

University at Albany, State University of New York Scholars Archive

Geology Theses and Dissertations

Atmospheric and Environmental Sciences

1980

The geology of the northern part of North Arm Massif, Bay of Islands Ophiolite Complex, Newfoundland: with application to upper oceanic crust lithology, structure, and genesis

Eric J. Rosencrantz University at Albany, State University of New York

Follow this and additional works at: http://scholarsarchive.library.albany.edu/ cas_daes_geology_etd

Part of the Geology Commons, and the Tectonics and Structure Commons

Recommended Citation

Rosencrantz, Eric J., "The geology of the northern part of North Arm Massif, Bay of Islands Ophiolite Complex, Newfoundland: with application to upper oceanic crust lithology, structure, and genesis" (1980). Geology Theses and Dissertations. 110. http://scholarsarchive.library.albany.edu/cas_daes_geology_etd/110

This Dissertation is brought to you for free and open access by the Atmospheric and Environmental Sciences at Scholars Archive. It has been accepted for inclusion in Geology Theses and Dissertations by an authorized administrator of Scholars Archive. For more information, please contact scholarsarchive@albany.edu.

THE GEOLOGY OF THE NORTHERN PART OF NORTH ARM MASSIF,

BAY OF ISLANDS OPHIOLITE COMPLEX, NEWFOUNDLAND:

WITH APPLICATION TO UPPER OCEANIC CRUST LITHOLOGY

STRUCTURE, AND GENESIS

bу

Eric J. Rosencrantz

Abstract of a Dissertation

Submitted to the State University of New York at Albany

in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

College of Science and Mathematics

Department of Geological Sciences

1980

Detailed mapping (1:15,800) of the northern half of North Arm Massif shows the area to be underlain with a complete, although thin, ophiolite assemblage consisting, from top to base, of basalts, sheeted diabase dikes, isotropic and layered gabbroic rocks, layered ultramafic rocks and harzburgite tectonite. The assemblage represents a preserved piece of Cambrian oceanic crust analogous to present-day oceanic crust. Sheeted dikes and isotropic gabbros comprise the majority of the rocks exposed, with this sequence at present flat-lying to gently warped into open, uprift but nonsystematic folds. Basalts occupy a shallow discontinuous N-S trending trough within the west-central part of the area. The remaining lithologies are exposed in lesser amounts along the western, eastern and northeastern edges of the surveyed area.

Volcanics consist of pillowed lavas, massive flows and breccias plus intercalated red sediment, all crudely layered, with layer attitudes intersecting the lower horizon of the unit with large angles. Volcanics are fed by underlying diabase dikes, and grade into sheeted dikes by downward increase in numbers of dikes across a transition generally less than 50 m thick. The sheeted dikes unit consists entirely of multiple diabase dikes of .90 m mean thickness, subparallel throughout and trending NNW-SSE across the massif. The dike intrusion process includes a mode wherein several dikes each intrude the previous dikes, with the position of these very narrow, short term spreading axes episodically shifting within a wider but still narrow overall zone of intrusion and spreading. Dikes intersect the upper and lower contacts of the unit with mean angles of 60° and 75° respectively, and dip away from the spreading center, located to the west of the present position

of the section on the basis of dikes attitudes and chill margin analysis. The sheeted dikes unit ranges between 400 and 600 m thick. An estimated 40% of the diabase shows extensive in situ fracturing in distinct zones subparallel to dikes trends. Major zones of fracturing extend downward into gabbro metamorphosed to foliated and lineated amphibolite. This fracturing is interpreted to reflect oceanic crustal fissuring and faulting. Sheeted diabase dikes grade downward into isotropic gabbro across a complex transition wherein numbers of dikes decrease downward with corresponding increase of thickness of intervening screens of gabbro, with complete transition commonly occurring over as little as several meters, and wherein gabbro locally intrudes and stopes overlying sheeted diabase. Largely homogeneous throughout, isotropic gabbros near the base of the dikes unit vary widely in texture and locally show extensive development of ductile shear zones.

The lithology and igneous structure of the upper units of the ophiolite and the sense of tilting of the sheeted dikes suggest that upper oceanic crust, viewed as forming as a floating roof zone, or lid, to a spreading center magma chamber, behaves as a rigid beam and forms by accretion along a narrow central zone with subsequent subsidence and rotation away from the accretion axis as a consequence of loading of the lid by extrusives. Continued steady-state spreading of a lid forming in this manner generates a lid surface topography and structural morphology identical to that observed at present-day spreading centers and an internal structure which is consistent with that of ophiolites. The model indicates that the zone of dike intrusion and basalt extrusion is narrow and remains so with continual spreading. Because the model predicts a specific internal geometry of sheeted dike and volcanic

layering attitudes, it can be tested against other detailed reconstructions of upper oceanic crustal structure as such attitudes would affect magnetics inclinations in oceanic crust.

State University of New York at Albany COLLEGE OF ARTS AND SCIENCES

The dissertation submitted by

Eric J. Rosencrantz

under the title

THE GEOLOGY OF THE NORTHERN PART OF NORTH ARM MASSIF,

BAY OF ISLANDS OPHIOLITE COMPLEX, NEWFOUNDLAND:

WITH APPLICATION TO UPPER OCEANIC CRUST LITHOLOGY

STRUCTURE, AND GENESIS

has been read by undersigned. It is hereby recommended for acceptance

to the Faculty of the University in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

(Signed)

(Date)

(Signed)

(Signed)

(Signed)

(Signed)

(Recommended by the Department of Geological Sciences,

Kevin Burke, Chairman.

(Signed)

Recommendation accepted by the Dean of Graduate Studies for the Graduate Academic Council.

(Date)

(Signed)		
(pigned)		

THE GEOLOGY OF THE NORTHERN PART OF NORTH ARM MASSIF,

BAY OF ISLANDS OPHIOLITE COMPLEX, NEWFOUNDLAND:

WITH APPLICATION TO UPPER OCEANIC CRUST LITHOLOGY,

STRUCTURE, AND GENESIS

bу

Eric J. Rosencrantz

A Dissertation

Submitted to the State University of New York at Albany
in partial fulfillment of
the requirements for the degree of
Doctor of Philosophy

College of Science and Mathematics

Department of Geological Sciences

1980

ACKNOWLEDGEMENTS

I thank the many friends and colleagues who have contributed to this work, in ways direct and indirect, large and small, known and unknown. John Dewey unfailingly provided support and advice over the years spent on this investigation, as have Bill Kidd, Jeff Fox, and Steve DeLong. Special thanks are extended to Jack Casey; both his insight and comment and our constant, at times seemingly irreconcilable, differences of opinion and approach have, in the end, distinctly improved the final shape of this work and have contributed greatly to my understanding of North Arm and of ophiolites as a whole. Kathy Scanlon and Doug Meyer each provided invaluable assistance during what were backbreaking, often frustrating, often cold and always wet months of mapping. The Newfoundland field work would not have been possible at all without the skill and effort of Don "The Codfather" Venturi and his staff at Viking Helicopter, Ltd., in Pasedena or the regular deliveries of supplies by the Lockyer Brothers in Corner Brook. Bill Kidd critically reviewed and corrected the manuscript, the final version of which was cheerfully typed, spelling errors corrected, by Di Paton. I thank them both.

This work was supported by National Science Foundation Grants EAR 74-03246A01 and EAR 77-13688.

TABLE OF CONTENTS

	Page
ABSTRACT	
ACKNOWLEDGEMENTS	• • • • • • • • • • • • • • • • • • • •
TABLE OF CONTENTS	
LIST OF ILLUSTRATIONS	
LIST OF TABLES	
LIST OF PLATES	
INTRODUCTION	1
CHAPTER 1: NORTH ARM MAPPING	4
1.1: Location and general description	n 4
1.2: Previous mapping	7
1.3: Current mapping	9
1.4: Mapping procedure of this inves	tigation 9
CHAPTER 2: THE ORIGIN OF THE OPHIOLITE	IN VIEW OF THE DECIONAL
SETTING	
2.1: Brief geologic history of the E	
2.2: Source area of the Bay of Islan	ds Ophiolite 17
CHAPTER 3: STRUCTURES RELATED TO THE H	MPLACEMENT OF THE NORTH
ARM MASSIF	27
3.1: Large scale structure component	as 28
3.2: Faulting	
3.2.1: Basal thrust fault	
3.2.2: Trout River Fault	
2 2 2. Crocory Pivor Fault	36

	Page
3.2.4: Internal faults and crush zones	38
3.3: Folding	40
3.4: Emplacement events	41
CHAPTER 4: LITHOLOGY AND STRUCTURE	43
4.1: Ophiolite lithology and structure	43
4.1.1: Sediments	48
4.1.2: Volcanics	50
4.1.2.1: Internal morphology	51
4.1.2.2: Basalt petrology in brief	60
4.1.2.3: Internal structure	63
4.1.2.4: Thickness of the volcanics unit	65
4.1.2.5: Volcanics-sheeted diabase dike contact	65
4.1.3: Diabase dikes	66
4.1.3.1: Internal morphology	6 9
4.1.3.2: Diabase petrology in brief	80
4.1.3.3: Dike attitudes	81
4.1.3.4: Thickness and shape of the sheeted dikes unit .	82
4.1.3.5: Lower boundary of the sheeted dikes	82
4.1.4: Massive porphyritic diabase	88
4.1.5: Isotropic gabbros and related rocks	90
4.1.5.1: Gabbro	90
4.1.5.2: Fabrics within the uppermost isotropic gabbros	94
4.1.5.3: Amphibolite	100
4.1.5.4: Minor lithologies included within isotropic	
gabbros	102
4 1.5 5. Thickness of the isotropic gabbros	108

	Page
4.1.5.6: Lower boundary of the isotropic gabbros	108
4.1.6: Layered gabbroic rocks	109
4.1.6.1: Western exposures of layered gabbroic rocks	110
4.1.6.2: Eastern exposures of layered gabbroic rocks	115
4.1.7: Layered ultramafic rocks	120
4.1.8: Harzburgite tectonites	123
4.2: Summary of the ophiolite section	127
4.3: Non-ophiolite lithology and structure	127
4.3.1: Metamorphic aureole	127
4.3.2: Parallochthonous sediments	133
4.3.3: Blow-Me-Down Brook Formation	135
CHAPTER 5: STRUCTURE AND PROCESS WITHIN THE LID	137
5.1: Dike attitude and rotation of the lid	138
5.2: Chill margin bias, dike thickness and the process of	
dike intrusion	147
5.3: Sheeted dike unit boundaries and the process of dike	
intrusion	160
5.4: Fractured diabase: zone of fissuring and faulting	162
5.5: Summary	165
CHAPTER 6: EVOLUTION OF UPPER OCEANIC CRUST: A MODEL	167
6.1: Introduction	167
6.2: Geomorphology of mid-oceanic spreading center axes	169
6.3: Internal structure of upper oceanic crust	176
6.4: Model	182
6.5. Discussion	196

	<u>P</u>	age
6.6: Paleomagnetic evidence for lid rotation		202
6.7: Summary	•	208
CHAPTER 7: NOTES ON THE PLUTONIC SECTION	•	210
7.1: Deformation within the gabbroic rocks		210
7.2: Processes associated with igneous layering: a comment	•	214
CHAPTER 8: SUMMARY	•	218
APPENDICES	•	225
A: COMMENT ON 'THE SEISMIC VELOCITY STRUCTURE OF A TRAVERS. THROUGH THE BAY OF ISLANDS OPHIOLITE COMPLEX, NEWFOUNDL. AN EXPOSURE OF OCEANIC CRUST AND UPPER MANTLE' by Matth. Salisbury and Nikolas I. Christensen	AND, ew H.	225
B: COMMENT ON 'SEISMIC ANISOTROPY IN THE UPPER OCEANIC MAN'EVIDENCE FROM THE BAY OF ISLANDS OPHIOLITE COMPLEX' by Nikolas I. Christensen and Matthew H. Salisbury		232
C: HETEROGENEOUS NATURE OF OCEANIC CRUST AND UPPER MANTLE: A PERSPECTIVE FROM THE BAY OF ISLANDS OPHIOLITE COMPLEX	•	236
C.1: Introduction	•	236
C.2: The Bay of Islands lithology and structure	•	239
C.2.1: Harzburgite tectonite	•	242
C.2.2: Plutonic complex	•	244
C.2.2.1: Lithologic units of the plutonic complex	•	244
C.2.2.2: Layering and layering attitudes	•	248
C.2.2.3: Cryptic chemical variations within the pluto		251
complex		
C.2.2.4: High temperature ductile deformation		252
C.2.2.5: Variation within the plutonic complex	•	254
C.2.3: Intrusive-extrusive carapace		
C.2.3.1: Sheeted diabase dikes - gabbro transition .		257

	Page
C.2.3.2: Sheeted diabase dikes	259
C.2.3.3: Volcanics	260
C.2.3.4: Carapace thickness	262
C.2.4: Spatial distribution of metamorphic rocks	263
C.2.5: Preserved oceanic fracture zones in ophiolites .	269
C.3: Ophiolite thickness	273
C.4: Ophiolite geology, marine geological/geophysical data	
and a geological model of the oceanic crust	278
C.4.1: Shallow intrusive/extrusive carapace	279
C.4.2: Plutonic complex	289
C.5: Concluding remarks	294
D: FLOATING LIDS ON MID-OCEAN SPREADING CENTER MAGMA CHAMBERS	296
E: ABSTRACTS OF PAPERS PRESENTED AT MEETINGS	301
REFERENCES CITED	304

LIST OF ILLUSTRATIONS

Figur	e Number	Page
1.1:	Location of the study area	6
2.1:	Major tectonic divisions of Newfoundland	13
2.2:	Tectonic models for Ordovician West Foundland	26
3.1:	Major structural components of North Arm Massif	30
3.2:	Trout River Fault	37
4.1:	Spatial relationships within the upper Humber Allochthon	45
4.2:	Spatial arrangement of ophiolitic sediments	49
4.3:	Pillow lavas	55
4.4:	Pillow lavas	55
4.5:	Massive basalt flows	56
4.6:	Basalt breccia	56
4.7:	Thin section of intercalated cherts	59
4.8:	Distribution of basalt morphology	62
4.9:	Map of the distribution and trends of sheeted dikes	68
4.10	: Outcrop of sheeted diabase dikes	70
4.11	: Variation in dike attitudes	72
4.12	: Internal complexity of intrusion among dikes	74
4.13	: Detail of a dike contact	76
4.14	: Thin section view of a dike contact	78
4.15	: Diabase dikes cutting isotropic gabbros	84
4.16	: Variety of structure and lithology at the sheeted dikes - isotropic gabbro boundary	87
4.17	: Detail of massive plagioclase porphyritic diabase	89
	: Diffuse layering in isotropic gabbro	92

Figure	Number	Page
4.19:	"Clotted" gabbro	95
4.20:	"Mixed" gabbro	96
4.21:	Ductile shear zone	99
4.22:	Foliated and sheared gabbros	99
4.23:	Trondhjemite	104
4.24:	Trondhjemite vein	104
4.25:	Layered gabbroic rocks	113
4.26:	Detail of layering in gabbroic rock	113
4.27:	Layered gabbroic rocks	117
4.28:	Folded layered gabbroic and ultramafic rocks	117
4.29:	Layering within layered ultramafic rocks	121
4.30:	Harzburgite tectonite	125
4.31:	Lithological columns	130
5.1:	Attitudinal relationships between volcanics and sheeted dikes	141
5.2:	Synthesis of dike attitudes near the upper boundary of the sheeted dikes	142
5.3:	Attitudinal relationships between sheeted dikes and gabbro	144
5.4:	Synthesis of dike attitudes near the lower boundary of the sheeted dikes	145
5.5:	Histograms of dikes thicknesses	151-152
5.6:	Local dike intrusion patterns	159
6.1:	Comparison of topographic profiles of oceanic spreading centers	172
6.2:	Simplified sketches of various accretion - spreading geometries of the crustal lid	185

Figure	Number	Page
6.3:	Model of lid development	191
6.4:	Comparison of magnetic inclinations at DSDP holes in the North Atlantic Ocean	207
B.1:	Simplified geological sketch map of North Arm and Table Mountain Massifs	234
c.1:	Location of the Bay of Islands Ophiolite Complex	241
C.2:	Cross sections of the four massifs of the Bay of Islands Complex	256
C.3:	Comparison of unit lithostratigraphic unit thicknesses among various ophiolites	276
C.4:	Block diagram of oceanic crust	285

LIST OF TABLES

Table	Number	Page
4.1:	Characteristic lithology and structure of the	
	ophiolite rocks	128
5.1:	Thicknesses of diabase dikes	155
D.1:	Selected values of basalt rock, glass and melt	
	densities	298

LIST OF PLATES (located in back pocket)

- Plate 1: Geological Map of the North Arm Massif, Northern Part,

 Bay of Islands Ophiolite Complex, Newfoundland,

 Canada
- Plate 2: Structural Section of the North Arm Massif, Northern
 Part

The main difficulty in comparing ophiolite complexes with oceanic lithosphere is the absence of detailed petrographic and structural descriptions of actual sections of oceanic crust. Any comparison between oceanic lithosphere and ophiolite must of necessity be circumstantial.

Church (1972)

Optimum Optimorum Principle: There comes a time when one must stop suggesting and evaluating new solutions, and get on with job of analyzing and finally implementing one pretty good solution.

Dickson (1978), p. 138