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Abstract 
 

 

 Everyone’s personal privacy is extremely vital and people go through great lengths to 

ensure that their information is secure. Corporations who collect or utilize data do realize this and 

strive to protect their customer’s information. But can data be released to research companies 

without jeopardizing the privacy of the people? The more sensitive the released data is, the more 

companies have to mitigate the probability of being able to link the data together.  Companies 

collect big data because it can be examined to predict patterns and be used for marketing, thus 

increasing their chances of becoming successful. To replicate the data companies and academic 

institutions collect, I will randomly simulate the information. The data I will use is not real; it 

cannot be linked to any actual persons. Additionally, I will discuss what methods are currently 

being used to anonymize data and why it is important to minimize the risk of linkage and leakage.  
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1. Introduction  

As technology is becoming more advanced, retaining personal privacy has proven to become 

severely more challenging. Every time any type of transaction takes place, sensitive data is 

exchanged and undergoes the possibility of being exposed. Attaining privacy can be described as 

“not having undocumented personal knowledge about one, possessed by others” [24]. A person’s 

security and privacy significantly plummet as their information becomes more exposed. This could 

happen through newspapers, public voting lists, or any other type of legitimate document. For 

example, I ordered the Voter Registration Data from the New York State Board of Elections. I 

received the data set of everyone in Albany, who registered as a Democrat or a Republican. This 

information was mailed free to me within two days. The reason I was able to receive this 

information is because of the Freedom of Information Act (FOIA) [28]. This act says that any 

person has the right to access federal agency records, “except to the extent that such records are 

protected from public disclosure”. This made it very simple for me to request the voting records.  

On the diskettes came the first and last names of each voter, his/her address, his/her town, and 

his/her area code. Depending on each state’s rules, this could be possible across the United States. 

This sensitive data is open to the public, and many people do not realize that their information is 

accessible.  

Furthermore, retaining complete privacy is debatably impossible to achieve; there are no 

limits to the kinds of information that can be acquired just from a person’s physical appearance 

[24]. For example, if one was to meet a stranger in a local restaurant, many things could be derived 

from that interaction. Non-sensitive data such as his/her age, sex, hair color, or name can be noticed 

immediately. But afterwards, a simple internet search using the person’s name and approximate 



 
 

age could lead to finding sensitive information such as his/her address. Constantly, obtaining full 

privacy proves to be an ongoing challenge.  

Section 1.1: Netflix Scandal  

Ensuring privacy is extremely vital and when companies do not properly anonymize their data, 

lawsuits soon follow. Netflix, the famous on-demand movie streaming company, was sued and 

had to pay approximately $9 million for the exposure of their customers’ data [1]. This began when 

they held a competition in 2010, to see if there could be an improved way to produce “better 

recommendations than the movie giant could serve up themselves”. This led to two contestants 

and privacy researchers, Arvind Narayana and Vitaly Shmatikov, to realize that Netflix’s data was 

not secure. They “showed that a second set of information such as comments on the popular 

Internet Movie Database could help third parties triangulate the identity of the ‘anonymous’ 

Netflix customers” [1]. They realized that by using both the information publicly available to them 

from Netflix, and another well-known public movie site, they were able to de-anonymize Netflix’s 

customers. Millions of customers were affected by this because it was made possible to figure out 

their sexual preferences based on the movies they watched [23]. Additionally, AOL faced a similar 

privacy scandal. The AOL researchers released at least three months’ worth of query logs to a 

website that is publically accessible [6, 7]. Even though personal identifying attributes were not 

exposed for the just under a quarter of a million users, there was still enough data to discern an 

individual’s identity. AOL ended up withdrawing the information, but not before many people had 

a chance to download it. This raw data and even movie preferences turned out to be sensitive 

information, which is why there are various methods to protect such data [14, 19, 20].  

 

 

 



 
 

Section 1.2: Sensitive and Non-Sensitive Information 

Sensitive data is defined as “any data that compromises with respect to confidentiality, integrity, 

and/or availability that could adversely affect COV interests, the conduct of Agency programs, or 

the privacy to which individuals are entitled” [25]. In other words, this is information that one 

would not normally know from just looking at a person. This includes personally identifiable 

information such as: financial transactions, social security numbers, medical history, criminal 

records, server names, or IP addresses [25]. This information is constantly at risk during everyday 

activities, from purchasing a cup of coffee with a credit card, to attending a university. Credit card 

information must be exchanged and sensitive academic records are collected at universities. This 

information is highly confidential mainly because it can lead to identity theft. On the other hand, 

“data that are intentionally made public are classified as not sensitive” [21]. If information is 

voluntary given or if it is a physical characteristic, the data will not be considered dangerous. 

However, it is possible to decipher sensitive information about a specific person even if only non-

sensitive data is given. This will be explained using simulated academic and health records.  

Section 1.3: Data Anonymization  

Data anonymization is the process of removing personally identifiable information (PII) from sets 

of data, so that the people who are described by the information can remain unknown [26]. Data 

is becoming more accessible over the internet, but most of the data has been limited and the 

personal identifiable information has been removed. This includes social security numbers or 

names paired with addresses. This anonymized data assurance protects the individuals’ 

information and ensures their privacy. This also allows the government to share limited sets of 

data without acquiring legal permission. This data is useful for researchers who analyze data, 

particularly in health care. The major issue is that even though the data has been limited and the 



 
 

PII’s have been removed, is it still possible to de-anonymize the information and have individual’s 

information exposed? 

 

2. Privacy Laws 

Section 2.1: FERPA  

Currently, data privacy is being regulated by the United States government through the Family 

Educational Rights and Privacy Act [2]. FERPA is a Federal law that “prohibits a school from 

disclosing personally identifiable information about students’ education records without the 

consent of a parent or eligible student, unless an exception to FERPA’s general consent rules 

applies” [2]. If any educational institution receives funds under any program run by the Department 

of Education, they are subject to FERPA. However, since private schools do not receive this 

funding, the protection rules do not apply to them. Even if a student is over the age of 18, a parent 

or legal guardian can still have access to their academic records because the schools’ data cannot 

be regulated by FERPA. For schools who do fall under that category, generally a student or parent 

would have to provide written consent to the school before the student’s education records could 

be disclosed. Many students going into college are about 18 years old, which makes them a legal 

adult. Even though a student is at least 18 and paying for his/her own university, a guardian can 

still have access to his/her personal academic information if the guardian claims the student as a 

dependent [2]. Regardless of the student’s want to keep his/her personal academic information 

private, FERPA allows such a loophole to exist. If the parent or guardian checks off the dependent 

box when they file their taxes, the student is extremely susceptible to their privacy being 

jeopardized.  

 

 



 
 

Section 2.2: HIPAA 

While FERPA protects student’s data, the Health Insurance Portability and Accountability Act 

(HIPAA) protects people’s medical data [5]. The rule “protects most individually identifiable 

health information held or transmitted by a covered entity or its business associate, in any form or 

medium, whether electronic, on paper, or oral” [5]. In other words, any information regarding an 

individual’s health condition cannot be exposed to others. HIPAA includes a de-identification 

standard; health information that does not detect a specific person or if there is no rational basis to 

believe that the information can be used to identify that individual, then it is not individually 

identifiable health information.  

There are two methods to achieve de-identification in accordance with the HIPAA Privacy 

Rule: expert determination and safe harbor [5]. The safe harbor method removes 18 types of 

identifiers such as names, all geographic subdivisions smaller than a state, telephones numbers, 

fax numbers, and biometric identifiers [5]. This prevents any actual knowledge residual 

information from identifying an individual. Unfortunately, de-identifying to this extreme leads to 

information loss and thus less useful information. It would not be able to be used for statistical 

analysis or for research purposes. On the other hand, the expert determination method is done by 

a hired professional. This expert generally has appropriate knowledge and experience with 

statistical data as well as how to apply such principles and methods. With this method, there is a 

very small risk that anticipated recipients could identify the individual. Experts determine, case by 

case, what information can be publicly displayed and what information should be suppressed or 

deleted.  

 

 

 



 
 

Section 2.3: Example of HIPAA Expert Determination Method 

 

Table 1: Identifiable and Sensitive Data 
Age (Years) Gender Zip Code Social Security  Diagnosis 

45 Female 13453 738493728 Breast Cancer 

23 Female 34573 516274857 HIV 

14 Male 12345 732536468 Diabetes 

56 Male 04564 019283746 Influenza 

       

 

The table above shows five different categories: age, gender, zip code, social security, and 

diagnosis. The non-sensitive data is the age, gender, and zip code, while the sensitive data is the 

social security number and the diagnosis. I am going to show how experts determine what 

information to suppress or anonymize using the expert determination method. Only one category, 

social security number, can pinpoint a single individual, so it should be immediately taken off. 

Now there is an age in years, gender, zip code, and diagnosis left. “It has been estimated that the 

combination of a patient’s date of birth, gender, and five-digit zip code is unique for over 50% of 

residents in the United States. This means that over half of U.S. residents could be uniquely 

described just with these three data elements” [4]. Because of this statistic, it is extremely vital for 

the expert to continue to mitigate the risk. The zip codes would be lessened to just three digits, and 

even with a year of birth and gender, risk plummets to 0.04%. With risk still being too high, the 

age in years could be more generalized. The ages can be ‘below 21’, ‘between 21 and 34’, and so 

on. The expert would then use his/her judgment and evaluate if even gender, with the other 

attributes, could still uniquely identify an individual. When an expert evaluates each person’s 

information, there is always a chance that the expert could make a mistake simply due to human 

error. Their error has been classified as ‘very small’ and there is not an explicit numerical value to 

associate it with. The environment and context when identifying risk may not be appropriate for 



 
 

the same data. Thus, it is up to an expert to deem the ‘very small’ risk; it is solely up to their 

discretion.  After evaluating the specific situations, the end result could look like this: 

Table 2: Anonymized Data 
Age (Years) Zip Code Diagnosis 

45 and over 134 Breast Cancer 

Between 21 and 34 345 HIV 

Under 21 123 Diabetes 

45 and over 045 Influenza 
  

      

 

       

3. Anonymization of Academic Records 

Similar to determining personal information from health care information, it is also possible to 

determine such information from academic data. I created a simulation of data that is completely 

randomized. Using the random generator function, I associated each number with its 

corresponding letter grade. For example an ‘A+’ was a ‘1’, an ‘A’ was a ‘2’, an ‘A-‘was a ‘3’ and 

so on. I paired the most common American names with each student and also randomly generated 

if they were from out of state or in state (note that the table is shown on the next page). 

This hypothetical data set is similar to ones you would see as a professor or teacher. This 

information is extremely personal, as it shows who the person is and his/her grades in every single 

class. This is untouched and raw information, meaning that before it is released to the public or 

collected by the government, it needs to be anonymized. According to the Freedom and 

Information Act, information should be able to be accessible by all citizens, thus it needs to be 

publishable [28].  

 The raw data makes it readily available for personal identifiable information to be released. 

Similar to the expert determination method from the Health Insurance Portability and 

Accountability Act (HIPAA), making the information general and anonymous is key [5]. I took 

just the first 14 students to show some changes after I generalized the information. Instead of 



 
 

having names of the students, I changed the data so that it showed an “M” for male, and an “F” for 

female.  

Table 3: Hypothetical Student’s Grades 
Students In/Out of State Grade 1 for Course 1 Grade 2 for Course 2 Grade 3 for Course 3 Grade 4 for Course 4 Grade 5 for Course 5

Noah In F D A F B

Sophia In A B- C+ D D-

Liam In C- C+ B- A+ A

Emma In A- C+ F A A-

Jacob In D C+ B- A+ C

Olivia In C D- C- C+ C

Mason Out A+ B A B+ D+

Isabella Out D B D D+ C

Ethan In C+ A B- B A-

Ava In C A A- C+ A-

Michael Out C+ A C+ C+ D-

Mia In B- D+ C A- A-

Alexandar In A- B C- C+ A-

Emily In A B+ F B D-

Jayden In D A- A- B A

Abigail In D- C+ C+ D- C-

Daniel Out A D+ B A+ C+

Madison In A+ B A- C+ F

Elijah Out C- A+ B B+ F

Elizabeth Out B+ D A+ D+ C-

Aiden In B B- A- C B-

Charlotte Out A B B- A+ B+

James Out D- A- B+ A A+

Avery In A+ C+ A C D

Benjamin Out C B- D- D- D

Sofia Out B+ A+ C+ D- C-

Matthew In A A+ D+ A- B-

Chloe In A- B+ F D C

Jackson Out C C+ B- C+ A

Ella In C C- D A D+

Logan Out B- A- B+ C+ B+

Harper In A- B+ B+ C D-

David Out C B+ B A B+

Amelia In B B+ B- C+ D-

Anthony Out A F A B+ A-

Aubrey In A C- D+ B- A

Joseph In C B B B- D+

Addison Out A F F A- B+

Joshua Out A- A+ C+ B B

Evelyn In B+ B- A+ C+ C+

Andrew In A B D F D-

Natalie In A A+ C D- B-

Lucas In D- D+ A+ C+ B

Grace In A- A B D+ F

Gabriel Out A A- B+ A+ C+

Hannach Out A- C A+ C- A+

Samuel In A- D- D+ F F

Zoey In B B+ A+ C D-

Christopher In D- A- A- D D-

Victoria Out D+ B B+ A+ C+



 
 

Table 4: 1st Step in Anonymizing Data 

 

Additionally, I made the letter grades more general, without losing the integrity of the 

information. For example, all A-‘s and A+’s, were changed to A’s; all B-’s and B+’s were changed 

to B’s. I kept the in and out of state column, but it can be argued that it is too specific, even if it 

does  not say  what state/country specifically the person comes from.  

If concerns are still present, I took the next step in anonymizing the data (note that the table 

is shown on the next page). Going off from the last step, I took the A and B grades and changed 

them to be higher than a B (B+), the C and D grades and changed them to D+, and kept the F’s. 

Making the information more general reduces the possibility of someone being able to link the 

information back to a specific person, however it greatly reduces the usefulness. Companies or 

governments that analyze data would get more use out of the raw data, because finding patterns 

would be significantly easier.  

Students In/Out of State Grade 1 for Course 1 Grade 2 for Course 2 Grade 3 for Course 3 Grade 4 for Course 4 Grade 5 for Course 5

M In F D A F B

F In A B C D D

M In C C B A A

F In A C F A A

M In D C B A C

F In C D C C C

M Out A B A B D

F Out D B D D C

M In C A B B A

F In C A A C A

M Out C A C C D

F In B D C A A

M In A B C C A

F In A B F B D



 
 

Table 5: Final Anonymization of Data 

 

Section 3.1: Exceptions  

The entire idea behind anonymizing data is to limit the probability of another person being able to 

link sensitive data to a specific person. Privacy needs to be upheld, but there are sometimes 

exceptions even with proper data anonymization. For instance in the previous example, Table 5, 

the data went through several steps of removing linkage and leakage. It seems reasonably safe to 

be published and the integrity of the data has not been altered to a significant extent.  But looking 

more closely into it, there are only three F’s in Table 5, making linking extremely easy. 

Hypothetically, if I was in course three with my friend Michelle, and I was very aware she did not 

study for any test, it is safe to assume she received an F. From this assumption, since Michelle is 

the only student with an F in course three, her other grades in all of her courses can be found. In 

other words, there is always going to be outliers in data anonymization. It might not always be this 

extreme and able to be narrowed down to one person, but it is still an exception to acknowledge. 

Overall, privacy has been improved but it is not guaranteed for every individual, and in this specific 

case, every student.  

 

Grade 1 for Course 1 Grade 2 for Course 2 Grade 3 for Course 3 Grade 4 for Course 4 Grade 5 for Course 5

F D+ B+ F B+

B+ B+ D+ D+ D+

D+ D+ B+ B+ B+

B+ D+ F B+ B+

D+ D+ B+ B+ D+

D+ D+ D+ D+ D+

B+ B+ B+ B+ D+

D+ B+ D+ D+ D+

D+ B+ B+ B+ B+

D+ B+ B+ D+ B+

D+ B+ D+ D+ D+

B+ D+ D+ B+ B+

B+ B+ D+ D+ B+



 
 

4. Attaining Full Data Anonymization  

Section 4.1: How Privacy can be Protected 

Privacy can be protected overall by reducing the probability of data linkage from something high, 

to something much lower. Optimizing the utility regarding privacy is important and can be defined 

as a “service to satisfy some human want” [27]. As previously stated, the combination of a 

patient’s birthday, gender, and zip code is unique for at least half of the people in the United States 

[4]. From this statistic, there is an extremely high probability that someone can figure out sensitive 

information by knowing this data. The whole idea of privacy protection is to mitigate this risk. 

When the zip code given is three digits, the year of birth is presented, and the gender is shown, the 

risk of linkage drastically drops to 0.04% [4]. This significant drop is a great improvement, and 

the entire idea behind privacy protection. With any data relevant to a single person, the goal is to 

make the linkage statistic to as close to 0.00% as physically possible.  Even though there are 

drawbacks, knowing this information is limited but overall utility can be attained.  

Section 4.2: K-Anonymity  

K-Anonymity has been commonly used to anonymize data [26]. It can be defined as where 

attributes are suppressed or generalized until each row is identical with at least k-1 other rows. The 

bigger the k is the better; that means there are more similar records. This makes it harder to 

differentiate between individual records. This prevents data linkages and in the worst case scenario, 

it can narrow down data to a group of k [26].  There are two common ways to achieve k-anonymity: 

suppression and generalization. Suppression is when certain values of the attributes are left 

purposely blank or only an asterisk is present. For example, if there is an attribute called “Name”, 

the contents would be replaced with an * to prevent linkage. Instead of the data showing the name 

“Mary”, the cell would simply show “*”. Generalization is when individual values of attributes 

are replaced with a less specific category. For example, within an attribute of “Age”, instead of an 



 
 

age of “21” being shown, it would be changed from age “20 to 30”. Utility is sacrificed in both of 

these examples but it must be completed to retain privacy. With every anonymization method, 

there are various flaws that people can still utilize to attain personal information.  

Section 4.3: Attacks on k-Anonymity 

There are two major attacks on k-Anonymity protecting privacy: the homogeneity attack and the 

background knowledge attack [21] [3]. The homogeneity attack can take place if the sensitive 

values in an attribute lack diversity. Referencing the table below, with big data there could be 

instances where the information is the same. Three different people who live in the same area code 

and who are no more than ten years apart from each other all have malaria. If the diseases were 

different, then it would be impossible to link a person with a disease, but since the diseases are the 

same, the k-Anonymity attempt it flawed. If I knew someone in my town with the same first three 

letters of the zip code and who was 67, it would be safe to assume that that person has malaria. 

Usually data is significantly bigger than Table 6, however it is possible to narrow down this 

information by just knowing basic information about the specific individual.   

Table 6: Healthcare Data 

 

 

 

Another attack on k-anonymity is the background knowledge attack [21] [3]. This occurs 

when the attacker knows some information about the person he/she is trying to gain more 

knowledge on. “K-anonymity does not prevent against other attacks in which an adversary 

equipped with public knowledge can associate fewer than k transactions with an individual” [10]. 

Zip Code Age Disease

110** 6* Malaria

110** 6* Malaria

110** 6* Malaria

111** 7* Heart Disease

111** 7* Heart Disease

111** 5* Cancer



 
 

For instance, if you want to know what illness is preventing your boss from coming to work, you 

already have information on that person. If you have been to his/her house before, then you already 

know that the zip code is 11124. Additionally, through a previous casual conversation you find out 

that your boss is 71. With this background knowledge that did not take much effort to find out, the 

only option is that your boss has a heart disease. The ability to link already known information 

with publicly available information is a huge flaw, and it is a concern when using k-anonymity.  

 

5. Advanced Privacy Notion for Statistical Information Disclosure   

Section 5.1: Differential Privacy 

“Differential privacy is a rigorous notion of privacy that allows statistical analysis of sensitive data 

while providing strong privacy guarantees even in the presence of an adversary armed with 

arbitrary auxiliary information” [3]. Overall, differential privacy is a statistical form of protecting 

data even when an attacker with outside knowledge tries to leak it. It can be explained by utilizing: 

Pr[A(D1) ∈ S] ≤ e
∈ x Pr[A(D2) ∈ S], which ensures that even two different records, when 

anonymized, have similar if not the same outcome. Laplacian noise is a major randomized 

algorithm that is used to satisfy differential privacy. There is a tradeoff between the accuracy of 

the information and the utility. Applying the noise to attain differential privacy is a sacrifice used 

to retain utility for personal privacy.  

Section 5.2: Laplacian Noise 

Another way to try to preserve the anonymity of data is to add ‘noise’ to the information [3]. The 

raw information is presented below. It shows the courses that each student took from the original 

data, and it shows how many times the students received a specific letter grade.  



 
 

Table 7: Sum of Student’s Grades  

This information is not only important to students wanting to know where they stand in a 

class, but it is also important to academic officials. The data answers many questions such as are 

the professors too hard, is the class too easy, should we fire this specific professor, and so on. This 

raw data cannot be released because students can use background knowledge to link who received 

what grades in their classes. In order to anonymize the data, noise can be added to the numbers. 

This is done by using C + Lap (d/∈) [3]. The “d” represents the maximum sensitivity between 

sets; if the d is large, the amount of noise is large which ensures the same level of privacy 

guaranteed. e
∈

 shows the probability of how close together the sets are to each other. To retain 

privacy, a smaller number would be more ideal because that proves that individuals have very 

similar attributes and cannot be distinguished from one another. Noise can be the same statistical 

number applied to each entry. This noise is random and can prevent attackers from linking the data, 

while still preserving its utility.  

Table 8 below shows the anonymized data using the epsilon equal to 1.5. To add some 

noise to the data, I took each number and added it to Lap(d/Ԑ). For example, in course one in digital 

forensics 100, the amount of A+’s is 11; 11+ Lap(1/ Ԑ) is equivalent to 12 where Ԑ is equal to 1.5. 

This does not lose the integrity of the data as many other methods do so; the data is difficult to 

decipher once altered. Any random number that does not affect the integrity of the data can be 

Courses Class Equivilant  A+'s A's A-'s B+'s B's B-'s C+'s C's C-'s D+'s D's D-'s F's

Course 1 Digitial Forensics 100 11 14 12 4 14 4 4 11 5 2 6 6 7

Course 2 Nutrition 103 6 12 9 11 11 6 10 5 6 5 10 7 2

Course 3 Finance 111 9 9 8 8 6 13 13 5 6 8 4 4 7

Course 4 Marketing 101 14 9 7 5 7 8 17 9 5 5 3 4 7

Course 5 Computer Science 122 5 5 7 6 8 8 10 6 9 8 4 15 9



 
 

used. Even though the raw data would be more useful in predictions and for studying, it still allows 

for the significant information to be valid.  

Table 8: Anonymized Data with Epsilon = 1.5 

 

6. Future Work 

It was just shown that in any anonymization case there can be outliers, and the best course of action 

is to mitigate the existing ones. There are some outliers that cannot be protected, thus new 

technology is constantly being created. Aside from k-anonymity, there have been other ways to 

combat the linkage of sensitive data. “To address this privacy threat, one solution would be to 

employ L-diversity: a well-established paradigm in relational data privacy, which prevents 

sensitive attribute (i.e. item) disclosure” [25]. Generalization and permutation-based L-diversity 

are the only two categories that exist. With the generalization category, which is similar to the 

generalizing information using k-anonymity, unique data would be analyzed. This unique data 

would either be combined with other persons within the same category, making the probability of 

linking limited, or removing the category if too unique. When the latter is used “it is likely that 

any generalization method would incur extremely high information loss, rendering the data useless” 

[25]. On the other hand, “a permutation method such as Anatomy would randomly pick groups of 

transactions with distinct sensitive items, and permute these items among transactions, to reduce 

the association probability between an individual transaction and a particular sensitive item” [25]. 

Courses Class Equivilant  A+'s A's A-'s B+'s B's B-'s C+'s C's C-'s D+'s D's D-'s F's

Course 1 Digitial Forensics 100 12 14 12 4 13 5 3 11 6 3 5 6 8

Course 2 Nutrition 103 7 11 9 12 11 8 9 4 6 5 11 6 2

Course 3 Finance 111 9 10 9 8 6 13 12 5 6 9 5 5 8

Course 4 Marketing 101 12 8 7 6 6 8 15 9 4 4 4 5 8

Course 5 Computer Science 122 5 5 9 8 5 8 11 6 11 8 5 17 8



 
 

In other words, the sensitive information in each data set would be randomly distributed throughout 

the transaction. This permutation method unfortunately limits the amount of useful information 

that can be extracted.  

 Additionally, there are other privacy preserving techniques, used in other contexts such as 

social networks [9] and supply chain management [11-13] [15-18]. In the real world, collaboration 

of data between different parties for a business transaction is extremely necessary [25]. Due to 

their collaboration, proprietary information is shared, thus increasing the chances that the 

information could be exposed to the public.  There are distributed optimization problems that can 

be mitigated for “privacy-preserving horizontally partitioned linear program with arbitrary number 

of equality and inequality constraints” [12].  

 

7. Conclusion 

Personal privacy cannot be completely guaranteed in any aspect in regards to online data or data 

collected from industries. Even HIPAA and FERPA admit to not being able to 100% ensure data 

anonymity [5]. The more ways data is manipulated to ensure privacy, the less useful it becomes to 

researchers; a common ground needs to be achieved. K-Anonymity and adding noise to data is 

effective, but unfortunately they both have flaws. The homogeneity attack and the background 

knowledge attack prevent k-Anonymity from being utilized to the full extent due to the possibility 

of linkage. Adding noise to the data is another useful way to attempt to achieve full data 

confidentiality, but then again data integrity is compromised. 
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