
Kutztown University
Research Commons at Kutztown University
Computer Science and Information Technology
Faculty

Computer Science and Information Technology
Department

4-1-2017

A Graph Description Language for Blind
Programmers
Dale E. Parson
Kutztown University, parson@kutztown.edu

Genevieve Smith
Kutztown University of Pennsylvania, gsmit209@live.kutztown.edu

Andrew Wernicki
Kutztown University of Pennsylvania, awern214@live.kutztown.edu

Follow this and additional works at: https://research.library.kutztown.edu/cisfaculty

Part of the Graphics and Human Computer Interfaces Commons

This Conference Proceeding is brought to you for free and open access by the Computer Science and Information Technology Department at Research
Commons at Kutztown University. It has been accepted for inclusion in Computer Science and Information Technology Faculty by an authorized
administrator of Research Commons at Kutztown University. For more information, please contact czerny@kutztown.edu,.

Recommended Citation
Proceedings of the 32nd Annual Spring Conference of the Pennsylvania Computer and Information Science Educators (PACISE)
Edinboro University of PA, Edinboro, PA, March 31-April 1, 2017.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons Kutztown University

https://core.ac.uk/display/230571144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.library.kutztown.edu?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://research.library.kutztown.edu/cisfaculty?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://research.library.kutztown.edu/cisfaculty?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://research.library.kutztown.edu/cis?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://research.library.kutztown.edu/cis?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://research.library.kutztown.edu/cisfaculty?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:czerny@kutztown.edu,

A GRAPH DESCRIPTION LANGUAGE FOR BLIND PROGRAMMERS

Dale E. Parson, Genevieve Smith, Andrew Wernicki
Department of Computer Science and Information Technology, Kutztown University of PA

parson@kutztown.edu

ABSTRACT

Sighted people often overestimate the usefulness of tactile
diagrams for blind people who need to perceive and
comprehend entities and relationships in visual structural
graphs. Sighted software developers can acquire an
overview of the structure of a Unified Modeling
Language (UML) design diagram after a quick visual
scan. Blind developers using tactile diagrams are impeded
by the serial nature of scanning these diagrams with their
fingers. However, blind programmers are experts at using
text-to-speech screen readers to verbalize lines of existing
code at a very rapid rate. Comprehending and debugging
code with a screen reader happens extremely quickly
because blind developers have a lot of practice using such
tools. This paper reports on using a block-structured
diagram description language with syntax and keywords
similar to modern programming languages to capture and
communicate entities and relationships in standard UML
diagram types. Prototype software tools include utilities
for verifying textual UML models, for converting
between textual representations useful to blind versus
sighted programmers, and for generating visual diagrams
for communications with colleagues. Creating this
language in support of a blind student in an object-
oriented design course helped to accelerate acquisition
and communication of design concepts among students
and the instructor.

KEYWORDS

blind programmers, blind developers, graph description
language, tactile diagrams, Unified Modeling Language

1. Introduction

1.1 An instructor’s perspective

This report grows out of experiences supporting one of
the authors, a blind student (Smith), in a graduate course
in advanced object-oriented design and programming at
Kutztown University in spring 2016. The course makes
heavy use of numerous diagram types from the Unified
Modeling Language (UML) [1] in reverse-engineering an
existing code base for project 1 and in designing a system
built in several subsequent projects. The instructor
(Parson) learned of difficulties in obtaining tactile

diagrams for a previous course in a timely manner during
the preceding fall semester. By ordering a half semester
ahead, we managed to acquire tactile diagrams for all of
the illustrations for the UML guide used in the class [2]
by the beginning of the term.

However, it became clear to the instructor at the very start
of going over UML diagrams in class, that the serial
cognitive bottleneck imposed by using tactile diagrams
was very likely to cause two problems: It would slow
down acquisition of diagrammed design information by
the student, which in turn would slow down the pace of
the class. Tactile diagrams require serial scanning, with
no holistic picture of an entire design, and they can span
multiple pages, even for visual diagrams that do not,
thanks to annotations that expand the space requirements
of tactile diagrams.

Thankfully, the instructor had also observed this student
using the JAWS screen reader to capture and debug
programs [3]. She can scan sequential lines of code text
and focus in on compile errors with amazing speed. The
instructor had previous experience supporting a textual
description language for writing event-driven simulation
models as UML state machine diagrams [4]. A critical
observation is the fact that the large majority of UML
diagramming constructs are in fact text entries for entity
names, methods, data, and various tags. Fully graphical
entities are of only a few kinds, primarily nesting boxes
and arrowed links. A textual UML graph description
language needs only to invent constructs for the relatively
few inherently graphical constructs in UML diagrams.

1.2 A blind programming student’s perspective

Transforming visual concepts into nonvisual mediums
used by the blind is often a cumbersome, inefficient, and
difficult task, regardless of the alternative medium
employed. The creation of several alternative systems,
including tactile diagrams, auditory illustrations, and
methods utilizing both auditory and tactile feedback pose
their own limitations and challenges. First, new systems
often impose a learning curve for both the creator and
user, creating unfair burden for everyone involved.
Second, many of these systems are either cost-prohibitive
to students and universities, or require manual labor to
implement. Third, though guidelines have been published,

no standard among diagram users or their creators exists.
Fourth, few systems allow the blind user to create
diagrams independently, hindering progress in a
competitive visual society. Furthermore, comprehension
of abstract concepts, especially when conveyed tactilely,
coupled with an overall negative disposition toward
diagrams, causes many users to feel frustrated and
overwhelmed [5]. Many factors affect the choice of
medium to display nonvisual material.

Likewise, the importance of determining the usability of
any alternative diagram system cannot be overstated,
especially when assessing perhaps the most common of
the three mediums: tactile diagrams. Tactile diagrams
incorporate enlarged raised images that the blind perceive
with their fingertips. Though expensive to purchase, using
imaging tools and a braille embosser, tactile diagrams are
relatively straightforward to produce. Furthermore, their
usability advantages make them a practical option in some
circumstances. Relatively simple diagrams offer blind
users a tangible method they can perceive, helping to
clarify unfamiliar abstract concepts by making them more
concrete. Tactile mediums reduce the burden of mental
mapping, because blind users are able to refer back to the
diagram repeatedly and with ease. Equally important,
tactile methods help preserve and convey spacial
information, though their limitations also contribute to
some spacial inaccuracies. Tactile diagrams are most
beneficial while modeling simple concepts that represent
tangible objects.

Nevertheless, the drawbacks of tactile diagrams may
cause users to seek alternative systems of communication.
The limitations of tactile perception become apparent
when modeling complicated diagrams and abstract
concepts. The lack of variety that the tactile sense
provides, in combination with the inability to perceive
large pieces of the diagram at once, hinder information
synthesis and cause strain on user memory. In addition,
detailed diagrams must be spread across several pages,
further taxing the user. In an effort to reduce clutter in
these diagrams, venders make labeled information
accessible via a numbered key. The reduction in clutter is
offset by the inefficiency of turning pages to find the
label's meaning. Moreover, the time taken to trace,
synthesize, process, and develop a mental map of a
complex tactile diagram is slow, cumbersome, and
exhausting. In an effort to address shortcomings of other
systems including tactile perception, we have created an
auditory text-based system to represent UML diagrams.

2. Related work

Our initial thought before working with tactile diagrams
was to experiment with the creation of tactile diagrams
using raised, tactile printing or 3D printing [6]. The
negative experiences with tactile diagrams related in the
Introduction led us to investigate other mechanisms.

The TeDUB system appears to be the most ambitious and
thoroughly supported software system for enabling blind
software developers to use UML [7], being supported by
grants from the European Union [8]. Its purpose is to
allow navigation of visual UML diagrams by tagging
them with additional meta-data that allows blind users to
navigate diagram contents using special, text-oriented
navigation tools. Its scope exceeds that of the present
work by allowing users to extract information from
existing tagged diagrams. However, from the perspective
of the present work, TeDUB’s provision of a specialized
structure navigator that does not utilize computer text
readers that are heavily used by blind users makes it usage
appear cumbersome and unnecessarily novel.

A survey of means for communicating UML diagrams to
blind developers [9] lists these commonly-used
techniques: 1) manual methods such as a stencil
embossing kit; 2) Braille embossers and stereocopying; 3)
tactile display; 4) tactile diagram plus audio; and 5) verbal
description only by another person. Unfortunately, this
otherwise excellent survey makes the following assertion
about using text-based diagram descriptions with a
computer reader: “A variety of approaches can be used to
describe the relationships between, and the contents of
UML objects. Although this approach works well for
blind programmers, it does not fit well into the practices,
standards and abilities of sighted programmers. UML
diagrams are supposed to be diagrams - not audio
presentations or verbal tours through a software design.
UML users expect to get information on many levels
simultaneously - relationships, structure, details; even
standards are expressed immediately to a sighted
programmer when they see a UML diagram. Sighted
programmers are not capable of the long-term memory
and cognitive pattern building abilities that blind
programmers are forced to have. A blind programmer
using this technology can not expect advancement is a
software company who insist on standard UML notation.”
This position denies any need for accessibility
accommodation by a development organization. It ignores
the value that good software developers who happen to be
blind can bring to an organization, and its assertions about
sighted programmers underdeveloped long-term memory
and an organization’s prerogative to discriminate against
blind programmers are ignorant and dangerous.

It was the instructor’s experience creating a textual
description language for UML state machine diagrams
used as simulation models [4], and the recognition that
UML diagrams consist largely of text, that led to the
creation of the notation presented in this report. In
answering the reservations of using non-visual diagram
descriptions cited in the previous paragraph, it is
important to point out two facts. First, in the system
presented here, it is possible to generate UML-compliant
visual diagrams for communication with colleagues by
generating visual diagrams from our structured textual
descriptions using a toolset such as Graphviz [10].

Second, while going from graphs to structural
descriptions is more problematic when the graphs are in a
strictly visual form such as an image file, such a flat
representation of UML diagrams falls far short of the state
of the art of graphical design tools for software. The
instructor was formerly a software architect and developer
with Bell Laboratories whose projects in the late 1980s
and early 1990s included work on a proprietary graphical
schematic capture tool called SCHEMA that, while
supporting visual interaction, stored all of its design data
in textual descriptions. Given the stereotyped nature of
UML diagrams, in which the boxes, other containers, and
links take very stereotyped form, there is no technical
reason that textual and visual UML representations and
storage formats cannot be interchangeable. Creating tools
that can support sighted and blind developers in using
visual and textual diagrams is a straightforward matter of
software technology.

The effort reported here relies strictly on textual capture
of diagrams. It does have the ability to generate visual
graphs. It represents progress towards a toolset that could
support design capture in either modality, generating
visual graphs from structured text descriptions, and
generating text descriptions from annotated visual graphs.
A complete toolset would essentially be a UML CASE
tool (Computer Aided Software Engineering) for sighted
and blind developers alike.

3. A Graph Description Language

3.1 Basic compiler technology

This compiler is somewhat more complex than the
compiler for UML state machine diagrams [4] in that it
compiles multiple diagram types. But, unlike the previous
effort, the toolset does not include a run-time simulator.
The compiler is written in Python, with a front-end
scanner-parser written using the PLY library that is a
Python equivalent of the YACC parser generator for C
language [11]. Coding the scanner, parser, and semantic
checker in Python allows the front end to save symbol
table and parse tree information in a textual file format.

While Python and PLY work well for rapid prototyping,
Python is not well suited to blind programmers because,
unlike C, C++ and Java that use curly braces to denote
nested structures such as blocks of code, Python uses
mandatory indentation of code. Indentation does not work
well with many text-to-speech readers because they
simply count the spaces out loud. They do not give a good
feel for level of nesting because they simply enumerate
spaces. In order to accommodate a blind developer, we
have the front end save a symbol table and parse tree as a
textual Python data structure, which we then run through
a Jython program that reads the text file and translates it
to a nested Java list of lists and strings using java.util.List,
which it then writes to a serialized Java data file. Jython is

a Java implementation of Python that has access to the
complete Java class library [12,13]. A serialized Java data
file is a binary data file that does not require a developer
to implement a writer or reader for the structured file [14].

The downstream, back end plugins of the system read
serialized Java data files containing symbol tables and
parse trees, using Java as a programming language. There
are presently three back ends. One emits a copy of an
original textual model formatted for use with a blind
reader. Accommodations include eliminating leading
spaces and tabs for indentation, which result in
cumbersome enumeration of spaces by an automated
reader, and attachments of header comments with the
header portions of container constructs. A second,
alternative back end emits a copy of the original textual
model formatted for a sighted developer, employing
appropriate indentation. A third back end emits
instructions for GraphViz construction of a visual
diagram.

3.2 Notation patterns and example diagrams

Our graph description language at present includes the
following types of UML diagrams: deployment, class,
object, state machine, sequence diagrams. Addition of
activity diagrams is pending; we used pseudo-code in the
place of activity diagrams for the course. These are all of
the diagram types used in our course, and include nested
classes, generic classes, interface and implementation
inheritance, active classes and objects that run their own
threads, and other standard UML constructs.

Before showing two specific examples, we list a few basic
rules in language design that arose through planning and
experimentation with using the language.

Rule 1: Use { curly braces } to denote any kind of
container in a UML diagram, preceded by the name of the
construct that the box represents, for example “class” or
“object”. Curly braces can nest for nested containers.
Blind programmers are used to using curly braces for
representing nested structure in a block-structured source
language such as C or Java. Given the fact that UML
diagrams consist almost entirely of containers and links
annotated with text, curly braces cover essentially half of
the graphical functions.

Rule 2: Do not use special symbols such as “->” for
arrowed links because text-to-speech readers read such
constructs as “dash greater” at a rate that slows reading.
Such symbols are oriented primarily towards sighted
developers. Use keywords instead. Discovering this rule
required some trial and error usage of the language.

Rule 3: Borrow keywords from Java where they provide a
good fit to the intended semantics, and make up keywords
as necessary.

Figure 1 shows a UML class diagram that is a modified
version of Figure 3.1 in the UML textbook [2]. It includes
several attributes (data fields), operations (methods),
generalization (inheritance), visibility (+ for public and –
for private within class Order), and directional association
links with multiplicity and roles. Note that, other than
containers and links, the information appears in the form
of text. Other class diagram constructs including active
and nested classes do not appear in this diagram, but our
notation supports them.

What follows is our equivalent text notation, with
comments removed for brevity.

classDiagram Figure1 {
 class Customer {
 name [1] ;
 address [0..1] ;
 getCreditRange() : String ;
 }
 class Employee {
 }
 class CorporateCustomer extends Customer {
 contactName ;
 creditRating ;

 creditLimit ;
 billForMonth(Integer);
 remind();
 } [*]uses[0..1] "salesrep" Employee ;
 class PersonalCustomer extends Customer {
 creditCardNumber ;
 }
 class Product {
 }
 class OrderLine {
 quantity : Integer ;
 price : Money ;
 } [*]uses[1] Product ;
 class Order {
 - dateReceived : Date[0..1];
 - isPrepaid : Boolean[1];
 - number : String[1];
 - price : Money;
 + dispatch();
 + close();
 } [*]uses[1]Customer, [1]uses[*] "lineItems"
OrderLine ;
}

Listing 1: Graph description for Figure 1

Figure 1: UML class diagram showing inheritance and association

The two formats are so interchangeable that the instructor
simply copied and pasted text between the graphical tool
[15] and a text editor to prepare diagrams.

Using nesting {curly braces} to denote nesting containers
is the only non-keyword counterpart to the set of several
box-shaped UML graphical counterparts. We use
keywords such as “active”, “static”, “abstract”, “class”,
“interface”, and “object” (in object diagrams), and others
to qualify the {}-delimited constructs, borrowing from
Java where there is an appropriate Java counterpart. UML
visibility, multiplicity, role, and similar qualifiers are text-
based and fit easily into the language syntax.

Similarly, we use Java keywords “implements” and
“extends” for inheritance (UML generalization). These
appear as arrowed links with unfilled arrowheads in
UML. Arrowed and non-arrowed links presented more of
a problem. We initially tried using visual symbols “->”,
“<-”, “<->”, and “--” as textual counterparts to UML
directed and undirected associations, but readers such as
JAWS read these as “dash greater”, for example,
introducing auditory clutter. We settled on new keywords
“uses”, “usedby”, “useboth”, and “usehuh” for the above
four association types. There was much debate and
experimentation before settling on these words. Note the
use of “uses” with multiplicity and role tags on the
appropriate sides of this keyword in Listing 1, and the
correspondence to the visual diagram in Figure 1.

Listing 2 shows the textual Python parse tree that the
compiler front end passes to Jython and Java back ends. It
produces both indented and non-indented versions for
sighted and blind programmers working on back end
code, and it preserves everything in the source file,
including comments, which do not appear here for
brevity.

parsetree = \
('diagram:', ('classDiagram:', 'Figure1', '{',
 ('class-sequence:',
 ('class:', 'class', 'Customer',
 '{',
 ('class-contents:',
 ('attribute:', 'name', '[1]', ';'),
 ('attribute:', 'address', '[0..1]', ';'),
 ('method:', 'getCreditRange', '(', ')', ('type:', 'String'),
 ';')), '}'),
 ('class:', 'class', 'Employee', '{', '}'),
 ('class:', 'class', 'CorporateCustomer',
 ('extends', 'Customer'),
 '{' ('class-contents:',
 ('attribute:', 'contactName', ';'),
 ('attribute:', 'creditRating', ';'),
 ('attribute:', 'creditLimit', ';'),
 ('method:', 'billForMonth',
 '(',
 ('param-list:', ('Integer',)),
 ')', ';'),

 ('method:', 'remind', '(', ')', ';')),
 '}',
 ('association-list:',
 ('uses:', '[*]', '[0..1]', '"salesrep"', 'Employee'), ';'),
),
 ('class:', 'class', 'PersonalCustomer',
 ('extends', 'Customer'),
 '{', ('class-contents:',
 ('attribute:', 'creditCardNumber', ';')),
 '}'),
 ('class:', 'class', 'Product', '{', '}'),
 ('class:', 'class', 'OrderLine',
 '{', ('class-contents:',
 ('attribute:', 'quantity', ('type:', 'Integer'), ';'),
 ('attribute:', 'price', ('type:', 'Money'), ';')),
 '}',
 ('association-list:',
 ('uses:', '[*]', '[1]', 'Product'),
 ';')),
 ('class:', 'class', 'Order',
 '{', ('class-contents:',
 ('attribute:', 'dateReceived', ('type:', 'Date'),
 '[0..1]', ';'),
 ('attribute:', 'isPrepaid', ('type:', 'Boolean'),
 '[1]', ';'),
 ('attribute:', 'number', ('type:', 'String'),
 '[1]', ';'),
 ('attribute:', 'price', ('type:', 'Money'), ';'),
 ('method:', 'dispatch', '(', ')', ';'),
 ('method:', 'close', '(', ')', ';')),
 '}',
 ('association-list:',
 ('uses:', '[*]', '[1]', 'Customer'),
 ('uses:', '[1]', '[*]', '"lineItems"', 'OrderLine'),
 ';'),
)),
 '}'))

Listing 2: Textual parse tree for Figure 1

Figure 2 shows the flat graphical representation of the
class diagram that the back end of our toolset generates
from the graph description of Listing 2. This back end
uses a text-driven graph generator tool called PlantUML
[16] that builds, in part, on GraphViz.

For completeness we illustrate a UML sequence diagram
that shows method calls and return values among objects.
Unlike a deployment, class, and object diagrams, which
model structure, sequence and activity diagrams are
example diagram types that model behavior. Listing 3 is
the non-indented version that is more useful to a blind
developer. As noted, our toolset’s back end generates both
indented and non-indented versions of its diagram
description files.

sequenceDiagram Figure3 {
object anOrder : Order {}
object anOrderLine : OrderLine {}
object aProduct : Product {}
object aCustomer : Customer {}
? calls anOrder.calculatePrice() ;
// "?" means call comes from outside displayed objects.
anOrder.calculatePrice() calls anOrderLine.getQuantity()
;
anOrder.calculatePrice() calls anOrderLine.getProduct() ;
anOrderLine.getProduct() returns aProduct to
anOrder.calculatePrice() ;
// aProduct is the return value to object anOrder from its
// method call to anOrderLine.getProduct().
anOrder.calculatePrice() calls
aProduct.getPricingDetails() ;
anOrder.calculatePrice() calls
anOrder.calculateBasePrice() ;
anOrder.calculatePrice() calls
anOrder.calculateDiscounts();
anOrder.calculateDiscounts() calls
aCustomer.getDiscountInfo();
}

Listing 3: Graph description for Figure 3

3.3 Usability from an instructor’s perspective

The instructor’s primary criteria for success of this project
are the satisfaction of the customer student and the ability
to speed up the pace of the course. The next subsection
addresses the former criterion. It is absolutely essential to
have a blind developer involved in the development of a
system such as this, because of the need for quick
feedback when making decisions about language syntax,
keywords, and useful tools.

This graph description language has done more than
speed up the pace for one student. It provides an
alternative means to discuss and review the constructs of
UML diagrams, and it is easy and fast to capture. It
requires only a text editor to capture a design. After
getting practice using visual UML diagrams on
assignments, several students switched to our graph
description language because of its ease of use and speed.

3.4 Usability from a blind developer’s perspective

The text description language uses familiar code-like
structure, keywords, and syntax to represent each UML
diagram. Language words like "class" and "extends," for
instance, describe classes and their relationships to one
another, function definitions identify functions – though
parameters are structured differently than in Java – and
braces identify the beginnings and closings of classes and
the entire page. Minor differences occur where necessary
in order to save space or preserve meaning. Public,
private, and default specifiers are symbolized with plus,
dash, and tilde respectively, parameter names are
proceeded by a colon and then the parameter type, and
function return types are written last in function
specifications. The instructor and blind student both use
standard computers to read and write the text description
language, but the blind student uses a software program
called a screen reader to access the text. Screen readers
parse and interpret data and then return the information as
synthesized text back to the user.

The primary benefit of our text description language is the
reliance on already-familiar syntax and structure.
Accessible software and tools often force blind users to
learn a variety of commands, and, initially, the usability
of the system is partially compromised by system
memorization. Prior coding background prevented a
frustrating transition, eliminating a learning curve of an
entirely unfamiliar system. This, in turn, contributed to a
smooth process when new syntax was introduced.

Another major benefit is the ability for blind users to
produce diagrams independently. Unlike the majority of
systems that required sighted intervention at some point in
the process, the entire procedure – from diagram
transcription to navigation – could be completed without
any sighted assistance whatsoever. Independence is

Figure 3: UML sequence showing calls and returns

Figure 2: Class diagram generated from Listing 2

paramount in a competitive visual society, and no
diagram system should be considered complete without it.
Furthermore, to aid sighted users, a project is under
development that transforms a text diagram into an
illustration. It is uncertain whether or not software can
reliably translate a UML diagram back into text
description language.

Lastly, except for the expense of a screen reader, our
system is cost-effective, and minimal labor to produce
text diagrams is involved. The exclusion of specialized
tools and software eliminates the price factor entirely, and
blind users now have access to open-source screen readers
as well. I speculate that typing text is much faster than
drawing diagrams, and any existing functions can be
copy/pasted into them.

Though our system addresses the primary drawbacks of
other comparable tools, it is not infallible. Blind users will
still need to mental map large and detailed diagrams,
though the efficient traversal will help offset this burden. .
I hypothesize that mental mapping will always be
necessary, regardless of the system, since neither auditory
or tactile perception is comparable to sight. The benefits
addressed above far outweigh this drawback.

Though most issues with the description language have
been resolved, the process of refinement involved trial-
and-error, and in some cases, the language is still a work-
in-progress. The main challenge we faced required
eliminating auditory clutter while preserving scannability.
Screen readers navigate in a linear fashion, and users
generally begin at the top of documents and work their
way down. How much and the type of information spoken
is controlled in a screen reader's verbosity and
punctuation settings and is dictated by user preferences.
Because coding syntax is essential to the language, my
settings are set to speak most punctuation. To maintain
efficiency and improve navigation speed, it was crucial to
shorten any unnecessary clutter. This included reducing
comments to a bear minimum and placing them at the
ends of lines when absolutely necessary, allowing them to
be skipped over more easily. Braces appear by themselves
on separate lines. Additionally, indentation was
eliminated because it served no practical purpose and
because it only hindered the editing process.

The text description language has been, and will continue
to be, an extremely useful tool to represent visual UML
diagrams. Text descriptions have resolved primary issues
of cost, system learning curves, and user independence.
The system has also contributed positively to efficiency
and speed. Though issues with mental mapping and
transcription remain, the language has provided a
platform that helps facilitate blind user inclusion.

2. Conclusions and future work

Our UML graph description language has proven itself to
be a practical, useful tool set for both blind developers
and their collaborators in software design and reverse
engineering projects. It integrated seamlessly into the
course on object-oriented software development, and can
integrate just as seamless into professional software
development.

The round trip between textual descriptions and visual
diagrams is the big remaining hurdle. There is a prototype
back end to the tools that generates flat visual diagram
image files. The ideal goal is to have a visual structure
editor for capturing diagrams using data structures and
file formats that support round-trip editing in both the
visual and textual domains. We plan to present our work
to several commercial UML tool vendors, for example
[15], after publication. We hope to find means to continue
and extend this work into a round-trip, textual-visual
toolset.

Acknowledgements

The authors would also like to express our appreciation
for a student work time grant from the Kutztown
University Research Committee.

References

[1] Object Management Group, UML 2.0,
http://www.omg.org/spec/UML/2.0/, July 2005.

[2] M. Fowler, UML Distilled, Third Edition, Addison-
Wesley, 2004.

[3] Freedom Scientific, JAWS Headquarters,
http://www.freedomscientific.com/JAWSHQ/JAWSHead
quarters01.

[4] D. Parson, “A State Machine Language for the
Undergraduate Operating Systems Course,” Proceedings
of the 29th Annual Spring Conference of the Pennsylvania
Computer and Information Science Educators (PACISE)
California University of PA, California, PA, April 4-5,
2014.

[5] Aldrich, F. K., & Sheppard, L. (2001). “Tactile
graphics in school education: Perspectives from pupils.”
British Journal of Visual Impairment, 19(2), 69-73.

[6] C. Loitsch and G. Weber, “Viable Haptic UML for
Blind People,” Proceedings of the 13th International
Conference on Computers Helping People with Special
Needs - Volume Part II, July, 2012.

[7] King, Blenkhorn, Crombie, Dijkstra, Evans, and
Wood, “Presenting UML Software Engineering Diagrams

to Blind People,” Proceedings of Computers Helping
People with Special Needs, 9th International Conference,
ICCHP 2004, Paris, France, July 7-9, 2004.

[8] Horstmann, Hagen, King, and Schlieder, Automated
interpretation and accessible presentation of technical
diagrams for blind people, New Review of Hypermedia
and Multimedia, Vol. 10, No. 2, December 2004.

[9] Baillie, Burmeister, and Hamlyn-Harris, “Web-based
teaching: communicating technical diagrams with the
vision impaired”, Proceedings of Multi-modal Content:
Flexible, Re-useable and Accessible, the 2003 Australian
Web Adaptability Initiative Conference (OZeWAI),
Bundoora, Victoria, Australia, December 2003.

[10] Graphviz - Graph Visualization Software,
http://www.graphviz.org/, link tested January 2017.

[11] Beazley, D., PLY (Python Lex-Yacc),
http://www.dabeaz.com/ply/ , link verified January 2017.

[12] D. Parson, D. Schwesinger and T. Steele,"Using
Jython to Prototype and Extend Java-based Systems,"
Proceedings of the 26th Annual Spring Conference of the
Pennsylvania Computer and Information Science
Educators (PACISE), Shippensburg University,
Shippensburg, PA, April 8-9, 2011.

[13] The Jython Project, http://www.jython.org/, link
verified January 2017.

[14] Java Serialization,
https://www.tutorialspoint.com/java/java_serialization.ht
m, link verified January 2017.

[15] Lucidchart, https://www.lucidchart.com/.

[16] PLANTUML, http://plantuml.com/, link verified
January 2017.

	Kutztown University
	Research Commons at Kutztown University
	4-1-2017

	A Graph Description Language for Blind Programmers
	Dale E. Parson
	Genevieve Smith
	Andrew Wernicki
	Recommended Citation

	DiagramDescriptionPacise2017Final

