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A POSITIVITY CRITERION FOR THE WAVE EQUATION

AND GLOBAL EXISTENCE OF LARGE SOLUTIONS

MARIUS BECEANU AND AVY SOFFER

Abstract. In dimensions one to three, the fundamental solution to the
free wave equation is positive. Therefore, there exists a simple positivity
criterion for solutions. We use this to obtain large global solutions to
two well-studied energy-supercritical semilinear wave equations, as well
as some new results in the subcritical and critical cases.

1. Introduction

In this paper, we present large data global existence results for two energy-
supercritical equations on R

3+1. Both results are based on a simple positivity
criterion for solutions to the free wave equation on R

3+1.
Similar results hold in dimensions one and two, but for simplicity we focus

on the three-dimensional case. For the same reason, we confine our study
to smooth initial data and, for the most part, to classical solutions.

1.1. Quadratic nonlinearity. The first equation we study is the quadratic
semilinear wave equation on R

3+1 satisfying the null condition

utt −∆u = u2t − |∇u|2, u(0) = u0, ut(0) = u1. (1.1)

Equation (1.1) is Ḣ3/2 × Ḣ1/2-critical, i.e. L∞-critical. The nonlinearity
is quadratic in ∇t,xu. Two is the Strauss exponent, meaning that there exist
quadratic nonlinearities in ∇t,xu (e.g. u2t ) that lead to blow-up for arbitrarily
small initial data, but all higher order nonlinearities produce global solutions
for sufficiently small initial data.

However, equation (1.1) has a better than expected behavior, because
it satisfies the null condition (see [Kla2] or [Chr]; in fact, this equation
is the canonical example of an equation that satisfies the null condition).
Therefore, small initial data lead to global solutions.

For large data, global solutions to wave equations satisfying the null con-
dition have been constructed by e.g. [WaYu], [Yan], [MPY], [LOY]. The
paper [Li] proves global well-posedness for arbitrary large initial data for a
supercritical wave equation, using its specific structure (as we also do below,
but for another equation and using a different structure).

2010 Mathematics Subject Classification. 35L05, 35A01, 35A09, 35B40, 35B44, 35B33,
35B09, 35B51.
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The most important fact about equation (1.1) is that by the substitution
v = e−u it reduces to a linear wave equation on R

3+1, that is vtt −∆v = 0.
This transformation was suggested by Nirenberg and was first used in [Kla1].

Consequently, this equation has an infinite number of conserved quan-
tities, i.e. ‖(e−u − 1, e−uut)‖Ḣk×Ḣk−1 . However, these quantities are not
coercive, so cannot be used to always prove the global existence of solu-
tions.

For example, the conserved energy has the form

E[u](t) =

∫

R3×{t}
e−2u(u2t + |∇u|2) dx.

If u → +∞ then energy no longer controls the Ḣ1×L2 norm of the solution.
The same applies to the higher order conserved quantities.

Conserved quantities do not preclude the finite time blow-up of solutions
to (1.1). In fact, there can be ODE-type blow-up for sufficiently large initial
data.

Although relatively simple to study, due to the presence of infinitely many
conserved quantities, equations (1.1) and (1.6) can serve as a model for more
complicated semilinear equations, telling us what to expect in those cases.

In this paper we state sufficient (and in some cases necessary) conditions
for the existence of global solutions to (1.1). These are classical solutions
(i.e. they satisfy the equation pointwise). We need not assume finite energy
(though the energy is always locally finite), but there is also a result about
finite energy solutions, Proposition 1.2.

The first result refers to radially symmetric solutions.

Proposition 1.1. Consider smooth radial initial data (u0, u1) such that

(u0)r + |u1| <
1

r
. (1.2)

Then the equation (1.1)

utt −∆u = u2t − (∇u)2, u(0) = u0, ut(0) = u1

admits a global smooth solution u on R
3+1 such that for every (r, t) ∈ R

3+1

ur(r, t) + |ut(r, t)| <
1

r
.

Furthermore, if u0 ∈ L∞, then r(u0)r, ru1 ∈ L∞ and (u0)r + |u1| ≤ 1−ǫ
r for

some ǫ > 0 if and only if u ∈ L∞
t,x. In this case,

inf u0 − ln(1 + ‖r(u0)r‖L∞ + ‖ru1‖L∞) ≤ u ≤ supu0 + ln(1/ǫ). (1.3)

Also, let c0 := esup u0−inf u0ǫ−1(1+‖r(u0)r‖L∞ +‖ru1‖L∞). Then rur, rut ∈
L∞
t,x and

ur(r, t) + |ut(r, t)| ≤
1

r

(

1− 1

c0

)

, |ur(r, t)| + |ut(r, t)| ≤
c0 − 1

r
. (1.4)
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Our conditions are true for all small initial data (in a suitable sense) and
also allow for a wide class of large initial data, e.g. by taking (u0)r to be
large and negative.

One can prove along the same lines that the solutions depend continuously
on the initial data. Moreover, under reasonable assumptions the solutions
have finite energy and disperse:

Proposition 1.2. Consider equation (1.1) with smooth radial initial data

(u0, u1). If u0 ∈ L∞, (u0, u1) ∈ Ḣ1 × L2, and (u0)r + |u1| ≤ 1−ǫ
r for some

ǫ > 0, then u ∈ L∞
t Ḣ1

x ∩ L2
tL

∞
x , ut ∈ L∞

t L2
x, and

sup
t

‖(u(t), ut(t))‖Ḣ1×L2 ≤ esupu0−inf u0ǫ−1‖(u0, u1)‖Ḣ1×L2 ,

‖u‖L2
tL

∞

x
. max(1, esup u0ǫ−1)e− inf u0‖(u0, u1)‖Ḣ1×L2 .

(1.5)

One can also obtain control of higher norms.
Condition (1.2) is optimal, meaning that it is necessary for global exis-

tence of solutions:

Proposition 1.3. Consider smooth radial initial data (u0, u1) such that for
some r0 > 0 (u0)r(r0) + |u1(r0)| ≥ 1

r0
. Then the corresponding solution to

equation (1.1) on R
3+1 blows up in finite time, at a time t0 with |t0| ≤ r0.

More precisely, there exist t0 with |t0| ≤ r0 and x0 ∈ R
3 such that for t

close to t0

‖u(t)‖L∞

x (|x−x0|≤1) ≥ C+ | ln |t− t0||, ‖u(t)‖
H

3/2
x (|x−x0|≤1)

≥ C| ln |t− t0||1/2.

We prove blow-up in the (critical for the equation) L∞
loc and H

3/2
loc senses,

meaning that the solution becomes unbounded near a point. This also means
it cannot be continued as a classical solution.

Nevertheless, the proof suggests that at least in some cases it may be
possible to continue the solution past the blow-up point. This and more
aspects of blow-up will be explored elsewhere.

The same ideas used in the study of equation (1.1) apply to the more
general semilinear equation (also with a nonlinearity that satisfies the null
condition)

utt −∆u = f(u)(u2t − |∇u|2), u(0) = u0, ut(0) = u1. (1.6)

For simplicity we assume that f(u) is a smooth function, e.g. f(u) = 1,
f(u) = −u, f(u) = sinu, or f(u) = − arctan u.

We introduce the auxiliary function

F (t) =

∫ t

0
e−

∫ s
0
f(σ) dσ ds. (1.7)

Note that F is strictly increasing and therefore injective.
The subsequent discussion has to take into account whether F (±∞) is

finite or infinite. For example, if f(u) = 1 then F (−∞) = −∞, but F (+∞)
is finite; if f(u) = −1 then the situation is reversed; if f(u) = u then F (±∞)
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are finite; if f(u) = −u or f(u) = − arctan u then F (±∞) = ±∞. These
four are all the possible cases.

In the radial case we have the following necessary and sufficient result:

Proposition 1.4. Consider smooth radial (u0, u1). If F (±∞) = ±∞, then
equation (1.6) admits a corresponding smooth solution u on R

3+1. If in
addition u0 ∈ L∞, then r(u0)r, ru1 ∈ L∞ if and only if u ∈ L∞

t,x. In this
situation, rur, rut ∈ L∞

t,x as well.
If F (−∞) = a ∈ R, suppose that

− (u0)r + |u1| <
F ◦ u0 − a

rF ′ ◦ u0
=

∫ u0

−∞ e
∫ u0
s

f(σ) dσ ds

r
. (1.8)

If F (+∞) = b ∈ R, suppose that

(u0)r + |u1| <
b− F ◦ u0
rF ′ ◦ u0

=

∫∞
u0

e
∫ u0
s

f(σ) dσ ds

r
. (1.9)

Then equation (1.6) admits a corresponding smooth solution u such that

−ur + |ut| <
∫ u
−∞ e

∫ u
s
f(σ) dσ ds

r
and/or ur + |ut| <

∫∞
u e

∫ u
s
f(σ) dσ ds

r
.

If u0 ∈ L∞, then r(u0)r, ru1 ∈ L∞ and

−(u0)r+|u1| ≤
∫ u0

−∞ e
∫ u0
s f(σ) dσ ds− ǫ

r
and/or (u0)r+|u1| ≤

∫∞
u0

e
∫ u0
s f(σ) dσ ds− ǫ

r
(1.10)

for some ǫ > 0 if and only if u ∈ L∞
t,x. In this case, one also has that

rur, rut ∈ L∞
x,t and a condition similar to (1.10) holds for all times t ∈ R.

This is a large data result that generalizes Proposition 1.1. All the con-
clusions can be made quantitative. Under similar conditions we can also
obtain finite energy and dispersive solutions and control of higher norms.

Conditions (1.8) and (1.9) are optimal, since their failure leads to finite
time blow-up, as in Proposition 1.3. We omit the very similar proof.

In the nonradial case, we obtain the following:

Proposition 1.5. Consider smooth initial data (u0, u1). If F (±∞) = ±∞,
then equation (1.6)

utt −∆u = f(u)(u2t − |∇u|2), u(0) = u0, ut(0) = u1

admits a corresponding smooth solution on R
3+1. If in addition D2u0,∇u1 ∈

L3/2,1, then u ∈ L∞
t,x.

If F (−∞) = a ∈ R, but F (+∞) = +∞, suppose that inf u0 > −∞ and
u1 ≥ |∇u0|. Then equation (1.6) admits a corresponding smooth solution u
on R

3 × [0,∞) with u ≥ inf u0.
Alternatively, suppose that (u0, u1) decay at infinity together with their

derivatives and

−∆u0 + f(u0)(∇u0)
2 ≥ |∇u1 − f(u0)u1∇u0|. (1.11)
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Then equation (1.6) admits a corresponding smooth solution u on R
3+1 with

u ≥ 0. If in addition D2u0,∇u1 ∈ L3/2,1, then u ∈ L∞
t,x.

Similar results apply to the case when F (−∞) = −∞, but F (+∞) =
b ∈ R.

In particular, equation (1.1) also falls under the hypotheses of Proposi-
tion 1.5.

Here L3/2,1 is a Lorentz space; for their definition and properties see
[BeLö]. In terms of the more familiar Lebesgue spaces, one has that L3/2−ǫ∩
L3/2+ǫ ⊂ L3/2,1 ⊂ L3/2.

One can easily show (using the substitution v = F (u)) that the condition
(1.11) allows for large initial data. This is obvious for the other condition.

Under similar conditions we can also obtain finite energy and dispersive
solutions and control of higher norms.

In the nonradial case there is no expectation that our conditions are
optimal. Nevertheless, we can obtain a more general result. A solution to
(1.6) can be continued as long as F (u) > a and/or F (u) < b (and indefinitely
if F (±∞) = ±∞). As soon as F (u) = a or F (u) = b, one has blow-up in

the L∞
loc and H

3/2
loc sense, as in Proposition 1.3.

We next prove that all sufficiently nice solutions to equation (1.6) either
disperse or blow up in finite time; solitons, infinite time blow-up, or other
more complicated types of behavior are excluded. This can be construed as a
version of the soliton resolution conjecture for this problem, except there are
no solitons. More generally, such a result is called asymptotic completeness.

Proposition 1.6. For Schwartz-class initial data (u0, u1), equation (1.6)

utt −∆u = f(u)(u2t − |∇u|2), u(0) = u0, ut(0) = u1

always admits a smooth solution u that either blows up in finite time (in L∞
loc

and H
3/2
loc , see Proposition 1.3) or is globally defined on R

3+1. In the latter
case u(t) is a Schwartz-class function for each t ∈ R, supt ‖u(t)‖Hn < ∞ for
each n, u and all its derivatives disperse (e.g. ‖Dnu(t)‖L∞ .n |t|−1), and u
scatters (behaves like a solution of the free wave equation as t → ±∞).

In the radial case we have a more precise classification, with necessary
and sufficient conditions for global existence (see Proposition 1.4).

The assumption that (u0, u1) are of Schwartz class is not needed; we only
need control of finitely many seminorms of the initial data. The question of
optimal norms is an interesting one, but will be examined elsewhere.

Remark 1.7. The previous results remain mostly valid (with the same proof)
if we add to the equation (1.1) a smooth source term G ≤ 0, i.e.

utt −∆u = u2t − |∇u|2 +G.

For the more general equation (1.6) one can instead add a magnetic potential
term of the form A1ut +A2 · ∇u.
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Remark 1.8. A similar finite time blow-up/dispersion dichotomy is true for
the energy-supercritical Schrödinger equation

iut −∆u = (∇u)2, u(0) = u0.

This is also a Ḣ3/2-critical equation and one can also use a Nirenberg trans-
formation, eu = v, to solve it. Note that the evolution is not unitary.

Finally, although the main topic of this paper is the existence of global
solutions, we also briefly look into the question of local existence. We state
a result that holds in the general case; undoubtedly, there can be improve-
ments for radial solutions.

Proposition 1.9. Consider equation (1.6) with smooth initial data (u0, u1)
and assume that F (−∞) = a ∈ R, but F (+∞) = +∞. If u0, ∇u0, u1 ∈
L∞, then there exists a corresponding smooth solution u on R

3 × (−T, T ),
where

T =
F (inf u0)− a

(‖∇u0‖L∞ + ‖ut‖L∞) supF ′(u0)
(1.12)

Furthermore, u ∈ L∞
t,x(R

3 × [−t, t]) for any t < T .
Similar results hold in the case when F (+∞) = b ∈ R.

Conversely, following the argument in the proof, one can easily construct
examples of smooth initial data (u0, u1) with u0, ∇u0, or u1 6∈ L∞, which
lead to blow-up at time 0 (hence the failure of local existence). We omit the
construction. For more such results concerning the lack of local existence,
see [Lin].

1.2. Monomial nonlinearity. The other equation we study in this paper
is the focusing semilinear wave equation on R

3+1 with a monomial nonlin-
earity

utt −∆u− |u|Nu = 0, u(0) = u0, ut(0) = u1. (1.13)

This equation is Ḣ1/2-critical for N = 2, energy-critical for N = 4, and
energy-supercritical for N > 4. In general, the equation is Ḣsc-critical,
where sc = 3/2 − 2/N .

An equivalent formulation is

u(t) = cos(t
√
−∆)u0 +

sin(t
√
−∆)√

−∆
u1 +

∫ t

0

sin((t− s)
√
−∆)√

−∆
|u(s)|Nu(s) ds.

(1.14)
For equation (1.13) we prove the existence of global solutions for a suitable

class of large initial data. The distinguishing feature of our result is that
the solutions can be infinite on open sets, so some of them may be said to
blow up in finite time in the usual sense. However, they still solve the weak
formulation of the equation — (1.14) — on the whole of R3+1.

As another application, we state a criterion for the global existence, dis-
persion, and scattering of solutions to equation (1.13) in the energy-critical
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case N = 4. This criterion extends the well-known one of [KeMe1], see
below.

We also obtain a more general criterion for the global existence, disper-
sion, and scattering that applies to the whole Ḣ1/2-supercritical (N > 3)
range.

The most important feature of equation (1.13) that we use is that the
nonlinearity preserves sign, meaning that if the solution is positive, then the
nonlinearity seen as a source term is also positive. Conceivably, the same
methods could also work for other types of nonlinearities.

Some of our results also hold in the defocusing case, i.e. when the nonlin-
earity in (1.13) has the plus sign.

Equation (1.13) is well-studied. We only give a brief survey of the known
results.

The global existence of solutions for small initial data was proved by,
among others, [Pec], [LiSo], and [ShSt]. This equation can have ODE-type
blow-up in finite time for N > 0, for sufficiently large initial data. Another
approach to blow-up is due to [Lev].

For N = 4 (the energy-critical case) equation (1.13) also has soliton so-
lutions u(x, t) = W (x), where W solves the semilinear elliptic equation

−∆W = W 5. (1.15)

We distinguish the ground state soliton Q > 0 given by the explicit formula

Q(x) =
1

(

1 +
|x|2
3

)1/2
. (1.16)

In fact, each soliton is part of an infinite family of solitons obtained by
rescaling, but this will play no role in our proof.

Recently, [KeMe1] classified all solutions smaller than the ground state
soliton for the energy-critical equation. Define the energy of a solution by

E[u] =

∫

R3×{t}

u2t + |∇u|2
2

− u6

6
dx. (1.17)

The result of [KeMe1] states that if E[u] < E[Q] and ‖∇u0‖L2 < ‖∇Q‖L2

then the solution scatters, while if E[u] < E[Q] and ‖∇u0‖L2 > ‖∇Q‖L2

then the solution blows up.
This classification was then extended, in a less precise manner, by [DKM1]

to radial solutions of arbitrary size. These results also extend to the energy-
supercritical case (where the lack of solitons makes the classification sim-
pler), but only under the assumption that the solution stays bounded in the
critical Sobolev norm; see [DMK2], [DoLa], [DuRo].

Another approach to the energy-critical equation (1.13) belongs to [KrSc1],
[KST], [KNS1], [KNS2], [Bec], and [KNS3], which studied solutions in a
neighborhood of the ground state soliton.
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Results for the focusing supercritical equation (1.13) include [KrSc2],
[BeSo1], and [LOY]. These papers construct particular classes of large global
solutions.

Many more results are known in the defocusing case (plus sign of the non-
linearity in (1.13)). For the energy-critical equation, global well-posedness
was proved by [Str1] and [Gri]. In the energy-supercritical case, some re-
sults — [Tao1], related to an idea from [GSV], [Roy1], [Roy2], and [Str2] —
refer to slightly supercritical equations, while others — [KeMe2], [KiVi1],
[KiVi2], [Bul1], [Bul2], [Bul3] — are conditional results. The paper [BeSo2]
uses a modified supercritical nonlinearity. Also see the recent result [Tao2],
which shows blow-up for a defocusing supercritical wave equation.

The following is the statement of our main result in this context. For
convenience, we assume that N is an even integer.

Proposition 1.10. Assume that N ≥ 0 is an even integer and (u0, u1) are
smooth and
i. either radial and outgoing according to Definition 3.2 and u0 ≥ 0;
ii. or radial and (u0)r + u0/r ≥ |u1|;
iii. or not necessarily radial and u0 ≥ 0, u1 ≥ |∇u0|;
iv. or not necessarily radial functions that decay at infinity together with
their derivatives, with −∆u0 ≥ |∇u1|.

Then there exists a global solution u (on R
3 × [0,∞)) in cases i and iii

and on R
3+1 in cases ii and iv) to equation (1.13), having (u0, u1) as initial

data. Moreover, u is nonnegative or infinite.
In the first case if u0 ≥ v0 ≥ 0, in the second case if

(u0)r + u0/r ± u1 ≥ (v0)r + v0/r ± v1 ≥ 0,

in the third case if

u0 ≥ v0, u1 − |∇u0| ≥ v1 + |∇v0| ≥ v1 − |∇v0| ≥ 0,

and in the fourth case if

−∆u0 − |∇u1| ≥ −∆v0 + |∇v1| ≥ −∆v0 − |∇v1| ≥ 0,

then one has for the corresponding solutions that u ≥ v ≥ 0.

The last conclusion shows that (at least in some cases) solutions depend
monotonically on the initial data. One can also compare two solutions of
arbitrary sign in the same manner, provided they are both well-defined.

We emphasize again that, in general, these global solutions only exist in
a weak sense and some of them may actually blow up in finite time in the
usual sense.

Our approach to the study of equation (1.13) seems to be new. One can
hope that this unified treatment will lead to a better understanding of the
boundary between blow-up and global solutions.

Reverting to the usual notions of solution existence and blow-up, one has
the following criterion (whose proof we omit):
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Corollary 1.11. Assume N ≥ 0 and consider smooth initial data (u0, u1)
and (v0, v1), such that (u0, u1) give rise to a nonnegative, measurable solu-
tion u for equation (1.13) which is finite almost everywhere on R

3 × I. If
i. (u0, u1) and (v0, v1) are radial and outgoing and u0 ≥ |v0|
ii. or (u0, u1) and (v0, v1) are radial and (u0)r+u0/r−|u1| ≥ |(v0)r+v0/r|+
|v1|
iii. or u1 − |∇u0| ≥ |v1|+ |∇v0|
iv. or −∆u0 − |∇u1| ≥ |∆v0|+ |∇v1|,
then (v0, v1) also give rise to a solution v on R

3×I to equation (1.13) which
is finite almost everywhere, with |v| ≤ u.

Here we assume that I ⊂ [0,∞) in cases i and iii.
If u disperses, then so does v. If a Lebesgue or Strichartz norm of v blows

up in finite time, then the same is true for u.
In order to take full advantage of this criterion, we need to know before-

hand that a certain positive solution u exists globally or that a solution
v blows up. The simplest choice is the ground state soliton Q defined by
(1.16):

Q(x) =
1

(

1 +
|x|2
3

)1/2
.

Note that both (rQ)r > 0 and −∆Q = Q5 > 0. A more refined choice for
comparison is (1± ǫ)Q.

Corollary 1.12. Assume N = 4 and consider smooth initial data (u0, u1)
such that either (in the radial case) |(u0)r + u0/r|+ |u1| ≤ Qr +Q/r or (in
the general case) |∆u0|+ |∇u1| ≤ −∆Q = Q5. Then (u0, u1) give rise to a
global solution u of equation (1.13) on R

3+1

utt −∆u− |u|4u = 0, u(0) = u0, ut(0) = u1,

such that |u(x, t)| ≤ Q(x).
If in addition |(u0)r+u0/r|+ |u1| ≤ (1− ǫ)(Qr+Q/r) or |∆u0|+ |∇u1| ≤

(1− ǫ)Q5, then u disperses (‖u‖L8
t,x

< ∞) and scatters.

If on the contrary (u0)r+u0/r−|u1| ≥ (1+ǫ)(Qr+Q/r) or −∆u0−|∇u1| ≥
(1+ ǫ)Q5, then the solution u blows up in finite time, in the sense that there
exist finite a < 0 < b such that ‖u‖L8

t,x(R
3×(a,0)) = ‖u‖L8

t,x(R
3×(0,b)) = +∞.

Remark 1.13. This criterion extends the result of [KeMe1]. Indeed, consider
a solution u with initial data (u0 = 0, u1 = Qr + Q/r). Since the first
component is zero, the energy of u, defined by (1.17), is given by

E[u] =
1

2

∫

R3

u21 dx = 2π

∫ ∞

0

(

1

(1 + r2/3)3/2r

)2

r2 dr =
3
√
3π2

8
.

At the same time,

1

2
‖∇Q‖2L2 =

1

2

∫

R3

Q2
r dx = 2π

∫ ∞

0

(

r/3

(1 + r2/3)3/2

)2

r2 dr =
3
√
3π2

8
.
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One can also see directly that
∫

R3

(2QrQ/r +Q2/r2) dx = 4π

∫ ∞

0
2QrQr +Q2 dr = 0,

so

‖∇Q‖2L2 =

∫

R3

Q2
r dx =

∫

R3

(Qr +Q/r)2 dx = ‖u1‖2L2 .

Since ‖∇Q‖2L2 = ‖Q‖6L6 , it follows that E[Q] = 1
3‖∇Q‖2L2 , so E[u] = 3

2E[Q].
The result of [KeMe1] refers only to solutions u for which E[u] ≤ E[Q],

so it does not apply to u. Neither does the result of [KNS2] apply, since it
refers to solutions u for which E[u] ≤ E[Q] + ǫ2.

On the other hand, Corollary 1.12 shows that u exists globally on R
3+1.

If we consider instead the solution uǫ with initial data (u0 = 0, u1 =
(1 − ǫ)(Qr +Q/r)), then Corollary 1.12 tells us that uǫ exists globally and
disperses.

It is also possible to construct a small perturbation u0 of Q such that
0 ≤ −∆u0 ≤ (1−ǫ)(−∆Q) or −∆u0 ≥ (1+ǫ)(−∆Q) and E[(u0, 0)] > E[Q].
In both cases, the behavior of the solution can be predicted using Corollary
1.12, but not using the results of [KeMe1]. The connection with [KNS2]
remains to be studied.

Corollary 1.12 depends essentially on the ground state soliton Q, which
is only guaranteed to exist in the energy-critical case N = 4, and on the
results of [KeMe1].

However, more generally, for N > 2 there exists another family of positive
stationary solutions to equation (1.13), which can be called singular solitons.

Namely, we look for positive radial solutions of the form QN = CN |x|α of
the semilinear elliptic equation (1.15)

−∆QN = QN+1
N .

Plugging our ansatz in the equation, we obtain

−α(α+ 1)CNrα−2 = CN+1
N rα(N+1).

Hence α = − 2
N and CN =

(

− α(α + 1)
)1/N

=
(

2(N − 2)/N2
)1/N

, so

QN (x) =

(

2(N − 2)

N2

)1/N

|x|−2/N . (1.18)

QN is scaling-invariant, so by rescaling it we do not obtain anything new,
but we can get other solitons by translating it.

Note that QN never has finite energy. QN logarithmically fails to be in
the critical Sobolev space for the equation Ḣsc, where sc = 3/2 − 2/N .

N > 2 is the Ḣ1/2-supercritical case, which includes the energy-critical
and energy-supercritical cases. In particular, in the energy-critical case,
Q4(x) =

1√
2
|x|−1/2. Comparing this singular soliton with the usual soliton

Q defined by (1.16), we see that Q4(x) ≤ Q(x) for |x| ∈ [3 −
√
6, 3 +

√
6]
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and Q4(x) > Q(x) otherwise. Of course, this depends on the scaling of Q,
but regardless of scaling we see that neither soliton dominates the other.

Using the singular soliton QN we can formulate a criterion for global
existence of solutions to (1.13). We omit the proof. Note that (rQN )r > 0

and −∆QN = QN+1
N > 0.

Corollary 1.14. Assume N > 2 and consider smooth initial data (u0, u1),
which decay at infinity together with their derivatives, to the equation

utt −∆u± |u|Nu = 0, u(0) = u0, ut(0) = u1. (1.19)

If |(u0)r+u0/r|+|u1| ≤ (QN )r+QN/r (in the radial case) or |∆u0|+|∇u1| ≤
−∆QN = QN+1

N (in the general case), then the corresponding solution u
exists globally on R

3+1 and |u(x, t)| ≤ QN (x).

Note that the initial data need not have finite energy or finite critical
Sobolev Ḣsc × Ḣsc−1 norm (where sc = 3/2 − 2/N).

In one sense, this result does not preclude the finite time blow-up of so-
lutions (in particular type II blow-up), since we have no control over the
Strichartz norms. Nevertheless, in another sense the solution u exists glob-
ally and is finite almost everywhere on R

3+1.
Both conditions are scaling-invariant. Note that the second condition

can be expressed in terms of the weighted |x|−2−2/NẆ 2,∞×|x|−2−2/NẆ 1,∞

norm of the initial data, i.e.

‖|x|2+2/N∆u0‖L∞ + ‖|x|2+2/N∇u1‖L∞ ≤ CN+1
N =

(

2(N − 2)

N2

)1+ 1

N

.

The conclusion can also be expressed in terms of a weighted |x|−2/NL∞

norm, i.e. ‖|x|2/Nu‖L∞

t,x
≤ CN =

(

2(N − 2)/N2
)1/N

.

More generally, if |∆u0|+|∇u1| ≤ α(−∆QN ) with α ≤ 1, then |u| ≤ αQn,
so the norm of the solution depends linearly on the size of the initial data.

Note that CN < 1 and CN → 1 as N → ∞.
Finally, it is easy to see that the solution is dominated by QN regardless

of whether the equation is focusing or defocusing.

Remark 1.15. It is easy to see that we actually only need a supersolution to
equation (1.15):

−∆u0 ≥ uN+1
0 , u0 ≥ 0. (1.20)

Then the solution with initial data (u0, 0) exists globally on R
3+1, with

|u(x, t)| ≤ u0(x), and so does any solution v dominated by u, i.e. with initial
data (v0, v1) such that |∆v0|+ |∇v1| ≤ −∆v0.

Many results are known about the inequality (1.20). For example, it has
no positive solutions for N ≤ 2, see [BCDN].

Even though the previous result did not say anything about the asymp-
totic behavior of solutions, under slightly stronger conditions we can prove
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that solutions do not blow up in finite time and in the defocusing case actu-
ally scatter. For some results it is convenient to assume that we are in the
energy-supercritical range N > 4.

Theorem 1.16. Consider α > 0, N > 2, and smooth initial data (u0, u1),
which decay at infinity together with their derivatives, to the equation (1.19)

utt −∆u± |u|Nu = 0, u(0) = u0, ut(0) = u1.

Assuming that

|∆u0(x)|+ |∇u1(x)| ≤
CN+1
N

(α+ |x|)2+2/N
=

(

2(N − 2)

N2

)1+ 1

N 1

(α+ |x|)2+2/N
,

(1.21)
then the corresponding solution u exists globally on R

3+1 and ‖u‖L∞

t,x
≤

CNα−2/N (in fact |u(x, t)| ≤ CN (α+ |x|)−2/N ).

Assuming that e.g. (u0, u1) ∈ Ḣsc × Ḣsc−1 (where sc = 3/2 − 2/N is the
critical Sobolev exponent), then the appropriate Strichartz norms of u do not
blow up in finite time.

In the defocusing case (plus sign in the equation), assuming that N > 4

and (u0, u1) ∈ (Ḣsc∩Ḣ1)×(Ḣsc−1∩L2), or in the focusing case (minus sign
in the equation), assuming in addition that (u0, u1) are radially symmetric,
then u disperses (‖u‖L2N

t,x
< ∞) and scatters.

One can also write explicit estimates for all the norms, except in the
radially symmetric focusing case.

For the energy-critical equation (1.19) with N = 4, the defocusing case is
already well understood: all finite energy solutions disperse and scatter. In
the focusing case, assuming the initial data are radially symmetric, condition
(1.21) and the result of [DMK2] imply that the corresponding solutions
disperse and scatter (since the singular soliton Q4 does not dominate the
usual soliton Q).

Condition (1.21) is optimal, since the singular soliton QN itself (which
fulfills the condition for α = 0) provides a counterexample: its L2N

t,x norm is
infinite on any interval.

The Ḣsc × Ḣsc−1 norm of the initial data can be arbitrarily high. The
solutions constructed by Theorem 1.16 are the first examples of large global
solutions to a supercritical equation which correspond to generic initial data,
are bounded in the critical Sobolev norm, and scatter — i.e. the first “nor-
mal” large solutions.

The paper is organized as follows: in the introduction we state the main
results, in Section 2 we define some notations, in Section 3 we state and
prove the positivity criteria we use in the proof, and in Sections 4 and 5 we
prove the results pertaining to equation (1.1), respectively (1.13).
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2. Notations

A . B means that |A| ≤ C|B| for some constant C. We denote various
constants, not always the same, by C.

The Laplacian is the operator on R
3 ∆ = ∂2

∂2
x1

+ ∂2

∂2
x2

+ ∂2

∂2
x3

.

We denote by Lp the Lebesgue spaces, by Ḣs homogenous and by Hs

inhomogenous Sobolev spaces, and by Lp,q Lorentz spaces.
Ḣs and Hs are Hilbert spaces and so is Ḣ1 × L2, under the norm

‖(u0, u1)‖Ḣ1×L2 = (‖u0‖2Ḣ1 + ‖u1‖2L2)
1/2.

For a radially symmetric function u(x), we let u(r) := u(x) for |x| = r.
We define the mixed-norm Strichartz spaces on R

3 × [0,∞)

Lp
tL

q
x :=

{

f | ‖f‖Lp
tL

q
x
:=

(

∫ ∞

0
‖f(x, t)‖p

Lq
x
dt
)1/p

< ∞
}

,

with the standard modification for p = ∞, and likewise for the reversed
mixed-norm spaces Lq

xL
p
t . We use a similar definition for Lp

t Ẇ
s,p
x . Also, for

I ⊂ [0,∞), let ‖f‖Lp
tL

q
x(R3×I) := ‖χI(t)f‖Lp

tL
q
x
, where χI is the characteristic

function of I.
The global Kato space is defined as follows:

K = {u : ‖u‖K := sup
y

∫

R3

|u(x)|
|x− y| < ∞}.

3. Positivity criteria for solutions to the wave equation

The positivity of the fundamental solution to the free wave equation in
dimensions one to three has been known for a long time. In the context of
semilinear wave equations, it was used by [Joh] to prove finite time blow-up
below the Strauss exponent for small initial data.

We use positivity in a different manner, by deriving sufficient — and in
some cases also necessary — positivity criteria for solutions to the wave
equation (inspired by the techniques used in [BeSo1]). These are the basis
of our main results.

Although not needed in this paper, we first look at the simplest case, that
of the one-dimensional equation.

Lemma 3.1. Consider smooth (u0, u1) and suppose that there exists an
antiderivative ∂−1

x u1 of u1 such that u0 ≥ |∂−1
x u1|. Then the corresponding

solution u of the one-dimensional free wave equation

utt − uxx = 0, u(0) = u0, ut(0) = u1

is nonnegative on R
1+1.

Note that, in order to apply this to compact support solutions, it is nec-
essary that

∫

R
u1 dx = 0.

From the proof it follows immediately that, when u0 and ∂−1
x u1 have com-

pact support, the condition that u0 ≥ |∂−1
x u1| is also necessary for positivity.
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Proof of Lemma 3.1. By the well-known d’Alembert formula, u(x, t) = u+(r−
t) + u+(r + t), where

u±(x) =
1

2
(u0(x)∓ ∂−1

x u1(x))

and ∂−1
x u1 denotes any antiderivative of u1. If u± are nonnegative, then so is

u. Hence it suffices that u0(x)∓ ∂−1
x u1(x) ≥ 0, which is our hypothesis. �

Skipping the two-dimensional case for now, we next state a positivity
criterion for radially symmetric solutions to the free wave equation on R

3+1.
The proof is based on the following construction introduced in [BeSo1]:

for radial u(r) = u(|x|), define

T (u)(r) = (ru(r))′, u(r) =
1

r

∫ r

0
T (u)(s) ds. (3.1)

Then, u solves the free wave equation on R
3+1 if and only if U = T (u) solves

the free wave equation on [0,∞) × R

Utt − Urr = 0, U(0) = U0 = T (u0), Ut(0) = U1 = T (u1), (3.2)

with Neumann boundary conditions Ur(0, t) = 0. Equation (3.2) has solu-
tions of the form (for r ≥ 0)

U(r, t) = χr≥tU+(r−t)+χr≤tU−(t−r)+χr+t≥0U−(r+t)+χr+t≤0U+(−r−t),

where by d’Alembert’s formula

U±(r) =
1

2
(U0(r)∓ ∂−1

r U1(r)). (3.3)

If we take (U(t0), Ut(t0)) as initial data in equation (3.2), we obtain a

time-translated solution Ũ with

Ũ±(r) =
1

2
(U(r, t0)∓ ∂−1

r Ut(r, t0)).

This decomposition is related to the original one by

Ũ−(r) = χr≥0U−(r+t0), Ũ+(r) = χr≥t0U+(r−t0)+χ0≤r≤t0U−(t0−r) (3.4)

for t0 ≥ 0 and similar for t0 ≤ 0.
In [BeSo1], we also used this construction to define incoming and outgoing

radial initial data.

Definition 3.2. We call a radially symmetric pair (u0, u1) outgoing if

(u0)r +
u0
r

= u1.

In this case, we showed that for r ≥ t ≥ 0

u(r, t) =
r − t

r
u0(r − t) (3.5)

and u(r, t) ≡ 0 for 0 ≤ r ≤ t. It is easy to see that, for outgoing initial data,
if u0 ≥ 0 then u ≥ 0.

The three-dimensional criterion involves one more derivative than the
one-dimensional one.
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Lemma 3.3. Suppose that (u0, u1) are smooth and radial. Then (ru0(r))r >
r|u1| if and only if the solution u to the free wave equation

utt −∆u = 0, u(0) = u0, ut(0) = u1

is positive on R
3+1. Moreover, in this case for any t ∈ R (ru(r, t))r >

r|ut(t, r)|.
Conversely, if there exists r0 ≥ 0 such that (ru0)r(r0) ≤ r0|u1(r0)|, then

u ≤ 0 somewhere in R
3+1 (more precisely, u(0, t = r0) ≤ 0 or u(0, t =

−r0) ≤ 0).
In addition, u ∈ L∞

t,x if and only if (ru0(r))r, ru1 ∈ L∞ and in this case

‖(ru(r, t))r‖L∞

t,r
+ ‖rut(t, r)‖L∞

t,r
≤ 2‖u‖L∞

t,x
≤ 2(‖(ru0(r))r‖L∞ + ‖ru1‖L∞).

Our positivity condition implies that (ru0(r))
′ > 0. Note that u0 will

decay no faster than 1/r and (of course) will be positive. In particular, this
means that u0 can have finite energy, but cannot have finite L2 norm.

Remark 3.4. If we allow equality as well, then (ru0(r))r ≥ r|u1| is equivalent
to u ≥ 0 on R

3+1 (and to (ru(r, t))r ≥ r|ut(t, r)| for any t ∈ R).

Proof of Lemma 3.3. With T defined by (3.1), let T (u) = U . Then, by
virtue of (3.1), in order to prove that u > 0 it suffices to prove that U > 0
and in turn this follows once we show that U± > 0. However, by (3.3),

U±(r) =
1

2
(U0(r)∓ ∂−1

r U1(r)) =
1

2

(

(ru0(r))r ∓ ru1(r)
)

> 0. (3.6)

By formula (3.4), this implies that Ũ± > 0, so, by a computation analogous
to (3.6), we get that (ru(r, t))r ∓ rut(r, t) > 0.

For the converse statement, if (ru0)r(r0) ≤ r0|u1(r0)|, then either U+(r0) ≤
0 or U−(r0) ≤ 0. Both cases imply that U(0, t) ≤ 0 for some t (t = −r0 in
the first case, t = r0 in the second case). But by (3.1) u(0, t) = U(0, t), so u
is indeed nonpositive somewhere in R

3+1.
The same reasoning applies to the L∞

t,x norm: following (3.1) and (3.6),

‖u‖L∞

t,x
≤ ‖U‖L∞

t,r
≤ ‖U−‖L∞ + ‖U+‖L∞ ≤ ‖(ru0(r))r‖L∞ + ‖ru1‖L∞ .

Conversely, again following (3.6),

‖(ru0(r))r‖L∞+‖ru1‖L∞ ≤ 2max(‖U−‖L∞ , ‖U+‖L∞) ≤ 2‖U(0, t)‖L∞

t
≤ 2‖u‖L∞

t,x
.

(Again we used the fact that u(0, t) = U(0, t)). Same is true for any other
time t ∈ R, so

‖(ru(r, t))r‖L∞

t,r
+ ‖rut(t, r)‖L∞

t,r
≤ 2‖u‖L∞

t,x
.

�

In the proof we also use the following more refined condition for the
boundedness of solutions.
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Corollary 3.5. Suppose u is a smooth radial solution to the free wave equa-
tion on R

3+1:
utt −∆u = 0, u(0) = u0, ut(0) = u1.

Then a ≤ u ≤ b on R
3+1 if and only if

(ru0(r))r − a ≥ r|u1|, b− (ru0(r))r ≥ r|u1|,
in which case it is also true that for any t ∈ R

(ru(r, t))r − a ≥ |ut(r, t)|, b− (ru(r, t))r ≥ |ut(r, t)|.
These two conditions taken together imply that a ≤ (ru(r, t))r ≤ b and

that |ut(r, t)| ≤ b−a
2r .

Corollary 3.5 is natural, in the sense that its hypotheses are true for
all radially symmetric Schwartz class (u0, u1) and some finite a, b ∈ R.
However, it is not necessary to assume any decay at infinity.

Proof of Corollary 3.5. Apply Lemma 3.3 to u− a and to b− u. �

We next state two positivity and boundedness criteria that holds for non-
radial solutions. These criteria are less sharp than Lemma 3.3, in the sense
that they are sufficient, but not necessary. For one criterion we need to
assume that the initial data (u0, u1) decay at infinity together with their
derivatives. In addition, this criterion requires two derivatives instead of
one.

In the statement of the boundedness criterion we also use the global Kato
space, defined as follows:

K = {u : ‖u‖K := sup
y

∫

R3

|u(x)|
|x− y| < ∞}.

Due to the pairing between L3/2,1 and L3,∞ and to the fact that 1
|x| ∈

L3,∞, it follows that L3/2,1 ⊂ K.
Also note that, due to the boundedness of the Riesz transforms, ∆u ∈

L3/2,1 is equivalent to D2u ∈ L3/2,1.

Lemma 3.6. Consider a smooth solution u to the free wave equation on
R
3+1 with initial data (u0, u1). If u0 > 0 and u1 ≥ |∇u0|, then u > 0 on

R
3 × [0,∞).
Alternatively, assume that (u0, u1) decay at infinity together with their

derivatives. If −∆u0 > |∇u1|, then u > 0 on R
3+1. Also, if ∆u0,∇u1 ∈ K,

then u ∈ L∞
t,x and

‖u‖L∞

t,x
≤ 1

4π
(‖∆u0‖K + ‖∇u1‖K). (3.7)

The condition −∆u0 > |∇u1| ≥ 0 automatically implies that u0 > 0,
since we can write

u0(x) =
1

4π

∫

R3

−∆u0(y)

|x− y| dy. (3.8)

For the same reason, if −∆u0 ∈ K, then u0 ∈ L∞.
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It is easy to generate pairs of initial data that satisfy our hypotheses
by, for example, first choosing u1, then choosing −∆u0 > |∇u1|, and then
retrieving u0 by means of the formula (3.8).

If we assume instead that u0 ≥ 0 or that −∆u0 ≥ |∇u1| (we allow for
equality), then we get that u ≥ 0.

A sharper way of bounding u is to say that it is dominated by the positive
solution with initial data ((−∆)−1(|∆u0| + |∇u1|), 0). Also note that a
solution u with initial data (u0, 0) and −∆u0 ≥ 0 has ut ≤ 0 for t ≥ 0 and
ut ≥ 0 for t ≤ 0 (so it reaches its maximum at time 0).

By the method of descent (i.e. writing a solution of the two-dimensional
wave equation as a solution of the three-dimensional wave equation that is
constant in one variable) the same criteria also hold in the two-dimensional
case.

A sharper positivity criterion can be written in terms of the Radon trans-
form of the initial data, but it is nonlocal and harder to use in the proof.

Proof of Lemma 3.6. This follows immediately from the usual solution for-
mula for the free wave equation in three dimensions. With no loss of gener-
ality take x = 0; then for t > 0

u(0, t) =
1

4πt2

∫

|y|=t
u0(y) dy +

1

4πt

∫

|y|=t
(u0)r(y) + u1(y) dy. (3.9)

Note that |(u0)r| ≤ |∇u0|.
A similar formula ensures the validity of the second criterion: for t ≥ 0

u(0, t) =
1

4π

∫

|y|≥t

−∆u0(y)

|y| dy +
1

4πt

∫

|y|=t
u1(y) dy (3.10)

and

1

4πt

∫

|y|=t
u1(y) dy = − t

4π

∫ ∞

t

∫

S2

(u1)r(rω) dω dr = − 1

4π

∫

|y|≥t

t(u1)r(y)

|y|2 dy.

(3.11)
Then note that |(u1)r| ≤ |∇u1| and t

|y|2 ≤ 1
|y| .

The boundedness estimate (3.7) follows for example from formulas (3.10)
and (3.11). Also note that an even more general statement was already
proved in [BeGo]. �

Finally, we also state a boundedness criterion that only holds locally in
time, but requires fewer conditions.

Lemma 3.7. Consider the free wave equation on R
3+1 with smooth initial

data u0 and u1, such that u0, ∇u0, u1 ∈ L∞. Then the corresponding
solution u satisfies the bounds

sup
R3×[−T,T ]

u ≤ supu0 + T (‖u1‖L∞ + ‖∇u0‖L∞)

inf
R3×[−T,T ]

u ≥ inf u0 − T (‖u1‖L∞ + ‖∇u0‖L∞).
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Proof of Lemma 3.7. This immediately follows from (3.9). �

4. Large solutions to equation 1.1

Proof of Proposition 1.1. Consider a smooth solution u of equation (1.1).
By setting v = e−u, we obtain the free wave equation on R

3+1

vtt −∆v = 0, v(0) = v0 = e−u0 , vt(0) = v1 = −e−u0u1

for v, where the initial data are also smooth.
The free wave equation always has a smooth solution v for smooth initial

data. Then, the transformation can be reversed as long as v > 0, by setting
u = ln v. By Lemma 3.3, v is guaranteed to be positive as long as (rv0(r))r >
r|v1|. Expressing this in terms of u, we obtain exactly condition (1.2).

By the same lemma, in this case (rv(r, t))r > r|vt(r, t)| or in other words
ur(r, t) + |ut(r, t)| < 1

r .
Next, u ∈ L∞

t,x is equivalent to v ∈ L∞
t,x and inf v > 0. Applying Lemma

3.5, we see that it is necessary and sufficient that

sup(rv0(r))r + r|v1| < ∞, inf(rv0(r))r − r|v1| > 0.

But

(rv0(r))r+r|v1| = e−u0(1−r(u0)r+r|u1|) ≤ e− inf u0(1+‖r(u0)r‖L∞+‖ru1‖L∞)

and

(rv0(r))r − r|v1| = e−u0r
(1

r
− (u0)r − |u1|

)

≥ e− supu0ǫ.

Thus v is always between these two bounds: A ≤ v ≤ B, where A = e− supu0ǫ
and B = e− inf u0(1 + ‖r(u0)r‖L∞ + ‖ru1‖L∞). Taking the logarithm, we
obtain exactly the inequality (1.3).

In this situation, Lemma 3.5 also implies that

A ≤ (rv(r, t))r − r|vt(r, t)| ≤ (rv(r, t))r + r|vt(r, t)| ≤ B,

hence

2r|vt(r, t)| ≤ B −A.

Taking into account the fact that A ≤ v ≤ B, these statements imply

ur(r, t) + |ut(r, t)| ≤
1

r

(

1− A

B

)

, −ur(r, t) + |ut(r, t)| ≤
1

r

(B

A
− 1

)

,

respectively

|ut(r, t)| ≤
1

2r

(B

A
− 1

)

.

Thus we retrieve the conclusions (1.4). �

Proof of Proposition 1.2. Concerning energy and dispersion, assuming that
u0 ∈ L∞ and that (u0)r + |u1| ≤ 1−ǫ

r , then we have already proved above

that v ≥ e− supu0ǫ, i.e. u ≤ supu0 + ln(1/ǫ). Since (u0, u1) ∈ Ḣ1 × L2,

‖(v0 − 1, v1)‖Ḣ1×L2 ≤ e− inf u0‖(u0, u1)‖Ḣ1×L2 .
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We need to subtract 1 because limx→∞ v0 = e0 = 1. As a radial solution of
the free wave equation, v − 1 conserves energy,

‖(v(t) − 1, vt(t)‖Ḣ1×L2 = ‖(v0 − 1, v1)‖Ḣ1×L2 ,

and also satisfies the endpoint Strichartz estimate [KlMa]:

‖v − 1‖L2
tL

∞

x
. ‖(v0 − 1, v1)‖Ḣ1×L2 .

In order to convert back to u, note that

‖(u(t), ut(t))‖Ḣ1×L2 ≤ esupu‖(v(t) − 1, vt(t))‖Ḣ1×L2

and |u| ≤ |v − 1|max(1, esup u). Putting together all these estimates we
obtain exactly (1.5). �

Proof of Proposition 1.3. Let v = e−u. Then, as stated above, v satisfies
the free wave equation

vtt −∆v = 0, v(0) = v0 = e−u0 , vt(0) = v1 = −e−u0u1.

Our hypothesis (u0)r(r0)+ |u1(r0)| ≥ 1
r0

implies that (rv0)r(r0) ≤ r0|v1(r0)|.
Then, by Lemma 3.3, it follows that v(0, t = r0) ≤ 0 or v(0, t = −r0) ≤ 0.

Suppose v(0, t = r0) ≤ 0 and let t0 = inf{t ≥ 0 : ∃r, |r| ≤ r0 −
t and v(r, t) = 0}. By continuity and compactness, v(r1, t0) = 0 for some
r1. Then clearly t0 ≤ r0 and t0 > 0 (since at time 0 v0 = eu0 6= 0). By
our definition, on the light cone with {(r, t) : t ≥ 0, |r − r1| ≤ t0 − t} v is
positive.

This means that we can take u = ln v and retrieve a smooth solution
u of the original equation (1.1) on this cone. At the same time, since
lim(r,t)→(r1,t0) v(r, t) = v(r1, t0) = 0, it follows that lim(r,t)→(r1,t0) u(r, t) =
−∞, which implies the L∞

loc blow-up.
Consider x0 ∈ R

3 with |x0| = r1, so that v(x0, t0) = 0. It follows that, for
|x− x0|, |t− t0| ≤ 1, |v(x, t)| . |x− x0|+ |t− t0|.

Therefore, under the same conditions and on the domain of u,

u(x, t) ≤ C + ln(|x− x0|+ |t− t0|). (4.1)

Setting x = x0, we get that ‖u(t)‖L∞

x (|x−x0|≤1) ≥ C + | ln |t− t0||.
Concerning the H3/2 norm, we use the Trudinger-Moser inequality, see

([Tru]) and ([Mos]): for any sufficiently regular bounded domain Ω ⊂ R
3

there exists C such that
∫

Ω
exp

(( |u(x)|
C‖u‖H3/2

)2)

− 1 dx ≤ 1.

By making the coordinate change x− x0 = |t− t0|(y − x0), we obtain that

‖u(t)‖H3/2(|x−x0|≤1) ≥ C| ln |t− t0||1/2. �
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Proof of Proposition 1.4. Here we make the substitution v = F (u), where

F ′′/F ′ = −f , so we can take F (u) =
∫ u
0 e−

∫ s
0
f(σ) dσ ds, see (1.7). Then v

solves the free wave equation

vtt −∆v = 0, v(0) = v0 = F (u0), vt(0) = v1 = F ′(u0)u1.

If F (±∞) = ±∞ we can always invert this transformation, so we obtain
global smooth solutions for any smooth initial data. On the other hand, if
F (−∞) = a ∈ R and/or F (+∞) = b ∈ R, then, in order to invert by taking
u = F−1(v), we need to impose the condition v > a and/or v < b. By
Corollary 3.5, it is sufficient that

rF ′(u0)(u0)r + F (u0)− a > rF ′(u0)|u1|,
which is equivalent to condition (1.8).

In order to obtain L∞
t,x solutions, we must ask that v ∈ L∞

t,x and, depending
on each case, inf v > a and/or sup v < b.

Suppose that u0 ∈ L∞. By Lemma 3.3, in order for v ∈ L∞
t,x we must

assume that r(u0)r, ru1 ∈ L∞.
By Corollary 3.5, a necessary and sufficient condition for e.g. inf v−a > 0

is that
inf rF ′(u0)(u0)r + F (u0)− a− rF ′(u0)|u1| > 0.

Taking into account the fact that we are assuming u0 ∈ L∞, so F ′(u0) is
bounded from above and below, this reduces to the stated condition (1.10).

�

Finally, the nonradial case is not so different from the radial case.

Proof of Proposition 1.5. The proof is almost identical to that of Proposi-
tion 1.4. We use the same substitution v = F (u), with F given by (1.7).
Then v must be a solution of the free wave equation

vtt −∆v = 0, v(0) = v0 = F (u0), vt(0) = v1 = F ′(u0)u1,

which is guaranteed to exist.
This transformation is always invertible when F (±∞) = ±∞, but in the

other cases we need to check whether v > F (−∞) = a and/or v < F (+∞) =
b. This is done using the positivity criteria of Lemma 3.6.

If F (−∞) = a ∈ R, then our conditions will in fact imply that v ≥ inf v0
or that v ≥ 0. Stated in terms of v, the conditions are inf v0 > −∞ and
v1 ≥ |∇v0| or (v0, v1) Schwartz functions and −∆v0 ≥ |∇v1|. Note that

∇v0 = F ′(u0)∇u0,

∆v0 = F ′(u0)∆u0 + F ′′(u0)(∇u0)
2,

∇v1 = F ′(u0)∇u1 + F ′′(u0)u1∇u0,

and that by definition F ′′/F ′ = −f and F ′ > 0. We obtain exactly condition
(1.11).

If D2u0 ∈ L3/2,1 ⊂ K, then u0 ∈ L∞, so F ′(u0) and F ′′(u0) ∈ L∞.

Assuming that D2u0, ∇u1 ∈ L3/2,1, it also follows that ∇u0, u1 ∈ L3,1.
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Consequently ∆v0, ∇v1 ∈ L3/2,1, so by Lemma 3.6 v is bounded. Under our
previous conditions, this also implies that u is bounded. �

Proof of Proposition 1.6. Let v = F (u), where F is given by (1.7). Note
that by our definition F (0) = 0. We obtain the free wave equation on R

3+1

for v:

vtt −∆v = 0, v(0) = v0 = F (u0), vt(0) = v1 = F ′(u0)u1.

It is easy to see that, since u0 and u1 are of Schwartz class, then so are
v0−F (0) = v0 and v1. Therefore the solution v is globally defined on R

3+1,
v(t) is of Schwartz class for each t ∈ R, and v disperses.

In particular, by the usual decay estimates, limt→∞ ‖v(x, t)‖L∞

x
= 0.

Since v is continuous and for each fixed t limx→∞ v(x, t) = 0, it follows
that lim(x,t)→∞ v(x, t) = 0.

Without loss of generality, assume F (−∞) = a ∈ R and F (+∞) = b ∈ R;
then a < F (0) = 0 and b > 0. From the above it follows that there exists
some R > 0 such that if |(x, t)| > R then v(x, t) ∈ (a/2, b/2). Since the set
{(x, t) : |(x, t)| ≤ R} is compact, v reaches its maximum and minimum on
this set, i.e. m = min|(x,t)|≤R v ≤ v ≤ M = max|(x,t)|≤R v.

There are two cases. If m ≥ a or M ≤ b, then the solution u blows up
in finite time; see the proof of Proposition 1.3 for more details. Otherwise,
one has a < inf v < sup v < b.

In the latter case, one can invert the transformation by taking u = F−1(v)
and obtain a global smooth solution u on R

3+1 to equation (1.6). In addition,

u = F−1(v) is bounded and more generally (F−1)(n) is bounded on the
domain of v.

We obtain that |u| . |v| and |Dnu| . ∑

k1+...+kn=n |Dk1v| . . . |Dknv| (with
constants that may depend on the solution). Therefore u(t) is a Schwartz
function for each t, its Sobolev Hn norms are uniformly bounded, and u and
all its derivatives disperse (because v has these properties and dominates u).

Concerning scattering, note that u = (F−1)′(0)v + O(v2). The first
term is a solution of the free wave equation, while the second term goes
to zero in any Hn Sobolev norm, since v(t) is uniformly bounded in Hn and
limt→∞ ‖Dnv(t)‖L∞ = 0 for any n ≥ 0. �

Proof of Proposition 1.9. The proof uses the same ideas as that of Proposi-
tion 1.5. We make the transformation v = F (u), where F is given by (1.7).
Then v is a solution of the free wave equation on R

3+1

vtt −∆v = 0, v(0) = v0 = F (u0), vt(0) = v1 = F ′(u0)u1.

Since u0 and u1 are smooth functions, so are v0 and v1, leading to a smooth
solution v on R

3+1.
In order to reverse the transformation, we need to ensure that v > a.

Our hypotheses and Lemma 3.7 guarantee this on R
3 × (−T, T ), where T

is defined by (1.12). Also, for any t < T , we see that v ∈ L∞
t,x(R

3 × [−t, t])
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and inf v > a on R
3 × [−t, t], which implies that u ∈ L∞

t,x(R
3 × [−t, t]) as

well. �

5. Large solutions to equation (1.13)

Proof of Proposition 1.10. Consider the following sequence:

u0(t) = cos(t
√
−∆)u0 +

sin(t
√
−∆)√

−∆
u1,

un+1(t) = cos(t
√
−∆)u0 +

sin(t
√
−∆)√

−∆
u1 +

∫ t

0

sin((t− s)
√
−∆)√

−∆
|un(s)|Nun(s) ds.

The first term in the sequence is nonnegative due to our hypothesis, by (3.5)
or Lemma 3.3. Inductively we see that all un are smooth and nonnegative,
hence all the integrals are well-defined.

Furthermore, one proves by induction that the sequence (un)n is mono-
tonically increasing, due to the positivity of the kernel

sin(t
√
−∆)√

−∆
(x, y) =

1

4πt
δ|x−y|=t.

Since the sequence (un)n is monotonically increasing, it must have a limit
(which can be nonnegative or +∞) pointwise in R

3+1. Let u := limn→∞ un;
clearly,

lim
n→∞

|un|Nun = |u|Nu,

with the usual convention that (+∞)N+1 = +∞.
By the monotone convergence theorem it follows that

u(t) = cos(t
√
−∆)u0 +

sin(t
√
−∆)√

−∆
u1 +

∫ t

0

sin((t− s)
√
−∆)√

−∆
|u(s)|Nu(s) ds,

i.e. u is a solution to (1.13) with initial data (u0, u1).
In order to compare two solutions, note that if u0 ≥ v0 ≥ 0 in case i,

(ru0(r))r ± ru1 ≥ (rv0(r))r ± rv1 ≥ 0 in case ii, etc., then u0 ≥ v0 ≥ 0 and
by induction un ≥ vn ≥ 0 for every n, so u ≥ v ≥ 0. �

Proof of Corollary 1.12. We use comparison with the solutions with initial
data ((1± ǫ)Q, 0).

A straightforward computation shows that

d

dǫ
E[(1± ǫ)Q] |ǫ=0= 0,

d2

dǫ2
E[(1± ǫ)Q] |ǫ=0< 0,

so E[(1 ± ǫ)Q] < E[Q] for small ǫ > 0. Using the criterion of [KeMe1], it
follows that the solution with initial data ((1 − ǫ)Q, 0) disperses, while the
solution with initial data ((1 + ǫ)Q, 0) blows up in finite time.

As an aside, note that our criteria guarantee that any solution with initial
data (CQ, 0), C > 0, is positive.

It is well-known (see [KeMe1]) that finite L8
t,x norm implies that the so-

lution must exist globally on R
3+1. �
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Proof of Theorem 1.16. Condition (1.21) implies that the solution u is dom-
inated, in the sense of Corollary 1.11, byQN (x−x0) for any x0 with |x0| = α.

It immediately follows that |u(x, t)| ≤ CN (α+ |x|)−2/N .
In order to prove that the solution u dooes not blow up, the easiest thing

to do is to assume that the initial data have compact support. Due to
the finite speed of propagation, u will have compact support at any fixed
time t ∈ R. Since it is bounded, all its Lebesgue norms will be bounded,
uniformly on compact time intervals. Therefore the Strichartz norms of u
will also be finite.

In the defocusing case, if the initial data have finite energy, then the
Morawetz inequality guarantees that ‖u‖2

L∞

x L2
t
. E[u] < ∞. On the other

hand, we already know that ‖u‖L∞

t,x
. α−2/N and

‖u‖
L
3N/2,∞
x L∞

t
≤ ‖QN‖L3N/2,∞ . 1.

Interpolating between the three bounds we obtain that ‖u‖L2N
t,x

< ∞, so u

disperses and scatters.
A more general argument to prove that the solution does not blow up in

finite time is the following: for sc ≤ 3/2, Ḣsc ∩L∞ is a Banach algebra and

‖fg‖Ḣsc . ‖f‖Ḣsc‖g‖L∞ + ‖f‖L∞‖g‖Ḣsc .

Then at least for even N

‖|u(t)|Nu(t)‖Ḣsc . ‖u(t)‖Ḣsc ‖u‖NL∞

t,x
.

In fact, similar estimates hold for every 0 < N ≤ 3/2. Since
∥

∥

∥

∥

sin(t
√
−∆)√

−∆
f

∥

∥

∥

∥

Ḣsc

≤ |t|‖f‖Ḣsc ,

it follows that for t ≥ 0

‖(u(t), ut(t)‖Ḣsc×Ḣsc−1 . ‖(u0, u1)‖Ḣsc×Ḣsc−1+

∫ t

0
(t−s)‖(u(s), ut(s)‖Ḣsc×Ḣsc−1‖u‖NL∞

t,x
ds.

By Gronwall’s inequality ‖(u(t), ut(t)‖Ḣsc . ‖(u0, u1)‖Ḣsc×Ḣsc−1 exp(Ct2‖u‖NL∞

t,x
).

Using this inequality for time t ≤ 1 and iterating, we get that

‖(u(t), ut(t)‖Ḣsc . ‖(u0, u1)‖Ḣsc×Ḣsc−1 exp(Ct‖u‖NL∞

t,x
).

Thus ‖u(t)‖Ḣsc is bounded on compact time intervals. This immediately

implies that the nonlinearity ‖|u(t)|Nu(t)‖Ḣsc is also bounded on compact
intervals and the same for the Strichartz norms.

Following the result of [DuRo], for radial solutions, in either the focusing
or the defocusing case, the local boundedness of the critical Sobolev norm
implies that the solution disperses and scatters (without any explicit bounds,
however, on the size of the global Strichartz norms). �



24 MARIUS BECEANU AND AVY SOFFER

Acknowledgments

We would like to thank Wilhelm Schlag for the useful discussions.
This work was partially supported by a grant from the Simons Foundation

(#429698, Marius Beceanu).
This work was partially supported by a grant from the Simons Foundation

(#395767 to Avraham Soffer). A.S. is partially supported by NSF grant
DMS 1201394. Part of this work was done while A.S. was visiting at CCNU,
Wuhan, China.

References

[Bec] M. Beceanu, A center-stable manifold for the energy-critical wave equation in 3

in the symmetric setting, J. Hyper. Differential Equations, Vol. 11, Issue 3, 437
(2014).

[BeGo] M. Beceanu, M. Goldberg, Strichartz estimates and maximal operators for the

wave equation in R
3, Journal of Functional Analysis, Vol. 266, Issue 3, 1 February

2014, pp. 1476–1510.
[BeSo1] M. Beceanu, A. Soffer, Large outgoing solutions to supercritical wave equations,

preprint, arXiv:1601.06335.
[BeSo2] M. Beceanu, A. Soffer, Large initial data global well-posedness for a supercritical

wave equation, preprint, arXiv:1602.08163.
[BCDN] H. Berestycki, I. Capuzzo Dolcetta, L. Niremberg, Superlinear indefinite elliptic

problems and nonlinear Liouville theorems, Topoi. Methods Nonlinear Anal. 4
(1993), pp. 59–78.
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