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ABSTRACT 
 
This paper reports the second stage of a study of the 
correlations between the temporal work patterns of 
computer programming students and their success or 
failure as measured by programming project assignment 
grades and related metrics. The first stage confirmed the 
importance for most students of getting an early start on a 
programming project, and it also uncovered the fact that 
some student groups perform well with late starts, 
suggesting the likelihood that they engage in the 
productive practice of active procrastination. The second 
most important factor for success is the average length of 
assignment work sessions. Session lengths from 60 to 120 
minutes appear to be optimal for most students. Other 
contributing factors include total time spent on a project 
and working more day than night sessions. This second 
stage more than doubles the amount of data collected and 
analyzed. It finds that procrastination and session length 
remain prominent, while secondary factors become 
slightly less prominent. Its primary contribution is the 
analysis of within-student patterns for students who 
perform significantly better on some assignments than 
others, finding that for these students, starting early and 
maintaining appropriate work session lengths and times of 
day correlate with better performance. 
 
KEY WORDS 
data mining, programming assessment, student 
programming, time management. 
 
1.  Introduction 
 
The work reported here is the second stage of a study 
begun in 2013 and reported in 2014 [1,2]. The initial stage 
collected 90 attributes of data including when, for how 
long, how often, and with what magnitude of effort and 
accomplishment, students engaged in work to complete 
programming assignments. Most of the data collection 
was automatic, participation was voluntary, and data from 
auxiliary sources, including a questionnaire on conflicting 
demands on time, complemented automatically collected 
data. Analyses revealed that procrastination and 
excessively brief work sessions were the main indicators 
of problems for students with inadequate prior success in 
earlier computer science courses. 

 
Some students with successful track records knew when 
they could afford late starts. We added four attributes to 
the study in order to sort out students who could afford 
late project starts from those who could not, namely, 
number of overall undergraduate credits, undergraduate 
grade point average, number of computer science 
undergraduate credits, and computer science grade point 
average. The latter attribute proved especially useful, but 
not deterministic, in distinguishing successful from 
unsuccessful procrastinators. We hope to use the data to 
investigate the phenomenon of active procrastination in a 
future study. Active procrastination is intentional, 
constructive deferral of work, while passive 
procrastination is destructive work avoidance. The two 
leading theories are that active procrastinators are better 
time managers, deferring project work until needed in 
order to address competing tasks earlier [3], and that 
active procrastination increases the degree of positive 
stress or eustress, closely related to flow, forcing focused, 
efficient, and pleasurable engagement of the cognitive 
system [4]. One advantage of the current study over most 
studies of active procrastination is that this study works 
almost entirely with automatically collected, objective 
data, while those studies work largely with subjective 
surveys. However, the more immediate goal is to 
construct semi-automated aids for at-risk students, a topic 
appearing in the section on future work. 
 
Distribution of work sessions across the day was a 
contributing factor to success. Additional analysis 
presented here indicates that working a greater percentage 
of daytime than nighttime sessions yields beneficial 
results for students whose performance varies 
significantly across projects. Also, using a few marathon 
sessions to attack complex problems does not work well 
for most students, so the only way to increase the overall 
work time without resorting to long sessions is to have 
multiple sessions, necessitating distribution across the day 
with breaks in between. The ability to distribute requires a 
relatively early start in the project cycle. Otherwise, time 
becomes short and the ability to schedule numerous work 
sessions of productive length becomes impossible. 
 
The initial stage of the study found that conflicting 
demands on student time did not correlate strongly with 



the degree of project success. Students used a short 
questionnaire to report conflicting programming projects 
from other courses as well as reporting exams in any 
course. Data collection did not include time spent on jobs 
or other extracurricular activities. Answers in the 
questionnaire comprised the primary form of subjective 
data in the study. They did not correlate well with student 
performance, either in specific student subgroups or in the 
student dataset as a whole. While task conflicts 
undoubtedly affect some students’ performance, there was 
no clear correlation. It is likely that appropriate 
scheduling of programming work sessions by a student, as 
measured and analyzed by the study, lessens the impact of 
competing activities. 
 
2.  Related work 
 
Edwards, et. al. have previously reported late starts in 
programming projects as clearly associated with poorer 
results on such projects [5]. That study utilized data from 
three programming courses for over five years. It 
confirmed results from earlier studies about the 
correlation of earlier project starts with better rates of 
project success. That study eliminated both consistently 
well-performing students and consistently poorly-
performing students from the analysis in order to focus on 
intra-student attributes that vary between successful and 
unsuccessful projects. Portions of the current stage of the 
present study also take that approach, as reported in a 
section below. However, the present study mostly 
investigates all students, with special attention to at-risk 
students who perform poorly either part or all of the time.  
Consistently well-performing students are also of interest 
as they relate to active procrastination. Results of the 
present study agree with the results of the cited study, 
while detecting additional significant attributes of student 
work habits that alter those basic results. 
 
Edwards and Ly have reported on automating analysis of 
the specific types of problems that occur in running 
student programs [6]. That analysis differs in nature from 
the current project, which focuses on correlations between 
student work patterns and project success or failure, as 
contrasted with specific types of project failure. 
 
Mierle, et. al. examined student code repositories, based 
on file modifications that appear in file change 
submissions and log files [7]. They found a weak 
correlation between normalized number of lines of code 
per revision and student success in terms of final grade, 
and no correlation with timing of student work. The 
present study differs in nature by logging and analyzing 
student work at a much finer temporal grain, that of 
individual make actions within each student’s private 
workspace. The present study uncovers more detailed 
correlations. 
 
The most recent related study examined confirms the 
correlation of poor programming project results with late 

project starts [8]. That study allowed student submission 
of programs to additional, opaque automated tests (so-
called release tokens). It concluded that availability of 
these tests might discourage students from writing their 
own test cases, and might encourage procrastination 
because students can count on additional available tests 
no matter how late they start. The current project takes a 
different approach to testing, modeled after the industrial 
experience of the instructor. The instructor supplies test 
cases, requires students to write additional test cases for 
some projects, and uses additional test cases not available 
to the students for grading. The latter sets of tests emulate 
customer acceptance testing not available to software 
providers. The present study collects data on successful 
and unsuccessful test runs for instructor-supplied and 
student-required testing, but it does not use a limited 
number of opaque test runs as a variable. The current 
study finds several attributes that correlate with project 
success, in addition to start time. 
 
3.  Data Collection and Temporal Patterns 
 
3.1 Data collection and preparation 
 
This subsection gives an outline of the process for data 
collection and extraction and the classes of data attributes 
collected for the study. Readers interested in more details 
of this process should consult the report of the initial stage 
of the study [1]. 
 
GNU makefiles [9] supplied by the instructor automated 
all three phases of compilation, testing, and deployment to 
the instructor of student code in the study. A student types 
make build for compilation, make test to run tests, and 
make turnitin to bundle the assignment directory into a 
compressed archive and send it to the instructor. Testing 
automatically invokes make build to update any object 
files whose source files are more recent due to coding 
changes. Some projects require students to write 
additional tests that are triggered by make test. Students 
may run make turnitin multiple times when they decide 
to over-write earlier submissions. The instructor’s 
repository keeps only the most recent submission. 
 
Each of these three make operations runs a data-collecting 
script that, unlike most make operations, does not echo its 
steps to the student’s terminal. The goal is to maximize 
transparency of data collection in order to minimize 
interference with student work habits. Data collection 
consists of three steps. The first step captures the output 
of the UNIX “ls –l” command. This output shows the 
student project files, their sizes in bytes, and their most 
recent modification dates and times. These data reveal 
time, byte-size, and file-level locality of code changes. 
The second step captures a copy of all student source 
files. These data are useful in analysis of the number of 
sources lines added, changed and deleted using the UNIX 
diff utility. They would also be useful for a subsequent 
study of classes of student bugs, since the files collected 



by this step support reconstitution of each stage of 
development of a student project. The third step bundles 
the data of the first two steps into a compressed archive 
with additional attributes embedded into the archive file 
name. These attributes include the student ID, the date, 
the time, and the type of the make action. The types 
include start-of-build, completion-of-build, start-of-
test, completion-of-test, and turnitin-to-instructor, with 
start-of-test automatically triggering start-of-build. It is 
thus possible to observe both initiation and success or 
failure of compilation and success or failure of testing as 
distinct data attributes. Upon completion of archive 
compression, the makefile in the student directory moves 
the archive to a write-only directory in the instructor’s 
UNIX account. 
 
GNU make is available on the UNIX server system used 
for development of non-graphical projects. For graphical 
user interface (GUI) projects, many students worked on 
their own machines. Since the study was for a multi-
section Java Programming course, with the Java Runtime 
Environment installed on student machines, it was 
straightforward for the instructor to supply a Java utility 
to drive compilation, testing, and data collection on non-
UNIX student machines in a manner comparable to the 
makefile. The only data not collected were the student 
source files, in the interest of not overrunning available 
space on student machines. It was still possible to 
determine times and changes in file sizes in bytes from 
the directory listings. Students eventually moved their 
files back to their UNIX accounts for make turnitin. This 
step moved archives collected on student machines to the 
instructor’s collection directory. 
 
Students also filled in a three-question text form 
indicating number of programming projects started in 
other courses during the project timeline, number of 
programming projects due, and number of exams taken in 
any course. As noted earlier, these data showed no 
correlation with student success. The instructor also 
counted student emails about assignments in two classes, 
clued and clueless. Not surprisingly, the former 
correlated with more successful projects and the latter 
with less successful ones, but that correlation is trivially 
obvious to an instructor during project development. The 
study did not collect data about class attendance or 
extracurricular activities. Students participating in the 
study earned a 1% project point for permitting data 
collection and another 1% for completing the short 
survey. The IRB (Institutional Review Board) agreement 
required the instructor to award similar points to students 
choosing not to participate by invoking make optout 
(which would shut off data collection) and answer 
“optout” to survey questions. No students chose to opt 
out; participation was 100%, and many students were 
interested in the study results. 
 
The most important class of data attributes analyzed is 
time, including project start time, completion time, and 

the time of every make action. Data extraction aggregated 
each series of make actions with fewer than 60 minutes 
between actions into a composite record for a work 
session. In addition to compressing and thus reducing the 
amount of data to be analyzed, creating aggregate work 
session records supported analysis of temporal length of 
work sessions, size of code changes during sessions, 
number of compilation and testing tasks started and 
completed during sessions, times of day of work sessions, 
and times between work sessions. The study analyzed all 
repetitive measures of time and project size changes in 
terms of per-session mean, population standard deviation, 
median, mode, minimum, and maximum. Data 
preparation resulted in one flat tuple of attribute values 
per student-project, with many attributes being statistical 
summaries of session properties. Course-project-student 
ID, overall project date-time period, student grade point 
average and university credit data, and data from the 
questionnaire also contributed attributes to each student-
project tuple. 
 
3.2 High level analysis of project data 
 
This subsection gives very high-level statistical results for 
stage 2 of the study, based on the attribute selection 
process from stage 1 of the study [1]. Software tools used 
included custom Python scripts for data extraction and 
statistical analysis, along with Excel spreadsheet graphs. 
All data are for students including sophomores through 
seniors in an elective Java Programming course that has 
for a prerequisite the CS I-II sequence taught in C++. All 
project work was individual homework; there were no 
laboratory class sessions. There were 29 students with 
111 student-project tuples of 91 attributes each in the 
2013 stage 1 of the study, combined with two more 
sections of students in 2014 to yield 64 students with 282 
student-project tuples of 95 attributes each in this stage 2 
of the study. All results reported here are from stage 2. 
 

 
 

Graph 1: Project grade as a function of start time 
 
Graph 1 shows the average project grade (attribute Gprj 
on the Y axis) for students of four categories of incoming 
computer science GPA (Cgpa all, <= 3.0, <= 2.5, and >= 



3.0) as a function of the time between the start of a project 
and the project deadline in hours (Jstr on the X axis). 
Note that the Jstr value is cumulative in reading the graph 
from left to right. For example, a Jstr value of 180 shows 
all student-projects with project start times <= 180 hours 
before the deadline, including all students to the left at 
Jstr 12 through 108. This approach to graphing 
eliminates localized peaks and troughs that often obscure 
trends. There are 37 student-project measurements at the 
left side of the Cgpa = all graph, 141 (half of all student-
project records) at the Jstr = 156 hours point, and all 282 
student-project records at the right side. 
 
The span of time is 14 days (maximum Jstr = 336 hours) 
because most contributing projects had a length of 14 
days. Phase 1 of the study confirmed the instructor’s 
experience that most students in this course do not take 
advantage of more than two weeks of available time. In 
this dataset, all students are included in the Jstr = 336 
average for Gprj at the right side of the graphs. 
 
The detailed data show a 19% (~2 letter grades) spread 
for Jstr range [12, 336] in the Cgpa <= 2.5 graph, and a 
14% (~1.5 letter grade) spread in the Cgpa <= 3.0 graph. 
There is a 7% grade spread for Cgpa >= 3.0, and a 14% 
spread for the Cgpa all group (all students). Average 
grades increase monotonically for all but the Cgpa >= 3.0 
group. Clearly, the most at-risk population of students 
with respect to computer science GPA take the biggest hit 
from procrastination. 
 
Graph 1 shows only averages; there are exceptions to 
these. The left side of the Cgpa >= 3.0 graph illustrates a 
sample of 15 of the total 152 student-project tuples of that 
graph with Jstr <= 12 hours and an average grade of 
91.2%. These are successful procrastinators, and probably 
active procrastinators. In fact, eliminating their 
contributions to the graph results in a 10% spread in Jstr 
for Cgpa >= 3.0. These are definitely not at-risk students, 
and therefore not the primary subpopulation of interest in 
the current stage of the study. Nevertheless, they 
constitute a significant and interesting subpopulation.  
 

 
 

Graph 2: Project grade as a function of workdays 

 
The current, second stage of this study extracted a related 
set of curves that appear in Graph 2, average project grade 
Gprj as a function of the number of hours Jfst in days on 
which students actually worked on a project. The need for 
Jfst became apparent after detailed visual inspection of 
raw data following the initial report. Some students 
copied assignments into their accounts, put in some 
amount of work, and then left the projects sit untouched 
for days. Jfst is simply Jstr – 24 hours for each calendar 
day in which the project experienced no student make 
actions. The curves are similar to those of Graph 1, with 
similar Gprj ranges. Most significantly, all curves level 
off at around 192 hours (8 days). This set of graphs does 
not show procrastination in starting. Cramming all work 
into one day early in the project cycle would give a Jfst 
value of 24 or less, since all subsequent, non-work days 
would subtract out. What this graph really shows is that 
distributing work across up to 8 days leads to grade 
improvements, after which there are diminishing returns. 
There is slight growth in the actual Gprj values up 
through Jfst = 336 for all except the Cgpa <= 2.5 group, 
which is literally flat after 8 days. None of those students 
worked more than 11 days. 
 
Graph 2 student-project values at the left side of Cgpa >= 
3.0 are the same student-projects as the successful 
procrastinators of Graph 1. Their low Jfst work time took 
place during the last hours of the project timeline. 
 

 
 

Graph 3: Project grade as a function of session length 
 
Graph 3 shows project grade Gprj as a function of 
average length of a work session Mavg, again 
accumulating student-project records going left to right, 
where a session consists of multiple make actions with 
fewer than 60 minutes between adjacent actions. For all 
subgroups the minimum amount of time needed to 
achieve good results is about 60 minutes, and results fall 
off slightly after 105 to 120 minutes. Too little session 
time appears to result in inadequate engagement with the 
programming project, and too much may result in mild 
fatigue for these groups of programmers. Clearly, the 
decline is not as pronounced as the rise to 60-minute 
sessions. 
 



  
 
Cluster All data 0 1 2 3 4 5 6 7 
Count 282 55 31 14 35 42 38 5 62 
Count % 100.0% 19.5% 11.0% 5.0% 12.4% 14.9% 13.5% 1.8% 22.0% 
Jstr 178.55 52.60 255.26 54.86 78.97 186.36 361.58 96.20 225.23 
Jfst 91.40 33.40 108.16 8.57 50.86 82.93 205.58 72.20 113.35 
Mavg 55.81 49.68 29.40 32.26 116.06 80.32 45.21 107.00 31.53 
Mdev 44.52 29.91 30.85 25.29 57.49 85.12 50.17 19.79 32.35 
Yavg 10229.25 10103.84 6191.93 17188.36 14658.20 6885.83 6573.48 75482.73 7530.67 
Snum 5.36 3.20 7.06 2.93 2.77 7.31 8.84 1.40 5.29 
Mtot 267.99 148.13 215.00 113.07 307.00 530.64 387.82 154.20 171.56 
Cgpa 3.05 2.87 2.01 2.50 3.71 2.57 3.40 3.09 3.56 
Gprj 0.92 0.95 0.94 0.19 0.98 0.87 1.03 0.95 1.00 
 

Table 1: Simple K-means clusters for primary attributes that correlate with project grade Gprj 
 
 
3.3 Detailed analysis of project data 
 
The three statistical trends of Graphs 1 through 3 are the 
initial findings of this stage of the study. However, since 
they show cumulative averages, there are a lot of missing 
details. This subsection delves into some of the details. 
 
Table 1 shows a set of K-means clusters in the columns 
that associate attributes in the rows that correlate strongly 
with project grade Gprj as extracted using the Weka data 
analysis toolkit [10,11]. The initial report describes the 
process of primary attribute selection [1]. The following 
list defines these attributes. 
 
Jstr is deadline minus start time in hours. 
Jfst is Jstr minus 24 for each non-work calendar day. 
Mavg is the average number of minutes per work session. 
Mdev is the sample standard deviation of Mavg. 
Yavg is the average change in source code character 
count (bytes) per session. 
Snum is the total number of work sessions. 
Mtot is the clustered total number of minutes worked. 
Cgpa is the computer science grade point average. 
Gprj is the project grade. Note that with two bonus points 
for participating in the study, 1.02 is a “perfect score.” 
Some projects also carried optional bonus points, 20% for 
the final project, giving Gprj an upper bound of 1.22. 
 
In the actual data Mtot = Mavg x Snum. Clustering 
moves actual measurements to cluster centroids, hence the 
slight discrepancy in Mtot values. 
 
Cluster 2 shows that K-means clustering associates the 
lowest Gprj value with the second-lowest values for Jstr 
and Mavg, and the lowest for Jfst and Mtot. Jfst is 
substantially lower than its value in the other clusters. 
This cluster has the second-highest Yavg value, showing 
that the worst performing student-projects crammed the 
second highest magnitude of code changes per session 
into around 3 very short sessions. The overall impression 

for cluster 2 is one of trying to “get it over with” in as 
little time as possible. 
 
Cluster 0 has the lowest Jstr and second lowest Jfst 
values, but its Gprj is 95%, 5 times that of cluster 2. The 
Cgpa is somewhat higher for cluster 0, but most 
significantly, Jfst is about 3.9 times greater than cluster 2. 
Mavg is about 1.5 times greater (still on the low side), 
and Mtot is about 1.3 times greater. Each of these two 
attributes is a contributor to cluster 0’s higher Gprj, but 
Jfst appears to be the primary attribute to correlate with 
the massive increase in project grade. 
 
Cluster 4 is an interesting case. It has Jstr and Jfst values 
that approximate those of the “All data” column, but its 
Gprj value is 5% lower, constituting the second-lowest 
cluster grade. Its Mavg value of 80.32 appears to be well 
into the “success zone” until we consider its Mdev of 
85.12, the highest. Cluster 4 has extremely high variations 
in session time, i.e., many extremely short sessions 
averaged with a few marathon sessions in Mavg. It has a 
low ratio of code size change in characters per session 
(Yavg / Snum) of 942, but clusters 5 and 1 come in lower 
for this metric at 743 and 876 characters respectively. The 
telling attribute for cluster 4 is the highest total work 
minutes Mtot of 530.64. This cluster has the lowest ratio 
by far of coding changes per minute at (Yavg / Mtot) of 
13. Students in this cluster are not working consistently in 
sessions of 60 minutes or more and they are not 
accomplishing as much coding per minute as students in 
other clusters. 
 
Cluster 1 is another case to consider. It has the lowest 
Cgpa, the lowest Mavg session time of 29.4 minutes 
(with a Mdev value that shows that some sessions meet or 
exceed 60 minutes), and the lowest Yavg code changes 
per session, and yet its Gprj value is 94%. What appear 
to be helping these students are high Jstr and Jfst values, 
i.e., lack of procrastination. They apply themselves in a 
fairly high number of sessions, with an adequate number 



of 60-minute-or-greater sessions, while starting early and 
getting some work done on many days after starting. 
 
Cluster 5 shows the greatest values for Jstr and Jfst 
correlating with the greatest Gprj. Session minutes Mavg 
are a little low, but the Mdev value that is greater than 
Mavg and the substantially highest number of sessions 
Snum of 8.84 show that these students are starting the 
earliest, working consistently across days, working an 
adequate number of minutes-per-session for an adequate 
number of sessions. 
 
Co-variation of Jstr and Jfst with Gprj as seen in Graphs 
1 and 2 and Table 1 correlates with distributing work 
across days. Other attributes that do not appear in Table 1 
show average number of sessions centered during 
different 4-hour intervals of the 24-hour day, e.g., 
midnight until 3:59 AM, 4 until 7:59 AM, and so on. A 
linear regression formula derived by Weka [10, 11] for 
the attributes of Table 1 plus these six 4-hour time-of-day 
work periods is: 
 
Gprj = 0.0007 * Jfst + 0.0012 * Mavg + 0.0088 * Snum 
 + -0.0002 * Mtot + 0.0335 * S0003 + 0.0129 * S1215  
 + 0.087 * Cgpa + 0.5166 
 
The correlation coefficient of this formula is 0.35 with a 
mean absolute error of 0.13, i.e., its “guesses” are about 
35% accurate, with a mean error of 1.3 letter grade. Cgpa 
carries the strongest weight of 0.087, with Jfst and Mavg 
contributing something (but not a lot). The small negative 
weight for Mtot corrects for small over-contributions of 
Mavg and Snum, noting that Mtot = Mavg x Snum.  
What is interesting here is that S0003, the total number of 
sessions centered between midnight and 3:59 AM, and 
S1215, the total number of sessions centered between 
noon and 3:59 PM, contribute the second and third largest 
weights, weights that are significant fractions of Cgpa’s. 
Weka does not extract weights for other 4-hour intervals, 
but those intervals are in the data used in the analysis that 
extracts this regression formula. Those intervals 
apparently do not contribute deterministic correlations 
with Gprj. 
 
The instructor and a student collaborator in this study 
have been debating the significance of the time-of-day 
numbers for some time. Time-of-day contributions show 
up as significant in other analyses, but they do not show 
up in exactly this way. For example, one analysis showed 
that students who worked consistently only between 8 PM 
and midnight tended to perform poorly. That conclusion 
would agree with a conclusion about the importance of 
working in the early AM and early PM hours, but other 
analyses do not pin Gprj correlations to exact working 
hours. 
 
Our current conclusion is that, in addition to distributing 
work sessions across multiple days as indicated by 
relatively high, co-varying Jstr, Jfst values, distributing 

work sessions across multiple times of the day, and 
having at least half of those work sessions be at least 60 
minutes in duration, is better than attempting a large 
amount of work during a few sessions in a few days. 
Cramming work into a few days or a few sessions per day 
is not an effective strategy for programming for most 
students. That statement may seem like common sense to 
most computer science instructors. The objective data 
examined to this point confirm it. 
 
Cluster 3 13 
Count 22 18 
Count % 7.8% 6.4% 
Jstr 47.41 64.33 
Jfst 37.59 45.67 
Mavg 132.49 114.72 
Mdev 38.90 101.41 
Yavg 18985.54 8256.90 
Snum 1.77 4.61 
Mtot 235.86 505.94 
Cgpa 3.68 2.56 
Gprj .98 .76 
 
Table 2: Simple K-means clusters with procrastination 
 
Table 2 represents a brief attempt to address the topic of 
active procrastination. It comes from the same dataset as 
Table 1, this time partitioned into 16 clusters. Table 2 
elides six time-of-day attributes for work sessions that 
contribute to cluster formation, because these attributes 
show no discernable patterns. The two clusters in Table 2 
have the second and third lowest values for Jfst, with the 
lowest Jfst cluster (not shown) failing abysmally. The key 
distinction between the more successful procrastinators 
from cluster 3 in Table 2 compared to cluster 13 is the 
higher Cgpa. Cluster 13 students work more hours across 
more sessions with less success than cluster 3 students. 
Students in both of these clusters are cramming, but 
cluster 13 students are doing so less effectively. The 
ability to procrastinate successfully typically correlates 
with a high computer science GPA, but a high Cgpa does 
not guarantee success in procrastination. We have not yet 
found attributes that distinguish the successful 
procrastinators among students with high Cgpa values. It 
is an established observation, however, that at-risk 
students with lower Cgpa values usually make poorly 
performing procrastinators. 
 
Other statistical analysis tools within Weka [10,11] 
including decision trees, model trees (decision trees with 
linear regression formulae at the leaves), and Bayesian 
correlation tables give similar results for important 
attributes to those presented here. A J48 decision tree [11] 
that considers only Jfst, Mavg, Cgpa and Gprj 
accurately predicts Gprj for 70.9% of the student-project 
tuples of Tables 1 and 2, with a mean absolute error of 
0.14, about 1.4 letter grade. Adding a few attributes 
lowers this error to 0.12. This is the most accurate 



predictor we have achieved to date, but the structure of 
the decision tree is too big to fit into a paper. It is filled 
with little local pockets of behavior that have as much to 
do with the details of our dataset and particular students 
as with general trends. The overall trends in the decision 
tree, however, reflect those of the graphs, tables, and 
linear regression formula appearing above. 
 
3.4 Within-student analysis for students with large 
grade variance 
 
This section reports an entirely new portion of the study 
inspired in part by Edwards, et. al. [5]. It considers 
student-project tuples only for students with a project 
grade Gprj spread of at least 20% between their best and 
worst project grades. Different students occupy different 
overall grading bands, but each shares the fact that the 
difference between his or her best and worst Gprj is at 
least 0.2. This section introduces one new attribute, 
GprjMy, which is the ratio of a student-project grade to 
that student’s best grade. A GprjMy value of 1.0 
indicates that student’s best Gprj grade, whatever it may 
be. The goal of this part of the study is to understand what 
students who perform better in some cases than others do 
differently in those sets of cases. 
 
Graphs 4 through 6 are the GprjMy counterparts to the 
Gprj Graphs 1 through 3 at the start of this paper. Graph 
5 irons out the noisy fluctuations of Graph 4 that come 
about because of various distributions of skipped 
available workdays after starting a project. Graph 5 levels 
out at about Jfst <= 7 days (168 hours), one day earlier 
than Graph 2 for these populations of grade-varying 
students. Otherwise, the overall trends, including 
successful procrastination for some Cgpa >= 3.0 students, 
remain the same. 
 

 
 

Graph 4: GprjMy as a function of start time 
 
In Graph 6, all four curves peak at an Mavg value of 105 
minutes per session, at the upper end of the 60 to 120 
minute range, remaining fairly level thereafter. Students 
with substantially varying grades per project should plan 
to spend an average of around 105 minutes per work 
session to achieve best results. 

 
 

Graph 5: GprjMy as a function of workdays 
 

 
 

Graph 6: GprjMy as a function of session length 
 
Cluster All data 0 1 2 3 
Count 116 29 18 26 43 
Count% 100% 25.00% 15.52% 22.41% 37.07% 
Jstr 152.26 293.62 69.67 63.81 144.98 
Jfst 71.98 127.28 44.33 23.19 75.77 
Mavg 56.78 51.82 118.92 27.40 51.87 
Mdev 50.64 55.83 110.71 21.33 39.73 
Yavg 9036.18 5351.37 10184.80 13526.58 8325.34 
Snum 5.03 8.48 4.17 3.08 4.26 
Mtot 268.83 440.17 471.83 85.77 178.98 
Cgpa 2.79 2.49 2.64 2.31 3.34 
GprjMy 0.82 0.86 0.76 0.65 0.92 
 

Table 3: Clusters for students with varying Gprj 
 
Table 3 gives condensed, 4-cluster Simple K-Means 
clusters for students whose Gprj grades vary 20% or 
more between projects. The average, “all data” cluster 
shows an average GprjMy performance of 82% of a 
student-project’s best Gprj grade. 
 
Cluster 2 with the worst intra-student performance 
correlates with the lowest values in the table for Jstr, Jfst, 
Mavg, Snum, Mtot and Cgpa as defined in the previous 
subsection. For this cluster and clusters 0 and 1 (Cgpa < 
2.65), Yavg, the average number of source code 
characters modified per session, correlates negatively 
with GprjMy. Procrastination, cramming, and working 



excessively short sessions all serve to hurt students with 
lower Cgpa values the most. 
 
Cluster 3 with the best intra-student GprjMy correlates 
with the lowest Mdev / Mavg ratio (i.e., the lowest 
variation in a fairly substantial average session time) and 
the second-highest Jstr and Jfst. The implication is that 
maintaining consistent work session times, starting early, 
and distributing work across days can help to raise Gprj 
within a semester and therefore Cgpa across semesters. 
 
Cluster All data 0 1 2 3 
Count 116 29 30 51 6 
Count% 100.00% 25.00% 25.86% 43.97% 5.17% 
Jstr 152.26 238.21 260.87 43.59 117.50 
Jfst 71.98 126.48 105.67 22.41 61.50 
Mavg 56.78 51.71 51.77 63.61 48.25 
Mdev 50.64 55.53 53.04 42.78 81.87 
Yavg 9036.18 7691.54 5665.92 12394.23 3843.15 
Snum 5.03 5.69 7.73 3.00 5.67 
Mtot 268.83 273.79 397.73 187.45 292.00 
S0003 0.28 0.21 0.33 0.29 0.17 
S0407 0.05 0.00 0.00 0.00 1.00 
S0811 0.52 1.10 0.50 0.22 0.33 
S1215 1.41 1.97 1.77 0.80 2.00 
S1619 1.40 1.59 2.40 0.67 1.67 
S2023 1.39 0.83 2.73 1.02 0.50 
S00dev 0.63 0.77 1.16 0.39 0.75 
night 1.72 1.03 3.07 1.31 1.67 
day 3.32 4.66 4.67 1.69 4.00 
n/ses 0.34 0.18 0.40 0.44 0.29 
Cgpa 2.79 3.38 2.27 2.73 3.06 
GprjMy 0.82 0.93 0.86 0.75 0.75 
 

Table 4: Clusters for students with time-of-day 
distributions with varying Gprj 

 
Table 4 reorganizes the dataset of this section into four 
clusters that include the S003 (00:00 through 3:59) to 
S2023 (20:00 through 23:59) attributes showing number 
of work sessions centered in six 4-hour time periods of 
the day. Derived attributes include S00dev, which is the 
sample standard deviation of S003 through S2023, night, 
which is the sum of S003, S0407 and S2023 for its 
column, day, which is the sum of S0811, S1215 and 
S1619 for its column, and ratio n/ses, which is the 
percentage of night work, i.e., night / (night + day). 
Some of the derived attribute values show a unit rounding 
error in the least significant digit because of rounding of 
their dependent attributes to 2 fractional digits for display 
purposes. The underlying, double precision calculations 
are accurate to approximately 15 decimal digits. 
 
Student-projects in cluster 0 achieve 93% of intra-student 
potential (GprjMy of 100% being every student’s top 
score in this dataset). Cluster 0 has the highest Jfst value 
and a substantial Mavg value in Table 4, but the attribute 
of interest here is n/ses, the percentage of night work 
sessions, which is by far the lowest at 18%. When 
performing their best in terms of GprjMy, students work 

mostly during the day. Clusters 1 through 3 have lower 
Jfst values – they do not distribute their work across days 
to the degree that cluster 0 does – and they have higher 
n/ses percentages – they do more of their work at night. It 
appears from this analysis that distribution of work 
session time in terms of minimizing S00dev is not as 
important as performing most work between 8 AM and 8 
PM. Cluster 3 with the second-highest Cgpa and second-
lowest n/ses percentage also has the lowest Mavg session 
time and the second lowest Jstr and Jfst values. Its 
GprjMy results suffer as a result of procrastination and 
extremely short work sessions. 
 
4.  Conclusions and Future Work 
 
Phase 2 of this study as reported here adds several 
important aspects to phase 1 [1,2]. It more than doubles 
the number of student-project tuples, and it considers 
intra-student performance of students against their own 
best project scores for students with variations from 
highest to lowest project grade of 20% or more. The 
primary goal is to find ways to assist at-risk students in 
improving performance in computer programming 
projects. 
 
x Procrastination in starting a programming project 

hurts performance. Likely reasons include inability to 
go to the instructor for help, inability to distribute 
work evenly across days (avoiding cramming in the 
last few project days), and inability to schedule 
around the conflicting demands of other courses by 
leaving too few days in which to perform useful 
scheduling of workdays. 

x Skipping multiple workdays after starting can hurt 
performance. Eight actual workdays is a minimum 
for students of various computer science GPA levels 
to reach their respective potentials. 

x Working fewer than about 60 minutes per work 
session can hurt performance. Some students can get 
by with 50-minute work sessions, but students with 
varying degrees of project success tend to do better in 
those projects in which they work at the upper end of 
the [60, 120] minute range. Increasing work session 
length beyond 2 hours leads to diminishing returns, 
especially when it combines with procrastination. It 
then takes the form of cramming work into the last 
few days of a project period. 

x Distributing work across multiple sessions during a 
day, rather than cramming all work into one or two 
sessions, helps performance. Waiting until the last 
day or two of a project eliminates the possibility of 
intentionally distributing work across the day. 

x For students with worst-to-best project grade 
differentials greater than 20%, no more than about 
20% of the work should occur between 8 PM and 8 
AM (night). Student-projects who have about 80% of 
their work between 8 AM and 8 PM (day) outperform 
other student-projects in the intra-student portion of 



the study that measures each student-project’s 
performance against that student’s best performance 
in terms of project grade. 

 
The second year of the study also collected and analyzed 
data from a junior-to-senior Programming Languages 
course taught using Python for assignments. The results 
of the analysis on that limited data set do not appear in 
this report because the student population differed 
substantially from students in the Java Programming 
course examined here. There was only one at-risk student 
who had problems completing assignments successfully. 
In fact, the CS II course that uses C++ eliminates many 
at-risk students before they get an opportunity to take the 
Java Programming course. It is the authors’ conclusion 
that the CS II course would be the best place to continue 
data analysis and to apply experimental tools for assisting 
at-risk students. 
 
Future work includes using data visualization tools to 
attempt to find patterns that remain elusive. Out best 
attempts are about 71% accurate in predicting student 
performance as a function of the attributes discussed, with 
an average error of about 1.4 grade letter. We are hoping 
that data visualization will help us to notice more patterns 
that we can then explore. 
 
The plan for assisting at-risk students is to conduct a 
study that compares three alternative approaches: 1) 
construct an email-based “automated nag” that detects 
problems in work patterns during project timelines and 
then sends email messages to students advising them on 
how to change behaviors in order to improve likelihood of 
project success; 2) construct an interactive graphical 
computer game similar to Snakes and Ladders, driven by 
incremental, automatic data collection, that mirrors each 
student’s improvement or decline in projected project 
score as a function of attributes; student’s could observe 
their own projected success during a project cycle and 
compare them with anonymous classmates; 3) do nothing 
(control group). We would rotate students among each of 
the three approaches in different projects, and measure 
effect as indicated by participation versus lack of 
participation by the students. Students like to play on-line 
graphical games, and we conjecture that they would 
improve their work habits just to see their graphical 
avatars climb ladders. The instructor is awaiting an 
appropriate programming course in which to apply these 
techniques. 
 
Investigation directed at the phenomenon of active 
procrastination is a final area for future work. Almost 
every research project into active procrastination uses 
subjective surveys. The present study uses concrete data 
collected by automated software compilation and testing. 
If we can figure out ways to use our datasets to 
investigate active procrastination, we may be able to 
make concrete advances in that area. 
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