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Resumo – Este artigo descreve uma metodologia para seleção de classes de símbolos a partir de classes 
de grafemas em um sistema de reconhecimento de palavras manuscritas do extenso de cheques bancários 
brasileiros baseado em HMM (Hidden Markov Models). Este artigo discute as definições de primitivas, 
grafemas e símbolos considerando um enfoque Global para o reconhecimento das palavras, o qual evita a 
segmentação das palavras em letras ou pseudo-letras utilizando HMM. Assim, a entrada para os modelos 
consiste em uma descrição da palavra a partir de um alfabeto de símbolos gerados a partir dos grafemas 
extraídos das imagens das palavras, sendo esta a representação visível para o HMM. Portanto, a idéia é 
introduzir uma conceituação de alto nível, tais como primitivas perceptivas (laços, ascendentes, 
descendentes, concavidades e convexidades) e fornecer um modo de retro-alimentação rápido e informativo 
sobre a informação contida em cada classe de grafema, permitindo uma seleção de classes de símbolos. O 
artigo apresenta o algoritmo com base na Informação Mútua (Mutual Information) e HMM, ambos 
trabalhando em um mesmo processo de avaliação. Os resultados experimentais demonstram que é possível 
selecionar a partir de um conjunto “original” de grafemas (composto por 94 grafemas) um alfabeto de 
símbolos (composto por 29 símbolos). O artigo conclui que o poder discriminante dos grafemas é muito 
importante para a consolidação de um alfabeto de símbolos. 
 
Palavras-chave: Primitivas, Informação Mútua, HMM, Reconhecimento de Palavras. 
  
Abstract - This paper presents a new strategy for selecting classes of symbols from classes of graphemes 
in HMM-based handwritten word recognition from Brazilian legal amounts. This paper discusses features, 
graphemes and symbols, as our baseline system is based on a global approach in which the explicit 
segmentation of words into letters or pseudo-letters is avoided and HMM models are used. For this 
framework, the input data are the symbols of an alphabet based on graphemes extracted from the word 
images visible on the Hidden Markov Model. The idea is to introduce high-level concepts, such as perceptual 
features (loops, ascenders, descenders, concavities and convexities) and to provide fast and informative 
feedback about the information contained in each class of grapheme for symbol class selection. The paper 
presents an algorithm based on Mutual Information and HMM working in the same evaluation process. 
Finally, the experimental results demonstrate that it is possible to select from the “original” grapheme set 
(composed of 94 graphemes) an alphabet of symbols (composed of 29 symbols). We conclude that the 
discriminating power of the grapheme is very important for consolidating an alphabet of symbols. 
 
Key-words: Features, Mutual Information, HMM, Handwritten Word Recognition. 
 
 
Introduction 
 

Following the traditional pattern recognition 
approach, we divide the recognition task into two 
steps: first, a set of features is extracted from the 
images, and then a classifier computes the class-
conditional probabilities based on these extracted 
features. So, the objective of the feature 
extraction is to capture the most relevant and 

discriminatory characteristics of the object to be 
recognized. Accordingly, in our baseline system, 
the feature extraction algorithms use perceptual 
pattern recognition techniques, while the 
classification is based on a statistical approach.  

In order to select a subset of the original 
features by reducing irrelevant and redundant 
ones, feature selection algorithms have been 
applied [9,12,15]. In the absence of such 
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algorithms, large training sets are mandatory. 
Therefore, the problem of finding relevant features 
from a given feature space is defined as “Feature 
Selection”. 

Feature selection methods attempt to find 
reduced feature sets, which minimize the 
probability of error. Most of these methods use 
evaluation functions and search algorithms to 
achieve their objective. The evaluation functions 
measure how good a specific subset is in 
discriminating between classes, and can be 
divided in three kinds of feature relevance being 
assumed [15]: 

• Relevance of feature to constructing 
consistent hypothesis; 

• Relevance of feature to improving 
accuracy; 

• Relevance of feature to the concept. 
Based on these three relevance metrics the 

feature selection algorithm can be grouped as 
shown in Figure 1 [15]. The sub trees are not 
mutually exclusive. This means that a feature 
selection algorithm can be a member of more than 
one sub tree. 
 

 
Figure 1 – Feature Selection Algorithms 

Classification 
 

Filters measure the relevance of feature 
subsets independently of the classifier, whereas 
wrappers use the classifier’s performance as the 
evaluation function [9.15]. Search algorithms, by 
contrast, are responsible for driving feature 
selection using a specific strategy, e.g. branch-
and-bound, stepwise and genetic algorithm, 
among others [12]. 

Usually, the dimension of the resulting 
feature vector is smaller than the dimension of the 
original pixel images, facilitating the subsequent 
classification step. However, it is difficult to 
introduce high-level concepts, such as loops and 
strokes, in a robust way. In fact, for the limit of an 
infinite number of training samples, it can be 
shown that the best possible performance can be 
obtained from an unbiased classifier. 

In order to introduce high-level concepts for 
selecting classes of symbols; features, 
graphemes and symbols are discussed in this 
paper, since our baseline system is based on a 
global approach in which the explicit segmentation 

of words into letters or pseudo-letters is avoided 
and in which Hidden Markov Models (HMM) are 
used. For this framework, the input data are the 
symbols of the alphabet based on graphemes 
extracted from the word images visible on the 
HMM. Our symbol approach is based on the 
concept of Mutual Information (MI), such as in 
[1,6], but using graphemes to establish the 
classes of symbols.  

For our study, the grapheme notion is 
directly linked with the feature set extraction 
method. The perceptual feature set used in this 
work takes into account the global approach and 
studies on the human reading-writing process as 
described in [10,11,16,18]. As a result, we 
introduce high-level concepts, such as perceptual 
features (loops, ascenders, descenders, 
concavities and convexities) and graphemes for 
selecting classes of symbols. The following 
questions are discussed in connection with the 
selection of an alphabet of symbols based on MI: 

• What are a perceptual feature, a 
grapheme and a symbol?  

• How can the most discriminatory 
graphemes be kept, considering a shape-
space (SS) formed by features and 
graphemes? 

• How should an observation-space (SO) 
based on shape-space (SS) be defined? 

This paper is divided into 9 sections. In 
section 2, the handwritten word recognition 
problem is explained in terms of Brazilian legal 
amounts. In section 3, the perceptual feature 
definition and extraction method is presented. In 
sections 4 and 5, we explain what a grapheme 
and a symbol are in the context of our study. 
Section 6 sets out the background of the theory of 
entropy and of MI. In section 7, the application of 
MI to the selection of an alphabet of symbols 
based on classes of graphemes is shown. In 
section 8, the experimental results are presented; 
while in section 9 the conclusion and suggestions 
for future work are presented. 
 
Word Recognition Problem 
 

The scope of this study is limited to the off-
line recognition of individual handwritten words 
from legal amounts. The legal amount 
corresponds to a numerical value which obeys a 
known grammar, and the database contains legal 
amounts between R$ 0,01 ("um centavo") and R$ 
999.999,99 ("novecentos e noventa e nove mil, 
novecentos e noventa e nove reais e noventa e 
nove centavos"). 

From the numerical value, it is possible to 
define five subsets of words, such as: “entos”, 
“enta”, “ten” and “unity”, as shown in Figure 1, and 
the keywords {“mil”, “reais or real” and “centavos 
or centavo”} [5]. We can also observe in Figure 2 
the similarities among the suffixes and prefixes of 



the words in the lexicon. This increases the 
complexity of the recognition problem. 

A global approach in the context of our 
baseline system is one in which the explicit 
segmentation of words into letters or pseudo-
letters is avoided and in which HMMs are used. In 
this framework, the input data are the symbols of 
the alphabet based on graphemes which are 
visible on the HMM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 - Subset of words from Brazilian legal 
amounts  

 
What is a Perceptual Feature? 
 

Feature extraction plays an important role in 
handwriting recognition systems, as described in 
[3,7,11,13]. We integrate the relevant aspects of 
the writing and reading processes, as described in 
[10,16]. In [10], the authors define perceptual 
features as the most commonly used 
characteristics in word form representation 
(ascenders, descenders and loops, represented 
by symbol, position and size). In [16], the authors 
summarize a number of findings in human reading 
of handwriting. Results reveal a left-to-right 
strategy in reading; however, extra attention is 
paid to the initial, left-most parts and the final 
right-most parts of words in a range of word 
lengths. This means that shape information 
(ascenders, descenders, crossings and points of 
high curvature) is important in handwriting 
recognition. 

In order to minimize the effects of writing 
variability related to differing styles, to the writer's 
own particular characteristics and to word slant, a 
preprocessing treatment is applied [5]. This 
consists of slant correction as in [19], and 
smoothing of word images as in [17]. No baseline 
correction of any kind is used, since a legal 
amount is written using two printed guidelines in 
the regular, bank-check pattern. 

Three zones are determined based on the 
horizontal transition histogram: ascender, body 
and descender. The body of the word is the area 
located between ±70% of the maximum value of 
this histogram [5]. Figure 3a shows a feature 
extracted based on perceptual features extracted 
from these word zones, called PFCCD 

(Perceptual Features, Concavities and 
Convexities Deficiencies). The character # 
denotes a separator between two graphemes. 

 
 
 
 

 
 

 
 

Figure 3 - Feature sets: a) PFCCD; and b) 
pseudo-segment 

 
The features are extracted over the word 

images and a pseudo-segmentation process is 
applied to obtain a sequence of corresponding 
observations, as seen in Figure 3b. A segment is 
delimited between two black-white transitions over 
the maximum peak of the horizontal transition 
histogram (Median Line), and a corresponding 
representation (called F-symbol) is designated to 
represent the features extracted, making up a 
grapheme. Only the transitions that are not found 
inside the loops of the word body are considered. 
In a case where no feature can be extracted in the 
analyzed segment, an empty symbol is emitted, 
denoted by X. 

Concavity and convexity deficiencies in the 
word body are extracted and labeled, as shown in 
Figure 3a. These deficiencies are obtained by 
labeling the background pixels of the input images 
[5]. So, the PFCCD feature set is a classification 
capable of representing the ligature between 
letters and separating graphemes made up of “C”, 
“S”, “E” and “Z” or, “u”, “n”, “r” and “i”.  Table 1 
summarizes the feature set and the corresponding 
F-symbol for each one. 

 
Table 1 - Feature Set 

Item Basic Feature F-symbol 
01 Large and small ascender T, t 
02 Large and small descender F, f 
03 Superior and inferior loop l, j 
04 Large and small loop in 

word body 
O, o 

05 Open right and open left 
concave 

( , ) 

06 Open right and open left 
convex 

C, Z 

07 Open down and open up 
convex 

n, u 

08 False loop in word body a 
09 Ligature down i 
10 Ligature up r 
11 Empty X 
 

What is a Grapheme? 
 

In our study, a grapheme is an entity which 
can correspond to a part of a letter, a letter or 



connected letters. The feature set is extracted 
inside a pseudo-segment from the word obtaining 
the “original” grapheme set. An “original” 
grapheme set is composed of all combinations of 
features extracted from the words in the training 
database. 

Consequently, the word will have a number 
of graphemes corresponding to the number of 
pseudo-segments observed over the Median Line, 
as described previously. Now, suppose that a 
vector with x binary elements can represent the 
basic features, where each element represents 
the absence (0) or the presence (1) of each 
feature, as shown in Figure 4. This representation 
describes the grapheme FO extracted from the 
word “cinquenta”, as shown in Figure 3. 
 
T t F f l j O o ( ) C Z n u a i r X 

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Figure 4 - Feature vector 

With this description, 2x = 262,144 different 
graphemes in the PPCCD set can be codified, 
where x = 18. In reality, we found 94 different 
graphemes, called “original” graphemes, from a 
total of 73,165 graphemes extracted from 7,146 
word images in the training database. Figure 5 
shows that some graphemes are more common 
than others, such as: X, i, u, r, o, O, a, n and T. By 
contrast, many of them occur only a few times, 
such as: flO, TFO, na and Er. 

 
 
 
 
 
 
 
 
 
 

 
Figure 5 - Appearance frequency of “original” 

graphemes 
 

In fact, because of the variability of the 
handwritten word and to reduce the dimensions of 
the HMM model, we need to improve the 
robustness of the system. The problem when 
working with HMM is to answer the following 
question: How it is possible to train HMM models 
using graphemes which have a low apparition 
frequency in the observation sequences? It is 
important not to reduce the quality of the 
grapheme. So, definition of the observation-space 
is an important step of the symbol selection 
process. 

This improvement is related to an analysis 
based on the “original” grapheme set. Therefore, 
we implement a methodology for selecting classes 
of symbols from classes of graphemes using MI 

theory and grapheme similarity. This method 
suppresses the graphemes that have low 
apparition frequency. It should be remembered 
that suppressing graphemes does not mean 
eliminating them, but rather to concatenate them 
with other, similar graphemes. 
 
What is a Symbol? 
 

A symbol corresponds to the physical input 
of the system being modeling. We denote the 
individual symbols as V = {v1, v2,…, vM}, where M 
is the number of distinct observation symbols, i.e., 
the discrete alphabet size. 

Considering the feature vector as shown in 
Figure 4 and knowing that we can extract more 
than one basic feature inside the pseudo-segment 
making up a grapheme; we need define the 
discrete alphabet V for our system HMM-based. 
For this, we analyze the interaction among three 
different spaces: feature, grapheme and symbol. 

The features and graphemes extracted 
define a space which we call the shape-space. 
This space represents the shape to be recognized 
and is linked to letter shape. Figure 6 presents the 
graphic representation of the shape-space (SS) 
and can be written as: 
 

SS = f (F,G) (1) 
 
where F are the basic features (see Table 1) and 
G is the grapheme set extracted from the training 
database. 

It is easy for us, as human beings, to relate 
the basic feature and the grapheme. For instance, 
the basic features O and F can be extracted from 
the same pseudo-segment making up the 
grapheme “OF”. This grapheme represents the 
letter “q” in the shape-space (with a big loop and 
big descender). The same analogy can be made 
using the features o and F (letter “q”, with a small 
loop and big descender) and features O and T 
(letter “d”, with a big loop and big ascender) (see 
Figure 5). 

 
Figure 6 - Shape space: features versus 

graphemes  
 

As stated above, we need to define the 
discrete alphabet V for our HMM-based system. 
Therefore, we need convert the shape-space into 



another space, which we call the observation-
space (SO). This space defines the alphabet of 
symbols V and M which is the number of distinct 
observation symbols. Figure 7 presents the 
graphic representation of the observation-space, 
where the graphemes OF and oF were 
concatenated to make up a unique symbol vi. 

 
Figure 7 - Observation space: graphemes versus 

symbols 
 

For this, we need to choose a method 
capable of computing the following function: 
 

SO = g (SS ,V) (2) 
 
where SS is the shape space, V ={v1 , v2 ,…, vM}, i 
=1, 2, …,M and vi ∈ V. However, to compute SO is 
not a trivial task, especially when many 
graphemes are involved. The idea is to keep a 
relevant and discriminatory grapheme set. In fact, 
we need to choose a subset of the “original” 
graphemes by removing irrelevant and redundant 
ones. 

In the next section, MI theory is applied to 
studying the “original” grapheme set and 
implementing an algorithm based on the 
discriminatory power of the graphemes through 
their similarities. 
 
Mutual Information Theory 
 

The a priori measure of the difficulty of the 
recognition task can be obtained by a measure of 
entropy, which is a measure of the uncertainty of 
a random variable, defined in [4] as: 
 

∑ =−= N
i ii )(PPH(P) 1 2log  (3) 

 
where Pi is the ith word probability in the training 
database and N is the lexicon length. So, the 
lexicon in question is composed of 39 isolated 
words. The H(P) calculated using the training 
database is equal to 4.77 bits. With this value, it is 
possible to compare the recognition of 39 words 
and a problem containing 27 equally probable 
word classes. When the lexicon is smaller, such 
as a French lexicon, the problem complexity is 
around 12 equally probable word classes, as 
demonstrated in [1]. 

Given random variables X and Y, the MI 
Theory measures the amount of information in X 
that can be predicted when Y is known. 
Uncertainty means a reduction in one random 
variable due to knowledge about the other. So, MI 
measures how the amount of information is 
distributed in the “original” grapheme set. For this 
purpose, the I(X,Y), described in [4], is the relative 
entropy between the joint distribution and the 
product distribution p(x)p(y): 
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In [1], MI is expressed in terms of words, as: 
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where the random variables Ci and Gk represent 
the ith word class in the lexicon and the kth 
“original” grapheme respectively. Moreover, j ∈ 
{0,...,X} corresponds to the number of times the 
grapheme Gk occurs inside the observation 
sequences from word class i. W is the lexicon 
length corresponding to 39 classes of words. 

Equation (5) enables computation of the 
amount of information in each “original” 
grapheme. Normally, the number of “original” 
graphemes is very high. Therefore, it is necessary 
to choose a method to look for similarities among 
these “original” graphemes of the set (SS) in order 
to concatenate them and validate the 
concatenations obtained. The idea is to reduce 
the number of graphemes while keeping the most 
discriminating of them, i.e. those which contain 
the most significant part of the totality of 
associated information. The result of this process 
will provide the classes of symbols (SO).  

Four methods can be used to achieve this: 
Hamming Distance, Weighted Hamming Distance, 
Hierarchical [1] and Entropy [1,2,6]. In [1], the 
author did a hierarchical analysis based on the 
grapheme/letter shapes. In [6], the conditional 
perplexity based on the entropy notion from the 
information theory is used to indicate the 
discriminating power of different feature sets. In 
[2], MI is applied to evaluate the information 
contained in each feature and to select an 
informative subset of features to be used as input 
data for a neural network classifier. Another 
example is found in [1], where MI contributes to 
handwritten word recognition of French legal 
amounts by improving the feature set. For this 
purpose, a concatenation algorithm selects a 
subset of relevant graphemes from the “original” 
set. 

In the next section, we discuss the MI 
criterion based on the amount of information 
contained in each extracted grapheme for 



selecting an informative alphabet of symbols to be 
used as input data for HMM. 
 
Methodology for Selecting Classes of Symbols 
from Classes of Graphemes: Entropy Alphabet 
 

We analyze the F-symbols, and the most 
frequent combinations of them, and place them in 
a set of “original” graphemes, establishing 5 
similarity-classes based on letter shape (SS) and 
their graphemes, as follows: 

• Class 01: perceptual features (O,T,F,X) – 
these graphemes cannot be concatenated 
with others because they represent the 
most frequent F-symbols and have the 
most discriminatory power among 
graphemes; 

• Class 02: concavity (i,u), convexity (r,n) 
and loop (o,a) – the graphemes making 
up this class can be concatenated with 
others; 

• Class 03: small ascenders and 
descenders (t,f) without or with a loop (l,j) 
– the graphemes making up this class can 
be concatenated with others; 

• Class 04: concavity (C,E,S,( ) and 
convexity ( ),Z) – the graphemes making 
up this class can be concatenated with 
others; 

• Class 05: graphemes composed of 3 F-
symbols (one per zone) (for example: 
TOF, Tj, Tf) – these graphemes can be 
concatenated preferentially. 

In order to improve the recognition results, 
an algorithm was implemented to provide fast 
informative feedback on the information contained 
in each grapheme. Then, a decision is made as to 
whether the grapheme must be kept as is or 
concatenated, within the similarity-class, with 
other graphemes and, if so, which one. 

The algorithm implemented considers the 
MI (Equation 5) associated with the α criterion as 
shown in [1]: 

α>
)),(),,(max(

),(

21

"

GCIGCI
GCI

 
(6) 

 
Grapheme validation occurs when the 

relation between the information on the 
concatenated grapheme I(C,G”) and the 

)),(),,(max( 21 GCIGCI  from isolated 

graphemes is greater than a fixed threshold, α = 1 
[1]. Other values for α were tried, but, when α < 1, 
more graphemes were concatenated, which was 
not satisfactory (low recognition rate). By contrast, 
when α > 1, some graphemes are not 
concatenated, this yields an even worse result, 
because in this case the training HMM is 
prejudiced. Appling, for instance, α = 1.5 the 
concatenation process obtained two different 
symbols: Ot,tO and ot,to. But, the occurrence of 

these symbols in the database is not appropriately 
for HMM training. 

Figure 8 presents the algorithm 
implemented relating to MI, similarity-class, α 
criterion and HMM training models. Running this 
process, we can establish the number of symbols, 
M = 29, from the 94 “original” graphemes. We call 
this alphabet of symbols V the Entropy Alphabet. 
 

MI Algorithm 
1-Compute the I(C,Gk) of each grapheme 
(starting with the “original” grapheme set) 
2-Reduce the alphabet dimension, making N 
concatenations (go to Reducing Stage) 
3-Train HMM models based on the new alphabet 
4-Recognition of the testing database with 
trained HMM models  
5-If the recognition rate (%) is worse than before, 
return to step 2 and try the other possible 
concatenations, otherwise replace the alphabet 
9-Return to step 1 while the recognition 
improvement (%) remains positive 

Reducing Stage 
2-Repeat X times with all combinations of pairs 
of graphemes (taking into account Classes 
02,...,05): 
     2.1-Choose two graphemes with low 
appearance frequency within the same Class 
(02,...,05) 

     2.2-Compute the I(C, "
kG ) (graphemes 

concatenated) 
     2.3-Validate the acceptable concatenations 
(apply the α criterion) 
     2.4-Reduce the alphabet taking into account 
the validated concatenations 

Figure 8 - MI algorithm 
 

In this way, we improve the discriminating 
power of the feature set, and we improve system 
performance. Note that the process guarantees 
that any loss which occurs is related to grapheme 
quality. This is because the process does not 
avoid the information contained in the grapheme 
set. An important role was played by the similarity-
class, which provides a search algorithm within 
the “original” grapheme set. Table 2 presents 
some samples of the normalized I(C,Gk) for the 
“original” graphemes (94 symbols) and symbols 
(29 symbols). Observe that Ientropy(C,G”k) is higher 
than Ioriginal(C,Gk). 

The MI process started by computing the 
I(C,Gk)94 based on an “original” grapheme set (94 
graphemes), applying Equation (5). We then 

applied the MI algorithm, computing I(C, "
kG )X for 

each X possible grapheme concatenation based 
on similarity-class. Moreover, we compute the α 
values using Equation (6). The results of some 
examples are shown in Table 3. For instance, the 
“original” grapheme Ot was concatenated with 
three other graphemes, to, tO, and ot, making up 



a new symbol (G”k)entropy. It makes no difference in 
the resulting symbol whether the ascender comes 
before or after the loop, because, for our lexicon, 
we do not differentiate between “d” and “b”. This is 
because we have no words containing the letter 
“b” (see Figure 2). In the sequence, we describe 
the word recognition method (HMM) and the 
experimental results. 
 
Table 2 - MI I(C,Gk) for “original” and I(C,G”k) for 
entropy alphabets (5 most common graphemes) 

Gk (original) Ioriginal(C,Gk) Ientropy(C,G”k) 
X 2.66785·10-04 7.87530·10-04 
i 4.35851·10-03 1.38081·10-02 
u 8.80659·10-03 2.79295·10-02 
r 1.20051·10-02 3.80493·10-02 
o 1.31538·10-02 4.13278·10-02 

 
Table 3 - Grapheme concatenation  

Gk(original) max I(C,Gk) G”k I(C,G”k) α 
Ot,tO,ot,to 1.135·10-02 Ot 3.57·10-02 10.23 

OF,FO,oF,Fo 1.139·10-02 OF 3.58·10-02 10.26 
jO,Oj,oj,jo 1.135·10-02 Oj 3.59·10-02 10.25 

 
 
MI Methodology Applied to Handwritten Word 
Recognition: Experimental Results 
 

Hidden Markov Model (HMM) theory has 
been used successfully to model writing 
variability; however, the theoretical formulation of 
HMM is beyond the scope of this paper. An 
excellent introduction to this subject can be found 
in [14]. Interest in the HMM lies in its ability to 
efficiently model different knowledge sources. It 
correctly integrates different modeling levels 
(morphological, lexical, syntactical), and also 
provides efficient algorithms to determine an 
optimum value for the model parameters. 

Our HMM word models are based on a left-
to-right discrete topology (Bakis Topology), where 
each state can skip at most two states. The size 
of the lexicon makes it possible to consider one 
model for each class, as explained in [5].  

The database used here is composed of 
11,936 isolated words. This database was divided 
into 3 subsets, called the Training (60%), 
Validation (20%) and Testing (20%) subsets. The 
most common writing style is cursive, 
representing 72% of the training database [5].  

The results with 39 models, considering 
PFCCD sets and the different symbol alphabets 
obtained when we apply the MI algorithm (Figure 
8), are shown in Table 4. Figure 9 shows some 
examples of misrecognized images. 

Comparing results is not easy, since the 
different works refer to different databases, so the 
comparison has to be viewed on that basis. It 
seems that at present our results are comparable 
to those of others, in particular because our 
lexicon is rather longer than the others, i.e. 39 

words (English - 32 words and French - 25, 27 or 
29 words, depending on the authors). We must 
recall Figure 2, which shows the similarity 
between the suffixes and prefixes of the words in 
the Portuguese lexicon, thereby increasing the 
complexity of the recognition task. Unfortunately, 
in the literature, only a few studies report results 
on the Portuguese lexicon. This limited literature 
makes the comparison of results rather difficult. In 
Table 5, a comparison with other published work 
is presented. These studies consider a global 
approach, and one model to represent each 
individual word. 

 
Table 4 - MI algorithm application and recognition 

results – PFCCD feature set 
Number of  

Symbols (M) 
Recognition 

Rate (%) 
Comments 

94 67.13 Original Alphabet 

62 67.55 --- 
32 67.54 --- 
30 67.49 --- 
29 67.66 Entropy Alphabet 

 
 

 
Figure 9 - Examples of misrecognized images 

 
Table 5 - Comparison of word recognition results 

(Recognition rate (%) in TOP1 choice) 
Authors E F P 

Côte [3] 73.6 - - 
Guillevic ADS [7] 72.6 - - 
Guillevic AD [7] 63.9 - - 
Avila [1] - 62.2 - 
Guillevic AD [7] - 78.3 - 
Ollivier [13] - 75.0 - 
Gomes [8] - - 50.0 
Freitas PPCCD [5] - - 70.6 

E = English, F = French, P = Portuguese 

 
Conclusion 
 

This paper presents an algorithm based on 
Mutual Information for selecting an informative set 
of symbols from a grapheme set to be used as 
input data for HMM. This process was 
implemented and applied on our database. We 
started with 94 different graphemes and, through 
a process of reduction, validated an Entropy 
Alphabet composed of 29 symbols (SO). The 
advantage is that we combine I(C,Gk) computing, 



the reduction stage and HMM into a single 
algorithm. The concatenations were validated 
during the process by means of the informative 
feedback provided about the information 
contained in each grapheme and by applying 5 
similarity-classes based on letter shape (SS) and 
their graphemes.  Finally, our next efforts will be 
focused on the development considering a new 
complementary feature set. 
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