
University at Albany, State University of New York
Scholars Archive

Computer Science Honors College

5-2017

Effects of an Impaired Sonic Hedgehog Signaling
Pathway and a Nonfunctional Gli3 Protein on
GnRH-1 Neuronal Migration in Gli3Xt/Xt
mutants
Elizabet Aleks Genis
University at Albany, State University of New York

Follow this and additional works at: https://scholarsarchive.library.albany.edu/honorscollege_cs

Part of the Computer Sciences Commons

This Honors Thesis is brought to you for free and open access by the Honors College at Scholars Archive. It has been accepted for inclusion in
Computer Science by an authorized administrator of Scholars Archive. For more information, please contact scholarsarchive@albany.edu.

Recommended Citation
Genis, Elizabet Aleks, "Effects of an Impaired Sonic Hedgehog Signaling Pathway and a Nonfunctional Gli3 Protein on GnRH-1
Neuronal Migration in Gli3Xt/Xt mutants" (2017). Computer Science. 2.
https://scholarsarchive.library.albany.edu/honorscollege_cs/2

https://scholarsarchive.library.albany.edu?utm_source=scholarsarchive.library.albany.edu%2Fhonorscollege_cs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.library.albany.edu/honorscollege_cs?utm_source=scholarsarchive.library.albany.edu%2Fhonorscollege_cs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.library.albany.edu/honorscollege?utm_source=scholarsarchive.library.albany.edu%2Fhonorscollege_cs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.library.albany.edu/honorscollege_cs?utm_source=scholarsarchive.library.albany.edu%2Fhonorscollege_cs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.library.albany.edu%2Fhonorscollege_cs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.library.albany.edu/honorscollege_cs/2?utm_source=scholarsarchive.library.albany.edu%2Fhonorscollege_cs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@albany.edu


Effects of an Impaired Sonic Hedgehog Signaling Pathway and a 

Nonfunctional Gli3 Protein on GnRH-1 Neuronal Migration in Gli3Xt/Xt 

mutants 

	
	
	
	
	
	

	
 
 
 

An honors thesis presented to the 
Department of Anthropology, 

University at Albany, State University of New York 
in partial fulfillment of the requirements 

for graduation with Honors in Human Biology 
and 

graduation from the Honors College. 
 
 
 
 
 
 
 
 
 

Elizabet Aleks Genis  
 

Research Advisor: Paolo E. Forni, Ph.D. 
Second Reader: Adam Gordon, Ph.D. 

 
 
 
 
 
 

May, 2017  
 
 

 
 

 
 



	 2	

Abstract 
 

Gonadotropin releasing hormone (GnRH) is the master regulatory hormone for 
sexual development. During embryonic development, gonadotropin releasing hormone-1 
neurons (GnRH-1ns) form in the olfactory pit and migrate, along axonal Peripherin 
positive fibers, from the nasal area to the pre-optic area of the basal forebrain. Upon 
migration into the brain, GnRH-1ns release GnRH. Defective migration of GnRH-1ns can 
result in hypogonadotropic hypogonadism (HH), a condition that results in lack of sexual 
development and infertility. When HH appears associated with reduced or absent sense 
of smell, it is clinically defined as Kallmann Syndrome (KS) (Paolo E Forni & Wray, 
2015). The neurons that connect the nasal area to the basal forebrain and the molecular 
mechanisms that control GnRH-1 neuronal migration are still largely unknown. Sonic 
hedgehog (Shh) plays important roles in modulating cell motility and reactivity to 
chemorepellants. Gli3 is a transcriptional effector; it can act as either a transcriptional 
activator or repressor, mediated by the Shh signaling pathway. We found that Patched-
2, a receptor for Shh, is expressed along the GnRH-1 migratory pathway. To understand 
if Shh and Gli3 play a role in GnRH-1 development, we analyzed GnRH-1 migration in 
Gli3Xt/Xt mouse mutants. In these mutants, we observed a dramatic reduction in the 
number of GnRH-1ns able to migrate form the nasal area into the brain. In Gli3Xt/Xt 
mutants, GnRH-1ns were found proximal to the vomeronasal organ forming tangles with 
a subset of Peripherin positive fibers, which were found to extend as far as the forebrain 
junction, where they also tangle in response to the lack of olfactory bulbs. Our data 
suggests that the loss of function of the Gli3 gene impairs the formation of the GnRH-1 
migratory scaffold and GnRH-1 migratory ability. These observations indicate that Gli3 is 
a candidate gene for the etiology of HH.  
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Introduction 

GnRH-1 neurons are a fundamental part of the hypothalamic-pituitary-gonadal 

(HPG) axis, controlling sexual development and reproductive hormone development 

(Paolo E Forni & Wray, 2015). GnRH-1 neurons travel from the vomeronasal organ 

(VNO) found in the olfactory pit to the pre-optic area of the basal forebrain where they 

release signals to the hypothalamus allowing the secretion of hormones. Luteinizing 

hormone (LH) and follicle stimulating hormone (FSH) secretion is elemental for 

reproductive function. In the ovary, LH produces estrogen and in the testis, LH produces 

testosterone. In males and females, FSH is necessary for the maturation of gametes 

(Paolo E Forni & Wray, 2015). Therefore, defective migration of GnRH-1 neurons from 

the olfactory pit results in hypogonadotropic hypogonadism (HH); HH is responsible for 

adverse reproductive development. Difficulty perceiving odors (hyposmia) or the lack of 

ability to smell (anosmia) associated with HH is clinically diagnosed as Kallman 

Syndrome (KS).  

Point mutations in Gli3 have been identified in humans affected by HH 

(Vaaralahti et al., 2012). Gli3 acts as a transcriptional activator or repressor, mediated by 

the sonic hedgehog (Shh) signaling pathway. When Shh is present, it binds to its 

membrane-bound receptor, Patched-2, which then binds to a membrane-bound 

molecule, Smoothened, activating the Shh pathway. This mechanism prevents the 

phosphorylation and proteolytic cleavage of Gli3, and Gli3 acts as a transcriptional 

activator. To study the potential role of aberrant Shh signaling pathway and a 

nonfunctional Gli3 protein on GnRH-1 neuronal migration, we used a Gli3Xt/Xt mutant 

mouse model. Gli3Xt/Xt mouse mutants have an intragenic deletion of the Gli3 gene that 

results in a loss of function of GLI3. Gli3Xt/Xt mice exhibit a plethora of severe phenotypes 
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including malformations of the brain, absence of the olfactory bulbs, and extra digits 

(Extra toe (Xt)) (Vaaralahti et al., 2012).  

It is commonly believed that the migratory scaffold upon which the GnRH-1ns 

migrate is formed by axons of neurons of the olfactory system. However, unpublished 

data generated in Forni lab suggest otherwise. In fact, in Arx-1 null mice, a mouse model 

that lacks the olfactory bulbs and olfactory connection to the brain (Fulp et al., 2008), 

GnRH-1ns were found able to normally migrate into the brain along neuronal fibers of 

the putative terminal nerve (TN).  

However, in the Gli3Xt/Xt mutants, we observed a complete loss of GnRH-1ns able 

to access the brain, and a reduction in the total number of GnRH-1ns in the whole 

animal. This suggests that the Gli3 mutation affects the projections of the terminal nerve, 

disrupts normal GnRH-1 neuronal migration, and impairs normal GnRH-1 neurogenesis.  

Gli3-null mutants do not survive past birth, as their severe brain malformations 

restrict that. On the other hand, Gli3 heterozygotes are viable and fertile. They survive 

past birth, occasionally with hydrocephaly, are able to reproduce, although some litters 

were found to be smaller than average, and have an average life span. Heterozygotes 

consistently have one extra toe and a small white spot on the belly in response to neural 

crest defects.  

Materials and Methods 

Animals Used   

Gli3Xt/Wt mice were received from The Jackson Laboratory. The olfactory defects 

in Gli3Xt/Xt mice were previously characterized (Balmer & LaMantia, 2004). Gli3Xt/WT 

heterozygotes on a C57 Black genetic background were mated. Animals were 

euthanized using CO2, followed by cervical dislocation. All animal procedures were done 
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in accordance with procedures approved by the University at Albany Institutional Animal 

Care and USE Committee (IACUC).   

Tissue 

Embryos were collected from time mated Gli3Xt/Wt females where a copulation 

plug was considered embryonic day 0.5 (E0.5). Embryos were fixed in 3.7% 

formaldehyde/PBS overnight then washed in PBS to remove the fix. Embryos were 

cryoprotected in 30% sucrose in PBS solution overnight. Embryos were embedded in 

O.C.T (Tissue-Tek) that was frozen with dry ice and stored in -80°C. Samples were 

cryosectioned using LEICA CM3050 S cryostat and collected on Superfrost plus slides 

(VWR) at 14 µm. 	

Genotyping Mice/PCR 

Genotypes of mice were determined first by visual observation of multiple toes 

and confirmed doing PCR using the following primer sequences: wildtype forward primer 

5’-GGCCCAAACATCTACCAACACATAG-3’; wildtype reverse primer 5’-

GTTGGCTGCTGCATGAAGACTGAC-3’; mutant forward primer 5’-

TACCCCAGCAGGAGACTCAGATTAG-3’; mutant reverse primer 5’-

AAACCCGTGGCTCAGGACAAG-3’. Amplification products were analyzed by agarose 

gel electrophoresis.  

Immunohistochemistry (IHC) 

Sections were first incubated in and 30% hydrogen peroxide solution for 30 

minutes. Sections were put into blocking solution (10% Horse Serum, 1.1% BSA, 0.1% 

Sodium Azide, 0.5% Triton in 200 mL 1x PBS) for 1-2 hours. Sections were incubated in 

primary antibodies overnight. The primary αbodies that were used are rabbit (Rb) α-

Peripherin (1:500, Millipore Bioscience Research Reagents), SW rabbit (Rb) α-GnRH-1 

(1:6000, Susan Wray, NIH), rabbit (Rb) α-active caspace-3 (1:1000, Millipore Bioscience 

Research Reagents). After primary antibodies, sections were incubated in secondary 
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antibody for 1-2 hours. The secondary antibody that was used is a biotinylated Donkey-

α-Rabbit  (Jackson Labs, 1:500). Sections were incubated in a horse-radish peroxidase 

detection kit (Vector Labs) for 1 hour. Staining was detected using a DAB solution that 

contained glucose and glucose oxidase and counterstained with methyl green for 30 

seconds. Sections were mounted using Sub-X mounting (EMS). Epiflourescence and 

brightfield pictures were taken on a Leica DM4000 B LED fluorescence microscope 

equipped with a Leica DFC310 FX camera. Images were further analyzed using 

FIJ/ImageJ software.  

Immunofluorescence (IF) 

Immunoflourscent staining was preformed the same way as IHC with the 

exception of the initial hydrogen peroxide solution incubation. The primary antibodies 

that were used are chicken (Chk) α-Peripherin (1:1500, Abcam), Rabbit (Rb) α-GnRH-1 

(1:6000, Susan Wray, NIH), goat (Gt) α-Neuropilin-2 (1:3000, R&D Systems), and goat 

(Gt) α-Olfactory Marker Protein (OMP) (1:4000, WAKO). Αntigen retrieval was performed 

in a citric acid solution prior to incubation with chicken α-Peripherin. After primary 

antibodies, sections were washed in 1x PBS and incubated in the secondary antibody 

for 1½ hour. Species appropriate secondary antibodies were conjugated with Alexa-488 

and Alexa-594 (Molecular Probes and Jackson Laboratories). Sections were 

counterstained with DAPI (4’, 6’ –diamidino-2-phenylindole; 1:3000, Sigma-Aldrich) for 3 

minutes, dried, and cover slipped with Fluoro Gel (Electron Microscopy Services). 

Confocal microscopy pictures were taken on a Zeiss LSM 710 microscope. 

Epiflourescence pictures were taken on a Leica DM4000 B LED fluorescence 

microscope equipped with a Leica DFC310 FX camera. Images were further analyzed 

using FIJ/ImageJ software. 
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Quαntification and statistical analyses of microscopy data  

 Cell counts were done on serial sections immunostained for GnRH-1 and 

visualized under epiflourescence illumination (10X, 20X, 40X; Leica DM4000 B LED), 

according to their anatomical location [i.e., (1) nasal area (VNO, axonal tracks 

surrounding the olfactory pits); (2) forebrain junction (FBJ); and (3) brain]. For each 

animal, counts were performed on 2 non-serial series. The average number of cells from 

these 2 series was then multiplied by the total number of series per animal to compute a 

value for each animal. These were then averaged (± standard error) among animals of 

the same age and genotype. Means ±SEs were calculated on at least two animals per 

genotype.  

 To generate GnRH-1 cell counts based on distance from the VNO, we measured 

the distance from the center of the VNO to the base of the basal forebrain subdividing 

the nasal area into 150-micron intervals. GnRH-1ns (GnRH-1 neurons) were counted in 

each interval, with any GnRH-1ns in the brain counted towards ‘brain’.  

Results 

Ptch-2 is expressed along the GnRH-1 migratory tract  

 Hedgehog (Hh) functions by binding its transmembrane receptor proteins, 

Patched-1 (Ptch-1) and Patched-2 (Ptch-2). By analyzing the publically available images 

Figure 1. (A) Image taken from GENSAT 
website of Ptch-2 EGFP BAC transgenic (B) 
Blow up of area indicated in (A) showing 
EGFP positive cell bodies (black arrow 
heads) in the migratory tract (C,D,E) IF 
staining against Ptch-2 (green) and tdTomato 
(red) on a GnRHCre/R26tdTomato and DAPI 
(blue). Co-localization of Ptch-2 and tdTomato 
positive cell bodies (white arrows). Ptch-2 
positive fibers (white arrow heads).   
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of the BAC transgenic reporters generated by the GENSAT consortium (IHC available 

on gensat.org), we identified that Ptch-2 is expressed by cells along the GnRH-1 

migratory pathway (Fig.1A,B). Performing an immunofluorescent staining against 

Patched-2 on GnRHCre/R26tdTomato reveled Patched-2 expression in the GnRH-1 

neurons and along the fibers of the terminal nerve (TN). 

GnRH-1 neurons do not access the brain in Gli3Xt/Xt mutants 

GnRH-1 neurons are generated in the VNO between embryonic day 10.5 and 

11.5 (E10-11.5) and finish their migration into the brain during embryonic development 

by E18.5 (P. E. Forni, Bharti, Flannery, Shimogori, & Wray, 2013; Jasoni, Porteous, & 

Herbison, 2009). To investigate whether a disrupted Gli3 protein, which is downstream 

of Shh and Ptch2 signaling, can disrupt GnRH-1 neuronal migration we utilized Gli3Xt/Xt 

mutants at E13.5 and E15.0.   

E13.5 and E15.0 sections were immunostained against GnRH-1. In the E13.5 

wildtype (WT), the majority of the GnRH-1ns were found in the nasal area (NA), while 

the expected one-third of the population was found in the brain (Fig.2C). In the E13.5 

Figure	2.	IHC	against	GnRH	on	
E13.5	WT	(A)	and	mutant	(B)	Blow	
up	of	area	indicated	in	(A)	showing	
GnRH-1ns	in	the	brain	(arrows)	in	
the	WT	(A’)	and	the	mutant	(B’)	
GnRH	counts	at	E13.5	(C)	and	E15.0	
(D)	
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mutant mice, we found that 64% of the total GnRH-1ns (n=2) were stuck proximal to the 

VNO as compared to 43% in the WT. Interestingly there was a dramatic reduction in the 

number of GnRH-1ns able to access the brain in the mutants (Fig 2B and D). There was 

a 23% reduction of the total GnRH-1ns, as well, (n=2) (Fig.2A and C) indicating either 

cell death or a reduction in neurogenesis. At E15.0, we see a similar phenotype to 

E13.5, whereas in the WTs, we see GnRH-1ns accessing the brain, no GnRH-1 neurons 

can be found in the brain of the mutant. (Fig.2D). We also observed that 59% of GnRH-

1ns were stuck in the NA compared to 12% in the WT, with a 38% total loss of GnRH-

1ns in the animal (n=2) (Fig.2D). 

GnRH-1ns and its migratory scaffold get stuck proximal to the VNO 

By measuring GnRH-1 neuronal 

migration from the VNO to the brain, we 

observed that the majority of the GnRH-1 

neurons in the Gli3Xt/Xt mutants were unable 

to go further than 300µm from the VNO, 

whereas in the WT, GnRH-1ns were found 

as far as the brain in the both E13.5 and 

E15.0 

(Fig.3C and 

D). Notably, 

a small 

group of 

GnRH-1 

neurons was 

Figure	3.	IHC	against	GnRH	on	E13.5	WT	(A)	and	mutant	(B)	IHC	against	Peripherin	on	
E13.5	WT	(A’)	and	mutant	(B’)	Arrows	pointing	to	GnRH-1ns	(A	and	B),	and	Peripherin	
(A’	and	B’)	GnRH	neuronal	migration	from	VNO	measured	in	E13.5	WT	and	mutant	(C)	
and	E15.0	WT	and	mutant	(D)	
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consistently found to behave differently from the GnRH-1ns stuck in the tangles proximal 

to the VNO. There is a distinct group of GnRH-1ns in the mutants that are found as far 

as 750um from the VNO, which is where the olfactory bulb (OB) is normally found 

(Fig.3C). 

Peripherin is an intermediate filament expressed by the peripheral nervous 

system, which can highlight the terminal nerve (Fig. 4A). Gli3Xt/Xt mutants form Peripherin 

positive tangles near the VNO and in the FBJ (Fig.3B’), whereas in the WT, we see 

Peripherin positive fibers projecting towards the brain (Fig.3A’). Most of the GnRH-1ns 

form tangles proximal to the VNO (Fig3 C, D), which mirrors the Peripherin positive 

tangles. This suggests that a nonfunctional Gli3 protein affects TN projection and GnRH-

1 neuronal migration. However, Peripherin is not specific and also highlights 

vomeronasal and olfactory fibers.  

To differentiate between olfactory and TN projections we did an IF staining for 

olfactory marker protein (OMP), which highlights olfactory neurons and their projections, 

and Peripherin on E15.0 WT and mutant sections. The TN can be seen in the WT as 

OMP negative, Peripherin positive and accessing the brain (Fig.4A), while in the KO 

Figure 4. IF staining against Peripherin (green) and OMP (red)  on E15.0 WT (A) and mutant (B) 
Arrow heads point to TN (A) Arrows point to fibrocellular mass (FCM) (B) 
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there are no Peripherin positive fibers accessing the brain and no distinction in the 

fibrocellular mass (FCM) between Peripherin only and OMP only fibers (Fig.4B). 

In order to assess whether GnRH-1ns are actually tangling on the TN, we used 

Neuropilin-2 (Nrp2), a known marker for vomeronasal projections (Casoni et al., 2016), 

to differentiate between the TN and vomeronasal fibers. Under WT conditions, in the NA 

we see that GnRH-1ns are migrating towards the brain on Nrp2 positive, Peripherin 

positive TN bundles (Fig.5A and A’). However, we observed that the GnRH-1ns access 

the brain on Peripherin positive, Nrp2 negative fibers (Fig.5B and B’), which is indicative 

of the TN. When we look at the mutants, we see GnRH-1 neuronal tangles in the nasal 

area on Peripherin positive, Nrp2 negative fibers (Fig.5C and C’) suggesting that GnRH-

1ns get stuck on the putative TN and not on vomeronasal fibers. We see something 

similar in the FBJ of mutants, where GnRH-1ns are stuck on Peripherin positive, Nrp2 

negative fibers (Fig5.D and D’). This further confirms that the TN is genetically distinct 

from olfactory and vomeronasal fibers. This data suggests that the Gli3 mutation and 

Figure 5. IHC against GnRH on E15.0 WT (A and B) and mutant (C and D) IF against Peripherin 
(green) and Nrp2 (red) on E15.0 WT (A’ and B’) and mutant (C’ and D’) Arrows point to GnRH-1ns 
in A,B,C,D. TN represented by arrows pointing to Peripherin positive, Nrp2 negative fibers in 
A’,B’,C’,D’  
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impaired Shh signaling affects the TN which plays a major role in GnRH-1 neuronal 

migration.  

 

 

 

 

  

  

 

 

 

A triple immunostaining against GnRH, Peripherin, and Nrp2 done mostly to 

recapture our previous observations that GnRH-1ns travel on the Peripherin positive, 

Nrp2 negative TN (Fig6A,B) further confirms our hypothesis. In the mutant, we observed 

the GnRH-1ns getting stuck in the FBJ on Peripherin positive, Nrp2 negative fibers, 

indicating that the TN cannot enter the brain, forbidding GnRH-1ns from accessing the 

brain (Fig.6B).   

 

 

 

 

 

Figure 6. Confocal images of E15.0 WT (A) and mutant (B) immunostained against GnRH 
(red), Peripherin (green), and Nrp2 (white) Arrows point to TN  
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The Terminal nerve has multiple branches 

Under normal conditions, it has been recognized that a subset of GnRH-1ns form 

a ‘ring of GnRH’ around the olfactory bulb (OB) (Casoni et al., 2016).  Although we do 

not consistently see such a neat streak of GnRH-1ns (Fig. 7B), we constantly observe a 

few GnRH-1ns that make it further up the brain than the remaining bundle of GnRH-1ns 

in the mutants (Fig.3 C-D). Interestingly enough, this is where the olfactory bulb (OB) is 

normally found. We found that these GnRH-1ns are, as well, stuck on Peripherin 

positive, Nrp2 negative fibers (Fig.6B). This may suggest that there is a branch of the 

terminal nerve that, without fail, chooses this specific route, along with a subset of 

GnRH-1ns that, accordingly, migrate along those fibers around the OB. In the mutant 

mouse, we observed that this possible TN branch is still present and consistently takes 

this alternate route. In addition, it is always accompanied by a subset of GnRH-1ns that 

migrate along this putative branch of the TN (Fig.7B). 

 

 

 

 

 

 

 

 

Figure 7.	IHC	against	GnRH	on	E15.0	WT	(A)	and	mutant	(B)	Arrows	point	to	
GnRH-1ns	showing	GnRH-1ns	surrounding	OB	(A)		
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IF staining against Peripherin and Nrps2 highlights the two branches of the TN 

diverging, where one is diving into the pre-optic area (POA) of the basal forebrain while 

the other is projecting toward the OB (Fig.8A). IHC staining against GnRH shows two 

populations of GnRH-1ns projecting to different areas of the brain on the differentiating 

branches of the putative TN (Fig.8B).  

 

 

 

 

 

 

 

Gli3Xt/Wt Heterozygotes show haploinsufficiency  

We were interested in studying GnRH-1 migration in heterozygotes because they 

show a general phenotype of an extra toe. Homozygous mutants show no GnRH-1 

neuronal access to the brain, yet heterozygotes are viable and fertile, suggesting their 

anatomy to mirror a WT. As expected, GnRH-1ns do enter the brain, however, it is a 

reduced amount, an amount that is just enough to allow fertility. The reduced amount of 

GnRH-1ns that access the brain in heterozygotes could be the cause of smaller litters 

and slower weight gain during pregnancy.  

Most noticeably, the TN in the heterozygotes enters the brain, but is shorter and 

less branched (Fig.9B). In the WT, chemoattractants and repellants direct the projection 

of the TN into the pre-optic area (POA) of the basal forebrain, which allows the migration 

of the GnRH-1ns into the POA (Fig.9A and A’). In the heterozygote, the TN does not 

Figure 8. IF staining against Peripherin (green) and Nrp2 (red) (A) and IHC 
staining against GnRH (B) on E15.5 WT embryo. Arrows point to the two 
branches of the diverging TN (A) and the GnRH-1ns migrating on the TN (B) 
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extend into the POA and the GnRH-1ns just make it into the brain but do not reach the 

POA (Fig.9B and B’). From our GnRH-1 cell quantifications, we observed a total number 

of GnRH-1ns that is similar to the WT. However, there was a significant reduction of 

GnRH-1ns that entered the brain (Fig.9D), further confirming that heterozygotes show an 

intermediate phenotype, or haploinsufficiency. 

To confirm if this phenotype is a real result, we looked at postnatal day zero (P0) 

Gli3Xt/Wt heterozygote mutants. Due to animal mating issues, we were unable to get 

ample embryos to complete an n=3 for all ages we tested. As a majority of GnRH-1ns 

finish their migration 

into the POA by 

E16.5 (P. E. Forni, 

Bharti, Flannery, 

Shimogori, & Wray, 

2013), and since we 

saw that the P0 

GnRH-1 cell counts 

were similar to our 

E15.5 heterozygous 

counts, we were 

able to combine our 

E15.5 and P0 

counts to test for 

any significant 

difference. With an 

n=4 for 

Figure 9. IF staining against Peripherin and Nrp2 on E13.5 Gli3Wt/Wt 
(A) and Gli3Xt/Wt (B) IHC staining against GnRH on E13.5 Gli3Wt/Wt 
(A’) and Gli3Xt/Wt (B’) White arrows point to vomeronasal fibers 
(VNF) and the TN (A and B) Black arrows point to GnRH-1ns (A’ 
and B’) Cell counts of E13.5 Gli3Wt/Wt and Gli3Xt/Wt (Nasal P=0.306; 
FBJ P=0.761; Brain P=0.112) (C) and E15.5 & P0 Gli3Wt/Wt and 
Gli3Xt/Wt (Nasal P=0.582; FBJ P=0.426; Brain P<0.0001) (D)     
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heterozygous mutants, our t-test evaluation showed that there was a significant 

reduction of GnRH-1ns accessing the brain (P<0.0001) (Fig.9D).  

Interestingly, at E13.5, our results were variable. We saw less total GnRH-1ns 

than we did in mutants of the same age. However, we saw no significant difference 

between the WT and the heterozygote; this could be due to loss of sections.  

Discussion 

 After characterizing two different ages, E13.5 and E15.0, we can conclude that 

an impaired Shh signaling pathway and a nonfunctional Gli3 protein causes severe 

developmental delay and defected GnRH-1 neuronal migration. Interestingly, we see an 

overall reduction in the number of GnRH-1 neurons but did not see a difference in 

cleaved-caspase-3, a marker for cell death, (Data not shown n=1) but this will need to be 

further characterized, as no quantifications were made. However, we did notice a 

reduction in the volume of the olfactory epithelium (OE) (Data not shown n=1), which 

may be due to a developmental delay. In an immunostaining against OMP, we confirmed 

that the reduction in OE volume resulted in a decreased number of mature olfactory 

neurons (OMP+ cells) in the OE. This further suggests that the Gli3 mutation either 

affects neurogenesis or differentiation of neurons into mature olfactory neurons.  

 Our stainings also confirm that GnRH-1ns enter the brain on Peripherin 

positive fibers that are also negative for Nrp2 (vomeronasal fiber marker) and OMP 

(olfactory fiber marker). In the mutants, we see GnRH-1ns forming tangles only on 

Peripherin positive fibers near the VNO and in the FBJ. This suggests to us that the 

GnRH-1ns migration is affected by the Gli3 mutation since both the TN and the GnRH-

1ns are aberrant. One of our future goals is to find a marker for the TN. This will allow us 

to accurately depict the effects of a nonfunctional GLI3 and an impaired Shh signaling 
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pathway on TN projections. One potential marker we are currently testing is Calbindin, 

which is a calcium binding protein. We see that Calbindin is expressed along the 

migratory route of the GnRH-1ns. Thus far, GnRH-1ns seem to be negative for 

Calbindin, suggesting the expression may be highlighting the probable TN.  

In the Gli3Xt/Wt embryos, an intermediate phenotype between the WT and mutant 

was observed; that led us to conclude that this is a phenomenon of haploinsufficiency, 

where one copy of the Gli3 gene does not produce enough of the Gli3 protein to mirror 

the wild type phenotype. We see with Peripherin IF that the TN is unable to fully branch 

and dive into the POA of the basal forebrain, and also, interestingly see a reduction in 

the number of GnRH-1ns in the brain. This could suggest that Gli3 may affect the fine 

targeting of the TN which may alter the GnRH-1 neuronal migratory route, which may 

causes HH in humans. This may explain the slow weight gain of pregnant Gli3Xt/Wt mice 

and the small litters we collect with Gli3 matings. Although the E15.5 heterozygote 

counts mirrored our expectations, one thing we need to investigate in the future is why 

there was a total decrease in GnRH-1ns in the E13.5 heterozygotes, even compared to 

the E13.5 homozygous mutants. Though when put through a t-test, the overall number 

of GnRH-1ns is seen as an insignificant difference (n=2) (Nasal P=0.306; FBJ P=0.761; 

Brain P=0.112). This we believe is the result of lost sections during sectioning, so we will 

need to increase our sample size and exclude some of the previous data. 

The heterozygote characterizations also confirm the connection between Gli3 

and Shh and its effects on the migration of GnRH-1ns and the projections of the TN. 

Heterozygotes are missing one functional Gli3 gene and have less of the Gli3 protein, 

which naturally acts as a transcriptional repressor, so we may be seeing an 

overexpression of downstream genes. Previous literature has shown how Shh signaling 

regulates neuropilin-1 (Nrp1) expression (Eisner et al., 2015), a receptor for a 
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chemorepellant, which is expressed by the TN. This may tell us that the Gli3 gene and 

the Shh pathway play a large role in projecting the TN to the correct area and directing 

the migration of GnRH-1ns. With one copy of the Gli3 gene, there are still enough 

GnRH-1ns accessing the brain to allow for sexual development, but we would like to 

observe whether the heterozygous mutants go through puberty at later stages. This 

condition mirrors the phenotype of KS patients, individuals presenting with HH and 

anosmia. KS patients undergo a continuum of phenotypes.  Some go through various 

degrees of puberty at different ages, while others don’t undergo puberty at all and are 

infertile. We will continue to study Gli3 mutants to better understand the KS phenotype, 

while using the Gli3 heterozygotes to depict the affects of a nonfunctional Gli3 protein 

and a defective Shh signaling pathway on TN projections and GnRH-1 neuronal 

migration.  
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