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Abstract

Everyone’s personal privacy is extremely vital and people go through great lengths to
ensure that their information is secure. Corporations who collect or utilize data do realize this and
strive to protect their customer’s information. But can data be released to research companies
without jeopardizing the privacy of the people? The more sensitive the released data is, the more
companies have to mitigate the probability of being able to link the data together. Companies
collect big data because it can be examined to predict patterns and be used for marketing, thus
increasing their chances of becoming successful. To replicate the data companies and academic
institutions collect, I will randomly simulate the information. The data | will use is not real; it
cannot be linked to any actual persons. Additionally, I will discuss what methods are currently

being used to anonymize data and why it is important to minimize the risk of linkage and leakage.
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1. Introduction

As technology is becoming more advanced, retaining personal privacy has proven to become
severely more challenging. Every time any type of transaction takes place, sensitive data is
exchanged and undergoes the possibility of being exposed. Attaining privacy can be described as
“not having undocumented personal knowledge about one, possessed by others” [24]. A person’s
security and privacy significantly plummet as their information becomes more exposed. This could
happen through newspapers, public voting lists, or any other type of legitimate document. For
example, | ordered the Voter Registration Data from the New York State Board of Elections. |
received the data set of everyone in Albany, who registered as a Democrat or a Republican. This
information was mailed free to me within two days. The reason | was able to receive this
information is because of the Freedom of Information Act (FOIA) [28]. This act says that any
person has the right to access federal agency records, “except to the extent that such records are
protected from public disclosure”. This made it very simple for me to request the voting records.
On the diskettes came the first and last names of each voter, his/her address, his/her town, and
his/her area code. Depending on each state’s rules, this could be possible across the United States.
This sensitive data is open to the public, and many people do not realize that their information is
accessible.

Furthermore, retaining complete privacy is debatably impossible to achieve; there are no
limits to the kinds of information that can be acquired just from a person’s physical appearance
[24]. For example, if one was to meet a stranger in a local restaurant, many things could be derived
from that interaction. Non-sensitive data such as his/her age, sex, hair color, or name can be noticed

immediately. But afterwards, a simple internet search using the person’s name and approximate



age could lead to finding sensitive information such as his/her address. Constantly, obtaining full
privacy proves to be an ongoing challenge.

Section 1.1: Netflix Scandal

Ensuring privacy is extremely vital and when companies do not properly anonymize their data,
lawsuits soon follow. Netflix, the famous on-demand movie streaming company, was sued and
had to pay approximately $9 million for the exposure of their customers’ data [1]. This began when
they held a competition in 2010, to see if there could be an improved way to produce “better
recommendations than the movie giant could serve up themselves”. This led to two contestants
and privacy researchers, Arvind Narayana and Vitaly Shmatikov, to realize that Netflix’s data was
not secure. They “showed that a second set of information such as comments on the popular
Internet Movie Database could help third parties triangulate the identity of the ‘anonymous’
Netflix customers” [1]. They realized that by using both the information publicly available to them
from Netflix, and another well-known public movie site, they were able to de-anonymize Netflix’s
customers. Millions of customers were affected by this because it was made possible to figure out
their sexual preferences based on the movies they watched [23]. Additionally, AOL faced a similar
privacy scandal. The AOL researchers released at least three months’ worth of query logs to a
website that is publically accessible [6, 7]. Even though personal identifying attributes were not
exposed for the just under a quarter of a million users, there was still enough data to discern an
individual’s identity. AOL ended up withdrawing the information, but not before many people had
a chance to download it. This raw data and even movie preferences turned out to be sensitive

information, which is why there are various methods to protect such data [14, 19, 20].



Section 1.2: Sensitive and Non-Sensitive Information
Sensitive data is defined as “any data that compromises with respect to confidentiality, integrity,

and/or availability that could adversely affect COV interests, the conduct of Agency programs, or
the privacy to which individuals are entitled” [25]. In other words, this is information that one
would not normally know from just looking at a person. This includes personally identifiable
information such as: financial transactions, social security numbers, medical history, criminal
records, server names, or IP addresses [25]. This information is constantly at risk during everyday
activities, from purchasing a cup of coffee with a credit card, to attending a university. Credit card
information must be exchanged and sensitive academic records are collected at universities. This
information is highly confidential mainly because it can lead to identity theft. On the other hand,
“data that are intentionally made public are classified as not sensitive” [21]. If information is
voluntary given or if it is a physical characteristic, the data will not be considered dangerous.
However, it is possible to decipher sensitive information about a specific person even if only non-
sensitive data is given. This will be explained using simulated academic and health records.
Section 1.3: Data Anonymization

Data anonymization is the process of removing personally identifiable information (P1I) from sets
of data, so that the people who are described by the information can remain unknown [26]. Data
is becoming more accessible over the internet, but most of the data has been limited and the
personal identifiable information has been removed. This includes social security numbers or
names paired with addresses. This anonymized data assurance protects the individuals’
information and ensures their privacy. This also allows the government to share limited sets of
data without acquiring legal permission. This data is useful for researchers who analyze data,

particularly in health care. The major issue is that even though the data has been limited and the



PII’s have been removed, is it still possible to de-anonymize the information and have individual’s

information exposed?

2. Privacy Laws

Section 2.1: FERPA
Currently, data privacy is being regulated by the United States government through the Family

Educational Rights and Privacy Act [2]. FERPA is a Federal law that “prohibits a school from
disclosing personally identifiable information about students’ education records without the
consent of a parent or eligible student, unless an exception to FERPA’s general consent rules
applies” [2]. If any educational institution receives funds under any program run by the Department
of Education, they are subject to FERPA. However, since private schools do not receive this
funding, the protection rules do not apply to them. Even if a student is over the age of 18, a parent
or legal guardian can still have access to their academic records because the schools’ data cannot
be regulated by FERPA. For schools who do fall under that category, generally a student or parent
would have to provide written consent to the school before the student’s education records could
be disclosed. Many students going into college are about 18 years old, which makes them a legal
adult. Even though a student is at least 18 and paying for his/her own university, a guardian can
still have access to his/her personal academic information if the guardian claims the student as a
dependent [2]. Regardless of the student’s want to keep his/her personal academic information
private, FERPA allows such a loophole to exist. If the parent or guardian checks off the dependent
box when they file their taxes, the student is extremely susceptible to their privacy being

jeopardized.



Section 2.2: HIPAA
While FERPA protects student’s data, the Health Insurance Portability and Accountability Act

(HIPAA) protects people’s medical data [5]. The rule “protects most individually identifiable
health information held or transmitted by a covered entity or its business associate, in any form or
medium, whether electronic, on paper, or oral” [5]. In other words, any information regarding an
individual’s health condition cannot be exposed to others. HIPAA includes a de-identification
standard; health information that does not detect a specific person or if there is no rational basis to
believe that the information can be used to identify that individual, then it is not individually
identifiable health information.

There are two methods to achieve de-identification in accordance with the HIPAA Privacy
Rule: expert determination and safe harbor [5]. The safe harbor method removes 18 types of
identifiers such as names, all geographic subdivisions smaller than a state, telephones numbers,
fax numbers, and biometric identifiers [5]. This prevents any actual knowledge residual
information from identifying an individual. Unfortunately, de-identifying to this extreme leads to
information loss and thus less useful information. It would not be able to be used for statistical
analysis or for research purposes. On the other hand, the expert determination method is done by
a hired professional. This expert generally has appropriate knowledge and experience with
statistical data as well as how to apply such principles and methods. With this method, there is a
very small risk that anticipated recipients could identify the individual. Experts determine, case by
case, what information can be publicly displayed and what information should be suppressed or

deleted.



Section 2.3: Example of HIPAA Expert Determination Method

Table 1: Identifiable and Sensitive Data

Age (Years) Gender Zip Code Social Security | Diagnosis

45 Female 13453 738493728 Breast Cancer
23 Female 34573 516274857 HIV

14 Male 12345 732536468 Diabetes

56 Male 04564 019283746 Influenza

The table above shows five different categories: age, gender, zip code, social security, and
diagnosis. The non-sensitive data is the age, gender, and zip code, while the sensitive data is the
social security number and the diagnosis. I am going to show how experts determine what
information to suppress or anonymize using the expert determination method. Only one category,
social security number, can pinpoint a single individual, so it should be immediately taken off.
Now there is an age in years, gender, zip code, and diagnosis left. “It has been estimated that the
combination of a patient’s date of birth, gender, and five-digit zip code is unique for over 50% of
residents in the United States. This means that over half of U.S. residents could be uniquely
described just with these three data elements” [4]. Because of this statistic, it is extremely vital for
the expert to continue to mitigate the risk. The zip codes would be lessened to just three digits, and
even with a year of birth and gender, risk plummets to 0.04%. With risk still being too high, the
age in years could be more generalized. The ages can be ‘below 21°, ‘between 21 and 34, and so
on. The expert would then use his/her judgment and evaluate if even gender, with the other
attributes, could still uniquely identify an individual. When an expert evaluates each person’s
information, there is always a chance that the expert could make a mistake simply due to human
error. Their error has been classified as ‘very small’ and there is not an explicit numerical value to

associate it with. The environment and context when identifying risk may not be appropriate for



the same data. Thus, it is up to an expert to deem the ‘very small’ risk; it is solely up to their

discretion. After evaluating the specific situations, the end result could look like this:

Table 2: Anonymized Data

Age (Years) Zip Code Diagnosis

45 and over 134 Breast Cancer
Between 21 and 34 | 345 HIV

Under 21 123 Diabetes

45 and over 045 Influenza

3. Anonymization of Academic Records

Similar to determining personal information from health care information, it is also possible to
determine such information from academic data. | created a simulation of data that is completely
randomized. Using the random generator function, | associated each number with its
corresponding letter grade. For example an ‘A+* was a ‘1°, an ‘A’ was a ‘2’, an ‘A-‘was a ‘3’ and
so on. | paired the most common American names with each student and also randomly generated
if they were from out of state or in state (note that the table is shown on the next page).

This hypothetical data set is similar to ones you would see as a professor or teacher. This
information is extremely personal, as it shows who the person is and his/her grades in every single
class. This is untouched and raw information, meaning that before it is released to the public or
collected by the government, it needs to be anonymized. According to the Freedom and
Information Act, information should be able to be accessible by all citizens, thus it needs to be
publishable [28].

The raw data makes it readily available for personal identifiable information to be released.
Similar to the expert determination method from the Health Insurance Portability and
Accountability Act (HIPAA), making the information general and anonymous is key [5]. | took

just the first 14 students to show some changes after | generalized the information. Instead of



having names of the students, I changed the data so that it showed an “M” for male, and an “F” for

female.
Table 3: Hypothetical Student’s Grades
Students In/Out of State ~ Grade 1for Course 1 Grade 2for Course 2 Grade 3 for Course 3 Grade 4for Course 4 Grade 5 for Course 5

Noah In F D A F B
Sophia In A B- C+ D D-
Liam In C- C+ B- A+ A
Emma In A- C+ F A A-
Jacob In D C+ B- A+ C
Olivia In C D- C- C+ C
Mason Out A+ B A B+ D+
Isabella Out D B D D+ C
Ethan In C+ A B- B A-
Ava In C A A- C+ A-
Michael Out C+ A C+ C+ D-
Mia In B- D+ C A- A-
Alexandar In A- B C- C+ A-
Emily In A B+ F B D-
Jayden In D A- A- B A
Abigail In D- C+ C+ D- C-
Daniel Out A D+ B A+ C+
Madison In A+ B A- C+ F
Elijah Out C- A+ B B+ F
Elizabeth Out B+ D A+ D+ C-
Aiden In B B- A- C B-
Charlotte Out A B B- A+ B+
James Out D- A- B+ A A+
Avery In A+ C+ A C D
Benjamin Out C B- D- D- D
Sofia Out B+ A+ C+ D- C-
Matthew In A A+ D+ A- B-
Chloe In A- B+ F D C
Jackson Out C C+ B- C+ A
Ella In C C- D A D+
Logan Out B- A- B+ C+ B+
Harper In A- B+ B+ C D-
David Out C B+ B A B+
Amelia In B B+ B- C+ D-
Anthony Out A F A B+ A-
Aubrey In A C- D+ B- A
Joseph In C B B B- D+
Addison Out A F F A- B+
Joshua Out A- A+ C+ B B
Evelyn In B+ B- A+ C+ C+
Andrew In A B D F D-
Natalie In A A+ C D- B-
Lucas In D- D+ A+ C+ B
Grace In A- A B D+ F
Gabriel Out A A- B+ A+ C+
Hannach Out A- C A+ C- A+
Samuel In A- D- D+ F F
Zoey In B B+ A+ C D-
Christopher In D- A- A- D D-

Victoria Out D+ B B+ A+ C+



Table 4: 1% Step in Anonymizing Data

Students In/Out of State ~ Grade 1for Course 1 Grade 2 for Course 2 Grade 3 for Course 3 Grade 4for Course 4 Grade 5 for Course 5
M In F D A F B
F In A B C D D
M In C C B A A
F In A C F A A
M In D C B A C
F In C D C C C
M Out A B A B D
F Out D B D D C
M In C A B B A
F In C A A C A
M Out C A C C D
F In B D C A A
M In A B C C A
F In A B F B D

Additionally, I made the letter grades more general, without losing the integrity of the
information. For example, all A-‘s and A+’s, were changed to A’s; all B-’s and B+’s were changed
to B’s. I kept the in and out of state column, but it can be argued that it is too specific, even if it

does not say what state/country specifically the person comes from.

If concerns are still present, | took the next step in anonymizing the data (note that the table
is shown on the next page). Going off from the last step, | took the A and B grades and changed
them to be higher than a B (B+), the C and D grades and changed them to D+, and kept the F’s.
Making the information more general reduces the possibility of someone being able to link the
information back to a specific person, however it greatly reduces the usefulness. Companies or
governments that analyze data would get more use out of the raw data, because finding patterns

would be significantly easier.



Table 5: Final Anonymization of Data

Grade 1forCourse 1 Grade 2for Course 2 Grade 3forCourse 3 Grade 4for Course 4 Grade 5for Course 5

F D+ B+ F B+
B+ B+ D+ D+ D+
D+ D+ B+ B+ B+
B+ D+ F B+ B+
D+ D+ B+ B+ D+
D+ D+ D+ D+ D+
B+ B+ B+ B+ D+
D+ B+ D+ D+ D+
D+ B+ B+ B+ B+
D+ B+ B+ D+ B+
D+ B+ D+ D+ D+
B+ D+ D+ B+ B+
B+ B+ D+ D+ B+

Section 3.1: Exceptions
The entire idea behind anonymizing data is to limit the probability of another person being able to

link sensitive data to a specific person. Privacy needs to be upheld, but there are sometimes
exceptions even with proper data anonymization. For instance in the previous example, Table 5,
the data went through several steps of removing linkage and leakage. It seems reasonably safe to
be published and the integrity of the data has not been altered to a significant extent. But looking
more closely into it, there are only three F’s in Table 5, making linking extremely easy.
Hypothetically, if | was in course three with my friend Michelle, and | was very aware she did not
study for any test, it is safe to assume she received an F. From this assumption, since Michelle is
the only student with an F in course three, her other grades in all of her courses can be found. In
other words, there is always going to be outliers in data anonymization. It might not always be this
extreme and able to be narrowed down to one person, but it is still an exception to acknowledge.
Overall, privacy has been improved but it is not guaranteed for every individual, and in this specific

case, every student.



4. Attaining Full Data Anonymization

Section 4.1: How Privacy can be Protected
Privacy can be protected overall by reducing the probability of data linkage from something high,

to something much lower. Optimizing the utility regarding privacy is important and can be defined
as a “service to satisfy some human want” [27]. As previously stated, the combination of a
patient’s birthday, gender, and zip code is unique for at least half of the people in the United States
[4]. From this statistic, there is an extremely high probability that someone can figure out sensitive
information by knowing this data. The whole idea of privacy protection is to mitigate this risk.
When the zip code given is three digits, the year of birth is presented, and the gender is shown, the
risk of linkage drastically drops to 0.04% [4]. This significant drop is a great improvement, and
the entire idea behind privacy protection. With any data relevant to a single person, the goal is to
make the linkage statistic to as close to 0.00% as physically possible. Even though there are
drawbacks, knowing this information is limited but overall utility can be attained.

Section 4.2: K-Anonymity

K-Anonymity has been commonly used to anonymize data [26]. It can be defined as where
attributes are suppressed or generalized until each row is identical with at least k-1 other rows. The
bigger the k is the better; that means there are more similar records. This makes it harder to
differentiate between individual records. This prevents data linkages and in the worst case scenario,
it can narrow down data to a group of k [26]. There are two common ways to achieve k-anonymity:
suppression and generalization. Suppression is when certain values of the attributes are left
purposely blank or only an asterisk is present. For example, if there is an attribute called “Name”,
the contents would be replaced with an * to prevent linkage. Instead of the data showing the name
“Mary”, the cell would simply show “*”. Generalization is when individual values of attributes

are replaced with a less specific category. For example, within an attribute of “Age”, instead of an



age of “21” being shown, it would be changed from age “20 to 30”. Utility is sacrificed in both of
these examples but it must be completed to retain privacy. With every anonymization method,
there are various flaws that people can still utilize to attain personal information.

Section 4.3: Attacks on k-Anonymity

There are two major attacks on k-Anonymity protecting privacy: the homogeneity attack and the
background knowledge attack [21] [3]. The homogeneity attack can take place if the sensitive
values in an attribute lack diversity. Referencing the table below, with big data there could be
instances where the information is the same. Three different people who live in the same area code
and who are no more than ten years apart from each other all have malaria. If the diseases were
different, then it would be impossible to link a person with a disease, but since the diseases are the
same, the k-Anonymity attempt it flawed. If | knew someone in my town with the same first three
letters of the zip code and who was 67, it would be safe to assume that that person has malaria.
Usually data is significantly bigger than Table 6, however it is possible to narrow down this

information by just knowing basic information about the specific individual.

Table 6: Healthcare Data

Zip Code Age Disease
110%** 6* Malaria

110** 6* Malaria

110%** 6* Malaria

111** 7* Heart Disease
111%* 7* Heart Disease
111%* 5* Cancer

Another attack on k-anonymity is the background knowledge attack [21] [3]. This occurs
when the attacker knows some information about the person he/she is trying to gain more
knowledge on. “K-anonymity does not prevent against other attacks in which an adversary

equipped with public knowledge can associate fewer than k transactions with an individual” [10].



For instance, if you want to know what illness is preventing your boss from coming to work, you
already have information on that person. If you have been to his/her house before, then you already
know that the zip code is 11124. Additionally, through a previous casual conversation you find out
that your boss is 71. With this background knowledge that did not take much effort to find out, the
only option is that your boss has a heart disease. The ability to link already known information

with publicly available information is a huge flaw, and it is a concern when using k-anonymity.

5. Advanced Privacy Notion for Statistical Information Disclosure

Section 5.1: Differential Privacy

“Differential privacy is a rigorous notion of privacy that allows statistical analysis of sensitive data
while providing strong privacy guarantees even in the presence of an adversary armed with
arbitrary auxiliary information” [3]. Overall, differential privacy is a statistical form of protecting
data even when an attacker with outside knowledge tries to leak it. It can be explained by utilizing:

Pr[A(D1) € S] < e x Pr[A(D2) € S], which ensures that even two different records, when

anonymized, have similar if not the same outcome. Laplacian noise is a major randomized
algorithm that is used to satisfy differential privacy. There is a tradeoff between the accuracy of
the information and the utility. Applying the noise to attain differential privacy is a sacrifice used
to retain utility for personal privacy.

Section 5.2: Laplacian Noise

Another way to try to preserve the anonymity of data is to add ‘noise’ to the information [3]. The
raw information is presented below. It shows the courses that each student took from the original

data, and it shows how many times the students received a specific letter grade.



Table 7: Sum of Student’s Grades

Courses Class Equivilant A+'s A's A-'s B+'s B's B-'s C+'s C's C-'s D+'s D's D-'s F's
Course 1 Digitial Forensics 100 11 14 12 4 14 4 4 11 5 2 6 6 7
Course 2 Nutrition 103 6 12 9 11 11 6 10 5 6 5 10 7 2
Course 3 Finance 111 9 9 8 8 6 13 13 5 &6 8 4 4 7
Course 4 Marketing 101 14 9 7 5 7 8 17 9 5 5 3 4 7
Course 5 Computer Science 122 5 5 7 6 8 8 10 6 9 8 4 15 9

This information is not only important to students wanting to know where they stand in a
class, but it is also important to academic officials. The data answers many questions such as are
the professors too hard, is the class too easy, should we fire this specific professor, and so on. This
raw data cannot be released because students can use background knowledge to link who received
what grades in their classes. In order to anonymize the data, noise can be added to the numbers.
This is done by using C + Lap (d/€) [3]. The “d” represents the maximum sensitivity between
sets; if the d is large, the amount of noise is large which ensures the same level of privacy

guaranteed. e~ shows the probability of how close together the sets are to each other. To retain

privacy, a smaller number would be more ideal because that proves that individuals have very
similar attributes and cannot be distinguished from one another. Noise can be the same statistical
number applied to each entry. This noise is random and can prevent attackers from linking the data,

while still preserving its utility.

Table 8 below shows the anonymized data using the epsilon equal to 1.5. To add some
noise to the data, | took each number and added it to Lap(d/€). For example, in course one in digital
forensics 100, the amount of A+’s is 11; 11+ Lap(1/ €) is equivalent to 12 where € is equal to 1.5.
This does not lose the integrity of the data as many other methods do so; the data is difficult to

decipher once altered. Any random number that does not affect the integrity of the data can be



used. Even though the raw data would be more useful in predictions and for studying, it still allows

for the significant information to be valid.

Table 8: Anonymized Data with Epsilon = 1.5

Courses Class Equivilant A+'s A's A-'s B+'s B's B-'s C+'s C's C-'s D+'s D's D-'s F's
Course 1 Digitial Forensics 100 12 14 12 4 13 5 3 11 6 3 5 6 8
Course 2 Nutrition 103 7 11 9 12 11 8 9 4 6 5 11 6 2
Course 3 Finance 111 910 9 8 6 13 12 5 6 9 5 5 8
Course 4 Marketing 101 12 8 7 6 6 8 15 9 4 4 4 5 8
Course 5 Computer Science 122 5 5 9 8 5 8 11 6 11 8 5 17 8

6. Future Work

It was just shown that in any anonymization case there can be outliers, and the best course of action
is to mitigate the existing ones. There are some outliers that cannot be protected, thus new
technology is constantly being created. Aside from k-anonymity, there have been other ways to
combat the linkage of sensitive data. “To address this privacy threat, one solution would be to
employ L-diversity: a well-established paradigm in relational data privacy, which prevents
sensitive attribute (i.e. item) disclosure” [25]. Generalization and permutation-based L-diversity
are the only two categories that exist. With the generalization category, which is similar to the
generalizing information using k-anonymity, unique data would be analyzed. This unique data
would either be combined with other persons within the same category, making the probability of
linking limited, or removing the category if too unique. When the latter is used “it is likely that
any generalization method would incur extremely high information loss, rendering the data useless”
[25]. On the other hand, “a permutation method such as Anatomy would randomly pick groups of
transactions with distinct sensitive items, and permute these items among transactions, to reduce

the association probability between an individual transaction and a particular sensitive item” [25].



In other words, the sensitive information in each data set would be randomly distributed throughout
the transaction. This permutation method unfortunately limits the amount of useful information

that can be extracted.

Additionally, there are other privacy preserving techniques, used in other contexts such as
social networks [9] and supply chain management [11-13] [15-18]. In the real world, collaboration
of data between different parties for a business transaction is extremely necessary [25]. Due to
their collaboration, proprietary information is shared, thus increasing the chances that the
information could be exposed to the public. There are distributed optimization problems that can
be mitigated for “privacy-preserving horizontally partitioned linear program with arbitrary number

of equality and inequality constraints” [12].

7. Conclusion

Personal privacy cannot be completely guaranteed in any aspect in regards to online data or data
collected from industries. Even HIPAA and FERPA admit to not being able to 100% ensure data
anonymity [5]. The more ways data is manipulated to ensure privacy, the less useful it becomes to
researchers; a common ground needs to be achieved. K-Anonymity and adding noise to data is
effective, but unfortunately they both have flaws. The homogeneity attack and the background
knowledge attack prevent k-Anonymity from being utilized to the full extent due to the possibility
of linkage. Adding noise to the data is another useful way to attempt to achieve full data

confidentiality, but then again data integrity is compromised.
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