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HERMITE POLYNOMIALS AND SYLVESTER TYPE
DETERMINANTS

KELLY C. STANGE

Abstract. In this paper, we first recall Hermite polynomials, a particular family
of orthogonal polynomials. We then evaluate their recurrence relations in terms of
Sylvester type determinants of a certain tridiagonal matrix.

1. Introduction

Using orthogonal polynomials, R. Askey [3] evaluated the determinants

(1.1) DN+1(x) =

∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 ... 0 0 0
N x 2 0 ... 0 0 0
0 N − 1 x 3 ... 0 0 0
...
0 0 0 0 ... 2 x N
0 0 0 0 ... 0 1 x

∣∣∣∣∣∣∣∣∣∣∣
,

These determinants were first considered by J. Sylvester in [6]. In addition, he obtained
several generalizations of Sylvester type determinants and explored their connection to
orthogonal polynomials [3].

Following the work of Askey [3], we will examine the Hermite polynomial in this
matter. The Hermite polynomial of degree n is defined by

(1.2) Hn(x) = (−1)nex
2 dne−x

2

dxn
.

Hermite polynomials play an important role in probability theory and other areas
of mathematics. For example, they arise in the Edgeworth and Gram-Charlier series:
series that approximate a probability distribution using cumulants instead of moments.
Gram-Charlier series are discussed at length by P. Hall [4].

The goal of the present paper is to evaluate the recurrence relation satisfied by
the Hermite polynomial defined in (1.2) using Sylvester type determinants of certain
tridiagonal matrices. More precisely, we prove the following
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2 KELLY C. STANGE

Theorem 1.1. One has

(1.3)
Hn+1(x)

2n+1
=

∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 ... 0 0 0
1
2

x 1 0 ... 0 0 0
0 1 x 1 ... 0 0 0
...

0 0 0 0 ... (n−1)
2

x 1
0 0 0 0 ... 0 n

2
x

∣∣∣∣∣∣∣∣∣∣∣∣
.

This result is not new; it is a special case of results in [3]. However, we believe that
concentrating on this special case allows one to see the ideas of [3] more clearly.

We close the introduction with a brief synopsis of the paper. In §2, we will discuss
some basic properties of orthogonal polynomials, Hermite polynomials, and Sylvester
type determinants of tridiagonal matrices. In §3, we shall describe the three term
recurrence relation of the Hermite polynomials. Finally, in §4, we prove Theorem 4.1.

2. Preliminaries

2.1. Orthogonal polynomials. Recall the definition of the orthogonal polynomials:

Definition (Definition 5.2.1[1]). We say that a sequence of polynomials pn(x)n∈Z>0
∈

R[x], where pn(x) has exact degree n, is orthogonal with respect to the weight function
ω(x) if there is a sequence of real numbers hn such that

(2.1)

∫ b

a

pn(x)pm(x)ω(x)dx = hnδmn.

Here as usual δmn = 1 if m = n, and δmm = 0 if m 6= n.

Remark. Note that the range of the integral may be infinite.

It is well–known that the sequence {pn(x)} satisfies a three-term recurrence relation.

Theorem 2.1 (Theorem 5.2.2 [1]). Let {pn(x)} be a sequence of orthogonal polynomi-
als. There are real numbers an, bn, cn indexed by n ∈ Z≥0 such that

(2.2) pn+1(x) = (anx+ bn)pn(x)− cnpn−1(x) for all n ≥ 0,

where we set p−1(x) = 0. Moreover,

an−1ancn > 0,

for n ≥ 1 and if the highest coefficients of pn(x) is kn > 0, then

an =
kn+1

kn
, cn+1 =

an+1

an

hn+1

hn
,

where hn is given by (2.1).
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2.2. Hermite polynomials. The normal integral
∫∞
−∞ e

−x2
dx plays a fundamental

role in probability theory. Moreover the integrand e−x
2

has interesting properties. For
example, it is basically its own Fourier transform [1, (6.1.1)]:

(2.3) e−x
2

=
1√
π

∫ ∞
−∞

e−t
2

e2ixtdt.

The Hermite polynomials Hn(x) defined in (1.2) are orthogonal polynomials with

respect to the weight function w(x) = e−x
2

[1]. It is easy to check that Hn(x) is a
polynomial in x of degree n. The first eleven Hermite polynomials are as follows:

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x,

H4(x) = 16x4 − 48x2 + 12,

H5(x) = 32x5 − 160x3 + 120x,

H6(x) = 64x6 − 480x4 + 720x2 − 120,

H7(x) = 128x7 − 1344x5 + 3360x3 − 1680x,

H8(x) = 256x8 − 3584x6 + 13440x4 − 13440x2 + 1680,

H9(x) = 512x9 − 9216x7 + 48384x5 − 80640x3 + 30240x,

H10(x) = 1024x10 − 23040x8 + 161280x6 − 403200x4 + 302400x2 − 30240.

Note that the Hermite polynomials have a simple generating function [1, (6.1.7)],
namely

(2.4)
∞∑
n=0

Hn(x)

n!
rn = e2xr−r

2

.

By writing

e2xr−r
2

=
∞∑
p=0

(2x)p

p!
rp
∞∑
q=0

(−1)qr2q

(2q)!

and equating the coefficient rn on each side, we obtain

(2.5) Hn(x) =

n/2∑
k=0

(−1)kn!

k!(n− 2k)!
(2x)n−2k.

From (2.5), it is clear that H2n(x) is an even function and H2n+1(x) is an odd function.
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2.3. Sylvester type determinants. The determinant DN+1(x) defined in (1.1) sat-
isfies that DN+1(x) = (x−N)DN(x+ 1). This gives

(2.6) DN+1(x) =
N∏
j=0

(x+N − 2j)

(which is formulas (2.3), (2.4) from [3]). Another determinant of a tridiagonal matrix
is

AN+1(x) =

∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 ... 0 0 0
−N x− 2 2 0 ... 0 0 0

0 −N + 1 x− 4 3 ... 0 0 0
...
0 0 0 0 ... x− 2(N − 1) N
0 0 0 0 ... 0 −1 x− 2N

∣∣∣∣∣∣∣∣∣∣∣
and the value of AN+1(x) is given as

AN+1(x) = (x−N)N+1.

An outline of how to evaluate AN+1(x) was given on page 229 in [6]. Askey [3] connected
these Sylvester type determinants with orthogonal polynomials and obtained several
generalizations of Sylvester type determinants.

3. The three term recurrence relation of Hn(x)

Recall the orthogonality property of Hn(x):

Proposition 3.1 ((6.15) in [2]).

(3.1)

∫ ∞
−∞

Hn(x)Hm(x)e−x
2

dx = n!2n
√
πδmn.

Following the exposition of [2], an outline of the proof of this orthogonality relation
is as follows:

If m 6= n, applying integration by parts, we can quickly check that∫ ∞
−∞

Hn(x)Hm(x)e−x
2

dx = 0.

If m = n, we have that∫ ∞
−∞

Hn(x)Hn(x)e−x
2

dx =(−1)n
∫ ∞
−∞

dn

dxn
e−x

2

Hn(x)dx

=

∫ ∞
−∞

e−x
2 dn

dxn
Hn(x)dx,
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where in the last equality we used integration by parts. From (2.5), it follows that

(3.2)
dn

dn
Hn(x) = 2nn!

and therefore we obtain the result using the elementary fact that∫ ∞
−∞

e−x
2

dx =
√
π.

Hermite polynomials satisfy the three term recurrence relation given by the following
theorem:

Theorem 3.2 ((6.1.10) in [2]). Hn(x) satisfies that for n ≥ 1,

Hn+1(x)− 2xHn(x) + 2nHn−1(x) = 0.

Proof. Consider the generating function of Hn(x) as in (2.4). If we set

F (x, r) := e2xr−r
2

then it clear that F (x, r) satisfies the following differential equation:

δF

δr
− (2x− 2r)F = 0.

Therefore we have that

d

dr

(
∞∑
n=0

Hn(x)

n!
rn

)
− (2x− 2r)

∞∑
n=0

Hn(x)

n!
rn = 0.

A simple calculation shows that this is equal to
∞∑
n=0

Hn+1(x)− 2xHn(x) + 2nHn−1(x)

n!
rn = 0,

which gives the three term recurrence relation for Hn(x). �

4. The connection between Hn(x) and Sylvester type determinants

We restate the main theorem and prove it.

Theorem 4.1. One has

(4.1)
Hn+1(x)

2n+1
=

∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 ... 0 0 0
1
2

x 1 0 ... 0 0 0
0 1 x 1 ... 0 0 0
...

0 0 0 0 ... (n−1)
2

x 1
0 0 0 0 ... 0 n

2
x

∣∣∣∣∣∣∣∣∣∣∣∣
.
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Proof. We proceed by induction on n. Clearly it is true in the case n = 0, since we

have that H1(x)
2

= x. Assume that

Hm(x)

2m
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 ... 0 0 0
1
2

x 1 0 ... 0 0 0
0 1 x 1 ... 0 0 0
...

0 0 0 0 ... (m−2)
2

x 1
0 0 0 0 ... 0 m−1

2
x

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

for m ≤ n. Now we want to evaluate the determinant

(4.2)

∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 ... 0 0 0
1
2

x 1 0 ... 0 0 0
0 1 x 1 ... 0 0 0
...

0 0 0 0 ... (n−1)
2

x 1
0 0 0 0 ... 0 n

2
x

∣∣∣∣∣∣∣∣∣∣∣∣
.

We will use the cofactor expansion method along the last column of (4.2). Then we
obtain that∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 ... 0 0 0
1
2

x 1 0 ... 0 0 0
0 1 x 1 ... 0 0 0
...

0 0 0 0 ... (n−1)
2

x 1
0 0 0 0 ... 0 n

2
x

∣∣∣∣∣∣∣∣∣∣∣∣
=x

∣∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 ... 0 0 0
1
2

x 1 0 ... 0 0 0
0 1 x 1 ... 0 0 0
...

0 0 0 0 ... (n−2)
2

x 1
0 0 0 0 ... 0 n−1

2
x

∣∣∣∣∣∣∣∣∣∣∣∣∣

+ (−1)2n

∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 ... 0 0 0
1
2

x 1 0 ... 0 0 0
...
0 0 0 0 ... x 1 0

0 0 0 0 ... (n−2)
2

x 1
0 0 0 0 ... 0 0 n

2

∣∣∣∣∣∣∣∣∣∣∣∣

=x
Hn(x)

2n
+

∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 ... 0 0 0
1
2

x 1 0 ... 0 0 0
...
0 0 0 0 ... x 1 0

0 0 0 0 ... (n−2)
2

x 1
0 0 0 0 ... 0 0 n

2

∣∣∣∣∣∣∣∣∣∣∣∣
,
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where in the last equality we used the induction hypothesis. In order to evaluate the
last determinant, we again apply the cofactor expansion to the later determinant along
the last row of it. Therefore we have that∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 ... 0 0 0
1
2

x 1 0 ... 0 0 0
...
0 0 0 0 ... x 1 0

0 0 0 0 ... (n−2)
2

x 1
0 0 0 0 ... 0 0 n

2

∣∣∣∣∣∣∣∣∣∣∣∣
=
n

2

∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 ... 0 0 0
1
2

x 1 0 ... 0 0 0
...
0 0 0 0 ... x 1 0

0 0 0 0 ... (n−3)
2

x 1
0 0 0 0 ... 0 n−2

2
x

∣∣∣∣∣∣∣∣∣∣∣∣
=
n

2

Hn−1(x)

2n−1 .

All together we derive that∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 ... 0 0 0
1
2

x 1 0 ... 0 0 0
0 1 x 1 ... 0 0 0
...

0 0 0 0 ... (n−1)
2

x 1
0 0 0 0 ... 0 n

2
x

∣∣∣∣∣∣∣∣∣∣∣∣
=
xHn(x)

2n
+
nHn−1(x)

2n

=
2xHn(x) + 2nHn−1(x)

2n+1

=
Hn+1(x)

2n+1
,

where in the last equality we use the three term recurrence relation for Hn(x).
In all, we derive that

(4.3)
Hn+1(x)

2n+1
=

∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 ... 0 0 0
1
2

x 1 0 ... 0 0 0
0 1 x 1 ... 0 0 0
...

0 0 0 0 ... (n−1)
2

x 1
0 0 0 0 ... 0 n

2
x

∣∣∣∣∣∣∣∣∣∣∣∣
.

�

Here are some examples of expansions:
In case n = 1, we have that

H2(x)

22
=

∣∣∣∣ x 1
1
2

x

∣∣∣∣ = x2 − 1

2
.

Hence we have that H2(x) = 4x2 − 2.
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If n = 2, we have that

H3(x)

23
=

∣∣∣∣∣∣
x 1 0
1
2

x 1
0 1 x

∣∣∣∣∣∣
=0 ·

∣∣∣∣ 1 0
x 1

∣∣∣∣− ∣∣∣∣ x 0
1
2

1

∣∣∣∣+ x ·
∣∣∣∣ x 1

1
2

x

∣∣∣∣
=− x+ x(x2 − 1

2
) = x3 − 3x

2
.

Therefore H3(x) = 8x3 − 12x as desired.
For n = 3, we have that

H4(x)

24
=

∣∣∣∣∣∣∣∣
x 1 0 0
1
2

x 1 0
0 1 x 1
0 0 3

2
x

∣∣∣∣∣∣∣∣
= x

∣∣∣∣∣∣
x 1 0
1 x 1
0 3

2
x

∣∣∣∣∣∣−
∣∣∣∣∣∣

1
2

1 0
0 x 1
0 3

2
x

∣∣∣∣∣∣
= x2

∣∣∣∣ x 1
3
2

x

∣∣∣∣− x ∣∣∣∣ 1 1
0 x

∣∣∣∣− 1

2

∣∣∣∣ x 1
3
2

x

∣∣∣∣+

∣∣∣∣ 0 1
0 x

∣∣∣∣
= x2(x2 − 3

2
)− x2 − x2

2
+

3

4

= x4 − 3x2 +
3

4
.

Hence we obtain that H4(x) = 16x4 − 48x2 + 12.
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