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ABSTRACT

EXONEST is an algorithm dedicated to detecting and characterizing the photometric signatures of exoplanets, which
include reflection and thermal emission, Doppler boosting, and ellipsoidal variations. Using Bayesian inference, we
can test between competing models that describe the data as well as estimate model parameters. We demonstrate
this approach by testing circular versus eccentric planetary orbital models, as well as testing for the presence or
absence of four photometric effects. In addition to using Bayesian model selection, a unique aspect of EXONEST is
the potential capability to distinguish between reflective and thermal contributions to the light curve. A case study
is presented using Kepler data recorded from the transiting planet KOI-13b. By considering only the nontransiting
portions of the light curve, we demonstrate that it is possible to estimate the photometrically relevant model
parameters of KOI-13b. Furthermore, Bayesian model testing confirms that the orbit of KOI-13b has a detectable
eccentricity.

Key words: astronomical databases: miscellaneous – methods: data analysis – methods: statistical – planetary
systems – planets and satellites: detection – planets and satellites: fundamental parameters – planets and satellites:
general – techniques: photometric

Online-only material: color figures

1. INTRODUCTION

Exoplanets are known to cause a variety of photometric
effects, which collectively can be used for both exoplanet
detection and characterization. The Kepler Space Telescope
(Kepler) has reached a level of photometric precision and
temporal coverage that allows for the detection of such effects
(Jenkins & Doyle 2003). A portion of the observed flux
variation originates directly from the exoplanet itself as both
a reflected light component and thermal emission. Additional
effects originate from the influence of the exoplanet on its host
star. These include Doppler boosting, or beaming, caused by the
radial velocity variations due to the stellar wobble, as well as
variations in flux caused by the ellipsoidal distortion of the star,
which is induced by the planetary tidal forces. These effects
make it possible to detect nontransiting planets, which are
expected to account for a large subset of the extant exoplanet
population. Using Bayesian inference one can estimate the
values of the physical parameters on which these effects depend.
In addition, by computing the Bayesian evidence a variety of
models can be tested, some of which may either allow for, or
neglect, these effects.

The BEER algorithm, published by Faigler & Mazeh (2011),
is a novel way of detecting such planets via BEaming, Ellip-
soidal variations, and Reflected light effects. This has proved to
be an efficient method for detecting companions, which include
a good number of noneclipsing binaries as well as Jupiter mass
companions (Faigler et al. 2012; Shporer et al. 2011). The BEER
model assumes that planets have circular orbits and treats each
effect as a sinusoid. In short, this allows the algorithm to esti-
mate the orbital period of the companion, and the amplitudes of
the three effects (Beaming, Ellipsoidal, and Reflection). While
it is likely that most detections will be short period Jupiter-

3 Department of Informatics, University at Albany (SUNY), Albany, NY
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mass planets in circular orbits, planets closely orbiting their
host stars with significant eccentricities have been found and are
interesting from a planetary formation standpoint (Matsumura
et al. 2008).

Additional advantages of considering each of these photomet-
ric effects include potentially breaking the Mp sin i degeneracy
associated with other detection techniques, as well as provid-
ing information about scattering and emissive properties of ex-
oplanet atmospheres (Seager et al. 2000; Charbonneau et al.
2002; Hood et al. 2008; Rowe et al. 2008). In our algorithm,
we include separate models for both reflected light and thermal
emissions with the aim of potentially differentiating between
these two effects in a photometric data set. This typically can-
not be done for hot Jupiters, since the majority have circularized
orbits, which result in thermal phase curves that are identical in
shape to those of reflected light. However, for eccentric orbits,
these two effects are potentially separable due to the fact that
there is a 1/r2 drop off in the reflected light that does not appear
in the thermal emissions.

Our methodology is based on Bayesian Model Selection,
which is accomplished by computing the Bayesian evidence
(hereafter called the evidence) for each of a set of models. The
evidence allows one to compare the probability of one model to
another. Similar methods have been employed to test between
different models of multiplanet systems using radial velocity
data (Feroz et al. 2011; Gregory 2011) as well as for finding
secondary eclipses in CoRoT light curves (Parviainen et al.
2013). In this application to Kepler data, by turning photometric
effects on and off, one can determine the probability with which
each effect, or combination of effects, contributes to the total
recorded photometric signal. In situations where an exoplanet
model is found to require several of these effects, or particular
combinations of these effects, this tends to increase confidence
that the data originates from an actual exoplanet. In a very real
sense, each photometric effect can be conceived to represent an
independent detection technique.
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2. BAYESIAN MODEL SELECTION

To make inferences from data, we rely on Bayes’ Theorem

P (θM |D,M) = P (θM |M)P (D|θM,M)

P (D|M)
(1)

where M represents the hypothesized model, D represents the
recorded data, and θM represents the set of parameters belonging
to model M. The prior probability, P (θM |M), quantifies what
is known about the parameters θM before considering the data
D. The likelihood function, P (D|θM,M), quantifies the prob-
ability that the specific model and its hypothesized parameter
values could have produced the data. The probability in the
denominator, P (D|M), is the evidence, which represents the
probability that the model (irrespective of its parameter values)
could have given rise to the data. Finally, the posterior probabil-
ity, P (θM |D,M), quantifies what is known about the model and
its parameter values after the data have been considered. In this
sense, Bayes’ Theorem acts as an update rule that takes what
is known before the data are considered (prior probability) and
modifies it with the ratio of two data-dependent terms (likeli-
hood and evidence) resulting in the posterior probability. The
posterior probability is critical for estimating the model param-
eter values θM , whereas the evidence allows one to assess the
probability that the model M describes the data.

The evidence is calculated by integrating, or marginalizing,
over all model parameter values:

P (D|M) = Z =
∫

P (θM |M)P (D|θM,M) dθM. (2)

For this reason, the evidence, which is often called the marginal
likelihood, can be considered to be a prior-weighted average
of the likelihood. Since models with more parameters have a
lower prior probability (unit probability is spread over a larger
space), with the likelihoods being equal, the Bayesian evidence
naturally favors the simpler model. In this sense Bayes’ theorem
is often envisioned to implement a form of Occam’s Razor.

Imagine that we have two models, M1 and M2, that we would
like to compare and test by applying them to a data set. To
determine which model is favored by the data, we compute the
posterior odds ratio by dividing the posterior probability of one
model by the posterior probability of the other:

P (M1|D, I )

P (M2|D, I )
= P (M1|I )

P (M2|I )

P (D|M1)

P (D|M2)
= K

P (M1|I )

P (M2|I )
, (3)

where I represents one’s prior information about the problem
and K is the Bayes’ factor, which represents the ratio of the
model evidences. The ratio of the model priors is often set to
one implying no prior preference to either model. As a result, the
evidence quantifies the probability of a model given the data, so
that the Bayes’ factor enables one to compare the probabilities
of a pair of models.

To compute the evidences, we must integrate the product of
the prior and the likelihood over the entire, usually multidimen-
sional, parameter space. In practice, such computations can be
performed numerically by means of the Nested Sampling algo-
rithm (Sivia & Skilling 2006), or a version of nested sampling
called MultiNest (Feroz & Hobson 2008; Feroz et al. 2009,
2013), which is well-equipped to handle multimodal probabil-
ity distributions. Another benefit of the Nested Sampling algo-
rithm, and its cousin MultiNest, is that they provide posterior
samples, which allows one to compute parameter estimates and
uncertainties in those estimates in addition to model testing.

3. MODELING PHOTOMETRIC VARIABILITY

Accurate modeling of exoplanet-induced photometric vari-
ability requires considering at least three different mechanisms
(Loeb & Gaudi 2003; Faigler & Mazeh 2011), each of which
depends on the orbit of the planet. Therefore, the first step is to
generate an orbit from the set of hypothesized model parameters.
We find that the most efficient way of doing this is to iterate the
mean, eccentric, and true anomalies following the method used
in Brown (2009) and Mislis et al. (2011). This can be performed
by iterating the following equations over the elapsed time from
t = 0 to an arbitrary t = tend:

M(t) = M0 +
2πt

T
(4)

E(t) = M(t) + e sin E(t) (5)

tan
ν(t)

2
=

√
1 + e

1 − e
tan

E(t)

2
(6)

where M0 is the initial mean anomaly, T is the orbital period,
e is the orbital eccentricity, and M(t), E(t), and ν(t) are
the mean, eccentric, and true anomalies, respectively. The
eccentric anomaly (5) is given by the transcendental equation
which is solved via the Newton–Raphson method with a
stopping criterion given by |Ei − Ei+1| < 10−8. The distance r
between the star and planet is calculated using the eccentric and
true anomalies:

r(t) = a(1 − e cos E(t)) = a(1 − e2)

1 + e cos ν(t)
. (7)

Given r(t), one can calculate the position of the planet in
Cartesian coordinates (x, y, z) at any time given the orbital
inclination i, the argument of periastron ω, the true anomaly
ν(t), and the line of nodes Ω⎛
⎝x(t)

y(t)
z(t)

⎞
⎠

= r(t)

⎛
⎝cos Ω cos(ω + ν(t)) − sin Ω sin(ω + ν(t)) cos i

sin Ω cos(ω + ν(t)) + cos Ω sin(ω + ν(t)) cos i

sin(ω + ν(t)) sin i

⎞
⎠.

(8)

Since the line of nodes serves only to rotate the orbit in
the reference plane about the line of sight, it does not affect
the observed flux variation. We can therefore simplify the
calculations by setting Ω equal to zero (Brown 2009), which
results in (

x(t)
y(t)
z(t)

)
= r(t)

(
cos(ω + ν(t))

sin(ω + ν(t)) cos i
sin(ω + ν(t)) sin i

)
. (9)

The vector r(t) = x(t) x̂ + y(t) ŷ + z(t) ẑ gives the position of
the planet, so that the unit vector r̂(t) = r(t)/r(t) points from
the star to the planet. Defining the line of sight to be r̂ ′ = ẑ, one
can calculate the phase angle θ (t) of the planet

θ (t) = arccos(r̂(t) · r̂ ′)

= arccos

(
z(t)

r(t)

)
= arccos(sin(ω + ν(t)) sin i). (10)

2
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Accurate prediction of the position of the planet as a function
of time is critical to obtaining accurate predictions of the
photometric effects.

3.1. Reflected Light

Given the position of the planet at any given time, one can
model the time series of the expected photometric effects. To
model reflected light, we begin by assuming that the star radiates
isotropically and that the planet acts as a Lambertian sphere. The
total light reflected from the planet is found by integrating over
the illuminated surface visible along the line of sight.

The infinitesimal luminosity reflected from a surface element,
n̂ dA, on a planet is given by

dLp = AeffF0 n̂ · r̂ dA (11)

where Aeff is an effective albedo, n̂ = sin α cos β x̂ +
sin α sin β ŷ + cos β ẑ is the unit normal vector to the plane-
tary surface, r̂ = sin θ (t) x̂ + cos θ (t) ŷ is the unit orbital ra-
dius vector, the surface area element on the planet is dA =
Rp

2 sin α dα dβ, and F0 is the incident stellar flux given by

F0 = L�

4πr(t)2
, (12)

where L� is the stellar luminosity and r(t) is the potentially
time-varying orbital separation between star and planet. Taking
the dot-product

n̂ · r̂ = sin α sin(θ (t) + β) (13)

and integrating

Lp =
∫

dLp

= AeffF0

∫ π

0
sin2 α dα

∫ π−2θ

−θ

sin(θ (t) + β) dβ (14)

we get

Lp(t) = AeffF0πRp
2

2
(1 + cos θ (t)) . (15)

This expression has units of luminosity, which is made more
explicit by substituting Equation (12) so that

Lp(t) = Aeff

8

Rp
2

r(t)2
L� (1 + cos θ (t)) . (16)

The flux of the planet observed from Earth is

Fp(t) = Lp(t)

4πd2
, (17)

which given the luminosity in Equation (16), can be rewritten
as

Fp(t) =
Aeff

8
Rp

2

r(t)2 L�

4πd2
(1 + cos θ (t)) (18)

where d is the distance from Earth to the planet. It is common
practice to normalize with respect to the stellar flux received at
Earth

F� = L�

4πd2
(19)

so that

Fp(t)

F�

= 4πd2

L�

Aeff
8

Rp
2

r2 L�

4πd2
(1 + cos θ (t))

= Aeff

8

Rp
2

r(t)2
(1 + cos θ (t)) . (20)

From definitions found in Seager (2010), the albedo Aeff can
be written as

Aeff = gAs (21)

where As is the spherical albedo, and g is a correction factor
to account for anisotropic scattering from the planet. This
correction factor can be written in terms of the spherical and
geometric albedos (Seager 2010)

g = 4Ag

As

, (22)

which gives the final result for the normalized reflected compo-
nent of the planetary flux

Fp(t)

F�

= Ag

2

Rp
2

r(t)2
(1 + cos θ (t)) . (23)

3.2. Thermal Emission

Since the majority of planets detectable by photometric
variations will be close to their host stars (a < 0.1 AU), it is
expected that thermal emission will play a role in the total flux
emanating from the planet. For example, thermal emissions have
been detected in light curves of certain transiting planets such
as the hot Jupiter, HAT-P-7b (Borucki et al. 2009). It is thought
to be nearly impossible to distinguish the thermal photons from
reflected photons (Cowan & Agol 2011) in the case of close-in
hot Jupiters. This should be the case for circular orbits where
both reflected light and thermal emissions vary sinusoidally.
However, for sufficiently eccentric orbits the reflected light
curve can deviate significantly from a sinusoid providing the
opportunity to distinguish the two photometric effects. The
ability to separate thermal emissions from reflected light will
depend on the eccentricity of the orbit as well as the signal to
noise of the data.

The infinitesimal thermal luminosity from a surface element
on the dayside of a planet, denoted dLT h,d , is given by

dLT h,d = Fp(Td )n̂ · r̂ dA (24)

where Fp(Td ) is the thermal flux from the dayside of the planet.
Integrating over the surface of the planet, as in (14), yields the
thermal luminosity of the dayside

LTh,d (t) = Fp(Td )πRp
2

2
(1 + cos θ (t)) . (25)

The flux received at Earth is given by

FTh,d (t) = LTh,d (t)

4πd2

= Fp(Td )Rp
2

8d2
(1 + cos θ (t)) . (26)

Normalizing by the stellar flux gives

FTh,d (t)

F�

=
Fp(Td )Rp

2

8d2

L�

4πd2

(1 + cos θ (t))

= Fp(Td )πRp
2

2L�

(1 + cos θ (t)) . (27)

3
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Substituting the stellar luminosity L� = F�

(
πR2

�

)
results in

FTh,d (t)

F�

= 1

2

(
Rp

R�

)2

(1 + cos θ (t))
Fp(Td )

F�

. (28)

The stellar flux detected by the Kepler bandpass (Van Cleve &
Caldwell 2009) is found by integrating, over all possible wave-
lengths λ, the product of the spectral radiance of a blackbody

B(T ) = 2hc2

λ5

1

e
hc

λkB T − 1
(29)

evaluated at the effective temperature of the star T = Teff and the
Kepler response function K(λ) (Van Cleve & Caldwell 2009)

F� =
∫

B(Teff)K(λ) dλ. (30)

The planetary thermal flux detected by the Kepler bandpass is
found similarly using the dayside and nightside temperatures Td
and Tn so that

FTh,d (t)

F�

= 1

2
(1 + cos θ (t))

(
Rp

R�

)2 ∫
B(Td )K(λ) dλ∫
B(Teff)K(λ) dλ

(31)

and

FTh,n(t)

F�

= 1

2
(1 + cos(θ (t) − π ))

(
Rp

R�

)2 ∫
B(Tn)K(λ) dλ∫
B(Teff)K(λ) dλ

,

(32)
where R� is the radius of the star. These integrals can be
performed by numerical integration.

3.3. Doppler Boosting

The Doppler boosting component of the photometric variation
originates from a relativistic effect that occurs because of the
stellar wobble induced by the planet. As the star moves toward
an observer, there is an increase in the observed flux, and as
it recedes the observed flux decreases. There is also a boosting
component from the reflected light from the planet; however, the
amplitude of the reflected light is so small compared to the total
stellar flux that the stellar boosting far outweighs the planetary
boosting despite the fact that the planet is traveling much faster
around the center of mass. This effect can be quantified by
(Rybicki & Lightman 2008)

Fboost(t) = F�

(
1

γ (1 − β cos θ (t))

)4

(33)

where γ −1 =
√

1 − β2, β = v/c, where c is the speed of light,
and F� is the stellar flux in the reference frame of the star. Since
even in the most extreme cases the stellar radial velocities will
be on the order of 102–103 ms−1 (β ∼ 10−5), we can use the
nonrelativistic limit (Loeb & Gaudi 2003). Acknowledging the
time dependence of the effect, we can approximate the boosting
component of the flux by

Fboost(t)

F�

= 1 + 4βr (t) (34)

where βr is the component of the stellar velocity along the line
of sight ẑ, more commonly referred to as the radial velocity.
This is given by

βr (t) = vz(t)

c
(35)

where
vz(t) = K(cos(ν(t) + ω) + e cos ω) (36)

such that ν(t) is the true anomaly given by Equation (6) and K is
the radial velocity semi-amplitude, which in units of ms−1 can
be found by

K = 28.435

(
T

1 yr

)− 1
3 Mp sin i

MJ

(
M�

M�

)− 2
3

. (37)

where T is the orbital period in units of years, Mp is the mass of
the planet in Jupiter masses, and M� is the mass of the star in solar
masses. It is important to note that both the orbital inclination i
and the mass of the planetary companion Mp play unique roles
in the boosting effect. This implies that in the case where the
photometric variations have a significant boosting component,
there is the potential to estimate both the inclination and the
mass of the planetary companion, which is impossible from
reflected light alone.

3.4. Ellipsoidal Variations

Ellipsoidal variations arise from stellar distortion due to
planetary gravitational tidal forces. To first order, the star is
shaped like a prolate spheroid with the semi-major axis pointing
approximately toward the planet, with a potential lag that could
also be modeled. This results in a periodic fluctuation of the
observed stellar flux that is equal to half the period of the
planetary orbit as the visible cross section of the star changes.
Since it would be computationally expensive to model this effect
precisely, we instead model these variations using the estimated
amplitude given by Loeb & Gaudi (2003), with a trigonometric
modification (Kane & Gelino 2012)

Fellip(t)

F�

= β
Mp

M�

(
R�

r(t)

)3

[cos2(ω+ν(t))+sin2(ω+ν(t)) cos2 i]

(38)
where Mp and M� are the masses of the planet and star,
respectively, R� is the radius of the star, r(t) is the distance
from the star to the planet given by Equation (7), ν(t) is the true
anomaly given by Equation (6), ω is the argument of periastron,
and β is the gravity darkening exponent given by

β =
log

(
GM�

R2
�

)
log Teff

, (39)

where Teff is the effective temperature of the host star. Since both
the boosting and ellipsoidal variations both depend on the true
anomaly ν(t) and the argument of periastron ω, we can model
these effects both in the case of circular and eccentric orbits.

3.5. Combining Photometric Effects

The net photometric variation of a modeled exoplanetary
system can be found by first computing the orbital position
(r(t), θ (t)) of the planet, or planets, as a function of time as
given by Equations (7) and (10). This, combined with the
model parameters describing the star and planet, can then be
used to compute the components of photometric flux due to
light reflected from the planet (23), Doppler boosting of the
starlight (34), ellipsoidal variations in the shape of the star (38),
and thermal emission contributions from the dayside (31)
and nightside (32) of the planet. By simply summing these

4
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(A) (B)

(C) (D)

Figure 1. (Left column, A and C) Illustration of the reflected light, Doppler boosting, ellipsoidal variation, and thermal emission components. (Right column, B and
D) These effects combine to produce a net observed photometric variation. The top row (A and B) corresponds to a planet with a circular orbit while the bottom row
(C and D) corresponds to a planet with an eccentric (e = 0.3) orbit. Thermal effects, which depend significantly on day- and nightside temperatures as well as the
eccentricity of the orbit, cannot always be distinguished from reflected light.

photometric flux contributions, one can generate a predictive
model of the observed photometric flux variations

Fpred(t) = F�

(
1 +

Fp(t)

F�

+
Fboost(t)

F�

+
Fellip(t)

F�

+
FTh,d (t)

F�

+
FTh,n(t)

F�

)
. (40)

Often, photometric time series are normalized by dividing the
observed flux Fobs by the mean flux 〈Fobs〉 and then subtracting
that mean so that

Fnorm(t) = Fobs(t)

〈Fobs〉 − 〈Fobs〉. (41)

Since 〈Fobs〉 ≈ F�, one can use the following predictive model
with normalized photometric data

Fnormpred(t) ≈ Fp(t)

F�

+
Fboost(t)

F�

+
Fellip(t)

F�

+
FTh,d (t)

F�

+
FTh,n(t)

F�

,

(42)
with the understanding that this is only approximate since the
interesting photometric effects do not necessarily average to
zero and as a result also contribute to the 〈Fobs〉. Throughout the
remainder of this paper, we will work with normalized data.

Figure 1 illustrates three photometric components, as well
as the resulting observed signal, in the case of both a planet
in a circular orbit (top) and the same planet in an eccen-
tric orbit with e = 0.3 (bottom). The model parameters
for this example are {M� = 2.05M�, R� = 2.55 R�, i =
80◦, ω = 3π/2,M0 = 0, Rp = 1.86 RJ ,Mp = 8.5MJ , Teff =

8500, Td = 3400 K, Tn = 3000 K}. Consider a planet in a cir-
cular orbit (Figures 1(A) and (B)). The reflected light varies
sinusoidally at the same period as the orbit of the planet cycles
through its phases with a maximum flux corresponding to the
planet being in a full phase (depending, of course, on the or-
bital inclination). On the other hand, the ellipsoidal variations
oscillate sinusoidally at twice the orbital period with maxima
occurring when the planet is in either a first quarter or last quar-
ter phase. This corresponds to the star being oriented so that its
cross-sectional area along the line of sight is at a maximum. The
boosting component varies with the period of the orbit, but is off
by a phase from the reflected light since the maximum boosting
occurs when the planet is in its first quarter phase and the star
is moving toward the observer.

The photometric variations of an equivalent planet in an
eccentric orbit (e = 0.3) are illustrated in Figures 1(C) and
(D). The most dramatic difference is the fact that the reflected
light time series is bimodal. This occurs because the stellar flux
received by the planet decreases with 1/r2 so that as the planet
approaches apastron the reflected flux decreases. The change of
shape of the curves representing flux from ellipsoidal variations
and boosting are directly due to the fact that it is an eccentric
orbit rather than a circular orbit.

4. ANALYSIS, METHODOLOGY, AND TESTING

4.1. Model Testing

Exoplanets can exhibit several different photometric effects.
However, each of these effects may be present to varying de-
grees, or possibly absent altogether, dependent on the exo-
planet. This implies that a careful analysis should consider

5



The Astrophysical Journal, 795:112 (15pp), 2014 November 10 Placek, Knuth, & Angerhausen

a set of models, each consisting of a different subset of ef-
fects. One of the unique features of EXONEST is its abil-
ity to both perform parameter estimation as well as statistical
model testing.

Each of the models involves a different number of param-
eters depending on the photometric effects that are included.
Moreover, different model parameters have different ranges
of possible values, so that different models possess parame-
ter spaces of different dimensionalities and dimensions. This
affects the prior probability assigned to a model, and thus one’s
inferences.

Bayes’ Theorem naturally weighs the ability of a model
to describe the data against the complexity of that model as
quantified by the volume of its parameter space. Therefore,
Bayes’ favors the simpler of two models that predict the
data equally well. Bayesian model selection allows us to
test whether specific photometric effects, such as reflection,
boosting, ellipsoidal variations, or thermal emissions, play a
major role in describing the data. For example, if the boosting
and tidal effects are negligible, a model that includes these
effects will have a lower evidence and will be less favored.
On the other hand, if the reflected light variations are negligible,
then the more complex models must describe the data very well
in order to overcome the penalty imposed by having a larger
parameter space.

When considering reflected light, the flux involves the product
of the geometric albedo and the radius of the planet squared,
AgRp

2, which together act as a single parameter affecting the
amplitude of the cosine. Thermal emissions depend only on
the radius of the planet, and not on the geometric albedo.
In the case of a circular orbit, thermal emissions cannot be
disentangled from reflected light. For this reason, in this paper,
we do not test for thermal emissions in the case of circular orbits,
though we keep in mind that the photometric signal could still
involve both reflected and thermally emitted components. The
situation is expected to be more interesting in the case of highly
eccentric close-in orbits since the thermal emissions will behave
differently from reflected light. In this case it may be that the
two effects can be disentangled.

4.2. The Prior and Likelihood Function

Bayesian inference requires us to assign both the prior
probabilities of the model parameters and the likelihood of
the data given the hypothesized parameter values. In this
application, we assign a uniform prior probability over a
reasonable range to each of the model parameters as indicated
in Table 1. Such assignments can be changed as we add layers
of sophistication to this methodology, and as more is learned
about exoplanets in general.

One important point should be made involving the prior
assigned to the orbital inclination. Since one does not expect
a relationship between the orientation of a planet’s orbit and
the orientation of the observer, the inclination angle is sampled
from a uniform distribution on a sphere. To do this, one can
either estimate the inclination using the arccosine of the uniform
distribution from [0, π/2] (Brown 2009), or one can estimate
cos i using a uniform prior from [0, 1]. In some cases, more
informative priors may be employed for certain parameters. For
instance, Kipping (2013) proposes the use of a beta-distribution
for a prior on orbital eccentricity and Gregory & Fischer (2010)
employ an eccentricity bias correction filter to account for
situations with low signal to noise.

Table 1
Prior Distributions for Model Parameters

Parameter Variable Interval Distribution

Orbital period (days) T [0.01, 15] Uniform
Eccentricity e [0, 1] Uniform
Stellar mass (M�) Ms Known
Mean anomaly (rad) M0 [0, 2π ] Uniform
Arg. of periastron (rad) ω [0, 2π ] Uniform
Orbital inclination (deg) i [0, (π )/(2)] Uniform on Sphere
Minimum planetary radius (RJ)

√
AgRp [10−4, 4] Uniform

Planetary radius (RJ) Rp [10−4, 4] Uniform
Geometric albedo Ag [0, 1] Uniform
Stellar radius (R�) R� Known
Planetary mass (MJ) Mp [0.1, 20] Uniform
Dayside temperature (K) Td [0, 6000] Uniform
Standard deviation of noise (ppm) σ [10−6, 10−4] Uniform

The likelihood function quantifies the degree to which one
expects the photometric time series predicted by the model to
agree with the data. Quantifying all of the information that
one may possess about the system can be a difficult task since
this would include accounting for the optics of the telescope,
the dynamics of the CCD pixels, and all of the preprocessing
that went into the available data. Experience has shown that in
many cases, it is often best to make simple assumptions—at
least as a start. In the case where the mean value of the
signal and the expected squared deviation about the mean
(variance) are the only two relevant parameters, the principle
of maximum entropy dictates that the least biased assignment
is a Gaussian likelihood. Such an assignment accommodates
the relevant parameters while ensuring that no other unintended
effects are assumed. However, in this situation, is not clear
how best to handle the variance parameter. In many cases,
marginalizing over the unknown signal variance to obtain a
Student-t likelihood (Student 1908; Sivia & Skilling 2006)
provides the most conservative estimate. However, in our
preliminary tests with synthetic data, we found that the Student-
t likelihood adversely affected the model testing portion of the
analysis. For example, when testing a circular orbit model on
synthetic data simulating a planet with an eccentric orbit, the
long tails of the Student-t distribution were able to accommodate
the extreme nonsinusoidal photometric variations associated
with a planet in an eccentric orbit. As a result, we found
that circular orbit models were consistently favored over the
eccentric orbit models despite obvious photometric signatures
of orbital eccentricity in the data.

With the signal variance, σ 2, either known or included as a
model parameter, one can assign a Gaussian likelihood, which
depends on the sum of the square differences between the Kepler
photometric data value di recorded at time ti and the photometric
time series at time ti, FM (ti) ≡ FM (ti , θM ), predicted by the
model M and its model parameters θM

P (di |θM,M) = 1√
2πσ 2

exp

(
− (FM (ti) − di)2

2σ 2

)
. (43)

Assuming that the value of a given data point does not de-
pend on the fact that previous data were recorded, implies
that the joint likelihood for all of the recorded data can
be written as a product of the likelihoods of the individ-
ual data values D = {d1, d2, . . . , dN }. As a result the log-
arithm of the joint likelihood is a sum of the individual
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(A) (B)

Figure 2. Phase folded synthetic eccentric data with fits for eccentric (A) and circular (B) models including reflected light, Doppler beaming, and ellipsoidal variations.
The circular model clearly leaves unmodeled structure in the residuals.

log likelihoods

log P (D|θM,M) = log P ({d1, d2, . . . , dN }|θM,M)

= − 1

2σ 2

N∑
i=1

(FM (ti) − di)
2 − N

2
log 2πσ 2,

(44)

where using i as an index enables one to easily accommodate
gaps in the data due to removed transits or other observation
discontinuities. The last term on the right, −N/2 log 2πσ 2, is
not only constant with respect to the model parameters, but
also independent of the model, and can be ignored making the
computations more efficient. However, if the signal variance is
unknown and is incorporated as a model parameter, this term
must be considered.

The product of the prior and the likelihood are proportional
to the posterior probability of the model parameters given the
data. Here, since we have employed uniform priors, the posterior
probability is proportional to the likelihood function. To explore
the posterior probability, we employ the MultiNest algorithm,
which efficiently integrates the product of the prior and the
likelilhood to obtain the evidence calculation while collecting
samples, which can be used to estimate the model parameters.
The result is that one can simultaneously perform Bayesian
model testing and Bayesian parameter estimation.

4.3. Analysis of Synthetic Data

In order to better understand the capabilities of EXONEST,
we tested the algorithm in a series of experiments using synthetic
data sets derived from the photometric model described in
Section 3. The first set of experiments involved testing the ability
of EXONEST to distinguish circular and eccentric orbits via
model selection as well as estimating the variance of the noise
as an additional model parameter. The circular and eccentric
synthetic data describes 10 days worth of measurements of a
close-in hot Jupiter akin to KOI-13b in orbits with e = 0.0 and

Table 2
MultiNest log Evidences (ln Z) for Synthetic Data Sets

Eccentric Data Circular Data

Eccentric Model 4046.70 3988.40
Circular Model 3956.70 3990.80
Null 3849.00 3749.20

Notes. The model most favored to describe the data is in bold. In
the case of the synthetic circular orbit (Circular Data), the correct
Circular Model was approximately exp(2.4) times more probable
than the incorrect Eccentric Model. Even more significant results
were obtained in the case of the synthetic eccentric orbit (Eccentric
Data) where the correct Eccentric Model was approximately exp(90)
times more probable than the incorrect Circular Model.

e = 0.2, respectively. In both cases, the geometric albedo of
the hypothetical planet was taken to be Ag = 0.15. Gaussian-
distributed noise with a variance of σ = 23.1 × 10−6 was
added to each time series. Both models were tested on each
data set including reflection, boosting, and ellipsoidal variations.
Thermal flux variations were neglected in these simulations.
With regard to model testing, a model is said to be favored if
it has a higher (or less negative) evidence value than another
model. This assumes no prior preference for either model.
Evidence values are typically expressed as the natural logarithm
of the evidence, denoted ln Z, to accommodate the extremely
large range of values typically encountered. As a result, a
difference in log evidence values indicates a factor of probability
proportional to a power of the natural number e ≈ 2.718. Log
evidences for each data set are shown in Table 2. In both cases
the correct model had the larger log evidence value.

Parameter estimates for both the circular and eccentric models
applied to the eccentric data set are shown in Table 3 and fits
to the eccentric data set are shown in Figure 2. EXONEST
was able to estimate the correct variance of the noise in the
eccentric case showing the ability to handle data sets for Kepler
candidates in which the noise level is unknown. EXONEST
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Table 3
MultiNest Parameter Estimates for the Synthetic Data Sets

Eccentric Circular

Parameter Mean Mean Actual

T 1.7630 ± 0.0012 1.7630 ± 0.0016 1.7637
i 80.80 ± 6.45 77.29 ± 9.01 87.10
M0 0.03 ± 0.02 4.79 ± 0.04 0.00√

AgRp 0.73 ± 0.05 0.16 ± 0.06 0.77
Mp 9.42 ± 0.52 10.50 ± 0.80 8.35
e 0.19 ± 0.01 . . . 0.20
ω 4.74 ± 0.04 . . . 4.71
σ 23.20 ± 0.80 ppm 30.20 ± 0.77 ppm 23.10 ppm
Rptrue 2.05 ± 0.54 8.50e − 05 ± 2.20e − 05 2.00

significantly overestimated the noise variance in the case of the
circular model indicating a poor fit, which is to be expected
since the synthetic data actually describes an eccentric orbit.
This implies that the algorithm is treating the parts of the data
that it cannot fit as noise. It is also worth noting that in the case of
the circular model, the estimated planetary radius was extremely
small. This is due to the fact that the dominant component of
the flux is the ellipsoidal variation to the stellar shape (as seen
in Figures 2(A) and (B)), whereas reflected light is the smallest
effect. The parameter denoted as Rptrue is an estimate of the true
radius of the planet taking the planetary albedo into account. To
obtain this value, we assumed that the planetary albedo was
known to be 0.15 ± 0.1. This relatively conservative prior, with
a relatively large uncertainty, is the reason for the relatively large
uncertainty in the true planetary radius. In the next section, we
describe the estimation of the planetary radius in more detail
and show how to apply the procedure to cases where the true
radius of the planet has been estimated from transit events.

The second set of experiments was designed to determine
how well EXONEST can estimate dayside temperatures when
the thermal flux variations are included in the model. There
should be a threshold defined by the Kepler Response Function
below which thermal flux variations will not be detected. In
addition, if the dayside and nightside temperatures are similar,
the amplitude of the thermal flux variations will be small and
difficult to detect. For this experiment, 10 data sets describing
the eccentric synthetic planet from the first two tests were
created each with a different dayside temperature ranging from
Td = 3200 K to Td = 5000 K in 200 K increments, and with a
nightside temperature fixed at 3000 K.

By examining Figure 3, it can be seen that nonzero nightside
flux variations act to decrease the amplitude of the signal,
and shift the mean upwards. This effect could equivalently be
explained by increasing the orbital inclination, which would
decrease the amplitude of the oscillation, and by slightly
increasing the mean flux of the star, which would increase the
mean of the observed overall planetary flux. This implies that
there is an inherent degeneracy in the model involving these
parameters, which can only be resolved by obtaining additional
relevant information. At this point in time, given the nature of the
Kepler data, we resolve this degeneracy by setting the nightside
temperature to zero in our model, which implicitly assumes
that most planetary nightsides do not significantly radiate in
the Kepler bandpass. We should note that using two or more
separate spectral channels would resolve the degeneracy. The
results from these simulations are shown in Figure 4.

The third set of experiments was designed to determine how
eccentricity affects the ability of EXONEST to differentiate

Figure 3. Depiction of thermal flux variations. The gray dotted line represents
the dayside flux, the black dashed line is the nightside flux, and the solid
black line is the total observed flux. Thermal flux variations from the nightside
act to shift the mean total signal upward, while decreasing the total signal
amplitude. This will also occur if the inclination and stellar flux are increased
(thus decreasing the amplitude and increasing the mean).

thermal emission from reflected light. To demonstrate this,
10 data sets each with different eccentricities ranging from
e = 0.00 to e = 0.45 in 0.05 increments while keeping all
other model parameters identical to the previous examples were
created. MultiNest was run 30 times on each data set for a
total of 300 runs so that the uncertainties in the log evidence
could be estimated. Figure 5 shows the mean log evidences
for two different models applied to each of the 10 data sets.
The first model shown in black includes thermal flux variations,
while the other, shown in gray, neglects them. We found that for
planets with eccentricities less than e ∼ 0.3, EXONEST cannot
definitively distinguish (at a 2σ level) between reflected light
and thermal emission. It should be noted that this limit governs
ones’ ability to distinguish between the two models—not the
ability to estimate model parameter values as was illustrated
in Figure 4, which involved a planet in an eccentric orbit with
e = 0.2. Since in many cases, in the Kepler data set, these
two fluxes cannot be distinguished without further information,
it may be more appropriate to refer to them as a single
effect—planetary flux.

Finally, in order to better understand degeneracies in the
model, we have explored the log-likelihood probability land-
scape. Figure 6 shows two-dimensional slices through the log-
likelihood probability landscape at the position of the correct
solution (black crosses). In this case synthetic data was used
with parameters similar to those of KOI-13b (note that these pa-
rameters are identical to those used in Experiments 1–3). Of par-
ticular interest are the plots involving orbital inclination (cos i),
dayside temperature (Td), planetary radius (Rp), and planetary
mass (Mp) since they are all relatively flat. This would imply
that large uncertainties will be associated with these parameters
in simulations. As can be seen from Equation (31), the planetary
radius and dayside temperature both act to change the amplitude
of the thermal flux. This degeneracy results in a relatively flat
region in the Rp vs. Td landscape. The argument of periastron
(ω) and the initial mean anomaly (M0) determine the shape and
phase of the wave-form and thus can be estimated very precisely.
This is manifested as sharp peaks in the probability landscape
for all of the plots involving these two angles. It should be noted
that these two-dimensional slices through parameter space were
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Figure 4. MultiNest estimates of the dayside temperatures, Td (black), along with planetary radius (gray; left) and cos i (gray; right) from synthetic data sets involving
eccentric orbits (e = 0.2). The black and gray asterisks represent true parameter values.

Figure 5. Log evidence values obtained by applying a model that neglects thermal flux (black) and a model that includes thermal flux (gray) to the synthetic data sets
of varying eccentricity. It can be seen that one cannot definitively distinguish the two models (and therefore thermal and reflected flux) for eccentricities <0.3.

taken at the correct solution, so the geometric albedo was taken
to be Ag = 0.15. This was not assumed in the simulations per-
formed on the data for experiment 1 where MultiNest estimated
the joint parameter

√
AgRp. A similar examination of the prob-

ability landscape for the Kepler observations of KOI-13b will
be presented in the next section.

5. ANALYSIS OF KOI-13B

KOI-13b is one of the largest transiting planets found to date.
Using the BEER algorithm, Shporer et al. (2011) demonstrated
that KOI-13b is detectable from its photometric signal alone.
To demonstrate our methodology, we apply 18 different pho-
tometric models to 121 days of out-of-transit data (4187 data
points) from the first, second, and third quarters of the Kepler
mission. Each of these models represents different combina-
tions of photometric effects, such as reflected light, Doppler
boosting, ellipsoidal variations, and thermal emissions applied
to either a circular orbit or an eccentric orbit. In addition, we
also tested the null model, which assumes that there is no planet
around the star and that the star radiates with a constant flux.
In the case of KOI-13b, parameter estimation and log evidence

calculations were all under fifteen minutes in duration. Previous
studies of KOI-13b suggest that the planet is in a close-in circu-
lar orbit (e = 0 ± 0.05; Mislis & Hodgkin 2012), and as such,
it induces detectable ellipsoidal variations as well as Doppler
boosting (Mislis & Hodgkin 2012; Shporer et al. 2011; Faigler &
Mazeh 2011).

We take the stellar radius, R� and the effective temperature Teff
to be known parameters. These can be obtained from the Kepler
Input Catalogue (KIC) estimates (Latham et al. 2005). However,
here we have taken them to be the estimates made by Szabó et al.
(2011) using both photometric and spectroscopic observations
(R� = 2.55 R�, Teff = 8500 K). In order to significantly speed
up computation time, we also phase-fold the data on the accepted
period of 1.7637 days. The MultiNest algorithm was then used
to obtain both model evidences and parameter estimates, which
are presented in Tables 4 and 5, respectively. Each MultiNest
simulation was performed using 100 live samples along with
a stopping criterion of tol = 0.1. The algorithm is terminated
once the estimated evidence contribution from the current set of
live samples is below this tolerance value (Feroz et al. 2013).
It should be noted that increasing the number of samples used
by MulitNest increases the quality of the log evidence estimate.
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Figure 6. Synthetic log-likelihood landscapes for pairs of model parameters. Slices were taken through parameter space at the true parameter values. The correct
solution for this case is given by {e = 0.1, cos i = 0.2, ω = 3π/2, M0 = π, Rp = 1.86,Mp = 8.35, Td = 3800, Ag = 0.15}. Plots involving cos i, Td , and Mp are
seen to be relatively flat implying more uncertainty in those parameters. The argument of periastron (ω) and initial mean anomaly (M0) show very sharp peaks and are
thus more accurately estimated.

(A color version of this figure is available in the online journal.)

Table 4
MultiNest log Evidences (ln Z) for 18 Different Models

Applied to the Photometric Signal of KOI-13b

Model Circular (ln Z) Eccentric (ln Z)

Refl. Only 37 108.0 ± 0.4 (5) 37 659.0 ± 5.4 (7)
Boost Only 36 970.0 ± 4.0 (5) 37 166.0 ± 1.9 (7)
Ellips. Only 36 555.0 ± 0.5 (5) 37 581.0 ± 0.4 (7)
Refl. + Boost. 37 108.0 ± 0.5 (6) 37 670.0 ± 2.9 (8)
Refl. + Ellips. 37 701.0 ± 0.5 (6) 37 704.0 ± 2.7 (8)
Boost. + Ellips. 36 577 ± 0.8 (5) 37 634.0 ± 2.8 (7)
Refl. + Boost. + Ellips. 37 703 ± 1.1 (6) 37 748 ± 1.1 (8)
Therm. + Boost + Ellips. 37 703 ± 1.1 (8) 37 764 ± 8.3 (10)
Refl. + Boost. + Ellips. + Therm. . . . 37 765.0 ± 0.9 (10)

Null 36 143 ± 1.0 (1)

Note. The models most favored to describe the data are in bold and the number
of model parameters for each model are given in parentheses.

However, this results in a significant increase in the computation
time. For this reason, we use 100 samples and run MultiNest
30 times to ensure stability in the log evidence estimate and its
uncertainties.

Obtained log evidence values (Table 4) clearly indicate
that the two most probable models are an eccentric orbit
with thermal emission, boosting, and ellipsoidal variations
(ln Z = 37 764.0 ± 8.3) and reflection, thermal emission,
boosting, and ellipsoidal variations (ln Z = 37 765.0 ± 0.9).
Based on the uncertainties of the log evidences for these
two models we cannot distinguish between them. Thus we
conclude that thermal emission is the more significant effect
in that it dominates the planetary flux. The second and third
most probable models were the eccentric orbit with reflection,
boosting, and ellipsoidal variations (ln Z = 37 748.0 ± 1.1),
and both circular orbits with reflection, boosting, and ellipsoidal
variations (ln Z = 37 703.0 ± 1.1) and thermal, boosting, and
ellipsoidal variations (ln Z = 37 703.0 ± 0.5). This latter result
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Table 5
MultiNest Parameter Estimates for KOI-13b

Eccentric Circular

Parameter Mean Mean Accepted

e 0.034 ± 0.003 . . . < 0.05b

Ms . . . . . . 2.05b

ω 3.57 ± 0.13 . . . . . .

M0 1.02 ± 0.13 5.05 ± 0.16 . . .√
AgRp 0.748 ± 0.015 0.693 ± 0.005 . . .

Ag . . . . . . . . .

Rp 1.98 ± 0.31 1.95 ± 0.51 1.86 ± 0.003c

i 81.37 ± 5.23 85.30 ± 1.72 85.135+.097
−0.063

d

R� . . . . . . 2.55b

Mp 8.35 ± 0.43 6.35 ± 0.11 8.30 ± 1.25e

Td . . . . . . . . .

σ (ppm) 28.00 ± 0.50 33.00 ± 0.50 . . .

ln Z 37 748 ± 1.1 37 703 ± 1.1

Notes. The Circular and Eccentric models included Reflected Light, Doppler
Boosting, and Ellipsoidal Variations. The bottom row lists the log evidence, ln Z,
for each of the three models. The uncertainties in log evidence were obtained by
running MultiNest 30 times on each data set. Estimates of Rp were calculated
post-simulation by the process explained in Section 4.4.
a Shporer et al. (2011).
b Szabó et al. (2011).
c Borucki et al. (2011).
d Esteves et al. (2013).
e Mislis & Hodgkin (2012).

was to be expected since in the circular case, the reflection and
thermal effects have the same signature.

Finally, the fourth and fifth most probable models were
circular and eccentric orbits with reflection and ellipsoidal
variations. It is not surprising that the circular model with only
reflection and ellipsoidal variations has a high log evidence since
the phase-folded light curve (Figure 7) clearly shows variations
at the same frequency as the orbit (reflection/thermal), and
the double-peaked waveform with half of the orbital frequency
(ellipsoidal variations). As far as testing between circular and
eccentric orbits, a more standard evaluation technique was
performed, involving the goodness-of-fit, which is found by
the sum of the squared residuals for the two models. Again,
the eccentric model was found to be favored since the sum
of the squared residuals (RSS) for the eccentric model is
RSS = 3.45e − 06, whereas for the circular model, the sum
of the squared residuals is RSS = 3.8e − 06, which is almost
10% larger. The two models with the largest log evidence also
had the lowest RSS values. The eccentric model including
thermal emission, Doppler boosting, and ellipsoidal variations
had RSS = 3.3674e − 06, whereas the eccentric model that
included those three effects and reflected light gave an RSS =
3.3686e − 06.

Figure 7 compares the folded data points to the predictions
made by the circular and eccentric models for reflection,
boosting, and ellipsoidal variations (A and B). The model
that included reflected light, Doppler boosting, and ellipsoidal
variations predicts KOI-13b to have a mass of Mp = 8.35 ±
0.43MJ , a minimum radius of

√
AgRp = 0.748 ± 0.015 RJ ,

and a slightly eccentric orbit with e = 0.034 ± 0.003. The
beta distribution was implemented as an alternative prior on
eccentricity in order to determine if the preference for eccentric
orbits was due to the uniform prior. As proposed by Kipping
(2013), the beta distribution well-describes the distribution of

eccentricities for ∼400 known exoplanets. For our analysis,
we used A = 0.867 and B = 3.03 for the shape parameters.
This alternative prior did not significantly change our parameter
estimates or the uncertainties, yielding an eccentricity of e =
0.034 ± 0.002, and ln Z = 37850 ± 20. Given the planetary
radius of KOI-13b, Rp = 1.860±0.003RJ estimated by Borucki
et al. (2011) using transit data, we can derive an estimate of
the geometric albedo. Based on the provided information, we
assigned a Gaussian probability density function for Rp with a
mean given by Rp = 1.860 and a standard deviation given by
σRp

= 0.003

Pr(Rp|I ) = 1√
2πσRp

exp − (Rp − Rp)2

2σRp
2

. (45)

Sampling from this Gaussian results in a set of samples of Rp.
The posterior samples of the joint parameter

√
AgRp obtained

from MultiNest can be divided by these samples of Rp and
squared to produce samples of Ag. By taking the mean and
standard deviation of the samples of Ag we can summarize our
estimate of the geometric albedo by Ag = 0.162 ± 0.007. This
result is consistent with the maximum albedo of max(Ag) =
0.148+0.027

−0.023 reported in Esteves et al. (2013). Repeating this
process for the planetary radius of Rp = 2.2±0.1 RJ estimated
by Szabó et al. (2011) resulted in a lower geometric albedo of
Ag = 0.114±0.013.

If one is dealing with a nontransiting planet, the same
method can be applied to find an estimate of the true radius.
By assuming a Gaussian probability density function for Ag,
one can sample values of Ag. During the estimation procedure,
MultiNest provides samples of the joint parameter

√
AgRp

from the posterior probability. Given a sample of Ag and a
sample of

√
AgRp, we can divide the square of the latter by

the former and take the square root to obtain a sample of the
planetary radius Rp. The resulting distribution can be plotted
and examined, or summarized by computing a mean and a
variance of the Rp values. For example, let us assume that for
KOI-13b, we have that Ag = 0.15 with a standard deviation
of σAg

= 0.05. Our posterior samples of the joint parameter√
AgRp results in an estimate of the planetary radius of KOI-

13b of Rp = 1.98 ± 0.31RJ , which is between the estimates
given by Borucki et al. and Szabó et al., although with a notably
higher uncertainty due to the conservative uncertainty in the
geometric albedo.

The eccentric model that includes both reflected light and
thermal emissions (Table 6, first column) allows one to sep-
arately estimate the planetary radius (Rp) and the geomet-
ric albedo (Ag). For KOI-13b, we find these values to be
Rp = 0.60 ± 1.1 RJ and Ag = 0.09 ± 0.10. The algo-
rithm, which in this study is a demonstration ignoring tran-
sits, severely underestimated the planetary radius and accounted
for this by increasing the dayside temperature drastically to
Td = 5263 ± 394 K. It is expected for the degeneracy to be
large in this model since the eccentricity is so low. A way to
potentially combat this problem, other than including transits
(which do not occur for non-transiting planets), is to use the
following proposed relation between the geometric albedo and
the planet-star separation distance (Kane & Gelino 2010).

Ag = 1

5
tanh(r − 1) +

3

10
(46)

where r is the planet–star separation distance in AU, which
can be taken as the semi-major axis for orbits with small
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(A) (B)

Figure 7. Out-of-transit data for KOI-13b including fits for (A) eccentric (ln Z = 37 748 ± 1.1; RSS = 3.45e − 06) and (B) circular (ln Z = 37 703 ± 1.1;
RSS = 3.8e − 06) models with all three photometric effects. Each plot shows the contributions from the individual effects below the fit. The dashed line represents
the reflected light, + signs represent the ellipsoidal variations, the solid line represents the Doppler beaming.

Table 6
MultiNest Parameter Estimates for KOI-13b

w/Reflection No Reflection

Parameter Mean Mean Accepted

e 0.061 ± 0.006 0.062 ± 0.005 <0.05b

Ms . . . . . . 2.05b

ω 3.43 ± 0.11 3.42 ± 0.10 . . .

M0 1.22 ± 0.11 1.23 ± 0.10 . . .√
AgRp . . . . . . . . .

Ag 0.09 ± 0.10 . . . . . .

Rp 0.60 ± 0.11 2.00 ± 0.60 1.86 ± 0.003c

i 81.37 ± 5.23 81.5 ± 5.7 85.135+.097
−0.063

d

R� . . . . . . 2.55b

Mp 7.10 ± 0.32 7.10 ± 0.60 8.30 ± 1.25e

Td 5263.0 ± 394 3492.4 ± 340.4 3 724+5
−6

d

σ (ppm) 29.00 ± 0.50 29.00 ± 0.50 . . .

ln Z 37 764 ± 8.3 37 765 ± 0.9

Notes. Both models assumed eccentric orbits while including the following
photometric effects: thermal emission, Doppler boosting, and ellipsoidal vari-
ations (2nd column), and reflected light, thermal emission, Doppler boosting,
and ellipsoidal variations. The bottom row lists the log evidence, ln Z, for both
models. The uncertainties in log evidence were obtained by running MultiNest
30 times on each data set.
a Shporer et al. (2011).
b Szabó et al. (2011).
c Borucki et al. (2011).
d Esteves et al. (2013).
e Mislis & Hodgkin (2012).

eccentricities and/or sufficiently short periods where the at-
mosphere does not have time to significantly change during a
single period. Using this as an approximation for the true albedo
gives more reasonable estimates of radii and dayside tempera-

ture based on transit observations. However, precise estimates
of planetary radius and dayside temperature remain unattainable
with a single bandpass. One could test between a model that uses
this approximation and a model that estimates Ag by computing
the evidence. This approximation also may not be particularly
useful for short-period hot-Jupiters since it has a lower limit of
Ag = 0.1477 and many planets have been found to have lower
geometric albedos.

The model that treated the planetary flux as thermal emission
(Table 6, second column; Figure 8B) tied for the most probable
model, and yielded the best parameter estimates based on the
literature values. This model gave a planetary mass and radius of
Mp = 7.10 ± 0.38MJ and Rp = 2.00 ± 0.61 RJ , respectively.
This model also gave an orbital inclination and eccentricity of
81.5 ± 5.7 deg and e = 0.062 ± 0.005, which is slightly outside
the accepted range for orbital eccentricity given by Szabó et al.
(2011). Perhaps most notably, this model gave an estimated
dayside temperature of Td = 3492.4 ± 340.4 K in agreement
with the value estimated by Esteves et al. (2013). Since including
a reflection component to the planetary flux did not increase the
log evidence, we conclude that thermal emission is the main
component of the planetary flux.

As mentioned above, Figure 9 shows the two-dimensional
slices through the log-likelihood probability taken at the mean
parameter values obtained by MultiNest (Table 6, Eccentric
Thermal Model). Just as in the synthetic case, there are many
ridges in the probability landscape. Comparing the two, we see
very similar structures in most of the corresponding plots. This
implies that the forward model used both to create the synthetic
data and to analyze KOI-13b is reasonable. Differences between
the synthetic case and KOI-13b lie mainly with planetary radius
Rp and inclination cos i. KOI-13b is in a nearly circular orbit,
so it is expected that separating thermal and reflected flux with
one bandpass will be impossible. This is evident in the plots
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Figure 8. Out-of-transit data for KOI-13b including fits for eccentric orbits with (A) reflected light, thermal emission, Doppler beaming, and ellipsoidal
variations(ln Z = 37 764 ± 8.3; RSS = 3.3686e − 06), and (B) thermal emission, Doppler beaming, and ellipsoidal variations (ln Z = 37 765 ± 0.9;
RSS = 3.3674e − 06).

involving Rp in the third column where the probability density
is much more flat and spread out than in the synthetic case.
Another difference between the synthetic planet and KOI-13b
is that the estimated parameter values (seen as black crosses)
do not always lie on peaks in the case of KOI-13b. This is
because the estimated parameter values represent mean values
which need not reside on a peak since the posterior probability
is multimodal.

6. CONCLUSIONS

The EXONEST algorithm was developed to characterize
exoplanets based on photometric variations using Bayesian
model selection. This methodology relies on the Bayesian
evidence, which enables one to test a number of models against a
data set. Algorithms like Nested Sampling and MultiNest enable
one to explicitly calculate log evidence values as well as sample
from the posterior, which results in parameter estimates as well
as the uncertainties in those estimates. We have demonstrated
the abilities of EXONEST to perform model selection using
synthetic data as well as exploring the distinguishability of
thermal and reflected light. It was determined using model-
generated data that using photometric effects alone, thermal and
reflected flux cannot be disentangled for orbits with eccentricity
less than 0.3. The problem of disentangling thermal and reflected
flux would be resolved by considering two or more different
spectral channels. However, the degree to which this is possible
would need to be studied by careful simulations.

We have also added to results from previous work for
the transiting planet KOI-13b and have demonstrated that the
photometric effects associated with the out-of-transit data can be
used for characterizing many aspects of this planetary system.
It was found that the most favored model to describe the data
is a slightly eccentric orbit (e = 0.062 ± 0.005) exhibiting
the photometric effects of thermal flux, Doppler boosting,

and ellipsoidal variations. The log evidence, RSS, and the
parameter estimates all suggest that thermal flux represents the
main contributor to the planetary flux and that the reflected
light plays a minimal role. We estimate a planetary radius
of 2.00 ± 0.61 RJ , and a mass of 7.10 ± 0.38MJ . Our
mass estimates are relatively close to those of Esteves et al.
(2013) and Mislis & Hodgkin (2012), who estimate masses
of 7.93 ± 0.27MJ and 8.30 ± 1.25MJ , respectively. We also
find a dayside temperature of Td = 3392.4 ± 340.4K, which
is within 1 − σ of that estimated by Esteves et al. (2013) who
estimated the dayside temperature from secondary eclipses as
Td = 3724 ± 3K. It should be noted that since EXONEST
estimated the dayside temperature from the phase curve, not
the secondary eclipse, it is expected that the uncertainty in Td
should be much larger. For the models that exclude thermal
emission, we used the lower limit on the planetary radius in
conjunction with estimates of the planetary radius obtained
from transits to derive estimates of the geometric albedo. Given
a planetary radius of Rp = 1.86 ± 0.003RJ (Borucki et al.
2011), we estimate a geometric albedo of Ag = 0.162 ± 0.007,
whereas a slightly larger planetary radius of Rp = 2.2 ± 0.1 RJ

(Szabó et al. 2011) results in a lower geometric albedo of
Ag = 0.114 ± 0.013. This result seems to be in disagreement
with the results from our simulations on model-generated data
since we found that the algorithm could not disentangle thermal
emission and reflected light up to an eccentricity of e = 0.3. It
may be that the simulations are sensitive to the orbital orientation
and that some orientations allow for better estimation of the
two signals. For eccentric orbits, the argument of periastron ω
dramatically changes the reflected light waveform. Under the
assumption that the temperature of the planet does not change
over the course of an orbital period, it could be that certain
values of ω are more suitable for disentangling thermal emission
from reflected light since the thermal emission signal would
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Figure 9. Log-likelihood landscapes for pairs of model parameters including those applied to KOI-13b. Slices were taken through parameter space at the mean
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(A color version of this figure is available in the online journal.)

not be significantly altered by changing ω. Another possible
confounding issue is that there may be superrotation occurring
in the atmosphere of the planet (Faigler et al. 2013; Faigler &
Mazeh 2014), which would cause a phase shift in the thermal
emission signal. The fits for the eccentric orbit in Figure 7(A)
indicate a shift in the maximum of the reflected light to the
right of phase 0.5. The fits for thermal emission in Figure 8
also show the same shift in the maximum of the thermal flux.
While this shift is attributed to the slight eccentricity detected
by EXONEST, it could also be a sign of superrotation, which
could be modeled and tested against the existing suite of models
in Table 4.

In the future, we will be extending the EXONEST algorithm
by including models of transits and secondary eclipses.4 This
should enable reflected light and thermal emissions to be better
disentangled and thus more precisely estimated. It should also
allow one to better estimate the parameters relevant to the

4 Since the initial submission of this manuscript, we have succeeded in
extending the EXONEST algorithm to accommodate transits and secondary
eclipses, and are currently completing a study of these results.

other photometric effects as transits and secondary eclipses
hold information on the planetary radius, dayside temperature,
and orbital inclination. Also, instead of working only with
uniform distributions, we can assign Jeffrey’s priors (Sivia
& Skilling 2006) to scale parameters, or take into account
newly obtained information about exoplanets that either limit
parameter ranges or better quantify expected parameter values
(Kipping 2013, 2014; Kane & Gelino 2012; Gregory & Fischer
2010). We also plan to make EXONEST publicly available
in both MATLAB and Python, allowing for the incorporation
of plug-and-play models. EXONEST not only holds promise
for detecting nontransiting exoplanets from photometric effects
alone, but it may also serve as a verification technique since
each of these effects can be treated and tested for both separately
and jointly.
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