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Abstract 
 

Raman spectroscopy is a reliable, nondestructive method of identifying and distinguishing 
between different types of biological fluids. However, forensic studies have been restricted to 
indoor desktop Raman instruments when it would be optimal if Raman spectroscopic analysis 
could be performed at a crime scene. The CBex Handheld Raman Instrument was developed as a 
portable tool that could perform Raman spectroscopy outside the lab. Unfortunately, the CBex 
cannot obtain viable spectra of biological fluids. The handheld was compared to the Renishaw 
invia Raman Microscope by quantifying the signal-to-noise ratio of each by acquiring Scotch 
tape spectra. The handheld has a significantly lower detector sensitivity than the desktop and 
cannot take viable spectra over an integration time of 2.5s without reducing the laser power. 
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Introduction to Raman Spectroscopy 

Spectroscopy refers to the study of how light interacts with matter. In the field of 

chemistry, different types of spectroscopy are useful in identifying compounds and their unique 

properties. Raman spectroscopy is a fairly recent technique credited to Indian physicist, Dr. C.V 

Raman, in 1928. However, practical use of Raman spectroscopy was not available until the 

1960s when laser systems were developed.1 In the 1970s, Raman spectroscopy was further 

improved by combining the laser system with the microscope, which increased the focusing 

capabilities and boosted the detected signal.2 Today Raman spectroscopy is regarded as one of 

the most versatile methods of substance identification, making it highly desirable for forensic 

chemistry applications. 

Raman spectroscopy works through the concept of the Raman effect, which is based on 

molecular deformations in the electric field as determined by molecular polarizability. In other 

words, when a strong light source, such as a laser, hits a substance there is light scattering that is 

unique to the substance’s molecular composition. The laser causes the molecules to be excited 

and vibrate at a certain frequency. After excitation, there are three possibilities when the 

absorbed electromagnetic radiation is reemitted: Rayleigh scattering, Stokes scattering, and 

Anti-Stokes scattering.3  

Rayleigh scattering occurs when a molecule absorbs a photon of a certain frequency and 

then emits this energy at the same frequency. This is considered elastic light scattering since no 

energy is lost and makes up for 99.999% of light scattering involved.1 Raman spectroscopy does 

not consider Rayleigh scattering as significant data since there is no observable change in 

frequency. This is why Raman spectroscopy was not practical until the development of the laser 
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system as a strong light source. By increasing the strength of the light source, the probability of 

detecting inelastic light scattering, Stokes and Anti-Stokes scattering, increases enough for 

applicable use. Stokes scattering is when the emitted photon has a lower frequency than the 

absorbed photon. This is due to the loss of energy to the Raman-active mode in the molecule. 

Anti-Stokes scattering is when the emitted photon has a higher frequency than the absorbed 

photon, due to the absorption of excess energy while already in an excited state. Stokes 

scattering is much more common than Anti-Stokes scattering, as it it much easier to lose energy 

than to store excess energy.3 

Rayleigh scattering is a major problem when collecting Raman spectra. It is crucial for 

Raman instrumentation to have the appropriate wavelength filters and detectors. Otherwise the 

Raman instrument will be unable to discern stray light from the desired inelastic scattering, and 

thus be rendered incapable of acquiring viable spectra.1 Later this will come into play when 

discussing the capabilities of the new CBex Handheld Raman Instrument, but first the 

capabilities of the well-established Raman technology should be established. 
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Applications of Raman Spectroscopy 

The ability for a Raman microscope to distinguish between bodily fluids in a quick, 

non-destructive manner without the need for sample pretreatment makes Raman spectroscopy an 

invaluable method for crime scene investigations.4 Our lab has completed many studies to 

determine the numerous applications of Raman spectroscopy for real-world forensic purposes. 

There have been studies about differentiating between a wide range of bodily fluids such as 

blood, sweat, saliva, semen, and vaginal fluid.5,6 Mixtures of fluids can be identified through 

unique characteristics of each component and samples containing contaminants, like sand, dust, 

and soil, can still be identified.7 This is important because bodily fluids found at a crime scene 

are not realistically collected as perfectly isolated samples. 

Raman spectroscopy is so specific in distinguishing molecules that it is possible to 

characterize different types of the same bodily fluid, such as blood. For instance, Raman 

spectroscopy can distinguish between peripheral blood and menstrual blood based on the slight 

variation of present proteins.8 The relative age of the bloodstain can also be determined because 

blood changes in composition over time.9 Raman spectroscopy can even differentiate between 

blood samples of people of different races.10 Based off of a small sample of blood, Raman 

spectroscopy makes it possible to contribute invaluable information about the extent of the crime 

and the people involved. 

 

  

6 



The Development of a Portable Raman Device 

Huge strides have been made in Raman forensic research. However, all of these studies 

were performed using a desktop Raman microscope, thus begging the question of how Raman 

spectroscopy could be brought out into the field for a faster analysis of evidence. This began the 

development of portable Raman instruments that could be used directly at a crime scene. One 

such instrument is the CBex Handheld Raman Instrument, complete with a 785 nm laser with a 

maximum power of 50 mW. While not technically a Raman microscope with its absence of an 

objective lens, the CBex handheld can perform Raman spectroscopy by pointing the laser at the 

sample in order to produce the necessary inelastic photon scattering.11 

Unfortunately, the CBex handheld could not identify bodily fluids, such as semen, unlike 

a Raman microscope. A previous study of the CBex demonstrated the poor detector sensitivity 

by comparing the acquired spectra of dried semen between the handheld and the Renishaw invia 

Raman microscope. The thickness of the accumulation of 18 µL of semen was not enough for the 

handheld to analyze properly.12 
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Wavenumber 

Figure 1: Comparison of semen spectra taken with the Renishaw invia Raman Microscope and  

    the CBex Handheld Raman Instrument 12 

Samples of Scotch tape were used to determine the minimum thickness required for the 

entirety of the sample to be saturated with photons in order to obtain proper spectra. Scotch tape 

was used due to its strong Raman effect and that each layer had a known thickness of 78.74 

microns. The minimum thickness for the CBex to obtain an effective spectrum was was 1181.1 

microns, the equivalent of fifteen layers of tape.12 
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Layers of Tape 

Figure 2: The maximum intensity detected at the highest peak of the Scotch tape spectra  

    (811 cm-1). The intensity started to plateau at 15 layers of tape.12 

This information built the foundation for quantifying the difference in detector sensitivity 

between the CBex handheld and the desktop Raman microscope. This was done by finding the 

signal-to-noise ratio (SNR) for each instrument. As the name suggests, the SNR is the measure 

of how much of a signal can be detected apart from any background noise. As discussed 

previously, a detector in a Raman instrument must be able to differentiate between an actual 

signal from background radiation and Rayleigh scattering. Only then can the instrument acquire 

viable spectra.  
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Quantifying the SNR of the CBex Handheld and the Renishaw Microscope 

Ten glass slides were prepared with a layer of aluminum foil and then fifteen layers of 

Scotch tape. The aluminum helps to reduce background radiation, which is why most samples in 

Raman studies are prepared on top of aluminum. The fifteen layers of tape were carefully laid on 

top of each other to create a sample 1.2 mm thick. This ensured that the laser would saturate the 

sample with photons and the detector would receive as high of a signal as possible. 

The CBex handheld parameters were set to 785 nm laser with 50 mW of power. The 

Renishaw invia Raman microscope was also set to 785 nm laser with 65 mW of power using the 

20X objective. These settings minimized the difference between laser power to ensure that any 

difference in the spectra was due to the detector sensitivity. All the tape samples were measured 

at 1s, 2s, and 2.5s integration times to compare the SNR of each device. While increasing the 

integration time should boost the signal, the SNR should remain the same. Therefore, it was 

expected that there would be consistency in SNR across any integration time. The integration 

times would have been more evenly spread out, but the handheld was unable to acquire viable 

spectra at 3s integration time without chopping off the tops of the most intense peaks. This meant 

that the sample became oversaturated with photons, rendering the spectra inconclusive. The third 

integration time had to be reduced to 2.5s to eliminate this problem at this stage. This was an 

interesting limitation to the handheld that will be discussed more at length later. 

In order to obtain spectra, the handheld was clamped to a ring stand while plugged into 

the computer and the sample was placed on an adjustable stage. The stage had to be 

perpendicular to the laser for accurate results. To acquire the highest intensity, the stage was 
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moved up and down to bring the sample into focus. After the laser was in focus, the handheld 

took three accumulations and the resulting spectra were averaged together. This was repeated for 

each of the ten tape slides within each integration block. The SNR was calculated for each tape 

sample and then the SNR values for all ten were averaged together to determine the overall SNR 

for the integration time. This same procedure was repeated for the desktop microscope. 

In order to calculate the SNR from a tape spectrum, the signal and the area of noise had 

to be chosen. The main focus on the tape spectra was the peak of highest intensity at around 811 

cm-1, as determined by previous handheld data. The maximum intensity of this peak was 

compared to the average noise between 540-752 cm-1, where there are not any peaks as shown in 

Figure 3, in order to calculate the SNR. 

 
Figure 3: Raman spectrum of Scotch tape 
 

For each spectrum the amplitude of the 811 cm-1 peak was divided by the average 

amplitude of each peak between 540-752 cm-1. This value was then squared to find the SNR. 

After the SNR was calculated for each sample and the average SNR was found for each 
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integration time, the detector sensitivities of the handheld and desktop Raman instruments could 

be compared to each other. 

 

Results of the Raman Instrument Comparison 

Table 1 shows the average values from the ten samples for the peak with the highest 

intensity and SNR from the CBex handheld trials over 1s, 2s, and 2.5s integration times. 

 

Integration Time  Average St Dev 

1s Max Peak (cm-1) 810 1.1 

 SNR  3.32 0.55 

     

2s  Max Peak (cm-1) 811  0.3 

 SNR 3.18 0.59 

    

2.5s Max Peak (cm-1) 811  0.8 

 SNR 3.91 0.78 

 
Table 1: Average values of SNR of the CBex Handheld Raman Instrument 
 

The average position of the maximum peak occurred at 810.7±0.6 cm-1, which was 

consistent from previous handheld data. The average SNR for all three integration times was 

3.47±0.39, showing a fairly consistent ratio across the three integration times as expected.  

Table 2 shows the average values from the ten samples for the peak with the highest 

intensity and SNR from the desktop Raman  microscope trials over 1s, 2s, and 2.5s integration 

times. 
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Integration Time  Average St Dev 

1s Max Peak (cm-1) 808 0.3 

 SNR 30.27 6.06 

     

2s  Max Peak (cm-1) 808  0  

 SNR 29.27 3.08 

    

2.5s Max Peak (cm-1) 808  0  

 SNR 30.68 4.74 

 
Table 2: Average values of SNR of the Renishaw invia Raman Microscope 
 

The average position of the maximum peak occurred at 808.0±0.06 cm-1, which suggests 

a slight difference in calibration between the handheld and desktop. While this should not affect 

the comparison of SNR between the two instruments, it was important to note as it already 

suggests a difference in the ability of the detectors.  

The average SNR for all three integration times was 30.07±0.73. Again, the ratio was 

fairly consistent across integration times as expected. 
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Figure 4: Comparison of the average spectra of the 2s integration time block between the  

     handheld and the desktop Raman devices 
 

As shown in Figure 2, the desktop Renishaw microscope produces spectra with a higher 

intensity than the CBex handheld Raman instrument. Since the average SNR values of the 

handheld and desktop were 3.47 and 30.07 respectively, the handheld is 8.67 times less sensitive 

than the desktop. This would explain why the handheld has been incapable of acquiring viable 

spectra of bodily fluids which are not as Raman-active as Scotch tape. 
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Attempt at Acquiring Spectrum for Thick Sample 

While the signal detected by the CBex handheld was much lower than the desktop Raman 

microscope, the handheld could still obtain spectra for tape at a thickness of 1.2 mm. While it 

was understandable that the handheld could not take spectra of bodily fluids from samples of a 

single application, there was still the question whether a 1.2 mm thick sample could be detected. 

Theoretically, this was the minimum thickness required to saturate the sample with photons to 

efficiently obtain spectra. It was then decided to attempt to make a 1.2 mm thick sample of a 

bodily fluid to test this thought. 

First the type of bodily fluid had to be chosen. Since the sample had to be quite thick, the 

bodily fluid could not be colored. Otherwise the sample would absorb too much light and not 

provide an accurate spectrum in return. This knocked out the possibility of blood, especially 

since it also changes color as it ages. The next best choice was semen, as it is a colorless fluid 

commonly found at crime scenes. Semen was also a sensible choice as it was the fluid used to 

first demonstrate the difference in signal between the CBex handheld and the Renishaw invia 

Raman Microscope. 

A metal slide was designed to have a circular divot pressed into the surface. This created 

a flat-bottomed well in the slide that was 3.0 mm in diameter and 1.2 mm in thickness, for a total 

volume of 8.5 mm3. The same semen sample (LOT # BRH844081) was used to fill the divot and 

then allowed to dry. Taking a spectrum of a wet sample would not have worked, as the water 

would not have contributed to the actual thickness of the semen sample. The semen had to be 

allowed to dry for the most accurate results. Using a pipettor, the semen was inserted into the 

divot and was refilled as many times as possible before allowing the sample to dry overnight. 
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Originally the plan was to do only one application per day, but the divot needed to be filled as 

much as possible to amass the 1.2 mm thickness. The sample was refilled whenever enough 

water had evaporated. 

Unfortunately, the quickened application process still was not enough to completely fill 

the divot with semen. After three weeks of constant applications, only a small layer of deposit 

was left behind after all water had evaporated. As this was still the thickest sample produced by 

the lab, the sample was tested anyway with the CBex handheld. It came to no surprise that the 

handheld could not obtain a viable spectrum, so the results of this attempt were inconclusive. 

As frustrating as this failure was, it further demonstrated the impracticality of the 

minimum thickness required to get a proper Raman spectrum with the handheld. It became clear 

that making a 1.2 mm thick sample was unrealistic in a lab setting, let alone the real-world 

application of crime scene analysis. The detector would have to be improved so that a sample 

can be less than 1.2 mm thick and still be detectable. In order to improve the detector, more tests 

were performed on the handheld to establish its full capabilities. 
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Testing the Integration Time Limitations of the CBex 

As mentioned previously, the CBex handheld could not be used past an integration time 

of 2.5s without the signal becoming oversaturated. This was an interesting discovery because 

desktop Raman instruments can take higher integration times without a problem. In an effort to 

fix this problem, the laser power of the handheld was decreased from 50 mW to 30 mW of 

power. By lowering the power of the laser, the tape samples should not be oversaturated with 

photons anymore. In order to test this hypothesis, the procedure for acquiring spectra on the 

CBex handheld was repeated on the same ten tape samples except with the power lowered to 30 

mW. First it had to be determined whether lowering the laser power affected the SNR, so the 

samples were run again at the integration times of 1s, 2s, and 2.5s.  

 

Integration Time  Average St Dev 

1s Max Peak (cm-1) 811 0.06 

 SNR  3.29 0.52 

     

2s  Max Peak (cm-1) 811  0.04 

 SNR 3.49 0.53 

    

2.5s Max Peak (cm-1) 811  0.12 

 SNR 3.40 0.49 

 
Table 3: Average values of SNR of the CBex Handheld Raman Instrument at 30 mW power 
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The maximum peak held steady at 811 cm-1 just as it did for the handheld at maximum 

power. The average SNR was 3.39±0.10, which was not significantly different from the average 

SNR of the 50 mW trials (3.47±0.39).  

 

 
 
Figure 5: The comparison of the SNR from the 50 mW and 30 mW trials at each integration time  

     and the average of the three integration times 
 

The error bars representing the standard deviation from each integration time confirmed 

that there was no significant difference in SNR within each laser power block. This meant that 

the SNR remained consistent across integration times as expected. The overlap of error bars 

when comparing the 50 mW SNR values with the 30 mW SNR values also confirmed that 

lowering the laser power did not significantly change the SNR between the integration time 

range of 1-2.5s.  
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Now that it was confirmed that lowering the laser power did not negatively affect the 

SNR of the instrument, it was possible to test how much the integration time range increased. 

Once again, the same tape samples were analyzed with the handheld at 30 mW of power using 

the same methods to calculate the average SNR for each integration time block.  

  

Figure 6: The average SNR for each integration time from 2.5s to 4.5s at 30 mW power 
 

The CBex handheld was able to acquire spectra at 4.5s integration time without the 

samples being consistently oversaturated. After plotting the average SNR for each time block, it 

became clear that the SNR steadily decreases beyond an integration time of 2.5s. Since the R2 

value of the linear fit was 0.99, it is possible to approximate the SNR between 2.5s and 4.5s at 30 

mW of power. This would be helpful to keep in mind should future experiments using the 

handheld require a higher integration time of 2.5s. 
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Conclusions 

By quantifying the SNR of the CBex handheld Raman instrument and comparing Scotch 

tape spectra with the Renishaw invia Raman microscope, it became clear that the detector 

sensitivity in the handheld was much lower than the desktop. This would explain why the 

handheld cannot detect biological samples, such as semen, as the desktop can. Without the 

ability to detect and identify bodily fluids, the CBex Handheld Raman Instrument is not ready for 

practical use in the field. 

An interesting discovery was that the handheld could not acquire viable spectra after an 

integration time of 2.5s at maximum laser power. It was possible to decrease the laser power to 

30 mW and acquire spectra up to 4.5s integration time. While the SNR was not significantly 

affected from integration times of 1-2.5s, the quality of signal steadily decreases after that range. 

From this it is important to keep in mind the trade-off between higher integration times and SNR. 

While the ability to boost the integration time by lowering the laser power does not help 

to obtain viable spectra of biological samples, it was crucial to ascertain the full capabilities of 

the CBex handheld. The next step would be to improve the detector sensitivity and build upon 

these established capabilities. Ideally, with the eventual modifications, the CBex handheld 

Raman instrument will be able to detect biological samples out in the field. 
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Future Studies 

Now that it has been determined that the problem with the CBex handheld is its low 

detector sensitivity and have quantified the level of its sensitivity, it is possible to start the 

improvement of the device. By monitoring the SNR of the device while making modifications to 

the detector, we can determine the progress of the device. 

When the handheld eventually becomes able to detect biological fluids, it would be 

interesting to see how it overcomes the ultimate obstacle: the outdoors. The purpose of the 

handheld is to be able to conveniently analyze biological samples at the crime scene. All the 

testing performed with the handheld was performed in a darkened room to reduce interference 

from stray light. It would be interesting to see how the device could be brought outdoors and be 

used without the unnecessary radiation ruining the results. 

It may become necessary to explore other options for portable Raman analysis, such as a 

portable Raman microscope. While much bulkier than the CBex, the portable microscope has an 

enclosed space that could block out stray light. More testing needs to be done with our lab’s 

current portable microscope to determine its detector sensitivity and ability to identify biological 

fluids. This may end up the more realistic option of portable analysis while the CBex handheld 

undergoes modifications. 
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