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ABSTRACT 
 
Parallel coordinate plotting is an established data 
visualization technique that provides means for graphing 
and exploring multidimensional relational datasets on a 
two-dimensional display. Each vertical axis represents the 
range of values for one attribute, and each data tuple 
appears as a connected path traveling left-to-right across 
the plot, connecting attribute values for that tuple on the 
vertical axes. Parallel coordinate plots look like time-
domain audio signal waveforms, and they can be 
translated into audio signals through straightforward 
mapping algorithms. This study looks at three data 
sonification algorithms, sonification being the mapping of 
data into sounds for perceptual exploration, similar to 
uses of data visualization. Sound-response survey results 
and subsequent analyses reveal that the most direct 
method for mapping parallel coordinates of data tuples to 
audio waveforms is the most accurate for generating 
sounds that listeners can use to classify data. Future work 
has begun on improving the accuracy of this audio 
waveform-based, timbral approach to classifying data. 
 
KEY WORDS 
 
data analytics, parallel coordinates, sonification, timbre, 
visualization, waveform 
 
1.  Introduction 
 
This report presents an investigation into the relative 
effectiveness of three alternative techniques for the 
perception-based classification of individual data records 
(a.k.a. instances or tuples) in a relational dataset by using 
sonification of attribute values for each attribute in a 
record. Sonification is the process of mapping data 
attribute values to properties of sound [1]. Sonification is 
the aural counterpart to visualization, which is the 
process of mapping data attribute values to visual 
structures, for example in computer graphical displays. 
Sonification and visualization play roles in at least two 
stages of data analysis [2]. They serve the mechanisms of 
perceptual pattern recognition, helping the respective 
auditory and visual cognitive systems of an analyst to 
detect patterns in data as a guide to subsequent formal 
analysis. They can also serve to illustrate relationships 
found through formal analysis, coming after formal 

analysis. The current investigation relates to the former 
role, the use of perceptual pattern matching in exploring 
and classifying data instances. This paper reports the first 
stage of research into using synchronized sonification and 
visualization for exploring datasets. 
 
Because of familiarity, the authors sonified attributes of a 
dataset that is part of an ongoing study into the correlation 
of temporal work habits of computer programming 
students to their success in projects as measured by 
project grades [3,4]. The authors anticipated the fact that 
familiarity with the dataset would make it easier to detect 
sonification opportunities and mistakes. However, the 
approaches explained in this report are domain neutral. 
They can apply to any relational dataset in which some 
attributes co-vary according to instance membership in 
disjoint sets of instances to be classified. 
 
2.  Related work 
 
The primary influence on the attribute sonification 
techniques of this report is the visualization technique of 
using parallel coordinates [5]. Figure 1 is a typically 
dense parallel coordinates plot of 22 of the 106 attributes 
found in the student work habit dataset of 282 student-
project records [3,4]. Each vertical line represents the 
overall range of one attribute, with the minimum value at 
the numeric label near the bottom, and the maximum 
value at the top; an unknown value is at the very bottom. 
Figure 1’s second vertical axis from the left, for example, 
bears the label “Cgpa” for “computer science grade point 
average”, ranging from 1.44 near the bottom to 4.0 at the 
top. Going left to right, each thin multi-segment path 
represents one record in the dataset, intersecting a vertical 
axis at the point of the value for that record’s attribute. 
The reduction of 106 attributes to the 22 in Figure 1 was 
part of a reduction of the scope of exploration of this 
dataset determined by the previous studies [3,4]. 
 
The homegrown software tool used to create Figure 1 
uses partial transparency (a.k.a. low alpha) to plot the 282 
instances in this dataset so that their paths do not obscure 
each other. Overlapping path segments increase opacity, 
which appears as brightness on a color computer screen. 
Figure 1 also shows three thick paths and three mid-
thickness paths for the mean and population standard 
deviation, respectively, of three sets of instances. The 
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thick black path shows the mean of all attributes for 
records with a mean project grade (Gprj, the fourth 
attribute from the left) that is >= 80%; we refer to this set 
of records as Reference Set 0. The thick medium-gray 
path shows the mean of all attributes for records (Set 1) 
with a mean project grade < 80% and a computer science 
grade point average (Cgpa) >= 2.5. The thick light-gray 
path shows the mean of all attributes for records (Set 2) 
with a mean project grade < 80% and a computer science 
grade point average < 2.5. Projects in this course serve 
more as learning exercises than as tests, so a grade that is 
< 80% is a poor grade. The mean project grade for all 
records is 92.3% with a standard deviation of 21%. The 
maximum project grade for one project per semester is 

125% because of bonus points, giving the top of the Gprj 
range in Figure 1. 
 
A less cluttered parallel coordinates plot containing the 
mean values for the leftmost 5 attributes of Figure 1 
appears in Figure 2. Informally, Reference Set 0 is the set 
of all student-projects with high grades, Set 1 is the set 
with low grades and high Cgpa values, and Set 2 is the set 
with low grades and low Cgpa values. Sets 1 and 2 
represent at-risk students who are at risk for potentially 
different reasons. Figure 2 includes set identifier tags. 
Table 1 gives the mean and standard deviation values for 
each set and each attribute of Figure 2.  
 
An early observation by the author who works with sound 
and audio signal processing in other contexts (Parson) is 
that the multi-segment paths of Figures 1 and 2 look a lot 
like audio time-domain waveform plots. Figure 3 shows 
plots for the basic triangle and sawtooth audio 
waveforms, where the X axis is Time and the Y axis is the 
Voltage of an electrical audio signal in a normalized 
range [-1.0, 1.0], corresponding to sound pressure level 
(SPL) in the air. A triangle wave can be modeled as the 
sum of a fundamental sinusoidal waveform and a series of 
its positively weighted odd harmonics [6], where a 
harmonic is a frequency multiple of the fundamental, and 
frequency is 1.0 / Time. A sawtooth wave can be modeled 
as the sum of a fundamental sinusoidal waveform, its 
positively weighted odd harmonics, and its negatively 

 
 

Figure 1: Parallel Coordinates Plot of 22 of the 106 attributes in the Student Work Pattern -> Grade Dataset 
The thick paths show mean values for three distinct sets of records. 282 individual records appear as thin lines. 

 
 
 

 
Figure 2: Parallel Coordinates of Mean Values for 
SWed, Cgpa, Gprv, Gprj & Jfst Attributes by Set 

 



 

24 

weighted even harmonics. Triangle waves sound 
consonant (“sweet”), and sawtooth waves sound dissonant 
(“raspy”). These particular sounds become significant 
later in this discussion. The main point for now is the 
similarity in the shapes of multi-segment record paths in 
the parallel coordinates plots of Figure 1 and 2 on the one 
hand, and the time-oriented sound waveform plots of 
Figure 3 on the other. That similarity, and the potential 
isomorphism between parallel coordinate plots and audio 
waveforms that yield distinct timbres (classes of sounds, 
e.g. sweet, raspy, tinny, etc.), provide the inspiration and 
basis for this research. 
 
Neuhoff presents a taxonomy of applying pitch (a 
perceptual function of frequency, with frequency = 1.0 / 
Time, appearing on the X axis in Figure 3), loudness (a 
function of amplitude, the Y axis of Figure 3, and to a 
lesser degree the frequency), and timbre (a function of the 
sum of a sinusoidal fundamental frequency and its 
weighted harmonics, the waveform shape of Figure 3) as 
the primary approaches with which to sonify data [7]. 
Duration of sound, spatial location, and sequences of 
distinct sounds are additional approaches. 
 
Recent work that has inspired the present study involves 
the sonification of material x-ray scattering data by 
mapping two-dimensional arrays of x-ray intensity values 
directly to two-dimensional arrays of sound frequency 
components that define an audio waveform (timbre, or 
informally, “instrument sound” or “voice sound”) [8]. 
That approach is similar to the approach of the present 
study in mapping domain data directly to waveforms 
(timbre) while avoiding any kind of musical or other 
aesthetic interpretation of the data that might introduce 
arbitrary sonic artifacts. In contrast to that work, the 
hallmark of the present study is the use of parallel 

coordinates plots of domain data as the source of 
mappings to sound. 
 
3. Classification through Sonification 
 
The present study uses sound for instance classification. 
The modus operandi of our study is to investigate 
competing approaches for sonifying the dataset 
summarized in Figures 1 and 2. Our approach generates a 
reference sound for each of the three sets of means of 
Figure 2, and it generates a sound for each data record. A 
listener classifies a data record’s sound as being closest to 
Set 0’s reference sound, or Set 1’s or Set 2’s sound, 
thereby classifying the record as belonging to Set 0 or 1 
or 2. The experiments reported include three competing 
sonification methods for turning the mean reference 
records and the individual data records into sounds. 
 
3.1 Reducing the number of attributes to sonify 
 
There are a total of 282 student project records in the 
dataset, where each record shows the work patterns 
(primarily temporal patterns) and performance of one 
student completing one programming project. With 106 
attributes per record, there is a total of 282 x 106 = 29,892 
data points. Some attributes are partially redundant, for 
example project grade in letter and numeric form. We 
eliminated redundant attributes, keeping the most precise 
form (e.g., numeric project grade). The year-of-study 
attribute of a student as a sophomore, junior, or senior 
turned out to be significant, with sophomores performing 
better on average than juniors or seniors. High motivation 
among early takers of this major elective course is the 
most likely cause. However, we eliminated such discrete 
attributes from the present sonification study because 
creation of sounds that differ across a few discrete steps 
can be misleading. There are high-performing juniors and 
seniors, and with only 3 values in the range for the year-
of-study attribute, we would have to include too many 
additional attributes to overcome the dominating effect of 
this one. Inclusion of a large number of attributes 
becomes noisy and aurally confusing. In addition, we 
wanted to stay with numeric attributes in the first round of 
this sonification study in order to simplify mapping, so we 
discarded the discrete year-of-study attribute. 
 

         Class 
Attribute      set2    set1    set0 

         (0.07) (0.06)  (0.86) 
==================================== 
SWed (Wednesday work sessions) 
  mean        0.3333  0.7692  0.9158 
  std. dev.   0.4714  1.1867   1.224 
Cgpa (computer science GPA) 
  mean        2.1298   3.081  3.1254 
  std. dev.   0.1284  0.4257  0.6478 
Gprv (previous project grade) 
  mean        0.7558   0.809  0.9519 
  std. dev.    0.215  0.2081  0.1327 
Gprj (current project grade) 
  mean        0.4326  0.5064  0.9889 
  std. dev.   0.2508  0.2339  0.0761 
Jfst (start hours before deadline) 
  mean       43.7237 33.4414 94.6208 
  std. dev.  31.2262 62.7025 70.1115 

 
Table 1: Mean & standard deviation values 

for Figure 2 
 

 
Figure 3: Triangle and Sawtooth Audio Amplitude 

Time-Domain Waveforms 
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After eliminating redundant attributes, non-continuous 
attributes, and non-useful attributes as determined by the 
previous studies [3,4], the 22 attributes of Figure 1 
remain. Semi-automated classification tools within the 
Weka data analysis toolset [9,10] provide one means for 
reducing the 22 attributes of Figure 1 down to the 5 
attributes for sonification of Figure 2. The CfsSubsetEval 
attribute evaluator of Weka evaluates the worth of a 
subset of attributes by considering the individual 
predictive ability of each feature along with the degree of 
redundancy between them in predicting the value of a 
target attribute such as project grade. This attribute 
evaluator indicates that three of the first five attributes 
appearing in Figure 1, namely computer science grade 
point average coming into the course (Cgpa), the grade on 
the previous project (Gprv), and the number of hours a 
student started a project before its deadline MINUS 24 
hours for each day the student did not work on the project 
(Jfst) are the three best indicators for a record’s project 
grade (Gprj).  
 
The ordering of attributes in Figure 2 is SWed, Cgpa, 
Gprv, Gprj, and Jfst. The number of work sessions on a 
Wednesday (SWed, where a session is one or more 
continuous work steps separated by fewer than 60 
minutes), comes out of Weka extraction of a linear 
regression formula for estimating project grade as a 
function of the remaining 4 attributes: 
 
Gprj = 0.0006 * Jfst + 0.0729 * Cgpa + 0.0228 * SWed  

+ 0.4049 * Gprv + 0.2512 
Correlation coefficient= 0.5068 
Mean absolute error = 0.1209 
 
Our conjecture is that SWed is significant because it is 
proof that the student is not procrastinating to the limit in 
starting or completing work. Projects in this course are 
typically due on Friday or Saturday evening, so working 
on a Wednesday is proof of working at least 2 days in 
advance of a deadline. 
 
More complex Weka classifiers come up with the same 
set of attributes. 
 
The other, interactive, visual means for reducing the 22 
attributes of Figure 1 down to the 5 attributes of Figure 2 
comes from using our homegrown software tool for 
interacting with parallel coordinates data displays to find 
attributes with diverging means. Recall from the previous 
section that Reference Set 0 of Figures 1 and 2 consists of 
student-project records with a project grade (Gprj) that is 
>= 80%. Set 1 consists of student-project records with a 
project grade (Gprj) that is < 80% and a computer science 
grade point average (Cgpa) that is >= 2.5. Set 2 consists 
of student-project records with a project grade (Gprj) that 
is < 80% and a computer science grade point average 
(Cgpa) that is < 2.5. Diverging mean values for multiple 
attributes in Figures 1 and 2 provide a basis for attribute-
distance-based sonification. All three of our experimental 

approaches sonify the distance between a given record’s 
attribute value and the Set_0_mean for that attribute, as a 
function of the Set_0_standard deviation for that attribute. 
An attribute value within 1 Set 0 standard deviation of the 
Set 0 mean generates a sound property that is relatively 
sweet; an attribute value within 2 standard deviations 
generates a sound that is a mix of sweet and sour; and an 
attribute value greater than 2 standard deviations 
generates a sound that is all sour. Upcoming discussion 
quantifies “sweet” and “sour”, and explains their 
application in generating sounds. 
 
A final concern is distinguishing Set 1 instances from Set 
2 instances. All attributes in Figure 2 except Jfst (lead 
time MINUS 24 hours for unworked days) have distinct 
mean values for Sets 1 and 2. The Cgpa attribute is the 
defining difference between these two sets. Therefore, a 
good sonification algorithm should have sufficient data 
for generating sounds that distinguish Set 1 from Set 2 
instances. We limited the number of attributes to 5, based 
on our Weka analysis and inspection of the parallel 
coordinates, to limit the complexity of the sounds. Too 
few attributes do not distinguish set membership of 
individual data records adequately, while too many 
generate complicated and confusing sounds. 
 
It is noteworthy that Weka’s J48 decision tree classifier 
[10] is extremely accurate at classifying the data records 
summarized in Figure 2 into sets when the Set number is 
included as a sixth, discrete attribute. The following 
decision tree classifies student records from the dataset 
with 99% correct classifications. This classification 
parallels our sonic classification of a record’s sonified 
attributes to one of three reference set sounds. 
 
Gprj <= 0.79 
|   Cgpa <= 2.48: set2 
|   Cgpa > 2.48: set1 
Gprj > 0.79: set0 
 
Several of Weka’s other classification and clustering 
algorithms do almost as well. We did not expect to hit 
anything near 99% accuracy in this first stage of 
sonification. Our goal is to find out which of three 
competing sonification techniques works the best, and 
then enhance it in a second round of upcoming research. 
 
3.2 Sweet and Sour Sonification 
 
All of the sonification algorithms in this study use a 
helper algorithm that we call sweetAndSour to extract 
two numeric values for each attribute in either the Set of 
mean values or in an individual data record. This 
algorithm first computes the difference between an 
attribute being sonified and that attribute value for 
Reference Set 0, which is the mean of the reference set of 
records as defined above. If the attribute being sonified 
lies within 1 population standard deviation of Reference 
Set 0 for that attribute, it receives a sweetWeight in the 
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range [0.33, 1.0] – the 1.0 end of that continuum is for a 
value that equals the Reference Set 0 value, and the 0.33 
is for one standard deviation away – and it receives a 
sourWeight of 0.0. If the attribute being sonified lies 
within the range (1, 2] standard deviations of Reference 
Set 0 for that attribute, it receives a sweetWeight in the 
range [.167, .5) and a sourWeight in the range (.167, .5], 
with the maximum standard deviation of 2.0 giving a 
sweetWeight of .167 and a sourWeight of .5. The further 
the distance from the Reference attribute mean, the less 
sweet and more sour the sweetAndSour numbers. 
Finally, the algorithm clamps the standard deviation at 
3.0. If the attribute being sonified lies within the clamped 
range (2, 3] standard deviations of Reference Set 0 for 
that attribute, it receives a sweetWeight of 0.0 and a 
sourWeight in the range (.667, 1.0]. Figure 4 shows the 
curves for these functions. The temporary change in 
direction of the sweet curve at the standard deviation of 
1.0 was an unintentional bug, but by the time it was 
discovered, experimental classification response 
collection had already begun. The mix of sweet and sour 
differs to the immediate left versus right of the stddev = 
1.0 point, and furthermore, the overall non-linear 
relationship of the curves was intentional. Each attribute 
contributes some amount of sweet versus sour, each in the 
range [0.0, 1.0], and within a standard deviation band, 
these parameters vary linearly. The basis for this approach 
is to cause abrupt changes in sound when crossing a 
discrete boundary. That basis is experimental. 

 
3.3 Three Competing Sonification Algorithms 
 
The three competing sonification algorithms are named 
harmonic, melodic, and waveform. This section 
discusses them in the order of their creation. All three 
generate sounds in some relation to a baseline frequency, 
for which we selected 220 Hz (Hertz, a.k.a. cycles per 
second). We picked this baseline frequency because it is 
one octave below the reference frequency for the note 
“A” in Western music of 440 Hz, and because it is low 
enough in the hearing range to allow generation of higher 
audible frequencies in a data-dependent way. 
 

The harmonic sonification algorithm generates 
simultaneous notes in a chord (technically, a set of 
harmonic intervals) for the 5 attributes of Figure 2. All of 
the sonification algorithms are open-ended with respect to 
number of attributes, but for the current discussion there 
are always the 5 attributes of Figure 2. Harmonic 
sonification maintains two tables of frequencies, 
sweetNotes and sourNotes, that are in-scale and out-of-
scale respectively for the baseline “A” note of 220 Hz. 
The non-musician reader can think of the sweetNotes as 
the white keys and the sourNotes as the black keys on a 
piano, although the actual white keys on a piano are 
rooted in a “C” note rather than a 220 Hz “A” note when 
playing a major scale. The point is that the sweet 
parameter of the previous section plays its positional 
sweetNote in the “A” major scale with the intensity of the 
sweet parameter, and the sour parameter plays its 
positional sourNote outside of the “A” scale with the 
intensity of the sour parameter. An attribute value within 
1 standard deviation of the mean Reference Set 0 value 
for that attribute is all sweet, with its amplitude growing 
linearly with its proximity to the Reference Set attribute 
value. Figure 4 illustrates the mix of in-scale (sweet) and 
out-of-scale (sour) notes played simultaneously for a 
given attribute. All attributes play their sequential regions 
of the scale simultaneously, so there can be up to 10 
simultaneous, distinct notes playing when all 5 attributes 
are a mix of non-zero sweet and non-zero sour parameter 
values. Data records in Sets 1 and 2 tend to be discordant 
for one or more (attribute : note) positions. 
 
In addition to using frequency perceived as pitch, the 
harmonic algorithm takes a very brute-force waveform 
(timbral) approach. It uses sine wave generators for the 
sweet notes and sawtooth wave generators for the sour 
notes. Sine waves are even sweeter and less attention 
grabbing than the relatively sweet triangle waves of 
Figure 3, while the sawtooth waves are very raspy. The 
intent is to reinforce the consonant-versus-dissonant 
properties of frequency sonification of the last paragraph 
with consonant-versus-dissonant properties of timbre 
sonification. A harmonic chord lasts 2 seconds. 
 
Sound generation takes the form of generating one short 
ChucK program for each Set record of mean attribute 
values and one ChucK program for each data record. 
ChucK is an audio programming language that provides 
waveform generators including sine, triangle, and 
sawtooth oscillators with programmable frequency and 
amplitude [11]. Harmonic sonification generates a parallel 
set of sine and sawtooth ChucK generators with amplitude 
(a.k.a. gain) given by their respective sweet and sour 
parameters, and with frequency given by the position of 
each attribute in its sweetNotes and sourNotes scales. The 
non-musician reader should envision banging out a chord 
of simultaneous notes on a piano for a data record, in 
which sweet notes are consonant to the listener, sour notes 
are dissonant, the intensity of a note is proportional to its 

 
Figure 4: Sweet and Sour values as a function of 

attribute standard deviation 
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sweet or sour value, and the timbre of the sour notes is 
raspy. 
 
The melodic sonification algorithm (technically, a set of 
melodic intervals) generates note frequencies, amplitudes, 
and waveforms that are identical to the harmonic 
approach, but it generates them to play only one 
attribute’s sweet and sour notes at a time, sequencing 
them across a 2 second duration. The only other 
difference is that the harmonic method scales down the 
amplitude of the mix in order to avoid excessively loud 
sounds, since it is playing many notes together. The 
melodic approach plays each note at higher amplitude 
because it plays at most one sweet and one sour note at a 
time, in a temporal sequence. The idea behind generating 
harmonic and melodic sonifications with identical notes is 
to determine whether sequencing the notes over time 
assists or detracts from the abilities of listeners to classify 
otherwise identically sonified data. 
 
The waveform sonification algorithm is substantially 
different from the other two. Its intent goes back to the 
observation that the parallel coordinate plots of Figures 1 
and 2 look like waveforms. In fact, the first 5 attributes of 
Figure 1, which are the attributes of Figure 2, are sorted to 
approximate a triangular waveform for the Reference Set 
0 mean values. The original idea was, to the degree that 
Set 1 and 2 waveforms deviate from the Set 0 waveform, 
a listener would distinguish timbral differences and 
classify into the three sets on the basis of those. 
 
Mapping the parallel coordinates plots directly to audio 
waveforms created sounds that were hard to distinguish, 
so we went back to using sweet and sour parameters to 
introduce discontinuities. For each attribute of a record, 
after determining the sweet and sour parameters, the 
waveform generator tests which is greater in magnitude, 
sweet or sour. For attributes where sweet dominates, it 
saves the attribute value in its position. For attributes 
where sour dominates, it saves the additive inverse (the 
“negative”) of the attribute value in its position. The 
intent is to create more “kinks” in a sour attribute’s 
position in a waveform, increasing possibly dissonant 
overtone frequencies (a.k.a. partials). After traversing all 
attributes of a record, the waveform generator normalizes 
the range of values to the range [0.0, 1.0] by scaling. It 
then generates a ChucK program that plays this waveform 
for 2 seconds. The sounded waveform is actually the 
original waveform in the [0.0, 1.0] range, and then its 
mirror image in the [-1.0, 0.0] range, in order to preserve 
symmetry and avoid introducing additional overtones. 
 
The left side of Figure 5 shows the original waveforms for 
Reference Set 0, Set 1, and Set 2, starting at the top.  
Reference Set 0 is somewhat problematic because all of 
its attributes are 100% sweet and 0% sour, giving a flat 
line. The waveform sonification algorithm treats the 
lowest attribute value as a minimum and scales the others 

according to their range, winding up with a near square 
wave for Reference Set 0 at the top left of Figure 5. 
 
Set 1 and 2 original waveforms appear below Reference 
Set 0. Careful inspection shows 5 vertices in the positive, 
initial side of the Set 1 waveform, corresponding to the 
five attributes SWed, Cgpa, Gprv, Gprj and Jfst. There is 
the initial point (SWed), a slight bend to a lesser slope 
near .45 ms. (milliseconds) (Cgpa), a peak (Gprv), a 
trough at the 0 center line (Gprj), and a final peak (Jfst) 
before going to the negative mirror half of the waveform. 
The overall waveform occupies 4.5 ms., which is 1.0 / 
200 Hz baseline frequency. The trough for the second-last 
attribute (Gprj) in the Set 1 and 2 waveforms corresponds 
to the distances between their means and the Reference 
Set 0 mean in Figure 2. Gprj is the only parameter for 
which the deviation of Sets 1 and 2 are so great that they 
generate a negative-going trough, which sonically acts as 
an overtone in the timbre. Cgpa, the attribute for which 
Sets 1 and 2 differ from each other most significantly, 
gives a reduction in slope for Set 1, and an increase in 
slope for Set 2, in going from Cgpa to Gprv. 
 

 
Figure 5: Unfiltered (left) and filtered waveforms 
for Reference Set 0, Set 1, and Set 2 mean values 
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The original sounds from the left side of Figure 5 are so 
dominated by 200 Hz and other low-frequency harmonics 
that it was hard to distinguish them when listening. Since 
the intent was to generate high-frequency artifacts in the 
non-reference Sets 1 and 2, we added a high-pass filter 
operating at 4.5 X the baseline frequency of 220 Hz, with 
a filter Factor that makes it moderately selective (filter 
“Q” = 10). It passes frequencies above 990 Hz with 
relatively little attenuation, and it allows some frequencies 
below that threshold to pass with gentle but increasing 
attenuation as frequency goes down. We picked these 
values for the filter through listening. The waveforms on 
the right side of Figure 5 are the results of high-pass 
filtering. Reference Set 0 at the top has its amplitude 
diminished considerably because it consists mostly of 
low-frequency components that manage to make it past 
the filter. Sets 1 and 2 show more remaining amplitude 
because of their sour-parameter-generated overtones, with 
Set 2 saturating at the -1.0 and 1.0 limits in more places 
than the Set 1 waveform. The waveforms on the right side 
of Figure 5 are the ones actually used in the surveys of the 
next section. 
 
3.4 Conducting and Analyzing the Sonic Surveys 
 
In addition to generating sounds, running the ChucK 
programs generates uncompressed WAV (Waveform 
Audio File Format) audio files that store those sounds. 
For our sonic surveys we created a Java survey 
application that loads the mean reference set and 
individual data record WAV files and presents them to 
listeners via a GUI and desk monitors (speakers), adjusted 
by one of the authors to safe levels. The sonic survey 
allows the three Set reference tones for harmonic 
sonification to be sounded any time while manually 
sequencing through 39 pseudo-randomly selected data 
record sounds, 13 belonging to each of Set 0, 1, and 2. 
The listener selects the Set 0, 1 or 2 that they feel is 
closest in sound to current data record sound, and then 
goes on to the next record. The numbers of sounds are a 
function of the numbers of records in the least-populated 
set of data. After making responses to each of the 39 
harmonic sounds, a listener listens to three melodic 
reference set sounds and then responds to 39 instances, 
and then listens to three waveform reference set sounds 
and then responds to 39 instances. There were 29 
volunteer participants, mostly computer science students 
at Kutztown University. There was no data collection 
about student familiarity with music or computer audio, 
and no discussion or revelation about the data or 
sonification techniques used in the sonic survey, beyond 
the names “harmonic”, “melodic”, and “waveform” for 
the sound sets triggered by interaction with the GUI. 
There were 117 selection mouse clicks (39 sounds for 
each of 3 sonification approaches) X 29 listeners = 3393 
data points, 1131 per sonification technique. 
 
The survey results appearing in Table 2 were a surprise to 
the project leader (Parson), to say the least. In comparing 

overall classification accuracy without looking at 
individual sets, waveform at 61.4% is clearly superior to 
harmonic at 55.8% or melodic at 55.4%. The project 
leader had assumed we would discard waveform after the 
first semester of research because of its anticipated lack of 
accuracy for classification. Instead, it has the greatest 
overall accuracy. Furthermore, the project leader’s survey 
responses accord with those of Table 2. Apparently, 
conscious perception of sound can diverge from 
unconscious perception that drives reaction in the survey, 
at least for the project leader. After taking the survey, 
some students reported clearly perceived distinctions in 
the waveform approach.  
 
Sonification Category Correct responses 
Harmonic All 3 sets 55.8% 
Harmonic Reference Set 0 65.5% 
Harmonic Set 1 41.4% 
Harmonic Set 2 60.5% 
Melodic All 3 sets 55.4% 
Melodic Reference Set 0 47.5% 
Melodic Set 1 50.9% 
Melodic Set 2 67.9% 
Waveform All 3 sets 61.4% 
Waveform Reference Set 0 74.8% 
Waveform Set 1 57.8% 
Waveform Set 2 51.5% 
 

Table 2: Correct Classifications from Sonic Survey 
 
Looking at Table 2 on a per-set basis, waveform at 74.8% 
is the best for classifying Reference Set 0 instances 
correctly, and at 57.8% is the best for classifying Set 1 
instances. Melodic, which is generally poor, performs the 
best for Set 2 at 67.9%. Presumably, melodic does well 
for Set 2 because there is one note that distinguishes Set 2 
from Set 1 (probably Cgpa), and melodic isolates that 
note in time. Harmonic plays that same note, albeit at the 
same time as all other notes, and it scores only 60.5% for 
Set 2. Set 2 classification appears to be the sole advantage 
of sequencing sounds across time in the melodic 
approach.  Waveform comes in at 51.5% for Set 2, 
slightly better than half correct. 
 
3.5 Analysis of Results and the Next Round 
 
In looking at the results of Table 2 in conjunction with the 
right-side waveforms of Figure 5, the problem at this 
point is one of coming up with a variation of waveform 
that distinguishes Set 1 and 2 instances from each other, 
while improving accuracy of Set 0 classification further. 
 
Figure 6 gives the frequency-domain spectra plots that are 
counterparts to the time-domain waveforms on the right 
side of Figure 5. They are the waveforms used in the 
survey. The decibel (dB) vertical scale is a log10 scale for 
frequency strength [12], noting that humans hear sound 
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loudness in a logarithmic way that emphasizes faint 
sounds and deemphasizes very loud ones. In Figure 6, 0 
dB is maximum frequency strength, and -40 dB is roughly 
the threshold of audibility. 
 
Note the first peak at the left side of the Figure 6 spectra 
for 220 Hz, the baseline frequency of the waveforms.  The 
dominant frequencies of the overtones are odd multiples 
of 200 Hz, caused by the fact that the waveforms on the 
right side of Figure 5 approximate triangular waves. 
 
Note for Sets 1 and 2 in Figure 6 there are significant 
peaks at 5X, 13X, 15X and 25X harmonics that do not 
exceed the -40 dB level for Reference Set 0. These are the 
harmonics that distinguish Set 0 from the other two sets. 

However, they support distinguishing Set 1 and 2 from 
each other only where their strength is substantially 
different. Differences in these harmonic strengths appear 
in Figure 6, but they are not pronounced. In fact, if a 
listener could distinguish waveform sonifications of 
Reference Set 0 instances correctly 100% of the time, 
then the 57.8% and 51.5% correct responses for Sets 1 
and 2 would be marginally better than guesswork. With 
Set 0 out of the way, listeners have to distinguish 
remaining sounds only between Set 1 and Set 2, a 50/50 
probability for pure guesswork. The actual algorithms do 
somewhat better than 50%, and substantially less than 
100% for Set 0. 
 

 
 

Figure 6: Filtered waveform frequency-domain spectra for Reference Set 0, Set 1, and Set 2 mean values 
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Space precludes showing time-domain and frequency-
domain plots for harmonic and melodic sonification. We 
have extracted them, and the problem appears to be that 
there is too much going on. Sawtooth waveforms 
contribute many overtones, so the frequency-domain 
spectra of harmonic Sets 1 and 2 are extremely busy, with 
few frequencies to distinguish the two. Harmonic 
classifies Set 0 somewhat better as seen in Table 2, 
because it generates only low-frequency sine waves with 
few overtones, but it does not come up to the accuracy of 
waveform for Set 0. Melodic sequences the sounds of 
harmonic sonification across time, but the addition of 
temporal spread to sawtooth noise does not help the task 
of classification as evidenced by the results of Table 2. 
 
Our plan going forward into spring 2016 is to discard the 
harmonic and melodic approaches, to create three new 
variations of the waveform sonification, and then re-run 
the survey. We hope to make Set 1 and 2 instances more 
distinguishable from each other while improving accuracy 
for Set 0. The three new approaches, already coded and 
packaged for surveys at the time of this writing, generate 
and mix two waveforms using the same approach as the 
fall 2015 single-waveform approach discussed above. The 
two waveforms are identical, but they start at different 
multiples of the 220 Hz baseline frequency. The 
waveformDouble approach generates and mixes identical 
waveforms with 220 Hz and 440 Hz baseline frequencies. 
This approach mixes waveform with its octave double. 
The waveformFourThirds approach generates and mixes 
identical waveforms with 220 Hz and 293.3 Hz baseline 
frequencies. The latter frequency is 4/3 X the former, 
perceived by the ear as a consonant interval. The 
waveformOnePt95 approach generates and mixes 
identical waveforms with 220 Hz and 429 Hz (220 X 
1.95) baseline frequencies, where 429 is a dissonant 
interval. The next round of surveys will distinguish 
whether a consonant octave, a consonant just fourth [12], 
or a dissonant second waveform generates the best 
distinguishing features for classification. Based on 
extracted waveform spectra, there are frequency-domain 
spikes that promise to make classification among the three 
sets more accurate than the approaches reported here. 
 
3. Summary and Future Work 
 
The waveform approach of mapping parallel coordinates 
plots that look like time-domain audio waveforms into 
audio waveforms works. It beats the 33.3% accuracy of 
random guessing among three sets, at more than double 
that accuracy for Reference Set 0. It is not as good at 
distinguishing Sets 1 and 2 in this study. They share some 
attribute value ranges, making it necessary to emphasize 
differential attributes that distinguish them. 
 
The frequency-domain spectra for the three waveform 
variations of the next stage of this research include unique 
frequency spikes for each set type that promise to make 
classification more accurate. The approach generates and 

mixes two identically shaped waveforms with different 
baseline frequencies. The relationship of the two baseline 
frequencies differs across the three waveform sonification 
variants. We will resume conducting sonic surveys in 
spring 2016.  
 
There is nothing to indicate that this sonification approach 
is in any way geared towards our dataset or domain of 
data analysis. The waveform sonification technique relies 
solely on mapping variations in mean attribute values as a 
function of distance from a reference mean in terms of 
standard deviation to audio waveforms. The attribute 
sequence of Figure 2 is ordered to give an approximation 
of a triangle wave, with the peak in the center and the low 
points at the edges. It is a low-to-high-to-low amplitude 
sort. Attributes in other reference sets or in data records 
that vary significantly from the Reference Set 0 mean will 
generate overtones that a listener can use to classify them. 
A generic, domain-neutral way to map parallel coordinate 
plots to sounds is the result. The next round of surveys 
and analyses promise to increase accuracy of this 
approach to data sonification. 
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