 

 

PS- polysaccahride, PROT - protein, BHI - Brain Heart Infusion 
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4.3. The  sanitary effect of nanoparticles  

 

Based on the previous experiments Ag-Cu-B nanoparticles prepared by 

co-precipitation were selected to assess their sanitary effect on stainless-steel 

surfaces. S. aureus (S800) and a group D Salmonella strain (BC789) were applied 

in these experiments. The MIC value for the latter strains was 15.6 mg/L. 

 

Wipes were soaked in 100 mg/L concentration of the Ag-Cu-B (Co) NPs  

dispersed in sterile tap water. The results of wiping contaminated surfaces is 

shown in Table 20. 

 

For the S. aureus strain the log reduction was more than what seen with 

water-soaked wipes, and after 2 hours no microorganisms were detected. With 

Salmonella a nearly complete elimination was achieved even by 1 hour with some 

residual colonies seen after 2 hours, still log reduction was more than what seen 

with water. 

 

When the speed of killing was studied (Table 21) it was shown that it take 

much longer against a Gram positive cell to achieve good sanitary effect, while 

for the Gram negative salmonella it was much faster. Nevertheless, against both 

organisms a log 3 reduction was safely achieved 1 hour after treatment. 
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Table 20:  The effect of Ag-Cu-B (Co) nanoparticles as a sanitary agent 

Strain Untreated 

Log reduction  

Time after treated with 

O time 1 hour 2 hours 

Water Nano Water Nano Water Nano 

S. aureus S800 5.9 3.4 3.1 4 4.6 3.5 ND 

Salmonella BC789 4.9 1.4 2.5 2.2 ND 2.5 3.2 

 

 

Table 21: The time-kill effect of Ag-Cu-B (Co) nanoparticles as a sanitary agent 

  Log reduction 

Strain Untreated Time after treated with 

  O time 15 min 30 min 60 min 

  Water Nano Water Nano Water Nano Water Nano 

S. aureus S800 5.9 2.3 2.7 3.3 3 3.4 3.4 2.8 3.7 

Salmonella BC789 4.3 1.6 ND 1.9 ND 1.9 ND 2.3 3 

ND- not detected 
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Chapter 5. Discussion 
 

The past few years have seen an increase in the incidence of food-borne 

infections and the emergence of new food-borne pathogens (Turner et al., 2003). 

Food  globalization, the new trends in food production and distribution, changes in 

consumer habits and population susceptibility are pointed as the main contributing 

factors. One of the main concerns in food safety is the transmission of pathogenic 

Gram-negative Enterobacteriaceae, (e.g. E. coli, Salmonella spp, Shigella spp) and  

Pseudomonas because of their high incidence in food-borne illness and the 

emergence of new virulent serotypes and transmission routes (Gálvez et al., 2010). 

Consequently, in order to successfully deal with the problem of food-transmitted 

infections more efforts are needed to better understand the mechanisms how these 

microorganisms contaminate and survive in food and what interventions can be used 

to prevent or eliminate such contaminations. 

 

The species E. coli represents a diverse collection of types of organisms that 

occur as pathogens and as commensals in the mammalian intestinal tract.  An 

extraintestinal pathogen E. coli, ExPEC, is the most common Gram-negative 

bacterium associated with urinary tract and bloodstream infections (Riley, 2014). 

ExPEC infections have been described previously as sporadic infections, however, 

recently ExPEC have been associated with outbreaks which suggest that ExPEC can 

be spread in the community by a common source or vehicle (Bergeron et al., 2012). 

Investigations of these outbreaks has proposed that environmental sources, possibly 
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contaminated meat and other foods, may play a role in the local spread of related E. 

coli strains (Vincent et al., 2010). 

  

Bergeron and co-worker characterized the genetic similarities between E. coli 

isolates recovered from the cecal contents of slaughtered food animals (beef cattle, 

chickens, and pigs) and ExPEC in humans causing community-acquired urinary tract 

infections (UTIs), they found genetic similarities between E. coli from animals, 

particularly chickens, and ExPEC caused UTIs in human (Bergeron et al., 2012). This 

finding is similar to that  reported by Caroline and co-workers who also characterized 

the genetic similarities between E. coli isolates recovered from retail meat (poultry, 

pork and beef) and ExPEC isolated from human. They identified two clonal groups 

(i.e. ST95 & ST131) containing isolates from retail chicken meat and human 

infections and this evidence suggested that chicken was likely to be the primary 

reservoir of ExPEC in humans (Caroline et al., 2010). The outcomes of these two 

studies provide a strong support for the role of food reservoirs, principally chicken, or 

foodborne transmission in the prevalence of ExPEC causing UTIs. 

 

Recently one of these multidrug-resistant E. coli clones, i.e. ST131 has 

emerged globally. One of the diverse factors explaining its rapid dissemination was 

transmission through human animal contact and consumption of contaminated food. 

A high degree of similarity has been shown among certain ST131 isolates from 

humans, companion animals, and poultry based on resistance characteristics and 

genomic background (Platell et al., 2011). 
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One common survival strategy employed by the pathogenic bacteria is to form 

a biofilm, an amorphous and dynamic structure (Chen and Wen, 2011) that is 10 to 

1000 times more resistant to the effect of antimicrobial agents than their planktonic 

counterparts (Jefferson, 2004). This makes their eradication and control extremely 

difficult in many environment such as medical and food industrial areas (Mah et al., 

2003). So far, very little has been known on the biofilm forming capacity of E. coli 

ST131. Hence, one of the aims of the current study was to measure the biofilm 

forming capacity of food-transmitted E. coli of ST131 clone.  

 

5.1. Biofilm formation of E. coli ST131 strains 

 

Biofilm-forming ability of 115 E. coli ST131 was examined under 12 different 

environmental conditions (i.e. nutrient rich and restricted methods). The relationship 

among the isolates, as assessed by PFGE, suggested a considerably heterogeneity 

within the ST131 sequence type (Table 7) making the pool of isolates optimal to 

study the targeted phenotype and its relation to growth conditions.  

 

Several genes have been implicated to contribute to the formation of biofilms 

by E. coli that are flagella, various classes of fimbriae, curli, antigen 43 (Ag43), and 

the extracellular matrix compounds (Beloin et al., 2006).  The isolates were screened 

for the presence of different adherence genes. The level of variations corroborated the 

findings of PFGE, i.e. a considerable heterogeneity of the strains (Table 8). Five 

different genes were frequently present in all isolates (Crl, CsgA, Ag43, FimH and 

UpaB).  Notably, the majority of the members of E. coli ST131 clonal group was 
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found multi-drug resistant and possessed the blaCTX-M beta-lactamase gene. Our 

results are in accordance with previous studies reporting that ST131 clone associated 

with blaCTX-M extended spectrum β-lactamase (ESBL) production, with CTX-

M enzyme (Cagnacci et al., 2008; Hernández et al., 2005; Mugnaioli et al., 2006; 

Oteo et al., 2006). ESBL dissemination in E. coli  is usually due to plasmid 

transmission between unrelated strains (Hernández et al., 2005) and this can 

potentially increase the spread of antibiotic resistance within the bacterial population 

through horizontal gene transfer. Epidemiological and environmental studies are 

needed to identify transmission routes, and reservoirs for these multidrug resistant 

bacteria on the local level. 

 

The ability of the isolates to form biofilms on abiotic surfaces was examined 

under restricted and under rich nutrient conditions. Our results revealed that, albeit 

very much in a medium-dependent manner, the E. coli strains of the clone ST131 are 

capable of producing biofilm. This finding is in agreement with Clermont and co-

workers who measured adherence capabilities in four representatives O25:H4-ST131 

CTX-M producing E.coli isolates collected from Europe and Africa and their findings 

demonstrated that two isolates produced biofilm (Clermont et al., 2008). In contrast, 

Novais and co-workers studies 31 ST131 strains obtained between 1991 and 2010 

isolated from healthy volunteers, animals and environmental samples from different 

geographical area. All tested strains were found weak biofilm producers (Novais et 

al., 2012). The difference in findings between the studies could be attributed to the 

applied growth condition in each study. Naves and co-workers evaluated the impact 

of methodological approaches in determination biofilm formation by four clinical 
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isolates of Escherichia coli in static assays. They concluded that E. coli forms 

biofilms on static assays in a method dependent fashion, depending on strain, and it is 

strongly modulated by culture conditions (Naves et al., 2008b). 

 

Actually, our study, with a much higher strain number also proved the 

importance and role of the medium and growth temperature (Table 9). If grown in 

rich media, the determining factor was temperature, i.e. 37 ºC. In contrast, once 

nutrients were limited, the degree of biofilm formation was generally higher. It was 

higher at room temperature, and particularly high under anaerobic conditions. This 

findings, in contrast to some earlier observations (Pratt and Kolter, 1998) and are in 

line with other previously published reports showing that biofilm formation increases 

under low nutrient media (Reisner et al., 2006; Skyberg et al., 2007; Yang et al., 

2004).  

 

An important observation of this study was that the only clonal clustering of 

the biofilm forming capacity was observed in nutrient rich environment (TSB) at 37 

ºC. This finding was interpreted as that the capacities to establish stable matts on 

solid surfaces is an attribute of the entire clone, albeit the expression of the actual 

capacity exhibits considerable inter-strain variations. As a conclusion, E. coli ST131 

should be considered as an organism able to contaminate various niches of the food-

production chain where both nutrient rich, as well as nutrient limited environments, 

with variable existing temperatures can be anticipated.  
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When using multiple logistic regression analysis to evaluate the relation 

between biofilm formation and the presence or absence of different genes a strong 

correlation between blaCTX-M beta-lactamase gene was found and the ability of the 

isolates to produce biofilm at 37 ºC in TSB. This is a particularly interesting 

observation as earlier it was found that non-betalactamase producer isolates were the 

major biofilm producers, while strains possess the betalactamase produced either a 

minor biofilm or no biofilm at all (Gallant et al., 2005). The authors speculated that 

among their strains plasmid vectors encoding the common betalactamase marker TEM-

1 caused defects in twitching motility (mediated by type IV pili), adherence and biofilm 

formation (Gallant et al., 2005).  

 

However, one should keep in mind that the study was not about this particular 

E. coli clone, i.e. ST131 and here the situation could be entirely different. It is hard to 

envision that it is the blaCTX-M gene, itself which directly affect biofilm formation. It 

more likely to be the effect of a linkage between the blaCTX-M gene and a yet to be 

identified gene present. The blaCTX-M gene is commonly localized on mobile plasmids 

(Zhao and Hu, 2013), which would explain our finding. However, the identification of 

such gene(s) were beyond the scope of the current project.  

 

Further significant correlations were identified between biofilm and the ag43-

CFT073a and ag43-RS218 allelic variants of the ag43 gene in different conditions 

(Table 10). Ag43 is a surface Autotransporter proteins transport all necessary 

information to the bacterial cell membrane and secretion through cell surface within 

the protein itself (Kjærgaard et al., 2000; Sherlock et al., 2006). It was shown 
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promoting cell to cell adhesion and cells autoaggregation via intercellular Ag43-Ag43 

handshaking mechanism (Sherlock et al., 2006) rather that Ag43 being directly 

involved in the initial adhesion to abiotic surface. This leads to the conclusion that 

autoaggregation appears to contribute to the development of the three dimensional 

biofilm structure (Beloin et al., 2008) and micro-colony formation (Van Houdt and 

Michiels, 2005).  

 

Both P and type 1 fimbria are produced by uropathogenic strains of E. coli 

and they have several functions in mediating colonization, invasion and biofilm 

formation (Miller et al., 2006; Otto et al., 2001). Type 1 fimbria are encoded in the 

Fim operon while P fimbria localize within the Pap operon (Lillington et al., 2014). 

Earlier, type 1 fimbria adhesin gene FimH was shown to play a significant role in 

mediating attachment to biotic and abiotic surfaces by some E. coli strains (Hung et 

al., 2013), but based on our results it seems not to be the case in the ST131 clone, at 

least not under the conditions used to culture our isolates. Our findings revealed that 

biofilm production in E. coli ST131 strains were more related to the presence of P 

fimbria genes rather than type 1 fimbria.  

 

Although, the prevalence of papA and papC genes of the P fimbria was relatively rare 

among the strains (18.3%), a strong relationship was observed between these genes 

and biofilm formation in LB at 37 ºC and CAA at room temperature suggesting that 

once present, it does play a role in the biofilm formation of E. coli ST131, as well. 
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Taken together, our findings showed the E. coli ST131 strains do form 

biofilm, and this capacity, in a culture-condition dependent manner, with varying 

extent, is present across the clone. This suggests the biofilm formation is to be 

expected in food-precessing related niches and should be taken into consideration 

when meaures to decrease this contamination are designed. Biofilms within the clone 

appear to be of multiple nature, some linked to the blaCTX-M gene, according to our 

hypothesis indirectly, by gene co-localization on mobile genetic elements.  

 

5.2. The effect of nanoparticles against biofilms produced by food-transmitted 

bacteria 

 

Over the past few decades inorganic nanoparticles have been developed and, 

due to their nanoscale size, recognized to have remarkable physical, chemical, and 

biological properties. Metallic nanoparticles (NPs), particularly silver and copper NPs 

are promising new antibacterial agents due to their high surface area to volume ratio 

(Pelgrift and Friedman, 2013). The antimicrobial properties of silver against different 

microorganisms are well established (Ghosh et al., 2010; Kim et al., 2007; Mirzajani 

et al., 2011; Sondi and Salopek-Sondi, 2004). In comparison with silver relatively few 

studies addressed the antimicrobial properties of Cu-NPs (Allaker, 2012).  

 

Although, the bactericidal effect of Ag-NPs and Cu-NPs, as a single element 

was explored, few studies investigated the effect bimetallic Ag-Cu nanoparticles  on 

different microorganisms. Boron in the form of nanoparticles was also studied for its 
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antimicrobial effect in combination with other elements (Wang et al., 2014; Xue et 

al., 2013).  

 

5.2.1. Susceptibility of planktonic bacterial cells to nanoparticles 

 

In order to select the most effective NPs, a preliminary study on bactericidal 

effect of various nanoparticles with different volume ratios prepared by co-

precipitation method was conducted on S. aureus (Table 12). The findings revealed 

that S. aureus exhibited almost similar sensitivity to Ag-NPs and Cu-NPs. This finding 

is in agreement with what reported by Rupareli and coworkers (Ruparelia et al., 2008). 

Although the single Ag-NPs and Cu-NPs were effective, the combination of Ag and 

Cu acts synergistically against S. aureus. The minimum inhibitory effect of Ag-Cu 

nanoparticles  with different volume ratios varied between 166 and 250 mg/L. 

Furthermore, the synergistic antibacterial activity of Ag, Cu and B complexes with all 

volume ratios exhibited similar inhibitory effect (MIC 125 mg/L). This, however, does 

not seem to be a general rule. Martinez-Gutierrez and coworkers investigated the 

antimicrobial effect of 15 types of nanoparticles using silver, TiO2, or a combination 

of both compounds against a panel of opportunistic and pathogenic bacteria and fungal 

strains. They concluded that no significant activities were observed when TiO2-NPs  

were combined with silver compared to the Ag-NPs (Martinez-Gutierrez et al., 2010). 

Based on our findings the Ag-Cu-B NPs with volume ratio 70:20:10 were selected and 

subjected it to further investigation. Simultaneously, the same formula was also 

prepared by the microwave technique and the Cu component was also substituted with 

Na or Mg. These nanoNPs were used to test their antimicrobial efficacy against a 
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range of drug resistant bacteria i.e. S.aureus, P. aurgnosia and three E. coli  strains of 

ST131 clone (Table 13).  

 

Although the Gram positive S. aureus was found slightly more resistant than 

the Gram negative isolates, this finding in agreement with the previous findings of 

Martínez-Gutierrez and coworkers  (Martinez-Gutierrez et al., 2012). Investigating the 

antibacterial effect of 24nm Ag-NPs on five pathogens commonly isolated from 

medical devices (i.e. E. coli, E. faecalis, P. aeruginosa, S. aureus, and S. maltophilia) 

they found no significant differences in the antibacterial activities against Gram-

positive and Gram-negative organisms (Martinez-Gutierrez, et al., 2012).  On the other 

hand, Fayaz and coworkers reported MIC values of 30–35 mg/L for Gram-negative 

bacteria compared to the MIC values of 65–80 mg/L for Gram-positive isolates (Fayaz 

et al., 2010). Conversely, Premanathan found that the MIC of ZnO-NPs against the 

Gram-negative bacteria E. coli and P. aeruginosa (MIC 500 mg/L) was more than that 

against the Gram-positive bacterium S. aureus (MIC 125 mg/L), (Premanathan et al., 

2011). The susceptibility to NPs could be a function of the composition of the NP 

itself.  Actually the differences in susceptibilities can easily be attributed to the cell-

wall structure of the Gram-positive and Gram-negative bacteria.  Importantly, 

however, the compounds which have been studying appear to be effective against both 

groups of organisms. 

 

On the nanoparticles' side, several factors could influence their efficacy. 

Previously, it was found that Ag-NPs having a size of 20–25nm were more effective 

than those which have 80-90nm size (Martinez-Gutierrez et al., 2010). In our study, 
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although Ag-Cu-B prepared by co-precipitation possessed the biggest size among the 

other NPs, it demonstrated the strongest antibacterial effect on all bacteria compared. 

This apparent controversy could be attributed to several factors. The superior potency 

of this NP could be due to its spherical/platelet shape (Figure 5).  

 

Pal and co-workers reported that the antimicrobial activity of Ag-NPs is shape 

dependent. A truncated triangular Ag-NPs, with a lattice plane as the basal plane, 

were found to be more effective on the growth of E. coli than spherical particles. The 

inhibition of bacterial growth by truncated triangular shape was found at 1 mg/L, 

whereas, in the case of spherical shape bacterial inhibition was 12.5 mg/L (Pal et al., 

2007). The shape-dependent antibacterial property of CuO-NPs was also evaluated by 

Ananth and coworkers against four bacterial strains, namely Streptococcus iniae and 

Streptococcus parauberis (Gram positive) and Escherichia coli and Vibrio 

anguillarum (Gram negative). Their results indicated that the plate-like CuO 

displayed more powerful antibacterial activity than grain or needle shaped CuO NPs 

(Ananth et al., 2015).  

 

However, several studies actually showed that some nanoparticles did not 

exhibit considerable bactericidal effects. Platinum nanoparticles having size 3 ± 1nm 

did not show antimicrobial activity for S. aureus and E. coli in some studies (Cho et 

al., 2005).  Furthermore, silica, silica/iron oxide, and gold failed to inhibit growth of 

E. coli (Williams et al., 2006). Several members of the environment microbiota are 

tolerant to NPs that are present in the environment. Wu and coworkers reported that 

Cu-doped TiO2-NPs actually increased the survival rates of Shewanella oneidensis 
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MR-1 by over 10,000-fold (Wu et al., 2011). In another study, Shewanella oneidensis 

was able to tolerate higher concentration of Cu-doped TiO2-NPs. One explanation 

could be that a large amount of extracellular polymeric substances (EPS), in 

particular extracellular protein, was produced by the strain used and it was also 

speculated that the bacteria cell membrane was able to adsorb NPs and enzymatically 

reduced ionic copper in the culture medium (Wu et al., 2010). In fact, several bacteria 

are able to tolerate NO-NPs using various mechanisms. For example P. aeruginosa, 

E. coli, and S. typhimurium induce the expression of genes that are responsible for 

repairing of DNA and altering the metal homeostasis in the presence of NO-NPs. In 

this condition, K. pneumoniae produces the enzyme flavohemoglobin, which 

neutralizes nitrosative stress (Hajipour et al., 2012) 

 

Taken together, it was felt that NPs used, particularly the Ag-Cu-B alloy 

prepared with co-precipitation exhibit promising features and can be taken a step 

further to try its efficacy in biofilm models. 

 

5.2.2. Susceptibility of bacterial biofilms to nanoparticles 

 

Compared to killing planktonic cells, a mature biofilm is difficult to eradicate. 

Biofilms are resistant to antibiotics,  antimicrobial agents and toxic chemicals such as 

heavy metals (Harrison et al., 2005). In this part of study, the anti-biofilm efficacy of 

the same synthesized nanoparticles  (i.e. Ag-Cu-B (Co), Ag-Cu-B, Ag-Na-B and Ag-

Mg-B) was investigated on biofilm models of S.aureus (S800), P. aeruginosa (AG1) 

and three strains of E. coli ST131.  
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As expected, nanoparticles were more effective on Gram-negative bacteria 

than S. aureus, particularly with biofilm formed by the latter in the presence of 

glucose (i.e. protein type biofilms). Our results were in good agreement with those 

reported by Hetrick and co-workers. They found that the anti-biofilm efficacy of NO-

releasing Si-NPs at the highest dose (8 mg/L) was greatest against the P. aeruginosa 

and E. coli, with ≥5 logs of killing for both, whereas the highest dose of those NPs 

killed ~2 logs of S. aureus and S. epidermidis biofilms (Hetrick et al., 2009).  

 

One may speculate that the difference in the toxicity of the nanoparticles 

between Gram-negative and Gram-positive biofilms may be due to differences in the 

extracellular polymeric substance (EPS) properties of each type of biofilm. The EPS 

synthesized by bacterial cells greatly vary in their composition, chemical and physical 

properties (Sutherland, 2001a). Both P. aeruginosa and S. aureus are known to 

synthesize exopolysaccharides. Jena and co-workers examined the ability of starch-

stabilized Ag-NPs (CS-AgNPs) in disrupting the biofilm formation of P. 

aeruginosa and S. aureus. The results indicated that the inhibition of biofilm 

formation was more potent in P. aeruginosa. This distinction could be because of the 

presence of abundant EPS, which leads to strong interaction with CS-Ag-NPs, 

produced by P. aeruginosa (Jena et al., 2012). This is consistent with pervious 

research reported that Chitosan (CS-NPs) and Zinc Oxide (ZnO-NPs) possessed 

significant anti-biofilm activities and were capable of disrupting the multilayered 

biofilm structure of the Enterococcus faecalis (Gram-positive)  (Shrestha et al., 

2010). On the other hand, Sheng and Liu observed that genera of Kelbsiella produced 
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a large amount of EPS and were relatively tolerant to Ag-NPs activity (Sheng and 

Liu, 2011).  

 

Toxicity of these nanoparticles  could be, at least partly, attributed to their 

negative charge which enhance their penetration and diffusion into the EPS. Many 

bacterial species are characterized by a negatively-charged biofilm matrix due to the 

presence of either uronic acids or ketal-linked pyruvate (Sutherland, 2001a).  It was 

found that the penetration of the positively charged drugs, such as aminoglycosides 

and polypeptides, was low through the P. aeruginosa biofilm matrix whereas  

negatively charged drugs showed good penetration. Direct binding of positively 

charged agents to negatively-charged EPS has been reported to account for their poor 

penetration while the penetration of the negatively charge were not inhibited (Kumon 

et al., 1994).  

 

On the other hand, previous studies reported that NPs prepared by biological 

method exhibited relatively similar effect on both Gram-negative and Gram-positive 

bacteria . It was shown that 100nM of Ag-NPs resulted in 95–98 % reduction in P. 

aeruginosa and S. epidermidis biofilms (Kalishwaralal et al., 2010) while Ag-NPs 

and Au-NPs showed different effect on Gram-positive and Gram-negative bacteria.  

Ag-NPs have a good biofilm disruption, with the highest of 88% in A. baumannii, 

67% in E. coli, 78% in S. aureus, whereas, Au-NPs showed lower biofilm disruption 

of around 40% in Gram-negative bacteria and with a maximum of 95% in S. aureus 

biofilm (Salunke et al., 2014). The difference between the anti-biofilm activities of 

different NPs in different studies could be explained by variability in several factors 
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between the studies, such as strains, types of NPs , NPs preparation technique and the 

used methodologies.  

 

An interesting observation was that some of the NPs at low concentration 

actually increased biofilm formation, while at higher concentration they showed good 

anti-biofilm efficacy. This was present in both S. aureus and in P. aeruginosa, being 

more pronounced when strains were grown in glucose  (Figures 6 and 7). Others 

reported similar phenomenon earlier, as well. It was shown that P. aeruginosa biofilm 

increased in the presence of 0.2 mg/mL of FeO-NPs (Carl Haney et al., 2012). Also, 

0.01 mg/mL Au-NPs and FeO-NPs showed increased in  S. aureus and P. 

aeruginosa  biofilm growth (Sathyanarayanan et al., 2013). Furthermore, non UV-

irradiated TiO2-NPs increased biofilm formation by Listeria monocytogenes 

(Ammendolia et al., 2014). Currently, the basis of this phenomenon is not clear, 

which however, does not appear to affect the potential utility of NPs.  

 

5.3. Efficacy of nanoparticles against S. aureus of different clones 

 

Using a limited number of strains, only to know whether the results could be 

applicable to other isolates, as well. Testing further 9 MRSA strains in their 

planktonic, as well as biofilm forms representing independent lineages (Table 16) 

revealed some variations between the strains. For planktonic cells the Ag-Cu-B (Co) 

nanoparticles were the most efficacious for all of them (Table 17). Regarding the 

biofilm system, it was observed that the susceptibility of pre-existing MRSA biofilms 

exhibit considerable variation (Table 18-19). Although, no clear differences between 
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the susceptibility of protein or polysaccharide type biofilms was observed, protein 

biofilm produced a highly resistant matt for which extreme concentration of NPs 

were needed to achieve 80% reduction. No clear differences between the 

susceptibility of protein or polysaccharide type biofilms could be identified, as 

extreme resistance was also seen in some polysaccharide type matts. Noticeably, Ag-

Na-B and Ag-Mg-B NPs were not able to inhibit biofilm of certain strains under the 

presence of glucose (i.e. 12/07, T27/9 and S800) even the maximal concentration.  It 

could be speculated that in these cases the NPs may have been hindered by EPS. 

Actually, EPS acting as a physical barrier might result in a gradient of nanoparticles 

affecting the biofilm bacterial cells (Shrestha et al., 2010). Also, it is possible that 

NPs are trapped by EPS and can’t reach the biofilm cells. In addition, the EPS might 

also serve as a chemical barrier by adsorbing the harmful reactive oxygen species 

(ROS) from reaching the cell surface, thereby decreasing the effect of radical 

oxidative stress formed by NPs (Shrestha et al., 2010). 

 

 However, most of NPs could reduce above 80% of the biofilms, although 

100% viability loss did not occur even at the highest concentrations tested, suggesting 

some biofilm tolerance to the nanoparticles  effect. This finding is in line with those 

reported by Wirth and co-workers who observed that Pseudomonas fluorescens 

biofilms showing some tolerance to highest concentration of AgNPs (Wirth et al., 

2012). Tolerance could be associated with the physical barrier, which derived from the 

presence of EPS.  EPS could act as a barrier to antimicrobial transport into biofilms as 

it plays a role in the extraordinary antimicrobial tolerance of biofilms (Wirth et al., 

2012). Furthermore, this tolerance may be attributed to the presence of survivor cells 
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(presisters). Presisters are largely responsible for high levels of biofilm tolerance to 

antimicrobials (Keren et al., 2004).   

 

As a conclusion, nanoparticles could considerably reduce established biofilms. 

This is definitely true for Gram negative bacteria, while certain Gram positive strains 

exhibit high level of resistance. It should be noted, however, that our model used well-

established, mature biofilms and further studies are needed to clarify how the timely 

application of these compounds affect biofilms of resistant strains being in their earlier 

stages of development. The results certainly warrant further studies with these 

compounds to develop them into agents to be used on surfaces which cannot be 

replaced or subjected to harsher cleaning methods. 

  

5.4. The  sanitary effect of nanoparticles  

 

Contamination of food contact surfaces is a major safety concern for food-

service facilities. It was reported that approximately 80% of the foodborne outbreaks 

were traced back to food-service facilities with major contributing factors including 

inadequate personal hygiene, temperature abuse and cross contamination (Masuku et 

al., 2012).  

 

Keeping the food contact surfaces clean, i.e. either preventing their exposure 

to  microorganisms, or removing the organism before they more or less permanently 

colonize them is a critical issue. This is particularly true as it is known that the 

effectiveness of sanitizers on the planktonic cells are greater than their sessile 
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counterparts. Furthermore, with the emergence and prevalence of the multidrug 

resistant  bacteria, the demand for improving and enhancing disinfectants efficiencies 

should be increased (Zarei et al., 2014).   

 

Cleaning process refers to the mechanical removal of dirt soil and 

microorganisms from surfaces while sanitizing refers to the reduction of microbial 

contamination on inanimate surfaces to acceptable level (Koo et al., 2013). Choosing 

both cleaning materials and disinfectants is required to ensure food surface hygiene. 

Lee and co-workers showed that the application of wipes integrated with sanitizer 

was capable of reducing the viability of bacteria, yeast and fungal spores from 

different surfaces (Lee et al., 2007).  

 

Masuku and co-workers found that the combination of a sanitizer (silver 

dihydrogen citrate) and physical removal of microbes with wiping cloths is essential 

(Masuku et al., 2012). DeVere and Purchase compared the effectiveness of two wipes 

and two sprays disinfectant on a range of food contact surfaces contaminated with E. 

coli and S. aureus. The findings revealed that wipes were found to be less effective 

than sprays and this could be due to the amount of disinfectant received by the 

surface during the treatment (DeVere and Purchase, 2007). In contrast, various 

studies reported that by the impregnation of fabric material with disinfectant lead to 

eliminate variety of microorganisms on different food surfaces. Tebbutt reported that 

surfaces cleaned with clothes soaked in a detergent and hypochlorite solution were 

more likely to be successfully cleaned than those wiped with un-soaked cloths 

(Tebbutt, 1991). Also, clothes impregnated with quaternary ammonium disinfectant 
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significantly reduced number of  Enterobacteriaceae and  Pseudomonads (Scott and 

Bloomfield, 1993).  

 

However, data on the application of NPs in this context is very limited. The 

bactericidal effect of Ag-NPs were tested and compared with two commonly used 

disinfectants, sodium hypochlorite (NaClO) and phenol (C6H5OH) on E. coli using 

suspension test. It was noticed that the two chemical disinfectants exhibited rapid 

bactericidal activity within about 10 min. In contrast, Ag-NPs exhibit slow but long-

term bactericidal effect within 6 h (Chamakura et al., 2011).   

 

The effectiveness of NPs integrated into fabric material was assessed to 

reduce microbial loads to acceptable level. Noticeably, it was found, that Ag-Cu-B 

NPs wipes could reduce the viability of both S. aureus and salmonella more than 10 

times more what seen with water-soaked wipes. Furthermore, NP-soaked wipes could 

totally eliminate S. aureus cells after 2 hour. In fact, a 3 log  reduction was safely 

achieved after 1 hour after treatment (Table 20 and 21). It could be speculated that the 

sanitary effect of NPs on the contaminated surfaces can be explained by this NPs' 

antimicrobial activity (have shown in our earlier experiments) beyond the additional 

effect of mechanical action, detected by water-soaked wipes. Clearly, however, it was 

the NPs which had a significantly greater sanitary effect.  

 

Our results indicate, that after submitting these compounds to appropriate 

toxicology testing, Ag-Cu-B NPs carry the promise to be developed into effective 
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antimicrobials in food industry,  both in eliminating existing biofilms, as well as  to be 

applied as sanitary agents.  
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Chapter 6. Conclusions and recommendations  
 

Based on our data the following conclusions and recommendations could be drawn: 

 

E. coli ST131 strains do form biofilms, albeit the capacity of the strains exhibit 

considerable variation without showing, with very limited exceptions, any 

considerable clonal clustering. Biofilm formation within this sequence type is highly 

variable according to growth conditions. In nutrient rich environment 37 ºC 

temperature is an important factor promoting biofilm formation, while under nutrient 

limitation anaerobiosis seems to be a considerable stimulant.  

 

Therefore the study recommends that food-industry should be aware of the 

potential threat by this group of bacteria as strains can easily be encountered 

armored with capacities to form biofilms under a broad variety of conditions 

created by different procedures of food industry. 

 

Biofilm forming capacity exhibited only a limited association with any of the 

known adhesions genes suggesting new, yet to be identified adherence mechanisms. 

However, the strong correlation at 37 ºC with the blaCTX-M beta lactamese gene 

indicates a possible co-location of the unknown biofilm gene(s) with the bla.  

 

The study suggests further studies to identify these genetic factors facilitating 

the rapid detection of strains with biofilm forming capacity. 
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Ag-Cu-B nanoparticles exhibit strong anti-microbial activity against planktonic 

cells of bacteria, particularly in 70:20:10 ratio when prepared by the co-precipitation 

method. It also exhibits considerable capacity to kill bacteria within existing biofilms 

of different nature and produced by different bacteria. Consequently, these nano-NPs 

definitely carry the potential to be developed into effective agents preventing and 

destroying existing biofilms in food industry. 

 

The study recommends further studies with these nanoparticles , particularly as 

far as its standardization of production and toxicity (release and contamination 

of food by metal ions) are concerned, i.e. investigations that went beyond the 

scope of the current project. 

 

The study concludes that these nanoparticles are fast and effective compounds 

to be used as sanitary wipes, i.e. a task much needed in food industry and food-related 

activities.  

 

Beyond the above mentioned toxicology studies, study also recommends 

investigations in cooperation with the industry to develop the most appropriate 

vehicle for this nanoparticles to be applied as wipes. 
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Appendix 

 

Composition of buffers, solutions and media used  

 

 BHI broth: 3.7 grams of Brain Heart Infusion medium (Oxoid, Basingstoke) was 

added to 100 ml distilled water then autoclaved. 

BHI medium supplemented with 4% NaCl was prepared by adding 3.7 

grams of Brain Heart Infusion medium (Oxoid, Basingstoke) and 4 grams of NaCl 

(95.5%, sigma) to 100 ml distilled water then autoclaved.  

BHI medium with 1 % glucose was prepared by adding 2 ml of 20% sterile 

glucose (95.5%, sigma) solution (sterilized with 0.22 μm syringe filter) to 38 ml of 

autoclaved BHI broth. 

Casamino acid solution (20%) was prepared by adding 20 g of casamino 

powder (Bacto, France) into 100 ml distilled water, then autoclaved. 

Cell lysis buffer 25 ml of 1M Tris buffer (pH 8.0) and 50 ml of 0.5 M Na-

EDTA (pH 8.0) were added to 50 ml of 10% Sarkosyl, then the solution was filled up 

to 500 ml sterile distilled water. 

Cell suspension buffer was prepared by adding 10 ml of 1 M Tris buffer  (pH 

8.0) to 20 ml of 0.5 M Na-EDTA (pH 8.0), then the solution was filled up to I liter 

sterile distilled water. 

  Fixing solution was prepared by adding 10 ml of formalin to 490 ml of 

autoclaved 1X PBS.  
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  Glycine buffer (0.1 M) was prepared by adding 0.75 g of glycine (sigma, US) 

into 100 ml distilled water. Glycine solution's pH was adjusted to 10.2 with 10N 

NaOH, then autoclaved.  

  LB medium with 1 % glucose was prepared by adding 2 ml of 20% sterile 

glucose to 38 ml of autoclaved LB. 

  LB medium: 0.2 grams of Luria broth medium (Invitrogen, US) was added to 

100 ml distilled water then autoclaved.  

  Lysing solution was prepared by adding 5 ml of 10% SDS to 250 ml of 99% 

ethanol, then filled up to 500 ml with autoclaved 1X PBS.  

Lysostaphin was prepared by adding 10 mg of lysostaphin powder into 1ml 

sterile distilled water, then aliquoted in 500 µl tubes and stored at -20 ºC. 

M63 (5X) medium broth : 20 g ammonium sulfate (NH4)2PO4, 136 g  

potassium Phosphate (KH2PO4) and 5 mg  ferrous sulfate (FeSO4·7H2O) were 

dissolved into 1.8 liter distilled water. M63 Solution’s pH was adjusted to 7 with 10 

N KOH.  The solution was filled up to 2 liter with distilled water, then autoclaved. 

M63 broth supplemented with 20% casaminoacid and 0.2% glucose: was 

prepared by adding 20 ml 5X M63, 5 ml  casaminoacid, 1 ml 20% sterile glucose and 

100 µl 1M MgSO4·7H2O into 74 ml sterile distilled water.  

Magnesium sulfate solution 1M: was prepared by adding 24.64 g of 

magnesium sulfate heptahydrate (MgSO4·7H2O)  into 100 ml distilled water. Then 

solution was sterilized with 0.22 μm syringe filter.    
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  MHA: 3.6 grams of Mueller Hinton agar medium (MHA, Mast) was added to 

100 ml distilled water and then autoclaved.  

  MHB :  2.1 grams of Mueller Hinton broth medium (Oxoid, UK) was added 

to 100 ml distilled water and then autoclaved. 

  MTT solution (0.3%) was prepared by adding 60 mg of 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (sigma, >99.5%,USA ) into 

20 ml sterile 1X PBS. 

  PBS (10X): 80 g NaCl, 2 g  KCl, 14.4 g  Na2HPO4 and 2.4 g KH2PO4 were 

dissolved in 800 ml ultrapure water. PBS Buffer Solution’s pH was adjusted to 7.4 

with 1 N HCl.  The solution was filled up to 1 liter with ultrapure water and sterilized 

by autoclave. 

  Phosphate buffered saline (PBS): 1X PBS was prepared by adding 10 ml of 

10X PBS solutions to 90 ml of distilled water then autoclaved.  

Proteinase K solution  (20 mg/ml)  was prepared by adding 0.120 g of 

proteinase K powder to 6 ml of sterile distilled water, then aliquoted in 500 µl tubes 

and stored at -20 ºC. Ten milliliter of 1 mg/ml solution was prepared from the stock 

by adding 9.5 ml sterile distilled water to 500 µl proteinase K 20 mg/ml immediately 

before use. 

SDS (20%) was prepared by dissolving 20 g of Sodium dodecyl sulfate (SDS) 

in 100 ml sterile distilled water. 

  Staining solution was prepared by adding 0.659 g of crystal violet to 2.5 ml 

of 99% ethanol and 10 ml of formalin plus 487.5 ml of autoclaved 1X PBS. 
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TE buffer was prepared by adding 10 ml of 1M Tris buffer (pH 8.0) to 2ml of 

0.5M Na-EDTA (pH 8.0), then the solution was filled up to 1 liter sterile distilled 

water. 

Triton X lysis buffer: 1 ml of 100 mM NaCl, 100 µl of 1 mM TRIS-HCl 

(pH8.0), 0.5 ml of 1mM Na-EDTA (pH9.0) and 100 µl of 1% Triton X were added to 

8.8 ml sterile distilled water. 

  TSA: 3.7 grams of tryptic soy agar medium (Mast, UK) was added to 100 ml 

distilled water and then autoclaved. 

  TSB medium supplemented with 1% glucose was prepared by adding 2 ml 

of 20% sterile glucose to 38 ml of autoclaved TSB. 

  TSB: 3.7 grams of tryptic soy broth medium (Mast, UK) was added to 100 ml 

distilled water and then autoclaved. 

 

  NPs stock solution (1mg/ml): 1 mg of NPs powder was added to l ml MHB 

and sonicated for 20 minutes.   
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