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GENERALIZATION IN FIFTH GRADERS WITHIN 

A FUNCTIONAL APPROACH 

Eder Pinto and María C. Cañadas 
This article discusses evidence of 24 fifth graders’ (10-11 year olds’) 
ability to generalize when solving a problem which involves a linear 
function. Analyzed in the context of the functional approach of early 
algebra, the findings show that three students generalized both when 
solving specific instances and when asked to provide the general 
formula; while 16 students generalized only when asked to define the 
general formula. The results are described in terms of the functional 
relationship identified, the types of representation used to express them, 
and the type of questions in which students generalized their answers. 
Most of the pupils who generalized did so based on the correspondence 
between pairs of values in the function at issue. 

Keywords: Functional relationship; Functional thinking; Generalization; 
Representations  

Generalización de estudiantes de quinto de primaria desde un enfoque 
funcional 
En este artículo presentamos evidencias de generalización de 24 
estudiantes de quinto de primaria (10-11 años) al resolver un problema 
que involucra una función lineal. Desde el enfoque funcional del early 
algebra, los hallazgos muestran que tres estudiantes generalizaron al 
trabajar con casos particulares y cuando se les pidió expresar la regla 
general; mientras que 16 estudiantes solo lo hicieron cuando les 
pedimos expresar la regla general. Describimos los resultados en 
términos de la relación funcional identificada, los tipos de 
representaciones que emplearon para expresar dichas relaciones y el 
tipo de pregunta en la cual los estudiantes generalizaron. La mayoría de 
los estudiantes que generalizaron establecieron una relación de 
correspondencia entre los pares de valores de la función.  

Términos clave: Generalización; Pensamiento functional; Relaciones 
funcionales; Representaciones  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portal de revistas de la Universidad de Granada

https://core.ac.uk/display/230543732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


E. Pinto and M. C. Cañadas  174 

PNA 12(3) 
 

Research interest in mathematics education is growing around elementary school 
students’ understanding and expression of notions about algebraic concepts, 
particularly these students’ generalization and how they express general 
relationships when solving different problems (Carpenter & Levi, 2000; Kaput, 
2008). In this context, algebraic thinking plays a key role in research on school 
algebra, for it entails the development of the ability to analyze relationships 
between quantities, identify general patterns and use symbols to represent ideas, 
among others (Kaput, 2008; Kieran, 2004). Different researchers denote that 
“developing children’s ability to generalize in the elementary grades is vital 
because it draws their attention away from the particulars of arithmetic instances 
and onto the relationships and structure that connect these particular instances” 
(Blanton, Brizuela, & Stephens, 2016, p. 2).  

Generalization is one of the main components of algebraic thinking and, 
particularly, of functional thinking, which is the focus of this study. This type of 
thinking addresses in the function and the relationship between two (or more) 
variables: specifically, it involves the types of thinking that range from specific 
relationships to the generalization of relationships (Smith, 2008). Although such 
functional thinking appears to be beneficial for students, its application in the 
elementary grades has received scant attention (Blanton & Kaput, 2011).  

Generalization and representation notions are very close in Elementary 
education (Kaput, Blanton, & Moreno, 2008). Traditionally, generalization 
process has been linked to the use of algebraic symbolism and much of the 
previous research has focused on the students’ difficulties in generalizing 
(Dienes, 1961; Ellis, 2007). For this reason, it was not clear if difficulties arose 
from the generalization process or from the representation used. Students at 
Elementary, or even at Kindergarten, are able to identify regularities that serve as 
first approach to generalization with no knowledge about algebraic symbolism 
(e.g., Castro, Cañadas, & Molina, 2017; Schifter, Monk, Russell, & Bastable, 
2008).  

Our focus is on describing fifth graders’ generalization when solving tasks 
which involve functions. Specifically, our interest is to get information about 
how and when these students generalize. From the research literature review, we 
conjecture that students: (a) establish different relationships between the 
variables involved, and (b) generalize using different representations. 

THEORETICAL FRAMEWORK 
In this section, we describe some ideas concerning our research problem.  

Generalization 
According to some researchers, generalization is the key element in algebra (e.g., 
Mason, 1996). It is present when students intuitively perceive a certain 
underlying pattern, even though they are unable to represent it clearly (Mason, 
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Burton, & Stacey, 1988). Generalization is an adaptation and reorganization 
process in which a person identifies the essence of one idea, which implies 
deliberate reasoning that builds on specific cases to identify inter-model, inter-
procedural or inter-structural relationships (Carraher & Schliemann, 2002; 
Kaput, 1999; Mitchelmore & White, 2007). 

Different researchers show types or levels of generalization (e.g., Harel & 
Tall, 1991; Kaput, 1999; Kruteskii, 1976; Stacey, 1989). In the functional 
approach of early algebra, Blanton, Brizuela, Gardiner, Sawrey and Newman-
Owens (2015) show different ways in which students relate variables focused on 
functional relationships. Their findings distinguished between students who 
identified a specific and those who detected a general relationship between 
variables, and related the distinction to the ability to symbolize. Students who 
established the relationship between variables for specific cases “did not yet have 
a representational means to compress multiple instances into a unitary form that 
could symbolize these instances” (p. 542). Pinto and Cañadas (2017) describe 
fifth graders’ generalization when solving different items from a written 
questionnaire, identifying: (a) spontaneous generalization, when students 
generalize when answering questions about particular cases; and (b) prompted 
generalization, when students generalized when answering a question involving 
the general case. Carraher, Martinez and Schliemann (2008) establish different 
criteria to describe students’ generalization in their last years of elementary 
education. These criteria are: (a) form of the underlying function, (b) variables 
mentioned, (c) types of operations used, (d) use (or not) of algebraic notation, (e) 
structural features, and (f) the meaning of the different components of the written 
formula.  

Algebraic symbolism has been directly associated with generalization in 
different grades. In the context of elementary grades, some authors highlight the 
students’ use of different representations to express a general relationship. For 
example, Mason and Pimm (1984) describe the use of everyday language as a 
fundamental resource to express generalization and its use can have influence in 
the use of algebraic symbolism to express the generalization. Radford (2010) 
recognizes the importance of gestures as a way to express generalization. 
Moreover, other types of representation, including verbal, numerical, pictorial 
and manipulative, are of interest in the context of early algebra (Blanton, Levi, 
Crites, & Dougherty, 2011; Merino, Cañadas, & Molina, 2013). In summary, and 
with base on previous ideas, we assume that the generalization from a functional 
approach at elementary grade can be expressed in different representations.  

Functional Thinking 
Functional thinking is a “component of algebraic thinking based on construction, 
description and reasoning with and about functions and their constituents” 
(Cañadas & Molina, 2016, p. 210) that ranges from specific relationships to 
generalizing the relationships between two (or more) variables (Smith, 2008). In 
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most countries, students are not introduced to functions, which comprise the core 
content of this type of thinking, until secondary school.  

The present study used the linear function f (x) = ax + b  (with the domain 
and codomain limited to natural numbers) as a port of entry for early algebra to 
afford students the opportunity to: (a) explore variations in quantities, (b) use 
different representations, (c) expand numerical contents working with domain 
and codomain of variables, (d) help to increase students’ ability to get 
generalization, among others (Blanton et al., 2011; Carraher & Schliemann, 
2018; Romberg, Fennema, & Carpenter, 1993). 

Our work is focused on bivariate functions. Smith (2008) defined the 
functional relationships involving two quantities that co-vary to be: (a) 
correspondence, or the relationship between the pairs of values for the two 
variables (a, f (a)) ; and (b) covariation, or the relationship that describes how 
changes in one variable affect the other. These relationships can be express 
through different representations and can relate particular values of the variables 
or the general case. Some authors describe that whenever students work with 
particular co-varying quantities, their ability to identify the functional 
relationship increases (Warren, Miller, & Cooper, 2007). 

METHOD 
This study forms part of a broader teaching experiment on functional thinking in 
fifth graders in which the contextualized problem posed in each session revolved 
around a linear function. This article discusses the results of the fourth and final 
session, when student progress was greatest because they had already worked on 
a number of problems involving functions. 

Subjects and Tools 
The 24 subjects were fifth graders (10 to 11 year-olds) enrolled in a school in the 
South of Spain, who were deliberately chosen on the grounds of school and 
teacher availability. The students had not worked on problems involving 
functions prior to the study, except in the first three sessions of the teaching 
experiment, in which they worked with problems that involve linear functions. In 
the Table 1 we present a summary of the first three sessions. 

Table 1 
Contexts and Functions in Each Session 

Session Context Function 

1 Carlos wants to sell shirts for earning money for a study 
trip with his class. He earns 3 euros per shirt. 

f (x) = 3x  



Generalization in fifth graders within a functional approach 177 

PNA 12(3) 
 

Table 1 
Contexts and Functions in Each Session 

Session Context Function 

2 Daniel and Laura sell different shirts for their study trip. 
Laura gets 3 euros for each shirt.  
Daniel has saved 15 euros. For each shirt he gets 2 euros.  

f (x) = 3x and 
f (x) = 2x +15  

3 Juan has saved some money (he only has euros, not cents). 
His grandmother wants to reward him for a job he has done 
for her. She offers him two deals: 
Deal 1. I'll double the money you have 

Deal 2. I’ll give you triple your money and you give me 7 
euros. 

f (x) = 2x and 
f (x) = 3x − 7  

The research team consisted in the teacher-researcher who led the sessions and 
two researchers who recorded the videos and helped answer students’ questions. 
In the tiles problem posed to all students, the implied function was f (x) = 2x + 6 . 
The problem and related questions are reproduced in Figure 1. 
 

A school wants to re-pave its corridors because they are in poor condition. The school 
decides to use a combination of white and grey tiles, all square and all the same size. 
They are to be laid as in the drawing. 

       

       

       

The school contracts a company to re-pave the corridors on all three floors. We want 
you to help the workers answer some questions before they get started. 

Q1. How many grey tiles will they need for a corridor with 5 white tiles?  
Q2. Some corridors are longer than others. So the workers will need a different number 
of tiles for each corridor. How many grey tiles will they need for a corridor with 8 white 
tiles?  

Q3. How many grey tiles will they need for a corridor with 10 white tiles?  
Q4. How many grey tiles will they need for a corridor with 100 white tiles?  

Q5. The workers always lay the white tiles first and then the grey tiles. How can they 
figure out how many grey tiles they need if they have already laid the white ones? 

Figure 1. The tiles problem 
The questions posed involve: (a) specific instances (Q1, Q2, Q3 and Q4), and (b) 
the general case (Q5).  
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The information gathered included the session videos and the students’ 
answers to the questionnaire. This article describes the results from the students’ 
written responses. 

Analytical Categories and Data Analysis 
The theoretical framework and background were applied to define some of the 
categories. Generalization was identified based on its presence or absence in 
students’ replies to questions Q1 to Q5. In the Table 2 we present the categories 
with which we describe the generalization of students. 

Table 2 
Analytical Categories 

Categories Description 

Type of 
generalization 

We distinguished between the prompted generalization 
(generalization to Q5) or spontaneous generalization 
(generalization to Q1-Q4) (Pinto & Cañadas, 2017). 

Functional 
relationship identified 

Students’ generalization was described in terms of the 
functional relationship generalized: correspondence or 
covariation (Smith, 2008). 

Representations Representations used by the students to generalize: pictorial, 
verbal, numerical or with algebraic notation, as well as 
combinations of one or the other or both with other 
representations (Blanton et al., 2011; Carraher et al., 2008). 

Students were labeled as Si, where i = 1, ..., 24. 

RESULTS 
We present a first approach to the results in Table 3, distinguishing those 
students who did not generalize and those did, attending to the categories 
previously described.  

Table 3 
Evidence of Students’ Generalization 

Non generalization 
Generalization 

Only prompted Only spontaneous Both 

S15, S16, S18, S19, 
and S20 

S1, S2, S3, S4, S7, 
S9, S10, S11, S12, 
S13, S14, S17, S21, 
S22, S23, and S24 

 S5, S6, and S8 
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Table 3 illustrates that of the 24 students, five students did not generalize in their 
responses to Q1-Q5. These students gave direct answers only (i.e., only the 
numerical result), described how they counted the tiles, repeated the problem, or 
made a drawing: no generalization could be attributed to these pupils. For 
instance, we present the S19’s answer to Q4 in Figure 2. He made a drawing to 
represent the number of grey tiles needed for 10 white tiles.  

 
Note. Baldosas means tiles in Spanish. 

Figure 2. Non-generalization’s example, S19 in Q4  
On the other hand, 19 students generalized the functional rule and two profiles 
were identified: (a) three students exhibited both spontaneously and prompted 
generalization, and (b) 16 students generalized promptly (when replying to Q5). 
A discussion of these types of responses follows.  

Spontaneous and Prompted Generalizations 
Three students exhibited both spontaneously and prompted generalization. We 
present in Table 4 questions where these students evidenced generalization and 
the representation used.  

Table 4 
Spontaneous and Prompted Generalization and Representation Used 

Student Question 1 Question 2 Question 3 

S5 ü Algebraic  ü Verbal 

S6 ü Verbal ü Verbal ü Algebraic 
S8 ü Algebraic  ü Verbal 

As we can observed in Table 4, three students (S5, S6, and S8) generalized in 
questions 1, 2, and 5. Two of them generalized (S5 and S8) in Q1 and Q5, and S6 
in Q1, Q2 and Q5. These three students used verbal and algebraic representations 
to generalized and the three students generalized the correspondence relationship. 
A discussion of these students’ responses follows. 

Two of the students who generalized spontaneously and when prompted (S5 
and S8) used algebraic notation to represent their replies. S8’s answer to Q1 was: 
“formula: (x× 2)+ 6 =16 ; x = number of white tiles”. This student used algebraic 
symbolism “ (x× 2)+ 6 ” to express the general relationship. In Q2, Q3 and Q4, 
this student simply answered the questions, without explaining how he got the 
result. That was interpreted to mean that the student used the same functional 
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relationship for 8, 10 and 100 tiles, relating the pairs of values (a, f (a))  for 
a = 8, 10  and 100 and correctly finding that the number of grey tiles needed 
would be 22, 26, and 206, respectively.  

S6, the third student who generalized spontaneously and when prompted, 
described the generalization in Q1 in the following words: “they need 16 grey 
tiles. For every white tile, there are 2 grey tiles, except on the sides, where there 
are 6. All the whites x2+ 6  on the sides”. Hence S6 identified the relationship 
between variables as well as the constant number (six white tiles on the sides). 
This student used both verbal and numerical notation to express the relationship. 
This student’s answer to Q5 was: “multiplying the number of white tiles times 2 
plus 6 on the sides: x ⋅2+ 6 = x ”. In other words, S6 used two types of 
representation: verbal and algebraic, exhibiting a transition from natural to a 
more general and abstract language. 

Note that the three students who generalized, using different representations, 
expressed the general formula by identifying the correspondence relationship in 
the function f (x) = 2x + 6 . 

Only Prompted Generalizations 
Sixteen students generalized promptly (when answering Q5). These students 
expressed the general relationship between the pairs of values (correspondence) 
verbally. A few representative examples follow. 

The students identified the pattern from which they expressed the general 
formula in a number of ways. In one, eight students described generalization in 
terms of a rule that in algebraic notation would be represented as f (x) = 2x + 6 . 
The student S14, for instance, answered “you get the answer by multiplying the 
white tiles times 2 and then adding 6”. In this case, as in the other seven, 
generalization was expressed verbally. Student S3, in turn, replied “multiplying 
the white tiles by two and adding three at the beginning and three at the end”. 
The pattern detected by this student would be represented in algebraic notation as 
f (x) = 2x +3+3 . The student S24 adopted a third approach, identifying the 

pattern to be f (x) = 2(x + 2)+ 2 .  
One of these students, S1, used primarily verbal representation, although in 

conjunction with algebraic symbols. In Q5 the answer was “you need to use 2x  
white tiles +6”; i.e., verbal representation predominated, although with some 
elements of algebraic symbolism. The implication would seem to be that this 
student, who used some algebraic symbols sporadically when answering the 
previous questions, was in route to attaining a more natural and spontaneous use 
of algebraic symbolism to represent the relationship between variables. 

Lastly, the relationship was incorrectly identified by six students in a way 
that translated to algebraic notation would yield f (x) = 2x + 2 . One 
representative example of this relationship between variables was provided by 
S9, whose answer to Q5 was “multiply the top and bottom rows by 2 and add 2”. 



Generalization in fifth graders within a functional approach 181 

PNA 12(3) 
 

Like the other five students, this pupil established a general, albeit mistaken, 
relationship between the variables. 

DISCUSSION AND CONCLUSION 
This research supplements other studies focusing on lower grade students’ ability 
to generalize in the context of classroom algebraic functions (e.g., Carraher et al., 
2008). Here the emphasis was on generalization by 24 fifth graders who have not 
received prior instruction on this type of activity, so their answers allow us to 
explore the generalization in a more spontaneous environment. 

For the elementary students, the tiles problem affords the opportunity to 
explore students’ functional thinking, as it enables fifth graders to progress 
beyond recursive sequences. In fact, they generalized on the grounds of 
correspondence functional relationships that involved the values of a set of 
variables. 

The overall finding was the existence of two situations in which students 
generalize: (a) when answering questions about particular instances, and (b) 
when specifically prompted to generalize. Three students generalized 
spontaneously, i.e., where the question could be answered without doing so. 
They consequently used generalization as a strategy to reply to questions 
involving specific instances. All the students who established a general 
relationship between the variables (spontaneously or when prompted) based their 
rules on the correspondence relationship. The students who generalized 
spontaneously used algebraic notation and verbal representation to express the 
general relationship between variables. Representation was primarily verbal in 
students who generalized only when prompted. In line with Blanton et al. (2015), 
the present authors venture that using algebraic notation would enable students to 
visualize generalization in fuller detail. That is consistent with the fact that the 
students who used notation in addition to verbal representation to express 
relationships did so in questions where generalization was not necessary 
(spontaneous generalization).  

Moreover, the different ways in which students express the functional 
relationship of correspondence 
( f (x) = 2x + 6; f (x) = 2x +3+3; f (x) = 2(x + 2)+ 2) afforded the opportunity to 
interpret and understand their thought process when identifying a general 
relationship between variables. 

Lastly, the present findings are related to earlier research results on fifth 
graders’ ability to generalize (Merino et al., 2013), in which verbal representation 
was also observed to prevail. This study complements ways to analyze the 
students generalization, considering three aspects: (a) functional relationship, (b) 
representations, and (c) type of question. The data analysis focused in written 
students’ answers could be complemented with other pieces of evidence (class 
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discussion, for instance) to have more information about how students generalize 
since some students were able to generalize and, perhaps, did not express it until 
it was required. Even so, the results support the application of this approach to 
mathematics teaching in the lower grades, for its favors and enhances algebraic 
thinking (Blanton et al., 2011). 
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