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Abstract 

 Although hair is one of the most common and abundant types of evidence found 
at a crime scene, the current forensic analyses employed underutilize its full 
potential evidentiary value. Microscopy is the fundamental technique used to 
analyze forensic hair evidence, but even this routine and well-accepted method has 
limitations. In this study, non-dyed and dyed hairs from individuals varying in race, 
biological sex, and age, were analyzed using attenuated total reflection Fourier 
transform-infrared (ATR FT-IR) spectroscopy. Through the incorporation of 
multivariate statistical analysis, spectra collected from dyed and non-dyed hairs were 
differentiated with high accuracy. After hair spectra were determined to be dyed or 
non-dyed, dyed hair spectra were successfully differentiated amongst themselves 
based on brand (or manufacturer) and dye color. The methodology developed here 
allowed for predicting whether an individual used a permanent hair dye, and then the 
brand and color of hair dye used, with at least 90% confidence. The high accuracy 
shown in this study illustrates the ease and robustness of coupling ATR FT-IR 
spectroscopy and multivariate statistics for forensic hair analysis, specifically for the 
analysis of dyed hairs. The use of spectroscopy for forensic hair analysis, as 
demonstrated by this proof of concept study, would advance the field of trace 
evidence as a whole, and can potentially be utilized to confirm conclusions drawn 
from methodologies employed currently, in turn leading towards increased 
individualization. 
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1. Introduction 

 Hair is found everywhere and therefore common to nearly every crime scene. On 
average a person loses up to 100 scalp hairs every day [1,2,3]. Since it can vary 
significantly between individuals, and is copious in nature, hair has the potential to 
be an important type of evidence used throughout an investigation. The utilization of 
such trace evidence can be instrumental to criminal investigations because of the 
many ways that hair can be classified. Yet, the forensic analysis techniques currently 
employed underutilize the amount and important types of information that hair 
evidence can provide. Hair can differ in type (e.g., curly, wavy, straight, etc.), length, 
density, color, thickness, area of body (somatic) origin, etc., and varies among 
populations [4]. Although the individualization of hair evidence is not currently 
feasible without obtaining a DNA profile, the ability to distinguish hair samples by 
several class characteristics is helpful when attempting to narrow down or identify 
suspects of a crime. Specifically, this information can aid in the exclusion or 
inclusion of a certain type of person. Therefore, the ability to acquire more 
information about forensic hair evidence quickly, nondestructively, and, most 
importantly, with associated statistical confidence levels, would significantly benefit 
forensic investigations on scene, in the laboratory, and in the court room. 
Investigative leads can be provided regarding suspects based on rapid microscopic 
hair comparison, and hairs can be non-destructively screened for DNA analysis 
suitability. 

 Traditionally, hair analysts have used transmitted light and polarized light 
microscopy to provide information about the physical characteristics of hair and 
other fiber evidence [3,5]. A trained forensic examiner can use light microscopy to 
classify hair and identify alterations to hair, such as if a hair was dyed, burned, or cut 
[5,6]. The reliability of microscopic hair classification and comparisons is restricted 
by several factors, which include, but are not limited to, analyst experience and 
training, the condition of the hair sample, and the capabilities of the instrumentation 
being used [3]. Obtaining a DNA profile from the genetic material in hair to identify 
the individual is a well-established technique, however there are several limitations 
to performing this analysis as well. The current methodology is expensive and it can 
take a significant amount of time to process each sample, not to mention the large 
number of backlogged cases experienced by most DNA laboratories [7]. 
Additionally, a hair follicle or root sheath, which is ideal for nuclear DNA extraction, is 
only present during the hair’s major growth phase (anagen hairs) [3,7]. Hairs lost 
naturally or shed (catagen or telogen hairs) often lack the follicular material, which 
makes nuclear DNA analyses nearly impossible and is usually left to well-funded 
and resourceful labs, such as the Federal Bureau of Investigations (FBI) crime 
laboratory [7]. The shaft of the hair does not contain nuclear DNA, but a 
mitochondrial DNA profile can be obtained. However, the mitochondrial DNA profile 
is not a unique identifier, like nuclear DNA [7,8]. The extraction of mitochondrial DNA 
is typically only utilized under unusual circumstances because it is even more costly 
and obtaining a full comparable profile is not guaranteed [9].  DNA analysis is also 
destructive to hair, fully digesting all or a significant portion of the hair in question. 
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 There have been several studies focused on the use of vibrational spectroscopy 
to analyze hair samples for forensic purposes [10-14]. Members of Queensland 
University of Technology (QUT) have evaluated the use of Fourier transform-infrared 
(FT-IR) spectroscopy to analyze hair and discriminate between individual 
characteristics such as biological sex and race, as well as between hair spectra 
based on hair treatment products (i.e., permanent and semi-permanent dyes). In 
their 2004 study [10], members of QUT preliminarily established the use of FT-IR 
spectroscopy for forensic hair analysis, and then in following studies focused on the 
advantages of using an attenuated total reflection (ATR) attachment and the 
classification capabilities of chemometrics [11,12]. More recently, Kurouski and 
coworkers demonstrated the successful use of surface-enhanced Raman 
spectroscopy (SERS) to detect and identify if hairs were dyed or non-dyed [13]. 
While having the challenge of a lengthy sample preparation procedure, Kurouski et 
al. took the analysis one step further and differentiated between the dyes 
themselves. The QUT studies had a shorter sample preparation procedure, however 
their 2004 study sample preparation included complete physical flattening (with a 
rolling device) of the hair samples prior to analysis, which significantly alters an 
evidentiary sample. An ATR attachment can be used in lieu of flattening entire hair 
fibers. Furthermore, in most of these studies details regarding the origin of hair 
samples came from is unclear, few classification models were used for analysis, and 
the models constructed lacked the use of a crucial external validation step. In 
contrast, a recent study by Manheim and coworkers demonstrated the use of ATR 
FT-IR spectroscopy for hair analysis to successfully and accurately classify and 
discriminate between hair from humans, cats, and dogs using chemometrics, which 
incorporated an external validation step [14].  

 There have been two major reports that scrutinized several methodologies of 
forensic science. The 2009 National Academy of Science (NAS) report emphasized 
the need for the incorporation of statistics in emerging methodologies to improve the 
reliability of analyzing evidence [15]. Although the report focused on the 
individualization (such as with DNA profiling) of hair and other types of evidence, the 
importance that new techniques utilize statistics in order to support the conclusions 
drawn from current hair analyses was also emphasized [14]. The more recent 2016 
Presidential Council of Advisors on Science and Technology’s (PCAST’s) report to 
the president also cited perceived flaws associated with microscopic hair analyses 
[16]. The concepts outlined in each of these reports emphasize the need for new 
methodologies that are capable of acquiring information about forensic hair evidence 
quickly and nondestructively, with associated statistical confidence levels. 
Application of statistics improves objectivity and also provides for the comparison of 
data across bodies of information, whereas current microscopic hair comparisons 
can only be conducted on a one to one or side by side basis. Although the possibility 
for development of new methodologies is vast, they should only complement results 
obtained from microscopic evaluation of hair evidence, and by no means replace 
that science completely. Wickenheiser and Hepworth raised questions about the 
subjectivity and validity of microscopic hair analysis in 1990, however established 
the value of using features differentiating hairs [17].  Further, in 2004 Betty et al. 
showed that although hair evidence analysis is flawed, it is helpful as associative 
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evidence, and meets all requirements for admissibility in criminal and civil courts 
[18]. Current hair analyses are shown to be scientifically valid and accepted, but, by 
incorporating new techniques with the preexisting ones, more robust conclusions 
can be reached, thereby leading to increased acceptance and support of the findings 
and underlying science overall.  

The study shown here proposes a technique that incorporates all of the 
aforementioned desired factors by utilizing ATR FT-IR spectroscopy for forensic hair 
analysis. Some of the previous studies, such as those carried out at QUT and the 
one by Manheim et al., have shown the strength and versatility of using ATR FT-IR 
spectroscopy for forensic hair analysis. This work serves as an expansion on the 
previous studies and emphasizes the capability of the technique as being an 
effective forensic tool for hair analysis. Specifically, differentiation of dyed and non-
dyed hairs as well as distinguishing between dyed hairs themselves to identify color 
or brand of the dye was implemented. 

 

2. Materials and Methods 

2.1 Hair Samples and Dyes 

All hair samples for this study were obtained from volunteers who were willing 
to donate a small amount of scalp hair. For all hair donors, only their age, biological 
sex, and race were recorded; donor names and all other personally identifiable 
information was not collected. Hair samples were acquired from eleven donors, 
varying in age, biological sex, and race. The donated hairs were all natural in color 
(non-dyed) and included blonde, brown, black, and red samples. Hair samples were 
collected from a diverse donor pool to ensure that the statistical models built for 
differentiation purposes in this study were not biased or affected by a person’s 
biological sex or race. Table I lists specific information about all eleven hair donors, 
including their age, biological sex, race, natural hair color, hair dye(s) used, and 
whether they were included in the calibration or validation dataset for all 
classification models constructed. 

Dyes purchased for this study were selected to ensure consistency between 
brands. Specifically, two different colors of dyes from three different brands were 
used to treat the hair samples. These included Revlon medium brown (RMB), 
Revlon black (RB), Clairol medium brown (CMB), Clairol black (CB), Just for Men® 
medium brown (JFMMB), and Just for Men® black (JFMB). All of the samples were 
dyed in individual petri dishes to avoid cross-contamination. The dyes were prepared 
and applied according to the in-box instructions, which usually included dye color-
activator mixing/preparation, a timed dying period, and a conditioner wash. 
Subsequent to dye application, hairs were rinsed with tap water, allowed to dry and 
left to sit for a week on a laboratory bench under ambient conditions before spectra 
were collected.  
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Table I. Information about each hair donor including age, biological sex, race, and 
natural hair color. Also listed are the dye(s) that the donor’s hair was treated with 
and whether the donor was included in the calibration (training) dataset or the 
external validation (test) dataset for the classification models built. 

Donor 
# 

Donor’s 
age 

Donor’s 
biological 

sex 
Donor’s race 

Donor’s 
natural 

hair color 
Dye(s) used 

Calibration 
or Validation 

1 20 Male Caucasian Red 
RMB, CMB, 

JFMMB 
Calibration 

2 20 Female Caucasian 
Light 

brown 
RB, CB, JFMB Calibration 

3 22 Male 
African 

American 
Brown RB, CB, JFMB Calibration 

4 N/A Female 
African 

American 
Black 

RMB, CMB, 
JFMMB 

Calibration 

5 20 Male Hispanic Brown 
RMB, CMB, 

JFMB 
Calibration 

6 20 Female Hispanic Brown RB, CB, JFMMB Calibration 

7 24 Male Asian Black RB, CB, JFMMB Calibration 

8 34 Female Asian Black 
RMB, CMB, 

JFMB 
Calibration 

9 20 Male Indian Black JFMB Validation 

10 20 Female Caucasian Blonde CMB Validation 

11 16 Female Asian Black RMB Validation 

 

2.2 Instrumentation and Spectral Collection 

All of the hair samples were analyzed using a PerkinElmer Spectrum 100 FT-
IR spectrometer with an ATR attachment. The spectral range used was from 650 
cm-1 to 4000 cm-1, at a resolution of 4 cm-1. The ATR attachment utilized a single 
bounce reflection diamond/ZnSe crystal. Prior to any sample measurement, and in 
between samples, the ATR attachment, crystal, and sample platform were cleaned 
with ethanol then wiped dry before a background spectrum was collected and 
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subtracted to “blank” the instrument. To collect spectra, hair samples were simply 
placed over the crystal and compressed using the ATR attachment. Ten “trials” were 
performed on each hair sample, where each trial was at a different point along the 
length of the hair shaft. Ten spectra were collected at each of the ten points along 
the hair shaft and combined for each “trial”. For short hairs, 2-3 strands from the 
same donor were needed to accumulate the ten total trials for that sample. Ten trials 
of spectra were used for each of the hair samples prior to dying and after they were 
dyed for all eleven donors. A total of 110 non-dyed spectra and 270 dyed spectra 
were collected. 

2.3 Hair Classification Models 

All of the spectra were converted into data matrices and loaded into PLS 
Toolbox 7.0.3 (Eigenvector Research, Inc.) within the MATLAB (The MathWorks, 
Inc.) platform. Partial least squares discriminant analysis (PLSDA) was used for 
classification and differentiation of dyed and non-dyed hairs. Prior to PLSDA model 
construction/validation the spectra were first truncated to 650-1800 cm-1 to enhance 
discrimination performance [14]. All of the spectra were also preprocessed prior to 
model construction/validation with the following steps: conversion from transmittance 
to absorbance, second order derivative conversion (Savitzky-Golay algorithm), total 
area normalization, and mean centering. 

Three different types of classification analyses were carried out. Classification 
models were constructed using PLSDA to: (a) determine if a hair was dyed or non-
dyed, (b) distinguish between the different brands of dye (i.e. Revlon, Clairol, or Just 
For Men®), and (c) discriminate between the color of the hair dye (i.e. black or 
medium brown). For all three PLSDA models, eight of the eleven total hair donors 
(320 spectra) were arbitrarily chosen and used as the calibration (training) dataset. 
The three other donors (60 spectra) were used to externally validate the developed 
classification models. The success of each PLSDA model was assessed by its 
internal cross-validation and external prediction sensitivities and specificities. 

 
 

3. Theory 

 IR spectroscopy can provide specific chemical information about forensic 
evidence, such as hair. Although detailed, the vast amount of information provided 
by the spectroscopic technique is often difficult to interpret because of the hundreds 
of variables that need to be considered. Chemometrics is the application of 
advanced statistics to chemical systems in order to enhance data interpretation [19]. 
Chemometrics augments the analysis of large datasets, like the 380 spectra 
analyzed in this study, which included over 438,000 data points (i.e., intensity values 
of each spectrum for each variable, or wavenumber). Specifically, distinctive 
relationships between certain types of samples can be extracted or determined.  

 PLSDA is a classification technique that is derived from partial least squares 
regression and utilizes latent variables (LVs), which are linear combinations of the 
original variables, to represent the variation in the dataset [20]. The LVs allow for 
characterization of specific and significant differences between spectra, instead of 
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analyzing every single difference in the variables [21]. Furthermore, the LVs 
“capture” the variance between classes of spectra and are used when making 
predictions. Through PLSDA, graphical presentations of data can be created, in the 
form of scores plots, which simplifies data interpretation [22]. More importantly, 
PLSDA is capable of differentiating and grouping together hundreds of spectra that 
contain thousands of variables and is therefore ideal for this study. 

 

4. Results and Discussion 

 In this study, ATR FT-IR spectroscopy was used to collect spectra from natural 
human hairs prior to and after dying with over-the-counter commercial hair dyes. The 
dyes were from three different brand manufacturers (Revlon, Clairol, and Just For 
Men®) and of two different colors (black and medium brown). ATR FT-IR 
spectroscopy is a technique that almost exclusively probes the surface of hair 
samples due to the evanescent wave only penetrating a couple micrometers (at 
most) into the sample being analyzed. Whether or not the dye penetrates deep 
within a hair shaft, it would almost certainly be present on the surface of the hairs 
where it was deposited. Permanent hair dyes utilize precursor molecules to oxidize 
hair, which allows color molecules to diffuse into and bind to the hair [11]. Therefore, 
we would expect visual differences in the spectra from dyed and non-dyed hairs by 
using ATR FT-IR spectroscopy. For classification purposes, PLSDA was utilized to 
specifically target three types of hair differentiation: (a) dyed versus non-dyed, (b) 
Revlon versus Clairol versus Just For Men® (dye brand), and (c) black versus 
medium brown (dye color). 

4.1. Differentiation between dyed and non-dyed hairs  

The first step in this three-part study was to differentiate between dyed and non-
dyed hairs. Since the chemistry of hair is altered subsequent to dying, spectral 
differences would be expected, which would result in strong differentiation ability. 
Figure 1a shows the raw mean spectra for the dyed (green trace) and non-dyed (red 
trace) hair classes used in the calibration dataset. 
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Figure 1. Overlay of the raw mean spectra used for PLSDA model training for 
differentiating between dyed and non-dyed hairs (A), dye brands (B), and dye colors 
(C). 

There are few apparent differences between the two classes based on the raw 
mean spectra. However, the preprocessing steps allow for visualizing differences in 
the infrared signals’ location and intensity. By visual inspection of the preprocessed 
mean spectra (not shown), the two classes of spectra differ extensively in the 
regions 662-673 cm-1 (sulfate stretching) and 1250-1270 cm-1 (ester stretching) [23, 
24]. The two classes also differ in their intensity at 1040 cm-1, a result of hair 
oxidation, specifically the oxidation of cysteine to cysteic acid [25]. These signals, 
among others were used to differentiate between dyed hair and non-dyed hair 
classes, and are highlighted in the latent variables (LVs) shown in Figure 2. The LVs 
emphasize particular differences between classes of spectra. They focus on a 
percentage of all of the differences between the classes and exclude possible 
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spectral noise to emphasize strong correlations. PLSDA was used to construct a 
model incorporating five LVs that captured 48.90% of the total variance in the 320 
dyed and non-dyed hair spectra included in the calibration dataset. As shown in 
Figure 2a, LV1 of the first PLSDA model captures 16.54% of the total variance 
including a contribution from the sulfate stretching (662-673 cm-1) and ester 
stretching (1250-1270 cm-1) vibrational modes can be observed resulting in the 
differentiation of the dyed and non-dyed classes. 

 

Figure 2. Latent variable one used to build PLSDA model for differentiating between 
dyed and non-dyed hairs (A), dye brands (B), and dye colors (C). 



 

13 
 

LV1, which captures the most variance compared to the other LVs, shows a large 
difference in the dyed and non-dyed classes for the sulfate (SO42-) and ester (C-O) 
stretching modes. There are common esters included in the ingredients for all of the 
dyes used for this experiment, such as erythorbic acid, shown in Supplemental 
Table I, so intensity changes of ester signals are expected. Erythorbic acid is a 
stereoisomer of ascorbic acid and contributes to FT-IR signals at 794 and 819 cm-1, 
which are also highlighted in LV1 of this model, and in the dye brand model that was 
constructed separately (Section 3.2). The sulfate signal can be explained by the 
chemistry of hair dyes. Most permanent dyes include ammonia, or other alkaline 
chemicals, to increase permeability in the cuticle for dye penetration. Once the 
cuticle has been compromised, an oxidizer, such as peroxide, can penetrate the 
cortex of the hair and break disulfide bonds so that new bonds with the dye 
molecules can be made [26]. The breaking of these bonds in hair results in the 
release of sulfur, instigating a change in the sulfate ATR FT-IR signal. Large 
chemical changes to hair, in addition to any latent changes, allow for strong 
classification capabilities. Shown in Figure 3 is an internally cross-validated (CV) 
prediction plot for hair spectra to be classified as belonging to the dyed hair class. 

 

Figure 3. The cross-validated model predictions for dyed hair. The red dotted line 
separating dyed from non-dyed classes represents the default classification 
threshold. 

 A CV prediction plot shows the results for the most stringent type of calibration 
model testing. In this case the plot illustrates the predictive probability that a given 
spectrum will be classified as a dyed hair. The CV plot was constructed by 
performing the venetian blinds technique on the data matrix, where ten spectra were 
removed from the calibration dataset and loaded back in as “external” data for class 
predictions to be made. Each spectrum was assigned a class prediction probability 
of belonging to a particular class, with respect to the character of the LVs. In this 
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case, the lower the predicted probability, the more likely the spectrum was to be 
classified as non-dyed, whereas the higher probabilities corresponded to 
classification as the dyed class. The red dotted (threshold) line in Figure 3 
represents the cut-off for whether a hair spectrum was classified as dyed or non-
dyed. Only one of the dyed hair spectra fell below this threshold (green square; 
spectrum number 110). The spectrum was from a donor whose hair was dyed with 
the JFMMB hair dye. Spectrum 110 is only one out of the forty total spectra collected 
from that donor; all thirty-nine of the other spectra for that specific donor were 
correctly classified. Therefore, the prediction accuracy was 97.5% for that donor, but 
only decreased the cross-validation prediction accuracy to 99.6%. Additionally, the 
misclassified spectrum (number 110) from donor #1 was not predicted as belonging 
to the non-dyed class in other, less-stringent, calibration prediction plots such as 
strict class predictions or most probable class predictions (results not shown). 
Conversely, 100% of the non-dyed spectra were assigned probabilities below the 
threshold, and were not classified as dyed hair spectra. The successful separation of 
dyed and non-dyed spectra suggests that permanent hair dyes sufficiently change 
the chemistry of the hairs, at least on or near the surface (where the FT-IR beam 
penetrates), leading to effective differentiation.   

 Most of the dyed and non-dyed hair spectra had a near perfect probability of 
being predicted correctly by the first, binary PLSDA model. The CV sensitivity and 
specificity for the dyed class were 1.00 and 0.996, respectively, whereas the 
sensitivity and specificity for external predictions were 0.933 and 0.967, respectively. 
Sensitivity is the probability of the model predicting a spectrum as the correct class, 
and specificity is the probability of the model correctly not predicting a spectrum from 
one class as the other class. The high sensitivity and specificity of the model are 
exemplified by the exceptional classification results.  

Strict class model predictions are determined based on which class a spectrum 
resembles most closely. Spectra are scored based on the resemblance to the 
character of LVs for each class. If a spectrum is predicted to have a probability 
above 0.50 for being assigned to one class, and only that class, then it is classified 
as such. All of the calibration spectra that were used to construct this model were 
correctly classified under strict class predictions. Sixty non-dyed and dyed hair 
spectra (thirty from each class) that were not used to construct the PLSDA model 
were used for external validation. Using completely unknown spectra for this 
external validation step is a method to rigorously test the model’s prediction 
performance. It is similar to how the methodology would work if used for real criminal 
casework samples found at a crime scene. Of the sixty total validation spectra, only 
three were misclassified, resulting in an average prediction accuracy of 95.0% for 
the external validation spectra. The three misclassifications consisted of two spectra 
from undyed hair samples from donor #11 and one spectrum from a hair sample 
dyed with JFMB from donor #9. The preprocessed spectra from these 
misclassifications had lower than average intensities for characteristics of their 
respective classes and lacked the ester (C-O) stretching signal at 1250-1270 cm-1.  
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4.2. Differentiation between dye brands 

 Once hair spectra were classified as either dyed or non-dyed, deeper analysis 
and further classification was performed on the dyed hair spectra only. The first 
approach for dyed hair classification was to distinguish between the brands of dyes 
used to color natural human hairs. Each brand contained signature ingredients that 
were consistent for the two colors of dyes used in this study, so it was expected that 
the brand classes would be differentiated according to these ingredients. In the 
Revlon hair dyes, oleic acid and sodium benzotriazolyl butylphenol sulfonate were 
common ingredients between the two colors. In the Clairol hair dyes, ammonium 
hydroxide and disuccinates were common. Petrolatum, a sealing agent, was a 
common ingredient between the two Just For Men® hair dyes used. The differences 
between ingredients from each of the three brands led to slight spectral differences. 
The mean truncated raw spectra of dyed hair samples grouped by dye brand, and 
the first LV from the PLSDA model used for their differentiation, are shown in Figure 
1b and 2b, respectively. 

Differences in the location and quantity of peaks are not observed between 
brands, but large intensity differences do exist between spectra for the three brand 
classes. Specifically, there are major intensity differences in the regions 662-673  
cm-1 (sulfate stretching) and 1250-1270 cm-1 (ester stretching) as well as the peaks 
at 794, 819, (erythorbic acid) and 1040 cm-1 (cysteine oxidation). The intensity 
differences that led to spectral classification can be attributed to how the dyes mask 
or amplify particular signals by penetrating and reacting with the hair differently, 
most likely a result of the amount of oxidizing agents used by each brand. For 
example, differences in the 662-673 cm-1 sulfate signal or the 1040 cm-1 cysteine 
oxidation signal are a result of the oxidation of hair. For differentiation between dye 
brands, a second PLSDA model was constructed with six LVs, which captured 
60.64% of the total variance in the calibration dataset. As shown in Figure 2b, LV1 
exemplifies the differentiation between brand classes according to the observed 
signals in the mean preprocessed spectra, particularly for the sulfate stretching (662-
673 cm-1) and ester stretching (1250-1270 cm-1) regions. 

Despite the many spectral similarities between the hair samples dyed with 
different brands, the second PLSDA model was able to discriminate between them 
with high accuracy. In Figure 4 the CV predictions of each brand class can be 
observed as a three-dimensional scatter plot. The three axes depict how well the 
spectra of each brand of dye separate from each other as a result of the probability 
they will be predicted to their correct, respective, class. Although there is obvious 
separation between brand classes, and grouping within each dye class, some 
spectra do seem to overlap between brands. However, this figure only represents 
one way of visualizing the separation. It can be rotated in three-dimensional space to 
see the separation better from other angles. 
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Figure 4.  A three-dimensional scores plot showing the internally CV class 
predictions of the three brands of hair dye used to treat hairs. 

A strict class predictions plot was also used to classify all of the spectra 
(calibration and validation) into the correct dye brand classes. During the strict class 
predictions, some of the spectra were predicted to the unclassified class. Spectra 
are predicted as unclassified if they have a probability of prediction of ≥ 0.50 for 
more than one class or ˂ 0.50 for all classes, where 0.50 is the default prediction 
threshold for the model. The unclassified class prevents the model from producing 
unfavorable misclassifications, particularly for samples it has not been trained to 
take into account. The strict class predictions plot for the hair dye brand class model 
is shown in Figure 5. 
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Figure 5. The strict class prediction plot for the hair dye brand classes, showing the 
classification of all 290 dyed spectra including external-validation (test) spectra. 

 Of the 240 calibration spectra, three were predicted as unclassified. In theory, 
this class prediction output is better than spectra being misclassified as one of the 
other dye brand classes, and is similar to reaching inconclusive results in other 
methodologies. Of the thirty validation spectra, twenty-nine were correctly classified 
as their respective brand of hair dye and one was predicted as unclassified, resulting 
in a 96.7% average prediction accuracy for the validation spectra. This PLSDA 
model had a CV sensitivity of 0.988, 0.963, and 1.00 for the Revlon, Clairol, and Just 
For Men® dye brand classes, respectively. The CV specificity for the same 
respective dye brands was 0.969, 1.00, and 0.988. The prediction sensitivity for 
each class was 1.00 and the prediction specificity were 1.00, 0.950, and 1.00 for 
Revlon, Clairol, and Just For Men® classes, respectively. Although all of the spectra 
were not correctly predicted as their appropriate brand classes, the model was still 
successful in avoiding the misclassification of spectra into the wrong brand class 
since all misclassified spectra were predicted as unclassified under strict class 
predictions. 

4.3. Differentiation between dye colors  

The third, and final, type of differentiation tested in this study was between hairs 
dyed with two different colors (from each of the three brands). For this approach, the 
spectra were labeled as “Black” or “Medium Brown”, irrespective of the dye brand. 
Both of these color classes contained dyed hair spectra from all three dye brands, 
and it was expected that spectral classification would not be as successful as the 
models previously discussed (3.1 and 3.2) as a result of a lack in class determining 
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ingredients. To classify the spectra, another PLSDA model was built, with five LVs, 
capturing 53.78% of the total variance in the calibration dataset.  

Visually, there were very few differences between the mean spectra of these two 
dye color classes, especially in comparison to the number of spectral differences 
that exist between the two other forms of differentiation explained previously 
(Sections 3.1 and 3.2). Though the mean spectra, shown in Figure 1c, appeared to 
have little to no differences there was still an exaggerated difference between the 
mean spectra at 662-673 cm-1 (sulfate stretching), according to the first LV as shown 
in figure 2c. For the most part, the dyes did not vary greatly in the amount and types 
of ingredients between the two colors, as they did between brands. The lack of 
variation between the mean spectra of hair dyed with the two different colors was 
expected to lead to a markedly higher misclassification rate as compared to the 
other two PLSDA models built, however this was not observed.  

The dye color PLSDA model was just as successful as the other two PLSDA 
models in being able to predict the spectra to their correct class. During strict class 
predictions two of the calibration spectra (from two different donors belonging to the 
medium brown color class) were misclassified as belonging to the incorrect dye color 
class. For the black dye color class, the model had a CV sensitivity and specificity of 
0.983 and a prediction sensitivity and specificity of 1.00. Even with the two 
misclassifications of calibration spectra, the model correctly classified all of the thirty 
validation spectra, a 100% prediction accuracy. 

4.4 Comparison of PLSDA models 

Since this study incorporates three different types of classification analyses, it is 
important to demonstrate the overall effectiveness of this proof of concept 
methodology. To compare the performance of the three PLSDA models constructed, 
the prediction accuracies of the spectra used for internal cross-validation and 
external validation should be considered. These values are shown in Table II. With 
the lowest accuracy being 90.0%, on the spectral-level, this is very promising. This 
number increases on the donor-level, where the overall correct prediction accuracy 
of each donor (instead of all spectra for an entire class) was 100%. From a forensic 
standpoint this is much more important and practical because the requirement of 
such a method as the one developed here would be the ability to determine, for any 
single person, whether a hair is dyed or non-dyed, and, if dyed, the color and brand 
of the dye. 
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Table II. Comparison of prediction accuracies based on all spectra (spectral-level) 
used for internal cross-validation and external validation for each of the three PLSDA 
models constructed. 

Model Class 
Spectral-level prediction accuracy 

Internal Cross-Validation External Validation 

Dyed vs. non-dyed 
Dyed 99.6% 96.7% 

Non-dyed 100% 93.3% 

Dye brand 

Revlon 98.8% 90.0% 

Clairol 96.3% 100% 

Just For Men® 100% 100% 

Dye color 
Black 98.3% 100% 

Medium Brown 97.5% 100% 

 

The external validation portion of this study served as a real-world scenario test. 
The validation spectra were from donors that the model had never encountered 
before, ensuring that differentiation was not a result of hair donor characteristics, 
and that internal validation accuracy was not a result of overfitting the model(s). Hair 
spectra from donors 9, 10, and 11 were classified with high accuracy by each 
PLSDA model. It was demonstrated that by using the three models constructed for 
this study, the ability of classifying individuals, who have not yet been exposed to the 
model, as having hairs dyed or non-dyed with 90.0% confidence. If it was 
determined that the individual did have dyed hair, then we are capable of classifying 
the brand and color of the dye with 90.0 and 100% confidence, respectively. 

 

 5. Conclusions 

 The three PLSDA models constructed for this study resulted in an average 
spectral prediction accuracy of 98.1% ± 3.0% despite the race, age, or biological sex 
of the hair donor. Although some of the hair spectra were misclassified, the average 
prediction accuracy is representative of all 380 hair spectra used for the study, which 
took into account many variations between donors. Moreover, each misclassification 
only accounts for one of the ten spectra used for a single hair donor-dye 
combination, and in most of the misclassification occurrences the other nine spectra 
collected for the hair donor were classified correctly. Therefore, if all of the spectra 
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collected from a donor are taken into account, correct donor-wise classification was 
attained with at least 90.0% confidence in all three instances. 

 With the success of this study, in addition to the study conducted by Manheim et 
al., [14] a great deal of information about a hair found at a crime scene can be 
obtained using a simple and semi-nondestructive technique such as ATR FT-IR 
spectroscopy. Subsequent to determining that a hair or fiber is natural, and of 
human origin (based on Manheim et al.’s work), the hair can then be classified as 
dyed or non-dyed as shown here. Furthermore, if the hair is determined to be dyed, 
the classification can be more specific with identifying the brand, and color, of the 
dye. All of this information provided by applied spectroscopy could be helpful to 
criminal investigators, especially to complement the conclusions drawn by 
microscopic comparison techniques currently used by forensic hair analysts. It is 
particularly noteworthy that, unlike microscopic comparison techniques, a control 
sample is not needed for comparison. 

 Many of the studies previously performed were also successful in their analyses 
of hair using applied spectroscopy, but with longer, more complicated, procedures or 
sample preparation [10-13].  This study confirms that ATR FT-IR spectroscopy is a 
useful technique for analyzing human hairs, without additional sample preparations 
subsequent to the hair dying process per manufacturers’ instructions. ATR FT-IR 
spectroscopy is an extremely favorable technique for forensic hair analysis because 
the method is quick and essentially non-destructive to the sample. Most importantly, 
the study demonstrates how ATR FT-IR spectroscopy can be coupled with 
chemometrics to provide statistical confidence to conclusions drawn from hair 
analysis, as was called for by the 2009 NAS report [15]. This study also provides 
helpful insights into how the utilization of spectroscopy to analyze hair samples can 
be successful despite the genetic origin (i.e. age, race, and biological sex) of the 
donor.  

 To enhance the practicality and further validate this method, additional studies 
should be performed, which feature other variabilities in hair donors and dye 
products. To ensure that the differentiation of the dye brands and colors in this study 
was not circumstantial, ATR FT-IR spectra of dyed hairs should be collected from 
more than one batch of a particular hair dye and classified with models similar to 
those produced here. Furthermore, the integrity of using methods suggested by this 
study, and several other studies, should be compared to current forensic hair 
analyses in order to associate reliability and accuracy, and to determine whether 
further studies would be useful. 

 ATR FT-IR spectroscopy is a worthwhile and reliable technique, which is 
currently underutilized in forensic trace evidence analysis. The applications 
discussed here, for hair analysis, demonstrate the sensitivity and selectivity of the 
technique. Additionally, by collecting spectra once, from the same hair source, a 
variety of useful and potentially identifiable characteristics can be obtained through 
multivariate statistical differentiation. In turn, more information about a hair sample 
can be provided, bringing the field one step closer towards individualization and 
helping to confirm findings provided by microscopic analysis. 
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Supplemental Data 

Supplemental Table I. List of ingredients for each of the six hair dyes used in the 
experiment. 

 

RB RMB JFMB JFMMB CB CMB 

Color Blend: Color Blend: Color Blend: Color Blend: Color Blend: Color Blend: 

Water Water Water Water Water Water 

Oleic Acid Oleic Acid 
p-
Phenylenediamine 

Ethanolamine Ethoxydiglycol Ethoxydiglycol 

Ethanolamine Ethanolamine Ethanolamine 
Canola Oil Fatty 
Acids 

Propylene Glycol Propylene Glycol 

Cetearyl Alcohol Cetearyl Alcohol 
Canola Oil Fatty 
Acids 

Cetearyl Alcohol Isopropyl Alcohol Isopropyl Alcohol 

Propylene Glycol Propylene Glycol Resorcinol Resorcinol 
Soytrimonium 
Chloride 

Soytrimonium 
Chloride 

Cocos Nucifera Oil Cocos Nucifera Oil m-Aminophenol Steareth-21 Oleth-5 
Ammonium 
Hydroxide 

p-Phenylenediamine 
Argania Spinosa 
Kernel Oil 

Cetearyl Alcohol p-Phenylenediamine 
Trisodium 
Ethylenediamine 
Disuccinate 

Oleth-5 

Argania Spinosa 
Kernel Oil 

Octyldodecanol Steareth-21 Oleyl Alcohol 
Ammonium 
Hyrdroxide 

Trisodium 
Ethylenediamine 

Octyldodecanol Cera Alba Oleyl Alcohol Fragrance Tall Oil Acid Disuccinate 

Cera Alba 
Butyrospermum 
Parki Butter 

2-Amino-4-
Hydroxyethylamino
ansisole Sulfate 

Petrolatum 
p-
Phenylenediamine 

Tall Oil Acid 

Butyrospermum 
Parkii Butter 

Mangifier Indica 
Seed Butter 

Fragrance Sodium Sulfite Oleth-2 Oleth-2 

Mangifera Indica 
Seed Butter 

Helianthus Annuus 
Seed Oil 

Petrolatum p-Aminophenol m-Aminophenol Fragrance 

Helianthus Annuus 
Seed Oil 

Oleth-20 Sodium Sulfite Erythorbic Acid 

N,N-Bis(2-
Hydroxyethyl)-p-
Phenylenediame 
Sulfate 

C11-15 Pareth-9 
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Oleth-20 
Sodium Laureth 
Sulfate 

Erythorbic Acid m-Aminophenol Fragrance 
Cocamindopropyl 
Betaine 

Sodium Laureth 
Sulfate 

Dipropylene Glycol Cetearyl Glucoside 

N,N-Bis(2-
Hydroxethyl)-p-
Phenylenediamine 
Sulfate 

C11-15 Pareth-9 C12-15 Pareth-3 

Dipropylene Glycol Polysorbate 60 Dicetyl Phosphate Cetearyl Glucoside 
Cocamidopropyl 
Betaine 

p-
Phenylenediamine 

Polysorbate 60 Sodium Sulfite Trisodium EDTA Dicetyl Phosphate Resorcinol Erythorbic Acid 

Sodium Sulfite Steareth-21 
Ceteth-10 
Phosphate 

Trisodium EDTA C12-15 Pareth-3 Citric Acid 

Steareth-21 Polyquaternium-10 Cetyl Alcohol Ceteth-10 Phosphate Erythorbic Acid Resorcinol 

Polyquaternium-10 
Acrylates/C10-30 
Alkyl Acrylate 
Crosspolymer  

Cetyl Alcohol Sodium Sulfite 
Phenyl Methyl 
Pyrazolone 

Acrylates/C10-30 
Alkyl Acrylate 
Crosspolymer 

C10-40 
Isoalkylamidopropy
lethyldimonium 
Ethosfulate 

Activator: 
2,4-
Diaminophenoxyetha
nol Sulfate 

EDTA p-Aminophenol 

C10-40 
Isoalkylamidoprpylet
hyldimonium 
Ethosulfate 

Sodium 
Benzotriazolyl 
Butylphenol 
Sulfonate 

Water 
  

Sodium Sulfite 

Sodium 
Benzotriazolyl 
Butylphenol 
Sulfonate 

Buteth-3 Hydrogen Peroxide Activator: Activator: 1-Naphthol 

Buteth-3 Tributyl Citrate Cetearyl Alcohol Water Water 

N,N-Bis(2-
Hydroxyethyl)-p-
Phenylenediame 
Sulfate 

Tributyl Citrate Erythorbic Acid Laureth-23 Hydrogen Peroxide 
Hydrogen 
Peroxide 

m-Aminophenol 

Erythorbic Acid Tetrasodium EDTA Ceteareth-20 Cetearyl Alcohol 
Acrylates 
Copolymer 

EDTA 

Tetrasodium EDTA 
p-
Phenylenediamine 

Acrylates/Steareth-
20 Methylacrylate 

Laureth-23 Streareth-21 
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Corsspolymer 

Resorcinol Resorcinol Steareth-2 Ceteareth-20 Oleth-2 Activator: 

2,4-
Diaminophenoxyeth
anol HCl 

m-Aminophenol Etidronic Acid 
Acrylates/Steareth-
20 Methylacrylate 
Corsspolymer 

PEG-50 
Hydrogenated 
Palmamide 

Water 

m-Aminophenol 
2,4-
Diaminophenoxyet
hanol HCl 

Disodium EDTA Steareth-2 Oleth-5 Hydrogen Peroxide 

Parfum Parfum Sodium Stannate Etidronic Acid 
Acrylates/Steareth
-20 Methacrylate 
Copolymer 

Acrylates 
Copolymer 

Linalool Linalool 
 

Disodium EDTA Oleyl Alcohol Streareth-21 

Citronellal Citronellal 
 

Sodium Stannate Etidronic Acid Oleth-2 

Geraniol Geraniol 
  

Disodium EDTA 
PEG-50 
Hydrogenated 
Palmamide 

Courmarin Courmarin 
  

Simethicone Oleth-5 

Amytl Cinnamal Amytl Cinnamal 
  

Sorbitan Stearate 
Acrylates/Steareth-
20 Methacrylate 
Copolymer 

Mica Mica 
  

Peg-40 Stearate Oleyl Alcohol 

Titanium Dioxide Titanium Dioxide 
  

Cellulose Gum Etidronic Acid 

     
Disodium EDTA 

Activator: Activator: 
  

Conditioner: Simethicone 

Water Water 
  

Water Sorbitan Stearate 

Hydrogen Peroxide Hydrogen Peroxide 
  

Bis-
Hydroxy/Methoxy 
Amodimethicone 

Peg-40 Stearate 

Cetearyl Alcohol Cetearyl Alcohol 
  

Stearyl Alcohol Cellulose Gum 

Ceteareth-20 Ceteareth-20 
  

Cetyl Alcohol 
 

Amodimethicone Amodimethicone 
  

Stearamidopropyl 
Dimethylamine 

Conditioner: 

Sodium Lauryl Sodium Lauryl 
  

Glutamic Acid Water 
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Sulfate Sulfate 

Steareth-10 Allyl 
Ether/Acrylates 
Copolymer 

Steareth-10 Allyl 
Ether/Acrylates 
Copolymer   

Fragrance 
Bis-
Hydroxy/Methoxy 
Amodimethicone 

C11-15 Pareth-7 C11-15 Pareth-7 
  

Benzyl Alcohol Stearyl Alcohol 

Sodium Stannate Sodium Stannate 
  

Panthenyl Ethyl 
Ether 

Cetyl Alcohol 

Laureth-9 Laureth-9 
  

Citric Acid 
Stearamidopropyl 
Dimethylamine 

Phosphoric Acid Phosphoric Acid 
  

EDTA Glutamic Acid 

Glycerin Glycerin 
  

Sodium Chloride Fragrance 

Trideth-12 Trideth-12 
  

Cocos Nucifera Oil Benzyl Alcohol 

Disodium Phosphate 
Disodium 
Phosphate   

Carthamus 
Tinctorius Seed oil 

Panthenyl Ethyl 
Ether 

EDTA EDTA 
  

Panthenol Citric Acid 

Methylparaben Methylparaben 
  

Trimethylsiloxysilic
ate 

EDTA 

    

Aloe Barbadensis 
Leaf Juice 

Sodium Chloride 

 Conditioner Conditioner 
  

Methylchlorosothia
zolinone 

Cocos Nucifera Oil 

Water Water 
  

Methylisothiazolin
one 

Carthamus 
Tinctorius Seed Oil 

Cetearyl Alcohol Cetearyl Alcohol 
   

Panthenol 

Glycerin Glycerin 
   

Trimethylsiloxysilica
te 

Behentrimonium 
Chloride 

Behentrimonium 
Chloride    

Aloe Barbadensis 
Leaf Juice 

Parfum Parfum 
   

Methylchlorosothiaz
olinone 

Amodimethicone Amodimethicone 
   

Methylisothiazolino
ne 

Argania Spinosa Argania Spinosa 
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Kernel Oil Kernel Oil 

Cocos Nucifer Oil Cocos Nucifer Oil 
    

Helianthus Annuus 
Seed Oil 

Helianthus Annuus 
Seed Oil     

Mangifera Indica 
Seed Butter 

Mangifera Indica 
Seed Butter     

Butyrospermum 
Parki Butter 

Butyrospermum 
Parki Butter     

Hydroxylzed Silk Hydroxylzed Silk 
    

Silk Amino Acids Silk Amino Acids 
    

Panthenol Panthenol 
    

Cera Alba Cera Alba 
    

Octyldodecanol Octyldodecanol 
    

Isopropyl Alcohol Isopropyl Alcohol 
    

Trideceth-12 Trideceth-12 
    

Cetrimonium 
Chloride 

Cetrimonium 
Chloride     

Sodium 
Benzotriazolyl 
Butylphenol 
Sulfonate 

Sodium 
Benzotriazolyl 
Butylphenol 
Sulfonate 

    

Buteth-3 Buteth-3 
    

Citric Acid Citric Acid 
    

Tributyl Citrate Tributyl Citrate 
    

Benzyl Alcohol Benzyl Alcohol 
    

Phenonxyethanol Phenonxyethanol 
    

Yellow 5 Yellow 5 
    

Red 4 Red 4 
    

Red 33 Red 33 
    

Ext Violet 2 Ext Violet 2 
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